WO2016136951A1 - ポリエーテル系重合体組成物 - Google Patents
ポリエーテル系重合体組成物 Download PDFInfo
- Publication number
- WO2016136951A1 WO2016136951A1 PCT/JP2016/055846 JP2016055846W WO2016136951A1 WO 2016136951 A1 WO2016136951 A1 WO 2016136951A1 JP 2016055846 W JP2016055846 W JP 2016055846W WO 2016136951 A1 WO2016136951 A1 WO 2016136951A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- polyether polymer
- polyether
- polymer
- composition
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/04—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
- C08G65/06—Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
- C08G65/08—Saturated oxiranes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/04—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
- C08G65/06—Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/042—Graphene or derivatives, e.g. graphene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/291—Gel sorbents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/46—NMR spectroscopy
Definitions
- the present invention relates to a polyether polymer composition in which a nanocarbon material is well and stably dispersed in a polyether polymer.
- the polyether polymer composition of the present invention can be suitably used, for example, as a master batch for preparing a nanocarbon material aqueous dispersion in which a nanocarbon material is well dispersed.
- Nanocarbon materials such as carbon nanotubes are expected to be applied in a wide range of fields because they have excellent electrical characteristics and also have excellent thermal conductivity and mechanical strength characteristics.
- blending into polymer materials for the purpose of significantly improving the properties of polymer materials such as electrical conductivity, thermal conductivity, and mechanical strength has been studied.
- Non-Patent Document 1 it is studied to impart electrical conductivity while improving mechanical strength of styrene-butadiene rubber by blending multi-walled carbon nanotubes with styrene-butadiene rubber.
- Non-Patent Document 2 discusses improving the mechanical strength characteristics of poly (dimethylsiloxane) by blending multi-walled carbon nanotubes as a reinforcing material with poly (dimethylsiloxane).
- Non-Patent Document 1 the composition obtained by blending carbon black with the same polymer material has characteristics such as electrical conductivity of the composition obtained by blending the nanocarbon material with the polymer material. In many cases, the characteristics of the carbon nanomaterials were almost the same, and it was difficult to say that the excellent characteristics of the nanocarbon material were fully exhibited. Therefore, it has been desired to develop a polymer material that can easily disperse the nanocarbon material in the composition and thereby obtain a composition having high electrical conductivity.
- Patent Document 1 discloses a polyether-based polymer which contains an oxirane monomer unit, and at least a part of the oxirane monomer unit is an oxirane monomer unit having a cationic group.
- Compositions comprising coalesced and nanocarbon materials have been proposed. In the composition described in this document, the nanocarbon material is well dispersed in the polymer material, thereby having excellent electrical conductivity.
- the present invention relates to a polyether polymer comprising a polyether polymer in which a nanocarbon material is dispersed better and more stably in a polyether polymer, and the nanocarbon material.
- An object is to provide a coalescence composition.
- the inventors of the present invention have a polyether system containing an oxirane monomer unit and having one cationic group substantially only at one end of the polymer chain. It has been found that by adding a nanocarbon material to the polymer, the nanocarbon material can be favorably and stably dispersed in the polyether polymer, and the present invention has been completed.
- polyether polymer compositions [1] to [6] are provided.
- a polyether comprising an oxirane monomer unit and a polyether polymer having a cationic group substantially only at one end of the polymer chain, and a nanocarbon material Ether polymer composition.
- R represents a nonionic group
- a + represents a cationic group
- X ⁇ represents a counter anion
- n represents an integer of 20 or more.
- [4] The polyether polymer composition according to [3], wherein R in the formula (2) represents a methyl group.
- [6] The polyether polymer according to any one of [1] to [5], wherein the content of the nanocarbon material is 0.01 to 30 parts by weight with respect to 100 parts by weight of the polyether polymer. Composition.
- [7] The polyether polymer composition according to any one of [1] to [6], further comprising water and having a nanocarbon material content of 0.05% by weight or more based on the total composition object.
- the polyether polymer composition of the present invention can be suitably used, for example, as a bucky gel or as a master batch for preparing an aqueous dispersion of nanocarbon material in which the nanocarbon material is well dispersed.
- FIG. 2 is a visible-near infrared absorption spectrum diagram of (PO) nMeIm-Br / SGCNT / H 2 O dispersion, EMIm-Cl / SGCNT / H 2 O dispersion, and PEO / SGCNT / H 2 O dispersion.
- the polyether polymer composition of the present invention comprises a polyether polymer comprising an oxirane monomer unit and having substantially only one cationic group at one end of the polymer chain; And a carbon material.
- polyether polymer The polyether polymer constituting the polyether polymer composition of the present invention (hereinafter sometimes referred to as “polyether polymer (A)”) contains an oxirane monomer unit, And it is a polymer which has one cationic group substantially only at one end of the polymer chain.
- the oxirane monomer unit that can be contained in the polyether polymer used in the present invention is a unit obtained by ring-opening polymerization of an oxirane structure portion of a compound containing an oxirane structure.
- the structure of the oxirane monomer unit contained in the polyether polymer is not particularly limited, but is preferably a repeating unit represented by the following formula (I).
- R represents a nonionic group.
- the nonionic group is not particularly limited as long as it is a nonionic group.
- hydrogen atom alkyl group having 1 to 10 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group; vinyl group, allyl group, propenyl group Alkenyl groups having 2 to 10 carbon atoms such as ethynyl groups, propynyl groups, etc .; alkynyl groups having 2 to 10 carbon atoms; cycloalkyl groups having 3 to 20 carbon atoms such as cyclopropyl groups, cyclobutyl groups, cyclopentyl groups, cyclohexyl groups, etc.
- An aryl group having 6 to 20 carbon atoms such as a phenyl group, a 1-naphthyl group and
- R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms. May have a substituent at any position.
- substituents examples include an alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, an isopropoxy group and an allyloxy group; a phenyl group and 4-methyl
- An aryl group which may have a substituent such as a phenyl group, a 2-chlorophenyl group or a 3-methoxyphenyl group; a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom; a carbon such as a methylcarbonyl group or an ethylcarbonyl group And an alkylcarbonyl group of 1 to 6; (meth) acryloyl groups such as acryloyl group and methacryloyl group; and the like.
- R is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and particularly preferably a methyl group.
- oxirane monomer units include ethylene oxide units, propylene oxide units, 1,2-butylene oxide units and other alkylene oxide monomer units; allylic glycidyl ether units and other alkenyl group-containing oxirane monomer units; glycidyl Examples include, but are not limited to, acryloyl group-containing oxirane monomer units such as acrylate units; halogen group-containing oxirane monomer units such as epichlorohydrin units;
- the polyether polymer used in the present invention may be composed of one kind of oxirane monomer unit or may contain two or more kinds of oxirane monomer units.
- the type is not particularly limited, and even if it is a block copolymer, random copolymer It may be a coalescence.
- the chain structure of the polyether polymer is not particularly limited, and may be a linear chain structure or a chain structure having a branched structure such as a graft shape or a radial shape.
- the content of the oxirane monomer unit is preferably 95% by weight or more, more preferably 96% by weight or more, and still more preferably 97% by weight or more in all monomer units. And it is particularly preferred that it consist only of oxirane monomer units.
- the polyether polymer (A) may have a structural unit derived from a monomer having anionic polymerizability other than the oxirane monomer unit.
- monomer units include styrene, ⁇ -methylstyrene, 4-methylstyrene, 4-ethylstyrene, 4-t-butylstyrene, 4-vinylstyrene, 4-vinyltoluene, 1,2-diphenylethylene.
- the polyether polymer (A) may have two or more structural units derived from these monomers.
- the content of the structural unit derived from the anionic polymerizable monomer other than the oxirane monomer unit is usually 5% by weight or less, preferably 4% in all the monomer units. % By weight or less, more preferably 3% by weight or less.
- the polyether polymer (A) is a polymer having one cationic group substantially only at one end of the polymer chain.
- “having only one cationic group substantially at one end of the polymer chain” means that the polyether polymer used in the present invention does not inhibit the expression of the effect of the present invention. It means that it may have a cationic group at any position of the polymer in addition to one end of the polymer chain.
- the fact that a cationic group is bonded only to one molecular end of a polymer chain containing an oxirane monomer unit is measured by, for example, 1 H-NMR. This can be confirmed by quantitatively assigning both terminal functional groups.
- the cationic group possessed by the polyether polymer (A) is not particularly limited.
- the atom of Group 15 or Group 16 of the periodic table is a cationic group in which an onium cation structure is formed. More preferably, the nitrogen atom is a cationic group that forms an onium cation structure, and the nitrogen atom in the nitrogen atom-containing aromatic heterocyclic ring is more preferably a cationic group that forms an onium cation structure. It is particularly preferable that the nitrogen atom in the imidazolium ring is a cationic group in which an onium cation structure is formed.
- the cationic group is a group having an onium cation structure.
- Specific examples of the cationic group include ammonium group; mono-substituted ammonium group such as methylammonium group, butylammonium group, cyclohexylammonium group, anilinium group, benzylammonium group, ethanolammonium group; dimethylammonium group, diethylammonium group, dibutyl Disubstituted ammonium groups such as ammonium group and nonylphenylammonium group; trimethylammonium group, triethylammonium group, n-butyldimethylammonium group, stearyldimethylammonium group, tributylammonium group, trivinylammonium group, triethanolammonium group, N, Tri-substituted ammonium groups such as N-dimethylethanolammonium group and tri (2-ethoxyethyl) ammonium group;
- a group containing a heterocyclic ring containing a cationic nitrogen atom such as an imidazolium group, a 1-methylimidazolium group, a 1-ethylimidazolium group, or a benzimidazolium group is preferable.
- a cationic group has a counter anion normally, the kind of the counter anion is not specifically limited.
- Cl -, Br -, I - or a halide ion such as, (FSO 2) 2 N - , (CF 3 SO 2) 2 N -, (CF 3 CF 2 SO 2) 2 N -, sulfone etc.
- a halide ion such as, (FSO 2) 2 N - , (CF 3 SO 2) 2 N -, (CF 3 CF 2 SO 2) 2 N -, sulfone etc.
- Examples include imidized ions, OH ⁇ , SCN ⁇ , BF 4 ⁇ , PF 6 ⁇ , ClO 4 ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 ⁇ , CF 3 COO ⁇ , and PhCOO ⁇ .
- halide ions or sulfonimide ions are preferable from the viewpoint of making the obtained polyether polymer composition particularly
- the polyether polymer (A) is a polymer having one cationic group substantially only at one end of the polymer chain, but the group bonded to one end on the side having no cationic group is There is no particular limitation. Examples thereof include a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkylsilyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms, and a hydrogen atom is preferable.
- the number average molecular weight of the polyether polymer (A) is not particularly limited, but is usually 500 to 2,000,000, preferably 750 to 1,500,000, more preferably 1,000 to 1,000,000. 000, more preferably 1,000 to 30,000. If the number average molecular weight of the polyether polymer is too large, the resulting composition may be inferior in moldability, and if the number average molecular weight is too small, the mechanical strength of the resulting composition is insufficient. There is a fear.
- the polyether polymer (A) is particularly preferably represented by the following (2).
- R represents a nonionic group
- a + represents a cationic group
- X ⁇ represents a counter anion
- n represents an integer of 20 or more.
- N is an integer of 20 or more, and the upper limit is not particularly limited, but is preferably 500 or less.
- the synthesis method of the polyether polymer (A) used in the present invention is not particularly limited, and any synthesis method can be adopted as long as the desired polyether polymer can be obtained.
- a polyether polymer (B) comprising a oxirane monomer unit and having a halogen atom (halogen group) at one end of the polymer chain.
- the obtained polyether-based polymer (B) is reacted with an onium reagent (quaternization reaction), whereby a halogen group having one end of the polymer chain has an onium halide structure.
- a synthetic method having a step (II) of converting to a containing group to obtain a polyether polymer containing an onium halide structure is preferred.
- the said polyether polymer (B) is a precursor of the polyether polymer used for this invention.
- Step (I) is a step of obtaining a polyether polymer (B) comprising a oxirane monomer unit and having a halogen atom (halogen group) at one end of the polymer chain. More specifically, the step (I) is carried out by performing a polymerization reaction of the oxirane monomer in the presence of a catalyst composition prepared from an organoaluminum compound and a quaternary ammonium halide compound in an inert solvent, A polyether polymer (B) comprising an oxirane monomer unit and having a halogen atom (halogen group) at one end of the polymer chain is obtained.
- the oxirane monomer used is a compound having a 3-membered ring ether structure in the molecule.
- the compound represented by following formula (3) is mentioned.
- R represents the same meaning as R in the general formula (1), and the same examples can be given.
- Specific examples of the oxirane monomer used include ethylene oxide, propylene oxide, 1,2-epoxybutane, 1,2-epoxy-isobutane, 2,3-epoxybutane, 1,2-epoxyhexane, and 1,2-epoxy.
- a branched structure can be introduced into the polymer by copolymerizing a diepoxy monomer such as butadiene dioxide, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, or vinylcyclohexene dioxide. . Two or more of these diepoxy monomers may be used in combination.
- a diepoxy monomer such as butadiene dioxide, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, or vinylcyclohexene dioxide.
- Two or more of these diepoxy monomers may be used in combination.
- an anion polymerizable monomer other than the oxirane monomer in combination.
- examples of such monomers include styrene, ⁇ -methylstyrene, p-methylstyrene, ethylstyrene, t-butylstyrene, vinylstyrene, vinyltoluene, 1,2-diphenylethylene, 1,1-diphenylethylene.
- conjugated diene monomers such as 1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethylbutadiene, isoprene and the like. Two or more of these monomers may be used in combination.
- one kind of oxirane monomer as described above may be used alone, or two or more kinds may be used in combination.
- the polymerization reaction proceeds with a living property. Therefore, when a copolymer is obtained using two or more monomers, the bonding mode is controlled.
- a random copolymer can be obtained by performing a polymerization reaction in the state where two or more monomers coexist, or two or more monomers are added sequentially. Then, a block copolymer can be obtained by conducting a polymerization reaction.
- the catalyst composition used in the present invention is prepared from an organoaluminum compound and a quaternary ammonium halide compound.
- organoaluminum compound used in the present invention examples include trialkylaluminum compounds such as trimethylaluminum, triethylaluminum, triisobutylaluminum, and tri-n-octylaluminum; Tricycloalkylaluminum compounds such as tricyclopentylaluminum and tricyclohexylaluminum; Triarylaluminum compounds such as triphenylaluminum; Dialkylaluminum hydrides such as dimethylaluminum hydride and diethylaluminum hydride; Dialkylaluminum halides such as dimethylaluminum chloride and diethylaluminum chloride; Monoalkylaluminum dihalides such as methylaluminum dichloride and ethylaluminum dichloride; Dialkylaluminum alkoxides such as dimethylaluminum methoxide, dimethylaluminum diethoxide, diethylalumin
- trialkylaluminums such as trimethylaluminum, triethylaluminum, triisobutylaluminum, and tri-n-octylaluminum are preferable because the desired polyether polymer can be obtained with higher yield.
- Examples of the quaternary ammonium halide compound used in the present invention include tetra C 1-20 alkyl ammonium halides such as tetramethyl ammonium chloride, tetramethyl ammonium bromide, tetrabutyl ammonium chloride, tetrabutyl ammonium bromide; Mono C 1-4 alkyl-tri C 6-20 alkyl ammonium halides such as methyl trioctyl ammonium chloride, methyl tridecyl ammonium chloride; Aralkyltrialkylammonium salts such as benzyltrimethylammonium chloride; and the like. These can be used alone or in combination of two or more.
- tetra C 1-10 alkylammonium halide mono C 1-2 alkyl - tri C 7-16 alkyl ammonium halides are preferred, tetra C 1-6 alkylammonium halide is more preferred, tetra C 1-6 alkylammonium Bromide is more preferred.
- the amount of each component used is not particularly limited as long as it is determined according to the molecular weight of the target polymer.
- the quaternary ammonium halide is preferably in the range of 0.1 to 10 mol, more preferably 0.3 to 5 mol, and still more preferably 0.5 to 3 mol.
- the catalyst composition can be prepared by dissolving or suspending these components in a suitable inert solvent and mixing them.
- the mixing method of an organoaluminum compound and a quaternary ammonium halide compound is not particularly limited.
- a method of adding a quaternary ammonium halide compound to a solution containing an organoaluminum compound and mixing the solution, and a solution containing a quaternary ammonium halide compound examples thereof include a method of adding and mixing an organoaluminum compound, a method of preparing both an organoaluminum compound and a quaternary ammonium halide compound as a solution, and mixing both solutions.
- the solvent to be used is not particularly limited as long as it is inert.
- aromatic hydrocarbon solvents such as benzene and toluene
- chain saturated hydrocarbon solvents such as n-pentane and n-hexane
- alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane
- tetrahydrofuran, anisole, diethyl And ether solvents such as ether
- the temperature and time for mixing these components are not particularly limited, but it is usually preferable to mix for 10 seconds to 12 hours under conditions of ⁇ 30 to + 50 ° C.
- the method of mixing the catalyst composition and the monomer is not particularly limited.
- the monomer may be added to the solvent containing the catalyst composition, or the catalyst composition may be added to the solvent containing the monomer.
- the polymerization mode is not particularly limited, but from the viewpoint of favorably controlling the polymerization, the polymerization is preferably performed by a solution polymerization method.
- the solvent used for the polymerization reaction is not particularly limited as long as it is an inert solvent.
- aromatic hydrocarbons such as benzene and ruene
- chain saturated hydrocarbons such as n-pentane and n-hexane
- alicyclic hydrocarbons such as cyclopentane and cyclohexane
- tetrahydrofuran anisole, diethyl ether, etc.
- ethers thereof or a mixed solvent thereof.
- nonpolar solvents such as aromatic hydrocarbons, chain saturated hydrocarbons, and alicyclic hydrocarbons are preferable because the polymerization reaction rate is increased.
- the polymerization is preferably performed in an inert gas atmosphere such as nitrogen, helium, or argon.
- the conditions for performing the polymerization are not particularly limited, and may be determined according to the type of monomer or catalyst used, the molecular weight of the target polymer, and the like.
- the pressure during the polymerization is usually 1 to 500 atm, preferably 1 to 100 atm, particularly preferably 1 to 50 atm.
- the temperature during the polymerization is usually ⁇ 70 to + 200 ° C., preferably ⁇ 40 to + 150 ° C., particularly preferably ⁇ 20 to + 100 ° C.
- the polymerization time is usually from 10 seconds to 100 hours, preferably from 20 seconds to 80 hours, particularly preferably from 30 seconds to 50 hours.
- the target polyether polymer (B) can be isolated by performing post-treatment operation of the polymerization reaction solution by a conventional method.
- a reaction terminator alcohol such as methanol, ethanol, isopropyl alcohol
- a dilute acid dilute hydrochloric acid, etc.
- the catalyst residue is decarburized and washed with ion exchange water, and then the organic layer is dried under reduced pressure at 50 ° C. for 12 hours to isolate the desired polyether polymer (B). Can do.
- step (II) the polyether polymer (B) obtained in the step (I) is reacted with an onium reagent (quaternization reaction) to thereby form a halogen group at one end of the polymer chain.
- This is a step of converting to an onium halide structure-containing group to obtain a polyether polymer containing an onium halide structure.
- onium agent used include ammonia; monosubstituted amines such as methylamine, butylamine, cyclohexylamine, aniline, benzylamine, and ethanolamine; disubstituted amines such as dimethylamine, diethylamine, dibutylamine, and nonylphenylamine; Trimethylamine, triethylamine, n-butyldimethylamine, n-octyldimethylamine, n-stearyldimethylamine, tributylamine, trivinylamine, triethanolamine, N, N-dimethylethanolamine, tri (2-ethoxyethyl) amine, Trisubstituted amines such as N, N-dimethylaniline; piperidine, 1-pyrrolidine, imidazole, 1-methylimidazole, 1-ethylimidazole, pyrrole, 1-methylpyrrole, oxazol , Isoxazole
- heterocyclic compounds to be contained examples include, but are not limited to, heterocyclic compounds to be contained; phosphorus compounds such as triphenylphosphine and tributylphosphine; Among these, heterocyclic compounds containing nitrogen atoms such as imidazole, 1-methylimidazole, 1-ethylimidazole, and benzimidazole, and tricyclic compounds such as n-butyldimethylamine, n-octyldimethylamine, and n-stearyldimethylamine. Substituted amines are preferred.
- the mixing method of the polyether polymer (B) and the onium agent is not particularly limited.
- a method of adding and mixing an onium agent to a solution containing a polyether polymer, an onium agent is included.
- examples thereof include a method in which a polyether polymer is added to a solution and mixed, a method in which both an onium reagent and a polyether polymer are prepared as a solution, and both solutions are mixed.
- the solvent is not particularly limited as long as it is an inert solvent, and may be a nonpolar solvent or a polar solvent.
- Nonpolar solvents include aromatic hydrocarbons such as benzene and toluene; chain saturated hydrocarbons such as n-pentane and n-hexane; alicyclic saturated hydrocarbons such as cyclopentane and cyclohexane; and the like.
- polar solvent examples include ethers such as tetrahydrofuran, anisole and diethyl ether; esters such as ethyl acetate and ethyl benzoate; ketones such as acetone, 2-butanone and acetophenone; acetonitrile, dimethylacetamide and N, N-dimethyl
- aprotic polar solvents such as formamide and dimethyl sulfoxide
- protic polar solvents such as ethanol, methanol and water
- the amount of onium agent used is not particularly limited, and may be determined according to the content ratio of the halogen group at the polymer chain end of the target polyether polymer. Specifically, the amount of the onium agent used is usually 0.01 to 100 mol, preferably 0.02 to 50 mol, relative to 1 mol of the halogen group at the polymer chain end of the polyether polymer used. More preferably, it is in the range of 0.03 to 10 mol, still more preferably 0.05 to 2 mol.
- the pressure for reacting the polyether polymer (B) with the oniumizing agent is not particularly limited, but is usually 1 to 500 atm, preferably 1 to 100 atm, and particularly preferably 1 to 50 atm.
- the temperature during the reaction is also not particularly limited, and is usually 0 to 200 ° C, preferably 20 to 170 ° C, more preferably 40 to 150 ° C.
- the reaction time is usually 1 minute to 1,000 hours, preferably 3 minutes to 800 hours, more preferably 5 minutes to 500 hours, and further preferably 30 minutes to 200 hours.
- the polyether polymer used in the present invention obtained as described above can be used as it is as a component of the polyether polymer composition of the present invention.
- a metal compound is brought into contact with a polyether polymer containing an onium halide structure, and at least a part of the halide ion which is a counter anion of the onium halide structure is converted into another anion. May be converted to
- the metal compound used in the anion exchange reaction is not particularly limited, but an alkali metal compound or an alkaline earth metal compound having an anion to be introduced is preferable.
- the conditions for performing the anion exchange reaction are not particularly limited, and only the polyether polymer and the metal compound may be mixed, or may be performed under the condition where other compounds such as an organic solvent exist.
- the amount of the metal compound to be used is not particularly limited, but is usually 0.01 to 100 mol, preferably 0.02 to 50 mol, more preferably relative to 1 mol of the onium halide structure contained in the polyether polymer used. Is in the range of 0.03 to 10 moles.
- the pressure during the anion exchange reaction is usually 1 to 150 atm, preferably 1 to 100 atm, particularly preferably 1 to 50 atm.
- the temperature during the reaction is usually ⁇ 30 to + 200 ° C., preferably ⁇ 15 to + 180 ° C., more preferably 0 to 150 ° C.
- the reaction time is usually from 1 minute to 1000 hours, preferably from 3 minutes to 100 hours, more preferably from 5 minutes to 10 hours, and even more preferably from 5 minutes to 3 hours.
- the target polyether polymer may be recovered according to a conventional method such as drying under reduced pressure.
- the polyether polymer (A) obtained as described above has an excellent dispersibility with respect to the nanocarbon material.
- the polyether polymer (A) has the number average molecular weight as described above, a composition having excellent processability and mechanical strength can be obtained when the number average molecular weight is in such a range.
- the polyether polymer (A) has an HLB value (hydrophile-lipophile balance) of usually 0.5 to 10, preferably 1 to 8, and more preferably 2 to 7.
- the polyether polymer (A) is cationic in the polymer chain with respect to the number of repeating oxirane monomer units constituting the polyether polymer (corresponding to the number n in the formula (2)).
- the ratio of the number of groups is preferably 1/20 or less. By setting it as such a ratio, a nanocarbon material can be more favorably and stably disperse
- the polyether polymer composition of the present invention can be obtained by blending a nanocarbon material with the polyether polymer obtained as described above.
- the nanocarbon material that can be used in the present invention include graphene sheets, carbon nanotubes, carbon nanohorns, and nanographene. Among these, carbon nanotubes are particularly preferably used.
- the carbon nanotube is a nanocarbon material having a structure in which a graphene sheet is wound in a cylindrical shape. Carbon nanotubes are roughly classified into single-walled nanotubes and multi-walled nanotubes based on the number of peripheral walls. Further, there are a chiral type, a zigzag type, an armchair type, and the like as the classification depending on the structure of the graphene sheet. In the present invention, any carbon nanotube can be used as the nanocarbon material. Among these, single-walled carbon nanotubes obtained by the super-growth method (single-walled carbon nanotubes obtained according to the method disclosed in International Publication No. 2006/011655), which are known to have a large aspect ratio, are particularly preferably used.
- the content ratio of the polyether-based polymer (A) and the nanocarbon material is not particularly limited, but the nanocarbon material is dispersed well and the electric conductivity is efficiently obtained.
- the content of the nanocarbon material with respect to 100 parts by weight of the polyether polymer is preferably 0.01 to 30 parts by weight, and 0.02 to 20 parts by weight. It is more preferable.
- the method of mixing the polyether polymer (A) and the nanocarbon material is not particularly limited, but the step of subdividing the nanocarbon material, and the nanocarbon material It is preferable to mix in combination with the step of mixing the polyether polymer with the polyether polymer.
- the nanocarbon material may be subdivided by a known subdividing method such as a method of applying a shearing force or a method of subdividing with ultrasonic waves using a mill or a kneader, and is not particularly limited.
- the order of the step of subdividing the nanocarbon material and the step of mixing the nanocarbon material and the polyether-based polymer is not particularly limited, and the method as described later after subdividing the nanocarbon material.
- the nanocarbon material and the polyether polymer subdivided in the above may be mixed, or after obtaining the composition by mixing the nanocarbon material and the polyether polymer by a method as described later,
- the nanocarbon material may be subdivided by applying a subdividing step to the composition.
- a specific mixing method is not particularly limited, but it is preferable to mix these components in a solvent.
- the solvent to be used is not particularly limited, but a polar solvent is preferably used from the viewpoint of obtaining a composition in which the nanocarbon material is more favorably dispersed.
- Polar solvents include ether solvents such as tetrahydrofuran and anisole; ester solvents such as ethyl acetate and ethyl benzoate; ketone solvents such as acetone, 2-phthalone and acetophenone; N, N-dimethylformamide and N-methylpyrrolidone Amide solvents such as acetononitrile and propionitrile; sulfur-containing solvents such as dimethyl sulfoxide and sulfolane; protic polar solvents such as ethanol, methanol and water; These solvents may be used alone or as a mixed solvent of two or more.
- the amount of the solvent used is not particularly limited, but is preferably selected so that the concentrations of the nanocarbon material and the polyether polymer in the solvent are in the range of 0.01 to 50% by weight.
- the method for mixing the nanocarbon material and the polyether polymer (A) in a solvent is not particularly limited. Examples thereof include a method in which a polyether polymer is added to a solution in which a nanocarbon material is suspended and mixed, a method in which a nanocarbon material is added to a polyether polymer solution dissolved in a solvent, and the like. Mixing may be performed by using a general stirring device or by using an ultrasonic disperser. The solution obtained by mixing can be used as it is as the polyether polymer composition of the present invention, but is preferably used as a solid polyether polymer composition after removing the solvent.
- the method for removing the solvent is not particularly limited. For example, the solvent may be removed by evaporation or coagulation drying may be performed.
- One aspect of the polyether-based polymer composition of the present invention is an aqueous dispersion a containing a nanocarbon material.
- the content of the nanocarbon material in the aqueous dispersion a is preferably 0.01% by weight or more, and more preferably 0.05% by weight or more based on the entire composition. Moreover, it is preferable that the upper limit of content of the nanocarbon material in the aqueous dispersion a is 0.1 weight%.
- the aqueous dispersion a is preferably used as a master batch for preparing a nanocarbon material aqueous dispersion in which the nanocarbon material is well dispersed.
- the aqueous dispersion a may be water containing 50% by weight or more of the entire solvent, and may contain a hydrophilic organic solvent.
- hydrophilic organic solvents include alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; N, N-dimethylformamide and N, N-dimethyl And amides such as acetamide, N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidinone; sulfur-containing solvents such as dimethyl sulfoxide and sulfolane; and the like. These solvents can be used alone or in combination of two or more.
- aqueous dispersion for example, a nanocarbon material, a polyether polymer, and, if necessary, other components described later are mixed in water or a water-containing mixed solvent to disperse the nanocarbon material.
- the polyether polymer composition of the present invention may comprise only the nanocarbon material and the polyether polymer (A), or the aqueous dispersion a, but may further comprise other components. It may be.
- Other components that can be contained in the polyether polymer composition of the present invention include polymer materials other than the polyether polymer (A); carbon; inorganic oxides such as silica, titania, and alumina; gold, silver, Metal fine particles such as platinum, nickel, steel, and aluminum; inorganic fibers such as glass fiber and carbon fiber; and the like.
- it can also be set as the composition which can be bridge
- the polyether polymer composition of the present invention By maintaining the polyether polymer composition of the present invention as a crosslinkable composition and crosslinking it into a crosslinked product, extremely excellent electrical conductivity of the polyether polymer composition of the present invention is maintained. However, the mechanical strength as a structural material can be greatly improved.
- the polymer material other than the polyether polymer (A) that can be blended in the composition of the present invention is not particularly limited.
- polyether polymers other than the polyether polymer (A) rubber materials such as NBR, SBR, BRIR, acrylic rubber, EPR; thermoplastic elastomer materials such as SIS, SBS, SEBS; PMMA, polyethylene, polypropylene Resin materials such as polystyrene, polycarbonate, ABS, vinyl chloride, and PET; light or thermosetting resins such as epoxy resins, urethane resins, and thermo- and photo-curable acrylic resins;
- the polyether polymer composition of the present invention can disperse the nanocarbon material satisfactorily even if a polymer material originally having a low affinity with the nanocarbon material is blended.
- the reason for this is not necessarily clear, but the polyether polymer (A) used in the present invention, which is an essential component, has an excellent affinity for both the nanocarbon material and the polymer material. This is probably because the polymer functions as a so-called binder.
- the crosslinking agent that can be blended when the polyether-based polymer composition of the present invention is a crosslinkable composition may be selected according to the structure of the polymer used, and is not particularly limited.
- sulfur such as powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur; sulfur monochloride, sulfur dichloride, morpholine disulfide, alkylphenol, disulfide, dibenzothiazyl disulfide, N, N-dithiobis (hexahydro- 2H-azenopine-2), sulfur-containing compounds such as phosphorus-containing polysulfides and polymer polysulfides; organic peroxides such as dicumyl peroxide and ditertiary butyl peroxide; p-quinonedioxime, p, p'-dibenzoyl Quinone dioximes such as quinone dioxime; triethylenetetramine, hexamethylenediamine carbamate Organic poly
- crosslinking agents can be used alone or in combination of two or more.
- the mixing ratio of the crosslinking agent is not particularly limited, but is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 7 parts by weight, and more preferably 0.3 to 5 parts by weight based on 100 parts by weight of the entire composition. Particularly preferred.
- crosslinking aid When sulfur or a sulfur-containing compound is used as the crosslinking agent, it is preferable to use a crosslinking aid and a crosslinking accelerator in combination.
- the crosslinking aid is not particularly limited, and examples thereof include zinc white and stearic acid.
- each crosslinking accelerator such as a guanidine type, an aldehyde amine type, an aldehyde ammonia type, a thiazole type, a sulfenamide type, a thiourine type, a thiuram type, can be used.
- Two or more crosslinking assistants and crosslinking accelerators may be used in combination.
- the amount of the crosslinking aid and the crosslinking accelerator used is not particularly limited, but is preferably 0.01 to 15 parts by weight and more preferably 0.1 to 10 parts by weight based on 100 parts by weight of the entire composition.
- the nanocarbon material can be favorably dispersed in the polyether polymer, thereby exhibiting extremely excellent electrical conductivity. be able to. Therefore, the polyether polymer composition of the present invention can be suitably used as materials for various electric / electronic products, building materials, medical materials, and the like.
- SGCNT super-growth single-walled carbon nanotubes
- the SGCNT dispersion state of was evaluated as follows.
- a composition comprising SGCNT and polyether polymer (A) that does not contain water (hereinafter referred to as bucky gel). Centrifugation was performed for 30 minutes with a centrifuge at 3000 rpm, and visual observation was performed. Evaluation was made according to the following evaluation criteria depending on the presence or absence of bleed-out.
- Production Example 1 Living anionic polymerization of propylene oxide: To a glass reactor equipped with a stirrer, the inside of which was replaced with argon, 2.56 g (8 mmol) of tetra n-butylammonium bromide and 50 ml of toluene were added and cooled to 0 ° C. Next, a solution obtained by dissolving 1.37 g (12 mmol) of triethylaluminum in 10 ml of toluene was added, and the whole volume was stirred at 0 ° C. for 15 minutes to obtain a catalyst composition. 10 g of propylene oxide was added to the obtained catalyst composition, and a polymerization reaction was performed at 0 ° C. for 2 hours.
- the obtained reaction mixture is washed with an equal weight mixed solution of toluene / ethanol / water, the organic phase containing unreacted 1-methylimidazole and toluene is removed, and the aqueous phase is dried under reduced pressure at 50 ° C. for 12 hours.
- Mn number average molecular weight
- Mw molecular weight distribution
- Production Example 2 Except that the addition amount of tetra-n-butylammonium bromide was changed to 1.1 g (3.3 mmol) and the addition amount of triethylaluminum was changed to 0.57 g (5 mmol), the same as in Production Example 1
- a polyether polymer (A) having a molecular weight of 3100 hereinafter referred to as (PO) 50-MeImBr
- Production Example 4 Same as Production Example 1 except that the addition amount of tetra-n-butylammonium bromide was changed to 0.28 g (0.86 mmol) and the addition amount of triethylaluminum was changed to 0.15 g (1.29 mmol).
- all bromo groups at the polymerization initiation terminal were substituted with 1-methylimidazolium groups, and composed of 200 propylene oxide units having a 1-methylimidazolium bromide structure at the initiation terminal having bromide ions as counter anions.
- a polyether polymer (A) having a number average molecular weight of 12,000 hereinafter referred to as (PO) 200-MeImBr was produced.
- Production Example 5 In the same manner as in Production Example 1, except that 5.1 g of n-butyldimethylamine (BuMe 2 N) was added instead of 1-methylimidazole, all bromo groups at the polymerization initiation terminal were n-butyldimethylammonium groups. And a polyether polymer (A) having a number average molecular weight of 1300 composed of 20 propylene oxide units having an n-butyldimethylammonium bromide structure at the starting end, having a bromide ion as a counter anion (hereinafter referred to as “a”). (PO) 20-BuMe 2 NBr) was produced.
- a polyether polymer having a number average molecular weight of 1300 composed of 20 propylene oxide units having an n-butyldimethylammonium bromide structure at the starting end, having a bromide ion as a counter anion
- Production Example 6 2.7 g of (PO) 20-MeImBr obtained in Production Example 1, 1.5 g (5.2 mmol) of lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), and 20 mL of ion-exchanged water were added to a glass reactor equipped with a stirrer. did. After reacting at room temperature (20 ° C.) for 60 minutes, the reaction mixture was dried under reduced pressure at 50 ° C. for 1 hour to obtain a light yellow transparent oily substance. 2. The obtained oily substance is dissolved in a methanol / acetone / THF mixed solution, and the undissolved crystalline insoluble matter is fractionated, followed by drying under reduced pressure at 50 ° C. for 12 hours.
- LiTFSI lithium bis (trifluoromethanesulfonyl) imide
- (PO) 20-MeImBr bromide ions were all bis (trifluoromethylsulfone) imide anion.
- a polyether polymer (A) (hereinafter referred to as (PO)) having a number average molecular weight of 1,500 composed of 20 propylene oxide units having a 1-methylimidazolium TFSI structure at the starting end and anion-exchanged with (TFSI) 20-MeImTFSI).
- the 1 H-NMR data of (PO) 20-MeImTFSI obtained above is shown below.
- Example 1 When 1.0 g of (PO) 20-MeImBr obtained in Production Example 1 and 0.1 g of SGCNT were added to an automatic mortar and mixed with high shearing force at room temperature for 30 minutes, a gel-like composition of SGCNT / (PO) 20-MeImBr was obtained. Things were obtained. This composition was centrifuged for 30 minutes with a centrifuge at 3000 rpm and visually observed. As a result, there was no change and no bleed was observed.
- Example 2 SGCNT / ((PO) 50-) was prepared in the same manner as in Example 1 except that (PO) 20-MeImBr obtained in Production Example 1 was changed to (PO) 50-MeImBr obtained in Production Example 2. A gel-like composition of MeImBr was obtained, which was centrifuged for 30 minutes in a centrifuge at 3000 rpm and visually observed, and there was no change and no bleed was observed.
- Example 3 SGCNT / (PO) 100-MeImBr was prepared in the same manner as in Example 1 except that (PO) 20-MeImBr obtained in Production Example 1 was changed to (PO) 100-MeImBr obtained in Production Example 3. A gel composition was obtained. This composition was centrifuged for 30 minutes with a centrifuge at 3000 rpm and visually observed. As a result, there was no change and no bleed was observed.
- Example 4 SGCNT / (PO) 200-MeImBr was prepared in the same manner as in Example 1 except that (PO) 20-MeImBr obtained in Production Example 1 was changed to (PO) 200-MeImBr obtained in Production Example 4. A gel composition was obtained. This composition was centrifuged for 30 minutes with a centrifuge at 3000 rpm and visually observed. As a result, there was no change and no bleed was observed.
- Example 5 SGCNT / (PO) 20 was obtained in the same manner as in Example 1 except that (PO) 20-MeImBr obtained in Production Example 1 was changed to (PO) 20-BuMe 2 NBr obtained in Production Example 5. -A gel-like composition of BuMe 2 NBr was obtained. This composition was centrifuged for 30 minutes with a centrifuge at 3000 rpm and visually observed. As a result, there was no change and no bleed was observed.
- Example 6 SGCNT / (PO) 20-MeImTFSI was obtained in the same manner as in Example 1 except that (PO) 20-MeImBr obtained in Production Example 1 was changed to (PO) 20-MeImTFSI obtained in Production Example 6. A gel composition was obtained. This composition was centrifuged for 30 minutes with a centrifuge at 3000 rpm and visually observed. As a result, there was no change and no bleed was observed.
- Example 7 To SGCNT / (PO) 20-MeImBr 0.11 g obtained in Example 1, 19.9 g of ion-exchanged water was added to adjust the concentration of SGCNT to 0.05% by weight and exceeded 60 minutes at room temperature. When sonication was performed, a uniform SGCNT / (PO) 20-MeImBr / H 2 O dispersion could be obtained.
- the ultrasonic treatment was performed using an Emerson Branson digital sonifier at an ultrasonic output of 160 W, an oscillation frequency of 40 kHz, a time of 60 minutes, and a temperature of 20 C.
- Example 8 SGCNT / (PO) 20-MeImBr obtained in Example 1 was changed to SGCNT / (PO) 50-MeImBr obtained in Example 2, and the same operation as in Example 7 was performed. ) A 50-MeImBr / H 2 O dispersion was obtained. Since the absorbance of the dispersion at a wavelength of 500 nm is 2.30, it can be seen that SGCNT is uniformly dispersed.
- Example 9 SGCNT / (PO) 20-MeImBr obtained in Example 1 was changed to SGCNT / (PO) 100-MeImBr obtained in Example 3 and the same operation as in Example 7 was performed. ) A 100-MeImBr / H 2 O dispersion was obtained. Since the absorbance of the dispersion at a wavelength of 500 nm is 2.12, it can be seen that SGCNT is uniformly dispersed.
- Example 10 SGCNT / (PO) 20-MeImBr obtained in Example 1 was changed to SGCNT / (PO) 200-MeImBr obtained in Example 4 except that SGCNT / (PO) 20-MeImBr was changed to SGCNT / (PO ) A 200-MeImBr / H 2 O dispersion was obtained. Since the absorbance of the dispersion at a wavelength of 500 nm is 1.55, it can be seen that SGCNT is sufficiently dispersed.
- Comparative Example 1 By adding 0.1 g of ethylmethylimidazolium TFSI ionic liquid (hereinafter referred to as EMImTFSI) (manufactured by Aldrich) and 0.01 g of SGCNT to an automatic mortar and mixing with high shearing force at room temperature for 30 minutes, SGCNT / EMImTFSI A gel composition was obtained. This composition was centrifuged for 30 minutes in a centrifuge at 3000 rpm. When the obtained composition was visually observed, SGCNT and the material were separated and bleed.
- EMImTFSI ethylmethylimidazolium TFSI ionic liquid
- Comparative Example 2 SGCNT / EMImCl gel composition by mixing 0.1 g of ethylmethylimidazolium chloride ionic liquid (hereinafter referred to as EMImCl) (manufactured by Solvent Innovation) and 0.01 g of SGCNT in the same manner as in Comparative Example 1. 0.11 g was obtained. After adding 19.9 g of ion-exchanged water to the obtained composition and adjusting the concentration of SGCNT to be 0.05% by weight, ultrasonic treatment was performed at room temperature for 60 minutes. It was visually confirmed that SGCNT after ultrasonic treatment could not be uniformly dispersed.
- EMImCl ethylmethylimidazolium chloride ionic liquid
- PEO polyethylene oxide
- Mw 8000
- Comparative Example 4 Production of polyepichlorohydrin by living anionic polymerization
- a glass reactor equipped with a stirrer whose inside was replaced with argon 3.22 g of tetranormalbutylammonium bromide and 50 ml of toluene were added and cooled to 0 ° C.
- a solution obtained by dissolving 1.256 g of triethylaluminum (1.1 equivalent to tetranormalbutylammonium bromide) in 10 ml of normal hexane was added and reacted at 0 ° C. for 15 minutes to obtain a catalyst solution.
- the number average molecular weight (Mn) by GPC of the obtained oily substance was 2,100, and the molecular weight distribution (Mw / Mn) was 1.30. Further, 1 H-NMR of the obtained oily substance was measured and confirmed to be polyepichlorohydrin (average 22-mer) having a bromomethyl group at the polymerization initiation terminal and a hydroxyl group at the polymerization termination terminal. It was done.
- a polyether compound (hereinafter referred to as (ECH) 22-MeImBr) having many 1-methylimidazolium groups (cationic groups) not only at one end of the polymer chain but also at the main chain was obtained.
- ECG polyether compound
- SGCNT polyether compound having many 1-methylimidazolium groups (cationic groups) not only at one end of the polymer chain but also at the main chain was obtained.
- 0.11 g of a gel composition of SGCNT / (ECH) 22-MeImBr was obtained. Obtained.
- ultrasonic treatment was performed at room temperature for 60 minutes.
- Types of dispersants (polyether polymers, etc.) obtained in Examples 1 to 10 and Comparative Examples 1 to 4, number of oxirane monomer units (n), number average molecular weight, HLB value of polyether polymers Table 1 below collectively shows the mixing ratio (g / g) of the dispersant and SGCNT, the presence / absence and use amount of water (g), and the respective dispersion states.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Polyethers (AREA)
Abstract
Description
例えば、非特許文献1では、スチレン・ブタジエンゴムに、多層カーボンナノチューブを配合することにより、スチレン・ブタジエンゴムの機械強度を改良しつつ、電気伝導性を付与することが検討されている。また、非特許文献2では、ポリ(ジメチルシロキサン)に補強材として多層カーボンナノチューブを配合するこことにより、ポリ(ジメチルシロキサン)の機械強度特性を改良することが検討されている。
そのため、非特許文献1にも示されるように、ナノカーボン材料をポリマー材料に配合して得られる組成物の電気伝導性等の特性が、同じポリマー材料にカーボンブラックを配合して得られる組成物の特性と殆ど変わらないという事例がしばしば見られ、ナノカーボン材料の優れた特性が十分に発揮されているとは言い難かった。そのため、ナノカーボン材料を容易に組成物中に分散させることが可能であり、それにより、高い電気伝導性を有する組成物を得ることができる、ポリマー材料の開発が望まれていた。
〔1〕オキシラン単量体単位を含有してなり、かつカチオン性基を実質的に重合体鎖の片末端にのみ1つ有するポリエーテル系重合体と、ナノカーボン材料と、を含んでなるポリエーテル系重合体組成物。
〔2〕前記オキシラン単量体単位が、以下の式(1)で表される単位である〔1〕に記載のポリエーテル系重合体組成物。
〔3〕前記ポリエーテル系重合体が、以下の式(2)で表される重合体である〔2〕に記載のポリエーテル系重合体組成物。
〔4〕前記式(2)において、Rがメチル基を表す〔3〕に記載のポリエーテル系重合体組成物。
〔5〕ナノカーボン材料がカーボンナノチューブである、〔1〕~〔4〕のいずれか記載のポリエーテル系重合体組成物。
〔6〕ナノカーボン材料の含有量が、ポリエーテル系重合体100重量部に対し、0.01~30重量部である、〔1〕~〔5〕のいずれかに記載のポリエーテル系重合体組成物。
〔7〕水をさらに含み、かつナノカーボン材料の含有量が、組成物全体に対して、0.05重量%以上である〔1〕~〔6〕のいずれか記載のポリエーテル系重合体組成物。
本発明のポリエーテル系重合体組成物を構成するポリエーテル系重合体(以下、「ポリエーテル系重合体(A)」ということがある。)は、オキシラン単量体単位を含有してなり、かつカチオン性基を実質的に重合体鎖の片末端にのみ1つ有する重合体である。
ポリエーテル系重合体が有するオキシラン単量体単位の構造は特に限定されないが、下記の式(I)で表される繰り返し単位であることが好ましい。
置換基としては、メチル基、エチル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基、アリルオキシ基等の炭素数1~6のアルコキシ基;フェニル基、4-メチルフェニル基、2-クロロフェニル基、3-メトキシフェニル基等の置換基を有していてもよいアリール基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチルカルボニル基、エチルカルボニル基等の炭素数1~6のアルキルカルボニル基;アクリロイル基、メタクリロイル基等の(メタ)アクリロイル基;等が挙げられる。
本発明に用いられるポリエーテル系重合体が、2種類以上のオキシラン単量体単位を有する共重合体である場合、その種類は特に限定されず、ブロック共重合体であっても、ランダム共重合体であってもよい。
また、ポリエーテル系重合体の鎖構造も特に限定されず、直鎖状のものであってもよいし、グラフト状、放射状等の分岐を有する鎖構造のものであってもよい。
ポリエーテル系重合体(A)において、オキシラン単量体単位の含有量は、全単量体単位中、好ましくは95重量%以上、より好ましくは96重量%以上、さらに好ましくは97重量%以上であり、オキシラン単量体単位のみからなることが特に好ましい。
ポリエーテル系重合体(A)は、これらの単量体由来の構造単位の2種以上を有していてもよい。
ポリエーテル系重合体(A)において、オキシラン単量体単位以外のアニオン重合性を有する単量体由来の構造単位の含有量は、全単量体単位中、通常5重量%以下、好ましくは4重量%以下、より好ましくは3重量%以下である。
本発明に用いられるポリエーテル系重合体において、オキシラン単量体単位を含む重合体鎖の、一方の分子末端のみにカチオン性基が結合していることは、例えば、1H-NMRを測定し、両方の末端官能基を定量的に帰属することで確認することができる。
これらの中でも、得られるポリエーテル重合体組成物を特にナノカーボン材料の分散性に優れたものとする観点からは、ハロゲン化物イオンまたはスルホンイミド化物イオンが好ましい。
なお、非イオン性基、カチオン性基、対アニオンは、上述したものが例示される。
また、nは20以上の整数であり、上限は特に限定されないが、好ましくは500以下である。
本発明に用いられるポリエーテル系重合体(A)の合成方法は、特に限定されず、目的のポリエーテル系重合体を得られるものである限りにおいて、任意の合成方法を採用できる。なかでも、より容易に目的のポリエーテル系重合体を得る観点から、オキシラン単量体単位からなり、その重合体鎖の片末端にハロゲン原子(ハロゲン基)を有するポリエーテル系重合体(B)を得る工程(I)と、得られたポリエーテル系重合体(B)に、オニウム化剤を反応(4級化反応)させることにより、重合体鎖の片末端に有するハロゲン基をオニウムハライド構造含有基に変換させて、オニウムハライド構造を含有するポリエーテル系重合体を得る工程(II)を有する合成方法が好ましい。ここで、前記ポリエーテル系重合体(B)は、本発明に用いられるポリエーテル系重合体の前駆体である。
工程(I)は、オキシラン単量体単位からなり、その重合体鎖の片末端にハロゲン原子(ハロゲン基)を有するポリエーテル系重合体(B)を得る工程である。工程(I)は、より具体的には、不活性溶媒中、有機アルミニウム化合物と、4級アンモニウムハライド化合物から調製される触媒組成物の存在下、オキシラン単量体の重合反応を行うことにより、オキシラン単量体単位からなり、その重合体鎖の片末端にハロゲン原子(ハロゲン基)を有するポリエーテル系重合体(B)を得るものである。
用いるオキシラン単量体の具体例としては、エチレンオキシド、プロピレンオキシド、1,2-エポキシブタン、1,2-エポキシ-イソブタン、2,3-エポキシブタン、1,2-エポキシヘキサン、1,2-エポキシオクタン、1,2-エポキシデカン、1,2-エポキシテトラデカン、1,2-エポキシヘキサデカン、1,2-エポキシオクタデカン、1,2-エポキシエイコサン、1,2-エポキシシクロペンタン、1,2-エポキシシクロヘキサン、1,2-エポキシシクロドデカン等のアルキレンオキシド;
シクロヘキセンオキシド等の環式脂肪酸エポキシド;
エピフルオロヒドリン、エピクロロヒドリン等の含ハロゲンエポキシド;
メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル等のアルキルグリシジルエーテル;
スチレンオキシド、フェニルグリシジルエーテル等の非エチレン性不飽和エポキシド;
ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o-アリルフェニルグリシジルエーテル等のエチレン性不飽和グリシジルエーテル;
ブタジエンモノエポキシド、4,5-エポキシ-2-ペンテン、1,2-エポキシ-5,9-シクロドデカジエン等のジエンまたはポリエンのモノエポキシド;
3,4-エポキシ-1-ブテン、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセン等のアルケニルエポキシド;
グリシジルアクリレート、グリシジルメタクリレート、グリシジルクロトネート、グリシジル-4-ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル-4-メチル-3-ペンテノエート、3-シクロヘキセンカルボン酸のグリシジルエステル、4-メチル-3-シクロヘキセンカルボン酸のグリシジルエステル等のエチレン性不飽和カルボン酸のグリシジルエステル;等が挙げられる。
トリシクロペンチルアルミニウム、トリシクロヘキシルアルミニウム等のトリシクロアルキルアルミニウム化合物;
トリフェニルアルミニウム等のトリアリールアルミニウム化合物;
ジメチルアルミニウムハイドライド、ジエチルアルミニウムハイドライド等のジアルキルアルミニウムハイドライド;
ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド等のジアルキルアルミニウムハライド;
メチルアルミニウムジクロリド、エチルアルミニウムジクロリド等のモノアルキルアルミニウムジハライド;
ジメチルアルミニウムメトキシド、ジメチルアルミニウムジエトキシド、ジエチルアルミニウムメトキシド等のジアルキルアルミニウムアルコキシド;
メチルアルミニウムジメトキシド、エチルアルミニウムジエトキシド等のモノアルキルアルミニウムジアルコキシド;等が挙げられる。
これらの中でも、より収率よく目的のポリエーテル系重合体が得られることから、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn-オクチルアルミニウム等のトリアルキルアルミニウムが好ましい。
メチルトリオクチルアンモニウムクロライド、メチルトリデシルアンモニウムクロライド等のモノC1-4アルキル-トリC6-20アルキルアンモニウムハライド;
ベンジルトリメチルアンモニウムクロライド等のアラルキルトリアルキルアンモニウム塩;等が挙げられる。
これらは1種単独で又は2種以上組み合わせて用いることができる。
これらの中でも、テトラC1-10アルキルアンモニウムハライド、モノC1-2アルキル-トリC7-16アルキルアンモニウムハライドが好ましく、テトラC1-6アルキルアンモニウムハライドがより好ましく、テトラC1-6アルキルアンモニウムブロマイドがさらに好ましい。
これらの成分を混合する際の温度や時間も特に限定されないが、通常-30~+50℃の条件下で、10秒間から12時間混合することが好ましい。
重合様式も特に限定されないが、重合を良好に制御する観点からは、溶液重合法により重合を行うことが好ましい。
重合を行なう条件は、特に限定されず、用いる単量体や触媒の種類、目的とする重合体の分子量等に応じて決定すれば良い。
重合時の圧力は、通常1~500atm、好ましくは1~100atm、特に好ましくは1~50atmである。
重合時の温度は、通常-70~+200℃、好ましくは-40~+150℃、特に好ましくは-20~+100℃である。
重合時間は、反応規模にもよるが、通常10秒間から100時間、好ましくは20秒間から80時間、特に好ましくは30秒間から50時間である。
工程(II)は、工程(I)で得られたポリエーテル系重合体(B)に、オニウム化剤を反応(4級化反応)させることにより、重合体鎖の片末端に有するハロゲン基をオニウムハライド構造含有基に変換させて、オニウムハライド構造を含有するポリエーテル系重合体を得る工程である。
これらの中でも、イミダゾール、1-メチルイミダゾール、1-エチルイミダゾール、ベンズイミダゾール等の窒素原子を含有する複素環化合物や、n-ブチルジメチルアミン、n-オクチルジメチルアミン、n-ステアリルジメチルアミン等のトリ置換アミンが好ましい。
非極性溶媒としては、ベンゼン、トルエン等の芳香族炭化水素;n-ペンタン、n-ヘキサン等の鎖状飽和炭化水素;シクロペンタン、シクロヘキサン等の脂環式飽和炭化水素;等が挙げられる.
極性溶媒としては、テトラヒドロフラン、アニソール、ジエチルエーテル等のエーテル類;酢酸エチル、安息香酸エチル等のエステル類;アセトン、2-ブタノン、アセトフェノン等のケトン;アセ卜ニトリル、ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶媒;エタノール、メタノール、水等のプロトン性極性溶媒;これらの2種以上からなる混合溶媒;等が挙げられる。
具体的には、オニウム化剤の使用量は、用いるポリエーテル系重合体の重合体鎖末端に有するハロゲン基1モルに対し、通常、0.01~100モル、好ましくは0.02~50モル、より好ましくは0.03~10モル、さらに好ましくは0.05~2モルの範囲である。
反応時の温度も特に限定されず、通常0~200℃、好ましくは20~170℃、より好ましくは40~150℃である。
反応時聞は、通常1分から1,000時間であり、好ましくは3分から800時間であり、より好ましくは5分から500時間であり、さらに好ましくは30分から200時間である。
また、本発明においては、必要に応じて、オニウムハライド構造を含有するポリエーテル系重合体に金属化合物を接触させて、オニウムハライド構造の対アニオンであるハロゲン化物イオンの少なくとも一部を他のアニオンに変換させてもよい。
反応時の温度は、通常、-30~+200℃、好ましくは-15~+180℃、より好ましくは0~150℃である。反応時聞は、通常、1分から1000時間であり、好ましくは3分から100時間であり、より好ましくは5分から10時間であり、さらに好ましくは5分から3時間である。
HLB=7+11.7log(Mw/Mo)
(式中、Mwは親水部の分子量の総和、Moは親油部の分子量の総和をそれぞれ表す。)
本発明のポリエーテル系重合体組成物は、以上のようにして得られるポリエーテル系重合体に、ナノカーボン材料を配合することにより得ることができる。
本発明で用いられうるナノカーボン材料としては、グラフェンシート、カーボンナノチューブ、カーボンナノホーン、ナノグラフェン等を挙げることができるが、これらの中でも、カーボンナノチューブが特に好適に用いられる。
ナノカーボン材料の細分化は、ミルや混練機により、せん断力を加える方法や超音波により細分化する方法等の公知の細分化方法を採用して行えばよく、特に限定されるものではない。なお、ナノカーボン材料を細分化する工程と、ナノカーボン材料とポリエーテル系重合体とを混合させる工程との順序は、特に限定されず、ナノカーボン材料を細分化した後、後述するような方法で細分化されたナノカーボン材料とポリエーテル系重合体とを混合させてもよいし、後述するような方法でナノカーボン材料とポリエーテル系重合体とを混合させて組成物を得た後、その組成物に細分化工程を適用して、ナノカーボン材料を細分化させてもよい。
溶媒の使用量は、特に限定されないが、溶媒中、ナノカーボン材料とポリエーテル系重合体それぞれの濃度が0.01~50重量%の範囲となるように選択することが好ましい。
混合により得られる溶液は、そのまま本発明のポリエーテル系重合体組成物として使用することもできるが、溶媒を除去して固形のポリエーテル系重合体組成物として用いることが好ましい。溶媒を除去する方法は特に限定されず、例えば、蒸発除去してもよいし、凝固乾燥してもよい。
水分散液aは、ナノカーボン材料が良好に分散されたナノカーボン材料水分散液の調製用マスターバッチとして好適に用いられる。
親水性有機溶媒としては、メチルアルコール、エチルアルコール、プロピルアルコール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン、ジオキサン、ジグライム等のエーテル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン等のアミド類;ジメチルスルホキシド、スルホラン等の含イオウ系溶媒;等が挙げられる。これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。
本発明のポリエーテル系重合体組成物に含有され得る他の成分としては、ポリエーテル系重合体(A)以外のポリマー材料;カーボン;シリカ、チタニア、アルミナ等の無機酸化物;金、銀、白金、ニッケル、鋼、アルミニウム等の金属微粒子;ガラス繊維、カーボン繊維等の無機繊維;等が挙げられる。
また、架橋剤及び必要に応じて架橋助剤や架橋促進剤を含有させて、架橋可能な組成物とすることもできる。本発明のポリエーテル系重合体組成物を架橋可能な組成物とし、これを架橋して架橋物とすることにより、本発明のポリエーテル系重合体組成物が有する極めて優れた電気伝導性を維持しながら、構造材料としての機械強度を大幅に改良することができる。
これらの中でも、硫黄または含硫黄化合物が好適である。これらの架橋剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。架橋剤の配合割合は、特に限定されないが、組成物全体を100重量部として、0.1~10重量部が好ましく、0.2~7重量部がより好ましく、0.3~5重量部が特に好ましい。
架橋助剤及び架橋促進剤は、それぞれ2種以上併用して用いてもよい。
各例における測定や評価は、以下の方法により行った。
(1)ポリエーテル系重合体(A),(B)の分子量と分子量分布の測定
N,N-ジメチルホルムアミドを溶媒とするゲルパーミエーションクロマトグラフィ-(GPC)により、ポリスチレン換算値として測定した。
測定器はHLC-8320(東ソー社製)を用い、カラムはTSKgelα-M(東ソー社製)二本を直列に連結して用い、検出器は示差屈折計RI-8320(東ソー社製)を用いた。
ポリエーテル系重合体(A),(B)の構造は核磁気共鳴装置(NMR)を用いて、以下のように測定した。ポリエーテル系重合体30mgを、1.0mLの重クロロホルムに加え、1時間振蕩することにより均一に溶解した後、NMR(Bruker社製、500MHz)により1H-NMR測定を行った。
スーパーグロース単層カーボンナノチューブ(国際公開2006/011655号に開示される方法に従って製造された単層カーボンナノチューブ、以下、「SGCNT」と略記する。)の分散組成物中のSGCNT分散状態の評価は、以下により行った。
(i)水を含まない、SGCNTとポリエーテル系重合体(A)の組成物(以下、バッキーゲルという)
3000回転/分の遠心分離器にて30分間遠心分離を行って目視観察し、ブリードアウトの有無により、以下の評価基準に従って評価した。
〔評価基準〕
○:分散状態に変化が無く、ブリードアウトが認められない
×:SGCNTとその他成分が分離し、ブリードアウトが認められる
(ii)水を含む、SGCNTとポリエーテル系重合体(A)の組成物(以下、水分散液という)
可視-近赤外吸収スペクトル(測定装置:日本分光社製V-670)により波長500nmの吸光度を測定し、以下の評価基準に従って分散状態を評価した。
〔評価基準〕
○:吸光度1.5以上である
×:吸光度1.0未満である
(1)プロピレンオキシドのリビングアニオン重合:
内部をアルゴンで置換した攪拌機付きガラス反応器に、テトラn-ブチルアンモニウムブロマイド2.56g(8mmol)とトルエン50mlを添加し、それを0℃に冷却した。次いで、トリエチルアルミニウム1.37g(12mmol)をトルエン10mlに溶解したものを添加して、0℃で15分間全容を撹拌することで、触媒組成物を得た。得られた触媒組成物にプロピレンオキシド10gを添加し、0℃において2時間重合反応を行った。重合反応開始後、徐々に溶液の粘度が上昇した。反応終了後、重合反応液に少量のイソプロピルアルコールを注いで反応を停止させた。得られた重合反応液を0.1Nの塩酸水溶液で洗浄することにより触媒残渣の脱灰処理を行い、さらにイオン交換水で洗浄した後に、有機層を50℃で12時間減圧乾燥することで、無色透明のオイル状物質を9.9g得た。
得られた物質のGPCによる数平均分子量(Mn)は1250(繰り返し単位数20)、分子量分布(Mw/Mn)は1.15(ポリスチレン換算)であった。さらに、得られた物質について重クロロホルムにて1H-NMRを測定したところ、重合開始末端にブロモメチル基を持ち、重合停止末端に水酸基を持つ、プロピレンオキシド単位20個により構成されたポリエーテル系重合体(B)(以下、(PO)20-Brという)であると確認された。
上記で得た(PO)20-Brの1H-NMRを下記に示す。
内部をアルゴンで置換した攪拌機付きガラス反応器に、上記で得た(PO)20-Br5.0g、1-メチルイミダゾール(MeIm)4.1g、及び、アセトニトリル(ACN)10.0gを添加し、全容を80℃で24時間撹拌した。反応終了後、反応液を室温(20℃、以下にて同じ)に冷却して反応を停止させた。得られた反応混合物をトルエン/エタノール/水の等重量混合溶液にて洗浄した後、未反応1-メチルイミダゾール及びトルエンを含む有機相を除去して、水相を50℃で12時間減圧乾燥することにより、淡黄色透明なオイル状物質を5.4g得た。
得られた物質のGPCによる数平均分子量(Mn)は1300、分子量分布(Mw/Mn)は1.18(ポリスチレン換算)であった。さらに、重クロロホルムにて1H-NMR測定を行ったところ、出発原料の(PO)20-Brの重合開始末端のブロモ基が全て1-メチルイミダゾリウム基に置換され、対アニオンとして臭化物イオンを有する、1-メチルイミダゾリウムブロマイド構造を開始末端に有するプロピレンオキシド単位20個により構成されたポリエーテル系重合体(A)(以下、(PO)20-MeImBrという)であると同定された。
上記で得た(PO)20-MeImBrの1H-NMRを下記に示す。
テトラn-ブチルアンモニウムブロマイドの添加量を1.1g(3.3mmol)に変更したこと、およびトリエチルアルミニウムの添加量を0.57g(5mmol)に変更したこと以外は、製造例1と同様にして、重合開始末端のブロモ基が全て1-メチルイミダゾリウム基に置換され、対アニオンとして臭化物イオンを有する、1-メチルイミダゾリウムブロマイド構造を開始末端に有するプロピレンオキシド単位50個により構成された数平均分子量3100であるポリエーテル系重合体(A)(以下、(PO)50-MeImBrという)を製造した。
テトラn-ブチルアンモニウムブロマイドの添加量を0.55g(1.7mmol)に変更したこと、およびトリエチルアルミニウムの添加量を0.29g(2.55mmol)に変更したこと以外は、製造例1と同様にして、重合開始末端のブロモ基が全て1-メチルイミダゾリウム基に置換され、対アニオンとして臭化物イオンを有する、1-メチルイミダゾリウムブロマイド構造を開始末端に有するプロピレンオキシド単位100個により構成された数平均分子量6000であるポリエーテル系重合体(A)(以下、(PO)100-MeImBrという)を製造した。
テトラn-ブチルアンモニウムブロマイドの添加量を0.28g(0.86mmol)に変更したこと、およびトリエチルアルミニウムの添加量を0.15g(1.29mmol)に変更したこと以外は、製造例1と同様にして、重合開始末端のブロモ基が全て1-メチルイミダゾリウム基に置換され、対アニオンとして臭化物イオンを有する、1-メチルイミダゾリウムブロマイド構造を開始末端に有するプロピレンオキシド単位200個により構成された数平均分子量12000であるポリエーテル系重合体(A)(以下、(PO)200-MeImBrという)を製造した。
1-メチルイミダゾールに代えて、n-ブチルジメチルアミン(BuMe2N)5.1gを添加したこと以外は、製造例1と同様にして、重合開始末端のブロモ基が全てn-ブチルジメチルアンモニウム基に置換され、対アニオンとして臭化物イオンを有する、n-ブチルジメチルアンモニウムブロマイド構造を開始末端に有するプロピレンオキシド単位20個により構成された数平均分子量1300であるポリエーテル系重合体(A)(以下、(PO)20-BuMe2NBrという)を製造した。
製造例1で得た(PO)20-MeImBr2.7gと、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)1.5g(5.2mmol)と、イオン交換水20mLとを攪拌機付きガラス反応器に添加した。室温(20℃)で60分間反応させた後、反応混合物を50℃で1時間減圧乾燥することにより、淡黄色透明なオイル状物質を得た。得られたオイル状物質をメタノール/アセトン/THF混合溶液に溶解させ、溶け残った結晶性不溶物を分別した後、50℃で12時間減圧乾燥することで、淡黄色透明なオイル状物質3.2gを得た。
得られた淡黄色透明なオイル状物質をジメチルスルホキシド-d6に溶解させて、1H-NMR測定を行ったところ、(PO)20-MeImBrの臭化物イオンが全てビス(トリフルオロメチルスルホン)イミドアニオン(TFSI)にアニオン交換された、1-メチルイミダゾリウムTFSI構造を開始末端に有するプロピレンオキシド単位20個により構成された数平均分子量1500であるポリエーテル系重合体(A)(以下、(PO)20-MeImTFSIという)であることが確認された。
上記で得た(PO)20-MeImTFSIの1H-NMRデータを以下に示す。
製造例1で得た(PO)20-MeImBr1.0gとSGCNT0.1gを自動乳鉢に加えて、室温で30分間高いせん断力で混ぜ込んだところ、SGCNT/(PO)20-MeImBrのゲル状組成物が得られた。この組成物を、3000回転/分の遠心分離器にて30分間遠心分離を行い、目視観察したところ、変化が無くブリードが観察されなかった。
製造例1で得た(PO)20-MeImBrを、製造例2で得た(PO)50-MeImBrに変更した以外は、実施例1と同様の操作を行い、SGCNT/((PO)50-MeImBrのゲル状組成物を得た。この組成物を、3000回転/分の遠心分離器にて30分間遠心分離を行い、目視観察したところ、変化が無くブリードが観察されなかった。
製造例1で得た(PO)20-MeImBrを、製造例3で得た(PO)100-MeImBrに変更した以外は、実施例1と同様の操作を行い、SGCNT/(PO)100-MeImBrのゲル状組成物を得た。この組成物を、3000回転/分の遠心分離器にて30分間遠心分離を行い、目視観察したところ、変化が無くブリードが観察されなかった。
製造例1で得た(PO)20-MeImBrを、製造例4で得た(PO)200-MeImBrに変更した以外は、実施例1と同様の操作を行い、SGCNT/(PO)200-MeImBrのゲル状組成物を得た。この組成物を、3000回転/分の遠心分離器にて30分間遠心分離を行い、目視観察したところ、変化が無くブリードが観察されなかった。
製造例1で得た(PO)20-MeImBrを、製造例5で得た(PO)20-BuMe2NBrに変更した以外は、実施例1と同様の操作を行い、SGCNT/(PO)20-BuMe2NBrのゲル状組成物を得た。この組成物を、3000回転/分の遠心分離器にて30分間遠心分離を行い、目視観察したところ、変化が無くブリードが観察されなかった。
製造例1で得た(PO)20-MeImBrを、製造例6で得た(PO)20-MeImTFSIに変更した以外は、実施例1と同様の操作を行い、SGCNT/(PO)20-MeImTFSIのゲル状組成物を得た。この組成物を、3000回転/分の遠心分離器にて30分間遠心分離を行い、目視観察したところ、変化が無くブリードが観察されなかった。
実施例1で得たSGCNT/(PO)20-MeImBr0.11gに、イオン交換水19.9gを添加して、SGCNTの濃度が0.05重量%になるように調整し、室温で60分間超音波処理を行ったところ、均一なSGCNT/(PO)20-MeImBr/H2O分散液を得ることができた。超音波処理は、Emerson社製のブランソン デジタル ソニファイアを用い、超音波出力160W、発振周波数40kHz、時間:60分、温度:20Cで行った。得られた水分散液中のSGCNT分散状態を確認するために、可視-近赤外吸収スペクトル(測定装置:日本分光社製V-670)の測定を行った。測定結果を図1に示す。図1に示すように、波長500nmでSGCNT/(PO)20-MeImBr/H2O分散液の吸光度は2.49であるため、SGCNTは均一に分散されていることが分かる。
実施例1で得たSGCNT/(PO)20-MeImBrを、実施例2で得たSGCNT/(PO)50-MeImBrに変更した以外は、実施例7と同様の操作を行い、SGCNT/(PO)50-MeImBr/H2O分散液を得た。波長500nmでの該分散液の吸光度は2.30であるためSGCNTは均一に分散されていることが分かる。
実施例1で得たSGCNT/(PO)20-MeImBrを、実施例3で得たSGCNT/(PO)100-MeImBrに変更した以外は、実施例7と同様の操作を行い、SGCNT/(PO)100-MeImBr/H2O分散液を得た。波長500nmでの該分散液の吸光度は2.12であるためSGCNTは均一に分散されていることが分かる。
実施例1で得たSGCNT/(PO)20-MeImBrを、実施例4で得たSGCNT/(PO)200-MeImBrに変更した以外は、実施例7と同様の操作を行い、SGCNT/(PO)200-MeImBr/H2O分散液を得た。波長500nmでの該分散液の吸光度は1.55であるためSGCNTは充分に分散されていることが分かる。
エチルメチルイミダゾリウムTFSIイオン液体(以下、EMImTFSIという)(アルドリッチ社製)0.1gと、SGCNT0.01gを自動乳鉢に加えて、室温で30分間高いせん断力で混ぜ込むことにより、SGCNT/EMImTFSIのゲル状組成物を得た。この組成物を、3000回転/分の遠心分離器にて30分間遠心分離を行った。得られた組成物を目視観察したところ、SGCNTと材料が分離しブリードしていた。
エチルメチルイミダゾリウムクロライドイオン液体(以下、EMImClという)(Solvent Innovation社製)0.1gと、SGCNT0.01gとを、比較例1と同様にして混合することにより、SGCNT/EMImClのゲル状組成物0.11gを得た。得られた組成物にイオン交換水19.9gを添加して、SGCNTの濃度が0.05重量%になるように調整した後、室温で60分間超音波処理を行った。超音波処理後のSGCNTが均一に分散できていないことが目視で確認された。さらに、得られたSGCNT/EMImCl/H2O分散液の、可視-近赤外吸収スペクトル(日本分光社製V-670)測定を行ったところ、波長500nmでの該分散液の吸光度は0.21であった。このことから、SGCNTは分散されないことが分かる。このときの可視-近赤外吸収スペクトル図を図1に示す。
ポリエチレンオキシド(以下、PEOという。Mw=8000)0.1gと、SGCNT0.01gとを、比較例1と同様にして混合することにより、SGCNT/PEOのゲル状組成物0.11gを得た。得られた組成物にイオン交換水19.9gを添加して、SGCNTの濃度が0.05重量になるように調整した後、室温で60分間超音波処理を行った。超音波処理後のSGCNT/PEO/H2O分散液を目視で確認したところ、SGCNTの塊がまだ存在され、均一に分散できていないことが確認された。さらに、SGCNT/PEO/H2O分散液の、可視-近赤外吸収スペクトル(日本分光社製V-670)測定を行ったところ、波長500nmでの該分散液の吸光度は0.83であった。このことから、SGCNTは殆ど分散されていないことが分かる。このときの可視-近赤外吸収スペクトル図を図1に示す。
内部をアルゴンで置換した攪拌機付きガラス反応器に、テトラノルマルブチルアンモニウムブロミド3.22gとトルエン50mlを添加し、これを0℃に冷却した。次いで、トリエチルアルミニウム1.256g(テトラノルマルブチルアンモニウムブロミドに対して1.1当量)をノルマルヘキサン10mlに溶解したものを添加して、0℃で15分間反応させることにより、触媒溶液を得た。
そして、得られた触媒溶液に、エピクロロヒドリン20.0gを添加し、0℃において重合反応を行った。重合反応開始後、徐々に溶液の粘度が上昇した。12時間反応させた後、重合反応液に少量の水を注いで反応を停止した。次いで、得られた重合反応液を0.1Nの塩酸水溶液で洗浄することにより触媒残渣の脱灰処理を行い、さらにイオン交換水で洗浄した後に、有機相を50℃で12時間減圧乾燥することにより、無色透明のオイル状物質を19.9gの収量で得た。得られたオイル状物質のGPCによる数平均分子量(Mn)は2,100、分子量分布(Mw/Mn)は1.30であった。さらに、得られたオイル状物質について1H-NMRを測定したところ、重合開始末端にブロモメチル基を持ち、重合停止末端に水酸基を持つ、ポリエピクロロヒドリン(平均22量体)であると確認された。
得られたポリエピクロロヒドリン5.0gと、1-メチルイミダゾール12.1gと、アセトニトリル10.0gとを、内部をアルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で48時間反応させた後、室温に冷却し反応を停止した。次いで、得られた反応物をトルエン/メタノール/水の等重量混合溶液にて洗浄した後、1-メチルイミダゾールおよびトルエンを含む有機相を除去して、水相を50℃で12時間減圧乾燥することにより、薄赤色の固体を9.4gの収量で得た。次いで、得られた固体について、1H-NMR測定および元素分析を行ったところ、出発原料のポリエピクロロヒドリンの、エピクロロヒドリン単位中の全てのクロロ基が、1-メチルイミダゾリウムクロリド基に、重合開始末端の全てのブロモ基が、1-メチルイミダゾリウムブロミド基に、それぞれ置換された、ポリエーテル重合体であると同定された。すなわち、重合体鎖の片末端のみならず主鎖にも多くの1-メチルイミダゾリウム基(カチオン性基)を有するポリエーテル化合物(以下、(ECH)22-MeImBrという)が得られた。
得られた(ECH)22-MeImBrを0.1gと、SGCNT0.01gとを、比較例1と同様にして混合することにより、SGCNT/(ECH)22-MeImBrのゲル状組成物0.11gを得た。得られた組成物にイオン交換水19.9gを添加して、SGCNT水溶液の濃度が0.05重量になるように調整した後、室温で60分間超音波処理を行った。超音波処理後のSGCNT/(ECH)22-MeImBr/H2O分散液を目視で確認したところ、SGCNTの塊がまだ存在され、均一に分散できていないことが確認された。さらに、SGCNT/(ECH)22-MeImBr/H2O分散液の、可視-近赤外吸収スペクトル(日本分光社製V-670)測定を行ったところ、波長500nmでの該分散液の吸光度は0.65であった。このことから、SGCNTは殆ど分散されていないことが分かる。
Claims (7)
- オキシラン単量体単位を含有してなり、かつカチオン性基を実質的に重合体鎖の片末端にのみ1つ有するポリエーテル系重合体と、ナノカーボン材料と、を含んでなるポリエーテル系重合体組成物。
- 前記式(2)において、Rがメチル基を表す請求項3に記載のポリエーテル系重合体組成物。
- ナノカーボン材料がカーボンナノチューブである請求項1~4のいずれかに記載のポリエーテル系重合体組成物。
- 前記ナノカーボン材料の含有量が、ポリエーテル系重合体100重量部に対し、0.01~30重量部である、請求項1~5のいずれかに記載のポリエーテル系重合体組成物。
- 水をさらに含み、かつ前記ナノカーボン材料の含有量が、組成物全体に対し、0.05重量%以上である請求項1~6のいずれかに記載のポリエーテル系重合体組成物。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017502513A JP6627858B2 (ja) | 2015-02-27 | 2016-02-26 | ポリエーテル系重合体組成物 |
EP16755695.0A EP3275937B1 (en) | 2015-02-27 | 2016-02-26 | Polyether-based polymer composition |
KR1020177025030A KR20170123633A (ko) | 2015-02-27 | 2016-02-26 | 폴리에테르계 중합체 조성물 |
CN201680010503.4A CN107250271B (zh) | 2015-02-27 | 2016-02-26 | 聚醚系聚合物组合物 |
US15/553,305 US10344124B2 (en) | 2015-02-27 | 2016-02-26 | Polyether-based polymer composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015038137 | 2015-02-27 | ||
JP2015-038137 | 2015-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016136951A1 true WO2016136951A1 (ja) | 2016-09-01 |
Family
ID=56789541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/055846 WO2016136951A1 (ja) | 2015-02-27 | 2016-02-26 | ポリエーテル系重合体組成物 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10344124B2 (ja) |
EP (1) | EP3275937B1 (ja) |
JP (1) | JP6627858B2 (ja) |
KR (1) | KR20170123633A (ja) |
CN (1) | CN107250271B (ja) |
WO (1) | WO2016136951A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3438203A4 (en) * | 2016-03-31 | 2019-12-18 | Zeon Corporation | POLYMER COMPOSITION BASED ON POLYETHER, AND SHEET |
EP3438204A4 (en) * | 2016-03-31 | 2019-12-18 | Zeon Corporation | POLYETHER POLYMER COMPOSITION |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102230238B1 (ko) * | 2020-11-09 | 2021-03-19 | (주)케이에이치 케미컬 | 연속식 탄소나노튜브의 제조 방법 |
CN113336933B (zh) * | 2021-06-29 | 2022-05-24 | 抚顺东科精细化工有限公司 | 一种聚羧酸高性能减水剂用石墨烯单体聚醚的制备方法 |
CN115078295B (zh) * | 2022-08-19 | 2022-12-09 | 山东一诺威新材料有限公司 | 检测聚醚多元醇中环氧乙烷链段含量的方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001511844A (ja) * | 1997-02-18 | 2001-08-14 | セントレ ナショナル デ ラ レシェルシェ サイエンティフィーク | 官能化ポリアルキレンオキシド化合物およびカーボンブラックの分散剤としての使用 |
JP2003342483A (ja) * | 2002-03-20 | 2003-12-03 | Sanyo Chem Ind Ltd | 導電性エラストマー |
JP2004035868A (ja) * | 2002-06-28 | 2004-02-05 | Keiichi Uno | イオン性ゴムまたはエラストマー |
WO2011081152A1 (ja) * | 2009-12-29 | 2011-07-07 | 日本ゼオン株式会社 | ポリエーテルゴム、ゴム組成物、ゴム架橋物、および導電性部材 |
WO2012057299A1 (ja) * | 2010-10-29 | 2012-05-03 | 日本ゼオン株式会社 | ポリエーテルゴム、ゴム組成物、ゴム架橋物、および導電性部材 |
WO2013005653A1 (ja) * | 2011-07-06 | 2013-01-10 | 日本ゼオン株式会社 | 組成物 |
JP2014118446A (ja) * | 2012-12-14 | 2014-06-30 | Nippon Zeon Co Ltd | 架橋性ゴム組成物、ゴム架橋物、および導電性部材 |
WO2014148598A1 (ja) * | 2013-03-21 | 2014-09-25 | 日本ゼオン株式会社 | 色素増感太陽電池素子 |
JP2014224194A (ja) * | 2013-05-16 | 2014-12-04 | 日産化学工業株式会社 | カチオン型水溶性高分子およびそれよりなるハイドロゲル |
JP2015000396A (ja) * | 2013-06-18 | 2015-01-05 | 第一工業製薬株式会社 | 非水性分散媒用分散剤 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI404675B (zh) | 2004-07-27 | 2013-08-11 | Nat Inst Of Advanced Ind Scien | 單層奈米碳管及定向單層奈米碳管/塊材構造體暨該等之製造方法/裝置及用途 |
-
2016
- 2016-02-26 CN CN201680010503.4A patent/CN107250271B/zh active Active
- 2016-02-26 KR KR1020177025030A patent/KR20170123633A/ko unknown
- 2016-02-26 WO PCT/JP2016/055846 patent/WO2016136951A1/ja active Application Filing
- 2016-02-26 JP JP2017502513A patent/JP6627858B2/ja active Active
- 2016-02-26 US US15/553,305 patent/US10344124B2/en active Active
- 2016-02-26 EP EP16755695.0A patent/EP3275937B1/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001511844A (ja) * | 1997-02-18 | 2001-08-14 | セントレ ナショナル デ ラ レシェルシェ サイエンティフィーク | 官能化ポリアルキレンオキシド化合物およびカーボンブラックの分散剤としての使用 |
JP2003342483A (ja) * | 2002-03-20 | 2003-12-03 | Sanyo Chem Ind Ltd | 導電性エラストマー |
JP2004035868A (ja) * | 2002-06-28 | 2004-02-05 | Keiichi Uno | イオン性ゴムまたはエラストマー |
WO2011081152A1 (ja) * | 2009-12-29 | 2011-07-07 | 日本ゼオン株式会社 | ポリエーテルゴム、ゴム組成物、ゴム架橋物、および導電性部材 |
WO2012057299A1 (ja) * | 2010-10-29 | 2012-05-03 | 日本ゼオン株式会社 | ポリエーテルゴム、ゴム組成物、ゴム架橋物、および導電性部材 |
WO2013005653A1 (ja) * | 2011-07-06 | 2013-01-10 | 日本ゼオン株式会社 | 組成物 |
JP2014118446A (ja) * | 2012-12-14 | 2014-06-30 | Nippon Zeon Co Ltd | 架橋性ゴム組成物、ゴム架橋物、および導電性部材 |
WO2014148598A1 (ja) * | 2013-03-21 | 2014-09-25 | 日本ゼオン株式会社 | 色素増感太陽電池素子 |
JP2014224194A (ja) * | 2013-05-16 | 2014-12-04 | 日産化学工業株式会社 | カチオン型水溶性高分子およびそれよりなるハイドロゲル |
JP2015000396A (ja) * | 2013-06-18 | 2015-01-05 | 第一工業製薬株式会社 | 非水性分散媒用分散剤 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3438203A4 (en) * | 2016-03-31 | 2019-12-18 | Zeon Corporation | POLYMER COMPOSITION BASED ON POLYETHER, AND SHEET |
EP3438204A4 (en) * | 2016-03-31 | 2019-12-18 | Zeon Corporation | POLYETHER POLYMER COMPOSITION |
Also Published As
Publication number | Publication date |
---|---|
US20180016391A1 (en) | 2018-01-18 |
EP3275937B1 (en) | 2020-01-08 |
JPWO2016136951A1 (ja) | 2017-12-07 |
EP3275937A4 (en) | 2018-10-17 |
CN107250271A (zh) | 2017-10-13 |
US10344124B2 (en) | 2019-07-09 |
KR20170123633A (ko) | 2017-11-08 |
JP6627858B2 (ja) | 2020-01-08 |
EP3275937A1 (en) | 2018-01-31 |
CN107250271B (zh) | 2019-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016136951A1 (ja) | ポリエーテル系重合体組成物 | |
KR101949224B1 (ko) | 조성물 | |
JP5991314B2 (ja) | ポリエーテル化合物、架橋性組成物および電解質 | |
Livi et al. | From ionic liquid epoxy monomer to tunable epoxy–amine network: reaction mechanism and final properties | |
JP6398720B2 (ja) | ポリエーテル共重合体、架橋性ポリエーテル共重合体組成物及び電解質 | |
KR102390683B1 (ko) | 이온성 조성물 및 가교물 | |
JP6816490B2 (ja) | ポリエーテル系重合体組成物 | |
CN109575267A (zh) | 聚醚基聚合物、交联网络聚合物及电化学器件 | |
JP2017043704A (ja) | カチオン性グリシジルポリマー | |
WO2012133769A1 (ja) | ポリエーテル化合物および電解質組成物 | |
JP2012214792A (ja) | ポリエーテル化合物組成物および電解質 | |
JP7548011B2 (ja) | ポリエーテル化合物および気体分離膜 | |
JP2011098897A (ja) | 環状カーボネートおよびその製造方法 | |
JP2019099661A (ja) | 新規ポリチオフェン、当該ポリチオフェンを含む有機溶媒分散液 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16755695 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017502513 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15553305 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177025030 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2016755695 Country of ref document: EP |