WO2016136425A1 - フッ素原子含有重合体及びその利用 - Google Patents

フッ素原子含有重合体及びその利用 Download PDF

Info

Publication number
WO2016136425A1
WO2016136425A1 PCT/JP2016/053447 JP2016053447W WO2016136425A1 WO 2016136425 A1 WO2016136425 A1 WO 2016136425A1 JP 2016053447 W JP2016053447 W JP 2016053447W WO 2016136425 A1 WO2016136425 A1 WO 2016136425A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
represented
charge transporting
formula
Prior art date
Application number
PCT/JP2016/053447
Other languages
English (en)
French (fr)
Inventor
直樹 大谷
博史 太田
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to EP16755174.6A priority Critical patent/EP3263622A4/en
Priority to US15/553,836 priority patent/US10533070B2/en
Priority to CN201910799770.XA priority patent/CN110437046B/zh
Priority to JP2017502028A priority patent/JP6658728B2/ja
Priority to KR1020177026910A priority patent/KR102466300B1/ko
Priority to CN201680012080.XA priority patent/CN107406584B/zh
Publication of WO2016136425A1 publication Critical patent/WO2016136425A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/76Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/18Polycyclic aromatic halogenated hydrocarbons
    • C07C25/22Polycyclic aromatic halogenated hydrocarbons with condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/14Unsaturated ethers
    • C07C43/17Unsaturated ethers containing halogen
    • C07C43/174Unsaturated ethers containing halogen containing six-membered aromatic rings
    • C07C43/1745Unsaturated ethers containing halogen containing six-membered aromatic rings having more than one ether bound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/19Definition of the polymer structure partially conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3424Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms non-conjugated, e.g. paracyclophanes or xylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes

Definitions

  • the present invention relates to a fluorine atom-containing polymer and use thereof.
  • a charge transporting thin film is used for the organic electroluminescence (EL) element.
  • the method for forming the charge transporting thin film is roughly divided into a dry process typified by vapor deposition and a wet process typified by spin coating. These methods are appropriately used depending on the area of the thin film to be formed and the solubility of the material to be thinned in the organic solvent.
  • the present invention has been made in view of the above circumstances, and for forming a thin film capable of realizing an organic EL element having excellent luminance characteristics even when used as a single layer between an anode and a light emitting layer in contact with them.
  • the purpose is to provide material.
  • a predetermined fluorine atom-containing polymer has excellent solubility in an organic solvent, and charge transportability comprising the fluorine atom-containing polymer.
  • a thin film obtained from a substance, a charge transporting substance containing no fluorine atom, a dopant made of a heteropoly acid, and a charge transporting varnish containing an organic solvent is used as a single layer in a form in contact with the anode and the light emitting layer.
  • the present inventors have found that an organic EL device having excellent luminance characteristics can be obtained even when the present invention is present.
  • a fluorine atom containing polymer characterized by being a condensation polymer of [Wherein R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or 6 to 20 carbon atoms.
  • An aryl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkenyloxy group having 2 to 20 carbon atoms, an alkynyloxy group having 2 to 20 carbon atoms, and an aryl having 6 to 20 carbon atoms Represents an oxy group, a heteroaryloxy group having 2 to 20 carbon atoms, or an alkyl group having 2 to 20 carbon atoms containing at least one ether structure (provided that at least one of R 1 and R 2 represents the alkyl group or alkoxy group)
  • R 3 and R 4 each independently represents a non-conjugated divalent organic group
  • R 5 represents a hydrogen atom, or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atom
  • R 6 is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom.
  • Alkoxy group, alkenyloxy group having 2-20 carbon atoms, alkynyloxy group having 2-20 carbon atoms, aryl group having 6-20 carbon atoms, aralkyl group having 7-20 carbon atoms, alkylaralkyl group having 8-20 carbon atoms Represents a heteroaryl group having 2 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms or a heteroaryloxy group having 2 to 20 carbon atoms; R each independently represents a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkyl group having 2 to 20 carbon atoms which may be substituted with Z 1 .
  • Z 1 is a halogen atom, a nitro group, a cyano group, or an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, or an alkoxy having 1 to 20 carbon atoms, which may be substituted with Z 3.
  • Z 2 is a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 3.
  • Z 3 represents a halogen atom, a nitro group or a cyano group
  • p and q each independently represents 0 or 1.
  • R 3 and R 4 are —R c —Ar— (wherein R c represents an alkylene group having 1 to 20 carbon atoms, and Ar represents an arylene group having 6 to 20 carbon atoms).
  • R 5 is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom.
  • Alkoxy group alkenyloxy group having 2-20 carbon atoms, alkynyloxy group having 2-20 carbon atoms, aryl group having 6-20 carbon atoms, aralkyl group having 7-20 carbon atoms, alkylaralkyl group having 8-20 carbon atoms
  • Any one of 1 to 4 polymers which is a heteroaryl group having 2 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, or a heteroaryloxy group having 2 to 20 carbon atoms; 6.
  • a charge transporting material comprising the polymer according to any one of 1 to 5.
  • a charge transporting varnish comprising a charge transporting material of 7.6, a charge transporting material containing no fluorine atom, a dopant comprising a heteropolyacid, and an organic solvent. 8). 7. The charge transporting varnish according to 7, wherein the charge transporting material containing no fluorine atom is an aniline derivative.
  • a charge transporting thin film produced using a charge transporting varnish of 9.7 or 8.
  • An electronic device having a charge transporting thin film of 10.9.
  • An organic electroluminescence device having a charge transporting thin film of 11.9.
  • a method for producing a charge transporting thin film comprising applying a charge transporting varnish of 12.7 or 8 onto a substrate and evaporating a solvent.
  • a fluorene derivative represented by the following formula (1 ′), a fluorene derivative represented by the following formula (2 ′), and a fluorene derivative represented by the following formula (3 ′) are subjected to condensation polymerization.
  • R 1 to R 6 , R, p and q are the same as above.
  • X A each independently represents a halogen atom or a pseudohalogen group.
  • X B independently represents a group represented by the following formula (4) or (5).
  • a 1 and A 2 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms.
  • a 3 represents an alkanediyl having 1 to 20 carbon atoms.
  • a fluorene derivative represented by the following formula. (Wherein R 1 ′ and R 2 ′ represent an alkyl group having 2 to 20 carbon atoms and containing at least one ether structure; p and q each independently represents 0 or 1. ] 15.
  • a fluorene derivative represented by the following formula. wherein R 1 ′ and R 2 ′ represent an alkyl group having 2 to 20 carbon atoms and containing at least one ether structure; X A each independently represents a halogen atom or a pseudohalogen group; p and q each independently represents 0 or 1. ] 16.
  • X B independently represents a group represented by the following formula (4) or (5).
  • a 1 and A 2 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms.
  • a 3 represents an alkanediyl having 1 to 20 carbon atoms.
  • a group or an arylene group having 6 to 20 carbon atoms A fluorene derivative represented by the following formula.
  • X independently represents a halogen atom, a pseudohalogen group, or a group represented by the following formula (4) or (5).
  • a 1 and A 2 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms.
  • a 3 represents an alkanediyl having 1 to 20 carbon atoms.
  • a group or an arylene group having 6 to 20 carbon atoms)]
  • the fluorine atom-containing polymer of the present invention can be suitably used as a charge transporting substance, and the thin film as a single layer is formed between the anode and the light emitting layer by using the charge transporting varnish of the present invention containing the polymer. Even when formed, an organic EL element having excellent luminance characteristics can be realized. The reason for this is not clear, but the charge transporting substance containing fluorine atoms easily migrates to the surface side of the thin film (light emitting layer side), so the charge transporting substance containing fluorine atoms is on the surface side of the thin film (light emitting layer side).
  • a charge transporting material not containing them is unevenly distributed on the back side (anode side) of the thin film, phase-separated into a hole injection site and a hole transport site within a single layer, and is positively directed from the anode toward the light emitting layer.
  • the hole injecting component functions as a hole injecting and transporting layer similar to the case where these two layers exist.
  • the functional multilayer film in the device can be formed into a single film by using the charge transporting varnish of the present invention, it is possible to increase the yield and cost by simplifying the manufacturing process conditions, or the device. Can be made lighter and more compact.
  • the charge transport varnish of the present invention can produce a thin film excellent in charge transport with good reproducibility even when using various wet processes capable of forming a film over a large area such as a spin coat method and a slit coat method. Therefore, it can sufficiently cope with recent progress in the field of organic EL.
  • the thin film obtained from the charge transporting varnish of the present invention can be used as an antistatic film, an anode buffer layer of an organic thin film solar cell, or the like.
  • the fluorine atom-containing polymer of the present invention includes a fluorene derivative that gives a repeating unit represented by the following formula (1), a fluorene derivative that gives a repeating unit represented by the following formula (2), and the following formula (3): It is a condensation polymer with the fluorene derivative which gives the repeating unit represented.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or a carbon number of 6
  • at least one of R 1 and R 2 is the alkyl group, alkoxy group, alkenyloxy group, alkynyloxy group, aryloxy group, heteroaryloxy group or an alkyl group including at least one ether structure.
  • the alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group.
  • Straight chain having 1 to 20 carbon atoms such as s-butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group and n-decyl group Or a branched alkyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group, bicyclohexyl group, bicycloheptyl group, Examples thereof include cyclic alkyl groups having 3 to 20 carbon atoms such as a bicyclooctyl group, a bicyclononyl group, and a bicyclodecyl group.
  • the alkenyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethenyl group, n-1-propenyl group, n-2-propenyl group and 1-methylethenyl group.
  • the alkynyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethynyl group, n-1-propynyl group, n-2-propynyl group, n-1- Butynyl group, n-2-butynyl group, n-3-butynyl group, 1-methyl-2-propynyl group, n-1-pentynyl group, n-2-pentynyl group, n-3-pentynyl group, n-4 -Pentynyl group, 1-methyl-n-butynyl group, 2-methyl-n-butynyl group, 3-methyl-n-butynyl group, 1,1-dimethyl-n-propynyl group, n-1-hexynyl group, n Examples include a -1-decynyl group, an n-1-pentadecynyl group, and
  • aryl group having 6 to 20 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group. Group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like.
  • heteroaryl group having 2 to 20 carbon atoms examples include 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, 3-isoxazolyl group, 4-isoxazolyl group, 5-isoxazolyl group, 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group, 2-imidazolyl group, Examples include 4-imidazolyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, and the like.
  • the alkoxy group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group.
  • the alkenyloxy group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethenyloxy group, n-1-propenyloxy group, n-2-propenyloxy group, -Methylethenyloxy group, n-1-butenyloxy group, n-2-butenyloxy group, n-3-butenyloxy group, 2-methyl-1-propenyloxy group, 2-methyl-2-propenyloxy group, 1- Ethylethenyloxy group, 1-methyl-1-propenyloxy group, 1-methyl-2-propenyloxy group, n-1-pentenyloxy group, n-1-decenyloxy group, n-1-eicocenyloxy group Etc.
  • the alkynyloxy group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethynyloxy group, n-1-propynyloxy group, n-2-propynyloxy group, n-1-butynyloxy group, n-2-butynyloxy group, n-3-butynyloxy group, 1-methyl-2-propynyloxy group, n-1-pentynyloxy group, n-2-pentynyloxy group, n -3-pentynyloxy group, n-4-pentynyloxy group, 1-methyl-n-butynyloxy group, 2-methyl-n-butynyloxy group, 3-methyl-n-butynyloxy group, 1,1-dimethyl- n-propynyloxy group, n-1-hexynyloxy group, n-1-decynyloxy group, n-1
  • aryloxy group having 6 to 20 carbon atoms include phenyloxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthryloxy group, 2-anthryloxy group, 9-anthryloxy Group, 1-phenanthryloxy group, 2-phenanthryloxy group, 3-phenanthryloxy group, 4-phenanthryloxy group, 9-phenanthryloxy group and the like.
  • heteroaryloxy group having 2 to 20 carbon atoms include 2-thienyloxy group, 3-thienyloxy group, 2-furanyloxy group, 3-furanyloxy group, 2-oxazolyloxy group, 4-oxazolyl Ruoxy group, 5-oxazolyloxy group, 3-isoxazolyloxy group, 4-isoxazolyloxy group, 5-isoxazolyloxy group, 2-thiazolyloxy group, 4-thiazolyloxy group, 5 -Thiazolyloxy group, 3-isothiazolyloxy group, 4-isothiazolyloxy group, 5-isothiazolyloxy group, 2-imidazolyloxy group, 4-imidazolyloxy group, 2-pyridyloxy group, 3-pyridyloxy group Group, 4-pyridyloxy group and the like.
  • Examples of the alkyl group having 2 to 20 carbon atoms containing at least one ether structure include a linear or branched alkyl group in which at least one methylene group is substituted with an oxygen atom.
  • the methylene group bonded to the fluorene skeleton is not substituted with an oxygen atom, and the adjacent methylene group is not substituted with an oxygen atom at the same time.
  • Such a group is preferably a group represented by the formula (A) in view of availability of the raw material compound, and among these, a group represented by the formula (B) is more preferable. .
  • R A represents a linear or branched alkylene group having 1 to 4 carbon atoms
  • R B represents a linear or branched chain having 1 to [20- (the number of carbons of R A ) ⁇ r]
  • r is an integer of 1 to 9.
  • r is preferably 2 or more, more preferably 3 or more, and the availability of the raw material compound From the viewpoint, it is preferably 5 or less, more preferably 4 or less.
  • alkyl group having 2 to 20 carbon atoms including at least one ether structure examples include —CH 2 OCH 3 , —CH 2 OCH 2 CH 3 , —CH 2 O (CH 2 ) 2 CH 3 , —CH 2 OCH (CH 3 ) 2 , -CH 2 O (CH 2 ) 3 CH 3 , -CH 2 OCH 2 CH (CH 3 ) 2 , -CH 2 OC (CH 3 ) 3 , -CH 2 O (CH 2 ) 4 CH 3 , -CH 2 OCH (CH 3 ) (CH 2 ) 2 CH 3 , -CH 2 O (CH 2 ) 2 CH (CH 3 ) 2 , -CH 2 OCH (CH 3 ) (CH 2 ) 3 CH 3 , -CH 2 O (CH 2 ) 5 CH 3 , -CH 2 OCH 2 CH (CH 3 ) (CH 2 ) 2 CH 3 , -CH 2 O (CH 2 ) 2 CH (CH 3 ) CH 2 CH 3 ,
  • R 1 and R At least one of 2 is the alkyl group, alkoxy group, alkenyloxy group, alkynyloxy group, aryloxy group, heteroaryloxy group, or an alkyl group containing at least one ether structure.
  • One of the groups is the alkyl group, alkoxy group, alkenyloxy group, alkynyloxy group, aryloxy group, heteroaryloxy group, or an alkyl group containing at least one ether structure.
  • R 1 and R 2 contains an alkyl group or at least one ether structure
  • R 1 and R 2 are both preferably an alkyl group having 2 to 20 carbon atoms containing at least one ether structure.
  • p and q each independently represent 0 or 1, but from the viewpoint of ease of synthesis of the compound, both p and q are preferably 0 or 1.
  • R 3 and R 4 each independently represents a non-conjugated divalent organic group.
  • the non-conjugated divalent organic group is not particularly limited, but from the viewpoint of polymerizability, —R c —Ar— (wherein R c represents an alkylene group having 1 to 20 carbon atoms, Ar Represents an arylene group having 6 to 20 carbon atoms).
  • non-conjugated divalent organic group examples include, but are not limited to, the following groups.
  • R 5 represents a hydrogen atom, or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or a carbon number in which at least one hydrogen atom may be substituted with a fluorine atom.
  • R 5 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom.
  • Alkoxy group alkenyloxy group having 2-20 carbon atoms, alkynyloxy group having 2-20 carbon atoms, aryl group having 6-20 carbon atoms, aralkyl group having 7-20 carbon atoms, alkylaralkyl group having 8-20 carbon atoms And a heteroaryl group having 2 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, or a heteroaryloxy group having 2 to 20 carbon atoms.
  • R 6 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, wherein at least one hydrogen atom is substituted with a fluorine atom,
  • An alkoxy group having 1 to 20 carbon atoms, an alkenyloxy group having 2 to 20 carbon atoms, an alkynyloxy group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, and 8 carbon atoms Represents an alkylaralkyl group having 20 carbon atoms, a heteroaryl group having 2-20 carbon atoms, an aryloxy group having 6-20 carbon atoms, or a heteroaryloxy group having 2-20 carbon atoms.
  • aralkyl group having 7 to 20 carbon atoms examples include benzyl group, phenylethyl group, phenylpropyl group, naphthylmethyl group, naphthylethyl group, naphthylpropyl group, and the like.
  • alkyl aralkyl group having 8 to 20 carbon atoms include methylbenzyl group, ethylbenzyl group, n-propylbenzyl group, isopropylbenzyl group, n-butylbenzyl group, isobutylbenzyl group, s-butylbenzyl group, t -Butylbenzyl group, n-pentylbenzyl group, n-hexylbenzyl group, n-heptylbenzyl group, n-octylbenzyl group, n-nonylbenzyl group, n-decylbenzyl group, methylphenylethyl group, ethylphenylethyl group N-propylphenylethyl group, isopropylphenylethyl group, n-butylphenylethyl group, isobutylphenylethyl group, s-
  • an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkyl having 8 to 20 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom Aralkyl groups and the like are preferable.
  • a fluorine atom-containing group is provided outside the conjugated system, the electronic state of the polymer is not affected. Therefore, the number of carbon atoms in which at least one hydrogen atom in the alkyl part is substituted with a fluorine atom is 8
  • An alkylaralkyl group of ⁇ 20 is preferred.
  • trifluoromethyl group 2,2,2-trifluoroethyl group, pentafluoroethyl group, 2,2,3,3-tetrafluoropropyl group, 2,2,3,3,3-penta Fluoropropyl group, heptafluoropropyl group, 2,2,2-trifluoro-1- (trifluoromethyl) ethyl group, nonafluorobutyl group, 4,4,4-trifluorobutyl group, undecafluoropentyl group, 2,2,3,3,4,4,5,5,5-nonafluoropentyl group, 2,2,3,3,4,4,5,5-octafluoropentyl group, tridecafluorohexyl group, 2,2,3,3,4,4,5,5,6,6,6-undecafluorohexyl group 2,2,3,3,4,4,5,5,6,6-deca Fluorohexyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl
  • each R independently represents a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 , or 2 to 20 carbon atoms.
  • Z 1 is a halogen atom, a nitro group, a cyano group, or an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, or an alkoxy having 1 to 20 carbon atoms, which may be substituted with Z 3.
  • Z 2 is a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 3.
  • Z 3 represents a halogen atom, a nitro group or a cyano group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R is preferably a hydrogen atom, a halogen atom, a nitro group, a cyano group or an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 , and a hydrogen atom, a fluorine atom or a carbon which may be substituted with Z 1
  • An alkyl group having 1 to 4 is more preferable, and a hydrogen atom is most preferable.
  • the ratio of the repeating unit represented by the formula (1) in the polymer to the repeating unit represented by the formula (2) and the repeating unit represented by the formula (3) is a molar ratio.
  • the total of the repeating unit represented by the formula (2) and the repeating unit represented by the formula (3) is about 1 to 4 with respect to the repeating unit 1 represented by the formula (1).
  • the ratio of the repeating unit represented by the formula (2) in the polymer to the repeating unit represented by the formula (3) is represented by the formula (2).
  • the repeating unit represented by the formula (3) is preferably about 0.7 to 1.3, more preferably about 0.8 to 1.2, and still more preferably about 0.1 to 1. It is about 9 to 1.1.
  • the lower limit of the weight average molecular weight (Mw) of the fluorine atom-containing polymer of the present invention is preferably 1,000, more preferably 5,000, and still more preferably 10 from the viewpoint of improving the charge transport property of the polymer.
  • the upper limit is preferably 200,000, more preferably 150,000, and still more preferably 100,000 from the viewpoint of improving the solubility of the polymer.
  • Mw and number average molecular weight (Mn) are weight average molecular weights in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the fluorine atom-containing polymer of the present invention is represented by a fluorene derivative that gives a repeating unit represented by the formula (1), a fluorene derivative that gives a repeating unit represented by the formula (2), and a formula (3). It can be synthesized by condensation polymerization with a fluorene derivative giving a repeating unit.
  • a fluorene derivative represented by the formula (1 ′), a fluorene derivative represented by the formula (2 ′), a fluorene derivative represented by the formula (3 ′), and It can be synthesized by the coupling reaction of Hereinafter, the case of synthesizing by the Suzuki-Miyaura coupling reaction will be described as an example.
  • R 1 to R 6 , R, p and q are the same as described above.
  • X A each independently represents a halogen atom or a pseudohalogen group.
  • X B independently represents a group represented by the following formula (4) or (5).
  • a 1 and A 2 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms.
  • a 3 represents an alkanediyl having 1 to 20 carbon atoms. Represents a group or an arylene group having 6 to 20 carbon atoms.
  • halogen atom alkyl group and aryl group are the same as those described above.
  • pseudohalogen group examples include fluoroalkylsulfonyloxy groups such as methanesulfonyloxy group, trifluoromethanesulfonyloxy group, and nonafluorobutanesulfonyloxy group; aromatic sulfonyloxy groups such as benzenesulfonyloxy group and toluenesulfonyloxy group, and the like. It is done.
  • alkanediyl group having 1 to 20 carbon atoms examples include methylene group, ethylene group, propane-1,2-diyl group, propane-1,3-diyl group, 2,2-dimethylpropane-1,3-diyl group, 2-ethyl-2-methylpropane-1,3-diyl group, 2,2-diethylpropane-1,3-diyl group, 2-methyl-2-propylpropane-1,3-diyl group, butane-1, 3-diyl group, butane-2,3-diyl group, butane-1,4-diyl group, 2-methylbutane-2,3-diyl group, 2,3-dimethylbutane-2,3-diyl group, pentane- 1,3-diyl group, pentane-1,5-diyl group, pentane-2,3-diyl group, pentane-2,4-diyl group
  • Examples of the arylene group having 6 to 20 carbon atoms include 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, 1,8-naphthylene group, 1,2-anthrylene group, 2,3 -Anthrylene group, 1,2-phenanthrylene group, 3,4-phenanthrylene group, 9,10-phenanthrylene group and the like.
  • the condensation reaction can be performed without a solvent, but is usually performed using a solvent. Any solvent can be used as long as it does not inhibit the reaction. Examples thereof include cyclic ethers such as tetrahydrofuran and 1,4-dioxane; N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc ), Amides such as N-methyl-2-pyrrolidone (NMP); ketones such as methyl isobutyl ketone and cyclohexanone; halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane and chlorobenzene; benzene, toluene, xylene and the like And aromatic hydrocarbons. These solvents can be used alone or in combination of two or more. Of these, 1,4-dioxane, toluene, xylene and the like are particularly preferable.
  • Examples of the catalyst used in the condensation reaction include [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride (PdCl 2 (dppf)), tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ), Bis (triphenylphosphine) dichloropalladium (Pd (PPh 3 ) 2 Cl 2 ), bis (benzylideneacetone) palladium (Pd (dba) 2 ), tris (benzylideneacetone) dipalladium (Pd 2 (dba) 3 )
  • palladium catalysts such as bis (tri-t-butylphosphine) palladium (Pd (Pt-Bu 3 ) 2 ) and palladium (II) acetate (Pd (OAc) 2 ).
  • the charging ratio of the fluorene derivative represented by the formula (1 ′), the fluorene derivative represented by the formula (2 ′), and the fluorene derivative represented by (3 ′) is a molar ratio, and the formula (1 ′
  • the total number of moles of the fluorene derivative represented by the formula (2 ′) and the fluorene derivative represented by (3 ′) is preferably about 0.7 to 1.3 with respect to the fluorene derivative 1 represented by It is more preferably about 0.8 to 1.2.
  • the reaction temperature during the condensation is usually 40 to 200 ° C.
  • the reaction time is variously selected depending on the reaction temperature, but is usually about 30 minutes to 50 hours.
  • the fluorene derivative represented by the formula (1 ′) can be synthesized using a compound represented by the following formula (6) as a starting material.
  • a compound represented by formula (6), a compound represented by formula (7-1), and a compound represented by formula (7-2) are reacted.
  • an intermediate represented by the formula (8) is synthesized.
  • X A , X B , R 1 , R 2 and R are the same as described above.
  • the charge ratio of the compound represented by Formula (6), the compound represented by Formula (7-1), and the compound represented by Formula (7-2) is: In terms of molar ratio, the compound represented by formula (7-1) and the compound represented by (7-2) are about 1 to 3 with respect to compound 1 represented by formula (6).
  • Examples of the solvent used in the reaction represented by Scheme B include dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, dioxane, acetonitrile, toluene and the like.
  • Dimethyl sulfoxide is preferred because the starting compound is well dissolved and the reaction proceeds smoothly.
  • the reaction temperature is usually from ⁇ 50 ° C. to the boiling point of the solvent used, but is preferably in the range of 0 to 100 ° C.
  • the reaction time is usually 0.1 to 100 hours.
  • the fluorene derivative represented by the formula (1 ′) in which p and q are 0 is obtained by reacting the intermediate represented by the formula (8) with the compound represented by the formula (9) in the presence of a catalyst.
  • the intermediate represented by (10) can be synthesized (Scheme C) and further halogenated using a halogenating agent (Scheme D).
  • the charge ratio of the compound represented by Formula (8) and the compound represented by Formula (9) is a molar ratio with respect to Compound 1 represented by Formula (8).
  • the number of compounds represented by formula (9) is about 2 to 4.
  • Examples of the catalyst used in the reaction represented by Scheme C include the palladium catalyst described above.
  • Examples of the solvent used in the reaction represented by Scheme C include toluene, dioxane, N, N-dimethylformamide, N, N-dimethylacetamide and the like. From the viewpoint of reactivity, toluene, dioxane and the like are preferable.
  • the reaction temperature is usually from ⁇ 50 ° C. to the boiling point of the solvent used, but is preferably in the range of 0 to 140 ° C.
  • the reaction time is usually 0.1 to 100 hours.
  • a known halogenating agent can be used, and specific examples include N-bromosuccinimide and the like.
  • the amount of the halogenating agent used is about 4 to 6 with respect to the compound 1 represented by the formula (10) in molar ratio.
  • Examples of the solvent used in the reaction represented by Scheme D include dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, dioxane, acetonitrile, toluene, chloroform and the like.
  • Dimethyl sulfoxide, N, N-dimethylformamide, chloroform and the like are preferred because the raw material compound is well dissolved and the reaction proceeds smoothly.
  • the reaction temperature is usually from ⁇ 50 ° C. to the boiling point of the solvent used, but is preferably in the range of 0 to 140 ° C.
  • the reaction time is usually 0.1 to 100 hours.
  • a fluorene derivative represented by the formula (1 ′) in which p and q are 1 is obtained by reacting a compound represented by the formula (11) with a compound represented by the formula (12) in the presence of a catalyst. 13) After synthesizing the intermediate represented by (13) (Scheme E), the intermediate represented by Formula (8) and the intermediate represented by Formula (13) are reacted in the presence of a catalyst to obtain Formula (14). ) Is synthesized (Scheme F) and further halogenated using a halogenating agent (Scheme G).
  • the charge ratio of the compound represented by Formula (11) and the compound represented by Formula (12) is a molar ratio with respect to Compound 1 represented by Formula (11).
  • the number of compounds represented by formula (12) is about 1 to 3.
  • Examples of the catalyst used in the reaction of Scheme E include the palladium catalyst described above.
  • Examples of the solvent used in the reaction of Scheme E include dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, dioxane, acetonitrile, toluene and the like. From the viewpoints of solubility and reactivity of the raw material compound, dioxane is preferred.
  • the reaction temperature is usually from ⁇ 50 ° C. to the boiling point of the solvent used, but is preferably in the range of 0 to 100 ° C.
  • the reaction time is usually 0.1 to 100 hours.
  • the charge ratio of the compound represented by Formula (8) and the compound represented by Formula (13) is a molar ratio with respect to Compound 1 represented by Formula (8).
  • the number of compounds represented by formula (13) is about 2 to 4.
  • Examples of the catalyst used in the reaction of Scheme F include those described in the reaction represented by Scheme C.
  • the reaction temperature is usually from ⁇ 50 ° C. to the boiling point of the solvent used, but is preferably in the range of 0 to 140 ° C.
  • the reaction time is usually 0.1 to 100 hours.
  • Examples of the halogenating agent and the solvent used in the reaction represented by Scheme G include the same as those described in the reaction represented by Scheme D.
  • the amount of the halogenating agent used is about 4 to 6 with respect to the compound 1 represented by the formula (14) in terms of molar ratio.
  • the reaction temperature is usually from ⁇ 50 ° C. to the boiling point of the solvent used, but is preferably in the range of 0 to 140 ° C.
  • the reaction time is usually 0.1 to 100 hours.
  • the target compound After completion of the reaction represented by each of the above schemes, it may be used as it is in the next step without being purified, or may be purified.
  • the target compound When purifying, the target compound can be obtained according to a conventional method.
  • the fluorene derivative represented by the formula (2 ′) is obtained by reacting the compound represented by the formula (15) with the compounds represented by the formulas (16-1) and (16-2). After synthesizing the represented intermediate (Scheme H), it can be synthesized by reacting this with the compound represented by Formula (12) in the presence of a catalyst (Scheme I).
  • a fluorene derivative represented by the formula (2 ′′) is obtained by reacting a compound represented by the formula (15) with a compound represented by the formula (16-1 ′). After synthesizing the intermediate represented by (17 ′) (Scheme H ′), it can be synthesized by reacting this with the compound represented by Formula (12) in the presence of a catalyst (Scheme I).
  • Ar, X A , X B , R c , R 3 and R 4 are the same as described above.
  • the charge ratio of the compound represented by Formula (15) to the compound represented by Formulas (16-1) and (16-2) is a molar ratio represented by Formula (15).
  • the number of the compounds represented by the formulas (16-1) and (16-2) is about 1 to 3 with respect to the compound 1 represented by
  • the charge ratio of the compound represented by Formula (15) and the compound represented by Formula (16-1 ′) is a molar ratio represented by Formula (15).
  • the amount of the compound represented by the formula (16-1 ′) is about 1 to 3 with respect to the compound 1.
  • Examples of the solvent used in the reaction represented by Schemes H and H ′ include dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, dioxane, acetonitrile, toluene and the like. From the viewpoint of reactivity, tetrahydrofuran, N, N-dimethylformamide and the like are preferable.
  • the reaction temperature is usually from ⁇ 50 ° C. to the boiling point of the solvent used, but is preferably in the range of 0 to 140 ° C.
  • the reaction time is usually 0.1 to 100 hours.
  • the charge ratio of the compound represented by Formula (17) and the compound represented by Formula (12) is a molar ratio with respect to Compound 1 represented by Formula (17).
  • the number of compounds represented by formula (12) is about 1 to 3.
  • the charging ratio of the compound represented by Formula (17 ′) and the compound represented by Formula (12) is a molar ratio represented by Formula (17 ′).
  • the number of the compounds represented by the formula (12) is about 1 to 3 with respect to the compound 1.
  • the reaction temperature is usually from ⁇ 50 ° C. to the boiling point of the solvent used, but is preferably in the range of 0 to 140 ° C.
  • the reaction time is usually 0.1 to 100 hours.
  • the target compound After completion of the reaction represented by each of the above schemes, it may be used as it is in the next step without being purified, or may be purified.
  • the target compound When purifying, the target compound can be obtained according to a conventional method.
  • the fluorene derivative represented by the formula (3 ′) is obtained by reacting the compound represented by the formula (6) with the compounds represented by the formulas (18-1) and (18-2). After the represented intermediate is synthesized (Scheme J), it can be synthesized by reacting this with the compound represented by the formula (12) in the presence of a catalyst (Scheme K).
  • Scheme J the represented intermediate is synthesized (Scheme J)
  • Scheme K the represented intermediate is synthesized by reacting this with the compound represented by the formula (12) in the presence of a catalyst.
  • X A , X B , R 5 and R 6 are the same as described above.
  • the charge ratio of the compound represented by Formula (6) and the compound represented by Formula (18-1) and (18-2) is a molar ratio represented by Formula (6).
  • the number of the compounds represented by the formulas (18-1) and (18-2) is about 1 to 3 with respect to the compound 1 represented by
  • Examples of the solvent used in the reaction represented by Scheme J include the same solvents as those described in the reaction represented by Scheme H.
  • the charging ratio of the compound represented by Formula (19) and the compound represented by Formula (12) is a molar ratio with respect to Compound 1 represented by Formula (19).
  • the number of compounds represented by formula (12) is about 1 to 3.
  • Examples of the catalyst and the solvent used in the reaction represented by Scheme K include the same as those described in the reaction represented by Scheme E.
  • the target compound After completion of the reaction represented by each of the above schemes, it may be used as it is in the next step without being purified, or may be purified.
  • the target compound When purifying, the target compound can be obtained according to a conventional method.
  • the monomer represented by the formula (1 ′) is represented by the monomer represented by the formula (2 ′) or the formula (3 ′). Since the monomer represented by the formula (2 ′) does not react with the monomer represented by the formula (3 ′), it can be represented by the formula (1).
  • the repeating unit adjacent to the repeating unit is either the repeating unit represented by the formula (2) or the repeating unit represented by the formula (3). For the same reason, both the repeating unit adjacent to the repeating unit represented by formula (2) and the repeating unit adjacent to the repeating unit represented by formula (3) are both the repeating units represented by formula (1). It is.
  • the fluorine atom-containing polymer of the present invention can be suitably used as a charge transport material.
  • charge transportability is synonymous with conductivity and is synonymous with hole transportability.
  • the charge transporting substance may be a substance having a charge transporting property per se, or a substance having a charge transporting property when used together with a dopant.
  • the charge transporting varnish may be one that has charge transporting property itself, and the solid film obtained thereby may have charge transporting property.
  • the charge transporting varnish of the present invention includes a charge transporting material composed of the fluorine atom-containing polymer, a charge transporting material not containing a fluorine atom, a dopant composed of a heteropoly acid, and an organic solvent.
  • charge transporting substances that do not contain fluorine atoms examples include charge transporting oligomers such as aniline derivatives, thiophene derivatives, and pyrrole derivatives.
  • the molecular weight of the charge transporting oligomer is usually 200 to 5,000, but is preferably 300 or more, more preferably 400 or more, and still more preferably 500 from the viewpoint of preparing a varnish that gives a thin film having high charge transporting properties. From the viewpoint of preparing a uniform varnish that gives a thin film with high flatness, it is preferably 4,000 or less, more preferably 3,000 or less, and even more preferably 2,000 or less.
  • an aniline derivative is preferable in consideration of the solubility in an organic solvent and the balance of charge transporting properties of the obtained thin film.
  • the aniline derivative include oligoaniline derivatives described in JP-A No. 2002-151272, oligoaniline compounds described in WO 2004/105446, oligoaniline compounds described in WO 2008/032617, and WO 2008/032616. Oligoaniline compounds described in No. 2013, aryl diamine compounds described in International Publication No. 2013/042623, and the like.
  • aniline derivative represented by following formula (20) can also be used conveniently.
  • X 1 represents —NY 1 —, —O—, —S—, — (CR 17 R 18 ) L — or a single bond, and when m or n is 0, NY 1 -is represented.
  • Y 1 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 11 , or Z 1 Represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with 12 ;
  • an alkyl group having 1 to 20 carbon atoms an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and a heteroaryl group having 2 to 20 carbon atoms.
  • R 17 and R 18 are each independently a hydrogen atom, chlorine atom, bromine atom, iodine atom, nitro group, cyano group, amino group, aldehyde group, hydroxy group, thiol group, sulfonic acid group, carboxylic acid group
  • Z may be substituted with 11, alkyl group having 1 to 20 carbon atoms, alkenyl or alkynyl group having 2 to 20 carbon atoms having 2 to 20 carbon atoms, optionally substituted by Z 12, C 6 -C 20 aryl groups or heteroaryl groups having 2 to 20 carbon atoms, or —NHY 2 , —NY 3 Y 4 , —C (O) Y 5 , —OY 6 , —SY 7 , —SO 3 Y 8 , —C It represents a group (O) OY 9 , —OC (O) Y 10 , —C (O) NHY 11 or —C (O) NY 12 Y 13
  • Y 2 to Y 13 are each independently an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 11 , or Z Represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with 12 ;
  • Z 11 may be substituted with a chlorine atom, bromine atom, iodine atom, nitro group, cyano group, amino group, aldehyde group, hydroxy group, thiol group, sulfonic acid group, carboxylic acid group, or Z 13 .
  • An aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms is represented.
  • Z 12 may be substituted with chlorine atom, bromine atom, iodine atom, nitro group, cyano group, amino group, aldehyde group, hydroxy group, thiol group, sulfonic acid group, carboxylic acid group, or Z 13 ,
  • An alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms is represented.
  • Z 13 represents a chlorine atom, bromine atom, iodine atom, nitro group, cyano group, amino group, aldehyde group, hydroxy group, thiol group, sulfonic acid group, or carboxylic acid group.
  • alkyl group, alkenyl group, alkynyl group, aryl group and heteroaryl group of R 17 , R 18 and Y 2 to Y 13 are the same as those described above.
  • R 17 and R 18 a hydrogen atom or an alkyl group Z 11 to have ⁇ 1 to 20 carbon atoms substituted by are preferred, and a methyl group which may be substituted with a hydrogen atom or Z 11 More preferred are both hydrogen atoms.
  • L represents the number of groups represented by — (CR 17 R 18 ) — and is an integer of 1 to 20, preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 2. 1 is optimal.
  • the plurality of R 17 may be the same or different from each other, and the plurality of R 18 may be the same or different from each other.
  • X 1 is preferably —NY 1 — or a single bond.
  • Y 1 hydrogen atom or an alkyl group of Z 11 has been having 1 to 20 carbon atoms substituted with, more preferably a methyl group which may be substituted with a hydrogen atom or a Z 11, a hydrogen atom Is the best.
  • R 11 to R 16 are each independently a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, a nitro group, a cyano group, an amino group, an aldehyde group, a hydroxy group, a thiol group, or a sulfonic acid group.
  • Z 11 an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, or substituted by Z 12
  • Preferred is an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, or —NHY 2 , —NY 3 Y 4 , —C (O) Y 5 , —OY 6 , —SY 7 , —SO 3 represents Y 8 , —C (O) OY 9 , —OC (O) Y 10 , —C (O) NHY 11 or —C (O) NY 12 Y 13 (Y 2 to
  • R 11 to R 14 are each a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 11 , or a carbon number 6 which may be substituted with Z 12.
  • An aryl group having ⁇ 14 is preferred, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms optionally substituted with Z 11 is more preferred, and all hydrogen atoms are optimal.
  • R 15 and R 16 are each a hydrogen atom, an alkyl group having 1 to 10 carbon atoms that may be substituted with Z 11 , an aryl group having 6 to 14 carbon atoms that may be substituted with Z 12 , or preferably optionally substituted diphenylamino group (-NY 3 Y 4 groups Y 3 and Y 4 is a phenyl group optionally substituted by Z 12) with Z 12, a hydrogen atom, or substituted with Z 12
  • An optionally substituted diphenylamino group is more preferred, and at the same time, a hydrogen atom or a diphenylamino group is even more preferred.
  • R 11 to R 14 may be hydrogen atoms and alkyl groups having 1 to 10 carbon atoms which may be substituted with Z 11 , and R 15 and R 16 may be substituted with hydrogen atoms and Z 12.
  • a good diphenylamino group, X 1 is —NY 1 — or a single bond, and Y 1 is preferably a hydrogen atom or a combination of methyl groups, R 11 to R 14 are hydrogen atoms, and R 15 and R 16 are simultaneously hydrogen atoms or A combination of a diphenylamino group, X 1 is —NH— or a single bond is more preferable.
  • m and n each independently represent an integer of 0 or more and satisfy 1 ⁇ m + n ⁇ 20.
  • the Y 1 ⁇ Y 13 and R 11 ⁇ R 18, Z 11 is preferably an aryl group which may having 6 to 20 carbon atoms optionally substituted by Z 13, a phenyl group which may be substituted with Z 13 Is more preferred and not present (ie, unsubstituted).
  • Z 12 is preferably an alkyl group which may having 1 to 20 carbon atoms substituted with Z 13, more preferably an alkyl group having 1 to 4 carbon atoms optionally substituted by Z 13, the absence (i.e. Is unsubstituted).
  • Z 13 is optimally absent (ie, unsubstituted).
  • the alkyl group, alkenyl group and alkynyl group preferably have 10 or less carbon atoms, more preferably 6 or less, and even more preferably 4 or less.
  • the carbon number of the aryl group and heteroaryl group is preferably 14 or less, more preferably 10 or less, and even more preferably 6 or less.
  • the method for synthesizing the aniline derivative is not particularly limited, but Bulletin of Chemical Society of Japan, 67, pp. 1749-1752 (1994), Synthetic Metals, 84, pp. 119-120 (1997), Thin Solid Films, 520 (24), pp. 157 7157-7163 (2012), International Publication No. 2008/032617, International Publication No. 2008/032616, International Publication No. 2008/129947, International Publication No. 2013/084664, etc. The method is mentioned.
  • aniline derivative represented by the formula (20) include, but are not limited to, those represented by the following formula.
  • DPA represents a diphenylamino group
  • Ph represents a phenyl group
  • TPA represents a p- (diphenylamino) phenyl group.
  • the content of the charge transporting substance in the varnish of the present invention is preferably about 0.1 to 20% by mass with respect to the entire varnish from the viewpoint of suppressing the precipitation of the charge transporting substance.
  • the use ratio of the charge transporting substance composed of a fluorine atom-containing polymer and the charge transporting substance not containing a fluorine atom is a mass ratio in consideration of further improving the luminance characteristics of the obtained organic EL element.
  • the charge transport material 1 containing no fluorine atom the charge transport material comprising a fluorine atom-containing polymer is preferably about 0.1 to 5, more preferably about 0.5 to 3, and still more preferably 0. It is about .5 to 1.
  • the charge transport varnish of the present invention contains a heteropolyacid as a dopant. Therefore, not only high hole acceptability from transparent electrodes represented by indium tin oxide (ITO) and indium zinc oxide (IZO), but also high hole acceptability from metal anodes represented by aluminum. A thin film having excellent charge transportability can be obtained.
  • the heteropolyacid typically has a structure in which a hetero atom is located at the center of a molecule, which is represented by a chemical structure of Keggin type represented by formula (A1) or Dawson type represented by formula (A2), and vanadium ( V), molybdenum (Mo), tungsten (W) and other oxoacids such as isopolyacids, and polyacids formed by condensation of oxoacids of different elements.
  • oxo acids of different elements mainly include silicon (Si), phosphorus (P), and arsenic (As) oxo acids.
  • heteropolyacids include phosphomolybdic acid, silicomolybdic acid, phosphotungstic acid, silicotungstic acid, and phosphotungstomolybdic acid. You may use these individually by 1 type or in combination of 2 or more types.
  • the heteropolyacid used by this invention is available as a commercial item, and can also be synthesize
  • the heteropolyacid is preferably phosphotungstic acid or phosphomolybdic acid, and more preferably phosphotungstic acid.
  • a dopant consists of 2 or more types of heteropolyacids, it is preferable that at least 1 is the phosphotungstic acid or phosphomolybdic acid among the 2 or more types of heteropolyacid, and it is more preferable that it is phosphotungstic acid.
  • heteropolyacids are those obtained as commercially available products or known synthesis methods, even if the number of elements is large or small from the structure represented by the general formula in quantitative analysis such as elemental analysis. Therefore, as long as it is appropriately synthesized, it can be used in the present invention.
  • phosphotungstic acid is generally represented by the chemical formula H 3 (PW 12 O 40 ) ⁇ nH 2 O
  • phosphomolybdic acid is represented by the chemical formula H 3 (PMo 12 O 40 ) ⁇ nH 2 O, respectively.
  • P (phosphorus), O (oxygen), W (tungsten) or Mo (molybdenum) in this formula is large or small, it is obtained as a commercial product, or As long as it is appropriately synthesized according to a known synthesis method, it can be used in the present invention.
  • the mass of the heteropolyacid defined in the present invention is not the mass of pure phosphotungstic acid (phosphotungstic acid content) in the synthesized product or commercially available product, but a commercially available form and a known synthesis. In a form that can be isolated by the method, it means the total mass in a state containing hydration water and other impurities.
  • the heteropolyacid contained in the charge transporting varnish of the present invention is a charge that does not contain fluorine atoms in mass ratio, considering that a charge transporting thin film giving high brightness can be obtained with good reproducibility when used in an organic EL device.
  • the transporting substance 1 it is preferably about 2 to 10, more preferably about 2.5 to 9.0.
  • Organic solvent As the organic solvent used when preparing the charge transporting varnish, a highly soluble solvent that can dissolve the charge transporting substance and the dopant well can be used.
  • Examples of such highly soluble solvents include organic solvents such as cyclohexanone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, and 1,3-dimethyl-2-imidazolidinone. However, it is not limited to these. These solvents can be used singly or in combination of two or more, and the amount used can be 5 to 100% by mass in the total solvent used in the varnish.
  • both the charge transporting substance and the dopant are completely dissolved in the solvent.
  • the varnish has a viscosity of 10 to 200 mPa ⁇ s, particularly 35 to 150 mPa ⁇ s at 25 ° C., and a boiling point of 50 to 300 ° C., particularly 150 to 250 ° C. at normal pressure (atmospheric pressure).
  • At least one high-viscosity organic solvent can be contained.
  • Examples of the high viscosity organic solvent include cyclohexanol, ethylene glycol, ethylene glycol diglycidyl ether, 1,3-octylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, 1,3-butanediol, Examples include 2,3-butanediol, 1,4-butanediol, propylene glycol, hexylene glycol, and the like, but are not limited thereto.
  • the addition ratio of the high-viscosity organic solvent to the entire solvent used in the varnish of the present invention is preferably within a range where no solid is precipitated, and the addition ratio is preferably 5 to 90% by mass as long as no solid is precipitated.
  • solvents are used in an amount of 1 to 90% by weight, preferably 1 to 90%, based on the total solvent used in the varnish. It is also possible to mix at a ratio of 50% by mass.
  • solvents examples include propylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether
  • solvents include, but are not limited to, ether acetate, diethylene glycol monoethyl ether, diacetone alcohol, ⁇ -butyrolactone, ethyl lactate, and n-hexyl acetate. These solvents can be used alone or in combination of two or more.
  • the viscosity of the varnish of the present invention is appropriately set according to the thickness of the thin film to be produced and the solid content concentration, but is usually 1 to 50 mPa ⁇ s at 25 ° C.
  • the solid content concentration of the charge transporting varnish in the present invention is appropriately set in consideration of the viscosity and surface tension of the varnish, the thickness of the thin film to be produced, etc., but is usually 0.1 to 10.0 mass. In consideration of improving the coatability of the varnish, it is preferably 0.5 to 5.0% by mass, more preferably 1.0 to 3.0% by mass.
  • solid content means what remove
  • the method for preparing the varnish is not particularly limited.
  • the charge transporting material comprising the fluorine atom-containing polymer of the present invention is first dissolved in a solvent, and the charge transporting material does not contain a fluorine atom, or a heteropolyacid.
  • the method of adding the dopant which consists of one by one, and the method of dissolving the mixture of these substances in a solvent are mentioned.
  • organic solvents when there are a plurality of organic solvents, for example, these are first dissolved in a solvent that well dissolves the charge transporting material made of the fluorine atom-containing polymer of the present invention and the charge transporting material not containing a fluorine atom, Other solvents may be added thereto, and a charge transporting substance composed of a fluorine atom-containing polymer, a charge transporting substance not containing a fluorine atom, or the like are dissolved in a mixed solvent of a plurality of organic solvents sequentially or simultaneously. You may let them.
  • the charge transporting varnish is composed of a charge transporting material comprising the fluorine atom-containing polymer of the present invention, a charge transporting material not containing fluorine atoms, and the like. After dissolving in a solvent, it is desirable to filter using a sub-micron order filter or the like.
  • a charge transporting thin film can be formed on a base material by applying the charge transporting varnish of the present invention on the base material and baking it.
  • Examples of the varnish coating method include, but are not limited to, a dip method, a spin coating method, a transfer printing method, a roll coating method, a brush coating method, an ink jet method, a spray method, and a slit coating method. It is preferable to adjust the viscosity and surface tension of the varnish depending on the coating method.
  • the firing atmosphere is not particularly limited, and a thin film having a uniform film formation surface and high charge transportability can be obtained not only in the air atmosphere but also in an inert gas such as nitrogen or in a vacuum. it can.
  • the firing temperature is appropriately set within a range of about 100 to 260 ° C. in consideration of the use of the obtained thin film, the degree of charge transportability imparted to the obtained thin film, and the like.
  • the temperature is preferably about 140 to 250 ° C, more preferably about 150 to 230 ° C.
  • two or more steps of temperature change may be applied for the purpose of developing a higher uniform film forming property or causing the reaction to proceed on the substrate.
  • the heating may be performed using an appropriate device such as a hot plate or an oven.
  • the film thickness of the charge transporting thin film is not particularly limited, and can be about 5 to 200 nm when used in an organic EL device.
  • a charge transporting thin film as a hole injecting and transporting layer, considering that the degree of phase separation of the two kinds of charge transporting materials used in the present invention is increased to further increase the luminance characteristics and lifetime characteristics of the organic EL element, 10 to 100 nm is preferable, 20 to 50 nm is more preferable, and 25 to 45 nm is even more preferable.
  • As a method of changing the film thickness there are methods such as changing the solid content concentration in the varnish and changing the amount of the solution on the substrate during coating.
  • Organic EL device examples of materials and methods for producing an OLED element using the charge transporting varnish of the present invention include, but are not limited to, the following.
  • the electrode substrate to be used is preferably cleaned in advance by liquid cleaning with a detergent, alcohol, pure water or the like.
  • the anode substrate is subjected to surface treatment such as UV ozone treatment or oxygen-plasma treatment immediately before use. It is preferable.
  • the surface treatment may not be performed.
  • An example of a method for producing an OLED element having a functional single film (hole injection transport layer) composed of a thin film obtained from the charge transport varnish of the present invention is as follows.
  • the charge transporting varnish of the present invention is applied on the anode substrate and baked by the above-described method to produce a functional single film on the electrode. This is introduced into a vacuum deposition apparatus, and a light emitting layer, an electron transport layer, an electron injection layer, and a cathode metal are sequentially deposited to form an OLED element. If necessary, an electron blocking layer may be provided between the light emitting layer and the hole injecting and transporting layer.
  • anode material examples include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), metal anodes typified by aluminum, alloys thereof, and the like. What performed the chemical conversion process is preferable. Polythiophene derivatives and polyaniline derivatives having high charge transporting properties can also be used.
  • metals constituting the metal anode include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, cadmium.
  • Materials for forming the light emitting layer include tris (8-quinolinolato) aluminum (III) (Alq 3 ), bis (8-quinolinolato) zinc (II) (Znq 2 ), bis (2-methyl-8-quinolinolato)- 4- (p-phenylphenolate) aluminum (III) (BAlq), 4,4′-bis (2,2-diphenylvinyl) biphenyl, 9,10-di (naphthalen-2-yl) anthracene, 2-t -Butyl-9,10-di (naphthalen-2-yl) anthracene, 2,7-bis [9,9-di (4-methylphenyl) -fluoren-2-yl] -9,9-di (4- Methylphenyl) fluorene, 2-methyl-9,10-bis (naphthalen-2-yl) anthracene, 2- (9,9-spirobifluoren-2-yl) -9,9-spir
  • Materials for forming the electron injection layer include lithium oxide (Li 2 O), magnesium oxide (MgO), alumina (Al 2 O 3 ), lithium fluoride (LiF), sodium fluoride (NaF), magnesium fluoride ( MgF 2 ), cesium fluoride (CsF), strontium fluoride (SrF 2 ), molybdenum trioxide (MoO 3 ), aluminum, lithium acetylacetonate (Li (acac)), lithium acetate, lithium benzoate, etc. .
  • cathode material examples include aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium and the like.
  • Examples of the material for forming the electron block layer include tris (phenylpyrazole) iridium.
  • the method for producing a PLED element using the charge transporting varnish of the present invention is not particularly limited, and examples thereof include the following methods.
  • the functionality comprising the thin film obtained from the charge transporting varnish of the present invention by forming the light emitting polymer layer.
  • a PLED element having a single film can be produced. Specifically, the charge transporting varnish of the present invention is applied on the anode substrate, a functional single film is produced by the above-described method, a light emitting polymer layer is formed thereon, and a cathode electrode is further deposited. Thus, a PLED element is obtained.
  • the same materials as those used in the production of the OLED element can be used, and the same cleaning treatment and surface treatment can be performed.
  • a solvent is added to the light-emitting polymer material, or a material to which a dopant is added, and the solvent is dissolved or uniformly dispersed. After coating on the functional single film, The method of forming into a film by baking is mentioned.
  • Examples of the light-emitting polymer material include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene) (MEH). -PPV) and the like, polythiophene derivatives such as poly (3-alkylthiophene) (PAT), polyvinylcarbazole (PVCz) and the like.
  • PDAF poly (9,9-dialkylfluorene)
  • MEH 2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene
  • PVT polythiophene derivatives
  • PVCz polyvinylcarbazole
  • Examples of the solvent include toluene, xylene, chloroform and the like, and examples of the dissolution or uniform dispersion method include stirring, heating and stirring, and ultrasonic dispersion.
  • the application method is not particularly limited, and examples thereof include an inkjet method, a spray method, a dip method, a spin coating method, a transfer printing method, a roll coating method, and a brush coating method.
  • the application is preferably performed under an inert gas such as nitrogen or argon.
  • the firing method a method of heating with an oven or a hot plate under an inert gas or in a vacuum can be mentioned.
  • the organic EL device of the present invention may be sealed together with a water catching agent or the like according to a standard method in order to prevent deterioration of characteristics.
  • N-bromosuccinimide (2.73 g, 15.4 mmol) was added to a DMF solution (58 mL) of compound 2 (2.90 g, 3.7 mmol) at 0 ° C., and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, water (58 mL) was added at 0 ° C., and the organic layer was extracted with ethyl acetate, dried over sodium sulfate, and concentrated. The resulting crude product was subjected to silica gel column chromatography (eluent: hexane / ethyl acetate). (4/1 ⁇ 3/1)) to obtain compound 3 as a white solid (yield 3.95 g, yield 93%).
  • T-BuOK (6.73 g, 60 mmol) was added to a THF solution (20 mL) of fluorene (3.32 g, 20 mmol) at room temperature, and then 4-bromobenzyl bromide (11.0 g, 44 mmol) in THF (46 mL) at room temperature. ) was added dropwise and heated to reflux for 8 hours. After completion of the reaction, the mixture was allowed to cool to room temperature, and water (30 mL) was added. The organic layer is extracted with ethyl acetate, dried over magnesium sulfate, and concentrated.
  • Example 2 Charge transporting varnish B A charge transporting varnish B was obtained in the same manner as in Example 1 except that the polymer 2 was used instead of the polymer 1.
  • OLED element organic EL element
  • the substrate used for evaluating the electrical characteristics was 25 mm ⁇ 25 mm ⁇ 0.7 t of indium tin oxide patterned on the surface with a film thickness of 150 nm.
  • a glass substrate hereinafter abbreviated as ITO substrate
  • the ITO substrate was used after removing impurities on the surface using an O 2 plasma cleaning apparatus (150 W, 30 seconds).
  • Example 3 Production of OLED device using charge transporting varnish A
  • the charge transporting varnish A obtained in Example 1 was applied to an ITO substrate using a spin coater and then dried at 80 ° C for 1 minute. Further, it was baked at 230 ° C. for 15 minutes to form a uniform thin film of 30 nm on the ITO substrate.
  • tris (8-quinolinolato) aluminum (III) (Alq 3 ), lithium fluoride, and aluminum were deposited using a vapor deposition apparatus (vacuum degree 1.0 ⁇ 10 ⁇ 5 Pa). Thin films were sequentially stacked to obtain an OLED element.
  • the deposition rate was 0.2 nm / second for Alq 3 and aluminum, and 0.02 nm / second for lithium fluoride, and the film thicknesses were 40 nm, 0.5 nm, and 100 nm, respectively.
  • the characteristic was evaluated. Sealing was performed according to the following procedure.
  • the organic EL element is placed between the sealing substrates, and the sealing substrate is bonded with an adhesive (XNR5516Z-B1 manufactured by Nagase ChemteX Corporation). It was. At this time, a water catching agent (manufactured by Dynic Co., Ltd., HD-071010W-40) was housed in the sealing substrate together with the OLED element.
  • the bonded sealing substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2 ), and then annealed at 80 ° C. for 1 hour to cure the adhesive.
  • Example 4 Preparation of OLED element using charge transporting varnish B The same method as in Example 3 except that instead of the charge transporting varnish A, the charge transporting varnish B obtained in Example 2 was used. Thus, an OLED element was produced.
  • Table 1 shows the current density, luminance, and current efficiency at a driving voltage of 5V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Conductive Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 下記式(1)で表される繰り返し単位を与えるフルオレン誘導体と、下記式(2)で表される繰り返し単位を与えるフルオレン誘導体と、下記式(3)で表される繰り返し単位を与えるフルオレン誘導体との縮合重合体であるフッ素原子含有重合体を提供する。

Description

フッ素原子含有重合体及びその利用
 本発明は、フッ素原子含有重合体及びその利用に関する。
 有機エレクトロルミネッセンス(EL)素子には、電荷輸送性薄膜が用いられる。この電荷輸送性薄膜の形成方法は、蒸着法に代表されるドライプロセスと、スピンコート法に代表されるウェットプロセスとに大別される。これらの方法は、形成する薄膜の面積や、薄膜化する物質の有機溶媒への溶解性に応じて、適宜使い分けられる。
 一般的に、有機EL素子の陽極と発光層との間には、正孔注入層と言われる層と正孔輸送層と言われる層の2層がこの順序で陽極側から配置される。このような2層を設けることで効率的な電荷輸送を可能とし、高い輝度特性を有する有機EL素子を得ることができる(例えば、非特許文献1参照)。しかしその反面、有機EL素子の製造プロセスでは、通常、これら各層を形成するための独立した工程が必要となるという欠点もある。
 近年の電子デバイス分野においては、高歩留で効率よく素子を製造するため、プロセスの簡略化や素子構造の単純化が求められている。特に、素子における複数の膜を多積層化した機能性多層膜を単一膜とすることで、製造プロセスを簡略化できるだけでなく、素子構造を直接的に単純化できる。そのため、様々な電子デバイスの分野において、既存の機能性多層膜に代替可能な機能性単一膜を製造できる材料が求められている。そして、有機ELの分野においても、一般的な構造である正孔注入層と正孔輸送層とからなる機能性多層膜を、単一膜へと転換可能な材料への要求がますます高まっている。
Adachi C. et al., Jpn. J. Appl. Phys., 1988, 27(2), pp. L269-271
 本発明は、前記事情に鑑みてなされたものであり、陽極と発光層との間にそれらと接する態様で単一層として用いた場合でも優れた輝度特性を有する有機EL素子を実現できる薄膜形成用材料を提供することを目的とする。
 本発明者らは、前記目的を達成するために鋭意検討を重ねた結果、所定のフッ素原子含有重合体が有機溶媒への溶解性に優れること、並びに当該フッ素原子含有重合体からなる電荷輸送性物質、フッ素原子を含有しない電荷輸送性物質、ヘテロポリ酸からなるドーパント、及び有機溶媒を含む電荷輸送性ワニスから得られる薄膜が、陽極と発光層との間にそれらと接する態様で単一層として用いた場合でも優れた輝度特性を有する有機EL素子を与えることを見出し、本発明を完成させた。
 すなわち、本発明は、下記フッ素原子含有重合体及びその利用を提供する。
1.下記式(1)で表される繰り返し単位を与えるフルオレン誘導体と、下記式(2)で表される繰り返し単位を与えるフルオレン誘導体と、下記式(3)で表される繰り返し単位を与えるフルオレン誘導体との縮合重合体であることを特徴とするフッ素原子含有重合体。
Figure JPOXMLDOC01-appb-C000010
[式中、R1及びR2は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリールオキシ基、炭素数2~20のヘテロアリールオキシ基又は少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基を表し(ただし、R1及びR2の少なくとも一方は、前記アルキル基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、アリールオキシ基、ヘテロアリールオキシ基又は少なくとも1つのエーテル構造を含むアルキル基である。);
 R3及びR4は、それぞれ独立に、非共役系の2価の有機基を表し;
 R5は、水素原子、又は少なくとも1つの水素原子がフッ素原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、炭素数8~20のアルキルアラルキル基、炭素数2~20のヘテロアリール基、炭素数6~20のアリールオキシ基若しくは炭素数2~20のヘテロアリールオキシ基を表し;
 R6は、少なくとも1つの水素原子がフッ素原子で置換された、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、炭素数8~20のアルキルアラルキル基、炭素数2~20のヘテロアリール基、炭素数6~20のアリールオキシ基又は炭素数2~20のヘテロアリールオキシ基を表し;
 Rは、それぞれ独立に、ハロゲン原子、ニトロ基、シアノ基、Z1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基若しくは炭素数2~20のアルキニルオキシ基、又はZ2で置換されていてもよい、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基、炭素数6~20のアリールオキシ基若しくは炭素数2~20のヘテロアリールオキシ基を表し;
 Z1は、ハロゲン原子、ニトロ基、シアノ基、又はZ3で置換されていてもよい、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し;
 Z2は、ハロゲン原子、ニトロ基、シアノ基、又はZ3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し;
 Z3は、ハロゲン原子、ニトロ基又はシアノ基を表し;
 p及びqは、それぞれ独立に、0又は1を表す。]
2.重量平均分子量が、1,000~200,000である1の重合体。
3.R1及びR2が、ともに炭素数1~20のアルキル基又はともに少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基である1又は2の重合体。
4.R3及びR4が、-Rc-Ar-(式中、Rcは、炭素数1~20のアルキレン基を表し、Arは、炭素数6~20のアリーレン基を表す。)である1~3のいずれかの重合体。
5.R5が、少なくとも1つの水素原子がフッ素原子で置換された、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、炭素数8~20のアルキルアラルキル基、炭素数2~20のヘテロアリール基、炭素数6~20のアリールオキシ基又は炭素数2~20のヘテロアリールオキシ基である1~4のいずれかの重合体。
6.1~5のいずれかの重合体からなる電荷輸送性物質。
7.6の電荷輸送性物質、フッ素原子を含有しない電荷輸送性物質、ヘテロポリ酸からなるドーパント、及び有機溶媒を含む電荷輸送性ワニス。
8.前記フッ素原子を含有しない電荷輸送性物質が、アニリン誘導体である7の電荷輸送性ワニス。
9.7又は8の電荷輸送性ワニスを用いて作製される電荷輸送性薄膜。
10.9の電荷輸送性薄膜を有する電子デバイス。
11.9の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子。
12.7又は8の電荷輸送性ワニスを基材上に塗布し、溶媒を蒸発させることを特徴とする電荷輸送性薄膜の製造方法。
13.下記式(1')で表されるフルオレン誘導体と、下記式(2')で表されるフルオレン誘導体と、下記式(3')で表されるフルオレン誘導体とを縮合重合させることを特徴とする1のフッ素原子含有重合体の製造方法。
Figure JPOXMLDOC01-appb-C000011
[式中、R1~R6、R、p及びqは前記と同じ。XAは、それぞれ独立に、ハロゲン原子又は擬ハロゲン基を表す。XBは、それぞれ独立に、下記式(4)又は(5)で表される基を表す。
Figure JPOXMLDOC01-appb-C000012
(式中、A1及びA2は、それぞれ独立に、水素原子、炭素数1~20のアルキル基又は炭素数6~20のアリール基を表す。A3は、炭素数1~20のアルカンジイル基又は炭素数6~20のアリーレン基を表す。)]
14.下記式で表されるフルオレン誘導体。
Figure JPOXMLDOC01-appb-C000013
(式中、R1'及びR2'は、少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基を表し;
 p及びqは、それぞれ独立に、0又は1を表す。]
15.下記式で表されるフルオレン誘導体。
Figure JPOXMLDOC01-appb-C000014
(式中、R1'及びR2'は、少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基を表し;
 XAは、それぞれ独立に、ハロゲン原子又は擬ハロゲン基を表し;
 p及びqは、それぞれ独立に、0又は1を表す。]
16.下記式で表されるフルオレン誘導体。
Figure JPOXMLDOC01-appb-C000015
[式中、XBは、それぞれ独立に、下記式(4)又は(5)で表される基を表す。
Figure JPOXMLDOC01-appb-C000016
(式中、A1及びA2は、それぞれ独立に、水素原子、炭素数1~20のアルキル基又は炭素数6~20のアリール基を表す。A3は、炭素数1~20のアルカンジイル基又は炭素数6~20のアリーレン基を表す。)]
17.下記式で表されるフルオレン誘導体。
Figure JPOXMLDOC01-appb-C000017
[式中、Xは、それぞれ独立に、ハロゲン原子、擬ハロゲン基、又は下記式(4)若しくは(5)で表される基を表す。
Figure JPOXMLDOC01-appb-C000018
(式中、A1及びA2は、それぞれ独立に、水素原子、炭素数1~20のアルキル基又は炭素数6~20のアリール基を表す。A3は、炭素数1~20のアルカンジイル基又は炭素数6~20のアリーレン基を表す。)]
 本発明のフッ素原子含有重合体は電荷輸送性物質として好適に使用でき、これを含む本発明の電荷輸送性ワニスを用いて、陽極と発光層との間にそれらと接する態様で単一層として薄膜を形成した場合でも、優れた輝度特性を有する有機EL素子を実現できる。この理由は定かではないが、フッ素原子を含む電荷輸送性物質が薄膜の表面側(発光層側)に移行しやすいため、フッ素原子を含む電荷輸送性物質が薄膜の表面側(発光層側)に、それを含まない電荷輸送性物質が薄膜の裏面側(陽極側)にそれぞれ偏在し、単一層内で正孔注入部位と正孔輸送部位に相分離し、陽極から発光層に向かって正孔注入性成分が減少し、かつ、正孔輸送性成分が増加する結果、それら2層が存在する場合と同様の正孔注入輸送層として機能するためであると推察される。
 また、本発明の電荷輸送性ワニスを用いることで、素子中の機能性多層膜を単一膜化することができるため、製造プロセス条件の簡便化による高歩留化や低コスト化、あるいは素子の軽量化、コンパクト化等を図り得る。また、本発明の電荷輸送性ワニスは、スピンコート法やスリットコート法等、大面積に成膜可能な各種ウェットプロセスを用いた場合でも、電荷輸送性に優れた薄膜を再現性よく製造できるため、近年の有機ELの分野における進展にも十分対応できる。
 更に、本発明の電荷輸送性ワニスから得られる薄膜は、帯電防止膜、有機薄膜太陽電池の陽極バッファ層等としても使用できる。
[フッ素原子含有重合体]
 本発明のフッ素原子含有重合体は、下記式(1)で表される繰り返し単位を与えるフルオレン誘導体と、下記式(2)で表される繰り返し単位を与えるフルオレン誘導体と、下記式(3)で表される繰り返し単位を与えるフルオレン誘導体との縮合重合体である。
Figure JPOXMLDOC01-appb-C000019
 式(1)中、R1及びR2は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリールオキシ基、炭素数2~20のヘテロアリールオキシ基又は少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基を表す。ただし、R1及びR2の少なくとも一方は、前記アルキル基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、アリールオキシ基、ヘテロアリールオキシ基又は少なくとも1つのエーテル構造を含むアルキル基である。
 炭素数1~20のアルキル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~20の直鎖状又は分岐状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3~20の環状アルキル基が挙げられる。
 炭素数2~20のアルケニル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エテニル基、n-1-プロペニル基、n-2-プロペニル基、1-メチルエテニル基、n-1-ブテニル基、n-2-ブテニル基、n-3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルエテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、n-1-ペンテニル基、n-1-デセニル基、n-1-エイコセニル基等が挙げられる。
 炭素数2~20のアルキニル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エチニル基、n-1-プロピニル基、n-2-プロピニル基、n-1-ブチニル基、n-2-ブチニル基、n-3-ブチニル基、1-メチル-2-プロピニル基、n-1-ペンチニル基、n-2-ペンチニル基、n-3-ペンチニル基、n-4-ペンチニル基、1-メチル-n-ブチニル基、2-メチル-n-ブチニル基、3-メチル-n-ブチニル基、1,1-ジメチル-n-プロピニル基、n-1-ヘキシニル基、n-1-デシニル基、n-1-ペンタデシニル基、n-1-エイコシニル基等が挙げられる。
 炭素数6~20のアリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等が挙げられる。
 炭素数2~20のヘテロアリール基の具体例としては、2-チエニル基、3-チエニル基、2-フラニル基、3-フラニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、3-イソオキサゾリル基、4-イソオキサゾリル基、5-イソオキサゾリル基、2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、4-イソチアゾリル基、5-イソチアゾリル基、2-イミダゾリル基、4-イミダゾリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基等が挙げられる。
 炭素数1~20のアルコキシ基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基等の炭素数1~20の直鎖状又は分岐状アルコキシ基;シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、シクロノニルオキシ基、シクロデシルオキシ基、ビシクロブチルオキシ基、ビシクロペンチルオキシ基、ビシクロヘキシルオキシ基、ビシクロヘプチルオキシ基、ビシクロオクチルオキシ基、ビシクロノニルオキシ基、ビシクロデシルオキシ基等の炭素数3~20の環状アルコキシ基が挙げられる。
 炭素数2~20のアルケニルオキシ基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エテニルオキシ基、n-1-プロペニルオキシ基、n-2-プロペニルオキシ基、1-メチルエテニルオキシ基、n-1-ブテニルオキシ基、n-2-ブテニルオキシ基、n-3-ブテニルオキシ基、2-メチル-1-プロペニルオキシ基、2-メチル-2-プロペニルオキシ基、1-エチルエテニルオキシ基、1-メチル-1-プロペニルオキシ基、1-メチル-2-プロペニルオキシ基、n-1-ペンテニルオキシ基、n-1-デセニルオキシ基、n-1-エイコセニルオキシ基等が挙げられる。
 炭素数2~20のアルキニルオキシ基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エチニルオキシ基、n-1-プロピニルオキシ基、n-2-プロピニルオキシ基、n-1-ブチニルオキシ基、n-2-ブチニルオキシ基、n-3-ブチニルオキシ基、1-メチル-2-プロピニルオキシ基、n-1-ペンチニルオキシ基、n-2-ペンチニルオキシ基、n-3-ペンチニルオキシ基、n-4-ペンチニルオキシ基、1-メチル-n-ブチニルオキシ基、2-メチル-n-ブチニルオキシ基、3-メチル-n-ブチニルオキシ基、1,1-ジメチル-n-プロピニルオキシ基、n-1-ヘキシニルオキシ基、n-1-デシニルオキシ基、n-1-ペンタデシニルオキシ基、n-1-エイコシニルオキシ基等が挙げられる。
 炭素数6~20のアリールオキシ基の具体例としては、フェニルオキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントリルオキシ基、2-アントリルオキシ基、9-アントリルオキシ基、1-フェナントリルオキシ基、2-フェナントリルオキシ基、3-フェナントリルオキシ基、4-フェナントリルオキシ基、9-フェナントリルオキシ基等が挙げられる。
 炭素数2~20のヘテロアリールオキシ基の具体例としては、2-チエニルオキシ基、3-チエニルオキシ基、2-フラニルオキシ基、3-フラニルオキシ基、2-オキサゾリルオキシ基、4-オキサゾリルオキシ基、5-オキサゾリルオキシ基、3-イソオキサゾリルオキシ基、4-イソオキサゾリルオキシ基、5-イソオキサゾリルオキシ基、2-チアゾリルオキシ基、4-チアゾリルオキシ基、5-チアゾリルオキシ基、3-イソチアゾリルオキシ基、4-イソチアゾリルオキシ基、5-イソチアゾリルオキシ基、2-イミダゾリルオキシ基、4-イミダゾリルオキシ基、2-ピリジルオキシ基、3-ピリジルオキシ基、4-ピリジルオキシ基等が挙げられる。
 少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基としては、少なくとも1つのメチレン基が酸素原子で置換された直鎖状又は分岐状のアルキル基が挙げられる。ただし、フルオレン骨格に結合するメチレン基が酸素原子で置換されたものではなく、かつ、隣接するメチレン基が同時に酸素原子に置換されたものではない。このような基としては、原料化合物の入手容易性を考慮すると、式(A)で表される基が好ましく、このうち、式(B)で表される基がより好ましい。。
   -(RAO)r-RB         (A)
   -(CH2CH2O)r-CH3    (B)
(式中、RAは炭素数1~4の直鎖状又は分岐状のアルキレン基を表し、RBは炭素数1~[20-(RAの炭素数)×r]の直鎖状又は分岐状のアルキル基を表し、rは1~9の整数である。rは、ドーパントとの相溶性の観点から、好ましくは2以上、より好ましくは3以上であり、原料化合物の入手容易性の観点から、好ましくは5以下、より好ましくは4以下である。)
 少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基としては、-CH2OCH3、-CH2OCH2CH3、-CH2O(CH2)2CH3、-CH2OCH(CH3)2、-CH2O(CH2)3CH3、-CH2OCH2CH(CH3)2、-CH2OC(CH3)3、-CH2O(CH2)4CH3、-CH2OCH(CH3)(CH2)2CH3、-CH2O(CH2)2CH(CH3)2、-CH2OCH(CH3)(CH2)3CH3、-CH2O(CH2)5CH3、-CH2OCH2CH(CH3)(CH2)2CH3、-CH2O(CH2)2CH(CH3)CH2CH3、-CH2O(CH2)3CH(CH3)2、-CH2OC(CH3)2(CH2)2CH3、-CH2OCH(CH2CH3)(CH2)2CH3、-CH2OC(CH3)2CH(CH3)2、-CH2O(CH2)6CH3、-CH2O(CH2)7CH3、-CH2OCH2CH(CH2CH3)(CH2)3CH3、-CH2O(CH2)8CH3、-CH2O(CH2)9CH3、-CH2O(CH2)10CH3、-CH2O(CH2)11CH3、-CH2O(CH2)12CH3、-CH2O(CH2)13CH3、-CH2O(CH2)14CH3、-CH2O(CH2)15CH3、-CH2O(CH2)16CH3、-CH2O(CH2)17CH3、-CH2O(CH2)18CH3、-CH2CH2OCH3、-CH2CH2OCH2CH3、-CH2CH2O(CH2)2CH3、-CH2CH2OCH(CH3)2、-CH2CH2O(CH2)3CH3、-CH2CH2OCH2CH(CH3)2、-CH2CH2OC(CH3)3、-CH2CH2O(CH2)4CH3、-CH2CH2OCH(CH3)(CH2)2CH3、-CH2CH2OCH2CH(CH3)2、-CH2CH2O(CH2)2CH(CH3)2、-CH2CH2OC(CH3)3、-CH2CH2OCH(CH3)(CH2)3CH3
-CH2CH2O(CH2)5CH3、-CH2CH2OCH(CH3)(CH2)3CH3、-CH2CH2OCH2CH(CH3)(CH2)2CH3、-CH2CH2O(CH2)2CH(CH3)CH2CH3、-CH2CH2O(CH2)3CH(CH3)2、-CH2CH2OC(CH3)2(CH2)2CH3、-CH2CH2OCH(CH2CH3)(CH2)2CH3、-CH2CH2OC(CH3)2CH(CH3)2、-CH2CH2O(CH2)6CH3、-CH2CH2O(CH2)7CH3、-CH2CH2OCH2CH(CH2CH3)(CH2)3CH3、-CH2CH2O(CH2)8CH3、-CH2CH2O(CH2)9CH3、-CH2CH2O(CH2)10CH3、-CH2CH2O(CH2)11CH3、-CH2CH2O(CH2)12CH3、-CH2CH2O(CH2)13CH3、-CH2CH2O(CH2)14CH3、-CH2CH2O(CH2)15CH3、-CH2CH2O(CH2)16CH3、-CH2CH2O(CH2)17CH3、-CH2CH2CH2OCH3、-CH2CH2CH2OCH2CH3、-CH2CH2CH2O(CH2)2CH3、-CH2CH2CH2OCH(CH3)2、-CH2CH2CH2O(CH2)3CH3、-CH2CH2CH2OCH2CH(CH3)2、-CH2CH2CH2OC(CH3)3、-CH2CH2CH2O(CH2)4CH3、-CH2CH2CH2OCH(CH3)(CH2)2CH3、-CH2CH2CH2OCH2CH(CH3)2、-CH2CH2CH2O(CH2)2CH(CH3)2、-CH2CH2CH2OC(CH3)3、-CH2CH2CH2OCH(CH3)(CH2)3CH3、-CH2CH2CH2O(CH2)5CH3、-CH2CH2CH2OCH(CH3)(CH2)3CH3、-CH2CH2CH2OCH2CH(CH3)(CH2)2CH3、-CH2CH2CH2O(CH2)2CH(CH3)CH2CH3、-CH2CH2CH2O(CH2)3CH(CH3)2、-CH2CH2CH2OC(CH3)2(CH2)2CH3、-CH2CH2CH2OCH(CH2CH3)(CH2)2CH3、-CH2CH2CH2OC(CH3)2CH(CH3)2、-CH2CH2CH2O(CH2)6CH3、-CH2CH2CH2O(CH2)7CH3、-CH2CH2CH2OCH2CH(CH2CH3)(CH2)3CH3、-CH2CH2OCH2CH2OCH3、-CH2CH2OCH2CH2OCH2CH2OCH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、-CH2CH2CH2OCH2CH2CH2OCH3、-CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、-CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、-CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、-CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、-CH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH3、-CH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、-CH2CH2OCH2CH2OCH2CH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH3、-CH2CH2CH2O(CH2)8CH3、-CH2CH2CH2O(CH2)9CH3、-CH2CH2CH2O(CH2)10CH3、-CH2CH2CH2O(CH2)11CH3、-CH2CH2CH2O(CH2)12CH3、-CH2CH2CH2O(CH2)13CH3、-CH2CH2CH2O(CH2)14CH3、-CH2CH2CH2O(CH2)15CH3、-CH2CH2CH2O(CH2)16CH3等が挙げられる。
 本発明においては、前記フッ素原子含有重合体の有機溶媒への溶解性と、固体膜(電荷輸送性薄膜)にした場合における該重合体とドーパントとの相溶性を両立するため、R1及びR2の少なくとも一方は、前記アルキル基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、アリールオキシ基、ヘテロアリールオキシ基、又は少なくとも1つのエーテル構造を含むアルキル基であるが、好ましくは、両方ともこれらの基のいずれかである。また、原料化合物の入手容易性や得られる重合体、得られる薄膜の電荷輸送性等を考慮すると、好ましくは、R1及びR2のいずれか一方がアルキル基、又は少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基であり、より好ましくは、R1及びR2がともにアルキル基又はともに少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基であり、更に化合物の溶媒との親和性を考慮すると、より一層好ましくは、R1及びR2がともに少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基である。
 式(1)中、p及びqは、それぞれ独立に、0又は1を表すが、化合物の合成の容易性の観点から、好ましくはp及びqがともに0又はともに1である。
 式(2)中、R3及びR4は、それぞれ独立に、非共役系の2価の有機基を表す。前記非共役系の2価の有機基としては、特に限定されないが、重合性の観点から、-Rc-Ar-(式中、Rcは、炭素数1~20のアルキレン基を表し、Arは、炭素数6~20のアリーレン基を表す。)が好ましい。
 前記非共役系の2価の有機基としては、以下に示す基が挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000020
 式(3)中、R5は、水素原子、又は少なくとも1つの水素原子がフッ素原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、炭素数8~20のアルキルアラルキル基、炭素数2~20のヘテロアリール基、炭素数6~20のアリールオキシ基又は炭素数2~20のヘテロアリールオキシ基を表す。
 R5は、少なくとも1つの水素原子がフッ素原子で置換された、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、炭素数8~20のアルキルアラルキル基、炭素数2~20のヘテロアリール基、炭素数6~20のアリールオキシ基又は炭素数2~20のヘテロアリールオキシ基であることが好ましい。
 式(3)中、R6は、少なくとも1つの水素原子がフッ素原子で置換された、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、炭素数8~20のアルキルアラルキル基、炭素数2~20のヘテロアリール基、炭素数6~20のアリールオキシ基又は炭素数2~20のヘテロアリールオキシ基を表す。
 炭素数7~20のアラルキル基の具体例としては、ベンジル基、フェニルエチル基、フェニルプロピル基、ナフチルメチル基、ナフチルエチル基、ナフチルプロピル基等が挙げられる。
 炭素数8~20のアルキルアラルキル基の具体例としては、メチルベンジル基、エチルベンジル基、n-プロピルベンジル基、イソプロピルベンジル基、n-ブチルベンジル基、イソブチルベンジル基、s-ブチルベンジル基、t-ブチルベンジル基、n-ペンチルベンジル基、n-ヘキシルベンジル基、n-ヘプチルベンジル基、n-オクチルベンジル基、n-ノニルベンジル基、n-デシルベンジル基、メチルフェニルエチル基、エチルフェニルエチル基、n-プロピルフェニルエチル基、イソプロピルフェニルエチル基、n-ブチルフェニルエチル基、イソブチルフェニルエチル基、s-ブチルフェニルエチル基、t-ブチルフェニルエチル基、n-ペンチルフェニルエチル基、n-ヘキシルフェニルエチル基、n-ヘプチルフェニルエチル基、n-オクチルフェニルエチル基、n-ノニルフェニルエチル基、n-デシルフェニルエチル基、メチルフェニルプロピル基、エチルフェニルプロピル基、n-プロピルフェニルプロピル基、イソプロピルフェニルプロピル基、n-ブチルフェニルプロピル基、イソブチルフェニルプロピル基、s-ブチルフェニルプロピル基、t-ブチルフェニルプロピル基、n-ペンチルフェニルプロピル基、n-ヘキシルフェニルプロピル基、n-ヘプチルフェニルプロピル基、n-オクチルフェニルプロピル基、n-ノニルフェニルプロピル基、n-デシルフェニルプロピル基、メチルナフチルメチル基、エチルナフチルメチル基、n-プロピルナフチルメチル基、イソプロピルナフチルメチル基、n-ブチルナフチルメチル基、イソブチルナフチルメチル基、s-ブチルナフチルメチル基、t-ブチルナフチルメチル基、n-ペンチルナフチルメチル基、n-ヘキシルナフチルメチル基、n-ヘプチルナフチルメチル基、n-オクチルナフチルメチル基、n-ノニルナフチルメチル基、n-デシルナフチルメチル基、メチルナフチルエチル基、エチルナフチルエチル基、n-プロピルナフチルエチル基、イソプロピルナフチルエチル基、n-ブチルナフチルエチル基、イソブチルナフチルエチル基、s-ブチルナフチルエチル基、t-ブチルナフチルエチル基、n-ペンチルナフチルエチル基、n-ヘキシルナフチルエチル基、n-ヘプチルナフチルエチル基、n-オクチルナフチルエチル基、n-ノニルナフチルエチル基、n-デシルナフチルエチル基、メチルナフチルプロピル基、エチルナフチルプロピル基、n-プロピルナフチルプロピル基、イソプロピルナフチルプロピル基、n-ブチルナフチルプロピル基、イソブチルナフチルプロピル基、s-ブチルナフチルプロピル基、t-ブチルナフチルプロピル基、n-ペンチルナフチルプロピル基、n-ヘキシルナフチルプロピル基、n-ヘプチルナフチルプロピル基、n-オクチルナフチルプロピル基、n-ノニルナフチルプロピル基、n-デシルナフチルプロピル基等が挙げられる。
 なお、前記炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基、炭素数6~20のアリールオキシ基及び炭素数2~20のヘテロアリールオキシ基としては、それぞれ前述したものと同様のものが挙げられる。
 これらのうち、R5及びR6としては、少なくとも1つの水素原子がフッ素原子で置換された、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数8~20のアルキルアラルキル基等が好ましく、特に、共役系外にフッ素原子含有基を持たせるとポリマーの電子状態に影響を与えないことから、アルキル部の少なくとも1つの水素原子がフッ素原子で置換された炭素数8~20のアルキルアラルキル基等が好ましい。
 具体的には、トリフルオロメチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、ヘプタフルオロプロピル基、2,2,2-トリフルオロ-1-(トリフルオロメチル)エチル基、ノナフルオロブチル基、4,4,4-トリフルオロブチル基、ウンデカフルオロペンチル基、2,2,3,3,4,4,5,5,5-ノナフルオロペンチル基、2,2,3,3,4,4,5,5-オクタフルオロペンチル基、トリデカフルオロヘキシル基、2,2,3,3,4,4,5,5,6,6,6-ウンデカフロオロヘキシル基、2,2,3,3,4,4,5,5,6,6-デカフルオロヘキシル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基、トリフルオロメトキシ基、2,2,2-トリフルオロエトキシ基、ペンタフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、ヘプタフルオロプロポキシ基、2,2,2-トリフルオロ-1-(トリフルオロメチル)エトキシ基、4,4,4-トリフルオロブトキシ基、ノナフルオロブトキシ基、2,2,3,3,4,4,5,5-オクタフルオロペンチルオキシ基、2,2,3,3,4,4,5,5,5-ノナフルオロペンチルオキシ基、ウンデカフルオロペンチルオキシ基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシルオキシ基、2,2,3,3,4,4,5,5,6,6-デカフルオロヘキシルオキシ基、2,2,3,3,4,4,5,5,6,6,6-ウンデカフロオロヘキシルオキシ基、トリデカフルオロヘキシルオキシ基、トリフルオロメチルベンジル基、2,2,2-トリフルオロエチルベンジル基、ペンタフルオロエチルベンジル基、2,2,3,3-テトラフルオロプロピルベンジル基、2,2,3,3,3-ペンタフルオロプロピルベンジル基、ヘプタフルオロプロピルベンジル基、トリフルオロメチルフェニルエチル基、2,2,2-トリフルオロエチルフェニルエチル基、ペンタフルオロエチルフェニルエチル基、2,2,3,3-テトラフルオロプロピルフェニルエチル基、2,2,3,3,3-ペンタフルオロプロピルフェニルエチル基、ヘプタフルオロプロピルフェニルエチル基、トリフルオロメチルナフチルメチル基、2,2,2-トリフルオロエチルナフチルメチル基、ペンタフルオロエチルナフチルメチル基、2,2,3,3-テトラフルオロプロピルナフチルメチル基、2,2,3,3,3-ペンタフルオロプロピルナフチルメチル基、ヘプタフルオロプロピルナフチルメチル基、トリフルオロメチルナフチルエチル基、2,2,2-トリフルオロエチルナフチルエチル基、ペンタフルオロエチルナフチルエチル基、2,2,3,3-テトラフルオロプロピルナフチルエチル基、2,2,3,3,3-ペンタフルオロプロピルナフチルエチル基、ヘプタフルオロプロピルナフチルエチル基等が好ましい。
 式(1)~(3)中、Rは、それぞれ独立に、ハロゲン原子、ニトロ基、シアノ基、Z1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基若しくは炭素数2~20のアルキニルオキシ基、又はZ2で置換されていてもよい、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基、炭素数6~20のアリールオキシ基若しくは炭素数2~20のヘテロアリールオキシ基を表す。
 Z1は、ハロゲン原子、ニトロ基、シアノ基、又はZ3で置換されていてもよい、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表す。
 Z2は、ハロゲン原子、ニトロ基、シアノ基、又はZ3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表す。
 Z3は、ハロゲン原子、ニトロ基又はシアノ基を表す。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 Rとしては、水素原子、ハロゲン原子、ニトロ基、シアノ基、Z1で置換されてもよい炭素数1~20のアルキル基が好ましく、水素原子、フッ素原子、Z1で置換されてもよい炭素数1~4のアルキル基がより好ましく、水素原子が最適である。
 本発明においては、重合体中の式(1)で表される繰り返し単位と、式(2)で表される繰り返し単位及び式(3)で表される繰り返し単位との比は、モル比で、式(1)で表される繰り返し単位1に対して、式(2)で表される繰り返し単位及び式(3)で表される繰り返し単位の合計が1~4程度である。また、溶解性及び正孔輸送性の観点から、重合体中の式(2)で表される繰り返し単位と、式(3)で表される繰り返し単位との比率は、式(2)で表される繰り返し単位1に対して、式(3)で表される繰り返し単位が、好ましくは0.7~1.3程度、より好ましくは0.8~1.2程度、より一層好ましくは0.9~1.1程度である。
 本発明のフッ素原子含有重合体の重量平均分子量(Mw)の下限は、該重合体の電荷輸送性を向上させる観点から、好ましくは1,000、より好ましくは5,000、より一層好ましくは10,000であり、その上限は、当該重合体の溶解性を向上させる観点から、好ましくは200,000、より好ましくは150,000、より一層好ましくは100,000である。なお、本発明においてMw及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量である。
[フッ素原子含有重合体の合成方法]
 本発明のフッ素原子含有重合体は、式(1)で表される繰り返し単位を与えるフルオレン誘導体と、式(2)で表される繰り返し単位を与えるフルオレン誘導体と、式(3)で表される繰り返し単位を与えるフルオレン誘導体との縮合重合によって合成することができる。
 例えば、下記スキームAで表されるように、式(1')で表されるフルオレン誘導体と、式(2')で表されるフルオレン誘導体と、式(3')で表されるフルオレン誘導体とのカップリング反応によって合成することができる。以下、鈴木・宮浦カップリング反応によって合成する場合を例に挙げて説明する。
Figure JPOXMLDOC01-appb-C000021
 式中、R1~R6、R、p及びqは前記と同じ。XAは、それぞれ独立に、ハロゲン原子又は擬ハロゲン基を表す。XBは、それぞれ独立に、下記式(4)又は(5)で表される基を表す。
Figure JPOXMLDOC01-appb-C000022
(式中、A1及びA2は、それぞれ独立に、水素原子、炭素数1~20のアルキル基又は炭素数6~20のアリール基を表す。A3は、炭素数1~20のアルカンジイル基又は炭素数6~20のアリーレン基を表す。)
 ハロゲン原子、アルキル基及びアリール基の具体例としては、前述したものと同様のものが挙げられる。
 擬ハロゲン基としては、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ノナフルオロブタンスルホニルオキシ基等のフルオロアルキルスルホニルオキシ基;ベンゼンスルホニルオキシ基、トルエンスルホニルオキシ基等の芳香族スルホニルオキシ基等が挙げられる。
 炭素数1~20のアルカンジイル基としては、メチレン基、エチレン基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、2,2-ジメチルプロパン-1,3-ジイル基、2-エチル-2-メチルプロパン-1,3-ジイル基、2,2-ジエチルプロパン-1,3-ジイル基、2-メチル-2-プロピルプロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-2,3-ジイル基、ブタン-1,4-ジイル基、2-メチルブタン-2,3-ジイル基、2,3-ジメチルブタン-2,3-ジイル基、ペンタン-1,3-ジイル基、ペンタン-1,5-ジイル基、ペンタン-2,3-ジイル基、ペンタン-2,4-ジイル基、2-メチルペンタン-2,3-ジイル基、3-メチルペンタン-2,3-ジイル基、4-メチルペンタン-2,3-ジイル基、2,3-ジメチルペンタン-2,3-ジイル基、3-メチルペンタン-2,4-ジイル基、3-エチルペンタン-2,4-ジイル基、3,3-ジメチルペンタン-2,4-ジイル基、3,3-ジメチルペンタン-2,4-ジイル基、2,4-ジメチルペンタン-2,4-ジイル基、ヘキサン-1,6-ジイル基、ヘキサン-1,2-ジイル基、ヘキサン-1,3-ジイル基、ヘキサン-2,3-ジイル基、ヘキサン-2,4-ジイル基、ヘキサン-2,5-ジイル基、2-メチルヘキサン-2,3-ジイル基、4-メチルヘキサン-2,3-ジイル基、3-メチルヘキサン-2,4-ジイル基、2,3-ジメチルヘキサン-2,4-ジイル基、2,4-ジメチルヘキサン-2,4-ジイル基、2,5-ジメチルヘキサン-2,4-ジイル基、2-メチルヘキサン-2,5-ジイル基、3-メチルヘキサン-2,5-ジイル基、2,5-ジメチルヘキサン-2,5-ジイル基等が挙げられる。
 前記炭素数6~20のアリーレン基としては、1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、1,8-ナフチレン基、1,2-アントリレン基、2,3-アントリレン基、1,2-フェナントリレン基、3,4-フェナントリレン基、9,10-フェナントリレン基等が挙げられる。
 前記縮合反応は無溶媒でも行えるが、通常、溶媒を用いて行われる。溶媒としては反応を阻害しないものであれば全て使用することができ、例えば、テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)等のアミド;メチルイソブチルケトン、シクロヘキサノン等のケトン;塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素が挙げられる。これらの溶媒は、1種単独で又は2種以上混合して用いることができる。これらのうち、特に、1,4-ジオキサン、トルエン、キシレン等が好ましい。
 前記縮合反応において用いる触媒としては、[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド(PdCl2(dppf))、テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh3)4)、ビス(トリフェニルホスフィン)ジクロロパラジウム(Pd(PPh3)2Cl2)、ビス(ベンジリデンアセトン)パラジウム(Pd(dba)2)、トリス(ベンジリデンアセトン)ジパラジウム(Pd2(dba)3)、ビス(トリ-t-ブチルホスフィン)パラジウム(Pd(P-t-Bu3)2)、酢酸パラジウム(II)(Pd(OAc)2)等のパラジウム触媒等が挙げられる。
 式(1')で表されるフルオレン誘導体と、式(2')で表されるフルオレン誘導体と、(3')で表されるフルオレン誘導体との仕込み比は、モル比で、式(1')で表されるフルオレン誘導体1に対して、式(2')で表されるフルオレン誘導体及び(3')で表されるフルオレン誘導体の合計モル数が0.7~1.3程度が好ましく、0.8~1.2程度がより好ましい。
 縮合時の反応温度は、通常、40~200℃である。反応時間は反応温度によって種々選択されるが、通常、30分間から50時間程度である。
 式(1')で表されるフルオレン誘導体は、下記式(6)表される化合物を出発原料として合成することができる。まず、下記スキームBに示されるように、式(6)で表される化合物と、式(7-1)で表される化合物と、式(7-2)で表される化合物とを反応させ、式(8)で表される中間体を合成する。なお、以下に示すスキームにおいて、XA、XB、R1、R2及びRは、前記と同じである。
Figure JPOXMLDOC01-appb-C000023
 スキームBで表される反応において、式(6)で表される化合物と、式(7-1)で表される化合物と、式(7-2)で表される化合物との仕込み比は、モル比で、式(6)で表される化合物1に対して、式(7-1)で表される化合物及び(7-2)で表される化合物がそれぞれ1~3程度である。
 スキームBで表される反応において用いる溶媒は、例えば、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジオキサン、アセトニトリル、トルエン等が挙げられる。原料化合物をよく溶解し、反応がスムーズに進行することから、ジメチルスルホキシドが好適である。
 反応温度は、通常、-50℃から使用する溶媒の沸点まで可能であるが、0~100℃の範囲が好ましい。反応時間は、通常、0.1~100時間である。
 p及びqが0である式(1')で表されるフルオレン誘導体は、式(8)で表される中間体と式(9)で表される化合物とを触媒存在下で反応させ、式(10)で表される中間体を合成し(スキームC)、更にハロゲン化剤を用いてこれをハロゲン化することによって合成することができる(スキームD)。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 スキームCで表される反応において、式(8)で表される化合物と式(9)で表される化合物との仕込み比は、モル比で、式(8)で表される化合物1に対して、式(9)で表される化合物が2~4程度である。
 スキームCで表される反応において用いる触媒としては、前述したパラジウム触媒等が挙げられる。
 スキームCで表される反応において用いる溶媒は、例えば、トルエン、ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。反応性の観点から、トルエン、ジオキサン等が好適である。
 反応温度は、通常、-50℃から使用する溶媒の沸点まで可能であるが、0~140℃の範囲が好ましい。反応時間は、通常、0.1~100時間である。
 スキームDで表される反応において、ハロゲン化剤としては、公知のものを使用することができ、具体的には、N-ブロモスクシンイミド等が挙げられる。前記ハロゲン化剤の使用量は、モル比で、式(10)で表される化合物1に対して4~6程度である。
 スキームDで表される反応において用いる溶媒は、例えば、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジオキサン、アセトニトリル、トルエン、クロロホルム等が挙げられる。原料化合物をよく溶解し、反応がスムーズに進行することから、ジメチルスルホキシド、N,N-ジメチルホルムアミド、クロロホルム等が好適である。
 反応温度は、通常、-50℃から使用する溶媒の沸点まで可能であるが、0~140℃の範囲が好ましい。反応時間は、通常、0.1~100時間である。
 p及びqが1である式(1')で表されるフルオレン誘導体は、式(11)で表される化合物と式(12)で表される化合物とを触媒存在下で反応させ、式(13)で表される中間体を合成した後(スキームE)、式(8)で表される中間体と式(13)で表される中間体とを触媒存在下で反応させ、式(14)で表される中間体を合成し(スキームF)、更にハロゲン化剤を用いてこれをハロゲン化することによって合成することができる(スキームG)。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 スキームEで表される反応において、式(11)で表される化合物と式(12)で表される化合物との仕込み比は、モル比で、式(11)で表される化合物1に対して、式(12)で表される化合物が1~3程度である。
 スキームEの反応において用いる触媒としては、前述したパラジウム触媒等が挙げられる。
 スキームEの反応において用いる溶媒は、例えば、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジオキサン、アセトニトリル、トルエン等が挙げられる。原料化合物の溶解性及び反応性の観点から、ジオキサンが好適である。
 反応温度は、通常、-50℃から使用する溶媒の沸点まで可能であるが、0~100℃の範囲が好ましい。反応時間は、通常、0.1~100時間である。
 スキームFで表される反応において、式(8)で表される化合物と式(13)で表される化合物との仕込み比は、モル比で、式(8)で表される化合物1に対して、式(13)で表される化合物が2~4程度である。
 スキームFの反応において用いる触媒としては、スキームCで表される反応において説明したものと同様のものが挙げられる。
 反応温度は、通常、-50℃から使用する溶媒の沸点まで可能であるが、0~140℃の範囲が好ましい。反応時間は、通常、0.1~100時間である。
 スキームGで表される反応において用いるハロゲン化剤及び溶媒としては、スキームDで表される反応において説明したものと同様のものが挙げられる。前記ハロゲン化剤の使用量は、モル比で、式(14)で表される化合物1に対して4~6程度である。
 反応温度は、通常、-50℃から使用する溶媒の沸点まで可能であるが、0~140℃の範囲が好ましい。反応時間は、通常、0.1~100時間である。
 前記各スキームで表される反応の終了後は、精製を行わずにそのまま次の工程に使用してもよく、精製を行ってもよい。精製を行う場合は、常法に従って行い、目的とする化合物を得ることができる。
 式(2')で表されるフルオレン誘導体は、式(15)で表される化合物と式(16-1)及び(16-2)で表される化合物とを反応させ、式(17)で表される中間体を合成した後(スキームH)、これと式(12)で表される化合物とを、触媒存在下で反応させることによって合成することができる(スキームI)。より具体的な例としては、式(2'')で表されるフルオレン誘導体は、式(15)で表される化合物と式(16-1')で表される化合物とを反応させ、式(17')で表される中間体を合成した後(スキームH')、これと式(12)で表される化合物とを、触媒存在下で反応させることによって合成することができる(スキームI')。なお、下記スキーム中、Ar、XA、XB、Rc、R3及びR4は、前記と同じである。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 スキームHで表される反応において、式(15)で表される化合物と式(16-1)及び(16-2)で表される化合物との仕込み比は、モル比で、式(15)で表される化合物1に対して、式(16-1)及び(16-2)で表される化合物が1~3程度である。また、スキームH'で表される反応において、式(15)で表される化合物と式(16-1')で表される化合物との仕込み比は、モル比で、式(15)で表される化合物1に対して、式(16-1')で表される化合物が1~3程度である。
 スキームH及びH'で表される反応において用いる溶媒は、例えば、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジオキサン、アセトニトリル、トルエン等が挙げられる。反応性の観点から、テトラヒドロフラン、N,N-ジメチルホルムアミド等が好適である。
 反応温度は、通常、-50℃から使用する溶媒の沸点まで可能であるが、0~140℃の範囲が好ましい。反応時間は、通常、0.1~100時間である。
 スキームIで表される反応において、式(17)で表される化合物と式(12)で表される化合物との仕込み比は、モル比で、式(17)で表される化合物1に対して、式(12)で表される化合物が1~3程度である。また、スキームI'で表される反応において、式(17')で表される化合物と式(12)で表される化合物との仕込み比は、モル比で、式(17')で表される化合物1に対して、式(12)で表される化合物が1~3程度である。
 スキームI及びI'で表される反応において用いる触媒及び溶媒としては、スキームEで表される反応において説明したものと同様のものが挙げられる。
 反応温度は、通常、-50℃から使用する溶媒の沸点まで可能であるが、0~140℃の範囲が好ましい。反応時間は、通常、0.1~100時間である。
 前記各スキームで表される反応の終了後は、精製を行わずにそのまま次の工程に使用してもよく、精製を行ってもよい。精製を行う場合は、常法に従って行い、目的とする化合物を得ることができる。
 式(3')で表されるフルオレン誘導体は、式(6)で表される化合物と式(18-1)及び(18-2)で表される化合物とを反応させ、式(19)で表される中間体を合成した後(スキームJ)、これと式(12)で表される化合物とを、触媒存在下で反応させることによって合成することができる(スキームK)。なお、下記スキーム中、XA、XB、R5及びR6は、前記と同じである。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 スキームJで表される反応において、式(6)で表される化合物と式(18-1)及び(18-2)で表される化合物との仕込み比は、モル比で、式(6)で表される化合物1に対して、式(18-1)及び(18-2)で表される化合物が1~3程度である。
 スキームJで表される反応において用いる溶媒は、スキームHで表される反応において説明したものと同様のものが挙げられる。
 スキームKで表される反応において、式(19)で表される化合物と式(12)で表される化合物との仕込み比は、モル比で、式(19)で表される化合物1に対して、式(12)で表される化合物が1~3程度である。
 スキームKで表される反応において用いる触媒及び溶媒としては、スキームEで表される反応において説明したものと同様のものが挙げられる。
 前記各スキームで表される反応の終了後は、精製を行わずにそのまま次の工程に使用してもよく、精製を行ってもよい。精製を行う場合は、常法に従って行い、目的とする化合物を得ることができる。
 なお、通常、本発明に係る重合体の重合反応においては、式(1')で表される単量体は式(2')で表される単量体又は式(3')で表される単量体のいずれとも反応が可能であり、式(2')で表される単量体は式(3')で表される単量体と反応しないことから、式(1)で表される繰り返し単位の隣の繰り返し単位は、式(2)で表される繰り返し単位又は式(3)で表される繰り返し単位のいずれかである。同様の理由から、式(2)で表される繰り返し単位の隣の繰り返し単位と式(3)で表される繰り返し単位の隣の繰り返し単位は、いずれも式(1)で表される繰り返し単位である。
[電荷輸送性物質]
 本発明のフッ素原子含有重合体は、電荷輸送性物質として好適に使用できる。本発明において、電荷輸送性とは、導電性と同義であり、正孔輸送性と同義である。電荷輸送性物質とは、それ自体に電荷輸送性があるものでもよく、ドーパントと共に用いた際に電荷輸送性があるものでもよい。電荷輸送性ワニスとは、それ自体に電荷輸送性があるものでもよく、それにより得られる固形膜が電荷輸送性を有するものでもよい。
[電荷輸送性ワニス]
 本発明の電荷輸送性ワニスは、前記フッ素原子含有重合体からなる電荷輸送性物質、フッ素原子を含有しない電荷輸送性物質、ヘテロポリ酸からなるドーパント、及び有機溶媒を含む。
[フッ素原子を含有しない電荷輸送性物質]
 フッ素原子を含有しない電荷輸送性物質としては、アニリン誘導体、チオフェン誘導体、ピロール誘導体等の電荷輸送性オリゴマーが挙げられる。電荷輸送性オリゴマーの分子量は、通常、200~5,000であるが、電荷輸送性の高い薄膜を与えるワニスを調製する観点から、好ましくは300以上、より好ましくは400以上、より一層好ましくは500以上であり、平坦性の高い薄膜を与える均一なワニスを調製する観点から、好ましくは4,000以下であり、より好ましくは3,000以下であり、より一層好ましくは2,000以下である。
 前記電荷輸送性オリゴマーのうち、有機溶媒への溶解性と得られる薄膜の電荷輸送性のバランスとを考慮すると、アニリン誘導体が好ましい。アニリン誘導体としては、特開2002-151272号公報記載のオリゴアニリン誘導体、国際公開第2004/105446号記載のオリゴアニリン化合物、国際公開第2008/032617号記載のオリゴアニリン化合物、国際公開第2008/032616号記載のオリゴアニリン化合物、国際公開第2013/042623号記載のアリールジアミン化合物等が挙げられる。
 また、下記式(20)で表されるアニリン誘導体も好適に使用できる。
Figure JPOXMLDOC01-appb-C000035
 式(20)中、X1は、-NY1-、-O-、-S-、-(CR1718)L-又は単結合を表すが、m又はnが0であるときは、-NY1-を表す。
 Y1は、それぞれ独立に、水素原子、Z11で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基、又はZ12で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表す。
 炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基の具体例としては、前述したものと同じものが挙げられる。
 R17及びR18は、それぞれ独立に、水素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、ヒドロキシ基、チオール基、スルホン酸基、カルボン酸基、Z11で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基、Z12で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基、又は-NHY2、-NY34、-C(O)Y5、-OY6、-SY7、-SO38、-C(O)OY9、-OC(O)Y10、-C(O)NHY11若しくは-C(O)NY1213基を表す。
 Y2~Y13は、それぞれ独立に、Z11で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基、又はZ12で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表す。
 Z11は、塩素原子、臭素原子、ヨウ素原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、ヒドロキシ基、チオール基、スルホン酸基、カルボン酸基、又はZ13で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表す。
 Z12は、塩素原子、臭素原子、ヨウ素原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、ヒドロキシ基、チオール基、スルホン酸基、カルボン酸基、又はZ13で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基を表す。
 Z13は、塩素原子、臭素原子、ヨウ素原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、ヒドロキシ基、チオール基、スルホン酸基、又はカルボン酸基を表す。
 R17、R18及びY2~Y13のアルキル基、アルケニル基、アルキニル基、アリール基及びヘテロアリール基としては、前記と同様のものが挙げられる。
 これらの中でも、R17及びR18としては、水素原子又はZ11で置換されていてもよい炭素数1~20のアルキル基が好ましく、水素原子又はZ11で置換されていてもよいメチル基がより好ましく、共に水素原子が最適である。
 Lは、-(CR1718)-で表される基の数を表し、1~20の整数であるが、1~10が好ましく、1~5がより好ましく、1~2がより一層好ましく、1が最適である。なお、Lが2以上である場合、複数のR17は、互いに同一であっても異なっていてもよく、複数のR18も、互いに同一であっても異なっていてもよい。
 とりわけ、X1としては、-NY1-又は単結合が好ましい。また、Y1としては、水素原子又はZ11で置換されていてもよい炭素数1~20のアルキル基が好ましく、水素原子又はZ11で置換されていてもよいメチル基がより好ましく、水素原子が最適である。
 式(20)中、R11~R16は、それぞれ独立に、水素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、ヒドロキシ基、チオール基、スルホン酸基、カルボン酸基、Z11で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基、Z12で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基、又は-NHY2、-NY34、-C(O)Y5、-OY6、-SY7、-SO38、-C(O)OY9、-OC(O)Y10、-C(O)NHY11若しくは-C(O)NY1213を表す(Y2~Y13は、前記と同じ意味を表す。)。これらアルキル基、アルケニル基、アルキニル基、アリール基及びヘテロアリール基としては、前記と同様のものが挙げられる。
 特に、式(20)において、R11~R14としては、水素原子、Z11で置換されていてもよい炭素数1~10のアルキル基、又はZ12で置換されていてもよい炭素数6~14のアリール基が好ましく、水素原子、Z11で置換されていてもよい炭素数1~10のアルキル基がより好ましく、全て水素原子が最適である。
 また、R15及びR16としては、水素原子、Z11で置換されていてもよい炭素数1~10のアルキル基、Z12で置換されていてもよい炭素数6~14のアリール基、又はZ12で置換されていてもよいジフェニルアミノ基(Y3及びY4がZ12で置換されていてもよいフェニル基である-NY34基)が好ましく、水素原子、又はZ12で置換されていてもよいジフェニルアミノ基がより好ましく、同時に水素原子又はジフェニルアミノ基がより一層好ましい。
 そして、これらの中でも、R11~R14が水素原子、Z11で置換されていてもよい炭素数1~10のアルキル基、R15及びR16が水素原子、Z12で置換されていてもよいジフェニルアミノ基、X1が-NY1-又は単結合、かつ、Y1が水素原子又はメチル基の組み合わせが好ましく、R11~R14が水素原子、R15及びR16が同時に水素原子又はジフェニルアミノ基、X1が-NH-又は単結合の組み合わせがより好ましい。
 式(20)において、m及びnは、それぞれ独立に0以上の整数を表し、1≦m+n≦20を満たすが、得られる薄膜の電荷輸送性とアニリン誘導体の溶解性とのバランスを考慮すると、2≦m+n≦8を満たすことが好ましく、2≦m+n≦6を満たすことがより好ましく、2≦m+n≦4を満たすことがより一層好ましい。
 特に、Y1~Y13及びR11~R18において、Z11は、Z13で置換されていてもよい炭素数6~20のアリール基が好ましく、Z13で置換されていてもよいフェニル基がより好ましく、存在しないこと(すなわち、非置換であること)が最適である。
 Z12は、Z13で置換されていてもよい炭素数1~20のアルキル基が好ましく、Z13で置換されていてもよい炭素数1~4のアルキル基がより好ましく、存在しないこと(すなわち、非置換であること)が最適である。
 Z13は、存在しないこと(すなわち、非置換であること)が最適である。
 Y1~Y13及びR11~R18において、アルキル基、アルケニル基及びアルキニル基の炭素数は、好ましくは10以下であり、より好ましくは6以下であり、より一層好ましくは4以下である。また、アリール基及びヘテロアリール基の炭素数は、好ましくは14以下であり、より好ましくは10以下であり、より一層好ましくは6以下である。
 なお、前記アニリン誘導体の合成法としては、特に限定されないが、Bulletin of Chemical Society of Japan, 67, pp. 1749-1752 (1994)、Synthetic Metals, 84, pp. 119-120 (1997)、Thin Solid Films, 520(24), pp. 7157-7163 (2012)、国際公開第2008/032617号、国際公開第2008/032616号、国際公開第2008/129947号、国際公開第2013/084664号等に記載の方法が挙げられる。
 式(20)で表されるアニリン誘導体の具体例として、下記式で表されるものが挙げられるが、これらに限定されない。なお、下記式中、DPAはジフェニルアミノ基を表し、Phはフェニル基を表し、TPAはp-(ジフェニルアミノ)フェニル基を表す。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
 本発明のワニス中の電荷輸送性物質の含有量は、電荷輸送性物質の析出を抑制する観点から、ワニス全体に対して0.1~20質量%程度が好ましい。また、フッ素原子含有重合体からなる電荷輸送性物質と、フッ素原子を含有しない電荷輸送性物質との使用比率は、得られる有機EL素子の輝度特性をより高めることを考慮すると、質量比で、フッ素原子を含有しない電荷輸送性物質1に対して、フッ素原子含有重合体からなる電荷輸送性物質を好ましくは0.1~5程度、より好ましくは0.5~3程度、より一層好ましくは0.5~1程度である。
[ドーパント]
 本発明の電荷輸送性ワニスは、ドーパントとしてヘテロポリ酸を含む。それゆえ、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極からの高正孔受容能のみならず、アルミニウムに代表される金属陽極からの高正孔受容能を示す電荷輸送性に優れた薄膜を得ることができる。
 ヘテロポリ酸とは、代表的に式(A1)で示されるKeggin型あるいは式(A2)で示されるDawson型の化学構造で示される、ヘテロ原子が分子の中心に位置する構造を有し、バナジウム(V)、モリブデン(Mo)、タングステン(W)等のオキソ酸であるイソポリ酸と、異種元素のオキソ酸とが縮合してなるポリ酸である。このような異種元素のオキソ酸としては、主にケイ素(Si)、リン(P)、ヒ素(As)のオキソ酸が挙げられる。
Figure JPOXMLDOC01-appb-C000038
 ヘテロポリ酸の具体例としては、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、ケイタングステン酸、リンタングストモリブデン酸等が挙げられる。これらは、1種単独で又は2種以上組み合わせて用いてもよい。なお、本発明で用いるヘテロポリ酸は、市販品として入手可能であり、また、公知の方法により合成することもできる。
 特に、ドーパントが1種のヘテロポリ酸からなる場合、そのヘテロポリ酸はリンタングステン酸又はリンモリブデン酸であることが好ましく、リンタングステン酸であることがより好ましい。また、ドーパントが2種以上のヘテロポリ酸からなる場合、その2種以上のヘテロポリ酸のうち少なくとも1つはリンタングステン酸又はリンモリブデン酸であることが好ましく、リンタングステン酸であることがより好ましい。
 なお、ヘテロポリ酸は、元素分析等の定量分析において、一般式で示される構造から元素の数が多いもの又は少ないものであっても、それが市販品として入手したもの、あるいは公知の合成方法にしたがって適切に合成したものである限り、本発明において用いることができる。
 すなわち、例えば、一般的にリンタングステン酸は化学式H3(PW12O40)・nH2Oで、リンモリブデン酸は化学式H3(PMo12O40)・nH2Oでそれぞれ表されるが、定量分析において、この式中のP(リン)、O(酸素)又はW(タングステン)若しくはMo(モリブデン)の数が多いもの又は少ないものであっても、それが市販品として入手したもの、あるいは公知の合成方法にしたがって適切に合成したものである限り、本発明において用いることができる。この場合、本発明に規定されるヘテロポリ酸の質量とは、合成物や市販品中における純粋なリンタングステン酸の質量(リンタングステン酸含量)ではなく、市販品として入手可能な形態及び公知の合成法にて単離可能な形態において、水和水やその他の不純物等を含んだ状態での全質量を意味する。
 本発明の電荷輸送性ワニスに含まれるヘテロポリ酸は、有機EL素子に用いた場合に高輝度を与える電荷輸送性薄膜を再現性よく得ることを考慮すると、質量比で、フッ素原子を含有しない電荷輸送性物質1に対して、好ましくは2~10程度、より好ましくは2.5~9.0程度である。
[有機溶媒]
 電荷輸送性ワニスを調製する際に用いられる有機溶媒としては、電荷輸送性物質及びドーパントを良好に溶解し得る高溶解性溶媒を用いることができる。
 このような高溶解性溶媒としては、例えば、シクロヘキサノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン等の有機溶媒が挙げられるが、これらに限定されない。これらの溶媒は、1種単独で又は2種以上混合して用いることができ、その使用量は、ワニスに使用する全溶媒中5~100質量%とすることができる。
 なお、電荷輸送性物質及びドーパントは、いずれも前記溶媒に完全に溶解していることが好ましい。
 また、本発明においては、ワニスに、25℃で10~200mPa・s、特に35~150mPa・sの粘度を有し、常圧(大気圧)で沸点50~300℃、特に150~250℃の高粘度有機溶媒を少なくとも1種含有させることができる。このような溶媒を加えることで、ワニスの粘度の調整が容易になり、平坦性の高い薄膜を再現性よく与える、用いる塗布方法に応じたワニス調製が可能となる。
 高粘度有機溶媒としては、例えば、シクロヘキサノール、エチレングリコール、エチレングリコールジグリシジルエーテル、1,3-オクチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコール、へキシレングリコール等が挙げられるが、これらに限定されない。
 本発明のワニスに用いられる溶媒全体に対する高粘度有機溶媒の添加割合は、固体が析出しない範囲内であることが好ましく、固体が析出しない限りにおいて、添加割合は、5~90質量%が好ましい。
 更に、基板に対する濡れ性の向上、溶媒の表面張力の調整、極性の調整、沸点の調整等の目的で、その他の溶媒を、ワニスに使用する全溶媒中1~90質量%、好ましくは1~50質量%の割合で混合することもできる。
 このような溶媒としては、例えば、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジアセトンアルコール、γ-ブチロラクトン、エチルラクテート、n-ヘキシルアセテート等が挙げられるが、これらに限定されない。これらの溶媒は、1種単独で又は2種以上混合して用いることができる。
 本発明のワニスの粘度は、作製する薄膜の厚み等や固形分濃度に応じて適宜設定されるが、通常、25℃で1~50mPa・sである。また、本発明における電荷輸送性ワニスの固形分濃度は、ワニスの粘度及び表面張力等や、作製する薄膜の厚み等を勘案して適宜設定されるが、通常、0.1~10.0質量%程度であり、ワニスの塗布性を向上させることを考慮すると、好ましくは0.5~5.0質量%、より好ましくは1.0~3.0質量%である。なお、固形分とは、ワニスの成分のうち、有機溶媒を除いたものをいう。
 ワニスの調製法としては、特に限定されないが、例えば、本発明のフッ素原子含有重合体からなる電荷輸送性物質を先に溶媒に溶解させ、そこへフッ素原子を含有しない電荷輸送性物質、ヘテロポリ酸からなるドーパントを順次加える手法や、これら物質の混合物を溶媒に溶解させる手法が挙げられる。
 また、有機溶媒が複数ある場合は、例えば、本発明のフッ素原子含有重合体からなる電荷輸送性物質及びフッ素原子を含有しない電荷輸送性物質等をよく溶解する溶媒に、まずこれらを溶解させ、そこへその他の溶媒を加えてもよく、複数の有機溶媒の混合溶媒に、フッ素原子含有重合体からなる電荷輸送性物質、フッ素原子を含有しない電荷輸送性物質等を順次、あるいはこれらを同時に溶解させてもよい。
 本発明においては、電荷輸送性ワニスは、高平坦性薄膜を再現性よく得る観点から、本発明のフッ素原子含有重合体からなる電荷輸送性物質、フッ素原子を含有しない電荷輸送性物質等を有機溶媒に溶解させた後、サブマイクロオーダーのフィルター等を用いて濾過することが望ましい。
[電荷輸送性薄膜]
 本発明の電荷輸送性ワニスを基材上に塗布して焼成することで、基材上に電荷輸送性薄膜を形成させることができる。
 ワニスの塗布方法としては、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられるが、これらに限定されない。塗布方法に応じて、ワニスの粘度及び表面張力を調節することが好ましい。
 また、本発明のワニスを用いる場合、焼成雰囲気も特に限定されず、大気雰囲気だけでなく窒素等の不活性ガスや真空中でも、均一な成膜面及び高い電荷輸送性を有する薄膜を得ることができる。
 焼成温度は、得られる薄膜の用途、得られる薄膜に付与する電荷輸送性の程度等を勘案して、概ね100~260℃の範囲内で適宜設定されるが、有機EL素子の陽極と発光層との間にそれらと接する態様で設けて機能性単一膜(正孔注入輸送層)として用いる場合、140~250℃程度が好ましく、150~230℃程度がより好ましい。
 なお、焼成の際、より高い均一成膜性を発現させたり基材上で反応を進行させたりする目的で、2段階以上の温度変化をつけてもよい。加熱は、例えば、ホットプレートやオーブン等適当な機器を用いて行えばよい。
 電荷輸送性薄膜の膜厚は、特に限定されず、有機EL素子内で用いる場合、5~200nm程度とすることができる。電荷輸送性薄膜を正孔注入輸送層として用いる場合、本発明で用いる2種類の電荷輸送性物質の相分離の程度を高めて有機EL素子の輝度特性や寿命特性をより高めることを考慮すると、10~100nmが好ましく、20~50nmがより好ましく、25~45nmがより一層好ましい。膜厚を変化させる方法としては、ワニス中の固形分濃度を変化させたり、塗布時の基板上の溶液量を変化させたりする等の方法がある。
[有機EL素子]
 本発明の電荷輸送性ワニスを用いてOLED素子を作製する場合の使用材料や作製方法としては、下記のようなものが挙げられるが、これらに限定されない。
 使用する電極基板は、洗剤、アルコール、純水等による液体洗浄を予め行って浄化しておくことが好ましく、例えば、陽極基板では使用直前にUVオゾン処理、酸素-プラズマ処理等の表面処理を行うことが好ましい。ただし、陽極材料が有機物を主成分とする場合、表面処理を行わなくともよい。
 本発明の電荷輸送性ワニスから得られる薄膜からなる機能性単一膜(正孔注入輸送層)を有するOLED素子の作製方法の例は、以下のとおりである。
 陽極基板上に本発明の電荷輸送性ワニスを塗布し、前記の方法により焼成を行い、電極上に機能性単一膜を作製する。これを真空蒸着装置内に導入し、発光層、電子輸送層、電子注入層、陰極金属を順次蒸着してOLED素子とする。なお、必要に応じて、発光層と正孔注入輸送層との間に電子ブロック層を設けてよい。
 陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、アルミニウムに代表される金属やこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。
 なお、金属陽極を構成するその他の金属としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、カドミウム、インジウム、スカンジウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ハフニウム、タリウム、タングステン、レニウム、オスミウム、イリジウム、プラチナ、金、チタン、鉛、ビスマスやこれらの合金等が挙げられるが、これらに限定されない。
 発光層を形成する材料としては、トリス(8-キノリノラート)アルミニウム(III)(Alq3)、ビス(8-キノリノラート)亜鉛(II)(Znq2)、ビス(2-メチル-8-キノリノラート)-4-(p-フェニルフェノラート)アルミニウム(III)(BAlq)、4,4'-ビス(2,2-ジフェニルビニル)ビフェニル、9,10-ジ(ナフタレン-2-イル)アントラセン、2-t-ブチル-9,10-ジ(ナフタレン-2-イル)アントラセン、2,7-ビス[9,9-ジ(4-メチルフェニル)-フルオレン-2-イル]-9,9-ジ(4-メチルフェニル)フルオレン、2-メチル-9,10-ビス(ナフタレン-2-イル)アントラセン、2-(9,9-スピロビフルオレン-2-イル)-9,9-スピロビフルオレン、2,7-ビス(9,9-スピロビフルオレン-2-イル)-9,9-スピロビフルオレン、2-[9,9-ジ(4-メチルフェニル)-フルオレン-2-イル]-9,9-ジ(4-メチルフェニル)フルオレン、2,2'-ジピレニル-9,9-スピロビフルオレン、1,3,5-トリス(ピレン-1-イル)ベンゼン、9,9-ビス[4-(ピレニル)フェニル]-9H-フルオレン、2,2'-ビ(9,10-ジフェニルアントラセン)、2,7-ジピレニル-9,9-スピロビフルオレン、1,4-ジ(ピレン-1-イル)ベンゼン、1,3-ジ(ピレン-1-イル)ベンゼン、6,13-ジ(ビフェニル-4-イル)ペンタセン、3,9-ジ(ナフタレン-2-イル)ペリレン、3,10-ジ(ナフタレン-2-イル)ペリレン、トリス[4-(ピレニル)-フェニル]アミン、10,10'-ジ(ビフェニル-4-イル)-9,9'-ビアントラセン、N,N'-ジ(ナフタレン-1-イル)-N,N'-ジフェニル-[1,1':4',1'':4'',1'''-クォーターフェニル]-4,4'''-ジアミン、4,4'-ジ[10-(ナフタレン-1-イル)アントラセン-9-イル]ビフェニル、ジベンゾ{[f,f']-4,4',7,7'-テトラフェニル}ジインデノ[1,2,3-cd:1',2',3'-lm]ペリレン、1-(7-(9,9'-ビアントラセン-10-イル)-9,9-ジメチル-9H-フルオレン-2-イル)ピレン、1-(7-(9,9'-ビアントラセン-10-イル)-9,9-ジヘキシル-9H-フルオレン-2-イル)ピレン、1,3-ビス(カルバゾール-9-イル)ベンゼン、1,3,5-トリス(カルバゾール-9-イル)ベンゼン、4,4',4''-トリス(カルバゾール-9-イル)トリフェニルアミン、4,4'-ビス(カルバゾール-9-イル)ビフェニル(CBP)、4,4'-ビス(カルバゾール-9-イル)-2,2'-ジメチルビフェニル、2,7-ビス(カルバゾール-9-イル)-9,9-ジメチルフルオレン、2,2',7,7'-テトラキス(カルバゾール-9-イル)-9,9-スピロビフルオレン、2,7-ビス(カルバゾール-9-イル)-9,9-ジ(p-トリル)フルオレン、9,9-ビス[4-(カルバゾール-9-イル)-フェニル]フルオレン、2,7-ビス(カルバゾール-9-イル)-9,9-スピロビフルオレン、1,4-ビス(トリフェニルシリル)ベンゼン、1,3-ビス(トリフェニルシリル)ベンゼン、ビス(4-N,N-ジエチルアミノ-2-メチルフェニル)-4-メチルフェニルメタン、2,7-ビス(カルバゾール-9-イル)-9,9-ジオクチルフルオレン、4,4''-ジ(トリフェニルシリル)-p-ターフェニル、4,4'-ジ(トリフェニルシリル)ビフェニル、9-(4-t-ブチルフェニル)-3,6-ビス(トリフェニルシリル)-9H-カルバゾール、9-(4-t-ブチルフェニル)-3,6-ジトリチル-9H-カルバゾール、9-(4-t-ブチルフェニル)-3,6-ビス(9-(4-メトキシフェニル)-9H-フルオレン-9-イル)-9H-カルバゾール、2,6-ビス(3-(9H-カルバゾール-9-イル)フェニル)ピリジン、トリフェニル(4-(9-フェニル-9H-フルオレン-9-イル)フェニル)シラン、9,9-ジメチル-N,N-ジフェニル-7-(4-(1-フェニル-1H-ベンゾ[d]イミダゾール-2-イル)フェニル)-9H-フルオレン-2-アミン、3,5-ビス(3-(9H-カルバゾール-9-イル)フェニル)ピリジン、9,9-スピロビフルオレン-2-イル-ジフェニル-ホスフィンオキサイド、9,9'-(5-(トリフェニルシリル)-1,3-フェニレン)ビス(9H-カルバゾール)、3-(2,7-ビス(ジフェニルホスホリル)-9-フェニル-9H-フルオレン-9-イル)-9-フェニル-9H-カルバゾール、4,4,8,8,12,12-ヘキサ(p-トリル)-4H-8H-12H-12C-アザジベンゾ[cd,mn]ピレン、4,7-ジ(9H-カルバゾール-9-イル)-1,10-フェナントロリン、2,2'-ビス(4-(カルバゾール-9-イル)フェニル)ビフェニル、2,8-ビス(ジフェニルホスホリル)ジベンゾ[b,d]チオフェン、ビス(2-メチルフェニル)ジフェニルシラン、ビス[3,5-ジ(9H-カルバゾール-9-イル)フェニル]ジフェニルシラン、3,6-ビス(カルバゾール-9-イル)-9-(2-エチル-ヘキシル)-9H-カルバゾール、3-(ジフェニルホスホリル)-9-(4-(ジフェニルホスホリル)フェニル)-9H-カルバゾール、3,6-ビス[(3,5-ジフェニル)フェニル]-9-フェニルカルバゾール等が挙げられる。これらの材料と発光性ドーパントとを共蒸着することによって、発光層を形成してもよい。
 発光性ドーパントとしては、3-(2-ベンゾチアゾリル)-7-(ジエチルアミノ)クマリン、2,3,6,7-テトラヒドロ-1,1,7,7-テトラメチル-1H,5H,11H-10-(2-ベンゾチアゾリル)キノリジノ[9,9a,1gh]クマリン、キナクリドン、N,N'-ジメチル-キナクリドン、トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy)3)、ビス(2-フェニルピリジン)(アセチルアセトネート)イリジウム(III)(Ir(ppy)2(acac))、トリス[2-(p-トリル)ピリジン]イリジウム(III)(Ir(mppy)3)、9,10-ビス[N,N-ジ(p-トリル)アミノ]アントラセン、9,10-ビス[フェニル(m-トリル)アミノ]アントラセン、ビス[2-(2-ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(II)、N10,N10,N10,N10-テトラ(p-トリル)-9,9'-ビアントラセン-10,10'-ジアミン、N10,N10,N10,N10-テトラフェニル-9,9'-ビアントラセン-10,10'-ジアミン、N10,N10-ジフェニル-N10,N10-ジナフタレニル-9,9'-ビアントラセン-10,10'-ジアミン、4,4'-ビス(9-エチル-3-カルバゾビニレン)-1,1'-ビフェニル、ペリレン、2,5,8,11-テトラ-t-ブチルペリレン、1,4-ビス[2-(3-N-エチルカルバゾリル)ビニル]ベンゼン、4,4'-ビス[4-(ジ-p-トリルアミノ)スチリル]ビフェニル、4-(ジ-p-トリルアミノ)-4'-[(ジ-p-トリルアミノ)スチリル]スチルベン、ビス[3,5-ジフルオロ-2-(2-ピリジル)フェニル-(2-カルボキシピリジル)]イリジウム(III)、4,4'-ビス[4-(ジフェニルアミノ)スチリル]ビフェニル、ビス(2,4-ジフルオロフェニルピリジナト)テトラキス(1-ピラゾリル)ボレートイリジウム(III)、N,N'-ビス(ナフタレン-2-イル)-N,N'-ビス(フェニル)-トリス(9,9-ジメチルフルオレニレン)、2,7-ビス{2-[フェニル(m-トリル)アミノ]-9,9-ジメチル-フルオレン-7-イル}-9,9-ジメチル-フルオレン、N-(4-((E)-2-(6((E)-4-(ジフェニルアミノ)スチリル)ナフタレン-2-イル)ビニル)フェニル)-N-フェニルベンゼンアミン、fac-イリジウム(III)トリス(1-フェニル-3-メチルベンズイミダゾリン-2-イリデン-C,C2)、mer-イリジウム(III)トリス(1-フェニル-3-メチルベンズイミダゾリン-2-イリデン-C,C2)、2,7-ビス[4-(ジフェニルアミノ)スチリル]-9,9-スピロビフルオレン、6-メチル-2-(4-(9-(4-(6-メチルベンゾ[d]チアゾール-2-イル)フェニル)アントラセン-10-イル)フェニル)ベンゾ[d]チアゾール、1,4-ジ[4-(N,N-ジフェニル)アミノ]スチリルベンゼン、1,4-ビス(4-(9H-カルバゾール-9-イル)スチリル)ベンゼン、(E)-6-(4-(ジフェニルアミノ)スチリル)-N,N-ジフェニルナフタレン-2-アミン、ビス(2,4-ジフルオロフェニルピリジナト)(5-(ピリジン-2-イル)-1H-テトラゾレート)イリジウム(III)、ビス(3-トリフルオロメチル-5-(2-ピリジル)ピラゾール)((2,4-ジフルオロベンジル)ジフェニルホスフィネート)イリジウム(III)、ビス(3-トリフルオロメチル-5-(2-ピリジル)ピラゾレート)(ベンジルジフェニルホスフィネート)イリジウム(III)、ビス(1-(2,4-ジフルオロベンジル)-3-メチルベンズイミダゾリウム)(3-(トリフルオロメチル)-5-(2-ピリジル)-1,2,4-トリアゾレート)イリジウム(III)、ビス(3-トリフルオロメチル-5-(2-ピリジル)ピラゾレート)(4',6'-ジフルオロフェニルピリジネート)イリジウム(III)、ビス(4',6'-ジフルオロフェニルピリジナト)(3,5-ビス(トリフルオロメチル)-2-(2'-ピリジル)ピロレート)イリジウム(III)、ビス(4',6'-ジフルオロフェニルピリジナト)(3-(トリフルオロメチル)-5-(2-ピリジル)-1,2,4-トリアゾレート)イリジウム(III)、(Z)-6-メシチル-N-(6-メシチルキノリン-2(1H)-イリデン)キノリン-2-アミン-BF2、(E)-2-(2-(4-(ジメチルアミノ)スチリル)-6-メチル-4H-ピラン-4-イリデン)マロノニトリル、4-(ジシアノメチレン)-2-メチル-6-ジュロリジル-9-エニル-4H-ピラン、4-(ジシアノメチレン)-2-メチル-6-(1,1,7,7-テトラメチルジュロリジル-9-エニル)-4H-ピラン、4-(ジシアノメチレン)-2-t-ブチル-6-(1,1,7,7-テトラメチルジュロリジン-4-イル-ビニル)-4H-ピラン、トリス(ジベンゾイルメタン)フェナントロリンユーロピウム(III)、5,6,11,12-テトラフェニルナフタセン、ビス(2-ベンゾ[b]チオフェン-2-イル-ピリジン)(アセチルアセトネート)イリジウム(III)、トリス(1-フェニルイソキノリン)イリジウム(III)、ビス(1-フェニルイソキノリン)(アセチルアセトネート)イリジウム(III)、ビス[1-(9,9-ジメチル-9H-フルオレン-2-イル)-イソキノリン](アセチルアセトネート)イリジウム(III)、ビス[2-(9,9-ジメチル-9H-フルオレン-2-イル)キノリン](アセチルアセトネート)イリジウム(III)、トリス[4,4'-ジ-t-ブチル-(2,2')-ビピリジン]ルテニウム(III)・ビス(ヘキサフルオロホスフェート)、トリス(2-フェニルキノリン)イリジウム(III)、ビス(2-フェニルキノリン)(アセチルアセトネート)イリジウム(III)、2,8-ジ-t-ブチル-5,11-ビス(4-t-ブチルフェニル)-6,12-ジフェニルテトラセン、ビス(2-フェニルベンゾチアゾラト)(アセチルアセトネート)イリジウム(III)、5,10,15,20-テトラフェニルテトラベンゾポルフィリン白金、オスミウム(II)ビス(3-トリフルオロメチル-5-(2-ピリジン)-ピラゾレート)ジメチルフェニルホスフィン、オスミウム(II)ビス(3-(トリフルオロメチル)-5-(4-t-ブチルピリジル)-1,2,4-トリアゾレート)ジフェニルメチルホスフィン、オスミウム(II)ビス(3-(トリフルオロメチル)-5-(2-ピリジル)-1,2,4-トリアゾール)ジメチルフェニルホスフィン、オスミウム(II)ビス(3-(トリフルオロメチル)-5-(4-t-ブチルピリジル)-1,2,4-トリアゾレート)ジメチルフェニルホスフィン、ビス[2-(4-n-ヘキシルフェニル)キノリン](アセチルアセトネート)イリジウム(III)、トリス[2-(4-n-ヘキシルフェニル)キノリン]イリジウム(III)、トリス[2-フェニル-4-メチルキノリン]イリジウム(III)、ビス(2-フェニルキノリン)(2-(3-メチルフェニル)ピリジネート)イリジウム(III)、ビス(2-(9,9-ジエチル-フルオレン-2-イル)-1-フェニル-1H-ベンゾ[d]イミダゾラト)(アセチルアセトネート)イリジウム(III)、ビス(2-フェニルピリジン)(3-(ピリジン-2-イル)-2H-クロメン-2-オネート)イリジウム(III)、ビス(2-フェニルキノリン)(2,2,6,6-テトラメチルヘプタン-3,5-ジオネート)イリジウム(III)、ビス(フェニルイソキノリン)(2,2,6,6-テトラメチルヘプタン-3,5-ジオネート)イリジウム(III)、イリジウム(III)ビス(4-フェニルチエノ[3,2-c]ピリジナト-N,C2)アセチルアセトネート、(E)-2-(2-t-ブチル-6-(2-(2,6,6-トリメチル-2,4,5,6-テトラヒドロ-1H-ピローロ[3,2,1-ij]キノリン-8-イル)ビニル)-4H-ピラン-4-イリデン)マロノニトリル、ビス(3-トリフルオロメチル-5-(1-イソキノリル)ピラゾレート)(メチルジフェニルホスフィン)ルテニウム、ビス[(4-n-ヘキシルフェニル)イソキノリン](アセチルアセトネート)イリジウム(III)、白金(II)オクタエチルポルフィン、ビス(2-メチルジベンゾ[f,h]キノキサリン)(アセチルアセトネート)イリジウム(III)、トリス[(4-n-ヘキシルフェニル)キソキノリン]イリジウム(III)等が挙げられる。
 電子輸送層/ホールブロック層を形成する材料としては、8-ヒドロキシキノリノレート-リチウム、2,2',2''-(1,3,5-ベンジントリル)-トリス(1-フェニル-1-H-ベンズイミダゾール)、2-(4-ビフェニル)5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、4,7-ジフェニル-1,10-フェナントロリン、ビス(2-メチル-8-キノリノレート)-4-(フェニルフェノラト)アルミニウム、1,3-ビス[2-(2,2'-ビピリジン-6-イル)-1,3,4-オキサジアゾ-5-イル]ベンゼン、6,6'-ビス[5-(ビフェニル-4-イル)-1,3,4-オキサジアゾ-2-イル]-2,2'-ビピリジン、3-(4-ビフェニル)-4-フェニル-5-t-ブチルフェニル-1,2,4-トリアゾール、4-(ナフタレン-1-イル)-3,5-ジフェニル-4H-1,2,4-トリアゾール、2,9-ビス(ナフタレン-2-イル)-4,7-ジフェニル-1,10-フェナントロリン、2,7-ビス[2-(2,2'-ビピリジン-6-イル)-1,3,4-オキサジアゾ-5-イル]-9,9-ジメチルフルオレン、1,3-ビス[2-(4-t-ブチルフェニル)-1,3,4-オキサジアゾ-5-イル]ベンゼン、トリス(2,4,6-トリメチル-3-(ピリジン-3-イル)フェニル)ボラン、1-メチル-2-(4-(ナフタレン-2-イル)フェニル)-1H-イミダゾ[4,5f][1,10]フェナントロリン、2-(ナフタレン-2-イル)-4,7-ジフェニル-1,10-フェナントロリン、フェニル-ジピレニルホスフィンオキサイド、3,3',5,5'-テトラ[(m-ピリジル)-フェン-3-イル]ビフェニル、1,3,5-トリス[(3-ピリジル)-フェン-3-イル]ベンゼン、4,4'-ビス(4,6-ジフェニル-1,3,5-トリアジン-2-イル)ビフェニル、1,3-ビス[3,5-ジ(ピリジン-3-イル)フェニル]ベンゼン、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム、ジフェニルビス(4-(ピリジン-3-イル)フェニル)シラン、3,5-ジ(ピレン-1-イル)ピリジン等が挙げられる。
 電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al2O3)、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化マグネシウム(MgF2)、フッ化セシウム(CsF)、フッ化ストロンチウム(SrF2)、三酸化モリブデン(MoO3)、アルミニウム、リチウムアセチルアセトネート(Li(acac))、酢酸リチウム、安息香酸リチウム等が挙げられる。
 陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金、リチウム、ナトリウム、カリウム、セシウム等が挙げられる。
 電子ブロック層を形成する材料としては、トリス(フェニルピラゾール)イリジウム等が挙げられる。
 本発明の電荷輸送性ワニスを用いたPLED素子の作製方法は、特に限定されないが、以下の方法が挙げられる。
 前記OLED素子作製において、発光層、電子輸送層、電子注入層の真空蒸着操作を行うかわりに、発光性高分子層を形成することによって本発明の電荷輸送性ワニスから得られる薄膜からなる機能性単一膜(正孔注入輸送層)を有するPLED素子を作製することができる。具体的には、陽極基板上に本発明の電荷輸送性ワニスを塗布して前記の方法により機能性単一膜を作製し、その上に発光性高分子層を形成し、更に陰極電極を蒸着してPLED素子とする。
 使用する陰極及び陽極材料としては、前記OLED素子作製時と同様のものが使用でき、同様の洗浄処理、表面処理を行うことができる。
 発光性高分子層の形成法としては、発光性高分子材料、又はそれにドーパントを加えた材料に溶媒を加えて溶解するか、均一に分散し、機能性単一膜の上に塗布した後、焼成することにより成膜する方法が挙げられる。
 発光性高分子材料としては、ポリ(9,9-ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2-メトキシ-5-(2'-エチルヘキソキシ)-1,4-フェニレンビニレン)(MEH-PPV)等のポリフェニレンビニレン誘導体、ポリ(3-アルキルチオフェン)(PAT)等のポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等が挙げられる。
 溶媒としては、トルエン、キシレン、クロロホルム等を挙げることができ、溶解又は均一分散法としては攪拌、加熱攪拌、超音波分散等の方法が挙げられる。
 塗布方法としては、特に限定されないが、インクジェット法、スプレー法、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り等が挙げられる。なお、塗布は、窒素、アルゴン等の不活性ガス下で行うことが好ましい。
 焼成方法としては、不活性ガス下又は真空中、オーブン又はホットプレートで加熱する方法が挙げられる。
 本発明の有機EL素子は、特性悪化を防ぐため、定法に従い、必要に応じて捕水剤等とともに封止してもよい。
 以下、合成例、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されない。なお、実施例で使用した装置は以下のとおりである。
(1)1H-NMR:日本電子(株)製ECX-300
(2)LC/MS:Waters社製、ZQ 2000、AB Sciex社製、TripleTOF5600+
(3)MALDI-TOF-MS:ブルカー社製、autoflex III smartbeam
(4)基板洗浄:長州産業(株)製、基板洗浄装置(減圧プラズマ方式)
(5)ワニスの塗布:ミカサ(株)製、スピンコーターMS-A100
(6)膜厚測定:(株)小坂研究所製、微細形状測定機サーフコーダET-4000
(7)GPC測定:(株)島津製作所製(カラム:SHODEX GPC KF-804L+GPC KF-805L、カラム温度:40℃、検出器:UV検出器(254nm)及びRI検出器、溶離液:THF、カラム流速:1.0mL/min)
(8)EL素子の作製:長州産業(株)製、多機能蒸着装置システムC-E2L1G1-N
(9)EL素子の輝度等の測定:(有)テック・ワールド製、I-V-L測定システム
[1]化合物の合成
[合成例1]化合物1の合成
Figure JPOXMLDOC01-appb-C000039
 2,7-ジブロモフルオレン(6.48g、20mmol)のジメチルスルホキシド懸濁液(130mL)に、水酸化カリウム(5.61g、100mmol)、ヨウ化カリウム(0.33g、2mmol)及びジエチレングリコール2-ブロモエチルメチルエーテル(9.99g、44mmol)を加え、24時間室温で攪拌した。反応終了後、0℃に冷却し、水(120mL)を加え、塩酸で中和した。有機層を酢酸エチルにより抽出し、硫酸マグネシウムで乾燥後、濃縮し得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル(4/1→3/1→2/1))で精製することにより、化合物1を白色固体として得た(収量8.30g、収率67%)。1H-NMR及びLC/MSの測定結果を以下に示す。
1H-NMR (300MHz, CDCl3): δ 2.33(app t, J=7.8Hz, 4H), 2.78(app t, J=7.8Hz, 4H), 3.19-3.22(m, 4H), 3.35(s, 6H), 3.37-3.41(m, 4H), 3.50-3.52(m, 8H), 7.46(dd, J=1.8, 8.4Hz, 2H), 7.51(d, J=8.4Hz, 2H), 7.53(d, J=1.8Hz, 2H).
LC/MS (ESI+) m/z; 634[M+NH4]+
[合成例2]化合物2の合成
Figure JPOXMLDOC01-appb-C000040
 ジフェニルアミン(4.61g、27mmol)及び化合物1(5.60g、9mmol)のトルエン溶液(56mL)に、酢酸パラジウム(40.4mg、0.18mmol)、t-BuONa(3.81g、40mmol)及び[(t-Bu)3PH]BF4(104mg、0.36mmol)を加え、窒素置換後、80℃で3時間加熱した。反応終了後、セライトろ過し、ろ液を濃縮し得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル(2/1→1/1→1/2))で精製することにより、化合物2を淡褐色固体として得た(収量1.17g、収率16%)。1H-NMR及びLC/MSの測定結果を以下に示す。
1H-NMR (300MHz, CDCl3): δ 2.13(app t, J=7.2Hz, 4H), 2.88(app t, J=7.2Hz, 4H), 3.28-3.31(m, 4H), 3.34(s, 6H), 3.45-3.51(m, 8H), 3.54-3.58(m, 4H), 6.98-7.11(m, 16H), 7.22-7.27(m, 8H), 7.44(d, J=8.1Hz, 2H).
LC/MS (ESI+) m/z; 794[M+H]+
[合成例3]化合物3の合成
Figure JPOXMLDOC01-appb-C000041
 化合物2(2.90g、3.7mmol)のDMF溶液(58mL)にN-ブロモスクシンイミド(2.73g、15.4mmol)を0℃で加えた後、室温で1時間攪拌した。反応終了後、0℃で水(58mL)を加え、有機層を酢酸エチルにより抽出し、硫酸ナトリウムで乾燥後、濃縮し得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル(4/1→3/1))で精製することにより、化合物3を白色固体として得た(収量3.95g、収率93%)。1H-NMR及びLC/MSの測定結果を以下に示す。
1H-NMR(300MHz, CDCL3): δ 2.14(app t, J=7.2Hz, 4H), 2.86(app t, J= 7.2Hz, 4H), 3.26-3.33(m, 4H), 3.35(s, 6H), 3.41-3.57(m, 12H), 6.83-7.05(m, 12H), 7.25-7.47(m, 10H).
LC/MS (ESI+) m/z; 1131[M+Na]+
[合成例4]化合物4の合成
Figure JPOXMLDOC01-appb-C000042
 4-ブロモトリフェニルアミン(13.0g、40mmol)及びビス(ピナコラート)ジボロン(11.2g、44mmol)の1,4-ジオキサン溶液(100mL)に、酢酸カリウム(7.85g、80mmol)及びPdCl2(dppf)のジクロロメタン付加体(0.65g、0.8mmol)を加え、窒素置換後、100℃で2時間加熱した。反応終了後、セライトろ過し、ろ液を濃縮し得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル(9/1))で精製することにより、化合物4を淡黄色固体として得た(収量14.9g、収率100%)。1H-NMR及びLC/MSの測定結果を以下に示す。
1H-NMR(300MHz, CDCL3): δ 1.33(s, 12H), 7.01-7.12(m, 8H), 7.23-7.28(m, 4H), 7.66(d, J=8.7Hz, 2H).
LC/MS (ESI+) m/z; 372[M+H]+
[合成例5]化合物5の合成
Figure JPOXMLDOC01-appb-C000043
 化合物1(6.16g、10mmol)及び化合物4(8.17g、22mmol)のトルエン溶液(123mL)に、メチルトリ-n-オクチルアンモニウムクロリド(1.01g、2.5mmol)、Pd(PPh3)4(462mg、0.4mmol)及び2mol/L炭酸ナトリウム水溶液(20mL、40mmol)を加え、4時間加熱還流した。反応終了後、1mol/L塩酸(40mL)を加え、有機層を酢酸エチルで抽出し、硫酸マグネシウムで乾燥した。セライトろ過し、ろ液を濃縮し得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル(4/1→2/1→1/1))で精製することにより化合物5を主生成物として含む黄色液体(7.74g)を得た。1H-NMR及びLC/MSの測定結果を以下に示す。
1H-NMR(300MHZ,CDCl3): δ 2.45(app t, J=7.2Hz, 4H), 2.84(app t, J= 7.2Hz, 4H), 3.20-3.23(m, 4H), 3.29(s, 6H), 3.37-3.50(m, 12H), 7.02-7.07(m, 4H), 7.14-7.19(m, 12H), 7.24-7.31(m, 8H), 7.53-7.61(m,8H), 7.72(d, J=8.1Hz, 2H).
LC/MS (ESI+) m/z; 963[M+NH4]+
[合成例6]化合物6の合成
Figure JPOXMLDOC01-appb-C000044
 化合物2のかわりに化合物5を用いた以外は、合成例3と同様に合成を行い、化合物6を淡黄色固体として得た(収量7.15g、収率57%(化合物1からの2段階収率))。1H-NMR及びLC/MSの測定結果を以下に示す。
1H-NMR(300MHz, CDCl3): δ 2.46(app t, J=7.2Hz,4H), 2.84(app t, J=7.2Hz, 4H), 3.20-3.24(m, 4H), 3.30(s,6H), 3.37-3.50(m, 12H), 7.01(d, J=9.0Hz, 8H), 7.15(d, J=8.4Hz, 4H), 7.38(d, J=9.0Hz, 8H), 7.56-7.61(m, 8H), 7.73(d, J=7.8Hz, 2H).
LC/MS (ESI+) m/z; 1278[M+NH4]+
[合成例7]化合物7の合成
Figure JPOXMLDOC01-appb-C000045
 フルオレン(3.32g、20mmol)のTHF溶液(20mL)にt-BuOK(6.73g、60mmol)を室温で加え、次いで室温で4-ブロモベンジルブロミド(11.0g、44mmol)のTHF溶液(46mL)を滴下し、8時間加熱還流させた。反応終了後、室温まで放冷し、水(30mL)を加えた。有機層を酢酸エチルにより抽出し、硫酸マグネシウムで乾燥後、濃縮し得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル(100/1→50/1))で精製することにより、化合物7を白色固体として得た(収量7.25g、収率72%)。1H-NMR及びMALDI-TOF-MSの測定結果を以下に示す。
1H-NMR(300MHz, CDCl3): δ 3.31(s, 4H), 6.48(d, J=8.4Hz, 4H), 7.00(d, J=8.7Hz, 4H), 7.20-7.31(m, 4H), 7.39-7.42(m, 4H).
MALDI-TOF-MS m/z; 526[M+Na]+
[合成例8]化合物8の合成
Figure JPOXMLDOC01-appb-C000046
 4-ブロモトリフェニルアミンのかわりに化合物7を用いた以外は、合成例4と同様に合成を行い、化合物8を無色固体として得た(収量5.86g、収率87%)として。1H-NMR及びLC/MSの測定結果を以下に示す。
1H-NMR (300MHz, CDCl3): δ 1.27(s, 24H), 3.34(s, 4H), 6.68(d, J=7.8Hz,4H), 7.17-7.26 (m,4H), 7.35-7.41(m, 8H).
LC/MS (APCI+) m/z; 598[m]+
[合成例9]化合物9の合成
Figure JPOXMLDOC01-appb-C000047
 フルオレンのかわりに2,7-ジブロモフルオレンを用い、4-ブロモベンジルブロミドのかわりに4-トリフルオロメチルベンジルブロミドを用いた以外は、合成例7と同様に合成を行い、化合物9を無色固体として得た(収量10.2g、収率80%)。1H-NMRの測定結果を以下に示す。
1H-NMR(300MHz, CDCl3): δ 3.41(s, 4H), 6.73(d, J=8.4Hz, 4H), 7.19-7.22(m, 6H), 7.38(dd, J=1.8, 8.4Hz, 2H), 7.59(d, J=1.2Hz, 2H).
[合成例10]化合物10の合成
Figure JPOXMLDOC01-appb-C000048
 4-ブロモトリフェニルアミンのかわりに化合物9を用いた以外は、合成例4と同様に合成を行い、化合物10を無色固体として得た(5.60g、81%収率)。1H-NMR及びLC/MSの測定結果を以下に示す。
1H-NMR(300MHz, CDCl3): δ 1.41(s, 24H), 3.45(s, 4H), 6.71(d, J=7.8Hz, 4H), 7.13(d, J=7.8Hz, 4H), 7.43(d, J=7.5Hz, 2H), 7.70(d, J=7.8Hz, 2H), 7.83(s, 2H).
LC/MS (ESI+) m/z; 780[M+HCOO]-
[合成例11]ポリマー1の合成
Figure JPOXMLDOC01-appb-C000049
 合成例3で合成した化合物3(887mg、0.8mmol)、合成例8で合成した化合物8(402mg、0.67mmol)及び合成例10で合成した化合物10(494mg、0.67mmol)のトルエン溶液(18mL)に、メチルトリ-n-オクチルアンモニウムクロリド(64.7mg、0.16mmol)、Pd(PPh3)4(3.7mg、3.2μmol)及び2mol/L炭酸ナトリウム水溶液(3.2mL、6.4mmol)を加え、3時間加熱還流した。反応液にフェニルボロン酸(97.5mg、0.8mmol)を加え、更に4時間加熱還流した。反応終了後、1mol/L塩酸で有機層を洗浄した後、硫酸ナトリウムで乾燥した。セライトろ過後、有機層を1/4の容量まで濃縮し、メタノール(180mL)に滴下した。室温で1時間攪拌した後、析出した固体をろ取した。この固体をトルエン(16mL)に溶解させ、メタノール(180mL)に滴下し、室温で1時間攪拌後、析出した固体をろ取することにより、ポリマー1を淡緑色固体として得た(収量0.90g)。GPC測定の結果、Mw=14,200、Mn=5,000、Mw/Mn=2.8であった。
[合成例12]ポリマー2の合成
Figure JPOXMLDOC01-appb-C000050
 化合物3のかわりに合成例6で合成した化合物6を用いた以外は、合成例11と同様に合成を行い、ポリマー2を淡黄色固体として得た(収量0.66g)。GPC測定の結果、Mw=40,300、Mn=5,000、Mw/Mn=8.1であった。
[2]電荷輸送性ワニスの調製
[実施例1]電荷輸送性ワニスA
 ポリマー1(64mg)、国際公開第2013/084664号記載の方法に従って合成したオリゴアニリン化合物1(18mg)及びリンタングステン酸(関東化学(株)製)(89mg)の混合物に、窒素循環型グローブボックス内で1,3-ジメチルイミダゾリジノン(2g)を加えて、50℃で加熱攪拌して、溶解させた。これにシクロヘキサノール(2g)を加えて攪拌し、緑色溶液を得た。この溶液を孔径0.2μmのシリンジフィルターでろ過して、電荷輸送性ワニスAを得た。
Figure JPOXMLDOC01-appb-C000051
[実施例2]電荷輸送性ワニスB
 ポリマー1のかわりにポリマー2を用いた以外は、実施例1と同様の方法で電荷輸送性ワニスBを得た。
[比較例1]電荷輸送性ワニスC
 ポリマー1を用いず、オリゴアニリン化合物1及びリンタングステン酸の使用量を、20mg及び100mgとした以外は、実施例1と同様の方法で電荷輸送性ワニスCを得た。
[3]有機EL素子(OLED素子)の作製及びその特性評価
 電気特性を評価する際の基板には、インジウム錫酸化物が表面上に膜厚150nmでパターニングされた25mm×25mm×0.7tのガラス基板(以下ITO基板と略す)を用いた。ITO基板は、O2プラズマ洗浄装置(150W、30秒間)を用いて、表面上の不純物を除去してから使用した。
[実施例3]電荷輸送性ワニスAを用いたOLED素子の作製
 実施例1で得られた電荷輸送性ワニスAを、スピンコーターを用いてITO基板に塗布した後、80℃で1分間乾燥し、更に230℃で15分間焼成し、ITO基板上に30nmの均一な薄膜を形成した。
 次いで、薄膜を形成したITO基板に対し、蒸着装置(真空度1.0×10-5Pa)を用いてトリス(8-キノリノラート)アルミニウム(III)(Alq3)、フッ化リチウム、及びアルミニウムの薄膜を順次積層し、OLED素子を得た。この際、蒸着レートは、Alq3及びアルミニウムについては0.2nm/秒、フッ化リチウムについては0.02nm/秒の条件でそれぞれ行い、膜厚は、それぞれ40nm、0.5nm及び100nmとした。
 なお、空気中の酸素、水等の影響による特性劣化を防止するため、OLED素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。
 酸素濃度2ppm以下、露点-85℃以下の窒素雰囲気中で、有機EL素子を封止基板の間に収め、封止基板を接着材(ナガセケムテックス(株)製、XNR5516Z-B1)により貼り合わせた。この際、捕水剤(ダイニック(株)製、HD-071010W-40)をOLED素子と共に封止基板内に収めた。
 貼り合わせた封止基板に対し、UV光を照射(波長:365nm、照射量:6,000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着材を硬化させた。
[実施例4]電荷輸送性ワニスBを用いたOLED素子の作製
 電荷輸送性ワニスAのかわりに実施例2で得られた電荷輸送性ワニスBを用いた以外は、実施例3と同様の方法でOLED素子を作製した。
[比較例2]電荷輸送性ワニスCを用いたOLED素子の作製
 電荷輸送性ワニスAのかわりに比較例1で得られた電荷輸送性ワニスCを用いた以外は、実施例3と同様の方法でOLED素子を作製した。
 実施例3、4及び比較例2で得られたOLED素子の電気特性を測定した。駆動電圧5Vにおける電流密度、輝度及び電流効率を表1に示す。
Figure JPOXMLDOC01-appb-T000052
 表1に示されるように、ポリマー1又はポリマー2を添加していない電荷輸送性ワニスCを用いた比較例2では、実施例3、4に比べて電流効率が著しく低く、電流密度に対して輝度が低かった。

Claims (17)

  1.  下記式(1)で表される繰り返し単位を与えるフルオレン誘導体と、下記式(2)で表される繰り返し単位を与えるフルオレン誘導体と、下記式(3)で表される繰り返し単位を与えるフルオレン誘導体との縮合重合体であることを特徴とするフッ素原子含有重合体。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1及びR2は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリールオキシ基、炭素数2~20のヘテロアリールオキシ基又は少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基を表し(ただし、R1及びR2の少なくとも一方は、前記アルキル基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、アリールオキシ基、ヘテロアリールオキシ基又は少なくとも1つのエーテル構造を含むアルキル基である。);
     R3及びR4は、それぞれ独立に、非共役系の2価の有機基を表し;
     R5は、水素原子、又は少なくとも1つの水素原子がフッ素原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、炭素数8~20のアルキルアラルキル基、炭素数2~20のヘテロアリール基、炭素数6~20のアリールオキシ基若しくは炭素数2~20のヘテロアリールオキシ基を表し;
     R6は、少なくとも1つの水素原子がフッ素原子で置換された、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、炭素数8~20のアルキルアラルキル基、炭素数2~20のヘテロアリール基、炭素数6~20のアリールオキシ基又は炭素数2~20のヘテロアリールオキシ基を表し;
     Rは、それぞれ独立に、ハロゲン原子、ニトロ基、シアノ基、Z1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基若しくは炭素数2~20のアルキニルオキシ基、又はZ2で置換されていてもよい、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基、炭素数6~20のアリールオキシ基若しくは炭素数2~20のヘテロアリールオキシ基を表し;
     Z1は、ハロゲン原子、ニトロ基、シアノ基、又はZ3で置換されていてもよい、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し;
     Z2は、ハロゲン原子、ニトロ基、シアノ基、又はZ3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し;
     Z3は、ハロゲン原子、ニトロ基又はシアノ基を表し;
     p及びqは、それぞれ独立に、0又は1を表す。]
  2.  重量平均分子量が、1,000~200,000である請求項1記載の重合体。
  3.  R1及びR2が、ともに炭素数1~20のアルキル基又はともに少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基である請求項1又は2記載の重合体。
  4.  R3及びR4が、-Rc-Ar-(式中、Rcは、炭素数1~20のアルキレン基を表し、Arは、炭素数6~20のアリーレン基を表す。)である請求項1~3のいずれか1項記載の重合体。
  5.  R5が、少なくとも1つの水素原子がフッ素原子で置換された、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、炭素数8~20のアルキルアラルキル基、炭素数2~20のヘテロアリール基、炭素数6~20のアリールオキシ基又は炭素数2~20のヘテロアリールオキシ基である請求項1~4のいずれか1項記載の重合体。
  6.  請求項1~5のいずれか1項記載の重合体からなる電荷輸送性物質。
  7.  請求項6記載の電荷輸送性物質、フッ素原子を含有しない電荷輸送性物質、ヘテロポリ酸からなるドーパント、及び有機溶媒を含む電荷輸送性ワニス。
  8.  前記フッ素原子を含有しない電荷輸送性物質が、アニリン誘導体である請求項7記載の電荷輸送性ワニス。
  9.  請求項7又は8記載の電荷輸送性ワニスを用いて作製される電荷輸送性薄膜。
  10.  請求項9記載の電荷輸送性薄膜を有する電子デバイス。
  11.  請求項9記載の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子。
  12.  請求項7又は8記載の電荷輸送性ワニスを基材上に塗布し、溶媒を蒸発させることを特徴とする電荷輸送性薄膜の製造方法。
  13.  下記式(1')で表されるフルオレン誘導体と、下記式(2')で表されるフルオレン誘導体と、下記式(3')で表されるフルオレン誘導体とを縮合重合させることを特徴とする請求項1記載のフッ素原子含有重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    [式中、R1~R6、R、p及びqは前記と同じ。XAは、それぞれ独立に、ハロゲン原子又は擬ハロゲン基を表す。XBは、それぞれ独立に、下記式(4)又は(5)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000003
    (式中、A1及びA2は、それぞれ独立に、水素原子、炭素数1~20のアルキル基又は炭素数6~20のアリール基を表す。A3は、炭素数1~20のアルカンジイル基又は炭素数6~20のアリーレン基を表す。)]
  14.  下記式で表されるフルオレン誘導体。
    Figure JPOXMLDOC01-appb-C000004
    (式中、R1'及びR2'は、少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基を表し;
     p及びqは、それぞれ独立に、0又は1を表す。]
  15.  下記式で表されるフルオレン誘導体。
    Figure JPOXMLDOC01-appb-C000005
    (式中、R1'及びR2'は、少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基を表し;
     XAは、それぞれ独立に、ハロゲン原子又は擬ハロゲン基を表し;
     p及びqは、それぞれ独立に、0又は1を表す。]
  16.  下記式で表されるフルオレン誘導体。
    Figure JPOXMLDOC01-appb-C000006
    [式中、XBは、それぞれ独立に、下記式(4)又は(5)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000007
    (式中、A1及びA2は、それぞれ独立に、水素原子、炭素数1~20のアルキル基又は炭素数6~20のアリール基を表す。A3は、炭素数1~20のアルカンジイル基又は炭素数6~20のアリーレン基を表す。)]
  17.  下記式で表されるフルオレン誘導体。
    Figure JPOXMLDOC01-appb-C000008
    [式中、Xは、それぞれ独立に、ハロゲン原子、擬ハロゲン基、又は下記式(4)若しくは(5)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000009
    (式中、A1及びA2は、それぞれ独立に、水素原子、炭素数1~20のアルキル基又は炭素数6~20のアリール基を表す。A3は、炭素数1~20のアルカンジイル基又は炭素数6~20のアリーレン基を表す。)]
PCT/JP2016/053447 2015-02-27 2016-02-05 フッ素原子含有重合体及びその利用 WO2016136425A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16755174.6A EP3263622A4 (en) 2015-02-27 2016-02-05 POLYMER CONTAINING FLUORINE ATOMS AND USE THEREOF
US15/553,836 US10533070B2 (en) 2015-02-27 2016-02-05 Fluorine atom-containing polymer and use of same
CN201910799770.XA CN110437046B (zh) 2015-02-27 2016-02-05 含有氟原子的聚合物及其利用技术领域
JP2017502028A JP6658728B2 (ja) 2015-02-27 2016-02-05 フッ素原子含有重合体及びその利用
KR1020177026910A KR102466300B1 (ko) 2015-02-27 2016-02-05 불소 원자 함유 중합체 및 그 이용
CN201680012080.XA CN107406584B (zh) 2015-02-27 2016-02-05 含有氟原子的聚合物及其利用技术领域

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-038272 2015-02-27
JP2015038272 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136425A1 true WO2016136425A1 (ja) 2016-09-01

Family

ID=56788501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053447 WO2016136425A1 (ja) 2015-02-27 2016-02-05 フッ素原子含有重合体及びその利用

Country Status (7)

Country Link
US (1) US10533070B2 (ja)
EP (1) EP3263622A4 (ja)
JP (1) JP6658728B2 (ja)
KR (1) KR102466300B1 (ja)
CN (2) CN107406584B (ja)
TW (1) TWI686423B (ja)
WO (1) WO2016136425A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147230A1 (ja) * 2017-02-08 2018-08-16 国立大学法人山形大学 組成物および有機光電子素子ならびにその製造方法
JPWO2017195559A1 (ja) * 2016-05-10 2019-03-22 日立化成株式会社 電荷輸送性材料、有機エレクトロニクス素子、及び有機エレクトロルミネセンス素子
WO2020039708A1 (ja) 2018-08-23 2020-02-27 国立大学法人九州大学 有機エレクトロルミネッセンス素子
CN111033783A (zh) * 2017-08-24 2020-04-17 Agc株式会社 电荷注入层及其制造方法、以及有机光电子元件及其制造方法
CN111033785A (zh) * 2017-08-24 2020-04-17 Agc株式会社 有机光电子元件
JP2023531995A (ja) * 2020-09-02 2023-07-26 エルジー・ケム・リミテッド 重合体、これを含むコーティング組成物、およびこれを用いた有機発光素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7465679B2 (ja) * 2020-03-05 2024-04-11 信越化学工業株式会社 塗布型有機膜形成用組成物、パターン形成方法、重合体および重合体の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042621A1 (ja) * 2003-10-30 2005-05-12 Nissan Chemical Industries, Ltd. 電荷輸送性化合物、電荷輸送性材料、電荷輸送性ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子
JP2009096782A (ja) * 2007-10-19 2009-05-07 Osaka Gas Co Ltd 新規フルオレン化合物
JP2009139214A (ja) * 2007-12-06 2009-06-25 Konica Minolta Holdings Inc ポリマー微粒子分散物、それを含む測定用組成物及びそれを用いた被検物質の検出方法
CN101671256A (zh) * 2008-09-11 2010-03-17 香港浸会大学 N,n’-双(三苯胺基)芴二胺类空穴注入材料的制备及其用途
JP2014505144A (ja) * 2011-01-12 2014-02-27 ケンブリッジ ディスプレイ テクノロジー リミテッド 半導体ポリマーおよびその有機電界発光素子
JP2014224101A (ja) * 2013-04-15 2014-12-04 住友化学株式会社 金属錯体およびそれを用いた発光素子
WO2015146912A1 (ja) * 2014-03-28 2015-10-01 日産化学工業株式会社 フルオレン誘導体及びその利用
WO2016006674A1 (ja) * 2014-07-10 2016-01-14 日産化学工業株式会社 フッ素原子含有重合体及びその利用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033193A2 (en) * 1996-02-23 1997-09-12 The Dow Chemical Company Cross-linkable or chain extendable polyarylpolyamines and films thereof
GB0031634D0 (en) * 2000-12-23 2001-02-07 Johnson Matthey Plc Organic materials
CN201178102Y (zh) * 2007-10-11 2009-01-07 黄文成 一种有机电致发光器件
JP5913959B2 (ja) * 2010-12-21 2016-05-11 住友化学株式会社 組成物及びブロック型共重合体
EP2729532A1 (en) * 2011-07-05 2014-05-14 Plextronics, Inc. Vertically phase-separating semiconducting organic material layers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042621A1 (ja) * 2003-10-30 2005-05-12 Nissan Chemical Industries, Ltd. 電荷輸送性化合物、電荷輸送性材料、電荷輸送性ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子
JP2009096782A (ja) * 2007-10-19 2009-05-07 Osaka Gas Co Ltd 新規フルオレン化合物
JP2009139214A (ja) * 2007-12-06 2009-06-25 Konica Minolta Holdings Inc ポリマー微粒子分散物、それを含む測定用組成物及びそれを用いた被検物質の検出方法
CN101671256A (zh) * 2008-09-11 2010-03-17 香港浸会大学 N,n’-双(三苯胺基)芴二胺类空穴注入材料的制备及其用途
JP2014505144A (ja) * 2011-01-12 2014-02-27 ケンブリッジ ディスプレイ テクノロジー リミテッド 半導体ポリマーおよびその有機電界発光素子
JP2014224101A (ja) * 2013-04-15 2014-12-04 住友化学株式会社 金属錯体およびそれを用いた発光素子
WO2015146912A1 (ja) * 2014-03-28 2015-10-01 日産化学工業株式会社 フルオレン誘導体及びその利用
WO2016006674A1 (ja) * 2014-07-10 2016-01-14 日産化学工業株式会社 フッ素原子含有重合体及びその利用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANDREW C.-A. CHEN ET AL.: "Light-Emitting Organic Materials with Variable Charge Injection and Transport Properties", CHEMISTRY OF MATERIALS, vol. 18, no. 1, 2006, pages 204 - 213, XP055252302, DOI: doi:10.1021/cm0519582 *
See also references of EP3263622A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022123002A (ja) * 2016-05-10 2022-08-23 昭和電工マテリアルズ株式会社 電荷輸送性材料、有機エレクトロニクス素子、及び有機エレクトロルミネセンス素子
JPWO2017195559A1 (ja) * 2016-05-10 2019-03-22 日立化成株式会社 電荷輸送性材料、有機エレクトロニクス素子、及び有機エレクトロルミネセンス素子
JP7425418B2 (ja) 2016-05-10 2024-01-31 株式会社レゾナック 電荷輸送性材料、有機エレクトロニクス素子、及び有機エレクトロルミネセンス素子
US11469377B2 (en) 2017-02-08 2022-10-11 National University Corporation Yamagata University Composition, organic photoelectronic element, and production methods therefor
JP7032740B2 (ja) 2017-02-08 2022-03-09 国立大学法人山形大学 組成物および有機光電子素子ならびにその製造方法
JPWO2018147230A1 (ja) * 2017-02-08 2019-12-12 国立大学法人山形大学 組成物および有機光電子素子ならびにその製造方法
WO2018147230A1 (ja) * 2017-02-08 2018-08-16 国立大学法人山形大学 組成物および有機光電子素子ならびにその製造方法
CN110291653A (zh) * 2017-02-08 2019-09-27 国立大学法人山形大学 组合物及有机光电子元件以及其制造方法
CN111033783A (zh) * 2017-08-24 2020-04-17 Agc株式会社 电荷注入层及其制造方法、以及有机光电子元件及其制造方法
CN111033785A (zh) * 2017-08-24 2020-04-17 Agc株式会社 有机光电子元件
WO2020039708A1 (ja) 2018-08-23 2020-02-27 国立大学法人九州大学 有機エレクトロルミネッセンス素子
JP2023531995A (ja) * 2020-09-02 2023-07-26 エルジー・ケム・リミテッド 重合体、これを含むコーティング組成物、およびこれを用いた有機発光素子
JP7523849B2 (ja) 2020-09-02 2024-07-29 エルジー・ケム・リミテッド 重合体、これを含むコーティング組成物、およびこれを用いた有機発光素子

Also Published As

Publication number Publication date
KR20170125053A (ko) 2017-11-13
TW201704286A (zh) 2017-02-01
CN110437046A (zh) 2019-11-12
CN107406584B (zh) 2020-06-09
JPWO2016136425A1 (ja) 2017-12-07
US10533070B2 (en) 2020-01-14
CN110437046B (zh) 2022-08-16
EP3263622A1 (en) 2018-01-03
JP6658728B2 (ja) 2020-03-04
KR102466300B1 (ko) 2022-11-14
US20180030200A1 (en) 2018-02-01
CN107406584A (zh) 2017-11-28
EP3263622A4 (en) 2019-02-13
TWI686423B (zh) 2020-03-01

Similar Documents

Publication Publication Date Title
JP6658728B2 (ja) フッ素原子含有重合体及びその利用
JP7359259B2 (ja) 電荷輸送性ワニス
JP6601397B2 (ja) フッ素原子含有重合体及びその利用
JP6383984B2 (ja) 電荷輸送性ワニス
KR102372197B1 (ko) 아릴아민 유도체와 그 이용
TWI673255B (zh) 苯胺衍生物及其利用
JP6418234B2 (ja) フルオレン誘導体及びその利用
KR20160008240A (ko) 트라이페닐아민 유도체 및 그 이용
JP6551693B2 (ja) 電荷輸送性ワニス、電荷輸送性薄膜及びその製造方法、並びに有機エレクトロルミネッセンス素子及びその製造方法
JP6658549B2 (ja) アリールアミン誘導体、電荷輸送性ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子
TWI638869B (zh) Charge transport coating
JP6488616B2 (ja) 電荷輸送性薄膜形成用ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子
KR102476004B1 (ko) 불소 원자 함유 중합체 및 그 이용
KR20170128407A (ko) 유기 일렉트로루미네센스 소자용의 전하 수송성 박막 형성 조성물, 유기 일렉트로루미네센스 소자용의 전하 수송성 박막 및 유기 일렉트로루미네센스 소자
JP2015092561A (ja) 電荷輸送性ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子
KR20170066307A (ko) 전하 수송성 바니시

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502028

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016755174

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177026910

Country of ref document: KR

Kind code of ref document: A