JP6677161B2 - 測定処理装置、測定処理方法および測定処理プログラム - Google Patents

測定処理装置、測定処理方法および測定処理プログラム Download PDF

Info

Publication number
JP6677161B2
JP6677161B2 JP2016546227A JP2016546227A JP6677161B2 JP 6677161 B2 JP6677161 B2 JP 6677161B2 JP 2016546227 A JP2016546227 A JP 2016546227A JP 2016546227 A JP2016546227 A JP 2016546227A JP 6677161 B2 JP6677161 B2 JP 6677161B2
Authority
JP
Japan
Prior art keywords
grid
area
unit
measurement processing
evaluation area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016546227A
Other languages
English (en)
Other versions
JPWO2016035148A1 (ja
Inventor
暢且 町井
暢且 町井
史倫 早野
史倫 早野
章利 河井
章利 河井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JPWO2016035148A1 publication Critical patent/JPWO2016035148A1/ja
Application granted granted Critical
Publication of JP6677161B2 publication Critical patent/JP6677161B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/304Accessories, mechanical or electrical features electric circuits, signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/401Imaging image processing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、測定処理装置、測定処理方法および測定処理プログラムに関する。
従来から、非破壊用内部検査用途としてX線計測装置を使用して、被検物を設計三次元データとの比較や、被検物の肉厚、内部欠陥の評価を行う技術が知られている(たとえば特許文献1)。
日本国特許第4131400号
被検物の検査に要する時間を短くすることが望まれている。また、被検物の検査の結果からその被検物の生産工程の能力評価をするための時間を短くすることが望まれている。
本発明の第1の態様によると、X線を用いて被検物を測定するX線測定装置に用いる測定処理装置であって、前記被検物の一部に設定される三次元形状の被検出領域の情報と、前記X線測定装置の検出可能範囲の情報とに基づいて、前記被検出領域を測定するために必要な前記被検物の相対的な変位量を、前記被検出領域に対する前記検出可能範囲の複数の変位方向ごとに算出し、算出された前記変位量に基づいて、前記測定の際の変位方向を選定する選定部を備える。
本発明の第2の態様によると、X線を用いて被検物を測定するX線測定装置に用いる測定処理方法であって、前記被検物の一部に設定される三次元形状の被検出領域の情報と、前記X線測定装置の検出可能範囲の情報とに基づいて、前記被検出領域を測定するために必要な前記被検物の相対的な変位量を、前記被検出領域に対する前記検出可能範囲の複数の変位方向ごとに算出し、算出された前記変位量に基づいて、前記測定に用いる変位方向を選定する
本発明の第3の態様によると、X線を用いて被検物を測定するX線測定装置に用いる測定処理プログラムであって、前記被検物の一部に設定される三次元形状の被検出領域の情報と、前記X線測定装置の検出可能範囲の情報とに基づいて、前記被検出領域を測定するために必要な前記被検物の相対的な変位量を、前記被検出領域に対する前記検出可能範囲の複数の変位方向ごとに算出し、算出された前記変位量に基づいて、前記測定に用いる変位方向を選定する選定処理を、コンピュータに実行させる。
本発明によれば、被検物の検査に要する時間を短縮することができる。
本発明の実施の形態によるX線検査装置とその検査処理装置との構成を説明する図 実施の形態によるX線検査装置と検査処理装置との要部構成を説明するブロック図 被検物としてエンジンのシリンダーブロックを検査する場合に設定される評価領域の一例を示す図 格子グリッドを説明する図 グリッド化評価領域の設定を模式的に二次元にて示す図 3次元設定されるグリッド化評価領域を模式的に示す図 グリッド化評価領域に対するスライス面の選定を模式的に示す図 複数のグリッド化評価領域に対するスライス面の選定を模式的に示す図 被検物としてエンジンのシリンダーブロックを検査する場合に選定されたスライス面とスライス範囲との一例を示す図 評価領域が設定可能範囲を有する場合におけるスライス面の選定を模式的に示す図 評価領域が設定可能範囲を有する場合におけるスライス面の選定を模式的に示す図 被検物としてエンジンのシリンダーブロックを検査する場合に、評価領域の設定可能範囲を考慮に入れて選定されたスライス面とスライス範囲との一例を示す図 複数のグリッド化評価領域をグループ化する場合を模式的に示す図 被検物としてエンジンのシリンダーブロックを検査する場合に選定されたスライス面とスライス範囲との一例を示す図 クラスター分析による分類の例を示す図 クラスター分析の際の処理を模式的に説明する図 クラスター分析の際の処理を模式的に説明する図 クラスター分析の際の処理を模式的に説明する図 被検物と載置台との位置合わせを模式的に示す図 透過像の倍率に応じた評価領域のグループ化を示す図 シミュレーションの結果に基づいてシリンダーブロックを検査する際に選定されたスライス面とスライス範囲 検査前に行われる処理を説明するフローチャート 検査時に準備される載置用の治具の一例を示す図 エンジンのシリンダーブロックの検査時の状態を示す図 載置姿勢の変更を伴うエンジンのシリンダーブロックの検査時の状態を示す図 検査処理における動作を説明するフローチャート アーティファクトの例とアーティファクト除去処理の概要を模式的に示す図 評価領域更新処理における動作を説明するフローチャート 体積率良品度と肉厚良品度とから設定される良品度の一例を示す図 評価領域解析処理における動作を説明するフローチャート 修正評価領域のデータの生成について模式的に示す図 評価領域変更処理における動作を説明するフローチャート 広域領域解析処理における動作を説明するフローチャート 評価領域追加処理における動作を説明するフローチャート 実施の形態による構造物製造システムの構成の一例を示すブロック図 構造物製造システムの処理を説明するフローチャート プログラム製品を提供するために用いる機器の全体構成を説明する図
図面を参照しながら、本発明の一実施の形態によるX線検査装置およびX線検査装置用の検査処理装置について説明する。X線検査装置は、被検物にX線を照射して、被検物を透過した透過X線を検出することにより、被検物の内部情報(たとえば内部構造)等を非破壊で取得する。本実施の形態においては、X線検査装置が、エンジンブロック等の鋳造品の内部情報を取得して、その品質管理等を行うための内部検査装置として用いられる場合を例に挙げて説明を行う。
なお、X線検査装置100は、エンジンブロックのような鋳造品に限らず、樹脂成型品、部材同士を接着剤や溶接によって接合した場合の接合部の内部構造の形状情報を取得して、これらの検査を行うものであっても良い。
また、本実施の形態は、発明の趣旨の理解のために具体的に説明するためのものであり、特に指定の無い限り、本発明を限定するものではない。
図1は本実施の形態によるX線検査装置100の構成の一例を模式的に示す図である。なお、説明の都合上、X軸、Y軸、Z軸からなる座標系を図示の通りに設定する。
X線検査装置100は、検査処理装置1、X線源2、載置部3、検出器4、制御装置5、表示モニタ6および入力操作部11を備えている。なお、検査処理装置1がX線検査装置100とは別体に構成されるものについても本発明の一態様に含まれる。X線源2、載置部3および検出器4は、工場等の床面上にXZ平面が実質的に水平となるように配置された筐体(不図示)の内部に収容される。筐体はX線が外部に漏洩しないようにするために、材料として鉛を含む。
X線源2は、制御装置5による制御に応じて、図1に示す出射点Qを頂点としてZ軸に平行な光軸Zrに沿って、Z軸+方向へ向けて扇状のX線(いわゆるファンビーム)を放射する。出射点QはX線源2のフォーカルスポットに相当する。すなわち、光軸Zrは、X線源2のフォーカススポットである出射点Qと、後述する検出器4の撮像領域の中心とを結ぶ。なお、X線源2は扇状にX線を放射するものに代えて、円錐状のX線(いわゆるコーンビーム)を放射するものについても本発明の一態様に含まれる。X線源2は、たとえば約50eVの超軟X線、約0.1〜2keVの軟X線、約2〜20keVのX線および約20〜100keVの硬X線、さらに100keV以上のエネルギーを有するX線の少なくとも1つを放射することができる。
載置部3は、被検物Sが載置される載置台30と、回転駆動部32、Y軸移動部33、X軸移動部34およびZ軸移動部35からなるマニピュレータ部36とを備え、X線発生部2よりもZ軸+側に設けられている。載置台30は、回転駆動部32により回転可能に設けられ、回転駆動部32による回転軸YrがX軸、Y軸、Z軸方向に移動する際に、ともに移動する。
回転駆動部32は、たとえば電動モータ等によって構成され、後述する制御装置5により制御されて駆動した電動モータが発生する回転力によって、Y軸に平行であり、かつ、載置台30の中心を通過する軸を回転軸Yrとして載置台30を回転させる。Y軸移動部33、X軸移動部34およびZ軸移動部35は、制御装置5により制御されて、X線発生部2から射出されたX線の照射範囲内に被検物Sが位置するように、載置台30をX軸方向、Y軸方向およびZ軸方向にそれぞれ移動させる。さらに、Z軸移動部35は、制御装置5により制御されて、X線源2から被検物Sまでの距離が、撮影される画像における被検物Sが所望の拡大率となる距離に載置台30をZ軸方向に移動させる。
検出器4は、X線源2および載置台30よりもZ方向+側に設けられている。すなわち、載置台30は、Z方向において、X線源2と検出器4との間に設けられる。検出器4は、XY平面に平行な面上にX方向に延伸する入射面41を有する、いわゆるラインセンサであり、X線源2から放射され、載置台30上に載置された被検物Sを透過した透過X線を含むX線が入射面41に入射する。検出器4は、公知のシンチレーション物質を含むシンチレータ部と、光電子増倍管と、受光部等とによって構成され、シンチレータ部の入射面41に入射したX線のエネルギーを可視光や紫外光等の光エネルギーに変換して光電子増倍管で増幅し、当該増幅された光エネルギーを上記の受光部で電気エネルギーに変換し、電気信号として制御装置5へ出力する。
なお、検出器4は、入射するX線のエネルギーを光エネルギーに変換することなく電気エネルギーに変換し、電気信号として出力してもよい。検出器4は、シンチレータ部と光電子増倍管と受光部とがそれぞれ複数の画素として分割された構造を有している。これにより、X線源2から放射され、被検物Sを通過したX線の強度分布を取得できる。なお、検出器4として、光電子増倍管を設けずに、シンチレータ部が受光部(光電変換部)の上に直接形成された構造であってもよい。
なお、検出器4はラインセンサに限られず、2次元平面の検出器でも構わない。すなわち、本実施形態において、検出器4のラインセンサは、XY平面に平行な面上にX方向に延伸する入射面41を有するが、入射面41はY方向には1つのみ配置されている。また、XY平面において、X方向に複数の入射面41が配置されている。また、複数の入射面41のそれぞれが、独立してX線の強度を検出することが可能である。本実施形態において、入射面41はY方向に複数配列されていても構わない。たとえば図1のXY平面において、X方向およびY方向に複数の入射面41が配置される2次元平面の検出器でも構わない。また、2次元平面の検出器を用いる場合に、Y方向に複数配列される入射面41のうち、Y方向の所定位置におけるX方向の入射面41のみを使用し、ラインセンサとして使用しても構わない。この場合には、Y方向の所定位置におけるX方向の入射面41のX線の強度分布を取得し、Y方向の所定位置で取得されるX線の強度分布から被検物Sの形状情報を解析しても構わない。また、この場合に、Y方向の複数の位置でのX方向の入射面41のX線の強度分布を取得する際には、Y方向に互いに離れた位置でのX方向の入射面41のX線の強度分布を取得しても構わない。
X線源2と載置部3と検出器4とはフレーム(不図示)によって支持される。このフレームは、十分な剛性を有して製造される。したがって、被検物Sの投影像を取得中に、X線源2、載置部3および検出器4を安定に支持することが可能となる。また、フレームは除振機構(不図示)により支持されており、外部で発生した振動がフレームにそのまま伝達することを防いでいる。
入力操作部11は、キーボードや各種ボタン、マウス等によって構成され、オペレータによって、後述するように被検物Sを検査する際に被検査領域の位置を入力したり、被検査領域の更新をしたりする際に操作される。入力操作部11は、オペレータによって操作されると、操作に応じた操作信号を検査処理装置1へ出力する。
制御装置5は、マイクロプロセッサやその周辺回路等を有しており、不図示の記憶媒体(たとえばフラッシュメモリ等)に予め記憶されている制御プログラムを読み込んで実行することにより、X線検査装置100の各部を制御する。制御装置5は、X線制御部51と、移動制御部52と、画像生成部53と、画像再構成部54とを備える。X線制御部51はX線源2の動作を制御し、移動制御部52はマニピュレータ部36の移動動作を制御する。画像生成部53は検出器4から出力された電気信号に基づいて被検物SのX線投影画像データを生成し、画像再構成部54はマニピュレータ部36を制御しながらそれぞれの投影方向の異なる被検物Sの投影画像データに基づいて、公知の画像再構成処理を施して再構成画像を生成する。この再構成画像は、X線源2から検出器4の間に位置する部分の被検物Sの内部の構造を示す画像であり、ボクセルデータとして出力される。ボクセルデータとは被検物Sの吸収係数分布を示している。そして、本実施係蹄では、Y方向において異なる位置で取得された再構成画像を基に、画像再構成部54内部に設けられたサーフェスモデル構築部により、被検物Sの内部構造である3次元の形状情報が生成される。この場合、画像再構成処理としては、逆投影法、フィルタ補正逆投影法、逐次近似法等がある。
図2のブロック図に示すように、検査処理装置1は、マイクロプロセッサやその周辺回路等を有しており、不図示の記憶媒体(たとえばフラッシュメモリ等)に予め記憶されている制御プログラムを読み込んで実行することにより、後述する被検物Sの一部を検査する際の各種処理を行う。検査処理装置1は、構成情報取得部55と、検査制御部56と、検査解析部57と、データ蓄積部58とを備える。構成情報取得部55は、被検物Sに関する3次元CAD等の設計情報や、シミュレーションにより得られた被検物Sの内部欠陥等に関する情報を取得する。検査制御部56は、後述するように、被検物Sの一部の被検査領域を検査する際の検査時間を短縮させるための処理(以下、検査時間短縮処理)を行う。検査解析部57は、複数の被検物Sに対する検査結果である透過像に基づいて生成された被検物Sの形状情報を解析して、以後の検査における被検物の被検査領域の変更、追加、削除等を行う。データ蓄積部58は、検査制御部56や検査解析部57による処理による生成された各種のデータを記憶するための不揮発性の記憶媒体である。なお、検査制御部56および検査解析部57の詳細については説明を後述する。
X線検査装置100は、被検物Sの内部構造の検査を行う際に、載置台30をXYZの各方向に移動させて被検物Sを検査位置に位置させる。そして、X線検査装置100は、X線源2からY方向に所定の幅を有するスリットビームを載置台30の回転駆動に伴って回転する被検物Sに向けて照射する。検出器4は被検物Sを投下したX線を含む透過X線を受光して、上記のスリットビームのY方向の幅(たとえば、およそ1mm)に応じた被検物Sの断面の被検物Sの形状情報を得る。X線検査装置100は、回転駆動中の被検物Sへのスリットビームの照射と、上記の載置台30のY方向への移動、すなわち被検物SのY方向への移動とを繰り返し行う。スリットビームが、載置台30に載置された被検物SのY方向の長さの全域に及ぶ範囲で行われると、被検物Sの全体の形状情報を生成することができる(以後、フルスキャンと呼ぶ)。スリットビームの照射が、載置台30に載置された被検物SのY方向の長さの一部の範囲で行われる場合には、該当部分の透過像を取得し、その透過像に基づいて被検物Sの一部分の形状情報を生成できる(以後、部分スキャンと呼ぶ)。
なお、本明細書では、以下の説明において、上記の被検物Sとスリットビームが重なる領域をスライス面と呼ぶ。本実施の形態において、出射点Qと検出器4の入射面41とで規定される領域に被検物Sが配置されると、被検物Sを透過したX線を検出することができる。この場合、被検物Sを透過したX線の検出可能範囲をスライス面と呼ぶ。スライス面は、所定の幅を持った領域である。なお、本実施の形態では、検出器4の入射面41と出射点Qとで規定される領域と被検物Sとが重複する領域がスライス面である。勿論、スライス面は、たとえば出射点Qと検出器4の中心とを結ぶ領域であっても構わない。本明細書においては、スライス面の幅は、ボクセルデータを生成するための領域に相当し、ボクセルが1段、すなわちY方向へのボクセルの配列数が1個のものに相当する。また、スライス範囲は、ボクセルデータを生成するための領域に相当し、ボクセルが1段または複数段、すなわちY方向へのボクセルの配列数が1個または複数個のものに相当する。以後、本明細書の実施の形態においては、載置台30の1回の回転駆動で取得される透過像からボクセルが生成される領域がボクセル1段分となるスライス面を想定して説明を行う。ただし、スライス面の幅がボクセル1段分とする想定は発明の理解を容易にすることを目的とするものであり、本発明においてスライス面の幅が上記のものに限定されるものではない。載置台30のY方向への移動に伴って、載置台30上の被検物Sに対するスリット面の位置は相対的にY方向に移動する。以下の説明においては、このスライス面の被検物Sに対する相対的な移動を変位と呼び、そのときの移動量を変位量と呼ぶ。なお、本実施の形態において、所定位置での所定領域を検出した後に載置台30をY方向へ移動させる場合には、移動前に検出した所定領域と移動後に検出した所定領域とが重複しないようにする。勿論、一部重複しても構わない。
本実施の形態のX線検査装置100では、たとえば鋳造品のように同じ形状を有する多数の被検物Sに対して、フルスキャンまたは部分スキャンを行って検査を行う。フルスキャンは、被検物S全体の内部構造を取得するために、Y方向において所定の間隔で再構成画像を生成するための測定動作を意味する。被検物Sを製造するための金型のメンテナンス後等の量産製造が行われていない比較的検査時間に多くの時間が割り当てられる機会にて行われる。部分スキャンは、被検物Sのうち後述する評価領域を含む一部分のみの再構成画像を生成するための測定動作を意味する。上記のフルスキャンを行うタイミング以外で、多数の被検物Sに対の内部欠陥発生可能性の高い部分(以後、評価領域と呼ぶ)を被検査領域として選択して検査する際に行われる。
X線検査装置100による被検物Sの検査時間Tは、下記式(1)で決定される。
検査時間T=Tr×Nr×Ns …式(1)
Nrは、回転軸Yrを中心に被検物Sが1回転する際に検出器4で透過像データを取得する回数である。Nrの値、すなわち透過像データの取得回数が多いほど細かい角度きざみでデータを取ることを意味する。Trは、1回のデータを取得するのに要する時間であり、検出器4が受光した透過X線から透過像データを生成するために要する時間に相当する。Nsはスライス面数の総和、すなわち被検物SのY方向における移動量の総和(変位量)を、一つのスライス面の厚さで割った値である。上記の式(1)から、被検物Sの検査時間Tは、スライス面の数に比例して増加することがわかる。
スライス面の幅をおおよそ1mm、一つのスライス面の検査に要する時間を2分とすると、Y方向の大きさが400mmの被検物Sに対してフルスキャンする場合、検査時間に400mm/1mm×2分=13時間となり、非常に長時間を要することがわかる。
なお、検査データから構築する被検物Sについての3次元データの分解能は、角度分解能と回転中心からの距離に関係する。したがって、検査時の回転角度の刻みを必要以上に細かくしても、計測時間が増加するだけであって、特に、回転中心に近い領域における分解能は向上しない。分解能を上げるためには、被検物SをX線源2に近づけて拡大率を上げることが効果的である。
本実施の形態においては、検査制御部56は、最適なスライス面の選定を行うことにより、被検物Sに部分スキャンを行う際の検査時間Tを短縮する検査時間短縮処理を行う。以下、検査時間短縮処理について詳細に説明する。
図2のブロック図に示すように、検査制御部56は、評価領域設定部561と、格子グリッド設定部562と、スライス面選定部563と、検査部564と、グループ化部565と、倍率算出部568とを備える。
評価領域設定部561は、構造情報取得部55により取得された設計情報やシミュレーションに基づく情報等を用いて、被検物Sに対して部分スキャン時に検査を行わせるための評価領域を設定する評価領域設定処理を行う。格子グリッド設定部562は、設定された評価領域を含む領域を単位3次元格子に分割して格子グリッド化を行い、後述するスライス面選定のための処理負荷を低減する。スライス面選定部563は、部分スキャンする際に、検査時間短縮の観点から最適なX線の照射方向、すなわちスライス面を選定するスライス面・基準面選定処理を行う。
検査部564は、スライス面選定部563によって選定されたスライス面にて被検物Sが検査されるように、制御装置5を介してX線源2、検出器4、マニピュレータ部36等を制御するX線CT検査処理を行う。ここで、スライス面ごとに内部構造を含む被検物Sの形状情報を生成することができる。グループ化部565は、スライス面選定部563により最適なスライス面の選定が行われるように、複数の評価領域をその形状的な特徴に基づいて複数のグループに分類(グルーピング)する。領域再設定部575は、スライス面選定部563が最適なスライス面の選定を行う際に、後述する評価領域が有する設定可能範囲に基づいて、領域設定部561により設定された評価領域の位置を設定可能範囲内で再設定する。倍率算出部568は、設定された評価領域を検査する際の位置合わせや、評価領域の再構成画像を生成するための透過像を取得する際の倍率の算出を行う。
以下、検査制御部56と、評価領域設定部561と、格子グリッド設定部562と、スライス面選定部563と、検査部564と、グループ化部565と、倍率算出部568とによって行われる各処理の詳細について説明を行う。まず、各処理の説明をするために前提となる用語の定義を行う。
1.用語の定義
1.1.評価領域
評価領域は、被検物Sの構造や製造方法に起因して被検物Sのうち内部欠陥等の発生が見込まれる部位であり、後述するようにしてX線による検査結果からその状態を評価するための領域である。本実施の形態では、評価領域は、オペレータによって初期値として空間的に特定され、空間的位置の変更・削除は、オペレータの判断によって行われる。被検物Sがエンジンのシリンダーブロックの場合、評価領域として、以下の例がある。
・ 製品機能上、管理が必要な領域
シリンダーのボア部に鋳包む鋳鉄ライナーや、シリンダーブロックやラダーフレームのクランクジャーナル部に鋳包む鉄製ベアリングキャップ、冷却流路近傍、ボルト締め等の締結部分、オイルパンやミッションケース等の箇所が挙げられる。
被検物Sの製造時に鋳包み技術が用いられた箇所の鉄部材とアルミ部材との密着度は重要管理項目であり、ライナー部の密着が悪い場合には、ボアの精密加工時の耐力が低下してボアの真円度に影響を与え、また、エンジン稼働時には、発熱による変形が不均一になり、ピストンリングの摺動抵抗が増加する。いずれの場合も、出力低下や燃費の悪化をもたらす。ベアリングキャップは、密着度が重要であることはもちろんであるが、鋳巣が多い場合は、この部分には大きな負荷がかかるので、機械強度上の問題となる。エンジン稼働によるクランク軸からの負荷増大が、最終的にクラック発生等につながることもある。
冷却流路近傍の肉薄部に巣が連続して発生した場合には、冷却水のリーク危険度が高まる。したがって、評価領域は冷却流路近傍の特に肉薄部が延びる方向に設定されることが好ましい。冷却流路の粗加工後にはリークテスターでエンジンブロック全数について検査しているものの、粗加工前の早い段階でリーク危険度がわかることは好ましい。ボルト締め等の締結部分は負荷がかかる部分であることから、クラックの有無や鋳巣が伸長してクラックに発展する可能性についてチェックされる必要がある。通常は、含侵探傷法が用いられるが、X線検査はこの部分の検査に有効である。オイルパンやミッションケースなどは、限られた部位のみの検査でも有効である。
・ 寸法管理の必要性に起因する領域
鋳造では金型の組み合わせ精度によっても成形品の形状が変わる。したがって、金型構造や中子の管理体制に基づいて評価領域が設定される。特に、金型をメンテナンスした直後は、検査の必要がある。
軽量化のために、エンジンブロックはますます薄肉化しているので、肉厚が公差内に入っているかを管理する必要がある。肉厚公差は、各部で規定されているので、規定部位を評価領域として設定し、その評価領域内の最小肉厚を計測出力する。
・ 経験値で決まる領域
金型の鋳抜きピン付近やゲート付近に相当するエンジンブロックの領域は、評価領域として設定される。金型において、温度サイクルの激しい鋳抜きピンは、摩耗、ピン曲り、冷却不全の可能性があり、また、溶湯が高速で流動するゲート付近は摩耗の可能性が他の場所より高い。このため、金型のこれらの部分に相当するエンジンブロックの領域は、高頻度で検査が行われるべきである。評価領域と評価タイミングの設定については、経験的に得られたノウハウに基づいて標準化することができる。
・ シミュレーションで決まる領域
シミュレーションで不具合発生の可能性が予測される部分も評価領域とする必要がある。溶湯の合流点での湯周り不良や、厚さが大きく変化する部分での引け巣なども評価領域とする必要がある。
・ 加工面近傍の領域
鋳造後に後加工することが想定される加工面の周辺は評価領域として設定される。鋳造されたままの状態では表面に現れていない巣が後加工の後に現れるとうい問題があるためである。
図3に、エンジンのシリンダーブロックが被検物Sの場合における評価領域600の一例を示す。評価領域600には、様々な3次元状の形状が含まれる。エンジンブロックのうち、クランクジャーナル部近傍の評価領域601は、厚みをもった半円弧状である。鋳抜きピン近傍の評価領域602は鋳抜きピンを囲む円筒状である。また、肉厚等の寸法を管理する評価領域603は寸法計測対象を含む形状である。シミュレーションで引け巣発生が予測される部分の評価領域は後述するように不定形である。
なお、以後の説明においては、被検物Sに対してU軸、V軸、W軸からなる直交座標系を設定する。
1.2.格子グリッド
図4に格子グリッド650の一例を示す。格子グリッド650はUVW方向のそれぞれに沿って3次元状に設けられる。複数の格子グリッド650は、様々な形状を有して被検物S内に散在する評価領域600に対して適用され、これらの評価領域についての検査時間を短縮するための、被検物Sを載置台30に載置する際の姿勢とX線を照射させ方向の関係を算出するために設けられる。格子グリッド650は後述するように種々の3次元形状や大きさを有する評価領域600に適用されることにより、複数の評価領域600のそれぞれは、複数の格子グリッド650によって表される。すなわち、評価領域600が複数の格子グリッド650によって分割されることにより、格子グリッド650に基づいてUVW方向のいずれから被検物Sの評価領域600を含む領域に部分スキャンを行うか、すなわち後述するスライス面の選定を行う際の処理を簡略化できる。また、後述するように、被検物Sの検査結果を検査解析部57にて解析する際、検査結果を格子グリッド650単位で扱うことにより、単位格子グリッドの体積あたりの巣の体積(体積率)を算出することができる。
各格子グリッド650は、いわゆるボクセルデータを複数含むように設定される。ボクセルデータとは、画像再構成部54により生成される3次元データを構成する最小単位である。各格子グリッド650の大きさ(グリッドサイズ)は、評価領域600の大きさより小さく、評価領域6の大きさのたとえば1/10あるいは1/5に設定される。すなわち、ボクセルサイズ、グリッドザイズ、および評価領域の大きさの大小関係は、ボクセルサイズ< グリッドサイズ< 評価領域の大きさ、となるように設定される。
なお、上記のボクセルデータは、被検物SをX線源2に近づけるほど、細かい3次元ピッチで被検物Sのボクセルデータを得ることができる。ボクセルデータの粗密は、X線源2、被検物S、および検出器4の位置関係と、Y軸方向への被検物Sのスキャン送りピッチ(すなわちスライス面厚さ)に依存する。一方、評価領域600は、被検物S内の様々な場所に様々な大きさで、かつ様々な形状で存在する。したがって、格子グリッド650を評価領域600に適用することにより、スライス面を選定する処理を効率的に行うことができる。
2.検査時間短縮処理
以下、部分スキャンを行う際の検査時間短縮処理に含まれる、評価領域の設定処理、格子グリッドの設定処理、スライス面・基準面選定処理、X線CT検査処理のそれぞれについて詳細に説明する。
2.1.評価領域の設定処理
検査制御部56の評価領域設定部561は、被検物Sにおける評価領域600の位置・範囲(大きさ)を設定する。評価領域設定部561は、3次元CAD等の設計情報に基づいてオペレータが手動で入力した情報や、後述するシミュレーション結果による情報、過去に行った計測データに基づく情報等に基づいて、評価領域600の位置・範囲を設定する。すなわち、評価領域設定部561は、上記の設計情報の3次元座標系における評価領域600の位置・範囲を表す3次元座標データを設定し、データ蓄積部58に記憶する。
シミュレーションでは完全な予測は不可能であるものの、引け巣等が発生する可能性のある領域等の情報を有効に活用する。シミュレーションに必要な入力情報には、被検物Sの形状を表す3次元データがあり、この3次元データから計算用のメッシュを作成し、湯流れ・凝固のシミュレーションが行われる。このシミュレーション結果は、引け巣等の発生可能性の程度と場所を示す定量的データとなる。引け巣に関しては公知の新山パラメータという評価指標があり、新山パラメータにより引け巣発生場所をある程度予測することができる。
2.2. 格子グリッドの設定処理
格子グリッド設定部562は、上述したように、ボクセルよりもサイズが大きく、評価領域600の大きさよりサイズが小さくなるように格子グリッド650を設定する。格子グリッド650を設定すると、格子グリッド設定部562は、評価領域600を含む領域を格子グリッド650を用いて分割することによって、評価領域600を格子グリッド化してグリッド化評価領域610を設定する。
なお、格子グリッド設定部562は、オペレータの操作に応じて、格子グリッド650を設定することもできる。たとえば後述するように、小さな評価領域600に対する検査結果を解析する場合に、格子グリッド650のサイズを通常より小さく設定して格子グリッド650をより密に設けることで、高精度の解析結果を得るようにすることができる。
図5にグリッド化評価領域610を設定するための概念を模式的に示す。なお、図5は3次元形状を有する評価領域600、格子グリッド650、グリッド化評価領域610を、理解を容易にすることを目的として二次元形状で表して説明を行う。図5(a)は一つの評価領域600、図5(b)は設定された複数の格子グリッド650を示す。格子グリッド設定部562は、評価領域600に格子グリッド650を適用する(重ね合わせる)。上述したように、個々の格子グリッド650は、評価領域600の大きさよりもサイズが小さい。したがって、図5(c)に示すように、複数の格子グリッド650のうち、評価領域600と全領域で重複する格子グリッド651と、一部の領域で重複する格子グリッド652と、重複する領域が存在しない格子グリッド653とが生じる。格子グリッド設定部562は、上記の評価領域600と全領域で重複する格子グリッド651、および一部の領域で重複する格子グリッド652を一つに纏める。その結果、図5(d)に示すように、評価領域600を格子グリッド化したグリッド化評価領域610が格子グリッド設定部562によって設定される。
図6に、上記のグリッド化評価領域610の設定を3次元形状の評価領域600に対して行った場合の例を模式的に示す。なお、図6においては、被検物Sは図示を省略する。図6(a)は、たとえば一つの評価領域600が設定された場合を示す。図6(b)は、この評価領域600に対して格子グリッド化を行うことによって生成されたグリッド化評価領域610を示す。なお、図6(b)は図示の都合上、グリッド化評価領域610に含まれる格子グリッド650以外の格子グリッド650を省略して描いている。
格子グリッド設定部562は、上述のようにして3次元形状の評価領域600に対する格子グリッド化を行うと、データ蓄積部58に記憶された評価領域600の3次元座標データを格子グリッド650の単位で表されるUVW座標系における座標値に変換したデータについてもデータ蓄積部58に記憶する。
2.3.スライス面・基準面設定処理
スライス面設定部561は、被検物Sを部分スキャンする際の基準面およびスライス面を設定する。スライス面設定部561は、基準面を、たとえば3次元CADデータ等の設計情報における基準位置を含む面や点から構成されるように設定する。この基準面は、3次元CADデータ等の設計情報における基準面と、被検物Sを載置台30に載置して検査する際の基準面とを一致させるために用いられる。また、部分スキャンやフルスキャンにより取得された基準面を含む領域の3次元形状情報は、格子グリッド650と被検物Sの形状情報との位置合わせにも用いられる。
スライス面選定部563は、以下に説明するスライス面選定の手順にしたがって、グリッド化評価領域610を計測するためのスライス面を選定する。以下、スライス面選定について、次の(1)〜(7)に分けて説明を行う。
(1)グリッド化評価領域が1個の場合
(2)グリッド化評価領域が複数個の場合
(3)複数のグリッド化評価領域を1つの評価領域と見なせる場合
(4)評価領域が設定可能範囲を有する場合
(5)評価領域の延在方向に応じて評価領域をグループ化する場合
(6)透過像の倍率に応じて評価領域をグループ化する場合
(7)シミュレーション結果に基づく場合
(1)グリッド化評価領域が1個の場合
図7(a)は、図6(b)に示すグリッド化評価領域610をVW平面、WU平面にそれぞれ投影した投影面P1、P2を模式的に示す。VW平面に平行な投影面P1を用いることで、W方向に変位するスライス面候補701とV方向に変位するスライス面候補702とを比較できる。また、WU平面に平行な面への投影面P2を用いることで、V方向に変位するスライス面候補702とU方向に変位するスライス面候補703とを比較できる。なお、図7(a)においては、スライス面候補701、702、703には、それぞれが変位する方向に向いた矢印を付与して変位方向を示している。なお、本実施の形態において、スライス面候補703は、それぞれ互いに交差するスライス面を候補として選定する。なお、本実施の形態においては、VW平面、WU平面、UV平面を用いており、それぞれ互いに90°異なる。それぞれの平面が成す角は90°に限定されず、たとえば80°、70°、60°、50°、40°、30°、20°、10°、5°であっても構わない。また、スライス面候補703がVW平面ではなくVW平面と直交する方向に所定の幅を有する所定領域としても良い。スライス候補面703が複数の所定領域から選定される場合には、複数の所定領域のそれぞれは交差する。たとえば、複数の所定領域の表面の法線は、それぞれ交差する。
なお、本明細書においては、スライス面候補701、702、703はスライス面選定の手順を説明するために便宜的に用いるものであり、実際にスライス面を選定する処理の際に使用されるものではない。
各スライス面候補701〜703のそれぞれがグリッド化評価領域610と交差した状態で変位する際の変位量のうち、変位量が最小となるスライス面候補を部分スキャン時のスライス面700として設定される。次に、VW平面に平行な投影面P1を用いて説明を行う。
図7(b)は、投影面P1と、投影面P1上のグリッド化評価領域610VWと、スライス面候補701、702とを模式的に示す。グリッド化評価領域610VWは、V方向に4個、W方向に2個の格子グリッド650によって構成される。なお、図7(b)において、スライス面候補701および702の変位方向をそれぞれ矢印で示す。スライス面候補701によってグリッド化評価領域610を検査する場合、スライス面候補701の変位方向であるW方向の長さw1、すなわちW方向に沿って並ぶ格子グリッド650の個数(図7(b)の例では2個)が、グリッド評価領域610に対するスライス面候補701の変位量となる。この変位量はグリッド化評価領域610をW方向に沿って検査する場合に要する検査時間に比例する。
スライス面候補702によってグリッド化評価領域610をスキャンする場合、スライス面候補702の変位方向であるV方向の長さv1、すなわちV方向に沿って並ぶ格子グリッド650の個数(図7(b)の例では4個)が、スライス面候補702のグリッド化評価領域610に対する変位量となる。図7(b)に示す例においては、V方向へのスライス面候補702の変位量(4個の格子グリッド650に相当)と比較して、W方向へのスライス面候補701の変位量(2個の格子グリッド650に相当)は小さい。上述したように、被検物Sの検査時間はスライス面700の変位量に比例するので、投影面P1による評価によれば、スライス面候補701により検査する場合には、スライス面候補702による検査する場合と比較して検査時間を短くすることができることがわかる。
同様にして、WU平面に対する投影面P2を用いることで、同様にしてスライス面候補703の変位量が求められ、上述したスライス面候補701の変位量と比較され、小さい変位量にスライス面候補がスライス面として選定される。スライス面候補703と比較してスライス面候補701による変位量が小さい場合には、スライス面候補701がグリッド化評価領域610に対するスライス面700として選定される。換言すると、グリッド化評価領域610の長さ(すなわち格子ブロック650が並ぶ方向)が短い方向に沿って変位するスライス面候補がスライス面700として選定される。上記のようにスライス面700が選定されることにより、図7(a)、(b)に示すように、太枠で囲った範囲720がスライス面700によってグリッド化評価領域610を検査する際にスキャンされる領域(以後、スキャン領域と呼ぶ)となる。
(2)グリッド化評価領域が複数個の場合
図8を参照しながら、グリッド化評価領域610が複数設定された場合におけるスライス面700の選定の原理について説明する。図8(a)は、2つのグリッド化評価領域である、第1グリッド化評価領域610aと第2グリッド化評価領域610bとが設定され、それぞれがVW平面に平行な投影面P1に投影された状態を示す。第1グリッド化評価領域601aはV方向に4個、W方向に2個の格子グリッド650により構成され、第2グリッド化評価領域610bはV方向に2個、W方向に3個の格子グリッド650により構成されるものとする。すなわち、第1グリッド化評価領域610aでは、V方向の長さv1はW方向の長さw1よりも大きく、第2グリッド化評価領域610bでは、V方向の長さv2はW方向の長さw2よりも短い。
第1グリッド化評価領域601aに対して、図7の場合と同様にしてスライス面候補701の変位量とスライス面候補702の変位量とを比較する。第1グリッド化評価領域601aはW方向に並ぶ格子グリッド650の個数の方が少ないので、第1グリッド化評価領域601aに対してはW方向に変位するスライス面候補701が第1スライス面700aとして選定される。したがって、第1グリッド化評価領域601aに対しては、第1スキャン領域720aの範囲でスキャンされることになる。
第2グリッド化評価領域601bに対しても同様にしてスライス面候補701の変位量とスライス面候補702の変位量とを比較する。第2グリッド化評価領域601bはV方向に並ぶ格子グリッド650の個数の方が少ないので、第2グリッド化評価領域601bに対してはV方向に変位するスライス面候補702が第2スライス面700bとして選定される。したがって、第2グリッド化評価領域601bに対しては、第2スキャン領域720bの範囲でスキャンされる。すなわち、複数のグリッド化評価領域610が設定された場合には、各グリッド化評価領域610のそれぞれに対して、長さが短い方向に沿って変位するスライス面候補がスライス面700として選定される。
このように、変位する方向が異なる複数のスライス面700が選定された場合には、実際の検査を行うときに、後述するように載置台30上における被検物Sの載置姿勢を変更させる必要がある。
(3)複数のグリッド化評価領域を1つの評価領域と見なせる場合
図8(b)に示すように複数のグリッド化評価領域610が設定された場合には、複数のグリッド化評価領域610を一つのグリッド化評価領域610と見なしてスライス面700が選定される。図8(b)は、2つの第1グリッド化評価領域610aと第2グリッド化評価領域610bとが設定され、それぞれがVW平面に平行な投影面P1に投影された状態を示す。第1グリッド化評価領域601aのV方向の長さv1は4個の格子グリッド650に相当し、W方向の長さw1は3個の格子グリッド650に相当する。第2グリッド化評価領域610bのV方向の長さv2は3個の格子グリッド650に相当し、W方向の長さw2は4個の格子グリッド650に相当する。すなわち、第1グリッド化評価領域610aでは、V方向の長さv1はW方向の長さw1よりも長く、第2グリッド化評価領域610bでは、V方向の長さv2はW方向の長さw2よりも短い。
この場合、図8(a)を用いて説明した手順に従えば、第1グリッド化評価領域610aにはW方向へ変位する変位量がw1のスライス面候補701が、第2グリッド化評価領域610bにはV方向へ変位する変位量がv2のスライス面候補702がそれぞれのスライス面700として選定されることになる。しかし、スライス面候補701が図8(b)の破線で囲う範囲711を変位する場合には、スライス面候補701上に第1グリッド化評価領域610aの一部と第2グリッド化評価領域610bの一部とが共に存在する状態となる。すなわち、図8(b)に示すようにドットを付して示した、第1グリッド化評価領域610aの格子グリッド650aと第2グリッド評価領域610bの格子グリッド650bとがW軸と直交する同一スライス面内に存在する。また、ドットを付して示すグリッド化評価領域610aの格子グリッド650cとグリッド評価領域610bの格子グリッド650dとがW軸と直交する同一スライス面内に存在する。
投影面P1に対してスライス面候補701を用いてスキャンした場合には、グリッド化評価領域610aと610bとのうち格子グリッド650aと650bとを同一のタイミングにてスキャンでき、格子グリッド650cと650dとを同一のタイミングにてスキャンできる。このような場合には、第1グリッド化評価領域610aと第2グリッド化評価領域610bとを纏めて一つのグリッド化評価領域611として見なし、スライス面候補701のV方向の変位量とスライス面候補702のW方向の変位量とに基づいてスライス面700を選定する可能性について判断される。図8(b)の例では、グリッド化評価領域611のV方向の長さv3は7個以上の格子ブロック650に相当し、W方向の長さw3は5個の格子ブロック650に相当する。したがって、第1グリッド化評価領域610aと第2グリッド化評価領域610bとを纏めて一つのグリッド化評価領域611として見なし、W方向への変位量が小さいスライス面候補701をスライス面700として選定する方が検査時間が短くなると判断され、第1グリッド化評価領域610aと第2グリッド化評価領域610bとを包含するグリッド化評価領域611がスキャン範囲720にて検査される。
上述した原理に基づいて、スライス面選定部563は、被検物Sに設定された評価領域600に対するスライス面700を選定する。スライス面選定部563は、格子グリッド650ごとのUVW座標系におけるグリッド化評価領域610の3次元座標データをデータ蓄積部58から読み出す。スライス面選定部563は、グリッド化評価領域610のU方向、V方向、W方向の長さに対応する3次元座標データを用いて変位量を算出し、最短の長さの方向に変位するスライス面700を選定する。
複数のグリッド化評価領域610が設定されている場合には、スライス面選定部563は、異なるグリッド化評価領域610のうち、あるグリッド化評価領域610の一部と他のグリッド化評価領域610の一部とが同時に存在する平面があるかを判定する。すなわち、スライス面選定部563は、異なるグリッド化評価領域610に対してU座標値、V座標値、W座標値のうち少なくとも一つの座標データが一致するか否かを判定する。異なるグリッド化評価領域610において、少なくとも一つの座標データが一致する場合には、スライス面選定部563は、それらのグリッド化評価領域601を纏めた1つのグリッド化評価領域611に対して、最短の長さの方向に変位するスライス面700を選定する。少なくとも1つの座標値が一致する異なるグリッド化評価領域610が存在しない場合には、スライス面選定部563は、個々のグリッド化評価領域610に対して、最短の長さの方向に変位するスライス面700を選定する。
なお、一つのスライス面候補上に複数のグリッド化評価領域の一部が共に存在する状態であったとしても、複数のグリッド化評価領域を纏めて一つの評価領域と見なすことで常に検査時間を短縮できるとは限らない。複数のグリッド化評価領域を纏めて一つの評価領域と見なすかどうかの判断は、複数のグリッド化評価領域を別々に検査する場合のスライス面の変位量の合計と、複数のグリッド化評価領域を纏めた場合のライス面の変位量の比較に基づいて決定される。
図9を参照して、エンジンのシリンダーブロックを被検物Sとし、評価領域600を設定した場合のスライス面700の設定処理について説明する。図3を用いて上述したように、評価領域600として、クランクジャーナル部の評価領域601と、鋳抜きピンの評価領域602と、ライナー部の評価領域603との3種類が設定される。機能的に重要部位であるクランクジャーナル部分の評価領域601としては4ヶ所、温度サイクルの激しい部位である鋳抜きピンの評価領域602としては8ヶ所、ライナー部の評価領域603としては6ヶ所が設定される。なお、ライナー部の形状は円筒形であるが、円筒の全周囲でなく部分的な検査でも密着度を判定できることから、各円筒形を挟んでそれぞれ2ヶ所、合計6ヶ所を設定する。
スライス面選定部563は、個々の評価領域600と評価領域600の配列がどの方向に伸びているかに基づいて、上記の手順にしたがって、スライス面700を設定する。図9(a)に示すように、他のVW平面やUV平面にスライス面700を設定する場合と比較して、WU平面に平行であってV方向に変位するスライス面700を設定する場合の方がスライス面700の変位量が小さくなる。図9(b)は、選定されたスライス面700に応じて決定されるクランクジャーナル、鋳抜きピンおよびライナー部のそれぞれの評価領域601、602、603を検査するためのスライス範囲720a、720b、720cを示す。この被検物Sに対して部分スキャンする場合には、後述するようにスライス範囲720a、720b、720cにてX線による照射が行われ、これらのスライス範囲以外の範囲ではX線による照射が行われない。
なお、選定したスライス面700やスライス範囲720を表示モニタ6に表示し、オペレータにスライス面720やスライス範囲720の選定状況を観察可能に構成されるものも本発明の一態様に含まれる。
上述した手順に基づいてスライス面700が選定されるが、スライス面選定部563は、評価領域600の設定可能範囲を考慮に入れて、評価領域設定部561により設定された評価領域600の位置等を再設定してスライス面700の選定を行うことができる。設定可能範囲とは、評価領域600の位置、サイズが、必ずしもその入力値通りでなくとも、多少の位置やサイズがずれを許容する範囲である。たとえば、エンジンのシリンダーブロックにおけるクランクジャーナル部は、クランク軸方向(V方向)にある程度厚さがあるので、評価領域601がこの範囲内でずれても影響は少ない。換言すると、設定可能範囲を有する評価領域600は、その設定可能範囲の内部で位置を変位(移動)させることができる。評価領域600を設定可能範囲の内部で変位させることにより、スライス面700の変位量、すなわちスライス範囲720の幅を短縮でき、検査時間を短縮することが可能となる。なお、エンジンのシリンダーブロックにおける鋳抜きピンの評価領域602は、設定されたV方向の位置でなければならない。すなわち、設定可能範囲を有しておらず、位置を変位させることができない固定の評価領域600である。
なお、上述した評価領域600を設定する際に、設定可能範囲も入力可能に構成されるとよい。
(4)評価領域が設定可能範囲を有する場合
図10および図11を参照して、設定可能範囲を考慮した場合のスライス面700の選定について説明する。
図10(a)は、図8(a)の場合と同様に、2つの第1グリッド化評価領域610aと第2グリッド化評価領域610bとが設定され、それぞれがVW平面に平行な投影面P1に投影された状態を示す。第1グリッド化評価領域601aはV方向の長さv1は4個、W方向の長さは2個の格子グリッド650に相当し、第2グリッド化評価領域610bはV方向の長さv2は2個、W方向の長さw2は3個の格子グリッド650に相当する。第2グリッド化評価領域610bはV方向に沿って+側と−側とにそれぞれ3個の格子ブロック650に相当する設定可能範囲Rを有し、第1グリッド化評価領域610aは設定可能範囲を備えないものとする。なお、図10(a)においては設定可能範囲Rに相当する格子ブロック650を破線で示す。
本実施の形態においては、V方向に設定可能範囲Rが設定された場合を例に説明する。図10(a)においては、V方向に第1グリッド化評価領域610aに対して変位量V1と、第2グリッド化評価領域610bに対して変位量V2とが選定される。この場合に、V方向に設定可能範囲Rが設定されていないとすると、V方向のスライス面の変位量は、V1+V2となる。一方、本実施の形態においては、第2グリッド化評価領域610bに対して、V方向に+側に3個、−側に3個の設定可能範囲Rが設定されている。この場合、第2グリッド化評価領域610bを図10(a)に示す状態からV方向+側に3個移動する場合に、第1グリッド化評価領域610aと第2グリッド化評価領域610bのV方向に設定されるスライス面の変位量は、V1とV2である。一方、図10(a)に示す状態からV方向−側に3個移動した場合には、V方向において、第1グリッド化評価領域610aに設定されるスライス面が変位した場合に、第1グリッド化評価領域610aが検出されるだけではなく、第2グリッド化評価領域610bが一部検出される領域が設定される。図10(b)に記載の場合には、第1グリッド化評価領域610aのV方向に設定される4個の格子ブロック領域のうち、最も+側に配置される格子ブロックと、第2グリッド化評価領域610bの最も−側に配置される格子ブロックとが、V方向において重なる。したがって、図10(b)においては、第1グリッド化評価領域610aと第2グリッド化評価領域610bとを纏めて一つのグリッド化評価領域611として見なし、スライス面候補701のV方向の変位量とスライス面候補702のW方向の変位量とに基づいてスライス面700が選定される。
図10(b)の例では、グリッド化評価領域611のV方向の長さV3は、5個の格子ブロック650に相当する。したがって、第2グリッド化評価領域610bの設定可能範囲Rを変位する前と比べて、V方向の変位量を小さくすることができる。すなわち、設定可能範囲Rを有するグリッド化評価領域610の設定可能範囲R内に他のグリッド化評価領域610が設定されている場合には、設定可能範囲Rを有するグリッド化評価領域610を変位させて一つのグリッド化評価領域611と見なしてスライス面700の設定を行う。
図11を参照しながら、設定可能範囲Rを有するグリッド化評価領域610の設定可能範囲Rの内部に複数のグリッド化評価領域610が設定されている場合について、スライス面700を選定するための手順について説明する。図11(a)においては、第2グリッド化評価領域610bが設定可能範囲Rを有し、第1グリッド化評価領域610aと第3グリッド化評価領域610cとは設定可能範囲Rを有していない。第2グリッド化評価領域610bは、V方向+側および−側にそれぞれ3個の格子グリッド650分を設定可能範囲Rとして変位可能である。
図11(b)は、第2グリッド化評価領域610bをV方向−側に設定可能範囲Rに相当する3個分の格子グリッド650分だけ変位させた場合を示す。この場合、ドットを付して示す第1グリッド化評価領域610aの格子グリッド650と第2グリッド評価領域610bの格子グリッド650とが同一のスライス面候補702上に存在する。すなわち、図示のように、第1グリッド化評価領域610aと第2グリッド化評価領域610bとは、それぞれV方向に配列された2個分の格子グリッド650についてスライス候補面702の変位によって同じタイミングにて検査できる。したがって、第1グリッド化評価領域610aと、変位後の第2グリッド化評価領域610bとを纏めたグリッド化評価領域611では、V方向に沿ったスライス面候補702の変位量が格子グリッド4個分に相当する。
図11(c)は、第2グリッド化評価領域610bをV方向+側に設定可能範囲Rに相当する3個分の格子グリッド650分だけ変位させた場合を示す。この場合、ドットを付して示す第3グリッド化評価領域610aの格子グリッド650と第2グリッド評価領域610bの格子グリッド650とが同一のスライス面候補702上に存在する。すなわち、図示のように、第3グリッド化評価領域610aと第2グリッド化評価領域610bとは、それぞれV方向に配列された1個分の格子グリッド650についてスライス候補面702の変位によって同じタイミングにて検査できる。したがって、第3グリッド化評価領域610cと、変位後の第2グリッド化評価領域610bとを纏めたグリッド化評価領域611では、V方向に沿ったスライス面候補702の変位量が格子グリッド5個分に相当する。
したがって、図11に示す場合においては、図11(b)に示すように、第2グリッド化評価領域610bを第1グリッド化評価領域610aの方向へ変位させて、V方向に変位するスライス面候補702をスライス面700として選定をする。すなわち、一つに纏めたグリッド化評価領域611の長さがより短くなるように設定可能範囲Rを有する第2グリッド化評価領域610bを変位させることにより、スライス面700の変位量を小さくすることができる。
上述した手順に基づいて、領域再設定部567は被検物Sに設定された設定可能範囲Rを有する評価領域600の設定可能範囲Rを考慮に入れてグリッド化評価領域610を再設定し、スライス面選定部563は再設定されたグリッド化評価領域610を用いてスライス面700を選定する。領域再設定部567は、格子グリッド650単位のUVW座標系におけるグリッド化評価領域610の座標値をデータ蓄積部58から読み出す。領域再設定部567は、グリッド化評価領域610に設定可能範囲Rが設定されている場合には、読み出した座標値を用いて、設定可能範囲R内に他のグリッド化評価領域610が存在するか否かを判定する。すなわち、領域再設定部567は、設定可能範囲Rを有するグリッド化評価領域610の端部の座標値と、他のUVW方向が固定されたグリッド化評価領域610の端部の座標値との差が設定可能範囲Rより小さいか否かを判定する。
差が設定可能範囲Rより小さい場合に、領域再設定部567は設定可能範囲R内に他のグリッド化評価領域610が存在すると判定し、設定可能範囲Rの方向で共通化可能となる大きさ(格子グリッド650の個数)が最大となるように、設定可能範囲Rを有するグリッド化評価領域610を変位させてグリッド化評価領域610を再設定する。スライス面選定部563は、領域再設定部567によって再設定されたグリッド化評価領域610のU方向、V方向、W方向の長さをUVW座標上で算出し、最短の長さの方向に変位する変位量が最小となるスライス面700を選定する。
なお、上述の説明においては、設定可能範囲Rを有するグリッド化評価領域610を、設定可能範囲Rを有していないグリッド化評価領域610へ向けて変位させる場合を例に挙げたが、設定可能範囲Rを有するグリッド化評価領域610同士を変位させる場合についても本発明の一態様に含まれる。
図12を参照して、エンジンのシリンダーブロックを被検物Sとし、評価領域600を設定した場合のスライス面700の設定処理について説明する。図12(a)は、図3に示す場合と同様に被検物Sに対して設定された評価領域601、602、603を示す。上述したように、エンジンのシリンダーブロックにおけるクランクジャーナル部の評価領域601はV方向に沿った設定可能範囲Rの内部で変位させることができるが、鋳抜きピンの評価領域602はV方向に沿って変位させることができない。領域再設定部567は、評価領域601に対応するグリッド化評価領域610をV方向に変位させ、評価領域602に対応するグリッド化評価領域610とV方向の位置を共通化する。したがって、図12(b)に示すように、スライス面選定部563は、評価領域601に対するスライス範囲720a(図9(b)参照)と評価領域602に対するスライス範囲720b(図9(b)参照)とを設定するものに代えて、評価領域601と評価領域602とに対する共通のスライス範囲720dを設定する。そして、この被検物Sに対して部分スキャンする場合には、後述するようにスライス範囲720c、720dにてX線による照射が行われ、スライス範囲720c、720d以外の範囲ではX線による照射が行われない。
(5)評価領域の延在方向に応じて評価領域をグループ化する場合
図13に示す概念図を用いて説明を行う。図13(a)は、V方向を長手方向とする複数の第1グリッド化評価領域610aと、V方向を長手方向とする複数の第2グリッド化評価領域610bとが分布する場合における投影面P1を模式的に示す。図13(a)に示す場合には、W方向へ変位させる変位量と、V方向へ変位させる変位量とを比較する。すなわち、上述した各種の手順にしたがって処理を行うことにより、W方向へ変位するスライス面700が設定されるとともに、図示のようにスライス範囲720a、720bが設定される。
図13(b)は、図13(a)に示すように散在する第1グリッド化評価領域610aと第2グリッド化評価領域610bとに加えて、W方向を長手方向とする第3グリッド化評価領域610cが設定された場合を模式的に示す。図13(b)においては、第3グリッド評価領域610cは、V方向には1個の格子グリッド650に相当する大きさを有し、W方向には16個の格子グリッド650に相当する大きさを有する。第3グリッド化評価領域610cのW方向の大きさは、被検物SのW方向の大きさにほぼ等しいものとして説明する。
図13(b)に示すように第1、第2および第3グリッド化評価領域610a、610bおよび610cが分布する場合、スライス面700をW方向に沿って変位させると、第3グリッド化評価領域610cを構成するW方向に沿った格子グリッド650の個数(図13(b)の例では16個)の変位量となり、実質的にフルスキャンを行う場合と同様の検査時間を要する。すなわち、スライス面候補701をスライス面700として選定した場合、上述した第1グリッド化評価領域610aと第2グリッド化評価領域610bとに対する変位量と比べて、スライス面700の変位量が増加し、検査時間の増加につながる。
第3グリッド化評価領域610cは、V方向には1個の格子グリッド650を有している。このため、スライス面候補702をスライス面700としてV方向に変位させて第3グリッド化評価領域610cを検査する場合には、スライス面候補701をW方向に変位させる場合と比べて、変位量が小さくなる。したがって、第3グリッド化評価領域610cに対してはV方向にスライス面700を変位させ、上述したように第1および第2グリッド化評価領域610aおよび610bに対してはW方向にスライス面700を変位させると、W方向へ変位するスライス面(以後、第1スライス面711と呼ぶ)とV方向へ変位するスライス面(以後、第2スライス面712)とのそれぞれの変位量を小さくすることが可能となる。この場合、第1および第2グリッド化評価領域610aおよび610bを同一の第1グループG1にグループ化し、第3グリッド化評価領域610cを他の第2グループG2にグループ化する。すなわち、複数のグリッド化評価領域610を各グリッド化評価領域610の長手方向の大きさに応じてグループ化し、グループごとに変位量が小さくなるスライス面700およびスライス範囲720が選定される。
以下、図14を参照して具体的な処理について説明する。図14は、図3に示すエンジンのシリンダーブロックを被検物Sとした場合に設定された評価領域601、602、603に加えて、さらに2ヶ所の冷却流路がそれぞれ評価領域604として設定された場合を示す。この冷却流路の評価領域604はV方向にたとえば300mm伸びているものとする。図14(a)に示すように被検物Sを載置台30に載置して検査すると、冷却流路の評価領域604を検査するためにスライス面700の変位量は少なくとも300mmになる。このため、検査時間が増加してしまう。
図14(a)に示すクランクジャーナル、鋳抜きピン、ライナーの個々の評価領域601、602、603はおおむねW方向に伸び、概ねWU平面に含まれて配列され、かつV方向に離散的に並んでいる。一方、冷却流路の評価領域604は、V方向に伸び、UV平面に含まれている。グループ化部565は、たとえばクラスター分析を用いて、上記の各評価領域601、602、603、604をグループ化する。
図15にクラスター分析を用いて、各評価領域601、602、603、604の変数を纏めた一例を示す。図15に示すように、各評価領域601、602、603、604のそれぞれについて個別の特徴(たとえば厚み、厚みの方向、延在方向、延在長)と、複数個の配列の特徴(たとえば配列方向面、面内の個数、配列方向、配列数)とがパラメータとして表示される。グループ化部565は、評価領域設定部562によって設定された評価領域600の位置・大きさのUVW座標上における3次元情報を数値化し、パラメータとして抽出する。スライス面設定部560は、この変数を上記の個別の特徴、配列の特徴に分類する。
図15は、クランクジャーナルの評価領域601の欄の上段には、WU平面に平行な面を配列面とした場合の評価領域601の3次元情報が分類された状態を示す。すなわち、個々の評価領域601は、V方向に厚さ2mm、U方向に厚さ70mmであり、WU平面に平行な1個の面に含まれるのは1個の評価領域601であり、このような面がV方向に沿って4列必要とすることが示されている。評価領域601の欄の下段には、VW平面に平行な面を配列面とした場合の評価領域601の3次元情報が示されている。その他の評価領域602、603、604についても、同様にして3次元情報が示されている。
図16を参照して、グループ化部565が図15に示すクラスター分析の結果に基づいて行うグループ化について説明する。図16(a)は、図14に示す被検物Sであるエンジンブロックのうちの評価領域601、602、603、604と、スライス面候補701、702、703とをUVW座標上で示した図である。図16(b)は、評価領域601、602、603、604にそれぞれ対応するグリッド化評価領域610a、610b、610c、610cをVW面に平行な投影面P1に投影した状態を示す。図16(c)は、UV平面に平行なスライス面候補701がW方向に変位したときにスライス面候補701の変位に応じて変化するグリッド化評価領域610a、610b、610c、610cのスライス面候補701上の断面積の変化を示す。なお、図16(c)は、スライス候補面701のW方向への変位量を横軸、グリッド化評価領域610a、610b、610c、610cの断面積を縦軸として示している。
スライス面候補701がW方向−側から+側に変位すると、スライス面候補701のW位置が、図16(b)に示すW1〜W2まで変位する間は評価領域601に対応するグリッド化評価領域610aと交差する。したがって、スライス面候補701のW方向の位置がW1〜W2までの間は、図16(c)に示すように、グリッド化評価領域610aのスライス面候補701と交差する断面積が、グリッド化評価領域610aの形状に応じて変化する。さらにスライス面候補701がW方向+側へ変位すると、W3〜W4の範囲でスライス面候補703と評価領域604に対応するグリッド化評価領域610dとが交差し(図16(b)参照)、グリッド化評価領域610d形状に応じてスライス面候補701と交差する断面積は図16(c)に示すように変化する。スライス面候補701がさらにW方向+側へ変位すると、図16(b)に示すように、W5〜W7の範囲でスライス面候補701と評価領域603に対応するグリッド化評価領域610cとが交差し、W6〜W8の範囲でスライス面候補701と評価領域602に対応するグリッド化評価領域610bとが交差して、スライス面候補701と交差するグリッド化評価領域610cおよび610bの断面積は図16(c)のように変化する。したがって、グリッド化評価領域610a、610b、610c、610cを検査するために必要なスライス面候補701の変位量は、(W2−W1)+(W4−W3)+(W8−W5)となる。
次に、図17に、WU平面に平行なスライス面候補702がU方向へ変位したときにスライス面候補702の変位に伴って、評価領域601、602、603、604にそれぞれ対応するグリッド化評価領域610a、610b、610c、610cとスライス面候補702が交差する断面積の変化を示す。この場合には、図17(b)に示すように、スライス面候補702がV1からV20まで変位する間、評価領域604に対応するグリッド化評価領域604はスライス面候補702と交差し続ける。したがって、グリッド化評価領域610a、610b、610c、610cを検査するために必要なスライス面候補702の変位量は(V20−V1)となる。
次に、図18に、VW平面に平行なスライス面候補703がU方向へ変位したときにスライス面候補703の変位に伴って、評価領域601、602、603、604にそれぞれ対応するグリッド化評価領域610a、610b、610c、610cとスライス面候補703が交差する断面積の変化を示す。この場合には、図18(b)に示すように、スライス面候補703がU1〜U5で変位する間は、スライス面候補703は評価領域602、603、604にそれぞれ対応するグリッド化評価領域610b、610c、610dの何れかと交差する。スライス面候補703がU6〜U7まで変位する間は、スライス面候補703は評価領域601に対応するグリッド化評価領域610aと交差する。スライス面候補703がU8〜U12で変位する間は、スライス面候補703は評価領域602、603、604にそれぞれ対応するグリッド化評価領域610b、610c、610dの何れかと再び交差する。したがって、グリッド化評価領域610a、610b、610c、610cを検査するために必要なスライス面候補703の変位量は(U5−U1)+(U7−U6)+(U12−U8)となる。
グループ化部565とスライス面選定部563は、上記の結果に基づいて、各グリッド化評価領域610a、610b、610c、610cをどのようにグループ化して、スライス面を選定すれば変位量を小さくできるかをシミュレーションし、最小の変位量となるグリッド化評価領域610をグループ化し、それぞれのグループに適用するスライス面を選定する。この場合には、グループ化部565とスライス面選定部563は、評価領域601、602、603にそれぞれ対応するグリッド化評価領域610a、610b、610cを第1グループG1、評価領域604に対応するグリッド化評価領域610dを第2グループG2にグループ化し、第1グループG1に対してはスライス面候補702を第1スライス面712として選定し、第2グループG2に対しては、スライス面候補701を第2スライス面711として選定する。第1グループG1のスライス範囲は、図14(b)に示すように、720a、720b、720cに選定され、第2グループG2のスライス範囲は図14(d)に示すように720eに選定される。
なお、クラスター分析を行った結果、2以上のグループ分けが候補となった場合について説明する。すなわち、グループ化を行って、それぞれの変位量の合計を算出した結果、二通りのグループ化において、同じ変位量となった場合である。このような場合、評価領域の断面積と変位量を併せて判断することで、選択するグループ化を決定する。たとえば、図16(c)において、評価領域601、602、603、604に相当する部分として示された領域の合計面積を二通りのグループ化のそれぞれについて求め、合計面積が小さい方のグループ化を選択する。このことは、検査データの少ない方のグループ化を選択したことになり、検査データの処理負担の軽減になる。
(6)透過像の倍率に応じて評価領域をグループ化する場合
X線検査装置100の載置台30は、図1を参照して説明したように、マニピュレータ部36によって、回転軸Yrの回りの回転に加えて、X方向、Y方向、Z方向へ移動する。載置台30がZ方向−側に移動、すなわちX線源2に近づくほど被検物Sの透過像の倍率は増加する。また、載置台30をX方向に移動させることにより、被検物Sの所望の箇所がX線の照射範囲内に収まるように位置合わせを行う。
まず、設定された評価領域600に対して検査を行う際の位置合わせの手順について説明する。
図19(a)は、被検物Sであるエンジンのシリンダーブロックに対して、図9(a)に示すようにV方向へ変位するスライス面700が選定された場合に、WU平面に平行な投影面P2に評価領域601、602、603を投影した状態を示す。図19では、XZ平面に平行な面上において、X線は照射範囲900でX線源2より照射される。検査を行う際には、被検物SのV方向をX線検査装置100のY方向と一致するように載置される。すなわち、載置台の回転軸Yrと被検物SのV方向を一致させる。その結果、WU平面に平行な投影面P2はXZ平面に平行な載置台30に平行となり、スライス面700はXZ平面に平行な状態でY方向へ変位する。この投影面P2上に投影された評価領域601、602、603の全てがX線の照射範囲900内に含まれるように、載置台30のX方向とZ方向との位置が設定される。すなわち、スライス面700による検査中に載置台30のX方向およびZ方向の位置を固定とすることにより、X方向またはZ方向への移動に伴う検査時間の増加を抑制する。
ここで、全ての評価領域601、602、603を内部に含む円形領域901と、円形領域901の中心902とを想定する。この中心902が被検物Sを載置台30に載置した場合の回転軸Yrに相当し、円形領域901の内部の評価領域601、602、603に対して載置台30の回転に伴ってX線に照射される。したがって、円形領域901がX線の照射範囲900に含まれるように載置台30のX方向およびZ方向の位置を設定すれば載置台30のXZ方向の位置を固定した状態にてスライス面700による検査を行うことができる。
図19(a)は、X線の照射範囲900内でX線源2と中心902との距離が最小となるように円形領域901が設定された場合を示す。この場合、被検物Sの全体を検査することはできなくなるが、評価領域601、602、603の全てについて取得可能な透過像のうち高倍率の透過像を得ることが可能となる。なお、図19(a)においては図示を省略しているが、被検物SとX線検査装置100の構成物とが干渉しないように、X線の照射範囲900内で円形領域901および中心902の位置が決定されるとより好ましい。
倍率算出部568は、上記の手順にしたがって、位置合わせのための処理を行う。倍率算出部568は、設定された評価領域600の座標をデータ蓄積部58から読み出し、中心902の座標と円形領域901の直径または半径を算出する。
図19(b)を用いて、倍率算出部568が、円形領域901の中心902の位置を算出するための概念を説明する。X線源2から照射されるX線の照射範囲900、すなわち図19(b)に示す角度θは既知の値である。したがって、倍率算出部568は、図19(b)に示すように、算出した円形領域901の直径Dを用いて、X線源2から中心902までの距離p1をD/2sin(θ/2)として算出する。上述したように、被検物Sを検査する際には、この中心902と載置台30の回転軸Yrとが一致するように被検物Sが載置されるので、X線源2から中心902までの距離p1が、X線源2から載置台30のまでのXZ平面上における距離となる。倍率算出部568は、算出された距離p1とX線源2から検出器4までの距離p2とから、公知の通りp2/p1によって透過像の倍率を算出する。
次に、図20を参照して、評価領域600の大きさに応じて、異なる倍率にて検査を行う場合における位置合わせについて説明する。以下の説明では、被検物Sであるエンジンのシリンダーブロックに対して、巣の発生と原因を監視するために新たに評価領域605が設定された場合を示す。引け巣かガス巣かを特定する一つの方法として、巣の形状把握がある。巣表面がギザギザ形状は収縮による引け巣、のっぺり形状はガス巣のように大まかに判別することができるが、この判別のために0.1mm程度が識別できることが好ましい。そのために本実施形態においては、高倍率で評価領域600の検査を行う。これにより、検査結果において評価領域600を構成するボクセルの数を、低倍率で評価領域600の検査を行う場合に比べて、増やすことができる。したがって、高倍率で評価領域600の検査をすることで、評価領域600における巣の形状把握を高分解能で識別することができる。
図20(a)は、被検物Sであるエンジンのシリンダーブロックに対して、図19(a)と同様に、WU平面に平行な投影面P2に評価領域601、602、603、605を投影した状態を示す。なお、図20(a)においても、被検物SのWU平面に平行な面がXZ平面に平行となるように、被検物Sが載置台30に載置されている。上述したように評価領域605は小さな領域として設定される。このため、図19を用いて説明した場合と同様にして評価領域601、602、603、605を含む円形領域901がX線の照射範囲900に含まれるように載置台30のX方向およびZ方向の位置が決定されると、評価領域605に対して高倍率の透過像が得られなくなる。
このような場合には、評価領域601、602、603に対して図19(a)の場合と同様にして円形領域901が設定されるとともに、評価領域605に対しては、評価領域605を含む円形領域911が設定される。すなわち、円形領域901よりも小さい円形領域911が設定される。そして、円形領域911がX線の照射範囲900に含まれるように載置台30のX方向およびZ方向の位置が決定される。したがって、図20(b)に示すように、円形領域901よりもX線源2に近接した側に円形領域911が設定される。
具体的に説明すると、グループ化部565は、UVW方向の座標値を用いて、複数のグリッド化評価領域610のそれぞれに対して、XZ平面に平行な面における大きさが所定値よりも大きいか否かを判定する。グループ化部565は、判定結果に基づいて、所定値よりも大きいグリッド化評価領域610を第3グループG3に分類し、所定値よりも小さいグリッド化評価領域610を第4グループG4に分類する。倍率算出部568は、グループ化部565によって設定された第3グループG3と、第4グループG4とのそれぞれに対して、載置台30の位置と透過像の倍率を算出する。
なお、評価領域605を設定する際に予め高倍率にて透過像を取得する旨の情報を設定可能に構成されているものも本発明の一態様に含まれる。この場合、グループ化部565は、設定された情報を有する評価領域605を他の評価領域601、602、603と異なるグループに分類すれば良い。
(7)シミュレーション結果に基づく場合
図21にエンジンのシリンダーブロックを被検物Sとした場合の引け巣の発生が予想される領域(以下、予想発生領域と呼ぶ)671〜674の一例を示す。機能的に重要管理部位として扱われるクランクジャーナル、鋳抜きピン、ライナー、冷却流路などが、設計上、方向と場所が定まった幾何学的形状の評価領域600となる。これに対して、シミュレーションで導き出される予想発生領域671〜674は3次元空間上で不規則な形状であり、多くの場合で、予想発生領域670は平面性や方向性を有していない。なお、図21においては、予想発生領域671〜674の形状は模式的に表現したものである。
シミュレーションで導き出された予想発生領域671〜674から評価領域600を含むスライス面700を決定する場合は、スライス面選定部563は次のようにしてスライス面700を選定する。まず、スライス面選定部563は、機能的に重要管理部位として扱われるクランクジャーナルの評価領域601、鋳抜きピンの評価領域602、ライナーの評価領域603、冷却流路の評価領域604などで決定したスライス面700を選定する。すなわち、図14(b)に示すようにスライス面700、スライス範囲720を選定する。
その後、スライス面選定部563は、図14(b)に示すように選定されたスライス範囲720と同一またはスライス範囲720をスライス面700の変位方向と直交する方向に伸ばした範囲内に、予測発生領域671〜674が含まれるように、スライス範囲720を再設定する。すなわち、スライス面選定部563は、予測発生領域671〜674を既に選定済のスライス範囲720内、またはスライス面700による変位量が増加しない方向に拡大したスライス範囲720に含むことによりスライス範囲720を共用化して、検査時間の増加を防いでいる。ただし、既に選定済のスライス範囲720と共用化できない場合には、スライス面選定部563は、予測発生領域のために上述した方法によりスライス範囲720を新たに選定する。
図21(b)に、再選定または新たに選定されるスライス範囲720と予測発生領域671〜674とを示す。なお、図21(b)においては、図示の都合上、再選定または新たに選定されるスライス範囲720以外のスライス範囲720については省略する。
図21に示す例では、予測発生領域671、672については、図14(b)に示すスライス範囲720bと共用化して、図21(b)に示すように、新たなスライス面720fを再選定する。スライス面選定部563は、予測発生領域674については、図14(b)に示すスライス範囲720eに含める。予測発生領域673については共有化できる選定済のスライス範囲720がないので、スライス面選定部563は、予測発生領域674を含む新たなスライス面720gを選定する。
上述したようにして設定された評価領域600と選定されたスライス面700とスライス範囲720とは、基準位置からの3次元データとしてデータ蓄積部58に記憶され保存される。グループ化部565による分類が行われた場合には、評価領域600と当該評価領域600が含まれるグループGとが関連付けされてデータ蓄積部58に記憶されて保存される。なお、上記の各データの保存場所は、検査処理装置1の外部であってもよく、3次元CADデータに組み込まれたり、あるいはX線CT装置や、3次元座標計測機で計測した3次元形状データに組み込まれたりすることができる。
図22のフローチャートを参照して、検査制御部56による評価領域600の設定処理、格子グリッド化情報の設定処理、スライス面・基準面設定処理について説明する。図19のフローチャートに示す各処理を実行するためのプログラムはメモリ(不図示)に予め記憶され、検査制御部56により読み出されて実行される。
ステップS1では、評価領域設定部561は、3次元CAD等の設計情報に基づいてオペレータが手動で入力した情報や、シミュレーション結果による情報、過去に行った計測データに基づく情報等に基づいて、評価領域600の位置・範囲を設定し、評価領域600が設定可能範囲Rを有する場合には設定可能範囲Rを設定し、座標値をデータ蓄積部58に記憶してステップS2へ進む。
ステップS2では、格子グリッド設定部562は、上述したように、評価領域600を格子グリッド650によって分割しグリッド化評価領域610を生成してステップS3へ進む。ステップS3においては、スライス面選定部563は、被検物Sを部分スキャンする際の基準となる面(基準面)を設定する。そして、スライス面選定部563は、被検物Sのグリッド化評価領域610に対して、XYZ方向のうちグリッド化評価領域610の最短の方向に変位するスライス面700を選定し、スライス面700によって検査されるスライス範囲720を選定してステップS4へ進む。なお、ステップS3においては、分布する複数のグリッド化評価領域610の形状、配列方向等に応じてグループ化部565によるグリッド化評価領域610のグループ化が行われる。ステップS4では、選定されたスライス面700とスライス範囲720とが基準面からの3次元データとしてデータ蓄積部58に記憶されて処理を終了する。なお、ステップS3にてグループ化が行われている場合には、評価領域600と評価領域600が含まれるグループGとが関連付けされて記憶される。
2.4.X線CT検査処理
検査部564は、X線検査装置100に対して、スライス面・基準面選定処理によって選定されたスライス面700によってスライス範囲720で被検物Sを部分スキャンさせる。X線CT検査時においては、評価領域600を含む範囲を検査するとともに、基準面を含む範囲を検査して位置合わせを行う。
なお、基準面を含む範囲の検査誤差が、評価領域600の位置誤差に直結するので、基準面を含む範囲の検査は基準面算出誤差が小さくなるよう、たとえばCTの1回転あたりのデータ取得回数Nrを増やしたりして分解能を高くして検査する場合がある。
なお、基準面を測定する手段は、X線装置に限定されない。たとえば、被検物Sの表面情報に基づいて基準面を設定する場合は、非接触計測手段もしくは接触式計測手段での測定結果を用いても構わない。非接触計測手段は、ライン光による光切断測定方法でも構わない。接触計測手段はタッチプローブを用いても構わない。
以下、検査準備、検査処理の順序にて説明を行う。
(1)検査準備
検査開始に先立って、検査部564は、移動制御部52を介してマニピュレータ部36を制御して載置台30を移動させて、載置台30の中心を倍率算出部568によって算出された位置p2に位置させる。検査部564は、移動が完了した載置台30の中心、すなわち回転軸Yrに、倍率算出部568によって算出された中心902が一致するように被検物Sを載置台30に載置させるための表示を表示モニタ6に行わせる。この場合、検査部564は、X線検査装置100の筐体内部の空間と、X線源2から照射されるX線の照射範囲900とを示す背景画像に、3次元CAD等の設計情報に基づく被検物Sと評価領域600との形状画像を重畳して表示モニタ6に表示させる。または、X線検査装置100の筐体天井部に、CCDやCMOS等からなる撮像素子を有する撮像部によって載置台30の近傍を撮像可能に構成されている場合には、次のような表示を行うことができる。検査部564は、載置台30に載置された被検物SのY方向+側の面を撮像部によって撮像させて取得した被検物Sの画像に、設定された評価領域600を示す画像と、倍率算出部568によって算出された円形領域901および中心902の画像とを重畳して表示モニタ6に表示させる。すなわち、図19(a)に相当する画像が表示モニタ6に表示される。オペレータは、上記のようにして表示モニタ6に表示された画像を確認しながら、中心902が載置台30の中心、すなわち回転軸Yrと一致するように被検物Sを載置することができる。
なお、位置決めされた状態を、順次検査する他の被検物Sにおいても再現可能となるように、載置用の治具を設けることが好ましい。図20には、治具Jとして、載置台30上に載せる板状部材J1と、被検物Sの形状に合わせて形成され、被検物Sを支えることにより載置台30上で被検物Sの位置がずれることを防止するためのコマ部材J2とを有するものを一例として示す。このような治具Jは、被検物Sの形状に合わせて用意するだけでなく、同一の被検物Sに対して載置姿勢を異ならせて複数回検査する場合にも備えて用意しておくことが好ましい。治具Jは、評価領域600を設定した際の情報によって被検物Sの載置姿勢・位置が決定された段階で加工準備されると検査時の作業効率を向上させることができる。
(2)検査処理
まず、グループ化部565による評価領域600のグループ化が行われていない場合について説明する。
図24は、図9(b)に示すようにスライス面700およびスライス範囲720が選定された被検物Sに対して検査を行う場合を示す図である。検査部564は、評価領域601、602、603を検査するためのスライス範囲720a、720b、720cで再構成画像を生成するための透過像が取得可能となるように、移動制御部52を介してマニピュレータ部36を制御して、載置台30を回転駆動およびY方向へ移動させる。すなわち、検査部564は、載置台30のY方向への移動に応じてスライス面700をスライス範囲720a、720b、720c内で変位させる。
上述した式(1)にて示したように、スライス面700の変位量が検査時間に対応する。被検物Sのクランクジャーナル部の評価領域601はY方向に2mmの厚さを有し、Y方向に4個配列される。鋳抜きピンの評価領域602は、Y方向に10mmの厚さを有し、Y方向に4個配列される。ライナー部の評価領域603は、Y方向に2mmの厚さを有し、Y方向に3個配列される。すなわち、スライス面700の評価領域601に対する変位量は8mm(=2mm×4配列)、評価領域602に対する変位量は40mm(=10mm×4配列)、評価領域603に対する変位量は6mm(=2mm×3配列)となる。したがって、被検物Sを部分スキャンする際にはスライス面700を合計で54mm変位させる必要がある。上述したように1mm当たり約2分の検査時間を要するので、部分スキャン全体として検査時間は1時間48分となり、フルスキャンした際の検査時間である13時間あまりと比較して、大幅に検査時間を短縮できる。
次に、グループ化部565による評価領域600のグループ化が行われた場合について説明する。
まず、評価領域600の延在方向に応じて評価領域600が第1グループG1と第2グループG2とにグループ化された場合における検査処理について説明する。図25は、図14(b)に示すように第1スライス面700a、第2スライス面700bおよびスライス範囲720が選定された被検物Sに対して検査を行う場合を示す図である。図25(a)は、第1グループG1にグループ化された評価領域601、602、603に対して部分スキャンを行う場合を示し、上述した図24の場合と同様に検査が行われる。したがって、被検物Sを部分スキャンする際に第1スライス面700aを合計で54mm変位させ、約1時間48分の検査時間にて検査が行われる。
第1グループG1に含まれる評価領域601、602、603に対する検査が終了すると、図25(b)に示すように被検物Sの載置姿勢の変更が行われる。載置姿勢の変更はオペレータが人力にて行っても良いし、不図示のロボットアーム等のマニピュレータを用いて行っても良い。載置姿勢の変更が終了すると、検査部564は、第2グループG2に含まれる評価領域604を検査するためのスライス範囲720eにて透過像が取得可能となるように、移動制御部52を介してマニピュレータ部36を制御して、載置台30を回転駆動およびY方向へ移動させる。すなわち、検査部564は、載置台30のY方向への移動に応じて第2スライス面700bをスライス範囲720d内で変位させる。被検物Sの冷却流路の評価領域604は、Z方向に10mmの厚さを有し、Z方向に1個配列されているので、被検物Sを部分スキャンする際に第2スライス面700bを10mm変位させ、約20分の検査時間にて検査が行われる。被検物Sの載置姿勢の変更に約5分程度の時間を要するとすると、合計で約2時間13分程度の検査時間となり、フルスキャンを行う場合と比較して大幅に検査時間を短縮できる。このようにして取得された延在方向が異なる複数の評価領域600を検査する場合は、被検物Sの置き方を変えて検査し、得られた検査データ同士の位置合わせを行った後に合成される。
なお、被検物Sの載置姿勢の変更に要する時間は、オペレータが入力しても構わない。また、被検物Sの大きさ、重さ等の被検物Sの姿勢の変更に要する時間を見積もり、その姿勢の変更に要する時間を算出しても構わない。また、過去の載置姿勢の変更に要した時間から、その姿勢の変更に要する時間を算出しても構わない。
なお、上記の説明では第1スライス面700aによる検査の後に第2スライス面700bによる検査を行うものとしたが、第2スライス面700bによる検査の後に第1スライス面700aによる検査を行っても良い。
図12に示す場合のように、設定可能範囲Rを有する評価領域601と評価領域602とを共通化してスライス範囲720dが設定されている場合には、1つのスライス範囲720dに対する第1スライス面700aによる変位量は、鋳抜きピンの評価領域602のY方向の厚さである10mmとなる。スライス範囲720dは4か所で選定されるので、合計で40mmとなる。上述したように、評価領域603のY方向の厚さの合計は6mmなので、被検物Sを部分スキャンする際に第1スライス面700aを合計で46mm変位させ、約1時間32分の検査時間にて検査が行われる。したがって、被検物Sの載置姿勢の変更(約5分)と第2スライス面700bによる検査に要する時間(約20分)とを合計して、約1時間57分にて検査を終了させることができる。
次に、透過像の倍率に応じて、評価領域600が第3グループG3と第4グループG4とにグループ化された場合における検査処理について説明する。
この場合、上述した図20(a)に示すように第3グループG3にグループ化された評価領域601、602、603に対して部分スキャンを行う。第3グループG3に対する検査が終了すると、検査部564は、移動制御部54を介してマニピュレータ部36を制御して、載置台30を移動する。載置台30は、第4グループG4にグループ化された評価領域605を含む円形領域911がX線の照射範囲900に含まれるように移動される。したがって、図20(b)に示すように、評価領域605は、第3グループG3にグループ化された評価領域601、602、603よりもX線源2に近接した側にて検査が行われるので、高倍率の透過像が取得される。すなわち、載置台30の移動に多少の時間を要するものの、特定部位の巣について高精細な形状情報を取得することができ、巣の形状から引け巣かガス巣かを判別する目的に供することができる。
なお、上記の説明では、第3グループG3にグループ化された評価領域600から検査を行うものとしたが、第4グループG4にグループ化された評価領域600から検査を行っても良い。
評価領域600の延在方向の相違と、透過像の倍率とに応じて第1〜第4グループG1〜G4に評価領域600がグループ化された場合について説明する。
この場合、検査部564は、以下の第1方式または第2方式の一方で部分スキャンを実行させる。第1方式と第2方式のどちらで検査を行うかは、オペレータによって設定可能に構成される。なお、X線検査装置100が第1方式または第2方式の何れか一方の方式のみで計測を行うものについても本発明の一態様に含まれる。
−第1方式−
第1方式においては、評価領域600の延在方向に応じてグループ化された結果を優先して検査を行う。検査部564は、第1グループG1の評価領域600のうち第3グループG3に属する評価領域600に対して検査を行う。第3グループG3の評価領域600の検査が終了すると、検査部564は、移動制御部54を介してマニピュレータ部36を制御して載置台30を移動させて、第4グループG4の評価領域600に対して検査を行う。すなわち、第1スライス面700aにより第3グループG3の評価領域600と第4グループG4の評価領域600との検査を行う。
その後、被検物Sの載置姿勢を変更して、検査部564は、第2グループG2の評価領域600のうち第4グループG4に属する評価領域600に対して検査を行う。第4グループG4の評価領域600の検査が終了すると、検査部564は、移動制御部54を介してマニピュレータ部36を制御して載置台30を移動させて、第3グループG3の評価領域600に対して検査を行う。すなわち、第2スライス面700bにより第3グループG3の評価領域600と第4グループG4の評価領域600との検査を行う。
−第2方式−
第2方式においては、透過像の倍率に応じてグループ化された結果を優先して検査を行う。検査部564は、第3グループG3の評価領域600のうち第1グループG1に属する評価領域600に対して検査を行う。第1グループG1の評価領域600に対する検査が終了すると、被検物Sの載置姿勢を変更させた後、検査部564は、第2グループG2の評価領域600に対して検査を行わせる。すなわち、検査部564は、円形領域901に含まれる評価領域600に対して、第1スライス面700aと第2スライス面700bとによる検査を行わせる。
その後、検査部564は、移動制御部54を介してマニピュレータ部36を制御して載置台30を移動させて、円形領域911に含まれる評価領域600に対して検査を行う。検査部564は、第4グループG4の評価領域600のうち第2グループG2に属する評価領域600に対して検査を行う。第2グループG2の評価領域600に対する検査が終了すると、被検物Sの載置姿勢を変更させた後、検査部564は、第1グループG1の評価領域600に対して検査を行わせる。すなわち、検査部564は、円形領域911に含まれる評価領域600に対して、第1スライス面700aと第2スライス面700bとによる検査を行わせる。
なお、第4グループG4の評価領域600は、上述したように、小さな巣を検査することを目的として設定されている。巣の形状が所定の方向に偏る可能性は低いと見なし、検査部564は、第4グループG4の評価領域600に対しては第1スライス面700aまたは第2スライス面700bの一方で検査させても良い。
図26のフローチャートを参照して、検査制御部56による評価領域600のX線CT検査処理について説明する。図26のフローチャートに示す各処理を実行するためのプログラムはメモリ(不図示)に予め記憶され、検査制御部56により読み出されて実行される。
ステップS11では、検査部564は、移動制御部52を介してマニピュレータ部36を制御して、載置台30を所定の検査位置へ移動させてステップS12へ進む。ステップS12では、被検物Sの検査時に載置姿勢の変更があるか否かを判定する。載置姿勢の変更がある場合、すなわちスライス面選定部563によって複数の変位方向が異なるスライス面700が選定されている場合には、ステップS12が肯定判定されてステップS14へ進む。載置姿勢の変更がない場合、すなわちスライス面選定部563により1つの変位方向のスライス面700が選定されている場合には、ステップS12が否定判定されてステップS13へ進む。ステップS13では、X線源2および移動制御部52を介してマニピュレータ部36を制御して、被検物Sを選定されたスライス面700およびスライス範囲720で検査して処理を終了する。
ステップS14では、グリッド化評価領域610が第1〜第4グループG1、G2、G3、G4にグルーピングされているか否かを判定する。第1〜第4グループG1、G2、G3、G4にグルーピングされている場合には、ステップS14が肯定判定されて後述するステップS18へ進む。第1グループG1および第2グループG2にグルーピングされている場合には、ステップS14が否定判定されてステップS15へ進む。ステップS15では、X線源2および移動制御部52を介してマニピュレータ部36を制御して、被検物Sを選定された第1スライス面711で検査してステップS16へ進む。
ステップS16では、被検物Sの載置姿勢の変更の作業が終了するまで待機してステップS17へ進む。ステップS17では、X線源2および移動制御部52を介してマニピュレータ部36を制御して、被検物Sを選定された第2スライス面712で検査して処理を終了する。
ステップS18では、第1方式による検査が設定されているか否かを判定する。第1方式により検査を行う場合には、ステップS18が肯定判定されてステップS19へ進む。ステップS19では、X線源2および移動制御部52を介してマニピュレータ部36を制御して、被検物Sを選定された第1スライス面711で第3グループG3の評価領域600を検査する。その後、移動制御部52を介してマニピュレータ部36を制御して載置台30をZ方向に移動させ、X線源2および移動制御部52を介してマニピュレータ部36を制御して、被検物Sを選定された第1スライス面711で第4グループG4の評価領域600を検査してステップS20へ進む。
ステップS20では、ステップS16と同様に、被検物Sの載置姿勢の変更の作業が終了するまで待機してステップS21へ進む。ステップS21では、X線源2および移動制御部52を介してマニピュレータ部36を制御して、被検物Sを選定された第2スライス面712で第4グループG4の評価領域600を検査する。その後、移動制御部52を介してマニピュレータ部36を制御して載置台30をZ方向に移動させ、X線源2および移動制御部52を介してマニピュレータ部36を制御して、被検物Sを選定された第2スライス面712で第3グループG3の評価領域600を検査して処理を終了する。
第1方式が設定されていない場合には、ステップS18が否定判定されてステップS22へ進む。ステップS22では、X線源2および移動制御部52を介してマニピュレータ部36を制御して、被検物Sを選定された第1スライス面711で第3グループG3の評価領域600を検査してステップS23へ進む。ステップS23では、被検物Sの載置姿勢の変更の作業が終了するまで待機してステップS24へ進む。ステップS24では、被検物Sを選定された第2スライス面712で第3グループG3の評価領域600を検査してステップS25へ進む。
ステップS25では、移動制御部52を介してマニピュレータ部36を制御して載置台30をZ方向に移動させてステップS26へ進む。ステップS27では、X線源2および移動制御部52を介してマニピュレータ部36を制御して、被検物Sを選定された第2スライス面712で第4グループG4の評価領域600を検査してステップS27へ進む。ステップS27では、被検物Sの載置姿勢の変更の作業が終了するまで待機してステップS28へ進む。ステップS24では、被検物Sを選定された第1スライス面711で第4グループG4の評価領域600を検査して処理を終了する。
次に、被検物Sの検査により取得された透過像を基に生成される再構成画像に対する処理について説明する。再構成画像に対する処理としては、アーティファクト除去処理、評価領域更新処理とが行われる。以下、各処理ごとに説明を行う。
−アーティファクト除去処理−
画像処理部59は、フルスキャンまたは上記のよう部分スキャンにより取得された被検物Sの再構成画像に対してアーティファクト除去処理を行う。
低密度材で厚肉な被検物Sや複合材にて構成された被検物SをX線CT検査処理することにより取得された再構成画像には、X線が被検物Sの透過する際の透過エネルギー密度差によりアーティファクト(実際の物体ではない二次的に発生した画像)が生じる。このアーティファクトは検査や検査処理において疑似欠陥の発生や境界面の検査誤差に大きく影響する。画像処理部59は、再構成画像に生じたアーティファクトを画像処理により除去する。
図27は、頻繁に発生するノイズ要素である線状のストリークアーティファクト(図27(a)参照)と輪環状のリングアーティファクト(図27(b)参照)とを示す。画像処理部59は、これら2種類のアーティファクトについて、その形状特性を利用して周辺輝度との平均値を充填する事により、ノイズ成分を軽減する。これにより後述する解析前に必要とされる画像編集操作を大幅に削減できる。図27(a)に示すストリークアーティファクトの除去手法として、画像処理部59は、アーティファクトが線状である特徴を利用して画像処理を行う。画像処理部59は、図27(c)に示すように再構成画像上から直線成分からなる線状領域800を抽出し、抽出した直線成分の線状領域800毎に線幅方向に両側に隣接する画素輝度の平均値を求め、抽出した線状領域800の画素にその輝度値をあてはめて置き換える。図27(c)においては、図示の都合上、線状領域800の輝度値が低いほど密なドットを付して表す。なお、抽出する線状領域800の境界条件の閾値は再構成画像毎に異なるため設定可能である。また、実際には線状領域800の線幅方向は複数画素で構成されている。
図27(b)に示すリングアーティファクト除去の手法としては、画像処理部59は、アーティファクトが輪線状であり、暗レベルで発生する特徴を利用し、回転中心から径方向にスキャンして、輪状の変異点を検出した円形画素群を抽出する。画像処理部59は、抽出した円形画素群810の直径法線方向に隣接する両側の画素輝度の平均値を求め、円形画像群810にその輝度値をあてはめて置き換える。図27(d)においては、図示の都合上、円形画素群810の輝度値が低いほど密なドットを付して表す。なお、抽出する真円度等の境界条件の閾値は画像毎に異なるため設定可能である。また、実際には円型画素群は複数画素で構成されている。上述したように、載置台30の回転軸Yrと被検物Sの載置位置の関係とは決められているので、画像処理部59は、被検物Sに対し回転軸Yrに関する情報を用いることにより、リングアーティファクト中心の特定は容易に行うことができる。
以上のような、アーティファクト除去することにより、後述する肉厚や単位体積当たりの巣の体積率といった定量性を高めることができる。すなわち、肉厚と巣の体積率との検査の精度を高めることができる。評価領域600を絞り込んでいる場合は、肉厚や巣等のデータ処理時間の短縮を図ることができる。リングアーティファクトに関しては、リングアーティファクト中心が評価領域600の範囲外にある場合は、中心を含んだ範囲でアーティファクト除去処理を行ったあと、評価領域600に関して、肉厚や巣等のデータ処理を行うことが好ましい。
なお、アーティファクトの発生は、上述のように評価領域600における被検物の形状や構造に大きく依存する。即ち、ストリークアーティファクトは、評価領域600における被検物の形状又は構造が直線状である場合に発生し、リングアーティファクトは、評価領域600における被検物の形状又は構造が円状である場合に発生しがちである。被検物Sに評価領域600を設定する際に、その評価領域600に関する透過像に対して、ノイズとしてのアーティファクトの除去に適した除去画像処理を施すように、評価領域600に関するデータに、その評価領域600に適したアーティファクト除去画像処理に関する情報を関連付けておくことが望ましい。
被検物Sの検査結果、このようなアーティファクト除去処理を得て、被検物Sの形状情報が生成される。生成された被検物Sの形状情報は、後述する良品因子パラメータに基づき、格子グリッド単位ごとに良否判定され、その良品判定結果を格子グリッド単位で表示する。この時、格子グリッドと重畳して被検物Sの形状モデルデータ(たとえばCADデータ)やアーティファクト除去処理を経て得られた被検物Sの形状データを表示しても良い。また、格子グリッド単位ではなく、評価領域ごとに良品度の算出を行い、その結果を行っても良い。この場合、評価領域600が設定された格子グリッドの良品度の平均値や分散値に応じて、評価領域600の良品度を算出することができる。
−評価領域更新処理−
評価領域更新処理は、フルスキャンによって検査された被検物Sの検査結果または、上述のようにして部分スキャンによって検査された被検物Sの検査結果に基づいて、検査解析部57によって行われる。評価領域更新処理では、フルスキャンまたは部分スキャンにより取得された複数の被検物Sの透過像に基づいて生成された形状情報を解析し、解析結果の履歴に基づいて、上述のようにして設定された評価領域600の形状変更、位置変更、削除、新規追加等の評価領域600の更新を行うべきか否かを判定する。判定結果は表示モニタ6に表示され、判定結果を確認したオペレータによって評価領域600の更新実行が許可されると解析結果の履歴に基づく評価領域600の更新が行われる。本実施の形態では、評価領域600の更新とは、部分スキャンにより取得された形状情報の検査結果に基づいた評価領域600の形状変更(領域拡大、領域縮小または領域削除)、またはフルスキャンにより取得された形状情報の検査結果に基づいた評価領域600の新規追加である。
図2に示すように、検査解析部57は、格子グリッド化部570と、体積率解析部571と、肉厚解析部572と、良品性解析部573と、良品性判定部574と、領域修正部575と、領域追加部576と、領域再設定部577と、表示制御部578とを備える。格子グリッド化部570は、部分スキャンにより生成された被検物Sの形状情報のうち評価領域600に対応する領域に対して格子グリッド化を行って、評価領域600と同一位置における形状情報をグリッド化評価領域に重畳して表示する。また、格子グリッド化部570は、フルスキャンにより取得された被検物Sの形状情報と格子グリッドとの位置合わせを行う。特に、部分スキャン時では、評価領域600に設定された部位のみ被検物Sの形状情報が生成されるので、生成された形状情報に場所が一致する格子グリッドを抽出し、抽出された格子グリッドに対して良品検査パラメータである格子グリッド単位の体積率と肉厚の計測を行い、良品性解析を行う。一連の解析処理は、評価領域600が設定された格子グリッドのみに対して行われるので、評価領域600を予め設定することで、スキャンのための時間の低減だけに限らず、後述する解析処理の時間が不必要に増加することを抑制できる。
体積率解析部571は、部分スキャンにより取得された被検物Sの形状情報に対して、格子グリッド650ごとに巣等の内部欠陥の体積率を算出し、体積率に応じた体積率良品度を付与する。体積率解析部571は、フルスキャンにより取得された被検物Sの形状情報に対しては、形状情報が内在する格子グリッド650全てに対して、該当する格子グリッド650ごとに巣等の内部欠陥の体積率を算出し、体積率に応じた体積率良品度を付与する。肉厚解析部572は、部分スキャンにより取得された被検物Sの形状情報に対して、評価領域600に対応する位置に該当する格子グリッド650ごとに被検物Sの肉厚を算出し、肉厚に応じた肉厚欠陥度を付与する。肉厚解析部572は、フルスキャンにより取得された被検物Sの形状情報に対しては、形状情報が内在する格子グリッド650全てに対して、格子グリッド650ごとに被検物Sの肉厚を算出し、肉厚に応じた肉厚欠陥度を付与する。
良品性解析部573は、体積率解析部571により算出された体積率と、肉厚解析部572により算出された肉厚とに基づいて、各格子グリッド650の良品性を示す良品度を設定する。良品性解析部573は、複数の同一工程で製造されたほぼ同一形状の被検物Sの形状情報を取得している場合は、これらの形状情報から得られた各格子グリッド650に対する良品度の履歴に応じて、当該格子グリッド650に対する評価指標を算出する。良品性判定部574は、良品性解析部573によって算出された評価指標に基づいて、評価領域600の変更削除または新規追加が必要か否かを判定する。領域修正部575は、良品性判定部574によって評価領域600の変更が必要と判定された場合に、評価領域600を変更した修正評価領域のデータを生成し、表示制御部578は修正評価領域のデータに対応する画像を表示モニタ6に表示させる。
評価領域600の新規追加が必要と判定された場合には、領域追加部576は、追加する評価領域600のデータを生成し、表示制御部578は、追加する評価領域600である追加評価領域のデータに対応する画像を表示モニタ6に表示させる。表示モニタ6に表示された修正評価領域または追加評価領域の画像を確認したオペレータによる入力操作部11の操作が受け付けられると、領域再設定部577は修正評価領域または追加評価領域を新たな評価領域600として設定し、データ蓄積部58に記憶する。
以下、詳細に説明する。
図28のフローチャートを参照して、同一製造工程でほぼ同一の形状の被検物Sに対し、量産工程時に逐次良品性判定を行った結果を利用して、被検物SのX線検査装置100により検査が実施される評価領域の更新処理について説明する。図28のフローチャートに示す各処理を実行するためのプログラムはメモリ(不図示)に予め記憶され、検査解析部57により読み出されて実行される。
ステップS31では、取得された被検物Sの形状情報が部分スキャンにより得られたものか、フルスキャンにより得られたものかを判定する。部分スキャンにより得られた形状情報の場合には、ステップS31が肯定判定されてステップS32へ進み、フルスキャンにより得られた形状情報の場合には、ステップS31が否定判定されてステップS34へ進む。なお、上述したように、フルスキャンで得られた形状情報による被検物Sの検査は、非常に低い頻度で行われる。なぜなら、フルスキャンは、被検物S全体の再構成画像を取得するために、非常に長大な時間を必要である。再構成画像を取得するための検査時間は、被検物Sが製造される製造ラインにおけるタクトタイムと比較して、非常に長い。したがって、被検物Sの検査は、そのほとんどが部分スキャンにより行われる。部分スキャンは、大量に製造された被検物Sの全て対して行われても良いし、大量に製造された被検物Sのうち所定の個数(たとえば5個や10個)おきに行われても良い。
ステップS32では、検査解析部57は、部分スキャンにより得られた、評価領域600に位置する被検物Sの形状情報に対して評価領域解析処理を行ってステップS33へ進む。ステップS33では、検査解析部57は評価領域変更処理を行って処理を終了する。なお、評価領域解析処理および評価領域変更処理の詳細については、説明を後述する。ステップS34では、検査解析部57は、フルスキャンにより得られた被検物Sの広域領域の形状情報(以下、広域領域形状情報と呼ぶ)に対して広域領域解析処理を行ってステップS35へ進む。ステップS35では、評価領域追加処理を行って処理を終了する。なお、フルスキャンの場合は、評価領域に設定されている領域も形状情報が得られるので、すでに評価領域に設定されている形状情報に基づいて、良品性判定を行い、評価領域の削除や変更処理を行うようにしても良い。また、広域領域解析処理および評価領域追加処理の詳細については、説明を後述する。
以下の説明では、評価領域解析処理と、評価領域変更処理と、広域領域解析処理と、評価領域追加処理とに分けて説明を行う。
−評価領域解析処理−
評価領域解析処理では、部分スキャンにより取得された被検物Sの評価領域600に位置する形状情報から巣等の内部欠陥、肉厚を検出し、検出した巣が原因で被検物Sが不良品となる可能性が高い、強度不足の可能性がある、漏れが生じる可能性がある、等の被検物Sの良品性にかかわる解析を行う。以下、詳細に説明する。
評価領域解析処理を行う場合にも、評価領域600の形状情報に対し格子グリッド650単位で処理を行うことにより、処理の簡略化を図る。このため、格子グリッド化部570は、評価領域600に対応する格子グリッドを抽出する。そして抽出された格子グリッドに対応する被検物Sの形状情報(以下、評価領域形状情報と呼ぶ)を抽出して、各格子グリッドと形状情報との対応付けをする。この場合、格子グリッド化部570は、データ蓄積部58に記憶された評価領域600の座標値を読み出して、評価領域600の座標値に対応する格子グリッドを特定する。また、格子グリッドは、被検物Sに設定された基準面に対応する格子グリッドを抽出する。一方、被検物Sの形状情報は、評価領域600の位置に対応する形状情報の他に、基準面の位置に対応する形状情報も含まれる。また、両者の形状情報は位置関係が把握できるので、基準面の形状情報と基準面の位置とに対応する格子グリッドを一致させることにより、評価領域600に特定された格子グリッドと同じ位置にある被検物Sの形状情報とを対応させることができる。このように、格子グリッドを解析処理対象として特定する。
次に、体積率解析部571は、上記のようにして特定された格子グリッド650ごとに巣の有無を検出し、巣を検出した場合には格子グリッド650における巣の体積率を算出する。体積率解析部571は、公知の方法を用いて、生成したポリゴンサーフェイスモデルから、被検物Sの外部(外気)との境界面に該当するポリゴン群以外のポリゴン群を被検物Sの内部欠陥の空洞部分との境界面として認識し、これらのポリゴンを纏めて鋳巣モデルを生成する。体積率解析部571は、この鋳巣モデルに対して格子グリッド650ごとに巣の体積を求め、格子グリッド650の体積で除して体積率を算出する。
格子グリッド650には一部が巣モデルと重複するものと、全体が巣モデルと重複するものとが含まれる。したがって、格子グリッド650ごとに巣の体積率が異なる。体積率解析部571は、格子グリッド650ごとに算出した体積率に応じた良品性を示す体積率良品度を設定する。この場合、たとえば、体積率が0パーセント〜20パーセントの場合には体積率良品度は4、20パーセント〜40パーセントの場合には体積率良品度は3、40パーセント〜60パーセントの場合には体積率良品度は2、60パーセント〜80パーセントの場合には体積率良品度は1、80パーセント〜100パーセントの場合には体積率良品度は0のように設定することができる。なお、この場合、体積率良品度の値が減少するほど、被検物Sに重大な不具合をもたらす可能性が高いことを表す。設定された体積率良品度は、格子グリッド650の座標値と関連付けされてデータ蓄積部58に記憶される。なお、体積率に対する体積率良品度の値については、オペレータにより設定可能な構成とするものも本発明の一態様に含まれる。
肉厚解析部572は、グリッド化評価領域透過像に対して格子グリッド650ごとに肉厚を算出する。肉厚解析部572は、公知のポリゴンサーフェイスモデルを用いて、内部欠陥の空洞部分との境界面の各位置から設定した法線方向の距離に基づいて肉厚を算出する。肉厚解析部572は、格子グリッド650ごとに算出した肉厚と理想モデルとなる被検物Sの形状情報(たとえば、CAD等の設定情報や、過去に良品と判定された被検物SのX線検査装置100で取得された形状情報など)との相違度に応じた良品性を示す肉厚良品度を設定する。この場合、たとえば、理想モデルとなる被検物Sの形状情報に対して、取得された被検物Sの肉厚の差が薄い方向に許容公差範囲を超えている場合に肉厚良品度は0、肉厚の差が薄い方向に許容公差範囲内であるが許容公差範囲の80パーセント以上の場合に肉厚良品度は1、肉厚の差が薄い方向に許容公差範囲の80パーセント未満の場合に肉厚良品度は2のように設定することができる。なお、この場合、肉厚良品度の値が減少するほど、被検物Sに重大な不具合をもたらす可能性が高いことを表す。設定された肉厚良品度は、格子グリッド650の座標値と関連付けされてデータ蓄積部58に記憶される。なお、肉厚に対する肉厚良品度の値については、オペレータにより設定可能な構成とするものも本発明の一態様に含まれる。
良品性解析部573は、体積率解析部571により設定された体積率良品度と、肉厚解析部572により設定された肉厚良品度とから、各格子グリッド650ごとに良品性を示す良品度を設定する。良品性解析部573は、たとえば、格子グリッド650の各々に、0〜4の良品度を設定する。良品度が0の場合には被検物Sに不具合をもたらす可能性が非常に高く、4の場合には被検物Sに不具合をもたらす可能性が非常に低いことを示す。
図29に、体積率良品度と肉厚良品度とから設定される良品度の一例を示す。なお、図29に示す関係は、オペレータにより設定可能な構成とするものも本発明の一態様に含まれる。
良品性解析部573は、各被検物Sの計測された形状情報ごとに設定した良品度を格子グリッド650と関連付けてデータ蓄積部58に記憶する。複数の被検物Sに対して計測を行うことにより、同一の格子グリッド650に複数の良品度の履歴が蓄積される。その履歴数が所定個数以上となったら、すなわち被検物Sの計測回数が所定回数以上となった場合には、複数の良品度の履歴を用いて格子グリッド650ごとの評価指標を算出する。良品性解析部573は、同一位置の格子グリッド650の、たとえば良品度の平均や標準偏差を評価係数として算出する。また、良品度の経時変化の割合などを用いて評価計数としても良い。この評価係数は、格子グリッド650の各々に対応して、計測回数ごとに更新される。
良品性判定部574は、良品性解析部573によって算出された格子グリッド650の評価係数が第1閾値以上または評価計数が第1の所定の範囲を超える場合には、その格子グリッド650に対応する被検物Sの領域は被検物Sに不具合を発生させる可能性が高いと判定する。また、良品性判定部574は、良品性解析部573によって算出された格子グリッド650の評価係数が第2閾値(<第1閾値)未満の場合、または第2の所定の範囲(第1の所定の範囲に比べ、より評価係数が良品性の高い方向を示すような範囲)の場合には、その格子グリッド650に対応する被検物Sの領域は不具合を発生させる可能性が低く、評価領域600から削除できると判定する。この良品性判定部574による判定結果に基づいて、後述する評価領域更新処理が行われる。
図30のフローチャートを参照して、図28のステップS32における評価領域解析処理について説明する。
ステップS40では、格子グリッド化部570は、評価領域600に対して格子グリッド650を設定してステップS41へ進む。ステップS41では、格子グリッド化部570は、部分スキャンの場合、透過像を基に生成された被検物Sの形状情報を格子グリッドと位置合わせをし、評価領域600に位置合わせされた格子グリッドと一致する被検物Sの形状情報を抽出してステップS42へ進む。また、フルスキャンの場合は、格子グリッド化部570は、単に被検物Sの形状情報と格子グリッド650とを位置合わせする。ステップS42では、体積率解析部571は、抽出された格子グリッド650のそれぞれに対して体積率を算出し、体積率良品度を設定してステップS43へ進む。
ステップS43においては、肉厚解析部572は、抽出された格子グリッド650のそれぞれに対して肉厚を算出し、肉厚良品度を設定してステップS44へ進む。ステップS44においては、良品性解析部573は、同一の格子グリッド650に設定された体積率良品度と肉厚良品度とから格子グリッド650の良品度を設定し、格子グリッド650ごとに以下の情報を記憶してステップS45へ進む。記憶される情報は以下の通りである。検査解析部57での検査解析回数、各検査解析回数ごとの体積率および肉厚の差、そして、検査回数ごとに評価領域に設定されていたか否かに関する情報である。
ステップS45では、検査解析部57は、被検物Sに対する検査解析回数をカウントするカウンタの計数Nに1を加えてステップS46へ進む。ステップS46では、検査解析部57は、被検物Sの検査解析回数が所定回以上となったか否かを判定する。検査解析回数が所定回以上の場合、すなわちカウンタの計数Nが閾値Nth以上の場合にはステップS46が肯定判定されてステップS47へ進む。検査解析回数が所定回未満の場合、すなわちカウンタの計数Nが閾値Nth未満の場合にはステップS46が否定判定されて処理を終了する。
ステップS47では、良品性解析部573は、格子グリッド650の評価係数を算出してステップS48へ進む。ステップS48では、良品性判定部574は、算出された評価係数が第1閾値以上(または、第1の所定の範囲を超えている)か否かを判定する。評価指標が第1閾値以上(または、第1の所定の範囲を超えている)の場合には、ステップS48が肯定判定され、詳細を後述するステップS33の評価領域変更処理へ進む。なお、この場合、格子グリッド650に対応する被検物Sの領域を評価領域600に追加することが好ましいことを示す追加変更フラグをONに設定する。
評価係数が第1閾値未満(または、第1の所定の範囲を超えていない)の場合には、ステップS48が否定判定されてステップS49へ進む。ステップS49では、良品性判定部574は、評価係数が第2閾値未満(または、第2の所定の範囲内か)か否かを判定する。評価係数が第2閾値未満(または、第2の所定の範囲内か)の場合には、ステップS49が肯定判定されて、詳細を後述するステップS33の評価領域変更処理へ進む。なお、この場合、格子グリッド650に対応する被検物Sの領域を評価領域600から削除することができることを示す削除可能フラグをONに設定する。評価係数が第2閾値以上(または、第2の所定の範囲を超えている)の場合には、ステップS49が否定判定されて処理を終了する。
−評価領域変更処理−
評価領域変更処理では、評価領域解析処理の結果に基づいて評価領域600の変更をオペレータに推奨するための表示を表示モニタ6上にて行う。オペレータによって評価領域600の変更を行うための操作が行われると、評価領域解析処理の結果が反映された新たな評価領域600が設定され、その座標値がデータ蓄積部58に記憶される。その結果、次回以降の計測時に新たな評価領域600に基づいて、上述したスライス面700やスライス範囲720の選定が行われ、被検物Sの計測が行われる。以下、詳細に説明する。
良品性判定部574によって追加変更フラグがONに設定された格子グリッド650に対しては、領域修正部575は、格子グリッド650がグリッド化評価領域透過像の外周部に存在する場合に、修正評価領域のデータを生成する。この場合、領域修正部575は、追加変更フラグがONに設定された格子グリッド650がある場合、修正評価領域のデータを生成する。なお、以後の説明では、追加変更フラグがONに設定された格子グリッド650を変更予定格子グリッド655と呼ぶ。
図31に、修正評価領域のデータの生成について模式的に示す。なお、図31は、発明の理解のために二次元的に表しているが、実際の処理は三次元的に行われる。図31(a)に示すグリッド化評価領域680の外周部、すなわち斜線を付して示す格子グリッド650のいずれかが第1の閾値を超えている場合に、領域修正部575は、修正評価領域のデータを生成する。図31(b)〜(d)に領域修正部575により生成される修正評価領域のデータ681の一例を模式的に示す。図31(b)においては、グリッド化評価領域680のうち斜線を付した格子グリッド650が変更予定格子グリッド655であり、グリッド化評価領域680の外部にも格子グリッド650が存在すると仮定する。このとき、破線で示す3つの領域656が変更予定格子グリッド655の周囲の格子グリッド(以下、追加格子グリッド)656である。図31(c)に示す位置に変更予定格子グリッド655が存在する場合、破線で示す5個の追加格子グリッド656が周囲に存在する。図31(d)に示す形状を有するグリッド化評価領域680の突出した位置に変更予定格子グリッド655が存在する場合には、破線で示す5個の追加格子グリッドが周囲に存在する。領域修正部575は、グリッド化評価領域680に追加格子グリッド656を加えて、評価領域600に対し追加格子グリッド656が示す領域も含めるように修正評価領域のデータ681を生成する。良品性判定部574によって削除可能フラグがONに設定された格子グリッド650に対しては、領域修正部575は、グリッド化評価領域680から削除可能フラグがONに設定された格子グリッド650を削除して修正評価領域のデータ681を生成する。
修正評価領域のデータ681が生成されると、表示制御部578は、修正評価領域のデータ681に対応する画像を表示モニタ6に表示する。このとき、表示制御部578は、設計情報に基づく被検物Sの形状を表す画像に修正評価領域のデータ681に対応する画像を表示させる。この場合、表示制御部578は、修正評価領域のデータ681のうち、グリッド化評価領域680から変更される箇所については、変更がなされていない箇所と表示の態様を異ならせる。すなわち、表示制御部578は、領域修正部575によって追加格子グリッド656が追加された場合、追加格子グリッド656に対応する位置をたとえば赤、他の格子グリッド650に対応する位置を緑のように色を変えて表示させる。また、表示制御部578は、領域修正部575によって削除可能フラグがONに設定された格子グリッド650が削除された場合、当該格子グリッド650に対応する位置をたとえば青、他の格子グリッド650を緑のように色を変えて表示させる。
なお、色を異ならせて表示するものに限定されず、線の太さを変えるものや、線種を変える(実線、破線、一点鎖線)ものも本発明の一態様に含まれる。表示モニタ6に修正評価領域のデータ681の履歴データを表示する際に、類似した形状の評価領域600の履歴データを並べて表示しても良い。たとえば1個のクランクジャーナル部の評価領域601について修正評価領域のデータ681の履歴データを表示する場合には、他のクランクジャーナル部の評価領域601についての履歴データを並べて表示することにより、鋳造方案の良否を判断することができる。
また、同一の評価領域600に含まれるグリッド化評価領域の各格子グリッ650で算出された良品度について、評価領域600ごとに良品度の返金地および良品度の分散値に応じて、評価領域600全体について削除可能フラグを設定するようにしても良い。この場合は、グリッド化評価領域または評価領域のどちらかに削除を促すように、たとえば色を異ならせて表示しても良い。
オペレータは、上記の表示が行われた表示モニタ6を観察することにより、計測の結果、評価領域600がどのように修正されると被検物Sの巣等の内部欠陥を計測するためにより好ましいかを把握することができる。領域修正部575によるグリッド化評価領域透過像680の修正を採用する場合には、オペレータは、たとえば入力操作部11を構成するマウス等を用いて表示モニタ6に表示された「OK」ボタン等をクリックすることにより採用操作を行う。オペレータの採用記操作に応じて入力操作部11から操作信号が出力されると、領域再設定部577は、領域修正部575によって生成された修正評価領域のデータ681に対応する被検物S上の領域を新たな評価領域600として設定し、その座標値をデータ蓄積部58に記憶する。このとき、領域再設定部577は、新たな評価領域600を設定した日時、新たな評価領域600の採用を決定したオペレータを識別する情報(氏名やIDなど)、新たな評価領域600の位置(インデックス番号など)、オペレータが入力したメモやコメント等を関連情報としてデータ蓄積部58に記憶する。
なお、表示制御部578は、上記の修正評価領域のデータ681の画像を表示する際に、各種データを表示モニタ6上に表示させることができる。このとき表示させるデータとしては、追加格子グリッド656または削除可能フラグがONに設定された格子グリッド650の良品度、良品性を判定する因子である体積率および肉厚の差がある。また、表示させるデータとしてこれまでの被検物Sの形状情報や検査解析により得られた履歴データを表示させることもできる。また、別途取得した被検物Sの光学カメラによる撮影写真もし歴データの一つとして蓄積しても良い。特に、格子グリッド650の位置が被検物Sの表面領域に一致するような場合、履歴データに光学カメラによる撮影写真データを含めることが好ましい。履歴データとして、良品度、体積率、肉厚の推移がある。この場合、検査解析回数を横軸、良品度から求められる評価係数、体積率、肉厚の差の度数を縦軸としたグラフ形式で表示させればよい。また、履歴データとして、評価領域600の形状変更の推移を被検物Sの形状の画像に重畳して表示させることもできる。評価領域600に複数回の形状変更が施された場合には、それぞれの評価領域600の画像の表示態様(色、線太さ、線種等)を異ならせると好ましい。
なお、上述のような履歴データは、修正評価領域だけに限らず、修正の必要の無い評価領域内の格子グリッド650にも表示することが好ましい。良品性の判断因子の変化を知ることは、将来発生する不良品の予測に役立つためである。また、量産品の検査員の負かを低減するために、格子グリッド単位で履歴データを表示するものではなく、評価領域単位で履歴データを表示しても良い。特に、良品度については、同一評価領域内であっても個々の格子グリッド650ごとに異なる場合がある。そのような場合には、同一評価領域内のそれぞれの格子グリッド650で算出された良品度の平均値や分散などに応じて、評価領域内の評価係数を設定すれば良い。また、履歴データの表示は、評価領域の修正工程の有無によらず、単にオペレータに表示することによっても、量産品の品質保証検査工程の省力化につながる効果をもたらす。
図32のフローチャートを参照して、図28のステップS33における評価領域変更処理について説明する。
ステップS50においては、領域修正部575は、格子グリッド650の追加変更フラグがONに設定されているか否かを判定する。追加変更フラグがONに設定されている場合には、ステップS50が肯定判定されてステップS51へ進む。ステップS51では、格子グリッド650がグリッド化評価領域680の周辺部に存在するか否かを判定する。グリッド化評価領域680の周辺部ではない場合には、ステップS51が否定判定されて処理を終了する。グリッド化評価領域680の周辺部の場合には、ステップS51が肯定判定されてステップS53へ進む。
ステップS50において、追加変更フラグがOFFに設定されている場合には、ステップS50が否定判定されてステップS52へ進む。ステップS521では、格子グリッド650の削除可能フラグがONに設定されているか否かを判定する。削除可能フラグがOFFに設定されている場合は、ステップS52が否定判定されて処理を終了する。削除可能フラグがONに設定されている場合には、ステップS52が肯定判定されてステップS53へ進む。ステップS53では、領域修正部575は、修正評価領域のデータ681を生成してステップS54へ進む。
ステップS54では、表示制御部578は、修正評価領域のデータ681に対応する画像を、被検物Sの形状に対応する画像に重畳して表示モニタ6に表示させてステップS55へ進む。ステップS55では、オペレータにより採用操作が行われたか否かを判定する。オペレータの採用操作に応じた操作信号を入力操作部11から入力した場合には、ステップS55が肯定判定されてステップS56へ進む。採用操作に応じた操作信号を入力操作部11から入力しない場合には、ステップS55が否定判定されて処理を終了する。ステップS56では、修正評価領域のデータ681に対応する被検物S上の領域を新たな評価領域600として設定し、その座標値をデータ蓄積部58に記憶して処理を終了する。
−広域領域解析処理−
広域領域解析処理では、フルスキャンにより取得された被検物Sの透過像から評価領域600以外の領域における巣等の内部欠陥を検出し、検出した巣が原因で被検物Sが不良品となる可能性が高い、強度不足の可能性がある、漏れが生じる可能性がある、等の被検物Sの良品性にかかわる解析を行う。以下、詳細に説明する。
広域領域解析処理を行う場合には、取得された被検物Sの形状情報に対し格子グリッド650単位で処理を行うことにより、処理の簡略化を図る。このため、格子グリッド化部570は、フルスキャンにより取得された、評価領域600以外の領域も含む広域形状情報を格子グリッド650ごとに区画化する。以下、体積率解析部571、肉厚解析部572、良品性解析部573、良品性判定部574は、格子グリッド650ごとに、上述した評価領域解析処理にて説明した処理と同様の処理を行う。その結果、グリッド化広域形状情報のうち、評価領域600に対応する領域とは異なる領域の格子グリッド650の評価係数が第1閾値以上の場合に、良品性判定部574は、その格子グリッド650に対応する被検物Sの領域は被検物Sに不具合を発生させる可能性が高いと判定する。この場合、良品性判定部574は、格子グリッド650を新たな評価領域600として新規に追加することが好ましいことを示す新規追加フラグをONに設定する。
図33のフローチャートを参照して、図28のステップS34における広域領域解析処理について説明する。
ステップS60では、格子グリッド化部570は、フルスキャンで取得された透過像を基に生成された被検物S全体の形状情報に対して、格子グリッド650を設定してステップS61へ進む。ステップS61(体積率算出)からステップS67(評価係数が閾値以上か否かを判定)までの各処理は、図30のステップS42(体積率算出)からステップS47(評価係数が閾値以上か否かを判定)までの各処理と同様である。ただし、評価領域600に対応する領域以外の領域についても格子グリッド650ごとに上記処理を行う。
ステップS68は、評価係数が第1閾値以上(または、第1の所定の範囲を超える)と判定された格子グリッド650に対応する被検物S上の領域が評価領域600以外の領域か否かを判定する。評価領域600以外の領域の場合には、ステップS68が肯定判定されて図28のステップS35へ進む。この場合、格子グリッド650の新規追加フラグがONに設定される。格子グリッド650に対応する領域が評価領域600の場合には、ステップS68が否定判定されて処理を終了する。
なお、広域領域解析処理に対しても、評価領域600内の格子グリッド650に対して、図30のステップS48を実行しても良い。この場合は、ステップS66の後に上記の処理が行われる。
−評価領域追加処理−
評価領域追加処理では、広域領域解析処理の結果に基づいて、新規の評価領域600の追加をオペレータに推奨するための表示を表示モニタ6上にて行う。オペレータによって評価領域600の新規追加を行うための操作が行われると、新規の評価領域600が追加設定され、その座標値がデータ蓄積部58に記憶される。その結果、次回以降の計測時に新規追加された評価領域600に基づいて、上述したスライス面700やスライス範囲720の選定が行われ、被検物Sの計測が行われる。以下、詳細に説明する。
領域追加部576は、良品性判定部574によって新規追加フラグがONに設定された格子グリッド650を新規追加評価領域のデータとして特定する。新規追加評価領域のデータが生成されると、表示制御部578は、新規追加評価領域のデータに対応する画像を表示モニタ6に表示する。このとき、表示制御部578は、設計情報に基づく被検物Sの形状を表す画像に新規追加評価領域のデータに対応する画像を表示させる。なお、この場合にも、表示制御部578は、評価領域変更処理にて説明した場合と同様に、各種データや履歴データを表示させることができる。
オペレータは、上記の表示が行われた表示モニタ6を観察することにより、計測の結果、被検物Sの巣等の内部欠陥を計測するために新規に評価領域600を追加することが好ましいかを把握することができる。領域追加部576による新規追加評価領域のデータの追加を採用する場合には、オペレータは、たとえば入力操作部11を構成するマウス等を用いて表示モニタ6に表示された「OK」ボタン等をクリックすることにより採用操作を行う。オペレータの採用記操作に応じて入力操作部11から操作信号が出力されると、領域再設定部577は、領域追加部576によって生成された新規追加評価領域のデータに対応する被検物S上の領域を新たな評価領域600として設定し、その座標値をデータ蓄積部58に記憶する。このとき、領域再設定部577は、新たな評価領域600を設定した日時、新たな評価領域600の採用を決定したオペレータを識別する情報(氏名やIDなど)、新たな評価領域600の位置(インデックス番号など)、オペレータが入力したメモやコメント、そのときの被検物Sの外観を示す写真(画像データ)等を関連情報としてデータ蓄積部58に記憶する。
図34のフローチャートを参照して、図28のステップS35における評価領域追加処理について説明する。
ステップS70においては、領域追加部576は、格子グリッド650の新規追加フラグがONに設定されているか否かを判定する。新規追加フラグがOFFに設定されている場合には、ステップS70が否定判定されて処理を終了する。新規追加フラグがONに設定されている場合には、ステップS70が肯定判定されてステップS71へ進む。
ステップS71では、領域追加部576は、格子グリッド650を新規追加評価領域のデータとして特定し、ステップS72へ進む。ステップS72では、表示制御部578は、新規追加評価領域のデータに対応する画像を被検物Sの形状に対応する画像に重畳して表示モニタ6に表示させてステップS73へ進む。ステップS73では、オペレータにより採用操作が行われたか否かを判定する。オペレータの採用操作に応じた操作信号を入力操作部11から入力した場合には、ステップS73が肯定判定されてステップS74へ進む。採用操作に応じた操作信号を入力操作部11から入力しない場合には、ステップS73が否定判定されて処理を終了する。ステップS74では、新規対以下評価領域のデータに対応する被検物S上の領域を新たな評価領域600として設定し、その座標値をデータ蓄積部58に記憶して処理を終了する。
上述した本発明の実施の形態によるX線検査装置100を含む構造物製造システムの実施の形態について説明する。構造物製造システムは、たとえば自動車のドア部分、エンジン部分、ギア部分および回路基板を備える電子部品等の成型品を作成する。
図35は本実施の形態による構造物製造システム400の構成の一例を示すブロック図である。構造物製造システム400は、実施の形態にて説明したX線検査装置100と、設計装置410と、成形装置420と、制御システム430と、リペア装置440とを備える。
設計装置410は、構造物の形状に関する設計情報を作成する際にユーザが用いる装置であって、設計情報を作成して記憶する設計処理を行う。設計情報は、構造物の各位置の座標を示す情報である。設計情報は成形装置420および後述する制御システム430に出力される。成形装置420は設計装置410により作成された設計情報を用いて構造物を作成、成形する成形処理を行う。この場合、成形装置420は、3Dプリンター技術で代表される積層加工、鋳造加工、鍛造加工および切削加工のうち少なくとも1つを行うものについても本発明の一態様に含まれる。
X線検査装置100は、成形装置420により成形された構造物の形状を検査する検査処理を行う。X線検査装置100は、構造物を検査した検査結果である構造物の座標を示す情報(以後、形状情報と呼ぶ)を制御システム430に出力する。制御システム430は、座標記憶部431と、検査部432とを備える。座標記憶部431は、上述した設計装置410により作成された設計情報を記憶する。
検査部432は、成形装置420により成形された構造物が設計装置410により作成された設計情報に従って成形されたか否かを判定する。換言すると、検査部432は、成形された構造物が良品か否かを判定する。この場合、検査部432は、座標記憶部431に記憶された設計情報を読み出して、設計情報とX線検査装置100から入力した形状情報とを比較する検査処理を行う。検査部432は、検査処理としてたとえば設計情報が示す座標と対応する形状情報が示す座標とを比較し、検査処理の結果、設計情報の座標と形状情報の座標とが一致している場合には設計情報に従って成形された良品であると判定する。設計情報の座標と対応する形状情報の座標とが一致していない場合には、検査部432は、座標の差分が所定範囲内であるか否かを判定し、所定範囲内であれば修復可能な不良品と判定する。
修復可能な不良品と判定した場合には、検査部432は、不良部位と修復量とを示すリペア情報をリペア装置440へ出力する。不良部位は設計情報の座標と一致していない形状情報の座標であり、修復量は不良部位における設計情報の座標と形状情報の座標との差分である。リペア装置440は、入力したリペア情報に基づいて、構造物の不良部位を再加工するリペア処理を行う。リペア装置440は、リペア処理にて成形装置420が行う成形処理と同様の処理を再度行う。
図36に示すフローチャートを参照しながら、構造物製造システム400が行う処理について説明する。
ステップS81では、設計装置410はユーザによって構造物の設計を行う際に用いられ、設計処理により構造物の形状に関する設計情報を作成し記憶してステップS82へ進む。なお、設計装置410で作成された設計情報のみに限定されず、既に設計情報がある場合には、その設計情報を入力することで、設計情報を取得するものについても本発明の一態様に含まれる。ステップS82では、成形装置420は成形処理により、設計情報に基づいて構造物を作成、成形してステップS83へ進む。ステップS83においては、X線検査装置100は検査処理を行って、構造物の形状を計測し、形状情報を出力してステップS84へ進む。
ステップS84では、検査部432は、設計装置410により作成された設計情報とX線検査装置100により検査され、出力された形状情報とを比較する検査処理を行って、ステップS85へ進む。ステップS85では、検査処理の結果に基づいて、検査部432は成形装置420により成形された構造物が良品か否かを判定する。構造物が良品である場合、すなわち設計情報の座標と形状情報の座標とが一致する場合には、ステップS85が肯定判定されて処理を終了する。構造物が良品ではない場合、すなわち設計情報の座標と形状情報の座標とが一致しない場合や設計情報には無い座標が検出された場合には、ステップS85が否定判定されてステップS86へ進む。
ステップS86では、検査部432は構造物の不良部位が修復可能か否かを判定する。不良部位が修復可能ではない場合、すなわち不良部位における設計情報の座標と形状情報の座標との差分が所定範囲を超えている場合には、ステップS86が否定判定されて処理を終了する。不良部位が修復可能な場合、すなわち不良部位における設計情報の座標と形状情報の座標との差分が所定範囲内の場合には、ステップS86が肯定判定されてステップS87へ進む。この場合、検査部432はリペア装置440にリペア情報を出力する。ステップS87においては、リペア装置440は、入力したリペア情報に基づいて、構造物に対してリペア処理を行ってステップS83へ戻る。なお、上述したように、リペア装置440は、リペア処理にて成形装置420が行う成形処理と同様の処理を再度行う。
上述した実施の形態によれば、次の作用効果が得られる。
(1)スライス面選定部563は、評価領域設定部561により設定された三次元状の評価領域600に対応するグリッド化評価領域610に対するスライス面候補701、702、703が選定する複数のスライス領域のそれぞれの変位量を算出し、算出した変位量に基づいてスライス面候補701〜703の中からスライス領域であるスライス面700を選定する。したがって、被検物Sに設定された評価領域600の三次元形状を切断するスライス面700をY方向への変位量に基づいて、自動的に決定できるので、評価領域600に応じてオペレータが経験的判断に基づいてスライス面700を設定する場合と比較して、計測時間の観点から効率の良いスライス面700を選定できる。特に、量産段階の被検物Sを計測する際には、計測時間の効率化は生産性の向上に有効に寄与する。
(2)スライス面選定部563は、複数の評価領域600に対応するグリッド化評価領域610の各々に対してスライス面候補701、702、703が選定する複数のスライス領域のそれぞれの変位量を算出し、複数の評価領域600に対応するグリッド化評価領域610の各々に対して、算出した変位量に基づいてスライス面候補701〜703の中からスライス領域であるスライス面700を選定する。したがって、被検物Sに複数の評価領域600が設定されている場合であっても、個々の評価領域600に対して、計測時間の観点から効率の良いスライス面700の選定が可能となる。
(3)スライス面選定部563は、スライス面候補701、702、703が選定する複数のスライス領域の変位量のうち、評価領域600を検出するのにスリットビームによる被検物Sの断面を移動させる移動量の少ないスライス領域であるスライス面700を選定する。したがって、変位量の小さいスライス面700を選定できるので、評価領域600の計測時間を短縮することができる。計測時間の短縮は、特に量産段階では、被検物Sの問題の早期発見と早期の対策処置とを可能にするので、生産性の向上させることができる。
(4)グループ化部565は、複数の評価領域600に対応するグリッド化評価領域610を、第1スライス面711が選定された第1グループG1と第2スライス面712が選定された第2グループG2とに区分する。検査部564は、第1グループG1に属するグリッド化評価領域610に対応する評価領域600の各々についてX線検出による計測を行い、その後に第2グループG2に属するグリッド化評価領域610に対応する評価領域600の各々についてX線検出による計測を行うように、X線源2、検出器4および載置部3を制御する。したがって、類似する方向に延在するような複数の評価領域600同士を同一のグループに属するように区分することで、異なる方向に延在する評価領域600の影響によりスライス面700の変位量が増加し計測時間が増加することを防ぎ、計測時間の短縮を可能にする。また、同一のグループに属する複数の評価領域600について計測を行ったのち、他のグループに属する複数の評価領域600を計測することで、被検物Sの載置姿勢の変更回数を最小限に抑え、被検物Sの載置姿勢変更に伴う計測時間の増加を抑制できる。
(5)スライス面選定部563は、グリッド化評価領域610において、スライス面700を変位させたときに、少なくとも一部の変位位置で複数のグリッド化評価領域610が存在する場合には、互いのグリッド化評価領域610を一つのグリッド化評価領域611として纏める。したがって、個々の評価領域600に対してスライス面700やスライス範囲720を選定する場合と比較して、より効率の良いスライス面700やスライス範囲720の選定が可能になる。さらに、複数の評価領域600を計測時間短縮のために一つに纏めるという経験を要する作業を自動的に行うことができるので、利便性を向上させることができる。
(6)グループ化部565は、第1グループG1に属する複数のグリッド化評価領域610を、透過像倍率の異なる第3グループG3と第4グループG4とに区分すると共に第2グループG2に属する複数のグリッド化評価領域610を、第3グループG3と第4グループG4とに区分する。計測部564は、第1グループG1のうち第3グループG3に属するグリッド化評価領域610に対応する評価領域600の各々について計測を行なわせると共に第4グループG4に属するグリッド化評価領域610に対応する評価領域600の各々について計測を行わせる。その後に、計測部564は、第2グループG2のうち第4グループG4に属するグリッド化評価領域610に対応する評価領域600の各々について計測を行わせると共に第3グループG3に属するグリッド化評価領域610に対応する評価領域600の各々について計測を行わせる。したがって、大きな評価領域600と巣を計測するような微小な評価領域600とが混在して分布するような場合であっても、スライス面700の変位方向と透過像の倍率とに応じてグループ分けが可能となり、計測時間の増加を抑制しながら、微小な評価領域600に対しては大きな倍率で透過像を取得してすることが可能となる。
(7)グループ化部565は、複数の評価領域600に対応するグループ化評価領域610を、異なる透過像倍率で計測する第3グループG3と第4グループG4とに区分する。 したがって、複数の評価領域600に巣を計測するような微小な評価領域600が含まれる場合であっても、微小な評価領域600については倍率の大きな透過像を取得して巣の発生状況等を詳細に分析できる。
(8)グループ化部565は、第3グループG3に属する複数のグリッド化評価領域610を第1スライス面711が選定された第1グループG1と、第2スライス面712が選定された第2グループG2とに区分し、第4グループG4に属する複数のグリッド化評価領域610を第1スライス面711が選定された第1グループG1と、第2スライス面712が選定された第2グループG2とに区分する。したがって、複数の異なる方向に延伸する評価領域600と微小な評価領域600とが混在して分布する場合であっても、微小な評価領域600に対しては大きな倍率で透過像を取得してすることが可能となる。
(9)複数のグリッド化評価領域610は、所定の範囲内で変位可能な設定可能範囲Rを有するグリッド化評価領域610を含み、領域再設定部567は、スライス面700上において設定可能範囲Rを有するグリッド化評価領域610およびその他のグリッド化評価領域610を両方含むように設定可能範囲Rを有するグリッド化評価領域610を所定の範囲で変位させ、グリッド化評価領域610を再設定する。したがって、離れた位置に存在する評価領域600を纏めて計測して作業効率を向上させることができる。
(10)領域再設定部567は、選定されるスライス面700によって、設定可能範囲Rを有するグリッド化評価領域610と設定可能範囲Rを有していないグリッド化評価領域610と両方検出可能な位置が多くなるように、設定可能範囲Rを有するグリッド化評価領域610を所定の範囲で変位させる。したがって、スライス面700の変位量を小さくして計測時間を短縮することが可能となる。
(11)領域再設定部567は、設定可能範囲Rを有するグリッド化評価領域610と設定可能範囲Rを有していないグリッド化評価領域610とが重なるように、設定可能範囲Rを有するグリッド化評価領域610を所定の範囲で移動させる。したがって、一つの評価領域600に要する計測時間で複数の評価領域600を一度に計測できるので、作業効率を向上させることができる。
(12)倍率算出部568は、領域設定部561により設定される評価領域600の情報を用いて、被検物Sの評価領域600を計測する時の倍率を算出する。したがって、複数の評価領域600を一度に高倍率で計測することができるので、効率よく計測を行うことができる。
(13)良品性判定部574は、被検物Sの評価領域600を透過したX線の透過像を用いて、評価領域600の良品性を判定し、領域修正部575は、良品性判定部574による判定結果に基づいて評価領域600を修正し、表示制御部578は、領域修正部575により修正された修正評価領域のデータ681の画像を表示する。したがって、現状の評価領域600が、被検物Sの内部欠陥を計測するための位置として適しているかをオペレータは視覚的に確認することができるので、評価領域600を変更するか否かの判断が容易になる。
(14)表示制御部578は、修正評価領域のデータ681の画像を、その修正箇所の表示態様とその他の箇所の表示態様とを異ならせて表示する。すなわち、評価領域600の変更箇所が確認し易くなるので、評価領域600を変更するか否かの判断が容易になる。
(15)領域再設定部577は、入力操作部11による採用操作に応じた操作信号を入力すると、修正評価領域のデータ681を新たな評価領域600として被検物Sの一部に再設定する。すなわち、オペレータの意図に反して自動的に評価領域600が変更されることを抑制できる。
(16)複数の被検物Sの評価領域600に対する計測の後に取得された被検物Sの広域領域の形状の形状情報に基づき、被検物Sの一部に新たな評価領域600を追加設定する。この場合、良品性判定部574は、広域領域形状情報を用いて評価領域600以外の領域の良品性を判定し、評価領域600以外の領域のうちで良品性が所定の許容値を超える領域する。領域追加部576は、良品性が所定の許容値を超える領域を新たな評価領域600として追加設定する。したがって、当初予測していないような場所に内部欠陥が現れ始めた場所を評価領域600として計測することができるので、被検物Sの問題の早期発見に寄与する。
(17)データ蓄積部58は、領域再設定部577によって再設定された評価領域600に関する履歴データを記憶し、表示制御部578は、データ蓄積部58に記憶された評価領域600の履歴データに基づき、修正評価領域のデータ681の画像を被検物Sの画像に重畳して表示させる。したがって、評価領域600の形状が被検物S上でどのように変化したかを視覚的に認識できるので、将来的な内部欠陥の発生箇所の予測等を立てやすくなる。
(18)データ蓄積部58は、良品性判定部574による良品性の判定結果に関する履歴データを記憶し、領域修正部575は、データ蓄積部58によって記憶された良品性の判定結果の履歴データに基づき修正評価領域のデータ681を作成する。したがって、ある評価領域600で発生する傾向が高い内部欠陥の種類を把握しやすくなる。
(19)領域修正部575は、良品性判定部574によってグリッド化評価領域680の良品性が所定の許容値を超えると判定された格子グリッド650がグリッド化評価領域680の外周部に存在する場合に、当該外周部の追加格子グリッド655の周囲に位置する変更予定格子グリッド656をグリッド化評価領域680に含めるように修正評価領域のデータ681を生成する。評価領域600の外周部で不具合の可能性が高い場合には、評価領域600の外部にもその影響が及んでいる可能性が高いので、不良の状況に応じた評価領域600の設定が可能になる。
(20)領域修正部575は、良品性判定部574によってグリッド化評価領域の良品性が所定の許容値以内であると判定された格子グリッド650をグリッド化評価領域透過像から削除する。したがって、不良の発生する可能性が低い領域を評価領域600から除くことにより、不必要な計測を行うことを防ぐ。
(21)データ蓄積部58には、領域修正部575による修正に関連する情報が記憶される。したがって、評価領域600の更新や新規追加を行ったオペレータと他のオペレータとの間で情報を共有することができる。
(22)構造物製造システム400のX線検査装置100は、設計装置410の設計処理に基づいて成形装置420により作成された構造物の形状情報を取得する検査処理を行い、制御システム430の検査部432は、検査処理にて取得された形状情報と設計処理にて作成された設計情報とを比較する検査処理を行う。したがって、構造物の欠陥の検査や構造物の内部の情報を非破壊検査によって取得し、構造物が設計情報の通りに作成された良品であるか否かを判定できるので、構造物の品質管理に寄与する。
(23)リペア装置440は、検査処理の比較結果に基づいて、構造物に対して成形処理を再度行うリペア処理を行うようにした。したがって、構造物の不良部分が修復可能な場合には、再度成形処理と同様の処理を構造物に対して施すことができるので、設計情報に近い高品質の構造物の製造に寄与する。
次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(1)X線検査装置100がコーンビームを放射するX線源と、ラインセンサではなく2次元状に画素が配列された構造を有する検出器4とを有するものであっても良い。この場合、検出器4からスライス面700に応じてライン状に並ぶ画素から信号を出力すれば良い。このような構成とすることで、スライス面700をY方向以外にも変位させることが可能となる。
(2)第1グループG1の計測から第2グループG2の計測へ切り替える際の被検物Sの載置姿勢の変更に要する時間を入力操作部11から入力可能に構成し、スライス面選定部563は、この入力された時間も考慮に入れてスライス面700を選定しても良い。すなわち、スライス面選定部563は、被検物Sの載置姿勢の変更のための所要時間を保持し、所要時間を加味することでかえって全体の計測時間が増加するような場合には、被検物Sの載置姿勢の変更を伴わないようにスライス面700を選定する。
(3)オペレータの採用操作が行われてから評価領域600の変更を行うものに代えて、自動的に評価領域600の変更を行い、新たな評価領域600として設定し、データ蓄積部58に記憶させても良い。
(4)被検物Sと類似する形状の別の被検物、たとえば排気量の異なる同構造のエンジンのシリンダーブロックや類似する鋳造方案等の検査については、別の被検物の評価領域における良品性の許容値を被検物Sの評価領域600の良品性を判定する際の許容値として用いても良い。その結果、短期間で評価領域600の最適化が可能である。また、類似する形状の別の被検物に対して設定された評価領域の修正履歴情報を用いて、修正評価領域を表示できるようにしても良い。特に、評価領域修正部が提示する修正評価領域の妥当性についてオペレータの判断が容易になる。
(5)良品度の設定値の履歴データに基づいて、複数回の計測により1度でも不具合をもたらす可能性が高いと判定されたことがある格子グリッド650については、履歴データを表示させるようにしても良い。または、良品度が時間の経過とともに悪化している格子グリッド650や、良品度が悪化していないが閾値近傍の値を長期間示している場合にも格子グリッド650の履歴データを表示させても良い。
(6)表示制御部578は、データ蓄積部58に記憶された良品性の判定結果の履歴データと被検物Sを製造する際に用いる金型の交換時期とを表示させても良い。この場合、時間の経過とともに巣の発生が増加して所定数を超えたら、被検物Sの金型に劣化が生じたものと判定し、表示モニタ6に金型の交換時期である旨を表示すれば良い。
(7)(7)フルスキャンにて取得されるデータから生成されるサーフェスモデルに対して設定する格子グリッド650の大きさを部分スキャン時の格子グリッド650の大きさと比較して小さく設定することができる。この結果、部分スキャン時に要する処理負荷を低減させることができるとともに、情報が過多となることがないので、オペレータが表示モニタ6上から各種の判断(評価領域600の更新等)が容易にできる。
逆に、フルスキャンにより得られるデータでは情報量が部分スキャンより増えるので、オペレータは不良が発生する原因を詳細に検討することが可能となる。
(8)格子グリッド650のサイズを計測回数ごとに変更可能としても良い。ただし、最も大きい格子グリッド650のサイズは、設定された他の格子グリッド650のサイズの最小公倍数のサイズが好ましい。特に、フルスキャンのときには、計測および検査時間に余裕があることが想定される。このような場合には、部分スキャンによる検査時に設定される格子グリッド650よりも小さい格子グリッド650を設定することが好ましい。また、スキャン範囲の大小によらず、オペレータが計測ごとに格子グリッド650のサイズを設定可能にすることが好ましい。なお、格子グリッドサイズ650のサイズを小さくすればする程、良品度の位置的な分布に関する情報を詳細に取得することができる、不良品発生予測の精度を高めることができる。
(9)格子グリッド650の形状は、立方体に限られない。たとえば、タービンブレードの羽部、ミッションケースやデフケースなどのような、中空形状の物品は、構造上の表面方向と肉厚方向とでは、検査に必要な格子グリッド650のピッチが異なる。表面方向には格子グリッド650をあまり小さくする必要は無い。一方、肉厚方向には、格子グリッド650のピッチを小さくする必要がある。このような物品に対しては、直方体の格子グリッドを設定することが好ましい。
上述した各実施形態における検査処理装置1または変形例における検査処理装置1の一部、たとえば、検査制御部56、検査解析部57の機能をコンピュータで実現するようにしてもよい。この場合、その制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録された、上述した制御に関するプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OS(Operating System)や周辺機器のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、光ディスク、メモリカード等の可搬型記録媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持するものを含んでもよい。また上記のプログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせにより実現するものであってもよい。
また、パーソナルコンピュータなどに適用する場合、上述した制御に関するプログラムは、CD−ROMなどの記録媒体やインターネットなどのデータ信号を通じて提供することができる。図37はその様子を示す図である。パーソナルコンピュータ950は、CD−ROM953を介してプログラムの提供を受ける。また、パーソナルコンピュータ950は通信回線951との接続機能を有する。コンピュータ952は上記プログラムを提供するサーバーコンピュータであり、ハードディスクなどの記録媒体にプログラムを格納する。通信回線951は、インターネット、パソコン通信などの通信回線、あるいは専用通信回線などである。コンピュータ952はハードディスクを使用してプログラムを読み出し、通信回線951を介してプログラムをパーソナルコンピュータ950に送信する。すなわち、プログラムをデータ信号として搬送波により搬送して、通信回線951を介して送信する。このように、プログラムは、記録媒体や搬送波などの種々の形態のコンピュータ読み込み可能なコンピュータプログラム製品として供給できる。
本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
1…検査処理装置、2…X線源、3…載置部、4…検出器、
5…制御装置、6…表示モニタ、36…マニピュレータ部、56…検査制御部、
57…検査解析部、58…データ蓄積部

Claims (30)

  1. X線を用いて被検物を測定するX線測定装置に用いる測定処理装置であって、
    前記被検物の一部に設定される三次元形状の被検出領域の情報と、前記X線測定装置の検出可能範囲の情報とに基づいて、前記被検出領域を測定するために必要な前記被検物の相対的な変位量を、前記被検出領域に対する前記検出可能範囲の複数の変位方向ごとに算出し、算出された前記変位量に基づいて、前記測定の際の変位方向を選定する選定部を備える測定処理装置。
  2. 請求項1に記載の測定処理装置において、
    前記複数の変位方向の各々において前記被検出領域に基づき前記被検物の測定を行う際の検出範囲は互いに異なる測定処理装置。
  3. 請求項2に記載の測定処理装置において、
    前記選定部は、前記被検物に対して、複数の三次元状の被検出領域を設定し、複数の前記被検出領域の各々に複数の前記検出可能範囲を設定し、前記被検出領域に設定される複数の前記検出可能範囲を検出するのに必要な変位量を、複数の前記検出可能範囲の各々に対して算出し、算出された各々の前記変位量に基づいて、複数の前記検出可能範囲から前記測定に用いる前記変位方向を選定する測定処理装置。
  4. 請求項3に記載の測定処理装置において、
    前記選定部は、前記算出された各々の前記変位量のうち、前記被検出領域を検出するために必要な前記検出可能範囲を相対的に移動させる移動量の少ない前記変位方向を選定する測定処理装置。
  5. 請求項3または4に記載の測定処理装置において、
    前記被検物を載置する載置部の載置領域と直交する方向に移動させることで、前記被検物においてX線を前記検出可能範囲で相対的に移動させる測定処理装置。
  6. 請求項3乃至5の何れか一項に記載の測定処理装置において、
    前記複数の被検出領域の各々に選定される前記検出可能範囲に対して、第1の検出可能範囲が選定される第1のグループと、第2の検出可能範囲が選定される第2のグループとに、区分するグループ部と、
    前記第1のグループに属する前記被検出領域の各々についてX線検出を行い、その後に前記第2のグループに属する前記被検出領域の各々についてX線検出を行う制御部と、を備える測定処理装置。
  7. 請求項6に記載の測定処理装置において、
    前記第1のグループに属する前記被検出領域におけるX線検出と、前記第2のグループに属する前記被検出領域におけるX線検出とで、前記被検物の載置部に載置される姿勢が異なる測定処理装置。
  8. 請求項7に記載の測定処理装置において、
    前記第1のグループに属する前記被検出領域を透過したX線を検出するように前記被検物が前記載置部に載置された状態から、前記第2のグループに属する前記被検出領域を透過したX線を検出するように前記被検物が前記載置部に載置される状態に切り替えるのに必要な所要時間を保持する所要時間保持部を備え、
    複数の前記検出可能範囲の各々に対して前記変位量を算出し、算出された各々の前記変位量と、前記所要時間とを用い、設定された複数の前記検出可能範囲から前記測定に用いる前記変位方向を選定する測定処理装置。
  9. 請求項6乃至8の何れか一項に記載の測定処理装置において、
    前記被検出領域に設定される複数の前記検出可能範囲のうち、前記被検出領域を検出するために前記検出可能範囲を相対的に変位させたときに、少なくとも一部の変位位置において前記複数の被検出領域が存在する場合には、前記複数の被検出領域を一つの被検出領域として纏める測定処理装置。
  10. 請求項6または7に記載の測定処理装置において、
    前記グループ部は、前記第1のグループに属する前記複数の被検出領域を、第1の倍率で検出される第3のグループと第2の倍率で検出される第4のグループとに区分すると共に、前記第2のグループに属する前記複数の被検出領域を、前記第1の倍率で検出される第5のグループと前記第2の倍率で検出される第6のグループとに区分し、
    前記制御部は、前記第3のグループに属する前記被検出領域の各々について前記第1の倍率でX線検出を行うと共に前記第4のグループに属する前記被検出領域の各々について前記第2の倍率でX線検出を行い、その後に、前記第5のグループに属する前記被検出領域の各々について前記第1の倍率でX線検出を行うと共に前記第6のグループに属する前記被検出領域の各々について前記第2の倍率でX線検出を行う測定処理装置。
  11. 請求項3または4に記載の測定処理装置において、
    前記複数の被検出領域を、第1の倍率で検出される第1のグループと第2の倍率で検出される第2のグループとに区分するグループ部と、
    前記第1のグループに属する前記被検出領域の各々について前記第1の倍率でX線検出を行い、前記第2のグループに属する前記被検出領域の各々について前記第2の倍率でX線検出を行う制御部と、を備える測定処理装置。
  12. 請求項11に記載の測定処理装置において、
    前記選定部は、前記第1のグループに属する前記複数の被検出領域の各々に設定される複数の前記検出可能範囲の各々を測定するために必要な相対的な変位量を算出し、前記グループ部は、第1の検出可能範囲が設定される第3のグループと、第2の検出可能範囲が設定される第4のグループとに区分し、
    前記選定部は、前記第2のグループに属する前記複数の被検出領域の各々に設定される複数の前記検出可能範囲の各々を測定するために必要な相対的な変位量を算出し、前記グループ部は、前記第1の検出可能範囲が設定される第5のグループと、前記第2の検出可能範囲が設定される第6のグループとに区分し、
    前記制御部は、前記第3のグループに属する前記被検出領域の各々についてX線検出を行うと共に前記第4のグループに属する前記被検出領域の各々についてX線検出を行い、その後に前記第5のグループに属する前記被検出領域の各々についてX線検出を行うと共に前記第6のグループに属する前記被検出領域の各々についてX線検出を行う測定処理装置。
  13. 請求項3または4に記載の測定処理装置において、
    前記複数の被検出領域は、複数の三次元状の第1の被検出領域と、所定の範囲で検出領域が変位可能な第2の被検出領域とを含み、
    前記測定処理装置は、前記被検出領域に設定される前記検出可能範囲のうち、少なくとも一つの前記検出可能範囲において、前記第1の被検出領域および前記第2の被検出領域を両方含むように前記第2の被検出領域を前記所定の範囲で変位させ、前記第2の被検出領域を設定する再設定部を更に備える測定処理装置。
  14. 請求項13に記載の測定処理装置において、
    前記再設定部は、前記被検出領域に設定される前記検出可能範囲のうち、少なくとも一つの検出可能範囲において、前記第1の被検出領域および第2の被検出領域が両方検出可能な位置が多くなるように、前記第2の被検出領域を前記所定の範囲で変位させる測定処理装置。
  15. 請求項3または4に記載の測定処理装置において、
    前記複数の被検出領域は、複数の三次元状の第1の被検出領域と、所定の範囲で検出領域が変位可能な第2の被検出領域とを含み、
    前記測定処理装置は、前記第1の被検出領域と前記第2の被検出領域とが重なるように、前記第2の被検出領域を前記所定の範囲で移動させ、前記第2の被検出領域を設定する再設定部を更に備える測定処理装置。
  16. 請求項13乃至15の何れか一項に記載の測定処理装置において、
    前記第1の被検出領域は固定されている測定処理装置。
  17. 請求項13乃至16の何れか一項に記載の測定処理装置において、
    前記被検物は、エンジンブロックであり、
    前記第2の被検出領域は、前記エンジンブロックのクランクジャーナル部である測定処理装置。
  18. 請求項1乃至17の何れか一項に記載の測定処理装置において、
    前記選定部は、前記被検物の設計情報を用いて、前記被検出領域を設定する測定処理装置。
  19. 請求項1乃至17の何れか一項に記載の測定処理装置において、
    前記選定部は、前記被検物の情報を用いたシミュレーション情報を用いて、前記被検出領域を設定する測定処理装置。
  20. 請求項1乃至17の何れか一項に記載の測定処理装置において、
    前記選定部は、前記被検物の計測情報の結果を用いて、前記被検出領域を設定する測定処理装置。
  21. 請求項1乃至20の何れか一項に記載の測定処理装置において、
    前記被検出領域に設定される複数の前記検出可能範囲の各々は、互いに交差する測定処理装置。
  22. 請求項1乃至21の何れか一項に記載の測定処理装置において、
    前記測定は、X線を用いた被検出領域の透過像を複数用い、前記被検出領域の三次元の形状情報を生成する測定処理装置。
  23. 請求項1乃至22の何れか一項に記載の測定処理装置において、
    複数の前記検出可能範囲は、スライス面を含む測定処理装置。
  24. 請求項1乃至23の何れか一項に記載の測定処理装置において、
    前記被検物を載置する載置部は、所定方向に移動させる駆動部と、前記検出可能範囲が前記被検出領域に存在するときに前記駆動部に前記載置部を回転させる第1の制御と、前記検出可能範囲が前記被検出領域に存在しないときには前記駆動部に前記載置部を相対移動させる第2の制御とを行う駆動制御部とを有する測定処理装置。
  25. 請求項1乃至21の何れか一項に記載の測定処理装置において、
    前記測定処理装置は、前記被検出領域を複数の所定の三次元格子に分割する分割部を更に備え、
    前記三次元格子は、前記被検物を検出する時の解像単位により規定される三次元格子よりも大きい測定処理装置。
  26. 請求項1乃至25の何れか一項に記載の測定処理装置において、
    前記測定処理装置は、前記選定部により設定される前記被検出領域の情報を用いて、前記被検物の前記被検出領域を検査する時の倍率を算出する算出部を更に備える測定処理装置。
  27. 請求項26に記載の測定処理装置において、
    前記算出部は、前記被検物の載置部に対する載置面の情報を用いて、前記倍率を算出する測定処理装置。
  28. 請求項27に記載の測定処理装置において、
    前記算出部は、前記載置面と平行な面における前記被検物の前記被検出領域の位置情報を用いて、前記倍率を算出する測定処理装置。
  29. X線を用いて被検物を測定するX線測定装置に用いる測定処理方法であって、
    前記被検物の一部に設定される三次元形状の被検出領域の情報と、前記X線測定装置の検出可能範囲の情報とに基づいて、前記被検出領域を測定するために必要な前記被検物の相対的な変位量を、前記被検出領域に対する前記検出可能範囲の複数の変位方向ごとに算出し、算出された前記変位量に基づいて、前記測定に用いる変位方向を選定する測定処理方法。
  30. X線を用いて被検物を測定するX線測定装置に用いる測定処理プログラムであって、
    前記被検物の一部に設定される三次元形状の被検出領域の情報と、前記X線測定装置の検出可能範囲の情報とに基づいて、前記被検出領域を測定するために必要な前記被検物の相対的な変位量を、前記被検出領域に対する前記検出可能範囲の複数の変位方向ごとに算出し、算出された前記変位量に基づいて、前記測定に用いる変位方向を選定する選定処理を、コンピュータに実行させる測定処理プログラム。
JP2016546227A 2014-09-02 2014-09-02 測定処理装置、測定処理方法および測定処理プログラム Active JP6677161B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073097 WO2016035148A1 (ja) 2014-09-02 2014-09-02 測定処理装置、x線検査装置、構造物の製造方法、測定処理方法、x線検査方法、測定処理プログラムおよびx線検査プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018153882A Division JP2019007972A (ja) 2018-08-20 2018-08-20 測定処理方法、測定処理装置、x線検査装置、および構造物の製造方法

Publications (2)

Publication Number Publication Date
JPWO2016035148A1 JPWO2016035148A1 (ja) 2017-07-13
JP6677161B2 true JP6677161B2 (ja) 2020-04-08

Family

ID=55439252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016546227A Active JP6677161B2 (ja) 2014-09-02 2014-09-02 測定処理装置、測定処理方法および測定処理プログラム

Country Status (5)

Country Link
US (2) US10557706B2 (ja)
EP (1) EP3190402B1 (ja)
JP (1) JP6677161B2 (ja)
CN (1) CN107076684B (ja)
WO (1) WO2016035148A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10047824B2 (en) * 2014-07-29 2018-08-14 Deere & Company Method for pre-balancing and machining a crankshaft based on a mass distribution method
CN107076684B (zh) 2014-09-02 2021-04-02 株式会社尼康 测量处理装置、测量处理方法和测量处理程序
US11016038B2 (en) 2014-09-02 2021-05-25 Nikon Corporation Measurement processing device, measurement processing method, measurement processing program, and method for manufacturing structure
CN107407646A (zh) 2015-03-03 2017-11-28 株式会社尼康 测量处理装置、x射线检查装置、测量处理方法、测量处理程序及结构物的制造方法
JP2017146255A (ja) * 2016-02-19 2017-08-24 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US9835568B2 (en) * 2016-04-12 2017-12-05 General Electric Company Defect correction using tomographic scanner for additive manufacturing
WO2018020681A1 (ja) * 2016-07-29 2018-02-01 株式会社ニコン 設定方法、検査方法、欠陥評価装置および構造物の製造方法
JP6934811B2 (ja) * 2017-11-16 2021-09-15 株式会社ミツトヨ 三次元測定装置
JP7143567B2 (ja) * 2018-09-14 2022-09-29 株式会社島津テクノリサーチ 材料試験機および放射線ct装置
US11719651B2 (en) 2020-08-05 2023-08-08 Faro Technologies, Inc. Part inspection method using computed tomography
DE102021115391B3 (de) 2021-06-15 2022-01-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Prüfung des Stators sowie Prüfanordnung zur Durchführung des Verfahrens

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1179414A (en) 1966-06-02 1970-01-28 Graham Peter Rabey Improvements relating to Apparatus for Use in Recording Details of Bodies
DE3476916D1 (en) 1983-04-28 1989-04-06 Hitachi Ltd Method of detecting pattern defect and its apparatus
US4803639A (en) * 1986-02-25 1989-02-07 General Electric Company X-ray inspection system
US5097492A (en) 1987-10-30 1992-03-17 Four Pi Systems Corporation Automated laminography system for inspection of electronics
JP2589613B2 (ja) 1991-09-17 1997-03-12 株式会社日立製作所 X線ctの画像化方法及びx線ct装置
EP0825457A3 (en) * 1996-08-19 2002-02-13 Analogic Corporation Multiple angle pre-screening tomographic systems and methods
US5848115A (en) * 1997-05-02 1998-12-08 General Electric Company Computed tomography metrology
US6047041A (en) 1997-09-08 2000-04-04 Scientific Measurement System Apparatus and method for comparison
JP3785817B2 (ja) 1998-07-17 2006-06-14 コニカミノルタホールディングス株式会社 放射線画像の画像処理装置
US6373917B1 (en) * 2000-08-30 2002-04-16 Agilent Technologies, Inc. Z-axis elimination in an X-ray laminography system using image magnification for Z plane adjustment
US6341153B1 (en) 2000-10-27 2002-01-22 Genesis Engineering Company System and method for portable nondestructive examination with realtime three-dimensional tomography
GB2403799B (en) 2003-07-11 2006-04-12 Rolls Royce Plc Image-based measurement
JP4131400B2 (ja) 2003-08-01 2008-08-13 トヨタ自動車株式会社 鋳造内部欠陥検査支援装置及び方法
US7366277B2 (en) * 2004-02-02 2008-04-29 Hitachi Medical Corporation Tomographic device and method therefor
JP2005249426A (ja) 2004-03-01 2005-09-15 Toyota Motor Corp 鋳造内部欠陥検査支援装置及び方法
JP4477980B2 (ja) 2004-10-05 2010-06-09 名古屋電機工業株式会社 X線検査装置、x線検査方法およびx線検査プログラム
JP4588414B2 (ja) 2004-10-28 2010-12-01 株式会社日立製作所 内部欠陥検査方法および装置
JP4772426B2 (ja) * 2005-08-25 2011-09-14 株式会社東芝 X線コンピュータ断層撮影装置
US7151817B1 (en) * 2005-09-12 2006-12-19 Analogic Corporation X-ray inspection systems with improved radiation attenuation shielding
JP4834373B2 (ja) 2005-10-24 2011-12-14 名古屋電機工業株式会社 X線検査装置、x線検査方法およびx線検査プログラム
CN100565336C (zh) * 2005-11-21 2009-12-02 清华大学 成像系统
US7319737B2 (en) * 2006-04-07 2008-01-15 Satpal Singh Laminographic system for 3D imaging and inspection
CN101405597B (zh) 2006-04-13 2012-05-23 株式会社岛津制作所 使用透过x射线的三维定量方法
JP2007285973A (ja) * 2006-04-19 2007-11-01 Shimadzu Corp ダイカスト部品の自動欠陥検査装置
US7551714B2 (en) * 2006-05-05 2009-06-23 American Science And Engineering, Inc. Combined X-ray CT/neutron material identification system
JP2007315803A (ja) * 2006-05-23 2007-12-06 Kirin Techno-System Co Ltd 表面検査装置
CN100483120C (zh) * 2006-09-05 2009-04-29 同方威视技术股份有限公司 一种用射线对液态物品进行安全检查的方法及设备
US9597041B2 (en) 2007-03-30 2017-03-21 General Electric Company Sequential image acquisition with updating method and system
CN101403711B (zh) * 2007-10-05 2013-06-19 清华大学 液态物品检查方法和设备
JP5040618B2 (ja) 2007-11-27 2012-10-03 アイシン・エィ・ダブリュ株式会社 鋳造品のひけ割れ推定方法、そのひけ割れ推定装置、そのひけ割れ推定プログラム、及び当該プログラムを記録した記録媒体、並びにその成形型製造方法
US7839971B2 (en) * 2007-12-31 2010-11-23 Morpho Detection, Inc. System and method for inspecting containers for target material
US8068579B1 (en) * 2008-04-09 2011-11-29 Xradia, Inc. Process for examining mineral samples with X-ray microscope and projection systems
JP5340717B2 (ja) 2008-12-16 2013-11-13 株式会社イシダ X線検査装置
DE102009049075B4 (de) * 2009-10-12 2021-09-30 Siemens Healthcare Gmbh Röntgensystem, Verfahren und digital lesbares Medium zum Generieren einer Abtastbahn
US20130321415A1 (en) 2011-02-22 2013-12-05 Yuki Itabayashi Analytical Model Information Delivery Device and Analytical Model Information Delivery Program
JP5628092B2 (ja) * 2011-05-25 2014-11-19 富士フイルム株式会社 画像処理装置、放射線画像撮影システム、画像処理プログラム、及び画像処理装置の作動方法
EP2587450B1 (en) 2011-10-27 2016-08-31 Nordson Corporation Method and apparatus for generating a three-dimensional model of a region of interest using an imaging system
WO2013069057A1 (ja) 2011-11-09 2013-05-16 ヤマハ発動機株式会社 X線検査方法及び装置
JP5874398B2 (ja) 2012-01-05 2016-03-02 オムロン株式会社 画像検査装置の検査領域設定方法
JP2013217773A (ja) 2012-04-09 2013-10-24 Nikon Corp X線装置、x線照射方法、構造物の製造方法
JP2013217797A (ja) 2012-04-10 2013-10-24 Nikon Corp 装置、判定方法、及び構造物の製造方法
US9042514B2 (en) * 2012-05-18 2015-05-26 Analogic Corporation Dose reduction via dynamic collimation adjustment for targeted field of view and/or digital tilt CT
JP2013244528A (ja) * 2012-05-29 2013-12-09 Aisin Seiki Co Ltd 鋳造粗形材検査装置および鋳造粗形材検査方法
JP5950100B2 (ja) 2012-06-11 2016-07-13 株式会社島津製作所 X線検査装置
JP2014009976A (ja) 2012-06-28 2014-01-20 Hitachi Ltd 3次元形状計測用x線ct装置およびx線ct装置による3次元形状計測方法
US9488605B2 (en) * 2012-09-07 2016-11-08 Carl Zeiss X-ray Microscopy, Inc. Confocal XRF-CT system for mining analysis
JP5949480B2 (ja) * 2012-11-14 2016-07-06 オムロン株式会社 X線検査装置およびx線検査方法
JP6153105B2 (ja) * 2013-01-10 2017-06-28 東芝Itコントロールシステム株式会社 Ct装置
JP6131606B2 (ja) 2013-01-21 2017-05-24 株式会社島津製作所 放射線撮影装置およびそれにおける画像処理方法
US9646373B2 (en) 2013-09-17 2017-05-09 IEC Electronics Corp. System and method for counterfeit IC detection
US9495736B2 (en) 2014-02-03 2016-11-15 Prosper Creative Co., Ltd. Image inspecting apparatus and image inspecting program
CN107076684B (zh) 2014-09-02 2021-04-02 株式会社尼康 测量处理装置、测量处理方法和测量处理程序
US11016038B2 (en) 2014-09-02 2021-05-25 Nikon Corporation Measurement processing device, measurement processing method, measurement processing program, and method for manufacturing structure
GB201508065D0 (en) * 2015-05-12 2015-06-24 Rolls Royce Plc A method of scanning Aerofoil blades

Also Published As

Publication number Publication date
EP3190402A1 (en) 2017-07-12
CN107076684B (zh) 2021-04-02
JPWO2016035148A1 (ja) 2017-07-13
EP3190402A4 (en) 2018-05-30
CN107076684A (zh) 2017-08-18
US10760902B2 (en) 2020-09-01
US10557706B2 (en) 2020-02-11
US20180372485A1 (en) 2018-12-27
EP3190402B1 (en) 2023-10-18
WO2016035148A1 (ja) 2016-03-10
US20170176181A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP6763301B2 (ja) 検査装置、検査方法、検査処理プログラムおよび構造物の製造方法
JP6677161B2 (ja) 測定処理装置、測定処理方法および測定処理プログラム
US20240036221A1 (en) Setting method, inspection method, defect evaluation device and structure manufacturing method
JP6729652B2 (ja) 測定処理方法、測定処理装置、x線検査装置および構造物の製造方法
US7187436B2 (en) Multi-resolution inspection system and method of operating same
WO2016139756A1 (ja) 測定処理装置、x線検査装置、測定処理方法、測定処理プログラム、および構造物の製造方法
JP2019007972A (ja) 測定処理方法、測定処理装置、x線検査装置、および構造物の製造方法
KR101865434B1 (ko) 조사될 대상물에 있는 구조의 위치를 x-선 컴퓨터 단층 촬영기로 결정하는 방법 및 평가 장치
EP3722793B1 (en) Method for inspecting components using computed tomography
US20130283227A1 (en) Pattern review tool, recipe making tool, and method of making recipe
Imran et al. In-Situ Process Monitoring and Defects Detection Based on Geometrical Topography With Streaming Point Cloud Processing in Directed Energy Deposition
WO2023112497A1 (ja) 情報処理装置、情報処理方法、プログラム及び記録媒体
WO2023136031A1 (ja) 情報処理装置、情報処理方法、及びプログラム
KR101525215B1 (ko) 3차원 정보를 이용한 q-point 관리 시스템

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200225

R150 Certificate of patent or registration of utility model

Ref document number: 6677161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250