WO2018110609A1 - 組成物および有機光電子素子並びにその製造方法 - Google Patents

組成物および有機光電子素子並びにその製造方法 Download PDF

Info

Publication number
WO2018110609A1
WO2018110609A1 PCT/JP2017/044770 JP2017044770W WO2018110609A1 WO 2018110609 A1 WO2018110609 A1 WO 2018110609A1 JP 2017044770 W JP2017044770 W JP 2017044770W WO 2018110609 A1 WO2018110609 A1 WO 2018110609A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluoropolymer
organic
layer
refractive index
composition according
Prior art date
Application number
PCT/JP2017/044770
Other languages
English (en)
French (fr)
Inventor
横山 大輔
岳文 阿部
桑名 保宏
Original Assignee
国立大学法人山形大学
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山形大学, 旭硝子株式会社 filed Critical 国立大学法人山形大学
Priority to EP17880314.4A priority Critical patent/EP3557644A4/en
Priority to KR1020197015999A priority patent/KR102413735B1/ko
Priority to CN201780077509.8A priority patent/CN110088928B/zh
Priority to JP2018556723A priority patent/JP6923163B2/ja
Publication of WO2018110609A1 publication Critical patent/WO2018110609A1/ja
Priority to US16/431,113 priority patent/US10879468B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/20Homopolymers or copolymers of hexafluoropropene
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/02Low molecular weight, e.g. <100,000 Da.
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/03Narrow molecular weight distribution, i.e. Mw/Mn < 3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to a composition, an organic optoelectronic device, and a method for producing the same.
  • organic EL device In an organic optoelectronic device such as an organic electroluminescence device (hereinafter referred to as “organic EL device”), the internal quantum efficiency has already reached almost 100%. For further improvement of the external quantum efficiency, improvement of light extraction efficiency is an issue. It has become.
  • the light extraction efficiency of the organic EL element is generally only about 20 to 30%, and there is much room for improvement. Technologies for improving light extraction efficiency include, for example, a technology for providing micro-lenses on the substrate surface, a technology for finely processing the substrate surface, a technology using a high refractive index substrate, and a scattering material between the transparent substrate and the transparent electrode. The technique etc. to make are known (patent document 1 and nonpatent literature 1).
  • Non-Patent Document 1 both require expensive members and complicate the device manufacturing process, which significantly increases the manufacturing cost.
  • a technique that does not increase the manufacturing cost in recent years, a technique for improving the light extraction efficiency by several tens of percent by utilizing the horizontal orientation of the luminescent molecules in the organic EL element has been widely used (Non-Patent Document 2). There is still a lot of room for efficiency improvement, and improvements are expected.
  • An organic optoelectronic device is generally a laminate composed of an organic semiconductor film (charge transport layer, etc.) of 100 nm or less and a pair of metal electrodes, and smooth charge transfer at each interface greatly affects the performance of the device. It is necessary to form a smooth interface / surface on the metric order.
  • organic semiconductor film charge transport layer, etc.
  • the present invention has been made in view of the above circumstances, and has a charge transport layer in which the refractive index is greatly reduced without impairing the conductivity and surface roughness of the charge transport layer, an organic optoelectronic device using the same, and An inexpensive and simple manufacturing method is provided.
  • the light extraction efficiency of an organic optoelectronic device is improved.
  • an organic optoelectronic device such as an organic EL device having improved light extraction efficiency can be easily produced at low cost.
  • an organic optoelectronic device having improved light extraction efficiency can be produced.
  • 3 is a graph showing absorption spectra of films of Example 1 and Comparative Examples 1 to 3.
  • 6 is a graph showing the refractive index wavelength dependency of films of Example 1 and Comparative Examples 1 to 3.
  • 7 is a graph showing the refractive index wavelength dependency of the films of Examples 2 to 5. It is a graph which shows the refractive index wavelength dependence of the film
  • 10 is a graph showing the refractive index wavelength dependency of the films of Examples 8 to 10.
  • 4 is a graph showing J (current) -V (voltage) characteristics of films of Example 1 and Comparative Examples 1 to 3.
  • 6 is a graph showing J (current) -V (voltage) characteristics of the films of Examples 2 to 5.
  • FIG. 6 is a graph showing J (current) -V (voltage) characteristics of the films of Examples 6 and 7.
  • FIG. 10 is a graph showing J (current) -V (voltage) characteristics of the films of Examples 8 to 10. It is a graph which shows the relationship between the elasticity modulus of polymer K used for the Example, and temperature.
  • the vapor deposition film composition of the present invention is obtained by co-evaporation of a fluoropolymer having a saturated vapor pressure at 300 ° C. of 0.001 Pa or more and an organic semiconductor material.
  • the “fluorinated polymer” refers to a pre-deposition fluoropolymer used for co-evaporation.
  • fluoropolymer in the vapor-deposited film or “vapor-deposited fluoropolymer”. It expresses with expressions such as.
  • the fluoropolymer according to the present invention is a polymer containing a fluorine atom.
  • oligomers are also included in the polymer. That is, the fluoropolymer may be an oligomer.
  • the fluoropolymer is sufficient for practical use below the temperature at which thermal decomposition of the fluoropolymer occurs from the viewpoint of the formation rate of the vapor deposition film layer such as the charge transport layer, the strength of the vapor deposition film layer and the surface roughness. It preferably has a saturated vapor pressure.
  • PTFE which is a general fluoropolymer
  • Teflon (registered trademark) AF has a thermal decomposition starting temperature of 350 ° C.
  • the saturated vapor pressure at 300 ° C. of the fluoropolymer according to the present invention is 0.001 Pa or more, preferably 0.002 Pa or more.
  • the fluoropolymer preferably has an aliphatic ring structure in the main chain, which is said to have low crystallinity. Further, a perfluoropolymer considered to have a small intermolecular interaction of the polymer is more preferable.
  • the saturated vapor pressure (unit: Pa) is a value measured by a vacuum differential thermal balance (manufactured by Advance Riko Co., Ltd .: VAP-9000).
  • the evaporation rate can be used as a parameter representing the easiness of evaporation of the fluoropolymer.
  • Easiness of evaporation of a fluoropolymer having a saturated vapor pressure of 0.001 Pa or more at 300 ° C. corresponds to an evaporation rate of 0.01 g / m 2 ⁇ sec or more at 300 ° C. and a vacuum degree of 0.001 Pa. To do.
  • the Mw of the fluoropolymer is preferably 1,500 to 50,000, more preferably 3,000 to 40,000, and even more preferably 5,000 to 30,000.
  • Mw is 1,500 or more, it is easy to obtain sufficient strength for the deposited film to be formed.
  • Mw is 50,000 or less, since it has a saturated vapor pressure that gives a practical vapor deposition film formation rate (film formation rate), the vapor deposition source is heated to a high temperature, specifically, a temperature exceeding 400 ° C. No need to heat.
  • a vapor-deposited film having sufficient strength and a smooth surface can be formed without causing cleavage of the main chain of the fluoropolymer.
  • the surface roughness of the deposited film such as the charge transport layer is an important factor. If the surface is smooth, charge transfer at the interface is performed smoothly, and leakage current, device defects, and power efficiency are achieved. Problems such as degradation can be avoided.
  • Mw / Mn of the fluoropolymer in the deposited film is preferably 1.2 or less, and more preferably 1.1 or less. If Mw / Mn is 1.2 or less, the ratio of the low molecular weight polymer contained in the deposited film is reduced, and the deposited film has excellent heat resistance and high homogeneity. When Mw / Mn is 1.3 or more, it indicates that the ratio of the polymer having an extremely low molecular weight contained in the deposited film is large, resulting in a deposited film having poor heat resistance and a non-uniform film structure.
  • the upper limit of the refractive index of the fluoropolymer at a wavelength of 450 to 800 nm is preferably 1.5, more preferably 1.4. If the refractive index is 1.5 or less, the refractive index of the deposited film layer such as the charge transport layer obtained by mixing with the organic semiconductor material is reduced to about 1.55 which is the same level as the refractive index of the glass substrate or the like. This is preferable because the light extraction efficiency is improved. On the other hand, the theoretical lower limit of the refractive index is 1.0.
  • the refractive index of the organic semiconductor material is generally about 1.7 to 1.8.
  • cyclopolymer of diene In the cyclopolymer of diene that can be polymerized, it means a chain of carbon atoms derived from four carbon atoms constituting two carbon-carbon double bonds. In a copolymer of a diene and a monoene that can be cyclopolymerized, the main chain is composed of the two carbon atoms of the monoene and the four carbon atoms of the diene.
  • the perfluoropolymer means a fluorine-containing polymer having no hydrogen atom bonded to a carbon atom. In particular, a fluorine-containing polymer having a structure in which all hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms is preferable.
  • the perfluoropolymer having a fluorine-containing aliphatic ring structure in the main chain includes a perfluoropolymer having a cyclopolymerized unit of perfluorodiene capable of cyclopolymerization, and a polymerizable double chain between carbon atoms constituting the aliphatic ring.
  • Perfluoropolymer having polymerized unit of perfluoroaliphatic ring compound having a bond, polymerization of perfluoroaliphatic ring compound having polymerizable double bond between carbon atom constituting aliphatic ring and carbon atom outside ring Perfluoropolymer having the above unit.
  • Q may contain an etheric oxygen atom, and a part of the fluorine atom may be substituted with a halogen atom other than the fluorine atom, having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms.
  • halogen atoms other than fluorine include chlorine atom and bromine atom.
  • Q is preferably a perfluoroalkylene group containing an etheric oxygen atom.
  • the etheric oxygen atom in the perfluoroalkylene group may be present at one end of the group, may be present at both ends of the group, and is present between the carbon atoms of the group. It may be. From the viewpoint of cyclopolymerizability, it is preferably present at one end of the group.
  • the distance between carbon atoms bonded to the left and right of Q is 2 atoms (—XX—) or 3 atoms (—XX—X—).
  • X represents a carbon atom or a carbon atom and an oxygen atom).
  • —O—C—, —O—C—C— or —O—C—O— is more preferable.
  • preferable perfluorodienes include the following compounds.
  • CF 2 CFOCF (CF 3)
  • CF 2 CF CF 2
  • CF 2 CFOC (CF 3 ) 2 OCF ⁇ CF 2 .
  • a particularly preferred perfluorodiene is CF 2 ⁇ CFOCF 2 CF 2 CF ⁇ CF 2 (hereinafter referred to as “perfluoro (3-butenyl vinyl ether)”).
  • the units represented by the following formulas (1-1) to (1-4) are generated by the cyclopolymerization of the perfluorodiene represented by the formula (1). Two or more units represented by the following formulas (1-1) to (1-4) may be produced from one type of perfluorodiene.
  • a unit in which the generated aliphatic ring is a 5-membered ring or a 6-membered ring is likely to be generated, and a unit having a 5-membered ring is particularly likely to be generated.
  • four carbon atoms represented by the following formula are carbon atoms constituting the main chain.
  • perfluoroaliphatic ring compound having a polymerizable double bond between carbon atoms constituting the aliphatic ring perfluoro (1,3-dioxole) and derivatives thereof are preferable.
  • the derivative a derivative in which a perfluoroalkyl group or a perfluoroalkoxy group is bonded to a ring carbon atom is preferable.
  • the number of carbon atoms in the perfluoroalkyl group or perfluoroalkoxy group is preferably 2 or less.
  • Preferable specific compounds include perfluoro (2,2-dimethyl-1,3-dioxole), perfluoro (1,3-dioxole), perfluoro (4-methoxy-1,3-dioxole) and the like.
  • perfluoroaliphatic ring compound having a polymerizable double bond between a carbon atom constituting an aliphatic ring and a carbon atom outside the ring polymerization is performed between the carbon atom constituting the ring and a carbon atom outside the ring.
  • Perfluoro (2-methylene-1,3-dioxolane) and its derivatives are preferred.
  • the perfluoropolymer having a fluorinated aliphatic ring structure in the main chain may be a homopolymer of the perfluoromonomer, or a copolymer obtained by copolymerizing two or more of the perfluoromonomers. May be. Moreover, the copolymer of the said perfluoro monomer and the perfluoro monomer which does not form an aliphatic ring may be sufficient.
  • the copolymerization ratio of the perfluoromonomer relative to the total of both is preferably 20 mol% or more, and 40 mol% or more. More preferred.
  • the perfluoromonomer that does not form an aliphatic ring include tetrafluoroethylene, hexafluoropropylene, perfluoro (alkoxyethylene), and the like, and tetrafluoroethylene is preferable.
  • the fluorine-containing polymer in the present invention may be a fluorine-containing polymer other than a perfluoropolymer having a fluorine-containing aliphatic ring structure in the main chain, or may be a fluorine-containing polymer other than a perfluoropolymer.
  • fluoropolymers include polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoro (alkoxyethylene) copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and ethylene / tetrafluoroethylene.
  • Teflon (registered trademark) AF perfluoro (4-methyl-2-methylene-1,3-dioxolane) polymers.
  • a perfluoropolymer having an aliphatic ring structure in the main chain is preferable.
  • the organic semiconductor material according to the present invention is an organic compound material that exhibits semiconducting electrical characteristics.
  • Organic semiconductor materials can be classified into hole transport materials that are transported by receiving injection of holes from the anode, and electron transport materials that are transported by receiving injection of electrons from the cathode. Both are preferably used in the present invention, but a hole transport material is particularly preferably used.
  • Preferred examples of the hole transport material include aromatic amine derivatives. Specific examples thereof include, but are not limited to, the following ⁇ -NPD, TAPC, PDA, TPD, m-MTDATA, and the like.
  • Preferred examples of the electron transport material include nitrogen-containing heterocyclic derivatives. Specific examples include, but are not limited to, Alq3, PBD, TAZ, BND, OXD-7, and the like.
  • the vapor deposited film composition of the present invention may contain other materials in addition to the fluoropolymer and the organic semiconductor material, but preferably contains only the organic semiconductor material and the fluoropolymer.
  • the organic semiconductor material may be used alone or in combination of two or more.
  • only 1 type may be used for a fluoropolymer, or 2 or more types may be used together.
  • the volume ratio of the fluoropolymer to the organic semiconductor material is preferably 70:30 to 5:95, and more preferably 60:40 to 20:80.
  • the refractive index of the resulting layer is reduced to a level equivalent to that of a glass substrate or the like, and the light extraction efficiency in the organic optoelectronic device is improved. Therefore, it is preferable.
  • the surface roughness of the layer made of the vapor deposition film composition of the present invention is preferably 1 nm or less when expressed by RMS (root mean square).
  • the vapor deposition film composition of the present invention preferably exhibits the same electrical characteristics as the organic semiconductor material because it does not require a significant change in circuit design around the element.
  • the JV characteristic measured only with the organic semiconductor material used in the vapor deposition film composition is equivalent to the JV characteristic measured in the composition state.
  • the current value measured in the composition state is preferably 40% or more, preferably 60% or more of the current value measured only with the organic semiconductor material. Is more preferable. There is no particular upper limit on the ratio of the current values, but 200% or less is preferable.
  • the composition of the present invention exhibits electrical characteristics equivalent to those of an organic semiconductor material. And since it is a low refractive index, the light extraction efficiency of an organic optoelectronic device can be improved significantly.
  • the present invention is also a method for producing a vapor-deposited film composition, wherein a vapor-deposited film composition is produced by co-evaporation of a fluoropolymer and an organic semiconductor material.
  • the manufacturing method of the vapor deposition film composition of this invention may be a well-known method, and resistance heating vapor deposition method, an electron beam vapor deposition method, etc. are mentioned.
  • the co-evaporation method by resistance heating is particularly preferable because the organic semiconductor and the fluorine-containing polymer are easily formed without being decomposed.
  • the layer containing the vapor deposition film composition of the present invention is preferably used as a layer constituting an organic optoelectronic device.
  • the layer include a charge injection layer and a charge transport layer, a charge transport layer is preferable, and a hole transport layer is particularly preferable.
  • the organic optoelectronic device of the present invention has a pair of an anode and a cathode, and at least one layer containing the deposited film composition of the present invention (hereinafter also referred to as “the present deposited film layer”) between the pair of electrodes.
  • the present deposited film layer has a pair of an anode and a cathode, and at least one layer containing the deposited film composition of the present invention (hereinafter also referred to as “the present deposited film layer”) between the pair of electrodes.
  • a well-known metal, a metal oxide, or a conductive polymer can be used, and it is not specifically limited.
  • Mw and Mn of fluoropolymer The molecular weight of the fluoropolymer was measured using gel permeation chromatography (GPC). First, a polymethyl methacrylate (PMMA) standard sample with a known molecular weight was measured using GPC, and a calibration curve was created from the elution time and molecular weight of the peak top. Next, the fluoropolymer was measured, and Mw and Mn were determined from the calibration curve.
  • Mobile phase solvents include 1,1,1,2,3,4,4,5,5,5-decafluoro-3-methoxy-2- (trifluoromethyl) pentane / hexafluoroisopropyl alcohol (85 by volume). / 15) was used.
  • Measurement method of layer surface roughness The surface of the film was observed in a tapping mode using a probe needle having a resonance frequency of 300 kHz with respect to the film on the silicon substrate by AFM (Bruker AXS Co., Ltd .: Dimension Icon). The observation area was 0.5 micrometer square, the height of the obtained image was corrected in the direction perpendicular to the sweep direction of the needle, and then the RMS value of the height was calculated.
  • BVE Perfluoro (3-butenyl vinyl ether)
  • CF 2 CF CF 2 MMD: perfluoro (4-methyl-2-methylene-1,3-dioxolane)
  • PDD perfluoro (2,2-dimethyl-1,3-dioxole)
  • IPP diisopropylperoxydicarbonate
  • the obtained fluoropolymer was heated in an oven at 300 ° C., then immersed in methanol, and heated in an oven at 75 ° C. for 20 hours to replace unstable terminal groups with methyl ester groups.
  • Polymer B was obtained.
  • the obtained fluoropolymer B has a refractive index of 1.34, light of 600 nm, Mw of 7,800, Mn of 6,200, Mw / Mn of 1.3, and a saturated vapor pressure of 0.3 at 300 ° C.
  • the evaporation rate at 003 Pa and 300 ° C. was 0.06 g / m 2 sec.
  • Fluoropolymer C 20 g of BVE, 20 g of 1H-PFH, 0.1 g of methanol and 0.3 g of IPP were placed in a glass reactor having an internal volume of 50 ml. After replacing the inside of the system with high-purity nitrogen gas, polymerization was carried out at 40 ° C. for 24 hours. The resulting solution was desolvated under conditions of 666 Pa (absolute pressure) and 50 ° C. to obtain 16 g of a fluoropolymer. The intrinsic viscosity [ ⁇ ] of the obtained fluoropolymer was 0.07 dl / g.
  • the obtained fluoropolymer was heated in an oven at 300 ° C., then immersed in methanol, and heated in an oven at 75 ° C. for 20 hours to replace unstable terminal groups with methyl ester groups.
  • Polymer C was obtained.
  • the obtained fluoropolymer C has a refractive index of 1.34 for light having a wavelength of 600 nm, Mw of 14,000, Mn of 10,100, Mw / Mn of 1.4, and saturated vapor pressure at 300 ° C. of 0.001 Pa.
  • the evaporation rate at 300 ° C. was 0.03 g / m 2 sec.
  • Fluoropolymer D 450 g of BVE, 600 g of ion exchange water, 52 g of methanol as a chain transfer agent, and 1 g of IPP were placed in a glass lining reactor having an internal volume of 1 L. After substituting the system with nitrogen, suspension polymerization was carried out at 40 ° C. for 20 hours and at 50 ° C. for 6 hours to obtain a fluorine-containing polymer. Subsequently, the obtained fluoropolymer particles were collected by filtration, washed with methanol and water, and then dried at 100 ° C. to obtain 420 g of a fluoropolymer having BVE and end groups derived from methanol. .
  • the intrinsic viscosity [ ⁇ ] of the obtained fluoropolymer was 0.24 dl / g.
  • the obtained fluorine-containing polymer is substituted with —CF 3 groups by fluorine gas by a method described in paragraph [0040] of JP-A No. 11-152310, whereby a fluorine-containing polymer D is obtained. Obtained.
  • the obtained fluoropolymer D had a refractive index of 1.34 with respect to light having a wavelength of 600 nm and an intrinsic viscosity [ ⁇ ] of 0.24 dl / g.
  • Fluoropolymer D has Mw of 73,000, Mn of 48,000, Mw / Mn of 1.5, saturated vapor pressure at 300 ° C. of 0.0001 Pa, and evaporation rate at 300 ° C. of 0.004 g / m 2 sec. there were.
  • Fluoropolymer E 3 g of MMD, 9 g of 1H-PFH, 0.5 g of methanol and 0.3 g of IPP were placed in a glass reactor having an internal volume of 50 ml. After replacing the inside of the system with high-purity nitrogen gas, polymerization was carried out at 40 ° C. for 24 hours. The obtained solution was desolvated under conditions of 666 Pa (absolute pressure) and 50 ° C. to obtain 2 g of a fluoropolymer. Next, the obtained fluoropolymer was heated in an oven at 300 ° C., then immersed in methanol, and heated in an oven at 75 ° C. for 20 hours to replace unstable terminal groups with methyl ester groups.
  • Polymer E was obtained.
  • the refractive index of the obtained fluoropolymer E with respect to light having a wavelength of 600 nm is 1.33, Mw is 9,800, Mn is 8,100, Mw / Mn is 1.2, and the saturated vapor pressure at 300 ° C. is 0.
  • the evaporation rate at 008 Pa and 300 ° C. was 0.14 g / m 2 sec.
  • Fluoropolymer F 2 g of MMD, 6 g of 1H-PFH, 0.4 g of methanol and 0.2 g of IPP were placed in a glass reactor having an internal volume of 50 ml. After replacing the inside of the system with high-purity nitrogen gas, polymerization was carried out at 40 ° C. for 24 hours. The obtained solution was desolvated under conditions of 666 Pa (absolute pressure) and 50 ° C. to obtain 1 g of a fluoropolymer. Next, the obtained fluoropolymer was heated in an oven at 300 ° C., then immersed in methanol, and heated in an oven at 75 ° C. for 20 hours to replace unstable terminal groups with methyl ester groups.
  • Fluoropolymer G 2 g of BVE-4M, 5 g of 1H-PFH, 0.1 g of methanol and 0.03 g of IPP were placed in a glass reactor having an internal volume of 50 ml. After replacing the inside of the system with high-purity nitrogen gas, polymerization was carried out at 40 ° C. for 24 hours. The obtained solution was desolvated under conditions of 666 Pa (absolute pressure) and 50 ° C. to obtain 1 g of a fluoropolymer. Next, the obtained fluoropolymer was heated in an oven at 300 ° C., then immersed in methanol, and heated in an oven at 75 ° C. for 20 hours to replace unstable terminal groups with methyl ester groups.
  • a polymer G was obtained.
  • the refractive index of the obtained fluoropolymer G with respect to light having a wavelength of 600 nm is 1.34, Mw is 10,100, Mn is 8,600, Mw / Mn is 1.2, and the saturated vapor pressure at 300 ° C. is 0.
  • the evaporation rate at 002 Pa and 300 ° C. was 0.04 g / m 2 sec.
  • Fluoropolymer H 10 g of BVE-4M, 6 g of 1H-PFH, 0.6 g of methanol and 0.13 g of IPP were placed in a glass reactor having an internal volume of 50 ml. After replacing the inside of the system with high-purity nitrogen gas, polymerization was carried out at 40 ° C. for 24 hours. The obtained solution was desolvated under conditions of 666 Pa (absolute pressure) and 50 ° C. to obtain 2 g of a fluoropolymer. Next, the obtained fluoropolymer was heated in an oven at 260 ° C., then immersed in methanol, and heated in an oven at 75 ° C. for 20 hours to replace unstable terminal groups with methyl ester groups.
  • the obtained fluoropolymer K had a refractive index of 1.34 with respect to light having a wavelength of 600 nm and an evaporation rate at 300 ° C. of 0.04 g / m 2 sec.
  • This substrate was placed in a vacuum vapor deposition machine, and after evacuating to a pressure of 10 ⁇ 4 Pa or less, molybdenum trioxide was resistance-heated in the vacuum vapor deposition machine to form a hole injection layer on the substrate at a deposition rate of 0.1 nm / s. A 5 nm film was formed. Thereafter, the ⁇ -NPD and the fluoropolymer A are heated by resistance in a vacuum vapor deposition machine so that the volume ratio of the ⁇ -NPD and the fluoropolymer A is 45:55, and co-evaporation is performed. A 100 nm charge transport layer was laminated. The total deposition rate of the two materials was 0.2 nm / s. Furthermore, aluminum was vapor-deposited in a strip shape having a width of 2 mm by resistance heating to obtain a conductivity evaluation element. The element area is 2 mm ⁇ 2 mm where 2 mm wide ITO and 2 mm wide aluminum intersect.
  • the charge transport layer of Comparative Example 2 in which Teflon (registered trademark) AF1600 was mixed had a surface roughness increased and smoothness was impaired as compared with the charge transport layer of Comparative Example 1 that did not contain a fluoropolymer. It was. This increase in surface roughness is thought to be due to the crystalline or thermally decomposed material of the Teflon (registered trademark) AF1600 deposited film.
  • the charge transport layer of Comparative Example 3 containing a high molecular weight fluoropolymer D had a slightly larger surface roughness than the charge transport layer of Example 1 containing a low molecular weight fluoropolymer A. However, this slight increase in surface roughness is considered to be derived from the thermal decomposition product of the fluoropolymer D.
  • the JV characteristics of the conductive evaluation elements of Examples 1 to 10 and Comparative Examples 1 to 3 are shown in FIGS.
  • the current density at a voltage of 7 V in the conductivity evaluation elements of Examples 1 to 10 and Comparative Examples 2 and 3 is 40% or more of the current density in the conductivity evaluation element of Comparative Example 1 that does not contain a fluoropolymer. And had the same conductivity as the organic semiconductor material.
  • Comparative Examples 2 and 3 a fluorine-containing polymer having a saturated vapor pressure of 0.0001 or less at 300 ° C. is used as the vapor deposition material, and Mw of the fluorine-containing polymer in the vapor deposition film is the fluorine content of the vapor deposition material
  • Mw of the fluorine-containing polymer in the vapor deposition film is the fluorine content of the vapor deposition material
  • the molecular weight is very small compared to the Mw of the polymer, the polydispersity is 1.3, and the molecular weight distribution is wider than those of Examples 1 to 9, so that thermal decomposition occurs during vapor deposition, It is considered that a thermal decomposition product having a low molecular weight is mixed in the layer and the homogeneity of the formed layer is impaired.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

導電性、表面粗さを損なうことなく、屈折率を大きく低減させた電荷輸送層等の層およびその製造方法を提供する。 300℃における飽和蒸気圧が0.001Pa以上である含フッ素重合体と有機半導体材料とを共蒸着させてなる蒸着膜組成物。

Description

組成物および有機光電子素子並びにその製造方法
 本発明は、組成物および有機光電子素子並びにその製造方法に関する。
 有機エレクトロルミネッセンス素子(以下、「有機EL素子」)などの有機光電子素子においては、既に内部量子効率がほぼ100%に達しており、外部量子効率のさらなる改善について、光取り出し効率の向上が課題となっている。有機EL素子の光取り出し効率は一般的に20~30%程度にとどまり、改善の余地は大きい。光取り出し効率を向上させる技術として、たとえば基板表面に微細なマイクロレンズを付与する技術、基板表面を微細加工する技術、高屈折率基板を用いる技術、透明基板と透明電極の間に散乱物質を存在させる技術等が知られている(特許文献1および非特許文献1)。
国際公開第2016/043084号
K. Saxena et al., Opt. Mater. 32(1), 221‐233,(2009) D. Yokoyama, J. Mater. Chem. 21,19187‐19202(2011)
 しかしながら、特許文献1および非特許文献1に記載の技術はいずれも高価な部材を必要としたり素子作製プロセスを複雑化させたりするものであり、製造コストを著しく増大させる。製造コストを増大させない手法としては、近年、有機EL素子中の発光分子の水平配向性を活かして光取り出し効率を数割向上させる技術が広く用いられているが(非特許文献2)、光取り出し効率改善の余地が未だ大きく残されており、その改善が期待されている。
 有機EL素子等の有機光電子素子の光取り出し効率が低い本質的な原因は、発光層および電荷輸送を構成する有機半導体材料の屈折率が高いことにある。発光側の屈折率が高いと、屈折率の異なる界面において全反射による光の損失が生じるため、光取り出し効率が低くなる。有機EL素子に主に用いられている有機半導体材料は、一般のLEDに用いられる無機半導体よりも低い屈折率(1.7~1.8程度)を有するが、それでも光取り出し効率は上記の値に留まっている。このため、さらに屈折率の低い有機半導体材料を用いることが強く求められている。
 また有機光電子素子は一般的に100nm以下の有機半導体膜(電荷輸送層等)および一対の金属電極から成る積層体であり、各界面におけるスムーズな電荷移動が素子の性能を大きく左右するため、ナノメートルオーダーで平滑な界面・表面を形成することが必要とされている。
 本発明は、上記事情に鑑みてなされたものであり、電荷輸送層の導電性、表面粗さを損なうことなく、その屈折率を大きく低減させた電荷輸送層およびこれを用いた有機光電子素子ならびにその安価で簡便な製造方法を提供する。
 本発明は、以下の態様を有する。
[1] 300℃における飽和蒸気圧が0.001Pa以上である含フッ素重合体と有機半導体材料とを共蒸着させてなる蒸着膜組成物。
[2] 前記含フッ素重合体と前記有機半導体材料との体積比が70:30~5:95である、[1]の組成物。
[3] 前記含フッ素重合体の重量平均分子量が1,500~50,000である、[1]または[2]の組成物。
[4] 前記含フッ素重合体の多分散度(Mw/Mn)が2以下である、[1]~[3]のいずれかの組成物。
[5] 前記含フッ素重合体が主鎖に脂肪族環構造を有する、[1]~[4]のいずれかの組成物。
[6] 前記主鎖に脂肪族環構造を有する含フッ素重合体がペルフルオロ重合体である、[5]の組成物。
[7] 波長域450nm~800nmにおける屈折率が1.60以下である、[1]~[6]のいずれかの組成物。
[8] 前記含フッ素重合体の波長域450nm~800nmにおける屈折率が1.50以下である、[1]~[7]のいずれかの組成物。
[9] 波長域450nm~800nmにおける吸収係数が1000cm-1以下である、[1]~[8]のいずれかの組成物。
[10] 含フッ素重合体と有機半導体材料とを共蒸着させて蒸着膜組成物を製造する、[1]~[9]のいずれかの蒸着膜組成物を製造する方法。
[11] [1]~[9]のいずれかの蒸着膜組成物を含む層を有する有機光電子素子。
[12] 前記光電子素子が有機EL素子である、[11]の有機光電子素子。
[13] 含フッ素重合体と有機半導体材料とを共蒸着させて、基板上に[1]~[9]のいずれかの蒸着膜組成物の層を形成する、層の製造方法。
[14] [10]または[11]に記載の有機光電子素子の製造方法であって、
 含フッ素重合体と有機半導体材料とを共蒸着させて蒸着膜組成物の層を形成する工程を含む、有機光電子素子の製造方法。
[15] 前記有機光電子素子が有機EL素子であり、前記蒸着膜組成物の層が電荷輸送層である、[14]の製造方法。
 本発明の蒸着膜組成物および有機光電子素子によれば、有機EL素子などの有機光電子素子の光取り出し効率が向上する。
 本発明の蒸着膜組成物の製造方法および蒸着膜組成物を含む層の製造方法によれば、光取り出し効率が向上した有機EL素子などの有機光電子素子を安価で容易に製造できる。
 本発明の有機光電子素子の製造方法によれば、光取り出し効率が向上した有機光電子素子を製造できる。
実施例1および比較例1~3の膜の吸収スペクトルを示すグラフである。 実施例1および比較例1~3の膜の屈折率波長依存性を示すグラフである。 実施例2~5の膜の屈折率波長依存性を示すグラフである。 実施例6、7の膜の屈折率波長依存性を示すグラフである。 実施例8~10の膜の屈折率波長依存性を示すグラフである。 実施例1および比較例1~3の膜のJ(電流)-V(電圧)特性を示すグラフである。 実施例2~5の膜のJ(電流)-V(電圧)特性を示すグラフである。 実施例6、7の膜のJ(電流)-V(電圧)特性を示すグラフである。 実施例8~10の膜のJ(電流)-V(電圧)特性を示すグラフである。 実施例に使用した重合体Kの弾性率と温度の関係を示すグラフである。
 本発明の蒸着膜組成物は、300℃における飽和蒸気圧が0.001Pa以上である含フッ素重合体と有機半導体材料とを共蒸着させてなるものである。
 なお、以下、特に言及しない限り、「含フッ素重合体」とは共蒸着に用いられる蒸着前の含フッ素重合体をいう。蒸着前の含フッ素重合体と蒸着後の蒸着膜中の含フッ素重合体とを区別する場合は、以下、後者を「蒸着膜中の含フッ素重合体」、「蒸着された含フッ素重合体」等の表現で表す。
 本発明に係る含フッ素重合体は、フッ素原子を含む重合体である。なお、本発明においては、オリゴマーも重合体に含める。すなわち、含フッ素重合体はオリゴマーであってもよい。含フッ素重合体は、電荷輸送層等の蒸着膜層の形成速度、蒸着膜層の強度と表面粗さの観点から、含フッ素重合体の熱分解が起こる温度以下において実用化するのに十分な飽和蒸気圧を有することが好ましい。一般的な含フッ素重合体であるPTFEの熱分解開始温度が約400℃、テフロン(登録商標)AFの熱分解開始温度が350℃である。本発明に係る含フッ素重合体の300℃における飽和蒸気圧は、0.001Pa以上であり、0.002Pa以上が好ましい。この観点から含フッ素重合体は、結晶性が低いといわれる主鎖に脂肪族環構造を有するものが好ましい。また重合体の分子間相互作用が小さいと考えられるペルフルオロ重合体がさらに好ましい。
 本明細書中、飽和蒸気圧(単位:Pa)は、真空示差熱天秤(アドバンス理工社製:VAP-9000)により測定される値である。
 上記飽和蒸気圧と同様に、含フッ素重合体の蒸発のしやすさを表すパラメーターとして、蒸発速度を用いることもできる。300℃における飽和蒸気圧が0.001Pa以上である含フッ素重合体の蒸発のしやすさは、また、300℃、真空度0.001Paにおける蒸発速度が0.01g/m・秒以上に相当する。
 含フッ素重合体のMwは1,500~50,000が好ましく、3,000~40,000がより好ましく、5,000~30,000がさらに好ましい。Mwが1,500以上の場合は、形成される蒸着膜に十分な強度が得られやすい。一方で、Mwが50,000以下の場合は、実用的な蒸着膜形成速度(成膜速度)を与える飽和蒸気圧を有するため、蒸着源を高温、具体的には、400℃超の温度まで加熱する必要がなくなる。蒸着原の温度が高すぎると蒸着過程において含フッ素重合体の主鎖が開裂し、含フッ素重合体が低分子量化してしまい、形成される蒸着膜の強度が不十分となり、さらに分解物に由来する欠陥が発生し、平滑な表面を得にくい。また、主鎖の開裂により生じ意図せず混入した分子あるいはイオンが膜の導電性に影響を与える可能性が想定され、その場合に蒸着膜の導電性を制御することが困難になる可能性がある。
 よってMwが1,500~50,000の範囲であれば、含フッ素重合体の主鎖が開裂を起こすことなく、十分な強度と平滑な表面を有する蒸着膜が形成される。有機EL素子において電荷輸送層等の蒸着膜の表面粗さは重要な要素であり、平滑な表面であれば、界面における電荷の授受が円滑に行われ、かつ、リーク電流、デバイス欠陥、電力効率低下といった問題を避けることができる。
 また形成される蒸着膜における品質の安定性の観点から、含フッ素重合体の多分散度(Mw/Mn)は小さい方が好ましく、2以下が好ましい。なお多分散度の理論的な下限値は1である。多分散度の小さい含フッ素重合体を得る方法として、リビングラジカル重合等の制御重合を行う方法、サイズ排除クロマトグラフィを用いた分子量分画精製法、昇華精製による分子量分画精製法が挙げられる。これらの方法のうち、蒸着レートの安定性を考慮し、昇華精製を行うことが好ましい。
 含フッ素重合体の上記「多分散度」とは、数平均分子量(以下、「Mn」で表す。)に対する重量平均分子量(以下、「Mw」で表す。)の割合、すなわち、Mw/Mnをいう。以下、多分散度を「Mw/Mn」で表す。本明細書中、MwおよびMnはゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。Mw/Mnは、得られたMw、Mnから計算された値である。
 さらに、含フッ素重合体のガラス転移点(Tg)は高い方が、得られる素子の信頼性が高くなることから好ましい。具体的にはガラス転移点が、60℃以上が好ましく、80℃以上がより好ましく、100℃以上が特に好ましい。上限は特に制限されないが、350℃が好ましく、300℃がより好ましい。
 蒸着により含フッ素重合体を成膜する場合、分子量が小さい重合体から飛び始める性質から、蒸着の初期と終期で異なる分子量の重合体が成膜されることになる。蒸着では一般的に蒸着源の直上に設置されたシャッター等の開閉により、形成される蒸着膜の厚みを制御するが、この際、同時に分子量分画も行われることになり、蒸着源である重合体と蒸着された蒸着膜中の重合体のMwおよびMw/Mnは変化することになる。
 本発明において、蒸着膜中の含フッ素重合体のMwは1,000~20,000が好ましく、1,500~15,000がより好ましく、2,000~10,000がさらに好ましい。Mwが1,000以上の場合は、蒸着膜の強度や耐熱性に優れる。一方で、Mwが20,000以下の場合は、電荷輸送層の導電性を保持することができる。
 また蒸着膜における均質性の観点から、蒸着膜中の含フッ素重合体のMw/Mnは1.2以下が好ましく、1.1以下がより好ましい。Mw/Mnが1.2以下であれば、蒸着膜中に低分子量の重合体が含まれる割合が少なくなり、耐熱性に優れ、均質性の高い蒸着膜となる。Mw/Mnが1.3以上の場合、蒸着膜中に極端に分子量の低い重合体が含まれる割合が多いことを示しており、耐熱性が悪く、膜構造が一様でない蒸着膜となる。
 主鎖に含フッ素脂肪族環構造を有するペルフルオロ重合体が、ペルフルオロ(ブテニルビニルエーテル)を環化重合してなる繰り返し単位のみからなるペルフルオロ重合体である場合、固有粘度[η]が、0.01~0.14dl/gであることが好ましく、0.02~0.1dl/gであることがより好ましく、0.02~0.08dl/gであることが特に好ましい。[η]が0.01dl/g以上の場合は、相対的に含フッ素重合体の分子量が大きくなり、蒸着膜において十分な強度が得られやすい。一方で、[η]が0.14dl/g以下の場合は、相対的に含フッ素重合体の分子量が小さくなり、実用的な成膜速度を与える飽和蒸気圧や蒸発速度を有する。
 本明細書中、固有粘度[η](単位:dl/g)は、測定温度30℃でアサヒクリン(登録商標)AC2000(旭硝子社製)を溶媒として、ウベローデ型粘度計(柴田科学社製:粘度計ウベローデ)により測定される値である。
 含フッ素重合体の波長450~800nmにおける屈折率の上限値は、1.5が好ましく、1.4がより好ましい。屈折率が1.5以下であれば、有機半導体材料との混合により得られる電荷輸送層等の蒸着膜層の屈折率をガラス基板等の屈折率と同等水準である1.55程度まで低下させることができ、光取り出し効率が向上するため好ましい。一方、屈折率の理論的な下限値は1.0である。
 有機半導体材料の屈折率は、一般的に1.7~1.8程度である。このような一般的な有機半導体材料に対して、屈折率が1.5以下の含フッ素重合体を混合すれば、得られる電荷輸送層の屈折率を低下させることができる。電荷輸送層の屈折率が低下して、電荷輸送層に隣接するガラス基板等(ソーダガラスおよび石英ガラスの屈折率は可視光領域でそれぞれ約1.51~1.53、約1.46~1.47である。)の屈折率に近づけば、電荷輸送層とガラス基板との界面で生じる全反射を回避することができ、光取り出し効率が向上する。
 前記「主鎖に脂肪族環構造を有する含フッ素重合体」とは、含フッ素重合体が脂肪族環構造を有する単位を有し、かつ、該脂肪族環を構成する炭素原子の1個以上が主鎖を構成する炭素原子であることを意味する。脂肪族環は酸素原子等のヘテロ原子を有する環であってもよい。
 また、「主鎖」とは、重合性炭素-炭素二重結合を有するモノエンの重合体においては炭素-炭素二重結合を構成した2つの炭素原子に由来する炭素原子の連鎖をいい、環化重合しうるジエンの環化重合体においては2つの炭素-炭素二重結合を構成した4つの炭素原子に由来する炭素原子の連鎖をいう。環化重合しうるジエンとモノエンとの共重合体においては、該モノエンの上記2つの炭素原子と該ジエンの上記4つの炭素原子とから主鎖が構成される。
 また、前記ペルフルオロ重合体とは、炭素原子に結合した水素原子を有しない含フッ素重合体を意味する。特に、炭素原子に結合した水素原子のすべてがフッ素原子に置換されている構造の含フッ素重合体が好ましい。
 主鎖に含フッ素脂肪族環構造を有するペルフルオロ重合体としては、環化重合しうるペルフルオロジエンの環化重合した単位を有するペルフルオロ重合体、脂肪族環を構成する炭素原子間に重合性二重結合を有するペルフルオロ脂肪族環化合物の重合した単位を有するペルフルオロ重合体、脂肪族環を構成する炭素原子と環外の炭素原子との間に重合性二重結合を有するペルフルオロ脂肪族環化合物の重合した単位を有するペルフルオロ重合体、等が挙げられる。
 環化重合しうるペルフルオロジエンとしては、下式(1)で表される化合物が好ましい。
   CF=CF-Q-CF=CF ・・・(1)
 式(1)中、Qは、エーテル性酸素原子を含んでいてもよく、フッ素原子の一部がフッ素原子以外のハロゲン原子で置換されていてもよい炭素数1~5、好ましくは1~3の、分岐を有してもよいペルフルオロアルキレン基である。該フッ素以外のハロゲン原子としては、塩素原子、臭素原子等が挙げられる。
 Qは、エーテル性酸素原子を含むペルフルオロアルキレン基であることが好ましい。その場合、該ペルフルオロアルキレン基におけるエーテル性酸素原子は、該基の一方の末端に存在していてもよく、該基の両末端に存在していてもよく、該基の炭素原子間に存在していてもよい。環化重合性の点から、該基の一方の末端に存在していることが好ましい。また、Qの左右に結合した炭素原子間の距離(Qにおける原子の数で表した距離)は2原子(-X-X-)または3原子(-X-X-X-)であることが好ましい(Xは炭素原子または炭素原子と酸素原子を表す)。具体的には、-O-C-、-O-C-C-または-O-C-O-であることがより好ましい。
 式(1)で表されるペルフルオロジエンの具体例としては、下記化合物が挙げられる。
 CF=CFOCFCF=CF、CF=CFOCF(CF)CF=CF、CF=CFOCFCFCF=CF、CF=CFOCFCF(CF)CF=CF、CF=CFOCF(CF)CFCF=CF、CF=CFOCFClCFCF=CF、CF=CFOCClCFCF=CF、CF=CFOCFOCF=CF、CF=CFOC(CFOCF=CF、CF=CFOCFCF(OCF)CF=CF、CF=CFCFCF=CF、CF=CFCFCFCF=CF、CF=CFCFOCFCF=CF
 上記具体例のうち好ましいペルフルオロジエンとしては下記の化合物が挙げられる。
 CF=CFOCFCF=CF、CF=CFOCFCFCF=CF、CF=CFOCF(CF)CFCF=CF、CF=CFOCFOCF=CF、CF=CFOC(CFOCF=CF
 特に好ましいペルフルオロジエンは、CF=CFOCFCFCF=CF(以下、「ペルフルオロ(3-ブテニルビニルエーテル)」という。)である。
 前記式(1)で表されるペルフルオロジエンが環化重合することにより、下式(1-1)~(1-4)で表される単位が生成する。1種類のペルフルオロジエンから下式(1-1)~(1-4)で表される単位の2種以上が生成することもある。生成する脂肪族環が5員環や6員環である単位が生成しやすく、特に5員環を有する単位が生成しやすい。
 なお、下式(1-1)~(1-4)で表される各単位のうち下式に表されている4個の炭素原子が主鎖を構成する炭素原子である。主鎖を構成する4個の炭素原子のうち、式(1-1)の構造では2個の炭素原子が、式(1-2)および式(1-3)の構造では3個の炭素原子が、式(1-4)の構造では4個の炭素原子が、脂肪族環を構成する炭素原子である。
Figure JPOXMLDOC01-appb-C000001
 脂肪族環を構成する炭素原子間に重合性二重結合を有するペルフルオロ脂肪族環化合物としては、ペルフルオロ(1,3-ジオキソール)やその誘導体が好ましい。誘導体としては、環の炭素原子にペルフルオロアルキル基やペルフルオロアルコキシ基が結合した誘導体が好ましい。ペルフルオロアルキル基やペルフルオロアルコキシ基の炭素数は2以下が好ましい。好ましい具体的化合物としては、ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)、ペルフルオロ(1,3-ジオキソール)、ペルフルオロ(4-メトキシ-1,3-ジオキソール)等が挙げられる。
 脂肪族環を構成する炭素原子と環外の炭素原子との間に重合性二重結合を有するペルフルオロ脂肪族環化合物としては、環を構成する炭素原子と環外の炭素原子との間に重合性二重結合を有するペルフルオロ(2-メチレン-1,3-ジオキソラン)やその誘導体が好ましい。誘導体としては、環の炭素原子にペルフルオロアルキル基やペルフルオロアルコキシ基が結合した誘導体が好ましい。ペルフルオロアルキル基やペルフルオロアルコキシ基の炭素数は2以下が好ましい。好ましい具体的化合物としては、ペルフルオロ(2-メチレン-1,3-ジオキソラン)、ペルフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)等が挙げられる。
 上記重合性二重結合を有するペルフルオロ脂肪族環化合物の具体例を下式(2-1)~(2-5)に示す。
Figure JPOXMLDOC01-appb-C000002
 主鎖に含フッ素脂肪族環構造を有するペルフルオロ重合体は、上記ペルフルオロ単量体の単独重合体であってもよく、上記ペルフルオロ単量体の2種以上を共重合させた共重合体であってもよい。また、上記ペルフルオロ単量体と脂肪族環を形成しないペルフルオロ単量体との共重合体であってもよい。上記ペルフルオロ単量体と脂肪族環を形成しないペルフルオロ単量体との共重合体の場合、両者の合計に対する上記ペルフルオロ単量体の共重合割合は20モル%以上が好ましく、40モル%以上がより好ましい。
 脂肪族環を形成しないペルフルオロ単量体としては、テトラフルオロエチレン、ヘキサフルオロプロピレン、ペルフルオロ(アルコキシエチレン)等が挙げられ、テトラフルオロエチレンが好ましい。
 本発明における含フッ素重合体としては、上記主鎖に含フッ素脂肪族環構造を有するペルフルオロ重合体以外の含フッ素重合体であってもよく、ペルフルオロ重合体以外の含フッ素重合体であってもよい。
 含フッ素重合体としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ペルフルオロ(アルコキシエチレン)共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVdF)、ポリペルフルオロ(3-ブテニルビニルエーテル)(旭硝子社製:サイトップ(登録商標))、テトラフルオロエチレン・ペルフルオロ(4-メトキシ-1,3-ジオキソール)共重合体(ソルベイ社製:ハイフロン(登録商標)AD)、テトラフルオロエチレン・ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)共重合体(ケマーズ(旧デュポン)社製:テフロン(登録商標)AF)、ペルフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)重合体が挙げられる。これらの中でも主鎖に脂肪族環構造を有するペルフルオロ重合体が好ましい。
 本発明に係る有機半導体材料は、半導体的な電気特性を示す有機化合物材料である。有機半導体材料は、陽極から正孔の注入を受けて輸送する正孔輸送材料と、陰極から電子の注入を受けて輸送する電子輸送材料とに分類できる。本発明にはどちらも好適に用いられるが、正孔輸送材料が特に好適に用いられる。
 正孔輸送材料としては、芳香族アミン誘導体が好適に例示できる。具体例としては、下記のα-NPD、TAPC、PDA、TPD、m-MTDATA等が挙げられるが、これらに限定されない。
 電子輸送材料としては、含窒素複素環誘導体が好適に例示できる。具体例としては、下記のAlq3、PBD、TAZ、BND、OXD-7等が挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 本発明の蒸着膜組成物には、含フッ素重合体および有機半導体材料以外に他の材料が含まれてもよいが、有機半導体材料および含フッ素重合体のみが含まれていることが好ましい。ただし有機半導体材料は1種のみを用いても、2種以上を併用してもよい。また含フッ素重合体は1種のみを用いても、2種以上を併用してもよい。
 本発明の蒸着膜組成物において、含フッ素重合体と有機半導体材料との体積比は70:30~5:95であることが好ましく、60:40~20:80であることがより好ましい。含フッ素重合体と有機半導体材料との体積比の上記の範囲であれば、得られる層の屈折率がガラス基板等の屈折率と同等水準まで低下し、有機光電子素子における光取り出し効率が向上するため好ましい。
 本発明の蒸着膜組成物からなる層の表面粗さはRMS(root mean square:二乗平均平方根)で表した場合に、1nm以下が好ましい。表面粗さが1nm以下であれば、隣接する電極、発光層、電荷輸送層との界面における電荷の輸送が円滑に行われ、かつ、層間の電界の均一性が高いことから、リーク電流、デバイス欠陥、電力効率低下といった問題を避けることができる。
 該表面粗さの上限値は、0.8nmがより好ましく、0.6nmが特に好ましい。該表面粗さの下限値は理論的には0nmである。
 本明細書中、表面粗さ(単位:nm)はJIS B 0601に準拠して、原子間力顕微鏡(AFM)等によって測定される値である。
 本発明の電荷輸送層等の層の厚さは特に制限されないが、10nm~250nmが好ましく、20nm~150nmがより好ましい。
 本発明の蒸着膜組成物は、波長域450nm~800nmにおける吸収係数が1000cm-1以下であることが好ましく、100cm-1以下であることがより好ましい。特に上記波長域において吸収帯を有さないことがより好ましい。吸収係数が1000cm-1を超える場合、光が厚み100nmの層を1回通過すると通過前の光の全量を100%としたときに対し約1%以上の光が吸収される。有機EL素子内部では光の多重干渉により、この蒸着膜層を通過するときの光の吸収による損失が累積するため、層を通過する際における光吸収が光取り出し効率を大きく低減させる要因となる。光吸収が十分小さい層を用いることは、有機EL素子の発光効率を損なわないために極めて重要である。有機EL素子の発光効率が損なわれないことによりエネルギー利用効率が高くなり、かつ、光吸収に基づく発熱が抑制される結果として素子寿命が長くなる。
 本明細書中、吸収係数(単位:cm-1)はJIS K 0115に準拠して測定される値である。
 本発明の蒸着膜組成物は、波長域450nm~800nmにおける屈折率が、1.60以下が好ましく、1.55以下がより好ましい。屈折率が1.60以下であれば、得られる層の屈折率がガラス基板等の屈折率と同等水準まで低下し、光取り出し効率が向上するため好ましい。一方、本発明の層の屈折率の理論的な下限値は1.0である。
 本発明の蒸着膜組成物は、有機半導体材料と同等の電気特性を示すことが、素子周辺の回路設計の大幅な変更を必要としないことから、好ましい。具体的には蒸着膜組成物で用いられている有機半導体材料のみで測定したJ-V特性と、組成物の状態で測定したJ-V特性とが同等であることが好ましい。より具体的にはJ-V特性において電位勾配が0.7MV/cmにおいて、組成物の状態で測定した電流値が、有機半導体材料のみで測定した電流値の40%以上が好ましく、60%以上がより好ましい。該電流値の比の上限は特に無いが、200%以下が好ましい。
 25℃、大気中における体積抵抗率が1017Ω・cm以上の絶縁材料である含フッ素重合体を用いているにも関わらず、本発明の組成物は有機半導体材料と同等の電気特性を示し、かつ、低屈折率であることから有機光電子素子の光取り出し効率を大幅に向上できる。
 本発明はまた、含フッ素重合体と有機半導体材料とを共蒸着させて蒸着膜組成物を製造する、蒸着膜組成物を製造する方法である。
 本発明の蒸着膜組成物の製造方法は、公知の方法でよく、抵抗加熱蒸着法、電子ビーム蒸着法等が挙げられる。これらのうち有機半導体および含フッ素重合体を分解しすることなく成膜しやすいことから、抵抗加熱による共蒸着法が特に好ましい。
 共蒸着における蒸着速度(含フッ素重合体と有機半導体材料との合計の蒸着速度)は特に制限されないが、0.001~10nm/sであることが表面粗さを所定の範囲とするために好ましい。このとき、含フッ素重合体と有機半導体材料の蒸着速度比により混合比を制御できる。
 上記の本発明の蒸着膜組成物を含む層は、有機光電子素子を構成する層として好適に用いられる。該層としては、電荷注入層、電荷輸送層が例示でき、電荷輸送層が好ましく、正孔輸送層が特に好ましい。
 本発明の有機光電子素子は、一対の陽極および陰極を有し、該一対の電極間に少なくとも一層の、本発明の蒸着膜組成物を含む層(以下、「本蒸着膜層」ともいう。)を有する。陽極および陰極としては、公知の金属、金属酸化物または導電性高分子を用いることができ、特に限定されない。
 本発明の有機光電子素子の層構成は特に限定されず、陽極と陰極の間に本蒸着膜層に加えて任意の機能層が設けられてもよい。たとえば透明導電性電極とそれに対向する対向電極を有する一対の電極と、該一対の電極間に本蒸着膜層に加えて、他の電荷輸送層、発光層、発電層等の層が挟持されていてもよい。また、これらの任意の機能層を構成する材料は有機物に限定されず、無機物でもよい。
 本発明の有機光電子素子は、基板上に陽極または陰極等を形成した後、上述した電荷輸送層等の層、および上述した任意の機能層を形成して、その上に陰極または陽極等を形成して製造することができる。
 本発明の層の製造方法は、上述した本蒸着膜層の製造方法と同様であるが、含フッ素重合体と有機半導体材料とを共蒸着させて基板上に本蒸着膜層を形成する方法である。共蒸着法としては、抵抗加熱による共蒸着法が特に好ましい。
 共蒸着における蒸着速度(含フッ素重合体と有機半導体材料との合計の蒸着速度)は特に制限されないが、0.001~10nm/sであることが電荷輸送層等の層の表面粗さを所定の範囲とするために好ましい。
 本発明の有機光電子素子は、有機ELデバイス、太陽電池、有機フォトダイオード、有機レーザーなどの有機光電子デバイスに利用できる。
 特に本発明の有機光電子素子は、有機EL素子として好適に用いられる。このような有機EL素子は有機ELディスプレイ、有機EL照明などの有機ELデバイスに利用できる。これらの有機ELデバイスは、トップエミッション型であってもよく、ボトムエミッション型であってもよい。
 有機ELデバイスなどの有機光電子デバイスにて、本発明の組成物を含む層を電極の間に挟持させる方法は特に限定されず、たとえばITO(酸化インジウムスズ)膜付きガラス基板に共蒸着させてなる共蒸着膜を公知の方法で上記デバイスに実装させればよい。
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によって限定されない。
 本実施例で合成した含フッ素共重合体の屈折率、分子量、固有粘度、飽和蒸気圧、および蒸発速度の測定は、以下の記載に従って行った。
「含フッ素重合体の屈折率の測定方法」
 JIS K 7142に準拠して測定した。
「含フッ素重合体のMwおよびMnの測定方法」
 含フッ素重合体の分子量を、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定した。まず、分子量既知のポリメチルメタクリレート(PMMA)標準試料を、GPCを用いて測定し、ピークトップの溶出時間と分子量から、較正曲線を作成した。ついで、含フッ素重合体を測定し、較正曲線からMwとMnを求めた。移動相溶媒には1,1,1,2,3,4,4,5,5,5-デカフルオロ-3-メトキシ-2-(トリフルオロメチル)ペンタン/ヘキサフルオロイソプロピルアルコール(体積比で85/15)を用いた。
「含フッ素重合体の固有粘度[η]の測定方法」
 含フッ素重合体の固有粘度[η]を測定温度30℃でアサヒクリン(登録商標)AC2000(旭硝子社製)を溶媒として、ウベローデ型粘度計(柴田科学社製:粘度計ウベローデ)により測定した。
「含フッ素重合体の弾性率測定方法」
 Anton-Paar社のレオメーターPhysica MCR301を用いて弾性率を測定した。治具としてPP12(平板型プレート、φ12mm)を用い、サンプル厚さ1mm、周波数1Hzで、200℃から毎分2℃で降温し、貯蔵弾性率Paおよび損失弾性率Paを測定した。
「含フッ素共重合体の飽和蒸気圧および蒸発速度の測定方法」
 アドバンス理工社(旧アルバック理工社)の真空示差熱天秤VAP-9000を用いて300℃における飽和蒸気圧および蒸発速度を測定した。
 含フッ素重合体50mgを内径7mmのセルに仕込み、1×10-3Paの真空度にて、毎分2℃で昇温し、300℃における蒸発速度g/m・秒を測定した。飽和蒸気圧の算出には蒸発速度と前記GPC測定でもとめたMwを用いた。
 本実施例で作製した電荷輸送層の表面粗さ、吸収係数および屈折率の測定、ならびに本実施例で作製した導電性評価用素子のJ-V特性の評価は、以下の記載に従って行った。
「層の表面粗さの測定方法」
 AFM(ブルカー・エイエックスエス社製:Dimension Icon)により、シリコン基板上の膜に対して、共鳴周波数300kHzのプローブ針を用いたタッピングモードで膜表面の観察を行った。観察面積は0.5マイクロメートル角とし、得られた画像について針の掃引方向に垂直な方向に対して高さ補正を行った後、高さのRMS値を算出した。
「層の吸収係数の測定」
 紫外可視分光光度計(島津製作所社製:UV-2450)を用い、石英基板上の膜の吸収係数を測定し、吸収スペクトルを得た。
「層の屈折率の測定方法」
 多入射角分光エリプソメトリー(ジェー・エー・ウーラム社製:M-2000U)を用いて、シリコン基板上の膜に対して、光の入射角を45~75度の範囲で5度ずつ変えて測定を行った。それぞれの角度において、波長450~800nmの範囲で約1.6nmおきにエリプソメトリーパラメータであるΨとΔを測定した。上記の測定データを用い、有機半導体の誘電関数をCauchyモデルによりフィッティング解析を行い、各波長の光に対する層の屈折率と消衰係数を得た。
「導電性評価用素子のJ-V特性の評価」
 ソースメータ(Keithley社製:Keithley(登録商標)2401)により、ITO(酸化インジウムスズ)側を陽極、アルミニウム側を陰極として電圧を印加しながら、電圧毎に導電性評価用素子に流れる電流を測定した。
 以下の含フッ素重合体の製造に使用した単量体、溶剤および重合開始剤の略号は、以下の通りである。
 BVE:ペルフルオロ(3-ブテニルビニルエーテル)
 BVE-4M:CF=CFOCF(CF)CFCF=CF
 MMD:ペルフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)
 PDD:ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)
 TFE:テトラフルオロエチレン(CF=CF
 PPVE:化合物(CF=CFCFCF
 1H-PFH:1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサン
 IPP:ジイソプロピルペルオキシジカーボネート
 含フッ素重合体Aの合成
 BVEの30g、1H-PFHの30g、メタノールの0.5gおよびIPPの0.44gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、含フッ素重合体の28gを得た。得られた含フッ素重合体の固有粘度[η]は、0.04dl/gであった。
 次いで、得られた含フッ素重合体を特開平11-152310号公報の段落[0040]に記載の方法により、フッ素ガスにより不安定末端基を-CF基に置換し、含フッ素重合体Aを得た。
 得られた含フッ素重合体Aの波長600nmの光に対する屈折率は1.34、固有粘度[η]は、0.04dl/gであった。含フッ素重合体AのMwは9,000、Mnは6,000、Mw/Mnは1.5、300℃における飽和蒸気圧は0.002Pa、300℃における蒸発速度0.08g/msecであった。
 含フッ素重合体Bの合成
 BVEの10g、1H-PFHの10g、メタノールの0.2gおよびIPPの0.2gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、含フッ素重合体の8gを得た。得られた含フッ素重合体の固有粘度[η]は、0.04dl/gであった。
 次いで、得られた含フッ素重合体を300℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱することで、不安定末端基をメチルエステル基に置換し、含フッ素重合体Bを得た。
 得られた含フッ素重合体Bの波長600nmの光に対する屈折率は1.34、Mwは7,800、Mnは6,200、Mw/Mnは1.3、300℃における飽和蒸気圧は0.003Pa、300℃における蒸発速度は0.06g/msecであった。
 含フッ素重合体Cの合成
 BVEの20g、1H-PFHの20g、メタノールの0.1gおよびIPPの0.3gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、含フッ素重合体の16gを得た。得られた含フッ素重合体の固有粘度[η]は、0.07dl/gであった。
 次いで、得られた含フッ素重合体を300℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱することで、不安定末端基をメチルエステル基に置換し、含フッ素重合体Cを得た。
 得られた含フッ素重合体Cの波長600nmの光に対する屈折率は1.34、Mwは14,000、Mnは10,100、Mw/Mnは1.4、300℃における飽和蒸気圧0.001Pa、300℃における蒸発速度は0.03g/msecであった。
 含フッ素重合体Dの合成
 BVEの450g、イオン交換水の600g、連鎖移動剤としてのメタノールの52gおよびIPPの1gを、内容積1Lのガラスライニングの反応器に入れた。系内を窒素で置換した後、40℃で20時間、50℃で6時間懸濁重合を行い、含フッ素重合体を得た。次いで、得られた含フッ素重合体の粒子をろ過により回収し、メタノール、水により洗浄した後、100℃で乾燥し、BVEおよびメタノールに起因する末端基を有する含フッ素重合体の420gを得た。得られた含フッ素重合体の固有粘度[η]は、0.24dl/gであった。
 次いで、得られた含フッ素重合体を特開平11-152310号公報の段落[0040]に記載の方法により、フッ素ガスにより不安定末端基を-CF基に置換し、含フッ素重合体Dを得た。
 得られた含フッ素重合体Dの波長600nmの光に対する屈折率は1.34、固有粘度[η]は、0.24dl/gであった。含フッ素重合体DのMwは73,000、Mnは48,000、Mw/Mnは1.5、300℃における飽和蒸気圧は0.0001Pa、300℃における蒸発速度0.004g/msecであった。
 含フッ素重合体Eの合成
 MMDの3g、1H-PFHの9g、メタノールの0.5gおよびIPPの0.3gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、含フッ素重合体の2gを得た。
 次いで、得られた含フッ素重合体を300℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱することで、不安定末端基をメチルエステル基に置換し、含フッ素重合体Eを得た。
 得られた含フッ素重合体Eの波長600nmの光に対する屈折率は1.33、Mwは9,800、Mnは8,100、Mw/Mnは1.2、300℃における飽和蒸気圧は0.008Pa、300℃における蒸発速度は0.14g/msecであった。
 含フッ素重合体Fの合成
 MMDの2g、1H-PFHの6g、メタノールの0.4gおよびIPPの0.2gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、含フッ素重合体の1gを得た。
 次いで、得られた含フッ素重合体を300℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱することで、不安定末端基をメチルエステル基に置換し、含フッ素重合体Fを得た。
 得られた含フッ素重合体Fの波長600nmの光に対する屈折率は1.33、Mwは11,300、Mnは9,300、Mw/Mnは1.2、300℃における飽和蒸気圧0.007Pa、300℃における蒸発速度0.10g/msecであった。
 含フッ素重合体Gの合成
 BVE-4Mの2g、1H-PFHの5g、メタノールの0.1gおよびIPPの0.03gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、含フッ素重合体の1gを得た。
 次いで、得られた含フッ素重合体を300℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱することで、不安定末端基をメチルエステル基に置換し、含フッ素重合体Gを得た。
 得られた含フッ素重合体Gの波長600nmの光に対する屈折率は1.34、Mwは10,100、Mnは8,600、Mw/Mnは1.2、300℃における飽和蒸気圧は0.002Pa、300℃における蒸発速度は0.04g/msecであった。
 含フッ素重合体Hの合成
 BVE-4Mの10g、1H-PFHの6g、メタノールの0.6gおよびIPPの0.13gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、含フッ素重合体の2gを得た。
 次いで、得られた含フッ素重合体を260℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱することで、不安定末端基をメチルエステル基に置換し、含フッ素重合体Hを得た。
得られた含フッ素重合体Hの波長600nmの光に対する屈折率は1.34、Mwは4,500、Mnは4,000、Mw/Mnは1.2、300℃における飽和蒸気圧は0.01Pa、300℃における蒸発速度は0.2g/msecであった。
 含フッ素重合体Iの合成
 BVEの1.5g、PDDの2g、1H-PFHの10g、メタノールの0.3gおよびIPPの0.4gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、含フッ素重合体の2gを得た。
 得られた含フッ素重合体の組成は、BVE単位:PDD単位=24:76(モル%)であった。
 次いで、得られた含フッ素重合体を300℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱し、不安定末端基をメチルエステル基に置換し、含フッ素重合体Iを得た。含フッ素重合体Iの波長600nmの光に対する屈折率は1.30、Mwは9,200、Mnは8,100、Mw/Mnは1.1、300℃における飽和蒸気圧は0.003Pa、300℃における蒸発速度0.06g/msecであった。
 含フッ素重合体Jの合成
 BVEの1.1g、PDDの1.5g、1H-PFHの7g、メタノールの0.1gおよびIPPの0.3gを、内容積50mlのガラス製反応器に入れた。系内を高純度窒素ガスにて置換した後、40℃で24時間重合を行った。得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶媒を行い、含フッ素重合体の1gを得た。
 得られた含フッ素重合体の組成は、BVE単位:PDD単位=24:76(モル%)であった。
 次いで、得られた含フッ素重合体を300℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱し、不安定末端基をメチルエステル基に置換し、含フッ素重合体Jを得た。含フッ素重合体Jの波長600nmの光に対する屈折率は1.30、Mwは14,100、Mnは10,700、Mw/Mnは1.3、300℃における飽和蒸気圧は0.001Pa、300℃における蒸発速度0.03g/msecであった。
 含フッ素重合体Kの合成
 内容積1006mLのステンレス製オートクレーブに、PPVEの153g、1H-PFHの805g、メタノールの2.4g、および2,2’-アゾビス(イソブチロニトリル)の1.1gを仕込み、液体窒素で凍結脱気をした。70℃に昇温した後、TFEを0.57MPaGになるまで導入した。温度と圧力を一定に保持しながら、TFEを連続的に供給して重合させた。重合開始から9時間後にオートクレーブを冷却して重合反応を停止し、系内のガスをパージして含フッ素重合体の溶液を得た。
 含フッ素重合体の溶液にメタノールの813gを加えて混合し、含フッ素重合体が分散している下層を回収した。得られた含フッ素重合体の分散液を80℃で16時間温風乾燥し、次に100℃で16時間真空乾燥して、含フッ素重合体の19gを得た。
 得られた含フッ素重合体の組成は、PPVE単位:TFE単位=6:94(モル%)であった。
 次いで、得られた含フッ素重合体を300℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱し、不安定末端基をメチルエステル基に置換し、含フッ素重合体Kを得た。前記方法で含フッ素重合体KのMwおよびMnを測定できないので、代わりに含フッ素重合体Kの弾性率と温度の関係を図10に示す。
 得られた含フッ素重合体Kの波長600nmの光に対する屈折率は1.34、300℃における蒸発速度は0.04g/msecであった。
[実施例1]
 電荷輸送層の作製
 約2cm角程度にカットしたシリコン基板2枚および石英基板1枚を、それぞれ中性洗剤、アセトン、イソプロピルアルコールを用いて超音波洗浄し、さらにイソプロピルアルコール中で煮沸洗浄した上で、オゾン処理により基板表面の付着物を除去した。この基板をそれぞれ真空蒸着機内に置き、圧力10-4Pa以下に真空引きした上で、α-NPDと含フッ素重合体Aとを、α-NPDと含フッ素重合体Aの体積比が45:55となるように用いて、真空蒸着機内で抵抗加熱し、共蒸着を行うことで厚み約100nmの電荷輸送層をそれぞれの基板上に作製した。2つの材料の合計の蒸着速度は0.2nm/sとした。得られた電荷輸送層の表面粗さは0.33nmであった。
 導電性評価用素子の作製
 評価用の有機EL素子を作製するための基板として、2mm幅の帯状にITO(酸化インジウムスズ)が成膜されたガラス基板を用いた。その基板を中性洗剤、アセトン、イソプロピルアルコールを用いて超音波洗浄し、さらにイソプロピルアルコール中で煮沸洗浄した上で、オゾン処理によりITO膜表面の付着物を除去した。この基板を真空蒸着機内に置き、圧力10-4Pa以下に真空引きした上で、三酸化モリブデンを真空蒸着機内で抵抗加熱し、正孔注入層として基板上に蒸着速度0.1nm/sで5nm成膜した。その後、α-NPDと含フッ素重合体Aを、α-NPDと含フッ素重合体Aの体積比が45:55となるように、真空蒸着機内で抵抗加熱し、共蒸着を行うことで厚み約100nmの電荷輸送層をそれぞれ積層した。2つの材料の合計の蒸着速度は0.2nm/sとした。さらに、アルミニウムを抵抗加熱で2mm幅の帯状に蒸着し、導電性評価用素子を得た。2mm幅のITOと2mm幅のアルミニウムが交差した2mm×2mmが素子面積となる。
[実施例2~9]
 含フッ素重合体Aの代わりに、含フッ素重合体B~J(ただし、Dを除く)を用いた以外は実施例1と同様にして、電荷輸送層および導電性評価用素子を作製した。
 なお、表1に各実施例に使用した重合体名を記載した。
[実施例10]
 含フッ素重合体Aの代わりに、含フッ素重合体Kを用いた以外は実施例1と同様にして、電荷輸送層および導電性評価用素子を作製した。
[比較例1]
 含フッ素重合体Aを用いないで、α-NPDのみを各基板に蒸着した以外は実施例1と同様にして、電荷輸送層および導電性評価用素子を作製した。得られた電荷輸送層の表面粗さは0.22nmであった。
[比較例2]
 含フッ素重合体Aの代わりに、含フッ素重合体であるテフロン(登録商標)AF1600(デュポン社製、波長600nmの光に対する屈折率1.32、固有粘度[η]=0.88dl/g、300℃における飽和蒸気圧0.0001Pa)を用いた以外は実施例1と同様にして、電荷輸送層および導電性評価用素子を作製した。得られた電荷輸送層の表面粗さは2.3nmであった。
[比較例3]
 含フッ素重合体Aの代わりに、含フッ素重合体Dを用いた以外は実施例1と同様にして、電荷輸送層および導電性評価用素子を作製した。得られた電荷輸送層の表面粗さは1.1nmであった。
測定結果とその評価
 実施例1、比較例1、比較例2および比較例3の電荷輸送層の表面粗さ(RMS値)は、それぞれ0.33nm、0.22nm、2.3nm、1.1nmであった。これらの表面粗さの相違は、配合した含フッ素重合体の非晶性の程度や熱安定性の程度を反映していると考えられる。含フッ素重合体Aを用いた実施例1、含フッ素重合体を含まない有機半導体単独層の比較例1の電荷輸送層について、良好な表面平滑性が確認された。一方、テフロン(登録商標)AF1600を混合した比較例2の電荷輸送層は、含フッ素重合体を含有しない比較例1の電荷輸送層に比べて、表面粗さが増大し、平滑性が損なわれていた。この表面粗さの増大はテフロン(登録商標)AF1600蒸着膜の結晶性もしくは熱分解物に由来するものであると考えられる。また、分子量の大きい含フッ素重合体Dを含む比較例3の電荷輸送層は、分子量の小さい含フッ素重合体Aを含む実施例1の電荷輸送層と比較して表面粗さがわずかに大きかったが、この表面粗さのわずかな増大は含フッ素重合体Dの熱分解物に由来するものと考えられる。
 実施例1、比較例1~3の電荷輸送層の吸収スペクトルを図1に示す。いずれの電荷輸送層も可視域450nm~800nmに吸収および吸収帯を有しておらず、含フッ素重合体の混合により光透過性は損なわれないことが分かった。
 実施例1~10ならびに比較例1~3で得られた電荷輸送層の屈折率の波長依存性をそれぞれ、図2~5に示す。波長600nmにおける実施例1~10、比較例2および比較例3の電荷輸送層の屈折率は、1.51~1.56の範囲であり、いずれも含フッ素重合体を含まない有機半導体単独層の比較例1の電荷輸送層の屈折率(1.78)に比べ、大幅に低減していた。
 実施例1~10、比較例1~3の導電性評価用素子のJ-V特性を図6~9に示す。実施例1~10ならびに比較例2、3の導電性評価用素子における電圧7Vの電流密度が、含フッ素重合体を含まない比較例1の導電性評価用素子における電流密度の40%以上となっており、有機半導体材料と同等の導電性を有していた。
 実施例1~9、比較例2、3の含フッ素重合体ならびに蒸着膜中の含フッ素重合体のMw、Mw/Mnを表1に示す。
 実施例1~9においては、蒸着原料として300℃における飽和蒸気圧が0.001Pa以上となる含フッ素重合体を用いており、蒸着膜中の含フッ素重合体のMwが蒸着原料の含フッ素重合体のMwと大きな差がなく、多分散度が1.1と非常に小さいことから、蒸着中の熱分解が抑制されており、均質な層形成が出来ていると考えられる。
 一方、比較例2、3においては、蒸着原料として300℃における飽和蒸気圧が0.0001以下の含フッ素重合体を用いており、蒸着膜中の含フッ素重合体のMwは蒸着原料の含フッ素重合体のMwと比べて非常に小さい分子量となっており、多分散度も1.3と実施例1~9よりも分子量分布が広くなっていることから、蒸着中に熱分解が発生し、分子量の低い熱分解物が層中に混入し、形成された層の均質性が損なわれていると考えられる。
 この結果は、実施例1~9の含フッ素成膜成分と有機半導体から成る共蒸着膜が熱分解を伴わずに成膜することが可能であり、有機EL素子の光取り出し効率を向上させるために必要な低い屈折率に加えて、実用的な導電特性を併せもつことを示しており、有機EL素子の電荷輸送層として応用することで、素子の信頼性を損なうことなく、素子の光取出し効率を大きく改善できることを示している。
Figure JPOXMLDOC01-appb-T000005
 本発明の組成物を含む層は、有機ELデバイスとして、種々の電子機器の操作パネルや情報表示パネルに好適に用いられるほか、屈折率がデバイス特性に影響する各種有機光電子デバイスにも好適に用いられる。
 なお、2016年12月14日に出願された日本特許出願2016-242466号および2017年8月24日に出願された日本特許出願2017-161636号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (15)

  1.  300℃における飽和蒸気圧が0.001Pa以上である含フッ素重合体と有機半導体材料とを共蒸着させてなる蒸着膜組成物。
  2.  前記含フッ素重合体と前記有機半導体材料との体積比が70:30~5:95である、請求項1に記載の組成物。
  3.  前記含フッ素重合体の重量平均分子量が1,500~50,000である、請求項1または2に記載の組成物。
  4.  前記含フッ素重合体の多分散度(Mw/Mn)が2以下である、請求項1~3のいずれか一項に記載の組成物。
  5.  前記含フッ素重合体が主鎖に脂肪族環構造を有する、請求項1~4のいずれか一項に記載の組成物。
  6.  前記主鎖に脂肪族環構造を有する含フッ素重合体がペルフルオロ重合体である、請求項5に記載の組成物。
  7.  波長域450nm~800nmにおける屈折率が1.60以下である、請求項1~6のいずれか一項に記載の組成物。
  8.  前記含フッ素重合体の波長域450nm~800nmにおける屈折率が1.50以下である、請求項1~7のいずれか一項に記載の組成物。
  9.  波長域450nm~800nmにおける吸収係数が1000cm-1以下である、請求項1~8のいずれか一項に記載の組成物。
  10.  含フッ素重合体と有機半導体材料とを共蒸着させて蒸着膜組成物を製造する、請求項1~9のいずれか一項に記載の蒸着膜組成物を製造する方法。
  11.  請求項1~9のいずれか一項に記載の蒸着膜組成物を含む層を有する有機光電子素子。
  12.  前記光電子素子が有機EL素子である、請求項11に記載の有機光電子素子。
  13.  含フッ素重合体と有機半導体材料とを共蒸着させて、基板上に請求項1~9のいずれか一項に記載の蒸着膜組成物の層を形成する、層の製造方法。
  14.  請求項10または11に記載の有機光電子素子の製造方法であって、
     含フッ素重合体と有機半導体材料とを共蒸着させて蒸着膜組成物の層を形成する工程を含む、有機光電子素子の製造方法。
  15.  前記有機光電子素子が有機EL素子であり、前記蒸着膜組成物の層が電荷輸送層である、請求項14に記載の製造方法。
PCT/JP2017/044770 2016-12-14 2017-12-13 組成物および有機光電子素子並びにその製造方法 WO2018110609A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17880314.4A EP3557644A4 (en) 2016-12-14 2017-12-13 COMPOSITION, ORGANIC OPTOELECTRONIC ELEMENT AND MANUFACTURING METHOD FOR IT
KR1020197015999A KR102413735B1 (ko) 2016-12-14 2017-12-13 조성물 및 유기 광전자 소자 그리고 그 제조 방법
CN201780077509.8A CN110088928B (zh) 2016-12-14 2017-12-13 组合物和有机光电子元件及其制造方法
JP2018556723A JP6923163B2 (ja) 2016-12-14 2017-12-13 組成物および有機光電子素子並びにその製造方法
US16/431,113 US10879468B2 (en) 2016-12-14 2019-06-04 Composition, organic photoelectronic element, and production method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-242466 2016-12-14
JP2016242466 2016-12-14
JP2017161636 2017-08-24
JP2017-161636 2017-08-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/431,113 Continuation US10879468B2 (en) 2016-12-14 2019-06-04 Composition, organic photoelectronic element, and production method therefor

Publications (1)

Publication Number Publication Date
WO2018110609A1 true WO2018110609A1 (ja) 2018-06-21

Family

ID=62559711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044770 WO2018110609A1 (ja) 2016-12-14 2017-12-13 組成物および有機光電子素子並びにその製造方法

Country Status (6)

Country Link
US (1) US10879468B2 (ja)
EP (1) EP3557644A4 (ja)
JP (1) JP6923163B2 (ja)
KR (1) KR102413735B1 (ja)
CN (1) CN110088928B (ja)
WO (1) WO2018110609A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136243A1 (ja) * 2022-01-11 2023-07-20 日東電工株式会社 フッ素樹脂の精製方法、精製されたフッ素樹脂の製造方法、フッ素樹脂、光学材料、電子材料及びプラスチック光ファイバ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102413734B1 (ko) * 2017-02-08 2022-06-27 국립대학법인 야마가타대학 조성물 및 유기 광전자 소자 그리고 그 제조 방법
JP7079782B2 (ja) * 2017-08-24 2022-06-02 Agc株式会社 電荷注入層およびその製造方法、ならびに有機光電子素子およびその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152310A (ja) 1997-11-20 1999-06-08 Asahi Glass Co Ltd 含フッ素脂肪族環構造含有重合体の製造方法
JP2006237083A (ja) * 2005-02-22 2006-09-07 Fuji Photo Film Co Ltd 電子ブロッキング層用材料、有機el素子及び有機elディスプレイ
JP2007141736A (ja) * 2005-11-21 2007-06-07 Fujifilm Corp 有機電界発光素子
JP2008280506A (ja) * 2007-04-12 2008-11-20 Hitachi Chem Co Ltd 有機エレクトロニクス用材料、有機エレクトロニクス素子および有機エレクトロルミネセンス素子
WO2016043084A1 (ja) 2014-09-18 2016-03-24 旭硝子株式会社 発光素子および発電素子
WO2016204275A1 (ja) * 2015-06-17 2016-12-22 国立大学法人山形大学 有機電荷輸送層、有機elデバイス、有機半導体デバイス及び有機光電子デバイス
JP2017161636A (ja) 2016-03-08 2017-09-14 互応化学工業株式会社 感光性樹脂組成物、ドライフィルム、及びプリント配線板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330943A (ja) * 2000-03-15 2001-11-30 Asahi Glass Co Ltd ペリクル
GB0207134D0 (en) * 2002-03-27 2002-05-08 Cambridge Display Tech Ltd Method of preparation of organic optoelectronic and electronic devices and devices thereby obtained
WO2004068912A1 (ja) * 2003-01-30 2004-08-12 Fujitsu Limited 正孔注入層用材料、有機el素子及び有機elディスプレイ
US7767372B2 (en) * 2007-03-23 2010-08-03 Xerox Corporation Photoconductor containing fluoroalkyl ester charge transport layers
US7670736B2 (en) * 2007-03-29 2010-03-02 Xerox Corporation Photoconductors
RU2009142805A (ru) * 2007-04-20 2011-05-27 Асахи Гласс Компани, Лимитед (Jp) Фторполимерная тонкая пленка и способ ее получения
US8426092B2 (en) * 2010-08-26 2013-04-23 Xerox Corporation Poly(imide-carbonate) polytetrafluoroethylene containing photoconductors
JP7032739B2 (ja) * 2016-12-14 2022-03-09 Agc株式会社 電荷輸送層、および有機光電子素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152310A (ja) 1997-11-20 1999-06-08 Asahi Glass Co Ltd 含フッ素脂肪族環構造含有重合体の製造方法
JP2006237083A (ja) * 2005-02-22 2006-09-07 Fuji Photo Film Co Ltd 電子ブロッキング層用材料、有機el素子及び有機elディスプレイ
JP2007141736A (ja) * 2005-11-21 2007-06-07 Fujifilm Corp 有機電界発光素子
JP2008280506A (ja) * 2007-04-12 2008-11-20 Hitachi Chem Co Ltd 有機エレクトロニクス用材料、有機エレクトロニクス素子および有機エレクトロルミネセンス素子
WO2016043084A1 (ja) 2014-09-18 2016-03-24 旭硝子株式会社 発光素子および発電素子
WO2016204275A1 (ja) * 2015-06-17 2016-12-22 国立大学法人山形大学 有機電荷輸送層、有機elデバイス、有機半導体デバイス及び有機光電子デバイス
JP2017161636A (ja) 2016-03-08 2017-09-14 互応化学工業株式会社 感光性樹脂組成物、ドライフィルム、及びプリント配線板

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D. YOKOYAMA, J. MATER. CHEM., vol. 21, 2011, pages 19187 - 19202
K. SAXENA ET AL., OPT. MATER., vol. 32, no. 1, 2009, pages 221 - 233
See also references of EP3557644A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136243A1 (ja) * 2022-01-11 2023-07-20 日東電工株式会社 フッ素樹脂の精製方法、精製されたフッ素樹脂の製造方法、フッ素樹脂、光学材料、電子材料及びプラスチック光ファイバ

Also Published As

Publication number Publication date
JP6923163B2 (ja) 2021-08-18
KR20190091448A (ko) 2019-08-06
CN110088928A (zh) 2019-08-02
CN110088928B (zh) 2022-04-19
KR102413735B1 (ko) 2022-06-27
JPWO2018110609A1 (ja) 2019-10-24
EP3557644A1 (en) 2019-10-23
US10879468B2 (en) 2020-12-29
US20190305226A1 (en) 2019-10-03
EP3557644A4 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
US11469377B2 (en) Composition, organic photoelectronic element, and production methods therefor
US11355734B2 (en) Organic photoelectronic element comprising fluorinated polymer
US10879468B2 (en) Composition, organic photoelectronic element, and production method therefor
US10892418B2 (en) Charge injection layer and method for its production as well as organic photoelectronic element and method for its production
US10608183B2 (en) Charge transport layer and organic photoelectronic element
US11437596B2 (en) Organic photoelectronic element having hole transport layer containing fluorinated polymer and organic semiconductor material
EP4112656A1 (en) Fluorine-containing polymer, resin film, and opto-electronic element
WO2021079927A1 (ja) ポーラス膜、有機光電子素子およびポーラス膜の製造方法
TW202204439A (zh) 導電膜、光電子元件及導電膜之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556723

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197015999

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017880314

Country of ref document: EP

Effective date: 20190715