WO2018147230A1 - 組成物および有機光電子素子ならびにその製造方法 - Google Patents

組成物および有機光電子素子ならびにその製造方法 Download PDF

Info

Publication number
WO2018147230A1
WO2018147230A1 PCT/JP2018/003835 JP2018003835W WO2018147230A1 WO 2018147230 A1 WO2018147230 A1 WO 2018147230A1 JP 2018003835 W JP2018003835 W JP 2018003835W WO 2018147230 A1 WO2018147230 A1 WO 2018147230A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
fluoropolymer
organic
composition
refractive index
Prior art date
Application number
PCT/JP2018/003835
Other languages
English (en)
French (fr)
Inventor
横山 大輔
岳文 阿部
桑名 保宏
Original Assignee
国立大学法人山形大学
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山形大学, Agc株式会社 filed Critical 国立大学法人山形大学
Priority to CN201880011042.1A priority Critical patent/CN110291653A/zh
Priority to JP2018567420A priority patent/JP7032740B2/ja
Priority to EP18750648.0A priority patent/EP3582278A4/en
Priority to KR1020197019270A priority patent/KR102413734B1/ko
Publication of WO2018147230A1 publication Critical patent/WO2018147230A1/ja
Priority to US16/449,574 priority patent/US11469377B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • C08K5/3155Dicyandiamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/20Vinyl fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/20Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds unconjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • C08K5/3447Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/04Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants

Definitions

  • the present invention relates to a composition, an organic optoelectronic device, and a method for producing the same.
  • organic optoelectronic devices such as organic electroluminescence devices (hereinafter referred to as “organic EL devices”)
  • organic EL devices organic electroluminescence devices
  • the light extraction efficiency of organic EL devices is usually only about 20 to 30%, and there is much room for improvement.
  • Technologies for improving light extraction efficiency include, for example, a technology for providing micro-lenses on the substrate surface, a technology for finely processing the substrate surface, a technology using a high refractive index substrate, and a scattering material between the transparent substrate and the transparent electrode.
  • the technique etc. to make are known (patent document 1 and nonpatent literature 1).
  • Non-Patent Document 2 indicates that a binary charge transport layer containing an organic semiconductor material and a dopant can exhibit higher conductivity than a single charge transport layer containing no organic dopant and containing an organic semiconductor material. Disclosure.
  • Non-Patent Document 3 a technique that improves the light extraction efficiency by utilizing the horizontal orientation of the light emitting molecules in the organic EL device. There is room for improvement. In the technique described in Non-Patent Document 2, no consideration has been given to improving the light extraction efficiency.
  • the essential cause of the low light extraction efficiency of an organic EL device or the like is that the refractive index of the organic semiconductor material constituting the light emitting layer and the charge transport layer is high.
  • the refractive index on the light emitting side is high, light loss due to total reflection or the like occurs at an interface having a different refractive index, resulting in low light extraction efficiency.
  • Organic semiconductor materials mainly used in organic EL devices have a lower refractive index (about 1.7 to 1.8) than inorganic semiconductors used in general LEDs, but the light extraction efficiency is still the above value. Stay on. For this reason, it is strongly required to use an organic semiconductor material having a lower refractive index.
  • the present invention has been made in view of the above circumstances, a charge transport layer having a remarkably low refractive index while maintaining the basic performance of the charge transport layer, an organic optoelectronic device using the charge transport layer, and such a charge. It is an object of the present invention to provide a simple method for producing a transport layer and an organic optoelectronic device.
  • the present invention has the following aspects.
  • a composition comprising a fluoropolymer, an organic semiconductor material, and a dopant.
  • [5] The composition according to any one of [1] to [4], wherein the fluorine-containing polymer has a saturated vapor pressure at 300 ° C. of 0.001 Pa or more.
  • [6] Any one of [1] to [5], wherein a content ratio of the fluoropolymer is 30 to 70% by volume with respect to a total of the fluoropolymer, the organic semiconductor material, and the dopant.
  • [7] The composition according to any one of [1] to [6], wherein the content of the dopant is 10 to 200 parts by mole with respect to 100 parts by mole of the total amount of the organic semiconductor material. .
  • An organic optoelectronic device having a layer containing the composition according to any one of [1] to [10].
  • the present invention it is possible to provide a composition having a remarkably low refractive index, an organic optoelectronic device using the composition, and a simple method for producing a layer containing the composition and the organic optoelectronic device.
  • a layer containing a composition having a remarkably low refractive index is used in an organic EL device, the light extraction efficiency is improved, which is effective in improving the luminance of the element and lowering the driving voltage.
  • the refractive index difference at the interface between organic films, the organic film / substrate interface, and the organic film / air interface is reduced to suppress light reflection, or a new intermediate refraction at the above interface.
  • composition of the present invention contains a fluoropolymer, an organic semiconductor material, and a dopant.
  • the fluorine atom content of the fluoropolymer in the present invention is preferably 20 to 77% by mass, more preferably 30 to 70% by mass, and particularly preferably 40 to 70% by mass. If the fluorine atom content is within the above range, the refractive index of the charge transport layer tends to decrease.
  • a fluorine atom content rate (mass%) is calculated
  • required by the following Formula. (Fluorine atom content) [19 ⁇ N F / M A ] ⁇ 100 N F : For each type of unit constituting the fluoropolymer, the sum of values obtained by multiplying the number of fluorine atoms of the unit and the molar ratio of the unit to the total unit.
  • M A Sum of values obtained by multiplying, for each type of unit constituting the fluoropolymer, the sum of the atomic weights of all atoms constituting the unit and the molar ratio of the unit to all units.
  • the fluorine atom content is a value measured by 1 H-NMR and elemental analysis. Moreover, it can also calculate from the preparation amount of the monomer and initiator used for manufacture of a fluoropolymer.
  • the fluorine-containing polymer has a saturated vapor pressure sufficient for practical use at a temperature lower than the temperature at which thermal decomposition of the fluorine-containing polymer occurs from the viewpoint of the formation speed of the layer such as a charge transport layer, the strength and surface roughness of the layer. It is preferable to have.
  • PTFE which is a general fluoropolymer, has a thermal decomposition starting temperature of about 400 ° C.
  • Teflon (registered trademark) AF has a thermal decomposition starting temperature of 350 ° C.
  • the saturated vapor pressure at 300 ° C. of the fluoropolymer according to the present invention is preferably 0.001 Pa or more, and more preferably 0.002 Pa or more.
  • the fluorinated polymer is preferably a fluorinated polymer having low crystallinity, and more preferably a perfluorinated fluorinated polymer considered to have a small intermolecular interaction of the polymer.
  • saturated vapor pressure unit: Pa
  • VPE-9000 vacuum differential thermal balance
  • the evaporation rate can be used as a parameter representing the easiness of evaporation of the fluoropolymer.
  • Easiness of evaporation of a fluoropolymer having a saturated vapor pressure of 0.001 Pa or more at 300 ° C. corresponds to an evaporation rate of 0.01 g / m 2 ⁇ sec or more at 300 ° C. and a vacuum degree of 0.001 Pa. To do.
  • the mass average molecular weight (hereinafter referred to as “Mw”) of the fluoropolymer is preferably 1,500 to 50,000, more preferably 3,000 to 40,000, and even more preferably 5,000 to 30,000. .
  • Mw mass average molecular weight
  • Mw is 1,500 or more, it is easy to obtain sufficient strength for the deposited film to be formed.
  • Mw is 50,000 or less, since it has a saturated vapor pressure that gives a practical vapor deposition film formation rate (film formation rate), the vapor deposition source is heated to a high temperature, specifically, a temperature exceeding 400 ° C. No need to heat.
  • the main chain of the fluoropolymer will be cleaved during the vapor deposition process, resulting in a low molecular weight of the fluoropolymer, resulting in insufficient strength of the vapor deposited film, and due to the decomposition products. It is difficult to obtain a smooth surface.
  • molecules or ions that are unintentionally mixed due to the cleavage of the main chain may affect the conductivity of the film. In this case, it may be difficult to control the conductivity of the deposited film. is there.
  • Mw mass average molecular weight
  • Mn number average molecular weight
  • the polydispersity (Mw / Mn) of the fluoropolymer is preferably small, and is preferably 2 or less.
  • the theoretical lower limit of polydispersity is 1.
  • Examples of a method for obtaining a fluorine-containing polymer having a low polydispersity include a method of performing controlled polymerization such as living radical polymerization, a molecular weight fraction purification method using size exclusion chromatography, and a molecular weight fraction purification method by sublimation purification. Of these methods, sublimation purification is preferably performed in consideration of the stability of the deposition rate.
  • the “polydispersity” of the fluoropolymer refers to the ratio of Mw to Mn (number average molecular weight), that is, Mw / Mn.
  • Mw / Mn are values measured by gel permeation chromatography (GPC).
  • Mw / Mn is a value calculated from the obtained Mw and Mn.
  • Tg glass transition point
  • the glass transition point is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and particularly preferably 100 ° C. or higher.
  • the upper limit is not particularly limited, but is preferably 350 ° C and more preferably 300 ° C.
  • the thickness of the deposited film is generally controlled by opening and closing a shutter or the like installed immediately above the deposition source. At this time, molecular weight fractionation is also performed at the same time.
  • the Mw and Mw / Mn of the polymer in the coalesced and vapor deposited film will change.
  • the Mw of the fluoropolymer in the deposited film is preferably 1,000 to 20,000, more preferably 1,500 to 15,000, and even more preferably 2,000 to 10,000.
  • Mw / Mn of the fluoropolymer in the deposited film is preferably 1.2 or less, and more preferably 1.1 or less. If Mw / Mn is 1.2 or less, the ratio of the low molecular weight polymer contained in the deposited film is reduced, and the deposited film has excellent heat resistance and high homogeneity. When Mw / Mn is 1.3 or more, it indicates that the ratio of the polymer having an extremely low molecular weight contained in the deposited film is large, resulting in a deposited film having poor heat resistance and a non-uniform film structure.
  • the upper limit of the refractive index of the fluoropolymer at a wavelength of 450 nm to 800 nm is preferably 1.5, more preferably 1.4, and particularly preferably 1.35. If the refractive index of the fluoropolymer at a wavelength of 450 nm to 800 nm is not more than the above upper limit, the refractive index of the layer such as the charge transport layer can be effectively reduced with a smaller mixing amount. The light extraction efficiency of the organic EL device obtained without impairing the conductivity of the layer can be improved.
  • the theoretical lower limit of the refractive index of the fluoropolymer is 1.0.
  • the inventors of the present invention pay attention to the fact that the light extraction efficiency of the conventional organic EL device is low because the refractive index of the light emitting layer, the charge transport layer, etc. of the conventional organic EL device is high. did.
  • the refractive index of a general charge transport layer used in an organic EL device is about 1.7 to 1.8 at the central wavelength of light emission of the device, which is higher than that of inorganic semiconductors already used in LEDs that have already been put into practical use. Although it is low, the light extraction efficiency is still 20-30%.
  • the refractive index of soda glass constituting the glass substrate layer is about 1.51 to 1.53
  • the refractive index of quartz glass is about 1.46 to 1.47. If the refractive index of the layer such as the charge transport layer is lowered to about 1.5, which is the same level as the refractive index of the layer of the glass substrate, and the difference between these refractive indexes becomes small, the charge transport layer and the glass substrate Thus, total reflection occurring at the interface can be avoided, and the light extraction efficiency is improved.
  • the refractive index of the charge transport layer tends to decrease to a level equivalent to the refractive index of a glass substrate or the like, and the light extraction efficiency is easily improved.
  • fluorine-containing polymer examples include the following polymers (1) and (2).
  • Polymer (1) a fluorine-containing polymer having a unit derived from a fluoroolefin (hereinafter also referred to as “fluoroolefin unit”) without having an aliphatic ring in the main chain
  • Polymer (2) A fluorinated polymer having an aliphatic ring in the main chain.
  • the polymer (1) may be a homopolymer of fluoroolefin, or may be a copolymer of fluoroolefin and another monomer copolymerizable with fluoroolefin.
  • fluoroolefin examples include tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, vinylidene fluoride, vinyl fluoride, perfluoroalkylethylene (having a perfluoroalkyl group having 1 to 10 carbon atoms), trifluoroethylene, and the like. Can be mentioned. Among these, tetrafluoroethylene and hexafluoropropylene in which all the hydrogen atoms bonded to the carbon atom are substituted with fluorine are preferable because the refractive index of the charge transport layer is easily lowered.
  • Examples of other monomers copolymerizable with the fluoroolefin include vinyl ethers, vinyl esters, aromatic vinyl compounds, allyl compounds, acryloyl compounds, and methacryloyl compounds.
  • the proportion of units derived from the fluoroolefin is preferably 20 mol% or more, more preferably 40 mol% or more, and further preferably 80 mol% or more.
  • polymer (1) a synthesized product or a commercially available product may be used.
  • the polymer (1) include the following fluoropolymers. Polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / perfluoro (alkyl vinyl ether) / hexafluoro Propylene copolymer (EPA), ethylene / tetrafluoroethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene Copolymer (ECTFE) etc.
  • PTFE Polytetrafluoroethylene
  • PFA tetrafluoroethylene /
  • polytetrafluoroethylene PTFE
  • tetrafluoroethylene / perfluoro (alkyl vinyl ether) in which all the hydrogen atoms bonded to carbon atoms are substituted with fluorine, because the refractive index of the charge transport layer is easily lowered.
  • Copolymer PFA
  • tetrafluoroethylene / hexafluoropropylene copolymer FEP
  • EPA tetrafluoroethylene / perfluoro (alkyl vinyl ether) / hexafluoropropylene copolymer
  • the polymer (1) can be produced using a known method. As the polymer (1), a synthesized product or a commercially available product may be used.
  • the polymer (2) is a fluorine-containing polymer having an aliphatic ring in the main chain.
  • “Fluoropolymer having an aliphatic ring structure in the main chain” means that the fluoropolymer has a unit having an aliphatic ring structure, and at least one carbon atom constituting the aliphatic ring is It means a carbon atom constituting the main chain.
  • the aliphatic ring may be a ring having a hetero atom such as an oxygen atom.
  • the “main chain” of a polymer means a chain of carbon atoms derived from two carbon atoms constituting a polymerizable double bond in a monoene polymer having a polymerizable double bond, and can be cyclopolymerized.
  • diene cyclized polymer it refers to a chain of carbon atoms derived from four carbon atoms constituting two polymerizable double bonds.
  • the main chain is composed of the two carbon atoms of the monoene and the four carbon atoms of the diene.
  • one carbon atom constituting the ring skeleton of the aliphatic ring or two adjacent carbon atoms constituting the ring skeleton constitutes a polymerizable double bond. It is a polymer of monoene having a structure which is an atom.
  • 2 to 4 of the 4 carbon atoms constituting two double bonds are carbon atoms constituting an aliphatic ring.
  • the number of atoms constituting the ring skeleton of the aliphatic ring in the polymer (2) is preferably 4 to 7, particularly preferably 5 to 6. That is, the aliphatic ring is preferably a 4- to 7-membered ring, particularly preferably a 5- to 6-membered ring.
  • the hetero atom include an oxygen atom and a nitrogen atom, and an oxygen atom is preferable.
  • the number of heteroatoms constituting the ring is preferably 1 to 3, more preferably 1 or 2.
  • the aliphatic ring may or may not have a substituent.
  • the term “which may have a substituent” means that a substituent may be bonded to an atom constituting the ring skeleton of the aliphatic ring.
  • the hydrogen atom bonded to the carbon atom constituting the aliphatic ring of the polymer (2) is substituted with a fluorine atom.
  • the hydrogen atom is preferably substituted with a fluorine atom even when the aliphatic ring has a hydrogen atom bonded to a carbon atom.
  • the substituent having a fluorine atom include a perfluoroalkyl group, a perfluoroalkoxy group, and ⁇ CF 2 .
  • the perfluoroaliphatic ring (all hydrogen atoms bonded to carbon atoms including substituents are replaced with fluorine atoms). Preferred aliphatic ring).
  • polymer (2) examples include the following polymers (21) and (22).
  • Polymer (21) a fluorine-containing polymer having units derived from a fluorine-containing cyclic monoene
  • Polymer (22) A fluorinated polymer having units formed by cyclopolymerization of a fluorinated diene capable of undergoing cyclopolymerization (hereinafter also simply referred to as “fluorinated diene”).
  • Fluorine-containing cyclic monoene means a fluorine-containing monomer having one polymerizable double bond between carbon atoms constituting an aliphatic ring, or a carbon atom constituting an aliphatic ring and an outer ring of the aliphatic ring. It is a fluorine-containing monomer having one polymerizable double bond with a carbon atom.
  • the fluorine-containing cyclic monoene the following compound (1) or compound (2) is preferable.
  • X 1 , X 2 , X 3 , X 4 , Y 1 and Y 2 each independently represent a fluorine atom, a perfluoroalkyl group optionally containing an etheric oxygen atom (—O—), or A perfluoroalkoxy group which may contain an etheric oxygen atom.
  • X 3 and X 4 may be bonded to each other to form a ring.
  • the perfluoroalkyl group in X 1 , X 2 , X 3 , X 4 , Y 1 and Y 2 preferably has 1 to 7 carbon atoms, and particularly preferably 1 to 4 carbon atoms.
  • the perfluoroalkyl group is preferably linear or branched, and particularly preferably linear. Specific examples include a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, and the like, and a trifluoromethyl group is particularly preferable.
  • Examples of the perfluoroalkoxy group in X 1 , X 2 , X 3 , X 4 , Y 1 and Y 2 include those in which an oxygen atom (—O—) is bonded to the perfluoroalkyl group, and a trifluoromethoxy group is particularly preferred. preferable.
  • X 1 is preferably a fluorine atom.
  • X 2 is preferably a fluorine atom, a trifluoromethyl group, or a perfluoroalkoxy group having 1 to 4 carbon atoms, and particularly preferably a fluorine atom or a trifluoromethoxy group.
  • X 3 and X 4 are each independently preferably a fluorine atom or a perfluoroalkyl group having 1 to 4 carbon atoms, and particularly preferably a fluorine atom or a trifluoromethyl group.
  • X 3 and X 4 may be bonded to each other to form a ring.
  • the number of atoms constituting the ring skeleton of the ring is preferably 4 to 7, and particularly preferably 5 to 6.
  • Preferable specific examples of compound (1) include compounds (1-1) to (1-5).
  • Y 1 and Y 2 are each independently preferably a fluorine atom, a C 1-4 perfluoroalkyl group or a C 1-4 perfluoroalkoxy group, and a fluorine atom or a trifluoromethyl group Particularly preferred.
  • Preferable specific examples of compound (2) include compounds (2-1) and (2-2).
  • the polymer (21) may be a homopolymer of the above-mentioned fluorine-containing cyclic monoene or a copolymer of other monomers copolymerizable with the fluorine-containing cyclic monoene.
  • the proportion of units derived from the fluorinated cyclic monoene relative to all units in the polymer (21) is preferably 20 mol% or more, more preferably 40 mol% or more, and even more preferably 100 mol%.
  • Other monomers copolymerizable with the fluorinated cyclic monoene include, for example, fluorinated diene, monomers having a reactive functional group in the side chain, tetrafluoroethylene, chlorotrifluoroethylene, and perfluoro (methyl vinyl ether). Etc.
  • fluorinated diene examples include the same as those mentioned in the description of the polymer (22) described later.
  • monomer having a reactive functional group in the side chain include monomers having a polymerizable double bond and a reactive functional group.
  • Examples of the polymerizable double bond include CF 2 ⁇ CF—, CF 2 ⁇ CH—, CH 2 ⁇ CF—, CFH ⁇ CF—, CFH ⁇ CH—, CF 2 ⁇ C—, CF ⁇ CF—, and the like.
  • Examples of the reactive functional group are the same as those described in the description of the polymer (22) described later.
  • the polymer obtained by copolymerization of the fluorinated cyclic monoene and the fluorinated diene is the polymer (21).
  • the “fluorinated diene” is a fluorinated monomer having two polymerizable double bonds and a fluorine atom and capable of cyclopolymerization.
  • a vinyl group, an allyl group, an acryloyl group, and a methacryloyl group are preferable.
  • the fluorinated diene the following compound (3) is preferred.
  • Q may contain an etheric oxygen atom, and a part of fluorine atoms may be substituted with a halogen atom other than fluorine atoms, preferably 1 to 5, preferably 1 to 3 carbon atoms.
  • perfluoroalkylene groups which may have a branch.
  • halogen atoms other than fluorine include chlorine atom and bromine atom.
  • Q is preferably a perfluoroalkylene group containing an etheric oxygen atom.
  • the etheric oxygen atom in the perfluoroalkylene group may be present at one end of the group, may be present at both ends of the group, and is present between the carbon atoms of the group. It may be. From the viewpoint of cyclopolymerizability, it is preferably present at one end of the group.
  • Examples of units formed by cyclopolymerization of compound (3) include the following units (3-1) to (3-4).
  • the polymer (22) may be a homopolymer of a fluorinated diene or a copolymer of other monomers copolymerizable with the fluorinated diene.
  • examples of other monomers copolymerizable with the fluorinated diene include monomers having a reactive functional group in the side chain, tetrafluoroethylene, chlorotrifluoroethylene, and perfluoro (methyl vinyl ether).
  • CF 2 ⁇ CFOCF 2 CF 2 CF ⁇ CF 2 perfluoro (3-butenyl vinyl ether) obtained by cyclopolymerization
  • the following formula (3-1-1- Examples thereof include the polymer represented by 1).
  • perfluoro (3-butenyl vinyl ether) is referred to as “BVE”.
  • p is an integer of 1 to 1,000. p is preferably an integer of 5 to 800, particularly preferably an integer of 10 to 500.
  • the polymer (2) may or may not have a reactive functional group, but preferably does not have it.
  • a reactive functional group from the viewpoint of ease of introduction into the polymer and reactivity, a carboxy group, an acid halide group, an alkoxycarbonyl group, a carbonyloxy group, a carbonate group, a sulfo group, a phosphono group, and a hydroxy group.
  • a thiol group, a silanol group and an alkoxysilyl group are preferred, and at least one selected from the group consisting of a carboxy group and an alkoxycarbonyl group is particularly preferred.
  • the reactive functional group may be bonded to the end of the main chain of the polymer (2) or may be bonded to the side chain. From the viewpoint of easy production, it is preferably bonded to the end of the main chain. That is, a preferred embodiment as the polymer (2) is to have an alkoxycarbonyl group at the end of the main chain.
  • the polymer (2) a synthesized product or a commercially available product may be used.
  • Specific examples of the polymer (2) include a BVE cyclized polymer (manufactured by Asahi Glass Co., Ltd .: CYTOP (registered trademark)), tetrafluoroethylene / 2,2,4-trifluoro-5-trifluoromethoxy 1,3- Dioxole copolymer (Solvay: Hyflon (registered trademark) AD), Tetrafluoroethylene / perfluorodimethyldioxole copolymer (Chemers (formerly DuPont): Teflon (registered trademark) AF), etc. .
  • BVE cyclized polymer manufactured by Asahi Glass Co., Ltd .: CYTOP (registered trademark)
  • tetrafluoroethylene / 2,2,4-trifluoro-5-trifluoromethoxy 1,3- Dioxole copolymer Solva
  • BVE cyclized polymer produced by Asahi Glass Co., Ltd .: CYTOP (registered trademark)
  • tetrafluoroethylene / perfluorodimethyldioxole copolymer produced by Chemers (former Dupont) having an aliphatic ring in the main chain.
  • Teflon (registered trademark) AF) is preferable.
  • the fluorine-containing polymer is preferably the polymer (2), more preferably the polymer (22), which is obtained by cyclopolymerizing BVE.
  • a fluorine-containing polymer represented by the formula is particularly preferred.
  • the fluoropolymer is the polymer (2)
  • its Mw is preferably from 1,500 to 50,000, more preferably from 3,000 to 40,000, and even more preferably from 5,000 to 30,000.
  • Mw is 1,500 or more
  • the strength of the layer such as the charge transport layer is excellent.
  • Mw is 50,000 or less
  • the film formability is excellent. More specifically, since the polymer (2) having an Mw of 50,000 or less has a saturated vapor pressure that gives a practical film formation rate, the deposition source is heated to a high temperature, specifically, a temperature exceeding 400 ° C. No need to heat.
  • the temperature of the vapor deposition source is too high, the main chain of the polymer (2) will be cleaved during the vapor deposition process, the fluoropolymer will have a low molecular weight, and the strength of the layer such as the charge transport layer formed will be insufficient. Furthermore, defects derived from decomposition products are generated, and it is difficult to obtain a smooth surface.
  • molecules or ions that are unintentionally mixed due to cleavage of the main chain may affect the conductivity of the layer such as the charge transport layer. In this case, the conductivity of the layer such as the charge transport layer is assumed. It becomes difficult to control. Therefore, when Mw is in the range of 1,500 to 50,000, sufficient film strength and a smooth film surface can be obtained without causing cleavage of the main chain of the polymer (2).
  • the intrinsic viscosity [ ⁇ ] is preferably 0.01 to 0.14 dl / g, more preferably 0.02 to 0.1 dl / g. It is particularly preferably 0.02 to 0.08 dl / g.
  • [ ⁇ ] is 0.01 dl / g or more, the molecular weight of the fluorine-containing polymer is relatively large, and sufficient strength is easily obtained in the charge transport layer after formation.
  • [ ⁇ ] is 0.14 dl / g or less, the molecular weight of the fluoropolymer is relatively small, and has a saturated vapor pressure that gives a practical film forming rate.
  • the “inherent viscosity [ ⁇ ] (unit: dl / g)” is an Ubbelohde viscometer (manufactured by Shibata Kagaku Co., Ltd.) using Asahiclin (registered trademark) AC2000 (Asahi Glass Co., Ltd.) as a solvent at a measurement temperature of 30 ° C. : Viscometer Ubellode).
  • the fluoropolymer only one of the polymers (1) and (2) may be used, or the polymers (1) and (2) may be used in combination.
  • the organic semiconductor material according to the present invention is an organic compound material that exhibits semiconducting electrical characteristics.
  • the organic semiconductor material include a hole transport material that receives and transports holes from the anode side, and an electron transport material that transports electrons from the cathode side. Both are preferably used in the present invention, but the organic semiconductor material according to the present invention is preferably a hole transport material.
  • Preferred examples of the hole transport material include aromatic amine derivatives. Specific examples include ⁇ -NPD, PDA, TAPC, TPD, m-MTDATA, N- (diphenyl-4-yl) -9,9-dimethyl-N- (4- (9-phenyl-9H-carbazol-3yl).
  • Phenyl) -9H-fluorene-2-amine hereinafter referred to as “HT211”), HTM081 (Merck), HTM163 (Merck), HTM222 (Merck), NHT-5 (Novaled) NHT-18 (manufactured by Novaled), NHT-49 (manufactured by Novaled), NHT-51 (manufactured by Novaled), and the like, but are not limited thereto.
  • a preferable example of the electron transport material is a nitrogen-containing heterocyclic derivative.
  • Specific examples include Alq3, PBD, BND, TAZ, OXD-7, NET-5 (Novaled), NET-8 (Novaled), NET-18 (Novaled), TR-E314 (Toray Industries, Inc.) But not limited to these.
  • the dopant according to the present invention is a compound that can exchange charges with an organic semiconductor material.
  • the charge transport layer of the present invention contains a dopant, the free charge density in the charge transport layer is increased, and the conductivity of the charge transport layer is improved to a level sufficient for practical use.
  • the dopant include a dopant for a hole transport material and a dopant for an electron transport material.
  • the dopant for the hole transport material is a compound having an electron affinity that is equal to or greater than the ionization potential of the hole-transporting organic semiconductor material. Such a dopant can receive electrons from the hole-transporting organic semiconductor material, and thus contributes to the improvement of the conductivity of the charge transport layer of the present invention.
  • the dopant for the hole transport material include TCNQ, F 4 -TCNQ, PPDN, TCNNQ, F 6 -TCNNQ, HAT-CN, HATNA, HATNA-Cl6, HATNA-F6, C 60 F 36 , F 16- Organic dopants such as CuPc, NDP-2 (manufactured by Novaled), NDP-9 (manufactured by Novaled), LGC-101 (manufactured by LG Chem), and MoO 3 , V 2 O 5 , WO 3 , ReO 3 , An inorganic dopant such as CuI can be used.
  • the dopant for the electron transport material is a compound having an ionization potential that is equal to or smaller than the electron affinity of the electron-transporting organic semiconductor material. Since such a dopant can transfer electrons to the electron transporting organic semiconductor material, it contributes to the improvement of the conductivity of the charge transport layer of the present invention.
  • the dopant for the electron transport material include organic dopants such as TTN and BEDT-TTF, CoCp 2 , [Ru (terpy) 2 ] 0 , NDN-1 (manufactured by Novaled), NDN-26 (manufactured by Novaled) Organic dopants or organometallic complex dopants, and inorganic dopants such as Li, Cs, LiF, Li 2 CO 3 , and Cs 2 CO 3 .
  • the composition of the present invention may contain other materials in addition to the fluoropolymer, the organic semiconductor material, and the dopant, but only contain the fluoropolymer, the organic semiconductor material, and the dopant. Is preferred.
  • a fluoropolymer may use only 1 type or may use 2 or more types together.
  • only 1 type may be used for an organic semiconductor material, or 2 or more types may be used together.
  • only 1 type may be used for a dopant or it may use 2 or more types together. It is preferable that the composition of the present invention exhibits electrical characteristics equivalent to those of a composition composed of only two of an organic semiconductor material and a dopant because it does not require a significant change in circuit design around the device.
  • the JV characteristic measured with a composition composed of only two of an organic semiconductor material and a dopant is equivalent to the JV characteristic measured with the composition of the present invention. More specifically, in the JV characteristic, when the potential gradient is 0.5 MV / cm, the current value measured in the composition state is the current value measured in the composition composed of only the organic semiconductor material and the dopant. 20% or more is preferable and 50% or more is more preferable. There is no particular upper limit on the ratio of the current values, but 500% or less is preferable.
  • the conductivity calculated from the current value in the range of electric field strength of 1 ⁇ 10 4 to 10 5 V / cm is preferably 1 ⁇ 10 ⁇ 11 [S / cm] or more, and preferably 1 ⁇ 10 ⁇ 10 [ S / cm] or more is more preferable, and 1 ⁇ 10 ⁇ 9 [S / cm] or more is further preferable.
  • a fluoropolymer which is an insulating material having a volume resistivity of 10 17 ⁇ ⁇ cm or more at 25 ° C. in the air
  • the composition of the present invention exhibits electrical characteristics equivalent to those of an organic semiconductor material. And since it is a low refractive index, the light extraction efficiency of an organic optoelectronic device can be improved significantly.
  • the content of the fluoropolymer is preferably 30 to 70% by volume with respect to the total of the fluoropolymer, the organic semiconductor material, and the dopant.
  • the lower limit of the content of the fluoropolymer is more preferably 35% by volume, and particularly preferably 40% by volume.
  • the upper limit value of the content ratio of the fluoropolymer is more preferably 65% by volume, and particularly preferably 60% by volume. If the content rate of a fluoropolymer is more than said lower limit, the refractive index of a composition will fall easily to the level equivalent to refractive indexes, such as a glass substrate. If the content ratio of the fluoropolymer is not more than the above upper limit value, the conductivity as the basic performance of the charge transport layer is easily maintained.
  • the dopant content is preferably 10 to 200 mol parts, more preferably 15 to 150 mol parts, with respect to 100 mol parts of the total amount of the organic semiconductor material. It is particularly preferable that the amount be ⁇ 100 mol parts. If the content rate of a dopant is more than said lower limit, the electroconductivity of a composition will become easy to be maintained or improved. If the content rate of a dopant is below said upper limit, the refractive index of a composition will fall easily.
  • the content ratio of the fluoropolymer is 30 to 70% by volume based on the total of the fluoropolymer, the organic semiconductor material, and the dopant.
  • the content ratio is 10 to 200 mol parts with respect to 100 mol parts of the total amount of the organic semiconductor material.
  • the content of the fluoropolymer is 35 to 65% by volume based on the total of the fluoropolymer, the organic semiconductor material, and the dopant,
  • the content ratio is 15 to 150 mole parts with respect to 100 mole parts of the total amount of the organic semiconductor material.
  • the content of the fluorine-containing polymer is 40 to 60% by volume based on the total of the fluorine-containing polymer, the organic semiconductor material, and the dopant.
  • the content ratio is 20 to 100 mole parts with respect to 100 mole parts of the total amount of the organic semiconductor material.
  • the surface roughness of the layer containing the composition of the present invention is preferably at most 1.0 nm in terms of RMS, more preferably at most 0.8 nm, further preferably at most 0.6 nm.
  • surface roughness (unit: nm) is a value measured by an atomic force microscope (AFM) or the like in accordance with JIS B 0601, and RMS (root mean square). It is represented by When the surface roughness is 1.0 nm or less, it is possible to avoid applying a large electric field locally when a strong electric field is applied to a layer such as a charge transporting layer, and a uniform current flows in the layer. Is preferable.
  • the thickness of the layer containing the composition of the present invention is not particularly limited, but is preferably 10 nm to 250 nm, and more preferably 20 nm to 150 nm.
  • compositions of the present invention preferably has an absorption coefficient in the wavelength range 450 nm ⁇ 800 nm is 5000 cm -1 or less, more preferably 1000 cm -1 or less, to have no absorption band in the wavelength region in particular preferable.
  • the absorption coefficient exceeds 5000 cm ⁇ 1
  • loss due to light absorption when passing through the layer accumulates due to multiple interference of light, and thus light absorption when passing through the layer is a factor for greatly reducing light extraction efficiency.
  • absorption coefficient (unit: cm ⁇ 1 ) is a value measured according to JIS K 0115.
  • the composition of the present invention preferably has a refractive index of 1.60 or less, more preferably 1.55 or less in a wavelength region of 450 nm to 800 nm. If the refractive index is 1.60 or less, the refractive index of the composition of the present invention is reduced to the same level as the refractive index of the glass substrate or the like, and the total reflection at the interface between the layer such as the charge transport layer and the glass substrate or the like. Therefore, the light extraction efficiency of the organic EL device is improved. On the other hand, the theoretical lower limit of the refractive index of the composition of the present invention is 1.0.
  • the method for producing the layer containing the composition of the present invention may be a known method, which may be a dry coating method or a wet coating method, but the fluoropolymer, the organic semiconductor material, and the dopant are formed in a uniform mixing ratio. Since it is easy, the dry-coating method is preferable.
  • the wet coating method include an inkjet method, a cast coating method, a dip coating method, a bar coating method, a blade coating method, a roll coating method, a gravure coating method, a flexo coating method, and a spray coating method.
  • the dry coating method include resistance heating vapor deposition, electron beam vapor deposition, and sputtering.
  • the resistance heating vapor deposition method is preferred because it is easy to form a film without decomposing the organic semiconductor and the fluoropolymer, and the organic semiconductor material and the fluoropolymer are co-evaporated. Is particularly preferred.
  • the deposition rate in co-evaporation is not particularly limited, but is 0.001 to 10 nm / s in order to keep the surface roughness within a predetermined range. preferable.
  • the composition of the present invention is suitably used as a layer such as a charge transport layer constituting an organic optoelectronic device.
  • the layer include a charge injection layer and a charge transport layer, a charge transport layer is preferable, and a hole transport layer is particularly preferable. That is, the composition of the present invention is preferable as a composition for forming a charge transport layer.
  • the organic optoelectronic device of the present invention has a pair of an anode and a cathode, and has at least one layer containing the composition of the present invention between the pair of electrodes.
  • As an anode and a cathode a well-known metal, a metal oxide, or a conductive polymer can be used, and it is not specifically limited.
  • the three-dimensional structure of the organic optoelectronic device of the present invention is not particularly limited.
  • it may be a three-dimensional structure in which a layer containing the composition of the present invention is sandwiched between a pair of electrodes and a current flows in the thickness direction, or the composition of the present invention.
  • the layer structure of the organic optoelectronic device of the present invention is not particularly limited, and an optional functional layer may be provided between the anode and the cathode in addition to the layer containing the composition of the present invention.
  • an optional functional layer may be provided between the anode and the cathode in addition to the layer containing the composition of the present invention.
  • layers such as a charge transport layer, a light emitting layer, and a power generation layer are sandwiched. May be.
  • the material which comprises these arbitrary functional layers is not limited to organic substance, An inorganic substance may be sufficient.
  • an anode or a cathode is formed on a substrate, and then a layer such as the above-described charge transport layer and an arbitrary functional layer described above are formed, and a cathode or an anode is formed thereon.
  • a layer such as the above-described charge transport layer and an arbitrary functional layer described above are formed, and a cathode or an anode is formed thereon.
  • Formation of a layer such as a charge transport layer is the same as the above-described method for producing a layer, but a co-evaporation method by resistance heating in which fluorine-containing polymerization, an organic semiconductor material, and a dopant are co-evaporated is particularly preferable.
  • the deposition rate in co-evaporation is not particularly limited, but the surface roughness of the layer is within a predetermined range of 0.001 to 10 nm / s. Therefore, it is preferable.
  • the organic optoelectronic device of the present invention can be used for organic optoelectronic devices such as organic EL devices, organic transistors, solar cells, organic photodiodes, and organic lasers.
  • the organic optoelectronic device of the present invention is suitably used as an organic EL device.
  • Such organic EL devices can be used for organic EL devices such as organic EL displays and organic EL lighting. These organic EL devices may be a top emission type or a bottom emission type.
  • the method of sandwiching the layer containing the composition of the present invention between electrodes is not particularly limited. For example, on a glass substrate with an ITO (indium tin oxide) film A co-deposited film formed by co-evaporation may be mounted on the device by a known method.
  • ITO indium tin oxide
  • the composition of the present invention contains a fluoropolymer, an organic semiconductor material, and a dopant.
  • the composition of the present invention having such a structure can have a refractive index lower than the refractive index of a one-component composition composed only of an organic semiconductor material. Therefore, when the layer containing the composition of the present invention is applied to an organic optoelectronic device, the difference between the refractive index of the glass substrate or the like adjacent to the layer and the refractive index of the layer is reduced, so that Reflection is less likely to occur. Then, the loss of light due to total reflection is reduced, and the light extraction efficiency of the organic EL device is improved.
  • the layer containing the fluoropolymer is concerned that the basic performance such as conductivity is deteriorated as compared with the unitary layer made of only the organic semiconductor material.
  • the layer having the structure of the present invention further includes a dopant, the layer can have conductivity equal to or higher than that of the binary layer including the organic semiconductor material and the dopant. Therefore, in the layer of the present invention, basic performance such as conductivity can be sufficiently maintained to withstand practical use.
  • the layer and organic optoelectronic device manufacturing method of the present invention does not require expensive members, and the device manufacturing process is not complicated.
  • the present invention provides a layer having a remarkably low refractive index while maintaining the basic performance of the layer, an organic optoelectronic device using this layer, and a simple method for producing such a layer and the organic optoelectronic device. be able to.
  • the refractive index, molecular weight, intrinsic viscosity, and saturated vapor pressure of the fluorinated copolymer synthesized in this example were measured according to the following description.
  • Mw of the fluoropolymer was measured using gel permeation chromatography (GPC). First, a polymethyl methacrylate (PMMA) standard sample with a known molecular weight was measured using GPC, and a calibration curve was created from the elution time and molecular weight of the peak top. Next, the fluoropolymer was measured, and Mw and Mn were determined from the calibration curve.
  • Mobile phase solvents include 1,1,1,2,3,4,4,5,5,5-decafluoro-3-methoxy-2- (trifluoromethyl) pentane / hexafluoroisopropyl alcohol (85 by volume). / 15) was used.
  • BVE Perfluoro (3-butenyl vinyl ether)
  • CF 2 CF CF 2 MMD: perfluoro (4-methyl-2-methylene-1,3-dioxolane)
  • PDD perfluoro (2,2-dimethyl-1,3-dioxole)
  • TFE Tetrafluoroethylene
  • IPP diisopropylperoxydicarbonate
  • the obtained polymer was substituted with —CF 3 groups for unstable terminal groups with fluorine gas by the method described in paragraph [0040] of JP-A No. 11-152310 to obtain a polymer A.
  • the obtained polymer A had a refractive index of 1.34 with respect to light having a wavelength of 600 nm and an intrinsic viscosity [ ⁇ ] of 0.04 dl / g.
  • the Mw of the polymer A was 9,000, Mn was 6,000, Mw / Mn was 1.5, the saturated vapor pressure at 300 ° C. was 0.002 Pa, and the evaporation rate at 300 ° C. was 0.08 g / m 2 sec. .
  • Synthesis of Polymer B 10 g of BVE, 10 g of 1H-PFH, 0.2 g of methanol and 0.2 g of IPP were placed in a glass reactor having an internal volume of 50 ml. After replacing the inside of the system with high-purity nitrogen gas, polymerization was carried out at 40 ° C. for 24 hours. The obtained solution was desolvated under conditions of 666 Pa (absolute pressure) and 50 ° C. to obtain 8 g of a polymer. The obtained polymer had an intrinsic viscosity [ ⁇ ] of 0.04 dl / g. Next, the obtained polymer was heated in an oven at 300 ° C., then immersed in methanol, and heated in an oven at 75 ° C.
  • the refractive index of the obtained polymer B with respect to light having a wavelength of 600 nm is 1.34, Mw is 7,800, Mn is 6,200, Mw / Mn is 1.3, the saturated vapor pressure at 300 ° C. is 0.003 Pa, The evaporation rate at 300 ° C. was 0.06 g / m 2 sec.
  • the refractive index of the obtained polymer C with respect to light having a wavelength of 600 nm is 1.34, Mw is 14,000, Mn is 10,100, Mw / Mn is 1.4, saturated vapor pressure at 300 ° C. is 0.001 Pa, 300 The evaporation rate at 0 ° C. was 0.03 g / m 2 sec.
  • the obtained polymer was substituted with an unstable terminal group by —CF 3 group with fluorine gas by the method described in paragraph [0040] of JP-A No. 11-152310 to obtain a polymer D.
  • the obtained polymer D had a refractive index with respect to light having a wavelength of 600 nm of 1.34 and an intrinsic viscosity [ ⁇ ] of 0.24 dl / g.
  • Polymer D had Mw of 73,000, Mn of 48,000, Mw / Mn of 1.5, a saturated vapor pressure at 300 ° C. of 0.0001 Pa, and an evaporation rate of 0.004 g / m 2 sec at 300 ° C. .
  • the refractive index of the obtained polymer E with respect to light having a wavelength of 600 nm is 1.33, Mw is 9,800, Mn is 8,100, Mw / Mn is 1.2, and the saturated vapor pressure at 300 ° C. is 0.008 Pa, The evaporation rate at 300 ° C. was 0.14 g / m 2 sec.
  • the refractive index of the obtained polymer F with respect to light having a wavelength of 600 nm is 1.33, Mw is 11,300, Mn is 9,300, Mw / Mn is 1.2, saturated vapor pressure at 300 ° C. is 0.007 Pa, 300 The evaporation rate at ° C. was 0.10 g / m 2 sec.
  • the refractive index of the obtained polymer G with respect to light having a wavelength of 600 nm is 1.34, Mw is 10,100, Mn is 8,600, Mw / Mn is 1.2, and the saturated vapor pressure at 300 ° C. is 0.002 Pa, The evaporation rate at 300 ° C. was 0.04 g / m 2 sec.
  • the obtained polymer H has a refractive index with respect to light having a wavelength of 600 nm of 1.34, Mw of 4,500, Mn of 4,000, Mw / Mn of 1.2, a saturated vapor pressure at 300 ° C. of 0.01 Pa, The evaporation rate at 300 ° C. was 0.2 g / m 2 sec.
  • the refractive index with respect to the light of the wavelength of 600 nm of the polymer I is 1.30, Mw is 9,200, Mn is 8,100, Mw / Mn is 1.1, the saturated vapor pressure at 300 ° C. is 0.003 Pa, at 300 ° C.
  • the evaporation rate was 0.06 g / m 2 sec.
  • the obtained polymer was heated in an oven at 300 ° C., then immersed in methanol, and heated in an oven at 75 ° C. for 20 hours to replace unstable terminal groups with methyl ester groups, thereby obtaining a polymer J. .
  • the refractive index of the polymer J with respect to light having a wavelength of 600 nm is 1.30, Mw is 14,100, Mn is 10,700, Mw / Mn is 1.3, the saturated vapor pressure at 300 ° C. is 0.001 Pa, and at 300 ° C.
  • the evaporation rate was 0.03 g / m 2 sec.
  • the obtained polymer dispersion was dried in warm air at 80 ° C. for 16 hours and then vacuum dried at 100 ° C. for 16 hours to obtain 19 g of a polymer.
  • the obtained polymer was heated in an oven at 300 ° C., then immersed in methanol, and heated in an oven at 75 ° C. for 20 hours to replace unstable terminal groups with methyl ester groups, thereby obtaining a polymer K. .
  • the obtained polymer K had a refractive index of 1.34 with respect to light having a wavelength of 600 nm and an evaporation rate at 300 ° C. of 0.04 g / m 2 sec.
  • a charge transport layer having a thickness of about 100 nm was formed on each substrate by resistance heating in a vacuum vapor deposition machine and co-evaporation using the composition shown in Table 1.
  • the total deposition rate of the three materials was 0.2 nm / s.
  • Table 1 shows the measurement result of the surface roughness of the obtained charge transport layer and the measurement result of the refractive index with respect to light having a wavelength of 600 nm.
  • a glass substrate in which ITO (indium tin oxide) was formed into a 2 mm wide band was used as a substrate for manufacturing the device.
  • the substrate was subjected to ultrasonic cleaning using a neutral detergent, acetone, and isopropanol, and further subjected to boiling cleaning in isopropanol, and then the deposits on the surface of the ITO film were removed by ozone treatment.
  • the substrate is placed in a vacuum vapor deposition machine and evacuated to a pressure of 10 ⁇ 4 Pa or less, and then the polymer A, m-MTDATA (organic semiconductor material), and HAT-CN (dopant) are added to the charge transport layer.
  • Teflon (registered trademark) AF1600 manufactured by Chemers (former Dupont)
  • m-MTDATA organic semiconductor material
  • HAT-CN dopant
  • Teflon (registered trademark) AF1600 manufactured by Chemers (former Dupont)
  • m-MTDATA organic semiconductor material
  • HAT-CN dopant
  • a charge transport layer and a conductivity evaluation element were produced in the same manner as in Examples 1 to 6.
  • the refractive index of Teflon (registered trademark) AF1600 with respect to light having a wavelength of 600 nm was 1.32.
  • the saturated vapor pressure at 300 ° C. of Teflon (registered trademark) AF1600 was 0.0001 Pa.
  • the intrinsic viscosity [ ⁇ ] of Teflon (registered trademark) AF1600 was 0.88 dl / g.
  • Table 1 shows the measurement results of the surface roughness of the obtained charge transport layer, the measurement results of the refractive index for light having a wavelength of 600 nm, and the evaluation results of conductivity.
  • Example 13 to 22 A charge transport layer and a conductivity evaluation element were prepared in the same manner as in Example 2 except that the polymers B to K were used instead of the polymer A.
  • Table 1 shows the measurement results of the refractive index and the evaluation results of the conductivity of the obtained charge transport layer with respect to light having a wavelength of 600 nm.
  • Example 23 to 27 A charge transport layer and a conductivity evaluation element were prepared in the same manner as in Example 2 except that the organic semiconductor, the dopant, or a combination thereof was changed.
  • the organic semiconductor and dopant used are shown in Table 1.
  • Table 1 shows the measurement results of the refractive index and the evaluation results of the conductivity of the obtained charge transport layer with respect to light having a wavelength of 600 nm.
  • the conductivity of the charge transport layers of Examples 1 to 27 and Comparative Examples 1 to 10 were as shown in Tables 1 and 2.
  • the electric conductivity of the charge transport layers of Examples 1 to 27 is almost the same as that of the charge transport layer not containing the fluoropolymer of Comparative Examples 1 to 10, and its basic performance is practically used. It was tolerable. From the above, it was confirmed that the charge transport layer of this example had a low refractive index necessary for improving the light extraction efficiency of the organic EL device while maintaining its basic performance.
  • the composition of the present invention is suitably used as an organic EL device for operation panels and information display panels of various electronic devices, and also for various organic optoelectronic devices whose refractive index affects device characteristics.
  • the composition of the present invention is suitably used for forming a light-receiving element having excellent light absorption, a transistor having excellent transparency, and an organic semiconductor circuit that is so transparent that it cannot be visually observed on a glass substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

屈折率が著しく低い組成物、およびこの組成物を用いた有機光電子素子、ならびにかかる組成物および有機光電子素子の、簡便な製造方法を提供する。 含フッ素重合体と有機半導体材料とドーパントとを含む組成物。

Description

組成物および有機光電子素子ならびにその製造方法
 本発明は、組成物および有機光電子素子ならびにその製造方法に関する。
 有機エレクトロルミネッセンス素子(以下、「有機ELデバイス」)等の有機光電子素子においては、既に内部量子効率がほぼ100%に達しており、外部量子効率のさらなる改善について、光取り出し効率の向上が課題となっている。有機ELデバイスの光取り出し効率は通常20~30%程度にとどまり、改善の余地は大きい。光取り出し効率を向上させる技術として、たとえば基板表面に微細なマイクロレンズを付与する技術、基板表面を微細加工する技術、高屈折率基板を用いる技術、透明基板と透明電極の間に散乱物質を存在させる技術等が知られている(特許文献1および非特許文献1)。
 一方で有機ELデバイス等の有機半導体デバイスの電荷輸送層の導電性を向上させる手法として、電荷輸送層等の材料である有機半導体材料にドーパントと呼ばれる添加物を混合する方法が知られている。非特許文献2は、有機半導体材料とドーパントとを含む二元系の電荷輸送層が、ドーパントを含まず、有機半導体材料を含む一元系の電荷輸送層よりも、高い導電性を示し得ることを開示している。
国際公開第2016/043084号
K. Saxena et al., Opt. Mater. 32(1), 221‐233,(2009) K. Walzer et al., Chem. Rev. 107(4), 1233‐1271,(2007) D. Yokoyama, J. Mater. Chem. 21, 19187‐19202(2011)
 しかしながら、特許文献1および非特許文献1に記載の技術はいずれも高価な部材を必要としたり素子作製プロセスを複雑化させたりするものであり、製造コストを著しく増大させる。製造コストを増大させない手法として、有機ELデバイス中の発光分子の水平配向性を活かして光取り出し効率を数割向上させる技術(非特許文献3)が知られているが、その光取り出し効率については改善の余地がある。
 非特許文献2に記載の技術にあっては、光取り出し効率の向上についてなんら検討がなされていない。
 そもそも有機ELデバイス等の光取り出し効率が低い本質的な原因は、発光層および電荷輸送層を構成する有機半導体材料の屈折率が高いことにある。発光側の屈折率が高いと、屈折率の異なる界面において全反射等による光の損失が生じるため、光取り出し効率が低くなる。有機ELデバイスに主に用いられている有機半導体材料は、一般のLEDに用いられる無機半導体よりも低い屈折率(1.7~1.8程度)を有するが、それでも光取り出し効率は上記の値に留まっている。このため、さらに屈折率の低い有機半導体材料を用いることが強く求められている。
 しかし、有機半導体材料の選択のみで屈折率が十分に低い電荷輸送層を実現するのは困難であり、電荷輸送層の基本的性能を損なうことなく、電荷輸送層の屈折率を大きく下げる有効な技術は、これまで全く実現されていなかった。
 本発明は、上記事情に鑑みてなされたものであり、電荷輸送層の基本的性能が維持されながら屈折率が著しく低い電荷輸送層、およびこの電荷輸送層を用いた有機光電子素子、ならびにかかる電荷輸送層および有機光電子素子の、簡便な製造方法を提供することを課題とする。
 本発明は、以下の態様を有する。
[1] 含フッ素重合体と有機半導体材料とドーパントとを含む組成物。
[2] 前記含フッ素重合体の波長域450nm~800nmにおける屈折率が1.5以下である、[1]に記載の組成物。
[3] 前記含フッ素重合体が主鎖に脂肪族環を有する含フッ素重合体である、[1]または[2]に記載の組成物。
[4] 前記含フッ素重合体の質量平均分子量が1,500~50,000である、[1]~[3]のいずれか1項に記載の組成物。
[5] 前記含フッ素重合体の300℃における飽和蒸気圧が0.001Pa以上である、[1]~[4]のいずれか1項に記載の組成物。
[6] 前記含フッ素重合体の含有割合が、前記含フッ素重合体と前記有機半導体材料と前記ドーパントとの合計に対して、30~70体積%である、[1]~[5]のいずれか1項に記載の組成物。
[7] 前記ドーパントの含有割合が、前記有機半導体材料の全物質量100モル部に対して、10~200モル部である、[1]~[6]のいずれか1項に記載の組成物。
[8] 表面粗さがRMSで1.0nm以下である、[1]~[7]のいずれか1項に記載の組成物。
[9] 波長域450nm~800nmにおける吸収係数が5000cm-1以下である、[1]~[8]のいずれか1項に記載の組成物。
[10] 波長域450nm~800nmにおける屈折率が1.60以下である、[1]~[9]のいずれか1項に記載の組成物。
[11] [1]~[10]のいずれか1項に記載の組成物を含む層を有する有機光電子素子。
[12] 前記有機光電子素子が有機ELデバイスである、[11]に記載の有機光電子素子。
[13] [1]~[10]のいずれか1項に記載の組成物を含む層の製造方法であって、含フッ素重合体と有機半導体材料とドーパントとを共蒸着させる、組成物の製造方法。
[14] [11]または[12]に記載の有機光電子素子の製造方法であって、含フッ素重合体と有機半導体材料とドーパントとを共蒸着させる、有機光電子素子の製造方法。
 本発明によれば、屈折率が著しく低い組成物、およびこの組成物を用いた有機光電子素子、ならびにかかる組成物を含む層および有機光電子素子の、簡便な製造方法を提供することができる。
 屈折率が著しく低い組成物を含む層を有機ELデバイスに用いた場合、光取出し効率が向上し、素子の輝度向上や駆動電圧低下に効果がある。また、屈折率の低減および制御により、有機膜同士の界面、有機膜/基板界面、有機膜/空気界面における屈折率差を小さくして光反射を抑える、あるいは上記の界面に新たに中間の屈折率を有する反射防止層を設けて光反射を抑えることが可能になる。よって本発明にかかる組成物を含む層の屈折率を制御する技術を受光素子に用いた場合は光吸収効率を、トランジスタに用いた場合は光透過性(透明性)を向上できる。
実施例に使用した重合体Kの弾性率と温度の関係を示すグラフである。
 本発明の組成物は、含フッ素重合体と有機半導体材料とドーパントとを含む。
 本発明における含フッ素重合体のフッ素原子含有率は、20~77質量%が好ましく、30~70質量%がより好ましく、40~70質量%が特に好ましい。フッ素原子含有率が前記範囲内であれば、電荷輸送層の屈折率が低下しやすい。
 なお、フッ素原子含有率(質量%)は、下式で求められる。
 (フッ素原子含有率)=[19×N/M]×100
 N:含フッ素重合体を構成する単位の種類毎に、単位のフッ素原子数と、全単位に対する当該単位のモル比率とを乗じた値の総和。
 M:含フッ素重合体を構成する単位の種類毎に、単位を構成する全ての原子の原子量の合計と、全単位に対する当該単位のモル比率とを乗じた値の総和。
 また、フッ素原子含有率は、H-NMR、元素分析により測定される値である。また、含フッ素重合体の製造に使用する単量体、開始剤の仕込み量から算出することもできる。
 含フッ素重合体は、電荷輸送層等の層の形成速度、層の強度と表面粗さの観点から、含フッ素重合体の熱分解が起こる温度以下において、実用化するのに十分な飽和蒸気圧を有することが好ましい。一般的な含フッ素重合体であるPTFEの熱分解開始温度が約400℃、テフロン(登録商標)AFの熱分解開始温度が350℃である。本発明に係る含フッ素重合体の300℃における飽和蒸気圧は、0.001Pa以上が好ましく、0.002Pa以上が好ましい。この観点から含フッ素重合体は、結晶性が低い含フッ素重合体であることが好ましく、重合体の分子間相互作用が小さいと考えられるペルフルオロ化された含フッ素重合体がさらに好ましい。
 なお、本発明において、「飽和蒸気圧(単位:Pa)」は、真空示差熱天秤(アドバンス理工社製:VPE-9000)により測定される値である。
 上記飽和蒸気圧と同様に、含フッ素重合体の蒸発のしやすさを表すパラメーターとして、蒸発速度を用いることもできる。300℃における飽和蒸気圧が0.001Pa以上である含フッ素重合体の蒸発のしやすさは、また、300℃、真空度0.001Paにおける蒸発速度が0.01g/m・秒以上に相当する。
 含フッ素重合体の質量平均分子量(以下、「Mw」で表す。)は1,500~50,000が好ましく、3,000~40,000がより好ましく、5,000~30,000がさらに好ましい。Mwが1,500以上の場合は、形成される蒸着膜に十分な強度が得られやすい。一方で、Mwが50,000以下の場合は、実用的な蒸着膜形成速度(成膜速度)を与える飽和蒸気圧を有するため、蒸着源を高温、具体的には、400℃超の温度まで加熱する必要がなくなる。蒸着原の温度が高すぎると蒸着過程において含フッ素重合体の主鎖が開裂し、含フッ素重合体が低分子量化してしまい、形成される蒸着膜の強度が不十分となり、さらに分解物に由来する欠陥が発生し、平滑な表面を得にくい。また、主鎖の開裂により生じ意図せず混入した分子あるいはイオンが膜の導電性に影響を与える可能性が想定され、その場合に蒸着膜の導電性を制御することが困難になる可能性がある。
 よってMwが1,500~50,000の範囲であれば、含フッ素重合体の主鎖が開裂を起こすことなく、十分な強度と平滑な表面を有する蒸着膜が形成される。有機EL素子において電荷輸送層等の蒸着膜の表面粗さは重要な要素であり、平滑な表面であれば、界面における電荷の授受が円滑に行われ、かつ、リーク電流、デバイス欠陥、電力効率低下といった問題を避けることができる。
 なお、本発明において、質量平均分子量(Mw)および後述の数平均分子量(以下、「Mn」で表す。)は、ゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。
 また形成される蒸着膜における品質の安定性の観点から、含フッ素重合体の多分散度(Mw/Mn)は小さい方が好ましく、2以下が好ましい。なお多分散度の理論的な下限値は1である。多分散度の小さい含フッ素重合体を得る方法として、リビングラジカル重合等の制御重合を行う方法、サイズ排除クロマトグラフィを用いた分子量分画精製法、昇華精製による分子量分画精製法が挙げられる。これらの方法のうち、蒸着レートの安定性を考慮し、昇華精製を行うことが好ましい。
 含フッ素重合体の上記「多分散度」とは、Mn(数平均分子量)に対するMwの割合、すなわち、Mw/Mnをいう。以下、多分散度を「Mw/Mn」で表す。本明細書中、MwおよびMnはゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。Mw/Mnは、得られたMw、Mnから計算された値である。
 さらに、含フッ素重合体のガラス転移点(Tg)は高い方が、得られる素子の信頼性が高くなることから好ましい。具体的にはガラス転移点が、60℃以上が好ましく、80℃以上がより好ましく、100℃以上が特に好ましい。上限は特に制限されないが、350℃が好ましく、300℃がより好ましい。
 蒸着により含フッ素重合体を成膜する場合、分子量が小さい重合体から飛び始める性質から、蒸着の初期と終期で異なる分子量の重合体が成膜されることになる。蒸着では一般的に蒸着源の直上に設置されたシャッター等の開閉により、形成される蒸着膜の厚みを制御するが、この際、同時に分子量分画も行われることになり、蒸着源である重合体と蒸着された蒸着膜中の重合体のMwおよびMw/Mnは変化することになる。
 本発明において、蒸着膜中の含フッ素重合体のMwは1,000~20,000が好ましく、1,500~15,000がより好ましく、2,000~10,000がさらに好ましい。Mwが1,000以上の場合は、蒸着膜の強度や耐熱性に優れる。一方で、Mwが20,000以下の場合は、電荷輸送層の導電性を保持することができる。
 また蒸着膜における均質性の観点から、蒸着膜中の含フッ素重合体のMw/Mnは1.2以下が好ましく、1.1以下がより好ましい。Mw/Mnが1.2以下であれば、蒸着膜中に低分子量の重合体が含まれる割合が少なくなり、耐熱性に優れ、均質性の高い蒸着膜となる。Mw/Mnが1.3以上の場合、蒸着膜中に極端に分子量の低い重合体が含まれる割合が多いことを示しており、耐熱性が悪く、膜構造が一様でない蒸着膜となる。
 含フッ素重合体の波長450nm~800nmにおける屈折率の上限値は、1.5であることが好ましく、1.4であることがより好ましく、1.35であることが特に好ましい。含フッ素重合体の波長450nm~800nmにおける屈折率が前記上限値以下であれば、より少ない混合量で効果的に電荷輸送層等の層の屈折率を低減させることができ、電荷輸送層等の層の導電性を損なうことなく得られる有機ELデバイスの光取り出し効率を向上させることができる。含フッ素重合体の屈折率の理論的な下限値は1.0である。
 本発明の発明者らは、従来の有機ELデバイスの光取り出し効率が低い本質的な原因が、従来の有機ELデバイスが有する発光層および電荷輸送層等の屈折率が高いことにあることに着目した。有機ELデバイスに用いられる一般的な電荷輸送層の屈折率は、デバイスの発光の中心波長において1.7~1.8程度であり、すでに実用化されたLEDに用いられている無機半導体よりも低いが、それでも光取り出し効率は20~30%にとどまっている。このような有機半導体から構成される電荷輸送層等を有する従来の有機ELデバイスにあっては、電荷輸送層等と隣接するガラス基板等の層との界面で全反射による光の損失が生じ、光取り出し効率が低くなると考えられる。
 より具体的にはガラス基板の層を構成するソーダガラスの屈折率は1.51~1.53程度であり、石英ガラスの屈折率は1.46~1.47程度である。電荷輸送層等の層の屈折率がガラス基板の層の屈折率と同等の水準である1.5程度まで低下して、これらの屈折率の差が小さくなれば、電荷輸送層とガラス基板との界面で生じる全反射を回避することができ、光取り出し効率が向上する。
 よって含フッ素重合体の屈折率の上限値が1.5であれば、電荷輸送層の屈折率がガラス基板等の屈折率と同等の水準まで低下しやすくなり、光取り出し効率が向上しやすい。
 含フッ素重合体としては、以下の重合体(1)、(2)が挙げられる。
 重合体(1):主鎖に脂肪族環を有さず、フルオロオレフィンに由来する単位(以下、「フルオロオレフィン単位」とも記す。)を有する含フッ素重合体、
 重合体(2):主鎖に脂肪族環を有する含フッ素重合体。
≪重合体(1)≫
 重合体(1)は、フルオロオレフィンの単独重合体であってもよく、フルオロオレフィンと、フルオロオレフィンと共重合可能な他の単量体との共重合体であってもよい。
 フルオロオレフィンとしては、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、ビニリデンフルオライド、ビニルフルオライド、ペルフルオロアルキルエチレン(炭素数1~10のペルフルオロアルキル基を有するもの等)、トリフルオロエチレン等が挙げられる。
 これらの中でも、電荷輸送層の屈折率を低下させやすいことから、炭素原子に結合しているすべての水素原子がフッ素に置換されたテトラフルオロエチレン、ヘキサフルオロプロピレンが好ましい。
 フルオロオレフィンと共重合可能な他の単量体としては、ビニルエーテル、ビニルエステル、芳香族ビニル化合物、アリル化合物、アクリロイル化合物、メタクリロイル化合物等が挙げられる。
 重合体(1)が共重合体である場合、フルオロオレフィンに由来する単位の割合は、20モル%以上が好ましく、40モル%以上がより好ましく、80モル%以上がさらに好ましい。
 重合体(1)としては、合成したものを用いてもよく、市販品を用いてもよい。
 重合体(1)としては、以下の含フッ素重合体が挙げられる。
 ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)/ヘキサフルオロプロピレン共重合体(EPA)、エチレン/テトラフルオロエチレン共重合体(ETFE)、ポリビニリデンフルオリド(PVDF)、ポリビニルフルオリド(PVF)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)等。
 これらの中でも、電荷輸送層の屈折率を低下させやすいことから、炭素原子に結合しているすべての水素原子がフッ素に置換されたポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)/ヘキサフルオロプロピレン共重合体(EPA)が好ましい。
 重合体(1)は、公知の方法を用いて製造できる。
 重合体(1)としては、合成したものを用いてもよく、市販品を用いてもよい。
≪重合体(2)≫
重合体(2)は、主鎖に脂肪族環を有する含フッ素重合体である。
 「主鎖に脂肪族環構造を有する含フッ素重合体」とは、含フッ素重合体が脂肪族環構造を有する単位を有し、かつ、該脂肪族環を構成する炭素原子の1個以上が主鎖を構成する炭素原子であることを意味する。脂肪族環は酸素原子等のヘテロ原子を有する環であってもよい。
 重合体の「主鎖」とは、重合性二重結合を有するモノエンの重合体においては重合性二重結合を構成した2つの炭素原子に由来する炭素原子の連鎖をいい、環化重合しうるジエンの環化重合体においては2つの重合性二重結合を構成した4つの炭素原子に由来する炭素原子の連鎖をいう。モノエンと環化重合しうるジエンとの共重合体においては、該モノエンの上記2つの炭素原子と該ジエンの上記4つの炭素原子とから主鎖が構成される。
 したがって、脂肪族環を有するモノエンの重合体の場合は、脂肪族環の環骨格を構成する1つの炭素原子または環骨格を構成する隣接した2つの炭素原子が重合性二重結合を構成する炭素原子である構造のモノエンの重合体である。環化重合しうるジエンの環化重合体の場合は、後述のように、2つの二重結合を構成する4つの炭素原子のうちの2~4つが脂肪族環を構成する炭素原子となる。
 重合体(2)中の脂肪族環の環骨格を構成する原子の数は、4~7個が好ましく、5~6個が特に好ましい。すなわち、脂肪族環は4~7員環が好ましく、5~6員環が特に好ましい。脂肪族環の環を構成する原子としてヘテロ原子を有する場合、ヘテロ原子としては酸素原子、窒素原子等が挙げられ、酸素原子が好ましい。また、環を構成するヘテロ原子の数は1~3個が好ましく、1個または2個であることがより好ましい。
 脂肪族環は置換基を有していてもよく、有さなくてもよい。「置換基を有していてもよい」とは、該脂肪族環の環骨格を構成する原子に置換基が結合してもよいことを意味する。
 重合体(2)の脂肪族環を構成する炭素原子に結合した水素原子はフッ素原子に置換されていることが好ましい。また、脂肪族環が置換基を有する場合、その置換基に炭素原子に結合した水素原子を有する場合も、その水素原子はフッ素原子に置換されていることが好ましい。フッ素原子を有する置換基としては、ペルフルオロアルキル基、ペルフルオロアルコキシ基、=CF等が挙げられる。
 重合体(2)中の脂肪族環としては、電荷輸送層の屈折率を低下させやすいことから、ペルフルオロ脂肪族環(置換基を含め、炭素原子に結合した水素原子のすべてがフッ素原子に置換されている脂肪族環)が好ましい。
 重合体(2)としては、下記の重合体(21)、(22)が挙げられる。
 重合体(21):含フッ素環状モノエンに由来する単位を有する含フッ素重合体、
 重合体(22):環化重合しうる含フッ素ジエン(以下、単に「含フッ素ジエン」ともいう。)の環化重合により形成される単位を有する含フッ素重合体。
 重合体(21):
 「含フッ素環状モノエン」とは、脂肪族環を構成する炭素原子間に重合性二重結合を1個有する含フッ素単量体、または、脂肪族環を構成する炭素原子と脂肪族環外の炭素原子との間に重合性二重結合を1個有する含フッ素単量体である。
 含フッ素環状モノエンとしては、下記の化合物(1)または化合物(2)が好ましい。
Figure JPOXMLDOC01-appb-C000001
[式中、X、X、X、X、YおよびYは、それぞれ独立に、フッ素原子、エーテル性酸素原子(-O-)を含んでいてもよいペルフルオロアルキル基、またはエーテル性酸素原子を含んでいてもよいペルフルオロアルコキシ基である。XおよびXは相互に結合して環を形成してもよい。]
 X、X、X、X、YおよびYにおけるペルフルオロアルキル基は、炭素数が1~7であることが好ましく、炭素数が1~4であることが特に好ましい。該ペルフルオロアルキル基は、直鎖状または分岐鎖状が好ましく、直鎖状が特に好ましい。具体的には、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基等が挙げられ、特にトリフルオロメチル基が好ましい。
 X、X、X、X、YおよびYにおけるペルフルオロアルコキシ基としては、前記ペルフルオロアルキル基に酸素原子(-O-)が結合したものが挙げられ、トリフルオロメトキシ基が特に好ましい。
 式(1)中、Xは、フッ素原子であることが好ましい。
 Xは、フッ素原子、トリフルオロメチル基、または炭素数1~4のペルフルオロアルコキシ基であることが好ましく、フッ素原子またはトリフルオロメトキシ基であることが特に好ましい。
 XおよびXは、それぞれ独立に、フッ素原子または炭素数1~4のペルフルオロアルキル基であることが好ましく、フッ素原子またはトリフルオロメチル基であることが特に好ましい。
 XおよびXは相互に結合して環を形成してもよい。前記環の環骨格を構成する原子の数は、4~7個が好ましく、5~6個が特に好ましい。
 化合物(1)の好ましい具体例として、化合物(1-1)~(1-5)が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 式(2)中、YおよびYは、それぞれ独立に、フッ素原子、炭素数1~4のペルフルオロアルキル基または炭素数1~4のペルフルオロアルコキシ基が好ましく、フッ素原子またはトリフルオロメチル基が特に好ましい。
 化合物(2)の好ましい具体例として、化合物(2-1),(2-2)が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 重合体(21)は、上記の含フッ素環状モノエンの単独重合体であってもよく、含フッ素環状モノエンと共重合可能な他の単量体の共重合体であってもよい。
 ただし、重合体(21)中の全単位に対する含フッ素環状モノエンに由来する単位の割合は、20モル%以上が好ましく、40モル%以上がより好ましく、100モル%がさらに好ましい。
 含フッ素環状モノエンと共重合可能な他の単量体としては、たとえば、含フッ素ジエン、側鎖に反応性官能基を有する単量体、テトラフルオロエチレン、クロロトリフルオロエチレン、ペルフルオロ(メチルビニルエーテル)等が挙げられる。
 含フッ素ジエンとしては、後述する重合体(22)の説明で挙げるものと同様のものが挙げられる。側鎖に反応性官能基を有する単量体としては、重合性二重結合および反応性官能基を有する単量体が挙げられる。重合性二重結合としては、CF=CF-、CF=CH-、CH=CF-、CFH=CF-、CFH=CH-、CF=C-、CF=CF-等が挙げられる。反応性官能基としては、後述する重合体(22)の説明で挙げるものと同様のものが挙げられる。
 なお、含フッ素環状モノエンと含フッ素ジエンとの共重合により得られる重合体は重合体(21)とする。
 重合体(22):
 「含フッ素ジエン」とは、2個の重合性二重結合およびフッ素原子を有する環化重合しうる含フッ素単量体である。重合性二重結合としては、ビニル基、アリル基、アクリロイル基、メタクリロイル基が好ましい。含フッ素ジエンとしては、下記化合物(3)が好ましい。
   CF=CF-Q-CF=CF ・・・(3)。
 式(3)中、Qは、エーテル性酸素原子を含んでいてもよく、フッ素原子の一部がフッ素原子以外のハロゲン原子で置換されていてもよい炭素数1~5、好ましくは1~3の、分岐を有してもよいペルフルオロアルキレン基である。該フッ素以外のハロゲン原子としては、塩素原子、臭素原子等が挙げられる。
 Qは、エーテル性酸素原子を含むペルフルオロアルキレン基であることが好ましい。その場合、該ペルフルオロアルキレン基におけるエーテル性酸素原子は、該基の一方の末端に存在していてもよく、該基の両末端に存在していてもよく、該基の炭素原子間に存在していてもよい。環化重合性の点から、該基の一方の末端に存在していることが好ましい。
 化合物(3)の具体例としては、下記化合物が挙げられる。
 CF=CFOCFCF=CF
 CF=CFOCF(CF)CF=CF
 CF=CFOCFCFCF=CF
 CF=CFOCFCF(CF)CF=CF
 CF=CFOCF(CF)CFCF=CF
 CF=CFOCFClCFCF=CF
 CF=CFOCClCFCF=CF
 CF=CFOCFOCF=CF
 CF=CFOC(CFOCF=CF
 CF=CFOCFCF(OCF)CF=CF
 CF=CFCFCF=CF
 CF=CFCFCFCF=CF
 CF=CFCFOCFCF=CF
 化合物(3)の環化重合により形成される単位として、下記単位(3-1)~(3-4)等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 重合体(22)は、含フッ素ジエンの単独重合体であってもよく、含フッ素ジエンと共重合可能な他の単量体の共重合体であってもよい。
 含フッ素ジエンと共重合可能な他の単量体としては、たとえば、側鎖に反応性官能基を有する単量体、テトラフルオロエチレン、クロロトリフルオロエチレン、ペルフルオロ(メチルビニルエーテル)等が挙げられる。
 重合体(22)の具体例としては、たとえば、CF=CFOCFCFCF=CF(ペルフルオロ(3-ブテニルビニルエーテル))を環化重合させて得られる、下式(3-1-1)で表される重合体が挙げられる。
 なお、以下、ペルフルオロ(3-ブテニルビニルエーテル)を「BVE」という。
Figure JPOXMLDOC01-appb-C000005
 ただし、式(3-1-1)中、pは1~1,000の整数である。
 pは、5~800の整数が好ましく、10~500の整数が特に好ましい。
 重合体(2)は、反応性官能基を有していてもよく、有していなくてもよいが、有していないことが好ましい。反応性官能基としては、重合体中への導入のしやすさ、反応性の点から、カルボキシ基、酸ハライド基、アルコキシカルボニル基、カルボニルオキシ基、カーボネート基、スルホ基、ホスホノ基、ヒドロキシ基、チオール基、シラノール基およびアルコキシシリル基からなる群から選ばれる少なくとも1種が好ましく、カルボキシ基またはアルコキシカルボニル基が特に好ましい。
 反応性官能基は、重合体(2)の主鎖末端に結合していてもよく、側鎖に結合していてもよい。製造しやすい点からは、主鎖の末端に結合していることが好ましい。すなわち、重合体(2)として好ましい様態は、主鎖の末端にアルコキシカルボニル基を有することである。
 重合体(2)としては、合成したものを用いてもよく、市販品を用いてもよい。
 重合体(2)の具体例としては、BVE環化重合体(旭硝子社製:CYTOP(登録商標))、テトラフルオロエチレン/2,2,4-トリフルオロ-5-トリフルオロメトキシ1,3-ジオキソール共重合体(ソルベイ社製:ハイフロン(登録商標)AD)、テトラフルオロエチレン/ペルフルオロジメチルジオキソール共重合体(ケマーズ社(旧Dupont社)製:テフロン(登録商標)AF)等が挙げられる。これらの中でも主鎖に脂肪族環を有する、BVE環化重合体(旭硝子社製:CYTOP(登録商標))、テトラフルオロエチレン/ペルフルオロジメチルジオキソール共重合体(ケマーズ社(旧Dupont社)製:テフロン(登録商標)AF)が好ましい。
 本発明では、含フッ素重合体は重合体(2)であることが好ましく、重合体(22)であることがより好ましく、BVEを環化重合させて得られる、式(3-1-1)で表される含フッ素重合体が特に好ましい。
 含フッ素重合体が重合体(2)である場合、そのMwは1,500~50,000が好ましく、3,000~40,000がより好ましく、5,000~30,000がさらに好ましい。Mwが1,500以上の場合は、電荷輸送層等の層の強度が優れる。一方で、Mwが50,000以下の場合は、成膜性に優れる。より具体的には、Mwが50,000以下の重合体(2)は実用的な成膜速度を与える飽和蒸気圧を有するため、蒸着源を高温、具体的には、400℃超の温度まで加熱する必要がなくなる。蒸着源の温度が高すぎると蒸着過程において重合体(2)の主鎖が開裂し、含フッ素重合体が低分子量化してしまい、形成される電荷輸送層等の層の強度が不十分となり、さらに分解物に由来する欠陥が発生し、平滑な表面を得にくい。また、主鎖の開裂により生じ、意図せず混入した分子あるいはイオンが電荷輸送層等の層の導電性に影響を与える可能性が想定され、その場合には電荷輸送層等の層の導電性を制御することが困難になる。
 よってMwが1,500~50,000の範囲であれば、重合体(2)の主鎖の開裂を起こすことなく十分な膜強度と平滑な膜表面が得られる。
 含フッ素重合体が重合体(2)である場合、固有粘度[η]が、0.01~0.14dl/gであることが好ましく、0.02~0.1dl/gであることがより好ましく、0.02~0.08dl/gであることが特に好ましい。[η]が0.01dl/g以上の場合は、相対的に含フッ素重合体の分子量が大きくなり、形成後の電荷輸送層において十分な強度が得られやすい。一方で、[η]が0.14dl/g以下の場合は、相対的に含フッ素重合体の分子量が小さくなり、実用的な成膜速度を与える飽和蒸気圧を有する。
 なお、上記「固有粘度[η](単位:dl/g)」とは、測定温度30℃でアサヒクリン(登録商標)AC2000(旭硝子社製)を溶媒として、ウベローデ型粘度計(柴田科学社製:粘度計ウベローデ)により測定される値である。
 本発明では、含フッ素重合体として、重合体(1)、(2)のうちのいずれか1つのみを使用してもよく、重合体(1)、(2)を併用してもよい。
 本発明に係る有機半導体材料は、半導体的な電気特性を示す有機化合物材料である。
 有機半導体材料としては、陽極側から正孔の注入を受けて輸送する正孔輸送材料、および、陰極側から電子の注入を受けて輸送する電子輸送材料が挙げられる。本発明にはどちらも好適に用いられるが、本発明に係る有機半導体材料としては、正孔輸送材料が好ましい。
 正孔輸送材料としては、芳香族アミン誘導体が好適に例示できる。具体例としては、α-NPD、PDA、TAPC、TPD、m-MTDATA、N-(diphenyl-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3yl)phenyl)-9H-fluorene-2-amine(以下、「HT211」という。)、HTM081(Merck社製)、HTM163(Merck社製)、HTM222(Merck社製)、NHT-5(Novaled社製)、NHT-18(Novaled社製)、NHT-49(Novaled社製)、NHT-51(Novaled社製)等が挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000006
 電子輸送材料としては、含窒素複素環誘導体が好適に例示できる。具体例としては、Alq3、PBD、BND、TAZ、OXD-7、NET-5(Novaled社製)、NET-8(Novaled社製)、NET-18(Novaled社製)、TR-E314(東レ社製)等が挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000007
 本発明に係るドーパントは、有機半導体材料との間で電荷を授受することができる化合物である。本発明の電荷輸送層がドーパントを含むことにより、電荷輸送層における自由電荷密度が高まり、電荷輸送層の導電性が、実用化に十分な程度にまで向上する。
 ドーパントとしては、正孔輸送材料に対するドーパントと電子輸送材料に対するドーパントが挙げられる。
 正孔輸送材料に対するドーパントは、正孔輸送性の有機半導体材料のイオン化ポテンシャルと比べ同等あるいは大きな電子親和力を有する化合物である。かかるドーパントは、正孔輸送性の有機半導体材料から電子を受け取ることができるため、本発明の電荷輸送層の導電性の向上に寄与する。
 正孔輸送材料に対するドーパントの具体例としては、TCNQ、F-TCNQ、PPDN、TCNNQ、F-TCNNQ、HAT-CN、HATNA、HATNA-Cl6、HATNA-F6、C6036、F16-CuPc、NDP-2(Novaled社製)、NDP-9(Novaled社製)、LGC-101(LG Chem社製)等の有機ドーパント、および、MoO、V、WO、ReO、CuI等の無機ドーパントが挙げられる。
Figure JPOXMLDOC01-appb-C000008
 電子輸送材料に対するドーパントは、電子輸送性の有機半導体材料の電子親和力と比べ同等あるいは小さなイオン化ポテンシャルを有する化合物である。かかるドーパントは、電子輸送性の有機半導体材料に電子を受け渡すことができるため、本発明の電荷輸送層の導電性の向上に寄与する。
 電子輸送材料に対するドーパントの具体例としては、TTN、BEDT-TTF等の有機ドーパント、CoCp、[Ru(terpy)、NDN-1(Novaled社製)、NDN-26(Novaled社製)等の有機ドーパントまたは有機金属錯体ドーパント、および、Li、Cs、LiF、LiCO、CsCO等の無機ドーパントが挙げられる。
Figure JPOXMLDOC01-appb-C000009
 本発明の組成物には、含フッ素重合体、有機半導体材料、およびドーパント以外に他の材料が含まれてもよいが、含フッ素重合体、有機半導体材料、およびドーパントのみが含まれていることが好ましい。
 なお、含フッ素重合体は1種のみを用いても、2種以上を併用してもよい。また有機半導体材料は1種のみを用いても、2種以上を併用してもよい。またドーパントは1種のみを用いても、2種以上を併用してもよい。
 本発明の組成物は、有機半導体材料とドーパントの2つのみからなる組成物と同等の電気特性を示すことが、素子周辺の回路設計の大幅な変更を必要としないことから、好ましい。具体的には有機半導体材料とドーパントの2つのみからなる組成物で測定したJ-V特性と、本発明の組成物の状態で測定したJ-V特性とが同等であることが好ましい。より具体的にはJ-V特性において電位勾配が0.5MV/cmにおいて、組成物の状態で測定した電流値が、有機半導体材料とドーパントの2つのみからなる組成物で測定した電流値の20%以上が好ましく、50%以上がより好ましい。該電流値の比の上限は特に無いが、500%以下が好ましい。また、電界強度1×10~10V/cmの範囲における電流値から算出される導電率が、1×10-11[S/cm]以上であることが好ましく、1×10-10[S/cm]以上であることがより好ましく、1×10-9[S/cm]以上であることがさらに好ましい。
 25℃、大気中における体積抵抗率が1017Ω・cm以上の絶縁材料である含フッ素重合体を用いているにも関わらず、本発明の組成物は有機半導体材料と同等の電気特性を示し、かつ、低屈折率であることから有機光電子素子の光取り出し効率を大幅に向上できる。
 本発明の組成物では、含フッ素重合体の含有割合が、前記含フッ素重合体と前記有機半導体材料と前記ドーパントとの合計に対して、30~70体積%であることが好ましい。
 さらに、含フッ素重合体の含有割合の下限値は、35体積%であることがより好ましく、40体積%であることが特に好ましい。また、含フッ素重合体の含有割合の上限値は、65体積%であることがより好ましく、60体積%であることが特に好ましい。
 含フッ素重合体の含有割合が、上記の下限値以上であれば、組成物の屈折率が、ガラス基板等の屈折率と同等の水準まで低下しやすくなる。
 含フッ素重合体の含有割合が、上記の上限値以下であれば、電荷輸送層の基本的性能としての導電性が、維持されやすい。
 本発明の組成物では、ドーパントの含有割合が有機半導体材料の全物質量100モル部に対して、10~200モル部であることが好ましく、15~150モル部であることがより好ましく、20~100モル部であることが特に好ましい。
 ドーパントの含有割合が、上記の下限値以上であれば、組成物の導電性が維持あるいは向上されやすくなる。
 ドーパントの含有割合が、上記の上限値以下であれば、組成物の屈折率が低下しやすくなる。
 本発明の組成物のより好ましい態様は、含フッ素重合体の含有割合が、前記含フッ素重合体と前記有機半導体材料と前記ドーパントとの合計に対して、30~70体積%であり、ドーパントの含有割合が、有機半導体材料の全物質量100モル部に対して、10~200モル部である。
 本発明の組成物のさらに好ましい態様は、含フッ素重合体の含有割合が、前記含フッ素重合体と前記有機半導体材料と前記ドーパントとの合計に対して、35~65体積%であり、ドーパントの含有割合が、有機半導体材料の全物質量100モル部に対して、15~150モル部である。
 本発明の組成物の特に好ましい態様は、含フッ素重合体の含有割合が、前記含フッ素重合体と前記有機半導体材料と前記ドーパントとの合計に対して、40~60体積%であり、ドーパントの含有割合が、有機半導体材料の全物質量100モル部に対して、20~100モル部である。
 本発明の組成物を含む層の表面粗さはRMSで1.0nm以下であることが好ましく、0.8nm以下であることがより好ましく、0.6nm以下であることがさらに好ましい。
 本発明において、「表面粗さ(単位:nm)」は、JIS B 0601に準拠して、原子間力顕微鏡(AFM)等によって測定される値であり、RMS(root mean square:二乗平均平方根)により表される。
 表面粗さが1.0nm以下であれば、電荷輸送層等の層に強電界を印加した際に、局所的に大きな電界がかかることを避けることができ、層内で均一な電流を流すことができるため好ましい。かかる層を適用した有機光電子素子を駆動させた際には、隣接する電極、発光層、電荷輸送層等との各界面における電荷の輸送が円滑に行われるので、リーク電流、デバイス欠陥、および接触抵抗の増大による電力効率の低下等の発生が低減され、駆動安定性および寿命等の有機光電子素子の性能が優れる。
 なお、表面粗さについて、その好ましい値の下限値は理論的には0nmである。
 本発明の組成物を含む層の厚さは特に制限されないが、10nm~250nmが好ましく、20nm~150nmがより好ましい。
 本発明の組成物は、波長域450nm~800nmにおける吸収係数が5000cm-1以下であることが好ましく、1000cm-1以下であることがより好ましく、上記波長域において吸収帯を有さないことが特に好ましい。吸収係数が5000cm-1を超える場合、光が厚み100nmの組成物を含む層を1回通過すると通過前の光の全量を100%としたときに対し5%の光が吸収される。有機ELデバイス内部では光の多重干渉により、層を通過するときの光の吸収による損失が累積するため、層を通過する際における光吸収が光取り出し効率を大きく低減させる要因となる。光吸収が十分小さい層を用いることは、有機ELデバイスの発光効率を損なわないために極めて重要である。有機ELデバイスの発光効率が損なわれないことによりエネルギー利用効率が高くなり、かつ、光吸収に基づく発熱が抑制される結果として素子寿命が長くなる。
 なお、本発明において、「吸収係数(単位:cm-1)」は、JIS K 0115に準拠して測定される値である。
 本発明の組成物は、波長域450nm~800nmにおける屈折率が1.60以下であることが好ましく、1.55以下であることがより好ましい。屈折率が1.60以下であれば、本発明の組成物の屈折率がガラス基板等の屈折率と同等水準まで低下し、電荷輸送層等の層とガラス基板等との境界面における全反射の発生が低減されるので、有機ELデバイスの光取り出し効率が向上する。一方、本発明の組成物の屈折率の理論的な下限値は1.0である。
 本発明の組成物を含む層の製造方法は、公知の方法でよく、ドライコート法でもウェットコート法でもよいが、含フッ素重合体と有機半導体材料とドーパントとを均一な混合比で成膜しやすいためドライコート法が好ましい。ウェットコート法としては、インクジェット法、キャストコート法、ディップコート法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソコート法、およびスプレーコート法等が挙げられる。ドライコート法としては、抵抗加熱蒸着法、電子ビーム蒸着法、およびスパッタ法が挙げられる。これらのうち有機半導体および含フッ素重合体を分解しすることなく成膜しやすいことから、抵抗加熱蒸着法が好ましく、有機半導体材料と含フッ素重合体とを共蒸着させる、抵抗加熱による共蒸着法が特に好ましい。
 共蒸着における蒸着速度(含フッ素重合体と有機半導体材料とドーパントの合計の蒸着速度)は特に制限されないが、0.001~10nm/sであることが表面粗さを所定の範囲とするために好ましい。
 上記の本発明の組成物は、有機光電子素子を構成する電荷輸送層等の層として好適に用いられる。該層としては、電荷注入層、電荷輸送層が例示でき、電荷輸送層が好ましく、正孔輸送層が特に好ましい。すなわち本発明の組成物は電荷輸送層形成用組成物として好ましい。
 本発明の有機光電子素子は、一対の陽極および陰極を有し、該一対の電極間に少なくとも一層の、本発明の組成物を含む層を有する。陽極および陰極としては、公知の金属、金属酸化物または導電性高分子を用いることができ、特に限定されない。
 本発明の有機光電子素子の立体構造は特に限定されず、たとえば本発明の組成物を含む層を一対の電極で挟んで、厚み方向に電流を流す立体構造でもよく、あるいは、本発明の組成物を含む層に対し、その表面上の異なる位置に陽極および陰極を設けて面内方向に電流を流す立体構造でもよい。
 本発明の有機光電子素子の層構成は特に限定されず、陽極と陰極の間に本発明の組成物を含む層に加えて任意の機能層が設けられてもよい。たとえば透明導電性電極とそれに対向する対向電極を有する一対の電極と、該一対の電極間に本発明の組成物を含む層に加えて、電荷輸送層、発光層、発電層等の層が挟持されていてもよい。また、これらの任意の機能層を構成する材料は有機物に限定されず、無機物でもよい。
 本発明の有機光電子素子は、たとえば基板上に陽極または陰極等を形成した後、上述した電荷輸送層等の層、および上述した任意の機能層を形成して、その上に陰極または陽極等を形成して製造することができるが、これに制限されない。本発明の組成物を含む層と上記の任意の機能層を形成する順序、およびそれらを積層する順序も制限されない。
 電荷輸送層等の層の形成は、上述した層の製造方法と同様であるが、含フッ素重合と有機半導体材料とドーパントとを共蒸着させる、抵抗加熱による共蒸着法が特に好ましい。
 共蒸着における蒸着速度(含フッ素重合体と有機半導体材料とドーパントの合計の蒸着速度)は特に制限されないが、0.001~10nm/sであることが層の表面粗さを所定の範囲とするために好ましい。
 本発明の有機光電子素子は、有機ELデバイス、有機トランジスタ、太陽電池、有機フォトダイオード、有機レーザー等の有機光電子デバイスに利用できる。
 特に本発明の有機光電子素子は、有機ELデバイスとして好適に用いられる。このような有機ELデバイスは有機ELディスプレイ、有機EL照明等の有機ELデバイスに利用できる。これらの有機ELデバイスは、トップエミッション型であってもよく、ボトムエミッション型であってもよい。
 有機光電子デバイス、有機ELデバイス等の有機半導体デバイスにて、本発明の組成物を含む層を電極の間に挟持させる方法は特に限定されず、たとえばITO(酸化インジウムスズ)膜付きガラス基板上に共蒸着させてなる共蒸着膜を公知の方法で上記デバイスに実装させればよい。
(作用効果)
 以上説明したように、本発明の組成物は、含フッ素重合体と有機半導体材料とドーパントとを含む。かかる構成を有する本発明の組成物は、有機半導体材料のみからなる一元系の組成物の屈折率より低い屈折率を有することが可能である。よって本発明の組成物を含む層を有機光電子素子に適用すれば、層と隣接するガラス基板等の屈折率と、層の屈折率との差が小さくなり、層とガラス基板との界面における全反射が起きにくくなる。すると全反射による光の損失が低減され、有機ELデバイスの光取り出し効率が向上する。
 一方で、含フッ素重合体を含む層は、有機半導体材料のみからなる一元系の層と比較して、導電性等の基本的性能が低下することが懸念される。しかし、本発明の構成を有する層は、さらにドーパントを含むため、有機半導体材料とドーパントとを含む二元系の層と、同等あるいはそれ以上の導電性を有することが可能である。よって、本発明の層では、導電性等の基本的性能が実用化に耐えうる程度に十分に維持されることが可能である。
 また、本発明の層および有機光電子素子の製造方法は、高価な部材を必要とせず、素子の作製プロセスも複雑でない。
 したがって、本発明によれば、層の基本的性能を維持しながら、屈折率が著しく低い層、およびこの層を用いた有機光電子素子、ならびにかかる層および有機光電子素子の簡便な製造方法を提供することができる。
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によって限定されない。
 本実施例で合成した含フッ素共重合体の屈折率、分子量、固有粘度および飽和蒸気圧の測定は、以下の記載に従って行った。
「含フッ素重合体の屈折率の測定方法」
 JIS K 7142に準拠して測定した。
「含フッ素重合体のMwおよびMnの測定」
 含フッ素重合体のMwを、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定した。まず、分子量既知のポリメチルメタクリレート(PMMA)標準試料を、GPCを用いて測定し、ピークトップの溶出時間と分子量から、較正曲線を作成した。ついで、含フッ素重合体を測定し、較正曲線からMwとMnを求めた。移動相溶媒には1,1,1,2,3,4,4,5,5,5-デカフルオロ-3-メトキシ-2-(トリフルオロメチル)ペンタン/ヘキサフルオロイソプロピルアルコール(体積比で85/15)を用いた。
「含フッ素重合体の固有粘度[η]の測定」
 含フッ素重合体の固有粘度[η]を測定温度30℃でアサヒクリン(登録商標)AC2000(旭硝子社製)を溶媒として、ウベローデ型粘度計(柴田科学社製:粘度計ウベローデ)により測定した。
「含フッ素重合体の弾性率の測定」
 Anton-Paar社のレオメーターPhysica MCR301を用いて弾性率を測定した。治具としてPP12(平板型プレート、φ12mm)を用い、サンプル厚さ1mm、周波数1Hzで、200℃から毎分2℃で降温し、貯蔵弾性率Paおよび損失弾性率Paを測定した。
「含フッ素重合体の飽和蒸気圧および蒸発速度の測定」
 アドバンス理工社(旧アルバック理工社)の真空示差熱天秤VPE-9000を用いて300℃における飽和蒸気圧および蒸発速度を測定した。
 含フッ素重合体50mgを内径7mmのセルに仕込み、1×10-3Paの真空度にて、毎分2℃で昇温し、300℃における蒸発速度g/m・秒を測定した。飽和蒸気圧の算出には蒸発速度と前記GPC測定でもとめたMwを用いた。
 本実施例で作製した電荷輸送層の表面粗さ、吸収係数および屈折率の測定、ならびに本実施例で作製した導電性評価用素子のJ-V特性の評価は、以下の記載に従って行った。
「電荷輸送層の表面粗さの測定」
 AFM(ブルカー・エイエックスエス社製:Dimension Icon)により、シリコン基板上の膜に対して、共鳴周波数300kHzのプローブ針を用いたタッピングモードで膜表面の観察を行った。観察面積は2.0マイクロメートル角とし、得られた画像について針の掃引方向に垂直な方向に対して高さ補正を行った後、高さのRMS値を算出した。
「電荷輸送層の吸収係数の測定」
 紫外可視分光光度計(島津製作所社製:UV-2450)を用い、石英基板上の膜の吸収スペクトルを測定し、膜の吸光度から吸収係数を得た。
「電荷輸送層の屈折率の測定」
 多入射角分光エリプソメトリー(ジェー・エー・ウーラム社製:M-2000U)を用いて、シリコン基板上の膜に対して、光の入射角を45~75度の範囲で5度ずつ変えて測定を行った。それぞれの角度において、波長450nm~800nmの範囲で約1.6nmおきにエリプソメトリーパラメータであるΨと△を測定した。上記の測定データを用い、有機半導体の誘電関数をCauchyモデルによりフィッティング解析を行い、電荷輸送層の膜厚と、各波長の光に対する電荷輸送層の屈折率を得た。
「電荷輸送層の導電性の評価」
 ソースメータ(Keithley社製:Keithley(登録商標)2401)により、ITO(酸化インジウムスズ)側を陽極、アルミニウム側を陰極として電圧を印加しながら、電圧毎に導電性評価用素子に流れる電流を測定した。電圧と膜厚から得られる電界強度Eと、電流と素子面積から得られる電流密度Jとの関係(J-E特性)を求め、電界強度10~10V/cmの範囲において線形フィッティングを行うことで導電率を算出した。また、電界強度10V/cmでの電流密度の値を得た。
 以下の含フッ素重合体の製造に使用した単量体、溶剤および重合開始剤の略号は、以下の通りである。
 BVE:ペルフルオロ(3-ブテニルビニルエーテル)
 BVE-4M:CF=CFOCF(CF)CFCF=CF
 MMD:ペルフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)
 PDD:ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)
 TFE:テトラフルオロエチレン
 PPVE:ペルフルオロ(プロピルビニルエーテル)(CF=CFOCFCFCF
 1H-PFH:1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサン
 IPP:ジイソプロピルペルオキシジカーボネート
 重合体Aの合成
 BVEの30g、1H-PFHの30g、メタノールの0.5gおよびIPPの0.44gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、重合体の28gを得た。得られた重合体の固有粘度[η]は、0.04dl/gであった。
 次いで、得られた重合体を特開平11-152310号公報の段落[0040]に記載の方法により、フッ素ガスにより不安定末端基を-CF基に置換し、重合体Aを得た。
 得られた重合体Aの波長600nmの光に対する屈折率は1.34、固有粘度[η]は、0.04dl/gであった。重合体AのMwは9,000、Mnは6,000、Mw/Mnは1.5、300℃における飽和蒸気圧は0.002Pa、300℃における蒸発速度0.08g/msecであった。
 重合体Bの合成
 BVEの10g、1H-PFHの10g、メタノールの0.2gおよびIPPの0.2gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、重合体の8gを得た。得られた重合体の固有粘度[η]は、0.04dl/gであった。
 次いで、得られた重合体を300℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱することで、不安定末端基をメチルエステル基に置換し、重合体Bを得た。
 得られた重合体Bの波長600nmの光に対する屈折率は1.34、Mwは7,800、Mnは6,200、Mw/Mnは1.3、300℃における飽和蒸気圧は0.003Pa、300℃における蒸発速度は0.06g/msecであった。
 重合体Cの合成
 BVEの20g、1H-PFHの20g、メタノールの0.1gおよびIPPの0.3gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、重合体の16gを得た。得られた重合体の固有粘度[η]は、0.07dl/gであった。
 次いで、得られた重合体を300℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱することで、不安定末端基をメチルエステル基に置換し、重合体Cを得た。
 得られた重合体Cの波長600nmの光に対する屈折率は1.34、Mwは14,000、Mnは10,100、Mw/Mnは1.4、300℃における飽和蒸気圧0.001Pa、300℃における蒸発速度は0.03g/msecであった。
 重合体Dの合成
 BVEの450g、イオン交換水の600g、連鎖移動剤としてのメタノールの52gおよびIPPの1gを、内容積1Lのガラスライニングの反応器に入れた。系内を窒素で置換した後、40℃で20時間、50℃で6時間懸濁重合を行い、重合体を得た。次いで、得られた重合体の粒子をろ過により回収し、メタノール、水により洗浄した後、100℃で乾燥し、BVEおよびメタノールに起因する末端基を有する重合体の420gを得た。得られた重合体の固有粘度[η]は、0.24dl/gであった。
 次いで、得られた重合体を特開平11-152310号公報の段落[0040]に記載の方法により、フッ素ガスにより不安定末端基を-CF基に置換し、重合体Dを得た。
 得られた重合体Dの波長600nmの光に対する屈折率は1.34、固有粘度[η]は、0.24dl/gであった。重合体DのMwは73,000、Mnは48,000、Mw/Mnは1.5、300℃における飽和蒸気圧は0.0001Pa、300℃における蒸発速度0.004g/msecであった。
 重合体Eの合成
 MMDの3g、1H-PFHの9g、メタノールの0.5gおよびIPPの0.3gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、重合体の2gを得た。
 次いで、得られた重合体を300℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱することで、不安定末端基をメチルエステル基に置換し、重合体Eを得た。
 得られた重合体Eの波長600nmの光に対する屈折率は1.33、Mwは9,800、Mnは8,100、Mw/Mnは1.2、300℃における飽和蒸気圧は0.008Pa、300℃における蒸発速度は0.14g/msecであった。
 重合体Fの合成
 MMDの2g、1H-PFHの6g、メタノールの0.4gおよびIPPの0.2gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、重合体の1gを得た。
 次いで、得られた重合体を300℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱することで、不安定末端基をメチルエステル基に置換し、重合体Fを得た。
 得られた重合体Fの波長600nmの光に対する屈折率は1.33、Mwは11,300、Mnは9,300、Mw/Mnは1.2、300℃における飽和蒸気圧0.007Pa、300℃における蒸発速度0.10g/msecであった。
 重合体Gの合成
 BVE-4Mの2g、1H-PFHの5g、メタノールの0.1gおよびIPPの0.03gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、重合体の1gを得た。
 次いで、得られた重合体を300℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱することで、不安定末端基をメチルエステル基に置換し、重合体Gを得た。
 得られた重合体Gの波長600nmの光に対する屈折率は1.34、Mwは10,100、Mnは8,600、Mw/Mnは1.2、300℃における飽和蒸気圧は0.002Pa、300℃における蒸発速度は0.04g/msecであった。
 重合体Hの合成
 BVE-4Mの10g、1H-PFHの6g、メタノールの0.6gおよびIPPの0.13gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、重合体の2gを得た。
 次いで、得られた重合体を260℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱することで、不安定末端基をメチルエステル基に置換し、重合体Hを得た。
 得られた重合体Hの波長600nmの光に対する屈折率は1.34、Mwは4,500、Mnは4,000、Mw/Mnは1.2、300℃における飽和蒸気圧は0.01Pa、300℃における蒸発速度は0.2g/msecであった。
 重合体Iの合成
 BVEの1.5g、PDDの2g、1H-PFHの10g、メタノールの0.3gおよびIPPの0.4gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、重合体の2gを得た。
 得られた重合体の組成は、BVE単位:PDD単位=24:76(モル%)であった。
 次いで、得られた重合体を300℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱し、不安定末端基をメチルエステル基に置換し、重合体Iを得た。重合体Iの波長600nmの光に対する屈折率は1.30、Mwは9,200、Mnは8,100、Mw/Mnは1.1、300℃における飽和蒸気圧は0.003Pa、300℃における蒸発速度0.06g/msecであった。
 重合体Jの合成
 BVEの1.1g、PDDの1.5g、1H-PFHの7g、メタノールの0.1gおよびIPPの0.3gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、重合体の1gを得た。
 得られた重合体の組成は、BVE単位:PDD単位=24:76(モル%)であった。
 次いで、得られた重合体を300℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱し、不安定末端基をメチルエステル基に置換し、重合体Jを得た。重合体Jの波長600nmの光に対する屈折率は1.30、Mwは14,100、Mnは10,700、Mw/Mnは1.3、300℃における飽和蒸気圧は0.001Pa、300℃における蒸発速度0.03g/msecであった。
 重合体Kの合成
 内容積1006mLのステンレス製オートクレーブに、PPVEの153g、1H-PFHの805g、メタノールの2.4g、および2,2’-アゾビス(イソブチロニトリル)の1.1gを仕込み、液体窒素で凍結脱気をした。70℃に昇温した後、TFEを0.57MPaGになるまで導入した。温度と圧力を一定に保持しながら、TFEを連続的に供給して重合させた。重合開始から9時間後にオートクレーブを冷却して重合反応を停止し、系内のガスをパージして重合体の溶液を得た。
 重合体の溶液にメタノールの813gを加えて混合し、重合体が分散している下層を回収した。得られた重合体の分散液を80℃で16時間温風乾燥し、次に100℃で16時間真空乾燥して、重合体の19gを得た。
 得られた重合体の組成は、PPVE単位:TFE単位=14:86(モル%)であった。
 次いで、得られた重合体を300℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱し、不安定末端基をメチルエステル基に置換し、重合体Kを得た。前記方法で重合体KのMwおよびMnを測定できないので、代わりに重合体Kの弾性率と温度の関係を図1に示す。
 得られた重合体Kの波長600nmの光に対する屈折率は1.34、300℃における蒸発速度は0.04g/msecであった。
[実施例1~6]
≪電荷輸送層の作製≫
 約2cm角程度にカットしたシリコン基板2枚および石英基板1枚を、それぞれ中性洗剤、アセトン、イソプロパノールを用いて超音波洗浄し、さらにイソプロパノール中で煮沸洗浄した上で、オゾン処理により基板表面の付着物を除去した。この基板をそれぞれ真空蒸着機内に置き、圧力10-4Pa以下に真空引きした上で、重合体Aと、m-MTDATA(有機半導体材料)と、HAT-CN(ドーパント)とを、電荷輸送層の組成が表1に示す組成となるように用いて、真空蒸着機内で抵抗加熱し、共蒸着を行うことで厚み約100nmの電荷輸送層をそれぞれの基板上に作製した。3つの材料の合計の蒸着速度は0.2nm/sとした。得られた電荷輸送層の表面粗さの測定結果および波長600nmの光に対する屈折率の測定結果を表1に示す。
≪導電性評価用素子の作製≫
 素子を作製するための基板として、2mm幅の帯状にITO(酸化インジウムスズ)が成膜されたガラス基板を用いた。その基板を中性洗剤、アセトン、イソプロパノールを用いて超音波洗浄し、さらにイソプロパノール中で煮沸洗浄した上で、オゾン処理によりITO膜表面の付着物を除去した。この基板を真空蒸着機内に置き、圧力10-4Pa以下に真空引きした上で、重合体Aと、m-MTDATA(有機半導体材料)と、HAT-CN(ドーパント)とを、電荷輸送層の組成が表1に示す組成となるように用いて、真空蒸着機内で抵抗加熱し、共蒸着を行うことで厚み約100nmの電荷輸送層をそれぞれ積層した。3つの材料の合計の蒸着速度は0.2nm/sとした。さらに、アルミニウムを抵抗加熱で2mm幅の帯状に蒸着し、導電性評価用素子を得た。2mm幅のITOと2mm幅のアルミニウムが交差した2mm×2mmが素子面積となる。得られた電荷輸送層の導電性の評価結果を表1に示す。なお導電率の欄において、「E」はべき乗を表す。たとえば「4.1E-07」は「4.1×10-7」を表す。
[実施例7~12]
 含フッ素重合体であるテフロン(登録商標)AF1600(ケマーズ社(旧Dupont社)製)と、m-MTDATA(有機半導体材料)と、HAT-CN(ドーパント)とを、電荷輸送層の組成が表1に示す組成となるように用いて、実施例1~6と同様の方法で電荷輸送層および導電性評価用素子を作製した。テフロン(登録商標)AF1600の波長600nmの光に対する屈折率は、1.32であった。テフロン(登録商標)AF1600の300℃における飽和蒸気圧は0.0001Paであった。テフロン(登録商標)AF1600の固有粘度[η]は、0.88dl/gであった。
 得られた電荷輸送層の表面粗さの測定結果および波長600nmの光に対する屈折率の測定結果、導電性の評価結果を表1に示す。
[実施例13~22]
 重合体Aの代わりに重合体B~Kを用いた以外は実施例2と同様の方法で電荷輸送層および導電性評価用素子を作製した。
 得られた電荷輸送層の波長600nmの光に対する屈折率の測定結果および導電性の評価結果を表1に示す。
[実施例23~27]
 有機半導体、ドーパントまたはそれらの組合せを変更した以外は実施例2と同様の方法で電荷輸送層および導電性評価用素子を作製した。用いた有機半導体およびドーパントは表1に示す。
 得られた電荷輸送層の波長600nmの光に対する屈折率の測定結果および導電性の評価結果を表1に示す。
[比較例1~5]
 含フッ素重合体を用いないで、m-MTDATA(有機半導体材料)と、HAT-CN(ドーパント)とを、電荷輸送層の組成が表2に示す組成となるように用いて、各基板に蒸着した以外は実施例1~6と同様にして、電荷輸送層および導電性評価用素子を作製した。
 得られた電荷輸送層の表面粗さの測定結果、波長600nmの光に対する屈折率の測定結果、および導電性の評価結果を表2に示す。
[比較例6~10]
 有機半導体、ドーパントまたはそれらの組合せを変更した以外は比較例3と同様の方法で電荷輸送層および導電性評価用素子を作製した。用いた有機半導体およびドーパントは表2に示す。
 得られた電荷輸送層の波長600nmの光に対する屈折率の測定結果および導電性の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
≪測定結果とその評価≫
 表1より、テフロン(登録商標)AF1600を混合した実施例7~12の電荷輸送層の表面粗さは、重合体Aを混合した実施例1~6の電荷輸送層の表面粗さに比べて、増大していることが確認された。この表面粗さの増大はテフロン(登録商標)AF1600の蒸着膜の結晶性または熱分解物に由来すると考えられる。
 一方、実施例1~6、実施例7~12、実施例13~27、比較例1~10の電荷輸送層の屈折率は表1および2に示す通りであった。これらの屈折率の相違は、配合した含フッ素重合体そのものの屈折率や含フッ素重合体の含有割合を反映していると考えられる。含フッ素重合体を混合した実施例1~27の電荷輸送層の屈折率は、含フッ素重合体を含まない比較例1~10の電荷輸送層の屈折率より低下していることが確認された。
 実施例1~27、比較例1~10の電荷輸送層の波長450nm~800nmにおける吸収係数の評価はいずれも5000cm-1以下であった。いずれの電荷輸送層も可視域で高い透明性を有し、比較例1の有機半導体のみからなる一元系の電荷輸送層と同等の光透過性を有していることが確認された。
 実施例1~27、比較例1~10の電荷輸送層の導電性は表1および2に示す通りであった。実施例1~27の電荷輸送層の導電性は、比較例1~10の含フッ素重合体を含まない電荷輸送層と同程度の導電性を有しており、その基本的性能は実用化に耐えうるものであった。
 以上より、本実施例の電荷輸送層は、その基本的性能を維持しながら、有機ELデバイスの光取り出し効率を向上させるために必要な低い屈折率を有することが確認された。
 本発明の組成物は、有機ELデバイスとして、種々の電子機器の操作パネルや情報表示パネルに好適に用いられるほか、屈折率がデバイス特性に影響する各種有機光電子デバイスにも好適に用いられる。
 また本発明の組成物は、光吸収性に優れた受光素子、透明性に優れたトランジスタ、ガラス基板上に視覚的に目視できないほど透明な有機半導体回路を形成するために好適に用いられる。
 なお、2017年02月08日に出願された日本特許出願2017-021388号および2017年8月24日に出願された日本特許出願2017-161637号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (14)

  1.  含フッ素重合体と有機半導体材料とドーパントとを含む組成物。
  2.  前記含フッ素重合体の波長域450nm~800nmにおける屈折率が1.5以下である、請求項1に記載の組成物。
  3.  前記含フッ素重合体が主鎖に脂肪族環を有する含フッ素重合体である、請求項1または2に記載の組成物。
  4.  前記含フッ素重合体の質量平均分子量が1,500~50,000である、請求項1~3のいずれか一項に記載の組成物。
  5.  前記含フッ素重合体の300℃における飽和蒸気圧が0.001Pa以上である、請求項1~4のいずれか一項に記載の組成物。
  6.  前記含フッ素重合体の含有割合が、前記含フッ素重合体と前記有機半導体材料と前記ドーパントとの合計に対して、30~70体積%である、請求項1~5のいずれか一項に記載の組成物。
  7.  前記ドーパントの含有割合が、前記有機半導体材料の全物質量100モル部に対して、10~200モル部である、請求項1~6のいずれか一項に記載の組成物。
  8.  表面粗さがRMSで1.0nm以下である、請求項1~7のいずれか一項に記載の組成物。
  9.  波長域450nm~800nmにおける吸収係数が5000cm-1以下である、請求項1~8のいずれか一項に記載の組成物。
  10.  波長域450nm~800nmにおける屈折率が1.60以下である、請求項1~9のいずれか一項に記載の組成物。
  11.  請求項1~10のいずれか一項に記載の組成物を含む層を有する有機光電子素子。
  12.  前記有機光電子素子が有機ELデバイスである、請求項11に記載の有機光電子素子。
  13.  請求項1~10のいずれか一項に記載の組成物を含む層の製造方法であって、
     基板上に、含フッ素重合体と有機半導体材料とドーパントとを共蒸着させる、組成物を含む層の製造方法。
  14.  請求項11または12に記載の有機光電子素子の製造方法であって、
     基板上に、含フッ素重合体と有機半導体材料とドーパントとを共蒸着させる、有機光電子素子の製造方法。
PCT/JP2018/003835 2017-02-08 2018-02-05 組成物および有機光電子素子ならびにその製造方法 WO2018147230A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880011042.1A CN110291653A (zh) 2017-02-08 2018-02-05 组合物及有机光电子元件以及其制造方法
JP2018567420A JP7032740B2 (ja) 2017-02-08 2018-02-05 組成物および有機光電子素子ならびにその製造方法
EP18750648.0A EP3582278A4 (en) 2017-02-08 2018-02-05 COMPOSITION, ORGANIC OPTOELECTRONIC COMPONENT AND METHOD OF MANUFACTURING THEREOF
KR1020197019270A KR102413734B1 (ko) 2017-02-08 2018-02-05 조성물 및 유기 광전자 소자 그리고 그 제조 방법
US16/449,574 US11469377B2 (en) 2017-02-08 2019-06-24 Composition, organic photoelectronic element, and production methods therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017021388 2017-02-08
JP2017-021388 2017-02-08
JP2017-161637 2017-08-24
JP2017161637 2017-08-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/449,574 Continuation US11469377B2 (en) 2017-02-08 2019-06-24 Composition, organic photoelectronic element, and production methods therefor

Publications (1)

Publication Number Publication Date
WO2018147230A1 true WO2018147230A1 (ja) 2018-08-16

Family

ID=63107458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003835 WO2018147230A1 (ja) 2017-02-08 2018-02-05 組成物および有機光電子素子ならびにその製造方法

Country Status (6)

Country Link
US (1) US11469377B2 (ja)
EP (1) EP3582278A4 (ja)
JP (1) JP7032740B2 (ja)
KR (1) KR102413734B1 (ja)
CN (1) CN110291653A (ja)
WO (1) WO2018147230A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122068A (ja) * 2019-01-30 2020-08-13 東ソー株式会社 フッ素樹脂及びその製造方法
JP2020139093A (ja) * 2019-02-28 2020-09-03 東ソー株式会社 フッ素樹脂およびその製造方法
JP2020164781A (ja) * 2019-03-27 2020-10-08 東ソー株式会社 フッ素樹脂及びその製造方法
JPWO2021045020A1 (ja) * 2019-09-06 2021-03-11
WO2022004493A1 (ja) * 2020-06-30 2022-01-06 Agc株式会社 導電膜、光電子素子及び導電膜の製造方法
US11807702B2 (en) 2018-09-28 2023-11-07 Tosoh Corporation Fluororesin, fluororesin particles, and methods for producing these

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115677887B (zh) * 2018-10-09 2024-03-08 东曹株式会社 氟树脂及其制造方法以及氟树脂粒子的制造方法
KR20210034373A (ko) 2019-09-20 2021-03-30 주식회사 엘지화학 배터리 관리 장치 및 방법, 및 이를 포함하는 배터리 관리 시스템
JP7391896B2 (ja) * 2020-01-08 2023-12-05 ダイキン工業株式会社 積層体
JPWO2021172369A1 (ja) * 2020-02-26 2021-09-02

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152310A (ja) 1997-11-20 1999-06-08 Asahi Glass Co Ltd 含フッ素脂肪族環構造含有重合体の製造方法
JP2000001511A (ja) * 1998-04-17 2000-01-07 Asahi Glass Co Ltd 含フッ素重合体の製造方法
JP2006237083A (ja) * 2005-02-22 2006-09-07 Fuji Photo Film Co Ltd 電子ブロッキング層用材料、有機el素子及び有機elディスプレイ
JP2007141736A (ja) * 2005-11-21 2007-06-07 Fujifilm Corp 有機電界発光素子
JP2014032851A (ja) * 2012-08-03 2014-02-20 Yamagata Univ 有機光学デバイス及びこれを用いた有機電子デバイス
WO2014132917A1 (ja) * 2013-02-28 2014-09-04 日産化学工業株式会社 電荷輸送性ワニス
WO2015050057A1 (ja) * 2013-10-01 2015-04-09 日産化学工業株式会社 電荷輸送性ワニス
WO2015146957A1 (ja) * 2014-03-27 2015-10-01 日産化学工業株式会社 電荷輸送性ワニス
WO2016136425A1 (ja) * 2015-02-27 2016-09-01 日産化学工業株式会社 フッ素原子含有重合体及びその利用
JP2017021388A (ja) 2016-11-02 2017-01-26 三菱プレシジョン株式会社 手術シミュレータ用鉗子
JP2017161637A (ja) 2016-03-08 2017-09-14 シャープ株式会社 発話装置、発話装置の制御方法、制御プログラム、および記録媒体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100527194B1 (ko) * 2003-06-24 2005-11-08 삼성에스디아이 주식회사 도핑된 정공수송층 및/또는 정공주입층을 갖는유기전계발광소자
WO2007002740A2 (en) * 2005-06-28 2007-01-04 E. I. Du Pont De Nemours And Company Buffer compositions
JP2010021422A (ja) * 2008-07-11 2010-01-28 Canon Inc 有機発光素子及びこれを備える表示装置
EP2863714A4 (en) * 2012-06-14 2016-03-02 Konica Minolta Inc LIGHT EMITTING ELEMENT AND LIGHTING DEVICE USING THE LIGHT EMITTING ELEMENT
EP3035774A1 (en) * 2013-08-14 2016-06-22 JX Nippon Oil & Energy Corporation Light emitting element and method for manufacturing light emitting element
WO2016043084A1 (ja) 2014-09-18 2016-03-24 旭硝子株式会社 発光素子および発電素子
WO2016100313A1 (en) * 2014-12-15 2016-06-23 Solvay Usa, Inc. Compositions containing hole carrier materials and fluoropolymers, and uses thereof
EP3312898B1 (en) * 2015-06-17 2021-04-28 National University Corporation Yamagata University Organic charge transport layer, organic el device, organic semiconductor device, and organic photoelectric device
WO2018110609A1 (ja) * 2016-12-14 2018-06-21 国立大学法人山形大学 組成物および有機光電子素子並びにその製造方法
KR20200044791A (ko) * 2017-08-24 2020-04-29 에이지씨 가부시키가이샤 전하 주입층 및 그 제조 방법, 그리고 유기 광전자 소자 및 그 제조 방법
CN111033785B (zh) * 2017-08-24 2023-04-25 Agc株式会社 有机光电子元件

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152310A (ja) 1997-11-20 1999-06-08 Asahi Glass Co Ltd 含フッ素脂肪族環構造含有重合体の製造方法
JP2000001511A (ja) * 1998-04-17 2000-01-07 Asahi Glass Co Ltd 含フッ素重合体の製造方法
JP2006237083A (ja) * 2005-02-22 2006-09-07 Fuji Photo Film Co Ltd 電子ブロッキング層用材料、有機el素子及び有機elディスプレイ
JP2007141736A (ja) * 2005-11-21 2007-06-07 Fujifilm Corp 有機電界発光素子
JP2014032851A (ja) * 2012-08-03 2014-02-20 Yamagata Univ 有機光学デバイス及びこれを用いた有機電子デバイス
WO2014132917A1 (ja) * 2013-02-28 2014-09-04 日産化学工業株式会社 電荷輸送性ワニス
WO2015050057A1 (ja) * 2013-10-01 2015-04-09 日産化学工業株式会社 電荷輸送性ワニス
WO2015146957A1 (ja) * 2014-03-27 2015-10-01 日産化学工業株式会社 電荷輸送性ワニス
WO2016136425A1 (ja) * 2015-02-27 2016-09-01 日産化学工業株式会社 フッ素原子含有重合体及びその利用
JP2017161637A (ja) 2016-03-08 2017-09-14 シャープ株式会社 発話装置、発話装置の制御方法、制御プログラム、および記録媒体
JP2017021388A (ja) 2016-11-02 2017-01-26 三菱プレシジョン株式会社 手術シミュレータ用鉗子

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D. YOKOYAMA, J. MATER. CHEM., vol. 21, 2011, pages 19187 - 19202
K. SAXENA ET AL., OPT. MATER., vol. 32, no. 1, 2009, pages 221 - 233
K. WALZER ET AL., CHEM. REV., vol. 107, no. 4, 2007, pages 1233 - 1271
See also references of EP3582278A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11807702B2 (en) 2018-09-28 2023-11-07 Tosoh Corporation Fluororesin, fluororesin particles, and methods for producing these
JP2020122068A (ja) * 2019-01-30 2020-08-13 東ソー株式会社 フッ素樹脂及びその製造方法
JP7451871B2 (ja) 2019-01-30 2024-03-19 東ソー株式会社 フッ素樹脂及びその製造方法
JP2020139093A (ja) * 2019-02-28 2020-09-03 東ソー株式会社 フッ素樹脂およびその製造方法
JP7478370B2 (ja) 2019-02-28 2024-05-07 東ソー株式会社 フッ素樹脂
JP2020164781A (ja) * 2019-03-27 2020-10-08 東ソー株式会社 フッ素樹脂及びその製造方法
JPWO2021045020A1 (ja) * 2019-09-06 2021-03-11
WO2021045020A1 (ja) * 2019-09-06 2021-03-11 日本放送協会 電荷発生層及びその製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、並びに有機薄膜太陽電池
TWI755844B (zh) * 2019-09-06 2022-02-21 日本放送協會 電荷產生層及其製造方法、有機電激發光元件、顯示裝置、照明裝置以及有機薄膜太陽能電池
JP7140924B2 (ja) 2019-09-06 2022-09-21 日本放送協会 電荷発生層及びその製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、並びに有機薄膜太陽電池
WO2022004493A1 (ja) * 2020-06-30 2022-01-06 Agc株式会社 導電膜、光電子素子及び導電膜の製造方法

Also Published As

Publication number Publication date
CN110291653A (zh) 2019-09-27
US20190312202A1 (en) 2019-10-10
JP7032740B2 (ja) 2022-03-09
KR20190116254A (ko) 2019-10-14
JPWO2018147230A1 (ja) 2019-12-12
EP3582278A4 (en) 2020-12-02
US11469377B2 (en) 2022-10-11
EP3582278A1 (en) 2019-12-18
KR102413734B1 (ko) 2022-06-27

Similar Documents

Publication Publication Date Title
WO2018147230A1 (ja) 組成物および有機光電子素子ならびにその製造方法
US11355734B2 (en) Organic photoelectronic element comprising fluorinated polymer
US10892418B2 (en) Charge injection layer and method for its production as well as organic photoelectronic element and method for its production
US10879468B2 (en) Composition, organic photoelectronic element, and production method therefor
US11437596B2 (en) Organic photoelectronic element having hole transport layer containing fluorinated polymer and organic semiconductor material
US10608183B2 (en) Charge transport layer and organic photoelectronic element
WO2021079927A1 (ja) ポーラス膜、有機光電子素子およびポーラス膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18750648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197019270

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018567420

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018750648

Country of ref document: EP

Effective date: 20190909