WO2016137031A1 - 덤벨 구조 올리고뉴클레오티드, 이를 포함한 핵산 증폭용 프라이머 및 이를 이용한 핵산 증폭 방법 - Google Patents

덤벨 구조 올리고뉴클레오티드, 이를 포함한 핵산 증폭용 프라이머 및 이를 이용한 핵산 증폭 방법 Download PDF

Info

Publication number
WO2016137031A1
WO2016137031A1 PCT/KR2015/001835 KR2015001835W WO2016137031A1 WO 2016137031 A1 WO2016137031 A1 WO 2016137031A1 KR 2015001835 W KR2015001835 W KR 2015001835W WO 2016137031 A1 WO2016137031 A1 WO 2016137031A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
acid amplification
nucleotides
oligonucleotide
dumbbell structure
Prior art date
Application number
PCT/KR2015/001835
Other languages
English (en)
French (fr)
Inventor
임성식
김연수
Original Assignee
(주)다이오진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)다이오진 filed Critical (주)다이오진
Priority to US15/509,179 priority Critical patent/US20180073082A1/en
Priority to PCT/KR2015/001835 priority patent/WO2016137031A1/ko
Priority to CN201580046667.8A priority patent/CN107075576B/zh
Publication of WO2016137031A1 publication Critical patent/WO2016137031A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • C12Q1/705Specific hybridization probes for herpetoviridae, e.g. herpes simplex, varicella zoster

Definitions

  • the present invention relates to a dumbbell structure oligonucleotide (DSO), a nucleic acid amplification primer comprising the same, and a nucleic acid amplification method using the same. More specifically, in performing a polymerase chain reaction, a template is performed every first cycle. A multi-gene amplification and monobasic polymorphism analysis method using dumbbell structure oligonucleotides that can exclude nonspecific amplification products prior to binding.
  • DSO dumbbell structure oligonucleotide
  • a nucleic acid amplification primer comprising the same
  • a nucleic acid amplification method using the same More specifically, in performing a polymerase chain reaction, a template is performed every first cycle.
  • the polydeoxyinosine linker Since it is a universal base, at certain temperatures, the polydeoxyinosine linker forms a "bubble like structure" that blocks the nonspecific binding of the primer to the template, thereby inhibiting nonspecific amplification of PCR.
  • this technique has become somewhat cheaper in its implementation than the prior art described above, in PCR practice the temperature of the binding step in the first cycle (PCR reaction fit temperature) and the second cycle There was an inconvenience that the temperature should be different. This is to allow for priming from the second PCR cycle up to the sequence further introduced into the primer.
  • this "application of different temperatures” is not necessarily required, but the application of other temperatures is required for efficient PCR.
  • the technique also has the constraint that the 5'-terminal pre-selection aviary nucleotide sequence must be added and that it must not be complementary to any position of the template. This leads to additional inconvenience and further makes it impossible to be certain of the success of the application of the technique when all the gene sequences of the template are unknown. Therefore, it may be necessary to develop a new method that is cheaper and easier to implement than the prior art.
  • This non-specific amplification suppression technique is of course important for all PCR, especially in the PCR (diagnosis) that performs genetic tests, disease tests, etc. will be more important.
  • Patent document 1 KR10-0649165 B
  • an object of the present invention is to solve the problems of the prior art and the technical problem that has been requested from the past.
  • the present inventors have diligently researched to develop a method for amplifying a plurality of genes by only one polymerase chain reaction.
  • a dumbbell structure is formed.
  • Dumbbell structure oligonucleotide (DSO) that adds a random base sequence capable of complementarily binding to the 3-end of 3 to 5 bp and a universal base pair of 3 to 5 bp connecting the two sites to the ⁇ -terminus
  • DSO Dumbbell structure oligonucleotide
  • the polymerase chain reaction was confirmed that it is possible to amplify a large number of different genes at the same time quickly and accurately, to complete the present invention.
  • the main object of the present invention is a primer having a 3 to 5 bp universal base pair added to the 3 '-terminal complementary random sequence of 3 to 5 bp additionally inserted at the 5' -terminus and a template specific nucleotide sequence.
  • dumbbell structure oligonucleotide represented by the following general formula:
  • A represents a 5′-low T m specificity site comprising a nucleotide having a nucleotide sequence complementary to the 3′-terminal sequential sequence
  • B is a fragment comprising a nucleotide having a universal base Site
  • C represents a 3′-high Tm specific site comprising nucleotides having a nucleotide sequence complementary to a particular contiguous sequence of template nucleic acid, wherein p, q and r represent the number of nucleotides.
  • p contains 3-5 nucleotides.
  • q contains 3-5 nucleotides.
  • r contains 18-30 nucleotides.
  • the 5'-low T m specificity portion is of T m is preferably the 3 ' and lower than T m T m specificity portion.
  • the T m of the cleavage site is preferably lower than the T m of the 5'-low T m specificity portion and the 3 ' of T m and T m specificity portion.
  • the T m of the said 5'-low T m specific site is 10-30 degreeC.
  • the T m of the divided regions is preferably 3 ⁇ 10 °C.
  • the T m of the said 3'-high T m specific site is 50-65 degreeC.
  • the universal base consists of deoxyinosine, inosine, 7-diaza-2'-deoxyinosine, 2-aza-2'-deoxyinosine, 2'-OMe inosine, 2'-F inosine and combinations thereof It is preferably selected from the group.
  • dumbbell structure oligonucleotide is preferably selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 35.
  • the present invention provides a primer for nucleic acid amplification comprising a dumbbell structure oligonucleotide represented by the following general formula:
  • A represents a 5′-low T m specificity site comprising a nucleotide having a nucleotide sequence complementary to the 3′-terminal sequential sequence
  • B is a fragment comprising a nucleotide having a universal base Site
  • C represents a 3′-high Tm specific site comprising nucleotides having a nucleotide sequence complementary to a particular contiguous sequence of template nucleic acid, wherein p, q and r represent the number of nucleotides.
  • p contains 3-5 nucleotides.
  • q contains 3-5 nucleotides.
  • r contains 18-30 nucleotides.
  • the 5'-low T m specificity portion is of T m is preferably the 3 ' and lower than T m T m specificity portion.
  • the T m of the cleavage site is preferably lower than the T m of the 5'-low T m specificity portion and the 3 ' of T m and T m specificity portion.
  • the T m of the said 5'-low T m specific site is 10-30 degreeC.
  • the T m of the divided regions is preferably 3 ⁇ 10 °C.
  • the T m of the said 3'-high T m specific site is 50-65 degreeC.
  • the universal base consists of deoxyinosine, inosine, 7-diaza-2'-deoxyinosine, 2-aza-2'-deoxyinosine, 2'-OMe inosine, 2'-F inosine and combinations thereof It is preferably selected from the group.
  • dumbbell structure oligonucleotide is preferably selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 35.
  • the present invention is a method for amplifying a nucleic acid by performing a polymerase chain reaction from a mixture comprising a template, a primer and a polymerase, a nucleic acid amplification primer comprising a dumbbell structure oligonucleotide represented by the following general formula
  • nucleic acid amplification methods characterized by:
  • A represents a 5′-low T m specificity site comprising a nucleotide having a nucleotide sequence complementary to the 3′-terminal sequential sequence
  • B is a fragment comprising a nucleotide having a universal base Site
  • C represents a 3′-high Tm specific site comprising nucleotides having a nucleotide sequence complementary to a particular contiguous sequence of template nucleic acid, wherein p, q and r represent the number of nucleotides.
  • p contains 3-5 nucleotides.
  • q contains 3-5 nucleotides.
  • r contains 18-30 nucleotides.
  • the 5'-low T m specificity portion is of T m is preferably the 3 ' and lower than T m T m specificity portion.
  • the T m of the cleavage site is preferably lower than the T m of the 5'-low T m specificity portion and the 3 ' of T m and T m specificity portion.
  • the T m of the said 5'-low T m specific site is 10-30 degreeC.
  • the T m of the divided regions is preferably 3 ⁇ 10 °C.
  • the T m of the said 3'-high T m specific site is 50-65 degreeC.
  • the universal base consists of deoxyinosine, inosine, 7-diaza-2'-deoxyinosine, 2-aza-2'-deoxyinosine, 2'-OMe inosine, 2'-F inosine and combinations thereof It is preferably selected from the group.
  • dumbbell structure oligonucleotide it is preferable to use a nucleic acid amplification primer selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 35.
  • the nucleic acid amplification method is preferably a multiplex polymerase chain reaction using two or more types of templates.
  • the present invention relates to an arbitrary sequence designed to complementarily bind a 5'-terminal oligonucleotide and a 3'-terminal oligonucleotide before binding to a template in every first cycle during a polymerase chain reaction (pcr).
  • Dumbbell structure oligonucleotides created by adding 3 ⁇ -terminal template-dependent specific sequences and universal base pairs linking the two sequences inhibit unintended amplification products at room temperature.
  • a plurality of genes can be amplified by only one polymerase chain reaction, and single nucleotide polymorphism analysis can be more easily detected, thereby contributing to the advancement of R & D related to genes. will be.
  • 1 is a diagram showing the structural characteristics of the primer used in the multiple gene simultaneous amplification method.
  • FIG. 2 is a diagram schematically showing that amplification using a PCR product as a template is superior to amplification based on an initial template from a third cycle during PCR.
  • Figure 3 illustrates the principle of dumbbell oligonucleotides of the present invention in target dependent extension reactions. (a) shows that the environment cannot be amplified due to the high hybridization specificity of dumbbell-structured oligonucleotides under high stringency conditions, and (b) shows the successful extension of dumbbell-structured oligonucleotides.
  • Figure 4 is an electrophoresis picture of the causative bacteria causing amplification using amplification method gene.
  • FIG. 5 is a diagram showing the SNP reading of the MTHFR gene C677T by dumbbell-structure oligonucleotide and allele specific polymerase chain reaction.
  • Figure 6 shows the results of reading the SNPs of the BRAF gene V600E by allele-specific polymerase chain reaction with dumbbell structure oligonucleotides.
  • FIG. 7 is a diagram showing the results of reading the SNPs of the APC gene by the dumbbell structure oligonucleotide and allele specific polymerase chain reaction.
  • each of the genes used as templates and primers that can bind to each other are complementary Note that if specific binding is possible, multiple genes can be amplified by one polymerase chain reaction, and the specific selectivity of the primers for the template genes will be improved.
  • dumbbell structure oligonucleotide for preparing nucleic acid molecules by a template-dependent extension reaction.
  • the present invention relates to dumbbell structure oligonucleotides and various methods of using the same.
  • Dumbbell-structured oligonucleotides of the present invention allow primers or probes to be annealed to target nucleic acids with improved specificity, thereby greatly improving the specificity of nucleic acid amplification (particularly PCR).
  • dumbbell structure oligonucleotides represented by the following general formula:
  • A represents a 5′-low T m specificity site comprising a nucleotide having a nucleotide sequence complementary to the 3′-terminal sequential sequence
  • B is a fragment comprising a nucleotide having a universal base Site
  • C represents a 3′-high Tm specific site comprising nucleotides having a nucleotide sequence complementary to a particular contiguous sequence of template nucleic acid, wherein p, q and r represent the number of nucleotides.
  • p contains 3-5 nucleotides.
  • q contains 3-5 nucleotides.
  • r contains 18-30 nucleotides.
  • the 5'-low T m specificity portion is of T m is preferably the 3 ' and lower than T m T m specificity portion.
  • the T m of the cleavage site is preferably lower than the T m of the 5'-low T m specificity portion and the 3 ' of T m and T m specificity portion.
  • the T m of the said 5'-low T m specific site is 10-30 degreeC.
  • the T m of the divided regions is preferably 3 ⁇ 10 °C.
  • the T m of the said 3'-high T m specific site is 50-65 degreeC.
  • the universal base consists of deoxyinosine, inosine, 7-diaza-2'-deoxyinosine, 2-aza-2'-deoxyinosine, 2'-OMe inosine, 2'-F inosine and combinations thereof It is preferably selected from the group.
  • dumbbell structure oligonucleotide is preferably selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 35.
  • the present invention provides a primer for nucleic acid amplification comprising a dumbbell structure oligonucleotide represented by the following general formula:
  • A represents a 5′-low T m specificity site comprising a nucleotide having a nucleotide sequence complementary to the 3′-terminal sequential sequence
  • B is a fragment comprising a nucleotide having a universal base Site
  • C represents a 3′-high Tm specific site comprising nucleotides having a nucleotide sequence complementary to a particular contiguous sequence of template nucleic acid, wherein p, q and r represent the number of nucleotides.
  • p contains 3-5 nucleotides.
  • q contains 3-5 nucleotides.
  • r contains 18-30 nucleotides.
  • the 5'-low T m specificity portion is of T m is preferably the 3 ' and lower than T m T m specificity portion.
  • the T m of the cleavage site is preferably lower than the T m of the 5'-low T m specificity portion and the 3 ' of T m and T m specificity portion.
  • the T m of the said 5'-low T m specific site is 10-30 degreeC.
  • the T m of the divided regions is preferably 3 ⁇ 10 °C.
  • the T m of the said 3'-high T m specific site is 50-65 degreeC.
  • the universal base consists of deoxyinosine, inosine, 7-diaza-2'-deoxyinosine, 2-aza-2'-deoxyinosine, 2'-OMe inosine, 2'-F inosine and combinations thereof It is preferably selected from the group.
  • dumbbell structure oligonucleotide is preferably selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 35.
  • the present invention is a method for amplifying a nucleic acid by performing a polymerase chain reaction from a mixture comprising a template, a primer and a polymerase, a nucleic acid amplification primer comprising a dumbbell structure oligonucleotide represented by the following general formula
  • nucleic acid amplification methods characterized by:
  • A represents a 5′-low T m specificity site comprising a nucleotide having a nucleotide sequence complementary to the 3′-terminal sequential sequence
  • B is a fragment comprising a nucleotide having a universal base Site
  • C represents a 3′-high Tm specific site comprising nucleotides having a nucleotide sequence complementary to a particular contiguous sequence of template nucleic acid, wherein p, q and r represent the number of nucleotides.
  • p contains 3-5 nucleotides.
  • q contains 3-5 nucleotides.
  • r contains 18-30 nucleotides.
  • the 5'-low T m specificity portion is of T m is preferably the 3 ' and lower than T m T m specificity portion.
  • the T m of the cleavage site is preferably lower than the T m of the 5'-low T m specificity portion and the 3 ' of T m and T m specificity portion.
  • the T m of the said 5'-low T m specific site is 10-30 degreeC.
  • the T m of the divided regions is preferably 3 ⁇ 10 °C.
  • the T m of the said 3'-high T m specific site is 50-65 degreeC.
  • the universal base consists of deoxyinosine, inosine, 7-diaza-2'-deoxyinosine, 2-aza-2'-deoxyinosine, 2'-OMe inosine, 2'-F inosine and combinations thereof It is preferably selected from the group.
  • dumbbell structure oligonucleotide it is preferable to use a nucleic acid amplification primer selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 35.
  • the nucleic acid amplification method is preferably a multiplex polymerase chain reaction using two or more types of templates.
  • the present invention provides a dumbbell structure oligonucleotide for synthesizing a nucleic acid molecule by a template-dependent extension reaction represented by the following general formula.
  • A is a nucleotide sequence capable of substantially complementary binding to a partial sequence consecutive from the 3′-end of the general formula
  • B represents a cleavage site including a universal base pair
  • C is one of the template nucleic acids hybridized
  • p, q, and r are the number of nucleotides
  • A, B, and C are deoxyribonucleotides or ribonucleotides
  • the cleavage site is one of three sites: A, B, and C Has the lowest T m ;
  • the cleavage site forms a non-base pair hairpin structure under the condition that A and B bind to the template nucleic acid, so that A is separated from B in terms of binding specificity for the template nucleic acid, and the binding specificity of the oligonucleotide Determined by both A and B, it can be seen that the specific selectivity of the primer for the template gene can be improved.
  • Dumbbell-structured oligonucleotides of the present invention are found in a variety of fields, including Miller, HI method (WO 89/06700) and Davey, C. et al. (EP329, 822), ligase chain reaction (LCR, Wu, DY et al., Genomics 4 : 560 (1989)), polymerase ligase chain reaction (Barany, PCR Methods and Applic., 1: 5-16 (1991)), gap-LCR (WO 90/01069), repair chain reaction (EP 439,182) Primer-related nucleic acid amplification methods such as 3SR (Kwoh et al., PNAS, USA, 86: 1173 (1989)) and NASBA (US Pat.
  • 3SR Zaoh et al., PNAS, USA, 86: 1173 (1989)
  • NASBA US Pat.
  • FIG. 1 is a diagram showing the structural characteristics of the primer used in the multiple gene simultaneous amplification method.
  • Figure 1 when constructing the primer of the gene to be amplified by adding a random base sequence of 3bp to 5bp complementary to the 3 ⁇ -end to the 5 ⁇ -end does not bind complementarily with the template base sequence every first cycle Therefore, it inhibited nonspecific binding, and when hybridized with the template gene during the polymerase chain reaction, it was replaced with a universal base pair of 3bp to 5bp to form a bulge in the center, and 3 to 5bp base sequence of the 5'-terminal part.
  • nucleotide sequence of the 3′-terminal portion is a dumbbell structure oligonucleotide that can complementarily bind to the gene to be amplified
  • a primer consisting of was constructed.
  • template genes are normally amplified even when the annealing temperature is changed.
  • PCR amplification using conventional primers under the condition that the annealing temperature is changed the amplification rate increases with annealing temperature. It was confirmed that this was lowered and the template gene was not normally amplified (see FIG. 2).
  • the multi-gene simultaneous amplification method of the present invention comprises the steps of: (i) selecting each region to be amplified from 2 to 30 target genes; (ii) determining a random 5'-terminal sequence capable of complementarily binding to the 3'-terminal sequence of each selected site, and adding a 3 to 5 bp universal base pair located at the center of the determined base sequence Constructing the prepared sense primer; (iii) determining a nucleotide sequence capable of complementarily binding to the 3'-terminal sequence of each of the selected sites, and constructing an antisense primer added with a universal string of ⁇ 5 bp located at the center of the determined base sequence step; (iv) mixing the 2 to 30 target genes with the 2 to 30 sense primers and antisense primers corresponding to the target genes, respectively, and performing one polymerase chain reaction using the mixture. step; And (v) identifying the amplified product obtained by the polymerase chain reaction. At this time, the temperature and time conditions in the polyme
  • a plurality of genes can be amplified by only one polymerase chain reaction, and a single base polymorphic analysis can be easily implemented, thus contributing to the advancement of R & D related to genes. .
  • DNA was extracted from samples obtained from 20 suspected patients with susceptible disease and 10X polymerase chain reaction buffer solution (750mM Tris-HCl (pH 9.0), 20mM MgCl 2 , 500mM KCl, 200mM (NH) 4) 2 SO 4) 2 ⁇ l, 2.5mM dNTP mix (2.5mM dATP, 2.5mM dGTP, 2.5mM dTTP, 2.5mM dCTP) 2 ⁇ l, Taq polymerase (Biotools, Spain) 2.0unit and SEQ ID NO: 1 to 26, 36 and 1 ⁇ l of DS primer (0.5 ⁇ M) having a nucleotide sequence of 37 was mixed, titrated to 20 ⁇ l by adding tertiary distilled water, and then subjected to a polymerase chain reaction (10 minutes at 94 ° C., 30 seconds at 94 ° C., 60 at 65 ° C.).
  • 10X polymerase chain reaction buffer solution 750mM Tris-HCl (pH 9.0
  • FIG. 4 is an electrophoresis photograph of 12 kinds of causative bacteria causing causative wave disease amplified through polymerase chain reaction.
  • a first amplification image of a CA-infected clinical sample is shown, and a second second is a clinical sample infected with UP or GV.
  • the amplified image is shown, 3 shows an amplified image of GV-infected clinical sample, 4 shows an amplified image of CT-infected clinical sample, 5 shows an amplified image of GV-infected clinical specimen, and 6 Amplified images of clinical samples infected with UP and CA are shown, 7 is amplified images of clinical samples infected with MH, UP, and GV, 8 is amplified images of negative samples, and 9 is infected with GV and CT.
  • An amplified image of the clinical sample is shown, 10 shows an image of the amplified clinical sample infected with UP, HSV2, CA, 11 shows an amplified image of the clinical sample infected with CA, 12 and 13 Represents an amplified image of a negative sample, 14 represents an amplified image of a clinical sample infected with GV, CT, 15 represents an amplified image of a clinical sample infected with CT, TV, 16, 17 and 18 and 19 shows an amplified image of negative sample, 20 shows an amplified image of UP and GV infected clinical sample, 21 shows an amplified image of negative sample, 22 shows an amplified image of UP infected sample 23 shows an image of amplified clinical sample infected with UP, GV, CA, 24 shows an image of amplified negative sample, 25 shows an amplified image of MH, GV infected clinical sample, and 26 shows UP.
  • number 27 represents an amplified image of MH
  • number 28 represents an amplified image of UP
  • 29 shows amplified images of clinical samples infected with MH, UU, and GV
  • 30 shows amplified images of clinical samples infected with CA
  • 31 shows amplified images of negative samples
  • 32 shows amplified negative controls. Represents an image.
  • Example 2 Monobasic polymorphism analysis of MTHFR gene, BRAF gene and APC gene using DSO primer
  • the conditions of the polymerase chain reaction was carried out 35 cycles under the conditions of 10 minutes at 94 °C, 30 seconds at 94 °C, 60 seconds at annealing, 60 seconds at 72 °C, annealing temperature is 60 °C, 55 °C and 62 °C, respectively
  • the amplified sections were electrophoresed on a 2% (w / v) agarose gel (see FIGS. 5, 6, 7).
  • M is to confirm the presence or absence of mutations in the MTHFR gene that is closely related to cardiovascular disease, targeting 16 clinical specimens whose type was confirmed by the polymerase chain reaction-restriction fragment fragment polymorphism method, The result of allele specific pcr analysis is shown.
  • M as image is a size marker identifying the amplification product size.
  • Clinical specimens 1, 3, 5, 7, 8, 9, 11, 12, and 13 were clinical samples with high homocysteine concentrations and were found to have both wild and mutant mutations in this analysis. 2, 4, 10, 14 and 15 were patients with cardiovascular disease and only mutants were identified in this analysis.
  • Clinical specimens 6 and 16 were normal and only wild (wild type) in this analysis.
  • Figure 6 is to confirm the presence or absence of mutations in the BRAF gene that is closely related to thyroid cancer, alleles of 16 clinical specimens whose type was identified by the polymerase chain reaction-restriction fragment fragment polymorphism analysis method The result of the gene specific PCR analysis is shown.
  • M as image is a size marker identifying the amplification product size.
  • Clinical specimens 1, 5, 6, 7, 10, 12, and 16 were normal and were found to have only wild (wild type) in this analysis, and clinical specimens 3, 8, 11, 13, and 15 showed abnormal thyroid function.
  • the clinical specimens of this study were found to have both wild (mutant) and mutant mutations, and clinical specimens 2, 4, 9, and 14 patients with thyroid cancer were identified as having only mutants. .
  • Figure 7 is to determine the presence or absence of mutations in the APC gene that is closely related to familial polyposis (colorectal cancer), 16 clinical trials of the type was confirmed by the polymerase chain reaction-restriction fragment fragment polymorphism analysis method Allele-specific PCR analysis is performed on the sample. M as image is a size marker identifying the amplification product size. Clinical specimens 1, 2, 3, 4, 8, 9, 10, 11, 12, 14 and 16 were normal and found to have only wild (wild type) in this analysis. As a result of colon polyscopic findings, it was confirmed that this analysis had both wild (wild type) and mutant (mutant), and clinical sample 5 was a stage 0 epithelial cancer patient with only mutant (mutant) in this analysis. Confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Virology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 덤벨 구조 올리고뉴클레오티드(dumbbell structure oligonucleotide, DSO), 이를 포함하는 핵산 증폭용 프라이머 및 이를 이용하는 핵산 증폭 방법에 관한 것으로서, 보다 구체적으로는, 중합효소 연쇄반응을 수행함에 있어 매 첫 사이클에서 주형과 결합하기 전에 비특이적 증폭산물을 배제시킬 수 있는 덤벨 구조 올리고뉴클레오티드를 이용한 다중 유전자 증폭 및 단일염기다형 분석 방법에 관한 것이다. 본 발명은 중합효소 연쇄반응(polymerase chain reaction, pcr)시 매 첫 사이클에서 주형과 결합하기 전, 5'-말단 올리고뉴클레오티드와 3`-말단 올리고뉴클레오티드가 상보적으로 결합하도록 디자인된 임의 염기서열과 3`-말단 주형 의존형 특이 염기서열, 그리고 이 두 염기서열을 연결시켜주는 유니버셜 염기쌍을 추가하여 생성된 덤벨 구조 올리고뉴클레오티드(dumbbell structure oligonucleotide, DSO)를 이용하여 상온에서 의도하지 않은 증폭산물을 억제하므로 결과적으로 비특이 증폭산물의 감소에 따른 민감도와 특이도를 효율적으로 증가시켜 유전자 증폭 방법의 혁신을 가능하게 하였다.

Description

덤벨 구조 올리고뉴클레오티드, 이를 포함한 핵산 증폭용 프라이머 및 이를 이용한 핵산 증폭 방법
본 발명은 덤벨 구조 올리고뉴클레오티드(dumbbell structure oligonucleotide, DSO), 이를 포함하는 핵산 증폭용 프라이머 및 이를 이용하는 핵산 증폭 방법에 관한 것으로서, 보다 구체적으로는, 중합효소 연쇄반응을 수행함에 있어 매 첫 사이클에서 주형과 결합하기 전에 비특이적 증폭산물을 배제시킬 수 있는 덤벨 구조 올리고뉴클레오티드를 이용한 다중 유전자 증폭 및 단일염기다형 분석 방법에 관한 것이다.
현재 연구자들이 유전자 시료를 수득하기 위하여 가장 보편적으로 사용하는 방법은 DNA 중합효소를 이용한 중합효소 연쇄반응 방법이다. 중합효소 연쇄반응에 이용되는 올리고뉴클레오티드는 주형 DNA와 반대쪽 가닥에 결합되도록 디자인된다. 상기 방법은 주형 DNA와 결합할 수 있는 올리고뉴클레오티드의 길이와 염기서열을 임의로 조절해서 설계함으로써 목적하는 유전자의 원하는 부위만을 정확하게 증폭시킬 수 있다는 장점이 있는 반면, 한번의 반응으로 하나의 관심유전자만을 증폭시킬 수 있어 증폭하고자 하는 관심유전자의 개수가 많을 경우엔 동일한 작업을 반복해서 수행하여야 한다는 단점이 있다.
이러한 단점을 해결하기 위하여, 2종류 이상의 주형 유전자와 각각의 주형 유전자에 해당하는 프라이머들을 하나로 혼합하여, 중합연쇄반응을 수행하는 많은 방법을 개발하려는 노력이 활발히 진행되었고, 더불어, 프라이머의 결합 특이성을 개선하고, 이에 따른 생성물의 증폭이 가능하게 하기 위하여 많은 방법들이 개발되었다. 예를 들어, 터치다운 PCR(Don et al., 1991), 핫 스타트 PCR(DAquila et al.,1991), 네스티트 PCR(Mullis and Faloona, 1987) 및 부스터 PCR(Ruano et al.,1989)이 있다. 이외의 또 다른 접근 방식으로는 다양한 인핸서 화합물을 이용하여 PCR의 특이성을 개선하는 것으로 이들 인핸서 화합물에는 효과적인 결합반응 온도를 증가시키는 화학물질, DNA 결합 단백질, 상업적 이용 가능한 반응물질 등이 포함된다. 그러나, 모든 PCR 방법에서 성공적인 결과물을 도출하여 획득할 수 없고 다양한 결합 온도 조건하에서 이들 첨가물들을 테스트하는 일은 많은 시간과 노력을 기울여야 하는 작업이다. 비록, 상술한 접근 방식들은 프라이머 어닐링 특이성을 개선하는데 어느 정도 기여를 하지만, 상술한 방법들은 PCR 증폭에 이용되는 프라이머로부터 초래되는 문제점, 예컨대, 비-특이적 생성물 및 높은 백그라운드에 대한 근본적인 해결책은 되지 못한다. 또한, 성공적으로 한번에 증폭시킬 수 있는 유전자의 수가 3 내지 4개에 불과하고, 각 유전자들 간의 경쟁이나 간섭 효과, 비특이적 산물의 증폭 등 그 단점이 개선되지 않고 있어, 실질적으로는 사용되지 못하고 있는 실정이다.
이처럼, 다중 중합효소 연쇄반응 및 대립유전자 특이 PCR을 수행하기 위하여는, 목적하는 주형 유전자의 조건을 최적화하여야만 하는데, 이를 위하여 많은 시간과 노력, 그리고 샘플 소모를 감수해야만 하고, 이처럼 최적화된 조건은 다른 유전자에 적용되지 않기 때문에, 이를 극복하기 위하여, 링커 중합효소연쇄반응(Linker PCR)이나 라이게이션을 통한 중합효소 연쇄반응(Ligation Mediated PCR)(참조: Journal of Clinical Microbiology, 43(11):5622-5627, 2005) 등의 방법들이 개발되었다. 그러나, 링커 중합효소 연쇄반응의 경우 첫 번째 튜브에서 반응시킨 생성물의 일부를 두 번째 튜브로 옮겨 반응을 수행하는 실험상의 특성상 발생할 수 있는 교차 오염이 심각한 문제이며, 라이게이션 중합효소 연쇄반응의 경우에는 여러 종류의 효소를 이용한 복잡한 실험방법이 연구자들의 어려움을 야기시켜 일부에서만 이러한 실험기법을 이용하고 있다.
이에 따라 저렴하면서도 간단하게 유전자 증폭을 구현할 수 있는 기술의 개발이 요구되었다. 이러한 요구에 부응하고자 개발된 기술이 단순하게 프라이머만을 조작하여 PCR 반응 적합 온도에 도달하기 전까지는 증폭이 일어나지 않게 하는 방법이다. 이러한 방법의 예로, 대한민국특허등록 제649165호에 개시된 발명을 들 수 있다. 이 기술에서는 최초 프라이머에 조절자(regulator) 부위가 추가로 삽입되어 있다. 이 조절자 부위는 폴리데옥시이노신 링커(polydeoxyinosine linker)이며 이 조절자 부위를 구성하는 이노신(inosine)은 통상 프라이머를 구성하는 일반적인 뉴클레오티드인 G, A, T, C에 비해 낮은 Tm 값을 가지는 유니버설 염기(universal base)이므로 특정 온도에서 이 폴리데옥시이노신 링커는 "bubble like structure"를 형성하여 프라이머가 주형에 비특이적으로 결합하는 것을 차단하여 PCR의 비특이 증폭을 억제하는 역할을 한다. 이 기술은 앞서 기술한 종래 기술들에 비해 그 구현에 있어 다소 저렴해 지기는 하였으나, PCR 실제에 있어서 첫 번째 주기에서의 결합 단계의 온도(PCR 반응 적합 온도)와 두 번째 주기에서의 결합 단계의 온도가 서로 다르게 해야 하는 불편함이 있었다. 이는 두 번째 PCR 주기부터 프라이머에 추가로 도입된 서열까지 프라이밍에 참여할 수 있게 하기 위해서이다. 물론 이 "다른 온도의 적용"이 반드시 요구된다고는 할 수 없으나 효율적 PCR을 위해서는 다른 온도의 적용이 필요하다 할 수 있다. 또 상기 기술에서는 5'-말단 부위의 전-선택 아비트러리 뉴클레오티드 서열이 추가되어야 하며 이것이 주형의 어떠한 위치와도 상보적이지 않아야 한다는 제약도 있었다. 이는 추가의 불편함을 초래하며 더 나아가 주형의 모든 유전자 서열을 알지 못할 때는 상기 기술의 적용에 대한 성공을 확신할 수 없게 만든다. 따라서 이 종래 기술보다도 더 저렴하고 실현하기가 용이한 새로운 방법의 개발이 필요하다 할 수 있다. 이러한 비특이 증폭의 억제 기술은 모든 PCR에 있어 당연히 중요하며, 특히 유전자 검사, 질환 검사 등을 실시하는 진단(diagnosis) 분야에서 활용되는 PCR에 있어서는 더욱 중요하다 할 것이다.
<선행기술문헌> (특허문헌 1) KR10-0649165 B
따라서, 본 발명은 이러한 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 발명의 목적은 상온에서의 의도하지 않은 PCR 증폭을 억제함으로 핫-스타트 PCR을 가능하게 해주고 또한, PCR 증폭 시 최초 주형으로부터의 증폭에 비해 PCR 산물로부터의 증폭을 우세화시켜 결과적으로 PCR에서의 비특이 증폭을 억제할 수 있는 PCR용 프라이머와 이를 이용한 PCR 방법을 제공하는 것이다.
이에, 본 발명자들은 한번의 중합효소 연쇄반응만으로 다수의 유전자를 증폭시킬 수 있는 방법을 개발하고자 예의 연구 노력한 결과, 증폭하고자 하는 유전자 염기서열의 프라이머 제작 시, 덤벨 구조(dumbbell structure)를 형성하도록 5`-말단에 3~5bp의 3`-말단과 상보적으로 결합할 수 있는 임의 염기서열과 이 두 부위를 연결하는 3~5bp의 유니버셜 염기쌍을 추가한 덤벨 구조 올리고뉴클레오티드(dumbbell structure oligonucleotide, DSO)로 구성된 프라이머를 이용할 경우, 한번의 중합효소 연쇄반응으로 서로 다른 많은 유전자를 신속하고 정확하게 동시에 증폭시킬 수 있음을 확인하고, 본 발명을 완성하게 되었다.
결국, 본 발명의 주된 목적은 5`-말단에 추가로 삽입된 3~5bp의 3`-말단 상보적 임의 염기서열과 주형 특이적 염기서열을 연결하는 3~5bp의 유니버셜 염기쌍을 추가한 프라이머를 이용하여 한번의 중합효소 연쇄반응만으로 모든 샘플에서의 존재 가능한 유전자를 증폭할 수 있는 방법을 제공하는 것이다.
상기와 같은 과제를 해결하기 위하여, 본 발명은 다음의 일반식으로 나타내어지는 덤벨 구조 올리고뉴클레오티드를 제공한다:
일반식 : 5'-Ap-Bq-Cr-3'
여기에서, 상기 A는 상기 3'-말단의 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 5'-저 Tm 특이성 부위를 나타내고, 상기 B는 유니버설 염기를 갖는 뉴클레오티드를 포함하는 분할 부위를 나타내고, 상기 C는 주형 핵산의 특정 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 3'-고 Tm 특이성 부위를 나타내고, 상기 p, q 및 r은 뉴클레오티드의 수를 나타낸다.
상기 p는 3~5개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 q는 3~5개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 r은 18~30개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 5'-저 Tm 특이성 부위의 Tm은 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것이 바람직하다.
상기 분할 부위의 Tm은 상기 5'-저 Tm 특이성 부위의 Tm 및 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것이 바람직하다.
상기 5'-저 Tm 특이성 부위의 Tm은 10~30℃인 것이 바람직하다.
상기 분할 부위의 Tm은 3~10℃인 것이 바람직하다.
상기 3'-고 Tm 특이성 부위의 Tm은 50~65℃인 것이 바람직하다.
상기 유니버설 염기는 디옥시이노신, 이노신, 7-디아자-2'-디옥시이노신, 2-아자-2'-디옥시이노신, 2'-OMe 이노신, 2'-F 이노신 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것이 바람직하다.
상기 덤벨 구조 올리고뉴클레오티드는 서열번호 1 내지 서열 번호 35로 이루어지는 군으로부터 선택되는 것이 바람직하다.
또한, 본 발명은 다음의 일반식으로 나타내어지는 덤벨 구조 올리고뉴클레오티드를 포함하는 핵산 증폭용 프라이머를 제공한다:
일반식 : 5'-Ap-Bq-Cr-3'
여기에서, 상기 A는 상기 3'-말단의 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 5'-저 Tm 특이성 부위를 나타내고, 상기 B는 유니버설 염기를 갖는 뉴클레오티드를 포함하는 분할 부위를 나타내고, 상기 C는 주형 핵산의 특정 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 3'-고 Tm 특이성 부위를 나타내고, 상기 p, q 및 r은 뉴클레오티드의 수를 나타낸다.
상기 p는 3~5개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 q는 3~5개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 r은 18~30개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 5'-저 Tm 특이성 부위의 Tm은 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것이 바람직하다.
상기 분할 부위의 Tm은 상기 5'-저 Tm 특이성 부위의 Tm 및 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것이 바람직하다.
상기 5'-저 Tm 특이성 부위의 Tm은 10~30℃인 것이 바람직하다.
상기 분할 부위의 Tm은 3~10℃인 것이 바람직하다.
상기 3'-고 Tm 특이성 부위의 Tm은 50~65℃인 것이 바람직하다.
상기 유니버설 염기는 디옥시이노신, 이노신, 7-디아자-2'-디옥시이노신, 2-아자-2'-디옥시이노신, 2'-OMe 이노신, 2'-F 이노신 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것이 바람직하다.
상기 덤벨 구조 올리고뉴클레오티드는 서열번호 1 내지 서열 번호 35로 이루어지는 군으로부터 선택되는 것이 바람직하다.
또한, 본 발명은 주형, 프라이머 및 중합효소를 포함하는 혼합물로부터 중합효소 연쇄반응을 수행하여 핵산을 증폭시키는 방법에 있어서, 다음의 일반식으로 나타내어지는 덤벨 구조 올리고뉴클레오티드를 포함하는 핵산 증폭용 프라이머를 이용하는 것을 특징으로 하는 핵산 증폭 방법을 제공한다:
일반식 : 5'-Ap-Bq-Cr-3'
여기에서, 상기 A는 상기 3'-말단의 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 5'-저 Tm 특이성 부위를 나타내고, 상기 B는 유니버설 염기를 갖는 뉴클레오티드를 포함하는 분할 부위를 나타내고, 상기 C는 주형 핵산의 특정 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 3'-고 Tm 특이성 부위를 나타내고, 상기 p, q 및 r은 뉴클레오티드의 수를 나타낸다.
상기 p는 3~5개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 q는 3~5개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 r은 18~30개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 5'-저 Tm 특이성 부위의 Tm은 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것이 바람직하다.
상기 분할 부위의 Tm은 상기 5'-저 Tm 특이성 부위의 Tm 및 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것이 바람직하다.
상기 5'-저 Tm 특이성 부위의 Tm은 10~30℃인 것이 바람직하다.
상기 분할 부위의 Tm은 3~10℃인 것이 바람직하다.
상기 3'-고 Tm 특이성 부위의 Tm은 50~65℃인 것이 바람직하다.
상기 유니버설 염기는 디옥시이노신, 이노신, 7-디아자-2'-디옥시이노신, 2-아자-2'-디옥시이노신, 2'-OMe 이노신, 2'-F 이노신 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것이 바람직하다.
상기 덤벨 구조 올리고뉴클레오티드는 서열번호 1 내지 서열 번호 35로 이루어지는 군으로부터 선택되는 핵산 증폭용 프라이머를 사용하는 것이 바람직하다.
상기 핵산 증폭 방법은 2종 이상의 주형을 이용한 다중 중합효소 연쇄반응인 것이 바람직하다.
본 발명은 중합효소 연쇄반응(polymerase chain reaction, pcr)시 매 첫 사이클에서 주형과 결합하기 전, 5'-말단 올리고뉴클레오티드와 3`-말단 올리고뉴클레오티드가 상보적으로 결합하도록 디자인된 임의 염기서열과 3`-말단 주형 의존형 특이 염기서열, 그리고 이 두 염기서열을 연결시켜주는 유니버셜 염기쌍을 추가하여 생성된 덤벨 구조 올리고뉴클레오티드(dumbbell structure oligonucleotide, DSO)를 이용하여 상온에서 의도하지 않은 증폭산물을 억제하므로 결과적으로 비특이 증폭산물의 감소에 따른 민감도와 특이도를 효율적으로 증가시켜 유전자 증폭 방법의 혁신을 가능하게 하였다. 본 발명의 유전자 증폭방법을 이용하면, 다수의 유전자를 한번의 중합효소 연쇄반응만으로 증폭시킬 수 있음은 물론 단일염기다형 분석을 보다 손쉽게 검출할 수 있어 유전자 관련 분야 연구개발의 진보에 이바지할 수 있을 것이다.
도 1은 다중 유전자 동시 증폭방법에 이용되는 프라이머의 구조적인 특징을 나타낸 그림이다.
도 2는 PCR 동안에 세 번째 주기부터 최초 주형에 기반한 증폭에 비하여 PCR 산물을 주형으로 한 증폭이 우세해 짐을 모식적으로 보여주는 그림이다.
도 3은 표적 의존적 연장 반응에서 본 발명의 덤벨구조 올리고뉴클레오타이드의 원리를 보여주고 있다. (a)는 높은 엄격조건 하에서 덤벨구조 올리고뉴클레오타이드의 고혼성화 특이성에 기인하여 증폭이 일어날 수 없는 환경임을 보여주고 있으며, (b)는 덤벨구조 올리고뉴클레오타이드의 성공적인 연장반응이 일어남을 보여주고 있다.
도 4는 유전자 증폭방법을 이용하여 증폭된 성전파질환 원인균의 전기영동사진이다.
도 5는 덤벨 구조 올리고뉴클레오티드와 대립유전자 특이 중합효소 연쇄반응에 의한 MTHFR 유전자 C677T의 SNP 판독 결과를 나타낸 그림이다.
도 6은 덤벨 구조 올리고뉴클레오티드와 대립유전자 특이 중합효소 연쇄반응에 의한 BRAF 유전자 V600E의 SNPs 판독 결과를 나타낸 그림이다.
도 7은 덤벨 구조 올리고뉴클레오티드와 대립유전자 특이 중합효소 연쇄반응에 의한 APC 유전자의 SNPs 판독 결과를 나타낸 그림이다.
이하, 본 발명을 상세하게 설명한다.
본 발명자들은 한번의 중합효소 연쇄반응만으로 다수의 유전자를 증폭시킬 수 있는 방법을 개발하기 위하여, 다양한 연구를 수행하던 중, 주형으로 사용되는 각각의 유전자와 이에 상보적으로 결합할 수 있는 프라이머가 각각 특이적으로 결합할 수 있다면, 다수의 유전자를 한번의 중합효소 연쇄반응으로 증폭시킬 수 있을 것이라는 점에 주목하고, 주형 유전자에 대한 프라이머의 특이적인 선택성을 향상시키고자 하였다.
따라서, 본 발명의 바람직한 구체예로서, 덤벨 구조 올리고뉴클레오티드를 사용하여 주형-의존적 연장 반응에 의해서 핵산분자를 제조하는 방법을 제공하는데 있다.
본 발명의 다른 바람직한 구체예로서, 하나의 DNA 또는 핵산 혼합물에서 타깃 핵산 서열을 선택적으로 증폭시키는 방법을 제공하는데 있다.
본 발명의 또 다른 바람직한 구체예로서, 동일한 반응에서 두 개 이상의 프라이머 쌍을 이용하여 동시에 두 개 이상의 타깃 뉴클레오티드 서열을 증폭하는 방법을 제공하는데 있다.
본 발명의 또 다른 바람직한 구체예로서, 유전적 다양성을 가진 핵산분자를 주형-의존적 연장 반응으로 검출하는 방법을 제공하는데 있다.
본 발명의 또 다른 바람직한 구체예로서, 주형-의존성 연장 반응에 의해 핵산 분자를 제조하기 위한 덤벨 구조 올리고뉴클레오타이드를 제공하는데 있다.
본 발명의 또 다른 바람직한 구체예로서, 올리고뉴클레오타이드의 어닐링 특이성을 개선시키기 위한 방법을 제공하는데 있다.
이와 같은 본 발명의 다양한 구체예들은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
본 발명은 덤벨 구조 올리고뉴클레오티드 및 이를 이용한 다양한 방법에 관한 것이다. 본 발명의 덤벨 구조 올리고뉴클레오티드는 개선된 특이성으로 프라이머 또는 프로브가 타깃 핵산에 어닐링되도록 하여, 핵산 증폭(특히, PCR)의 특이성을 크게 개선할 수 있다.
따라서, 본 발명은 다음의 일반식으로 나타내어지는 덤벨 구조 올리고뉴클레오티드를 제공한다:
일반식 : 5'-Ap-Bq-Cr-3'
여기에서, 상기 A는 상기 3'-말단의 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 5'-저 Tm 특이성 부위를 나타내고, 상기 B는 유니버설 염기를 갖는 뉴클레오티드를 포함하는 분할 부위를 나타내고, 상기 C는 주형 핵산의 특정 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 3'-고 Tm 특이성 부위를 나타내고, 상기 p, q 및 r은 뉴클레오티드의 수를 나타낸다.
상기 p는 3~5개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 q는 3~5개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 r은 18~30개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 5'-저 Tm 특이성 부위의 Tm은 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것이 바람직하다.
상기 분할 부위의 Tm은 상기 5'-저 Tm 특이성 부위의 Tm 및 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것이 바람직하다.
상기 5'-저 Tm 특이성 부위의 Tm은 10~30℃인 것이 바람직하다.
상기 분할 부위의 Tm은 3~10℃인 것이 바람직하다.
상기 3'-고 Tm 특이성 부위의 Tm은 50~65℃인 것이 바람직하다.
상기 유니버설 염기는 디옥시이노신, 이노신, 7-디아자-2'-디옥시이노신, 2-아자-2'-디옥시이노신, 2'-OMe 이노신, 2'-F 이노신 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것이 바람직하다.
상기 덤벨 구조 올리고뉴클레오티드는 서열번호 1 내지 서열 번호 35로 이루어지는 군으로부터 선택되는 것이 바람직하다.
또한, 본 발명은 다음의 일반식으로 나타내어지는 덤벨 구조 올리고뉴클레오티드를 포함하는 핵산 증폭용 프라이머를 제공한다:
일반식 : 5'-Ap-Bq-Cr-3'
여기에서, 상기 A는 상기 3'-말단의 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 5'-저 Tm 특이성 부위를 나타내고, 상기 B는 유니버설 염기를 갖는 뉴클레오티드를 포함하는 분할 부위를 나타내고, 상기 C는 주형 핵산의 특정 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 3'-고 Tm 특이성 부위를 나타내고, 상기 p, q 및 r은 뉴클레오티드의 수를 나타낸다.
상기 p는 3~5개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 q는 3~5개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 r은 18~30개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 5'-저 Tm 특이성 부위의 Tm은 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것이 바람직하다.
상기 분할 부위의 Tm은 상기 5'-저 Tm 특이성 부위의 Tm 및 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것이 바람직하다.
상기 5'-저 Tm 특이성 부위의 Tm은 10~30℃인 것이 바람직하다.
상기 분할 부위의 Tm은 3~10℃인 것이 바람직하다.
상기 3'-고 Tm 특이성 부위의 Tm은 50~65℃인 것이 바람직하다.
상기 유니버설 염기는 디옥시이노신, 이노신, 7-디아자-2'-디옥시이노신, 2-아자-2'-디옥시이노신, 2'-OMe 이노신, 2'-F 이노신 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것이 바람직하다.
상기 덤벨 구조 올리고뉴클레오티드는 서열번호 1 내지 서열 번호 35로 이루어지는 군으로부터 선택되는 것이 바람직하다.
또한, 본 발명은 주형, 프라이머 및 중합효소를 포함하는 혼합물로부터 중합효소 연쇄반응을 수행하여 핵산을 증폭시키는 방법에 있어서, 다음의 일반식으로 나타내어지는 덤벨 구조 올리고뉴클레오티드를 포함하는 핵산 증폭용 프라이머를 이용하는 것을 특징으로 하는 핵산 증폭 방법을 제공한다:
일반식 : 5'-Ap-Bq-Cr-3'
여기에서, 상기 A는 상기 3'-말단의 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 5'-저 Tm 특이성 부위를 나타내고, 상기 B는 유니버설 염기를 갖는 뉴클레오티드를 포함하는 분할 부위를 나타내고, 상기 C는 주형 핵산의 특정 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 3'-고 Tm 특이성 부위를 나타내고, 상기 p, q 및 r은 뉴클레오티드의 수를 나타낸다.
상기 p는 3~5개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 q는 3~5개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 r은 18~30개의 뉴클레오티드를 포함하는 것이 바람직하다.
상기 5'-저 Tm 특이성 부위의 Tm은 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것이 바람직하다.
상기 분할 부위의 Tm은 상기 5'-저 Tm 특이성 부위의 Tm 및 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것이 바람직하다.
상기 5'-저 Tm 특이성 부위의 Tm은 10~30℃인 것이 바람직하다.
상기 분할 부위의 Tm은 3~10℃인 것이 바람직하다.
상기 3'-고 Tm 특이성 부위의 Tm은 50~65℃인 것이 바람직하다.
상기 유니버설 염기는 디옥시이노신, 이노신, 7-디아자-2'-디옥시이노신, 2-아자-2'-디옥시이노신, 2'-OMe 이노신, 2'-F 이노신 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것이 바람직하다.
상기 덤벨 구조 올리고뉴클레오티드는 서열번호 1 내지 서열 번호 35로 이루어지는 군으로부터 선택되는 핵산 증폭용 프라이머를 사용하는 것이 바람직하다.
상기 핵산 증폭 방법은 2종 이상의 주형을 이용한 다중 중합효소 연쇄반응인 것이 바람직하다.
본 발명의 일 양태에 따르면, 본 발명은 다음 일반식으로 표현되며 주형-의존적 연장 반응에 의한 핵산 분자를 합성하기 위한 덤벨 구조 올리고뉴클레오티드를 제공한다.
일반식 : 5`-Ap-Bq-Cr-3`
상기 A는 상기 일반식의 3`-말단으로부터 연속된 일부서열과 실질적으로 상보적으로 결합할 수 있는 염기서열이고, B는 유니버설 염기쌍을 포함하는 분할 부위를 나타내고, C는 혼성화 되는 주형 핵산의 한 위치에 대하여 실질적으로 상보적인 염기서열을 나타내며, p, q 및 r은 뉴클레오타이드의 개수이고, A, B 및 C는 디옥시리보뉴클레오티드 또는 리보뉴클레오티드이고, 상기 분할 부위는 A, B 및 C의 3개의 부위 중에서 가장 낮은 Tm을 가지고; 상기 분할 부위는 상기 A와 B가 상기 주형 핵산에 결합되는 조건 하에서 비염기쌍 헤어핀 구조를 형성하여, 상기 주형 핵산에 대한 결합 특이성 측면에서 상기 A가 B로부터 분리되도록 하며, 상기 올리고뉴클레오티드의 결합 특이성은 A 및 B 모두에 의해 결정되어 주형 유전자에 대한 프라이머의 특이적인 선택성을 향상시킬 수 있음을 알 수 있었다.
본 발명의 덤벨 구조 올리고뉴클레오티드는 다양한 분야 즉 Miller, H. I. 방법(WO 89/06700) 및 Davey, C. 등(EP329,822), 라이가제 연쇄 반응(LCR, Wu, D.Y. et al., Genomics 4:560 (1989)), 중합효소 라이가제 연쇄 반응(Barany, PCR Methods and Applic., 1:5-16(1991)), 갭-LCR (WO 90/01069), 복구 연쇄 반응(EP 439,182), 3SR(Kwoh et al., PNAS, USA, 86:1173(1989)) 및 NASBA(U.S. Pat. No. 5,130,238) 등과 같은 프라이머-관련 핵산 증폭 방법들과, 사이클 시퀀싱(Kretz et al., (1994) Cycle sequencing. PCR Methods Appl. 3:S107-S112) 및 파이로시퀀싱(Ronaghi et al., (1996) Anal. Biochem., 242:84-89; 및 (1998) Science 281:363-365)등과 같은 프라이머 연장-관련 기술들, 및 올리고뉴클레오타이드 마이크로어레이를 사용한 타깃 뉴클레오타이드 서열의 탐지와 같은 혼성화-관련 기술들에서 매우 유용하다.
도 1은 다중 유전자 동시 증폭방법에 이용되는 프라이머의 구조적인 특징을 나타낸 그림이다. 도 1에서 보듯이, 증폭하고자 하는 유전자의 프라이머 제작 시 5`-말단에 3`-말단과 상보적인 3bp~5bp의 임의 염기서열을 추가하여 매 첫 사이클 수행시 주형 염기서열과 상보적으로 결합하지 않아 비특이적 결합을 억제하였으며, 중합효소 연쇄반응시 주형 유전자와 혼성화될 경우 중앙에 돌출부(bulge)를 형성할 수 있도록 3bp~5bp의 유니버셜 염기쌍으로 대체하고, 5'-말단 부분의 3~5bp 염기서열은 3`-말단 부위와 상보적으로 결합할 수 있는 형태의 염기서열로 대체하고, 3`말단 부위의 염기서열은 증폭하고자 하는 유전자와 상보적으로 결합할 수 있는 형태의 덤벨 구조 올리고뉴클리오티드로 구성된 프라이머를 작제하였다. 이처럼 작제된 프라이머를 이용하여 PCR 증폭을 수행하면 어닐링 온도가 변화되더라도 정상적으로 주형 유전자가 증폭됨에 반하여, 어닐링 온도가 변화되는 조건에서 종래의 프라이머를 이용하여 PCR 증폭을 수행하면 어닐링 온도가 증가할수록 증폭율이 저하되고 정상적으로 주형 유전자가 증폭되지 않음을 확인하였다(참조: 도 2). 따라서, 본 발명의 DSO 프라이머를 이용하여 PCR 증폭을 수행하면, 주형 유전자에 대한 프라이머의 특이적인 선택성이 향상되어, 다수의 주형 유전자와 이에 상응하는 각각의 프라이머를 혼합하여 한번의 중합효소 연쇄반응을 수행할 경우에도, 각각의 주형 유전자가 정상적으로 증폭될 수 있음을 확인하고, 이처럼 DSO 프라이머를 사용하여, 다수의 주형 유전자를 한번의 중합효소 연쇄반응으로 증폭시킬 수 있는 방법을 "DIGPlexTM"라 명명하였다.
결국, 본 발명의 다중 유전자 동시 증폭방법은 (i) 2 내지 30개의 목적 유전자로부터 증폭하고자 하는 부위를 각각 선택하는 단계; (ii) 상기 각각 선택된 부위의 3'-말단의 염기서열과 상보적으로 결합할 수 있는 5`-말단 임의 염기서열을 결정하고, 상기 결정된 염기서열의 중앙부에 위치한 3~5bp의 유니버셜 염기쌍이 추가된 센스 프라이머를 작제하는 단계; (iii) 상기 각각 선택된 부위의 3'-말단의 염기서열과 상보적으로 결합할 수 있는 염기서열을 결정하고, 상기 결정된 염기서열의 중앙부에 위치한 ~5bp의 유니버셜 엄기쌍이 추가된 안티센스 프라이머를 작제하는 단계; (iv) 상기 2 내지 30개의 목적 유전자와, 상기 목적유전자에 각각 상응하는 상기 작제된 2 내지 30개의 센스프라이머 및 안티센스프라이머를 모두 혼합하고, 상기 혼합물을 이용하여 한번의 중합효소 연쇄반응을 수행하는 단계; 및, (v)상기 중합효소 연쇄반응에 의하여 수득한 증폭산물을 확인하는 단계를 포함한다. 이때, 중합효소 연쇄반응시 온도 및 시간조건은 특별히 제한되지 않는다. 또한, 수득한 증폭산물의 확인은 특별히 이에 제한되지 않는다.
본 발명의 다중 유전자 동시 증폭방법을 이용하면, 다수의 유전자를 한번의 중합효소 연쇄반응만으로 증폭시킬 수 있으며, 단일염기다형 분석을 손쉽게 구현할 수 있어 유전자 관련 분야 연구개발의 진보에 이바지할 수 있을 것이다.
이하, 감염성 질환 원인균 존재 유무를 확인하는 실시예와 심혈관 질환을 야기하는 MTHFR 유전자, 갑상선 유두암의 원인인자인 BRAF 유전자 및 대장암과 관련된 APC 유전자의 단일염기다형 분석을 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시 예에 의해 제한되지 않는다는 것은 당 업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
[실시예]
실시예 1: 성전파성 질환 특이 유전자의 증폭
20명의 성전파성 질환 발병이 의심되는 환자로부터 수득한 검체에서 DNA를 추출하고 수득한 DNA에 10X 중합효소연쇄반응 완충용액(750mM Tris-HCl(pH 9.0), 20mM MgCl2, 500mM KCl, 200mM (NH4)2SO4) 2μl, 2.5mM dNTP 혼합물(2.5mM dATP, 2.5mM dGTP, 2.5mM dTTP, 2.5mM dCTP) 2μl, Taq 중합효소(Biotools, Spain) 2.0unit 및 서열번호 1 내지 26, 36 및 37의 염기서열을 갖는 DS 프라이머(0.5μM) 1μl를 혼합하고, 3차 증류수를 가하여 20μl로 적정한 다음, 중합효소 연쇄반응을 수행(94℃에서 10분, 94℃에서 30초, 65℃에서 60초, 72℃에서 60초, 35사이클)하여, 증폭산물을 수득하였다. 이때, 사용된 각각의 DSO 프라이머의 염기서열은 다음 표 1과 같다. 참고로, 본 명세서에 첨부된 서열목록상의 서열번호 1 내지 서열번호 37에 기재된 염기서열 중 문자 "N"은 아래 표 1과 표 2에 나타난 바와 같이 "이노신(Inosine), I"을 의미한다.
표 1
Figure PCTKR2015001835-appb-T000001
이어, 중합효소연쇄반응이 수행된 반응산물을 2.0% 아가로스 젤상에서 전기영동하였다(참조: 도 4). 도 4는 중합효소연쇄반응을 통해 증폭된 12종의 성전파질환 원인균 전기영동 사진으로, 도 4의 1번은 CA에 감염된 임상검체를 증폭한 이미지를 나타내고, 2번은 UP, GV에 감염된 임상검체를 증폭한 이미지를 나타내고, 3번은 GV에 감염된 임상검체를 증폭한 이미지를 나타내고, 4번은 CT에 감염된 임상검체를 증폭한 이미지를 나타내고, 5번은 GV에 감염된 임상검체를 증폭한 이미지를 나타내고, 6번은 UP, CA에 감염된 임상검체를 증폭한 이미지를 나타내고, 7번은 MH, UP, GV에 감염된 임상검체를 증폭한 이미지를 나타내고, 8번은 음성검체를 증폭한 이미지를 나타내고, 9번은 GV, CT에 감염된 임상검체를 증폭한 이미지를 나타내고, 10번은 UP, HSV2, CA에 감염된 임상검체를 증폭한 이미지를 나타내고, 11번은 CA에 감염된 임상검체를 증폭한 이미지를 나타내고, 12번과 13번은 음성검체를 증폭한 이미지를 나타내고, 14번은 GV, CT에 감염된 임상검체를 증폭한 이미지를 나타내고, 15번은 CT, TV에 감염된 임상검체를 증폭한 이미지를 나타내고, 16번, 17번 18번 및 19번은 음성검체를 증폭한 이미지를 나타내고, 20번은 UP, GV에 감염된 임상검체를 증폭한 이미지를 나타내고, 21번은 음성검체를 증폭한 이미지를 나타내고, 22번은 UP에 감염된 임상검체를 증폭한 이미지를 나타내고, 23번은 UP, GV, CA에 감염된 임상검체를 증폭한 이미지를 나타내고, 24번은 음성검체를 증폭한 이미지를 나타내고, 25번은 MH, GV에 감염된 임상검체를 증폭한 이미지를 나타내고, 26번은 UP에 감염된 임상검체를 증폭한 이미지를 나타내고, 27번은 MH, GV에 감염된 임상검체를 증폭한 이미지를 나타내고, 28번은 UP, CA에 감염된 임상검체를 증폭한 이미지를 나타내고, 29번은 MH, UU, GV에 감염된 임상검체를 증폭한 이미지를 나타내고, 30번은 CA에 감염된 임상검체를 증폭한 이미지를 나타내고, 31번은 음성검체를 증폭한 이미지를 나타내고 32번은 음성 대조군을 증폭한 이미지를 나타낸다. 이상의 결과에서 보듯이, 본 발명의 DSO 프라이머를 이용한 다중 유전자 동시증폭방법을 이용할 경우, 다수의 유전자를 한번의 중합효소연쇄반응으로 증폭시킬 수 있음을 확인할 수 있었다.
실시예 2: DSO 프라이머를 이용한 MTHFR 유전자, BRAF 유전자 및 APC 유전자 의 단일염기다형 분석
상업적으로 입수한 인간의 MTHFR, BRAF, APC 유전자(wild type, hetero type, homo type)를 증폭시키기 위하여, 인간의 지놈 DNA(Invitrogen Inc., USA)를 주형으로 사용하고, 다음과 같은 염기서열을 갖는 정상 프라이머를 이용하여 증폭한 후 제한효소 처리에 의한 결과 확인 방법 및 본 발명의 DSO 프라이머를 이용한 중합효소연쇄반응을 수행하여 증폭산물을 확인하였다.
표 2
Figure PCTKR2015001835-appb-T000002
휴먼 혈액에서 채취한 지노믹 DNA 2μl(50ng/μl), 10X 중합효소연쇄반응 완충용액(750mM Tris-HCl(pH 9.0), 20mM MgCl2, 500mM KCl, 200mM (NH4)2SO4) 2μl, 2.5mM dNTP 혼합물(2.5mM dATP, 2.5mM dGTP, 2.5mM dTTP, 2.5mM dCTP) 2μl, Taq 중합효소(Biotools, Spain) 1.5unit 및 상기 각각의 DSO 프라이머들 혼합물(0.5μM) 1μl를 혼합하고, 3차 증류수를 가하여 20μl로 적정한 다음, 중합효소연쇄반응을 수행하였다. 이때, 중합효소연쇄반응의 조건은 94℃에서 10분, 94℃에서 30초, 어닐링 60초, 72℃에서 60초의 조건하에 35사이클을 수행하였고, 어닐링 온도는 각각 60℃, 55℃ 및 62℃의 다른 온도에서 수행한 다음, 반응이 종료된 후, 증폭된 절편을 2%(w/v) 아가로스 젤에서 전기영동 하였다(참조: 도 5, 6, 7).
도 5는 심혈관 질환과 밀접한 관련이 있는 MTHFR 유전자의 돌연변이 유무를 확인하기 위한 것으로서, 기 분석방법인 중합효소연쇄반응-제한효소절편장다형법에 의해 그 유형이 확인된 16명의 임상검체를 대상으로, 대립 유전자 특이 pcr분석을 수행한 결과를 나타낸다. 이미지로서 M은 증폭 산물 사이즈를 확인하는 사이즈 마커이다. 임상검체 1, 3, 5, 7, 8, 9, 11, 12 및 13은 호모시스테인 농도가 높은 임상검체로 본 분석에서 wild(야생형)과 mutant(돌연변이형)을 모두 가지고 있는 것으로 확인되었으며, 임상검체 2, 4, 10, 14 및 15는 심혈관 질환 환자로 본 분석에서 mutant(돌연변이형)만을 가진 것으로 확인되었으며, 임상검체 6과 16은 정상인으로 본 분석에서 wild(야생형)만을 가지고 있는 것으로 확인되었다.
도 6은 갑상선암과 밀접한 관련이 있는 BRAF 유전자의 돌연변이 유무를 확인하기 위한 것으로서, 기 분석방법인중합효소연쇄반응-제한효소절편장다형법에 의해 그 유형이 확인된 16명의 임상검체를 대상으로, 대립 유전자 특이 PCR분석을 수행한 결과를 나타낸다. 이미지로서 M은 증폭 산물 사이즈를 확인하는 사이즈 마커이다. 임상검체 1, 5, 6, 7, 10, 12 및 16은 정상인으로 본 분석에서 wild(야생형)만을 가지고 있는 것으로 확인되었으며, 임상검체 3, 8, 11, 13 및 15는 갑상선 기능 이상을 보이니 환자의 임상검체로 본 분석에서 wild(야생형)과 mutant(돌연변이형)을 모두 가지고 있는 것으로 확인되었으며, 임상검체 2, 4, 9 및 14 갑상선암 환자로 본 분석에서 mutant(돌연변이형)만을 가진 것으로 확인되었다.
도 7은 가족성 용종증(대장암)과 밀접한 관련이 있는 APC 유전자의 돌연변이 유무를 확인하기 위한 것으로서, 기 분석방법인중합효소연쇄반응-제한효소절편장다형법에 의해 그 유형이 확인된 16명의 임상검체를 대상으로, 대립 유전자 특이 PCR분석을 수행한 결과를 나타낸다. 이미지로서 M은 증폭 산물 사이즈를 확인하는 사이즈 마커이다. 임상검체 1, 2, 3, 4, 8, 9, 10, 11, 12, 14 및 16은 정상인으로 본 분석에서 wild(야생형)만을 가지고 있는 것으로 확인되었으며, 임상검체 6, 7, 13 및 15는 대장 내시경 결과 용종을 확인한 결과로 본 분석에서 wild(야생형)과 mutant(돌연변이형)을 모두 가지고 있는 것으로 확인되었으며, 임상검체 5는 0기 상피내암 환자로 본 분석에서 mutant(돌연변이형)만을 가진 것으로 확인되었다.

Claims (34)

  1. 다음의 일반식으로 나타내어지는 덤벨 구조 올리고뉴클레오티드:
    일반식 : 5'-Ap-Bq-Cr-3'
    여기에서, 상기 A는 상기 3'-말단의 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 5'-저 Tm 특이성 부위를 나타내고, 상기 B는 유니버설 염기를 갖는 뉴클레오티드를 포함하는 분할 부위를 나타내고, 상기 C는 주형 핵산의 특정 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 3'-고 Tm 특이성 부위를 나타내고, 상기 p, q 및 r은 뉴클레오티드의 수를 나타낸다.
  2. 제 1항에 있어서,
    상기 p는 3~5개의 뉴클레오티드를 포함하는 것을 특징으로 하는 덤벨 구조 올리고뉴클레오티드.
  3. 제 1항에 있어서,
    상기 q는 3~5개의 뉴클레오티드를 포함하는 것을 특징으로 하는 덤벨 구조 올리고뉴클레오티드.
  4. 제 1항에 있어서,
    상기 r은 18~30개의 뉴클레오티드를 포함하는 것을 특징으로 하는 덤벨 구조 올리고뉴클레오티드.
  5. 제 1항에 있어서,
    상기 5'-저 Tm 특이성 부위의 Tm은 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것을 특징으로 하는 덤벨 구조 올리고뉴클레오티드.
  6. 제 1항에 있어서,
    상기 분할 부위의 Tm은 상기 5'-저 Tm 특이성 부위의 Tm 및 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것을 특징으로 하는 덤벨 구조 올리고뉴클레오티드.
  7. 제 1항에 있어서,
    상기 5'-저 Tm 특이성 부위의 Tm은 10~30℃인 것을 특징으로 하는 덤벨 구조 올리고뉴클레오티드.
  8. 제 1항에 있어서,
    상기 분할 부위의 Tm은 3~10℃인 것을 특징으로 하는 덤벨 구조 올리고뉴클레오티드.
  9. 제 1항에 있어서,
    상기 3'-고 Tm 특이성 부위의 Tm은 50~65℃인 것을 특징으로 하는 덤벨 구조 올리고뉴클레오티드.
  10. 제 1항에 있어서,
    상기 유니버설 염기는 디옥시이노신, 이노신, 7-디아자-2'-디옥시이노신, 2-아자-2'-디옥시이노신, 2'-OMe 이노신, 2'-F 이노신 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 덤벨 구조 올리고뉴클레오티드.
  11. 제 1항에 있어서,
    상기 덤벨 구조 올리고뉴클레오티드는 서열번호 1 내지 서열 번호 35로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 덤벨 구조 올리고뉴클레오티드.
  12. 다음의 일반식으로 나타내어지는 덤벨 구조 올리고뉴클레오티드를 포함하는 핵산 증폭용 프라이머:
    일반식 : 5'-Ap-Bq-Cr-3'
    여기에서, 상기 A는 상기 3'-말단의 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 5'-저 Tm 특이성 부위를 나타내고, 상기 B는 유니버설 염기를 갖는 뉴클레오티드를 포함하는 분할 부위를 나타내고, 상기 C는 주형 핵산의 특정 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 3'-고 Tm 특이성 부위를 나타내고, 상기 p, q 및 r은 뉴클레오티드의 수를 나타낸다.
  13. 제 12항에 있어서,
    상기 p는 3~5개의 뉴클레오티드를 포함하는 것을 특징으로 하는 핵산 증폭용 프라이머.
  14. 제 12항에 있어서,
    상기 q는 3~5개의 뉴클레오티드를 포함하는 것을 특징으로 하는 핵산 증폭용 프라이머.
  15. 제 12항에 있어서,
    상기 r은 18~30개의 뉴클레오티드를 포함하는 것을 특징으로 하는 핵산 증폭용 프라이머.
  16. 제 12항에 있어서,
    상기 5'-저 Tm 특이성 부위의 Tm은 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것을 특징으로 하는 핵산 증폭용 프라이머.
  17. 제 12항에 있어서,
    상기 분할 부위의 Tm은 상기 5'-저 Tm 특이성 부위의 Tm 및 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것을 특징으로 하는 핵산 증폭용 프라이머.
  18. 제 12항에 있어서,
    상기 5'-저 Tm 특이성 부위의 Tm은 10~30℃인 것을 특징으로 하는 핵산 증폭용 프라이머.
  19. 제 12항에 있어서,
    상기 분할 부위의 Tm은 3~10℃인 것을 특징으로 하는 핵산 증폭용 프라이머.
  20. 제 12항에 있어서,
    상기 3'-고 Tm 특이성 부위의 Tm은 50~65℃인 것을 특징으로 하는 핵산 증폭용 프라이머.
  21. 제 12항에 있어서,
    상기 유니버설 염기는 디옥시이노신, 이노신, 7-디아자-2'-디옥시이노신, 2-아자-2'-디옥시이노신, 2'-OMe 이노신, 2'-F 이노신 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 핵산 증폭용 프라이머.
  22. 제 12항에 있어서,
    상기 덤벨 구조 올리고뉴클레오티드는 서열번호 1 내지 서열 번호 35로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 핵산 증폭용 프라이머.
  23. 주형, 프라이머 및 중합효소를 포함하는 혼합물로부터 중합효소 연쇄반응을 수행하여 핵산을 증폭시키는 방법에 있어서, 다음의 일반식으로 나타내어지는 덤벨 구조 올리고뉴클레오티드를 포함하는 핵산 증폭용 프라이머를 이용하는 것을 특징으로 하는 핵산 증폭 방법:
    일반식 : 5'-Ap-Bq-Cr-3'
    여기에서, 상기 A는 상기 3'-말단의 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 5'-저 Tm 특이성 부위를 나타내고, 상기 B는 유니버설 염기를 갖는 뉴클레오티드를 포함하는 분할 부위를 나타내고, 상기 C는 주형 핵산의 특정 연속된 염기서열과 상보적인 염기서열을 갖는 뉴클레오티드를 포함하는 3'-고 Tm 특이성 부위를 나타내고, 상기 p, q 및 r은 뉴클레오티드의 수를 나타낸다.
  24. 제 23항에 있어서,
    상기 p는 3~5개의 뉴클레오티드를 포함하는 것을 특징으로 하는 핵산 증폭 방법.
  25. 제 23항에 있어서,
    상기 q는 3~5개의 뉴클레오티드를 포함하는 것을 특징으로 하는 핵산 증폭 방법.
  26. 제 23항에 있어서,
    상기 r은 18~30개의 뉴클레오티드를 포함하는 것을 특징으로 하는 핵산 증폭 방법.
  27. 제 23항에 있어서,
    상기 5'-저 Tm 특이성 부위의 Tm은 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것을 특징으로 하는 핵산 증폭 방법.
  28. 제 23항에 있어서,
    상기 분할 부위의 Tm은 상기 5'-저 Tm 특이성 부위의 Tm 및 상기 3'-고 Tm 특이성 부위의 Tm보다 낮은 것을 특징으로 하는 핵산 증폭 방법.
  29. 제 23항에 있어서,
    상기 5'-저 Tm 특이성 부위의 Tm은 10~30℃인 것을 특징으로 하는 핵산 증폭 방법.
  30. 제 23항에 있어서,
    상기 분할 부위의 Tm은 3~10℃인 것을 특징으로 하는 핵산 증폭 방법.
  31. 제 23항에 있어서,
    상기 3'-고 Tm 특이성 부위의 Tm은 50~65℃인 것을 특징으로 하는 핵산 증폭 방법.
  32. 제 23항에 있어서,
    상기 유니버설 염기는 디옥시이노신, 이노신, 7-디아자-2'-디옥시이노신, 2-아자-2'-디옥시이노신, 2'-OMe 이노신, 2'-F 이노신 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 핵산 증폭 방법.
  33. 제 23항에 있어서,
    상기 덤벨 구조 올리고뉴클레오티드는 서열번호 1 내지 서열 번호 35로 이루어지는 군으로부터 선택되는 핵산 증폭용 프라이머를 사용하는 것을 특징으로 하는 핵산 증폭 방법.
  34. 제 23항에 있어서,
    상기 핵산 증폭 방법은 2종 이상의 주형을 이용한 다중 중합효소 연쇄반응인 것을 특징으로 하는 핵산 증폭 방법.
PCT/KR2015/001835 2015-02-25 2015-02-25 덤벨 구조 올리고뉴클레오티드, 이를 포함한 핵산 증폭용 프라이머 및 이를 이용한 핵산 증폭 방법 WO2016137031A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/509,179 US20180073082A1 (en) 2015-02-25 2015-02-25 Dumbbell-structure oligonucleotide, nucleic acid amplification primer comprising same, and nucleic acid amplification method using same
PCT/KR2015/001835 WO2016137031A1 (ko) 2015-02-25 2015-02-25 덤벨 구조 올리고뉴클레오티드, 이를 포함한 핵산 증폭용 프라이머 및 이를 이용한 핵산 증폭 방법
CN201580046667.8A CN107075576B (zh) 2015-02-25 2015-02-25 哑铃结构寡核苷酸、包含其的核酸扩增用引物及利用该引物的核酸扩增方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/001835 WO2016137031A1 (ko) 2015-02-25 2015-02-25 덤벨 구조 올리고뉴클레오티드, 이를 포함한 핵산 증폭용 프라이머 및 이를 이용한 핵산 증폭 방법

Publications (1)

Publication Number Publication Date
WO2016137031A1 true WO2016137031A1 (ko) 2016-09-01

Family

ID=56789381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001835 WO2016137031A1 (ko) 2015-02-25 2015-02-25 덤벨 구조 올리고뉴클레오티드, 이를 포함한 핵산 증폭용 프라이머 및 이를 이용한 핵산 증폭 방법

Country Status (3)

Country Link
US (1) US20180073082A1 (ko)
CN (1) CN107075576B (ko)
WO (1) WO2016137031A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112899346A (zh) * 2021-01-05 2021-06-04 南京普济生物有限公司 一种降低pcr非特异性扩增的核苷酸及其设计方法与应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111139289A (zh) * 2019-12-25 2020-05-12 中国海洋大学 基于哑铃环模板的恒温滚环扩增方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649165B1 (ko) * 2001-12-08 2006-11-24 주식회사 씨젠 어닐링 조절 프라이머 및 그의 용도
US20080318282A1 (en) * 2007-06-21 2008-12-25 Hitachi High-Technologies Corporation Nucleic acid amplification method
KR20090094388A (ko) * 2005-03-05 2009-09-04 주식회사 씨젠 이중 특이성 올리고뉴클레오타이드를 사용한 방법 및 이중 특이성 올리고뉴클레오타이드
US20110269192A1 (en) * 2009-03-26 2011-11-03 Li Ruan Loop-shaped primer used in nucleic acid amplification and the use thereof
KR20150056151A (ko) * 2013-11-15 2015-05-26 (주)다이오진 덤벨 구조 올리고뉴클레오티드, 이를 포함한 핵산 증폭용 프라이머 및 이를 이용한 핵산 증폭 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095941A1 (en) * 2005-03-05 2006-09-14 Seegene, Inc. Processes using dual specificity oligonucleotide and dual specificity oligonucleotide
WO2011027966A2 (en) * 2009-09-03 2011-03-10 Seegene, Inc. Td probe and its uses
KR20110050327A (ko) * 2009-11-07 2011-05-13 주식회사 씨젠 Thd 프라이머 타겟 검출

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649165B1 (ko) * 2001-12-08 2006-11-24 주식회사 씨젠 어닐링 조절 프라이머 및 그의 용도
KR20090094388A (ko) * 2005-03-05 2009-09-04 주식회사 씨젠 이중 특이성 올리고뉴클레오타이드를 사용한 방법 및 이중 특이성 올리고뉴클레오타이드
US20080318282A1 (en) * 2007-06-21 2008-12-25 Hitachi High-Technologies Corporation Nucleic acid amplification method
US20110269192A1 (en) * 2009-03-26 2011-11-03 Li Ruan Loop-shaped primer used in nucleic acid amplification and the use thereof
KR20150056151A (ko) * 2013-11-15 2015-05-26 (주)다이오진 덤벨 구조 올리고뉴클레오티드, 이를 포함한 핵산 증폭용 프라이머 및 이를 이용한 핵산 증폭 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KALENDAR ET AL.: "FastPCR Software for PCR Primer and Probe Design and Repeat Search", GENES, GENOMES AND GENOMICS, vol. 3, no. 1, 2009, pages 1 - 14, XP055272402 *
YAN ET AL.: "Isothermal Amplified Detection of DNA and RNA", MOLECULAR BIOSYSTEMS, no. 10, 2014, pages 970 - 1003 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112899346A (zh) * 2021-01-05 2021-06-04 南京普济生物有限公司 一种降低pcr非特异性扩增的核苷酸及其设计方法与应用

Also Published As

Publication number Publication date
CN107075576A (zh) 2017-08-18
US20180073082A1 (en) 2018-03-15
CN107075576B (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
EP0843735B2 (en) Glycosylase mediated detection of known nucleotide sequences
JP5711887B2 (ja) 短いタンデム反復遺伝子座の多重増幅
US8771952B2 (en) Substances and methods for a DNA based profiling assay
Guo et al. A specific and versatile genome walking technique
WO2018066910A1 (ko) 메틸화 dna 다중 검출방법
WO2018174318A1 (ko) 양기능성 pna 프로브를 이용한 융해곡선 분석방법, 및 이를 이용한 현미부수체 불안정성의 진단방법 및 현미부수체 불안정성 진단용 키트
WO2015126078A1 (ko) 핵산과 신호 프로브의 비대칭 등온증폭을 이용한 핵산의 검출방법
WO2017099445A1 (ko) 어류 에드와드 감염증과 연쇄구균 감염증 원인세균의 판별 및 검출용 유전자 마커, 및 이를 이용한 원인세균의 판별 및 검출 방법
WO2019107893A2 (ko) 표적핵산 증폭방법 및 표적핵산 증폭용 조성물
US20220025452A1 (en) Nucleic acid amplification blocking agent for detecting low-abundance mutation sequence and use thereof
WO2012118802A9 (en) Kit and method for sequencing a target dna in a mixed population
JP2007530026A (ja) 核酸配列決定
WO2017122897A1 (ko) 참돔 이리도바이러스병 원인바이러스의 검출용 유전자 마커, 및 이를 이용한 원인바이러스의 검출 방법
US7618773B2 (en) Headloop DNA amplification
JP2005518216A (ja) 融解温度依存dna増幅
WO2014163225A1 (ko) 염기 특이 반응성 프라이머를 이용한 핵산 증폭방법
KR101525495B1 (ko) 덤벨 구조 올리고뉴클레오티드, 이를 포함한 핵산 증폭용 프라이머 및 이를 이용한 핵산 증폭 방법
WO2016137031A1 (ko) 덤벨 구조 올리고뉴클레오티드, 이를 포함한 핵산 증폭용 프라이머 및 이를 이용한 핵산 증폭 방법
JP2004033221A (ja) ヒトグルコキナーゼ遺伝子の増幅用多重pcrプライマーセット
WO2018194437A2 (ko) 표적 점 돌연변이 유전자 검출을 위한 핵산 분자 템플레이트 및 이를 이용한 유전자 검사방법
CN111996244A (zh) 一种单核苷酸多态性检测用组合物及其应用
WO2013105774A1 (ko) 절단 가능한 프로브를 이용한 c-Met 유전자 검출 방법
WO2018016683A1 (ko) 다중 증폭 이중 시그널 증폭에 의한 타겟 핵산 서열의 검출 방법
WO2016122135A1 (ko) 상보적 염기서열 내지는 미스-매치된 염기를 포함하는 상보적인 염기서열과 연결된 pcr 프라이머 및 이를 이용한 핵산 증폭 방법
KR20030042581A (ko) 대립유전자-특이적 프라이머 연장반응에서 프라이머간의 식별을 증가시키는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883420

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15509179

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/12/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15883420

Country of ref document: EP

Kind code of ref document: A1