WO2016135997A1 - 窓貼り用粘着フィルム - Google Patents
窓貼り用粘着フィルム Download PDFInfo
- Publication number
- WO2016135997A1 WO2016135997A1 PCT/JP2015/068709 JP2015068709W WO2016135997A1 WO 2016135997 A1 WO2016135997 A1 WO 2016135997A1 JP 2015068709 W JP2015068709 W JP 2015068709W WO 2016135997 A1 WO2016135997 A1 WO 2016135997A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- layer
- adhesive
- window
- adhesive film
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/06—Non-macromolecular additives organic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J153/00—Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
Definitions
- the present invention relates to an adhesive film for pasting a window, and more specifically, a window suitable for water pasting that is pasted onto a window made of glass or the like of a building such as a building or a house or a vehicle such as an automobile using an aqueous construction liquid.
- the present invention relates to a sticking adhesive film.
- a functional film having a predetermined function such as solar shading may be applied to windows made of glass of buildings such as buildings and houses, and windows made of glass of vehicles such as automobiles.
- the functional film has an adhesive layer for attaching to a window made of glass or the like.
- the appearance of the window is deteriorated.
- the evaporation of water through the film is hindered by the metal layer after the construction, and therefore, it is necessary to reduce the amount of water remaining at the time of water pasting as compared with the case where no metal layer is included.
- Patent Document 1 discloses an adhesive film using a self-adhesive composition.
- the self-adhesive composition of Patent Document 1 utilizes the effect that the adhesive force to the glass by the silane coupling agent increases with time, and the adhesive film is not intended to be applied with water, Water drainage during construction is not an issue.
- Patent Document 2 discloses an optical film pressure-sensitive adhesive composition containing an acrylic block copolymer.
- the optical film of Patent Document 2 is attached to an image display device such as a liquid crystal panel and is not suitable for water application.
- this type of optical film has a description of using a hot-melt adhesive. Therefore, water drainability during construction is not a problem.
- the problem to be solved by the present invention is to provide an adhesive film for window pasting that is excellent in drainage and adhesion during water pasting.
- the adhesive film for window pasting according to the present invention includes an acrylic block copolymer and a plasticizer, and has an adhesive layer having an indentation hardness of 3.0 N / mm 2 or less. To do.
- the above-mentioned adhesive film for affixing a window desirably has a water remaining ratio of 4.0% or less after 168 hours have elapsed after being adhered to a glass surface using an aqueous construction solution.
- the hardness of the acrylic block copolymer in durometer type A is desirably 50 or less.
- the solubility parameter of the plasticizer is preferably in the range of 8.0 to 9.9.
- the molecular weight of the plasticizer is preferably in the range of 300 to 500.
- the plasticizer is preferably a phthalic acid ester or an adipic acid ester.
- the plasticizer is preferably one or more of dioctyl phthalate (DOP), dioctyl adipate (DOA), and diisononyl phthalate (DINP).
- the plasticizer content is desirably in the range of 1 to 40 parts by mass with respect to 100 parts by mass of the acrylic block copolymer.
- the adhesive layer preferably further contains a light stabilizer.
- the light stabilizer is preferably a hindered amine compound.
- the thickness of the adhesive layer is desirably in the range of 12 to 50 ⁇ m.
- the above-mentioned adhesive film for pasting a window may further have a metal layer.
- the metal of the metal layer is preferably one or more of silver, silver alloy, aluminum, alloy steel (iron alloy), and gold.
- the said adhesive film for window sticking may have further a high refractive index layer whose refractive index is higher than the said metal layer.
- the high refractive index layer is preferably one or more of a metal oxide thin film and an organic thin film.
- the metal oxide layer is preferably formed by a sol-gel method.
- the said adhesive film for window sticking may have further a base film.
- the thickness of the substrate film is preferably in the range of 25 to 125 ⁇ m.
- the base polymer of the base film is desirably any one of a polyester resin, a polyolefin resin, an acrylic resin, a polycarbonate resin, and a vinyl chloride resin.
- the base film is preferably a biaxially stretched polypropylene film.
- the adhesive film for pasting a window includes the adhesive layer, the metal layer, the organic thin film as a high refractive index layer having a refractive index higher than that of the metal layer, and a base film. Adhesive layer / organic thin film / metal layer / They may be laminated in the order of organic thin film / base film.
- the adhesive layer contains an acrylic block copolymer and a plasticizer, and the indentation hardness of the adhesive layer is 3.0 N / mm 2 or less. Excellent water drainage and adhesion. Since the indentation hardness of the adhesive layer is small, a squeegee is easily applied at the time of water application, the water drainage at the time of water application is improved, and the remaining water between the window adhesive film and the window is reduced.
- an acrylic polymer in the pressure-sensitive adhesive layer it is possible to obtain a pressure-sensitive adhesive film having excellent visible light permeability and excellent optical properties with little haze. Moreover, the strong contact
- acrylic polymers require a large indentation hardness in order to obtain high adhesion.
- reduce the indentation strength to improve water drainage and reworkability at the time of construction reduce the indentation hardness, the cohesive force is low, so once the glass is touched When the position is shifted or peeled off, the adhesive remains on the glass or a thread is pulled between the film and the glass, resulting in a phenomenon that is not optically uniform, making the construction difficult.
- the acrylic polymer is an acrylic block copolymer, even if the indentation hardness is lowered, a high cohesive force can be maintained by the phase separation structure caused by the soft block and hard block in the molecule.
- adhesive force can be adjusted by including a plasticizer in an adhesion layer. At this time, the adhesive strength over time can be controlled by selecting an appropriate plasticizer type and blending amount.
- the plasticizer is compatible with the acrylic block copolymer.
- the plasticizer is a phthalate ester or adipic acid ester, it is excellent in compatibility with the acrylic block copolymer, ensures initial adhesion, and the window-adhesive film is held in the window during water application. Cheap.
- the adhesive force improves with time, and the scattering of fragments is prevented when the window is broken.
- the adhesive force is improved moderately over time, and the position adjustment and reattachment of the adhesive film for window pasting are facilitated.
- the thickness of the pressure-sensitive adhesive layer is in the range of 12 to 50 ⁇ m, it is easy to secure a desired adhesion, easily apply a squeegee during water application, and suppress distortion due to uneven thickness.
- the said adhesive film for window sticking has a metal layer further, it is excellent in solar shading. Since the said adhesive film for window sticking is excellent in the water draining property at the time of water sticking construction, even if it is the structure which has a metal layer, the external appearance deterioration of the window by water remaining is suppressed.
- the adhesive film for window pasting which concerns on this invention contains an acrylic block copolymer and a plasticizer, and has an adhesive layer whose indentation hardness is 3.0 N / mm ⁇ 2 > or less.
- the indentation hardness of the adhesive layer is small, a squeegee is easily applied at the time of water application, the water drainage at the time of water application is improved, and water remaining between the window adhesive film and the window is reduced.
- the indentation hardness of the adhesive layer is measured according to ISO14577-1. It is a measured value by a nanoindentation test using a triangular pyramid indenter.
- the indentation hardness of the adhesive layer is the indentation hardness of the adhesive layer formed on the surface of the base film using a polymer film as a base material.
- the indentation hardness of the adhesive layer is more preferably 2.0 N / mm 2 or less, and still more preferably 1.0 N / mm 2 or less.
- the acrylic block copolymer preferably has a durometer type A hardness of 50 or less. More preferably, it is 40 or less.
- a pressure-sensitive adhesive film having excellent visible light transmission and excellent optical properties with little haze can be obtained. Moreover, the strong contact
- acrylic block copolymers have a narrow molecular weight distribution and low low molecular weight components compared to many other acrylic polymers, and phase separation structures due to intramolecular soft blocks and hard blocks. Therefore, since tackiness is low and high cohesive force can be maintained, problems such as adhesive residue do not occur even if the indentation hardness is low, and good workability (water drainage, reworkability) can be realized.
- Acrylic block copolymer can reduce the low molecular weight components that transfer to the adherend to contaminate the surface or reduce the cohesive force by controlling the molecular weight distribution narrowly, and suppress fluctuations in mechanical properties and adhesion.
- the value of Mw / Mn which is an index of molecular weight distribution, is preferably in the range of 1.0 to 1.5. More preferably, it is within the range of 1.0 to 1.3, and further preferably within the range of 1.0 to 1.2.
- AB type diblock copolymer comprising two polymer blocks A and B rather than a multiblock copolymer in terms of ease of obtaining a phase separation structure caused by soft blocks and hard blocks in the molecule
- an ABA or ABA ′ type triblock copolymer comprising three polymer blocks A and B (and A ′) is preferable.
- a and A '(that is, a high Tg polymer) are hard segments
- B (that is, a low Tg polymer) is a soft segment.
- the methacrylic acid alkyl ester has a higher Tg than the acrylic acid alkyl ester, so the high Tg polymer is generally a methacrylic acid alkyl ester polymer, and the low Tg polymer is generally an acrylic acid alkyl ester polymer. is there. That is, in the case of a triblock body, a methacrylic acid alkyl ester polymer-acrylic acid alkyl ester polymer-methacrylic acid alkyl ester polymer is desirable.
- the indentation hardness can be adjusted by changing the types and ratios of A and A 'and B.
- the acrylic block copolymer may be composed of one kind of acrylic block copolymer, or may be composed of two or more kinds of acrylic block copolymers.
- Examples of one type of acrylic block copolymer include one type selected from diblock copolymers and one type selected from triblock copolymers.
- two or more types of acrylic block copolymers two or more types selected from diblock copolymers, two or more types selected from triblock copolymers, one or more types selected from diblock copolymers And one or more selected from triblock copolymers.
- the diblock copolymer is excellent in flexibility and wettability with the adherend surface, and the triblock copolymer is excellent in cohesive force.
- the polymer block A includes, for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, n-hexyl methacrylate, cyclopentyl methacrylate, cyclohexyl methacrylate, 2-methacrylic acid 2- Polymers such as ethylhexyl, n-octyl methacrylate, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate, isobornyl methacrylate, and the like, in which some or all of the hydrogen atoms of these monomers are substituted with substituents And those obtained by substituting the alkyl or cycloalkyl carbon atom of these monomers with a heteroatom.
- those derived from alkyl methacrylates are preferred, alkyl alkyls having 1 to 4 carbon atoms in alkyl
- the polymer block B includes, for example, methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, t-butyl acrylate, n-hexyl acrylate, cyclopentyl acrylate, cyclohexyl acrylate, 2-acrylate acrylate Polymers such as ethylhexyl, n-octyl acrylate, lauryl acrylate, tridecyl acrylate, and stearyl acrylate, and those obtained by substituting some or all of the hydrogen atoms of these monomers with substituents, Examples thereof include those obtained by substituting carbon atoms of monomeric alkyl or cycloalkyl with heteroatoms.
- a larger number of carbon atoms in the alkyl group tends to have a lower Tg and become a soft segment.
- those derived from an alkyl acrylate ester are preferable, those derived from an alkyl alkyl ester having 3 to 6 carbon atoms in alkyl are more preferable, and those derived from butyl acrylate are more preferable.
- Examples of the substituent include a halogen atom, a hydroxy group, a carboxy group, a nitro group, and a cyano group. Among these, a hydroxy group or a carboxy group is preferable.
- Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, a phosphorus atom, and a boron atom.
- the upper limit of the glass transition temperature of the polymer block A is preferably 140 ° C, more preferably 120 ° C.
- 80 ° C is preferred and 100 ° C is more preferred.
- the upper limit of the glass transition temperature of the polymer block B is preferably ⁇ 20 ° C., more preferably ⁇ 40 ° C.
- the lower limit of the glass transition temperature of the polymer block B is preferably ⁇ 60 ° C., more preferably ⁇ 50 ° C.
- the diblock copolymer may be methyl methacrylate / acrylic.
- examples thereof include butyl acrylate, ethyl methacrylate / butyl acrylate, methyl methacrylate / 2-ethylhexyl acrylate, ethyl methacrylate / 2-ethylhexyl acrylate, and the triblock copolymer includes methyl methacrylate / butyl acrylate / methacrylic acid.
- the adhesive layer contains a plasticizer for adjusting the adhesive strength.
- the adhesive strength over time can be controlled by selecting an appropriate plasticizer type and amount.
- acrylic polymers with low durometer type A hardness, especially acrylic block copolymers the adhesive strength is low and the water drainability during construction is excellent.
- the end of the bonded film may float due to displacement or winding of the film.
- the adhesion force necessary for preventing the glass of the broken window from scattering is not obtained with little increase in adhesion force over time. In such a case, such a problem can be solved by adding a plasticizer.
- the plasticizer is compatible with the acrylic block copolymer.
- the solubility parameter of the plasticizer (SP value according to the Small method) is in the range of 8.0 to 9.9.
- SP value is more preferably in the range of 8.2 to 9.1, and still more preferably in the range of 8.3 to 8.9, from the viewpoints of the above and coating properties and appearance after coating.
- the molecular weight is preferably in the range of 300 to 500.
- the plasticizer and the acrylic block copolymer are excellent in compatibility, and a uniform composition without phase separation can be formed. Thereby, an adhesive surface with less unevenness in terms of adhesion can be formed.
- the molecular weight of the plasticizer is more preferably in the range of 340 to 430, still more preferably in the range of 350 to 400.
- a phthalic acid ester or an adipic acid ester is preferable because it is excellent in compatibility, ensures initial adhesion, and is easy to hold the window-adhering adhesive film on the window during water application.
- phthalic acid esters examples include dioctyl phthalate (DOP), bis (2-butoxyethyl phthalate (DBEP)), and diisononyl phthalate (DINP).
- adipic acid esters examples include dioctyl adipate (DOA), diisodecyl adipate (DIDA), and bis (2-butoxyethyl) adipate (DBEA).
- DOP dioctyl phthalate
- DIPP diisononyl phthalate
- DOA dioctyl adipate
- Diisononyl phthalate DINP
- Dioctyl adipate DOA
- dioctyl adipate DOA is used from the standpoint that the increase in the adhesive strength after 3 to 5 hours is suppressed and the position adjustment and reattachment are easy (excellent reworkability). Particularly preferred.
- the initial adhesiveness is the adhesiveness for 1 hour after construction, and it has excellent workability such as drainage and reworkability by having an appropriate adhesion force. Because of the curl of the film, it is possible to hold the film in which the end of the laminated film is floated on the window. Adhesion force over time of 72 hours or more contributes to the anti-scattering property that prevents debris from scattering when the window is broken.
- the adhesion after 3 to 24 hours is related to the reworkability. From the viewpoint of retention, the initial adhesion strength after 3 to 24 hours is preferably 0.05 N / 25 mm or more. Moreover, it is preferable that it is less than 4.0 N / 25mm from a viewpoint of rework property.
- the adhesion strength over time of 72 hours or more is preferably 4.0 N / 25 mm or more from the viewpoint of scattering prevention.
- the adhesion is measured according to JIS-K-6854-2 under the condition of a tensile speed of 50 mm / min.
- the content of the plasticizer is preferably 1 part by mass or more with respect to 100 parts by mass of the acrylic polymer from the viewpoint of adhesive strength. More preferably, it is 3 parts by mass or more. On the other hand, it is preferably 40 parts by mass or less from the viewpoint of maintaining compatibility with the acrylic polymer and preventing bleeding of the adhesion adjusting agent. From the viewpoint of suppressing an increase in adhesion after 3 to 5 hours, the content is preferably 20 parts by mass or less. Furthermore, it is preferably 10 parts by mass or less from the viewpoint of suppressing an increase in adhesion after 10 to 24 hours.
- the adhesive layer may further contain a light stabilizer. Addition of the light stabilizer improves the weather resistance and suppresses the deterioration of the characteristics over time due to light irradiation or the like. Depending on the type, there is also an effect of increasing the adhesive strength over time. Moreover, the adhesion layer may further contain an antioxidant.
- the light stabilizer examples include benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, triazine ultraviolet absorbers, and HALS (hindered amine light stabilizer).
- HALS hindered amine light stabilizer
- HALS is preferable from the viewpoint of being excellent in the effect of increasing the adhesive force over time.
- benzotriazole ultraviolet absorber examples include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-ditert-butylphenyl) -5-chloro Benzotriazole, 2- (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3′-5′-di-tert-pentyl) ) Benzotriazole, 2- (2′-hydroxy-5′-tert-octylphenyl) benzotriazole, 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) ) Phenyl, 2- (2′-hydroxy-3 ′, 5′-dicumylphenyl) benzotriazole, 2- (2′-hydroxy-3′-tert-butyl-5′-carboxy) Bokishifeniru) benzotri
- Benzophenone UV absorbers include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid 3 hydrate 2-hydroxybenzophenones such as 2-hydroxy-4-n-octyloxybenzophenone and 5,5′-methylenebis (2-hydroxy-4-methoxybenzophenone).
- triazine ultraviolet absorbers examples include 2- (2-hydroxy-4-octoxyphenyl) -4,6-bis (2,4-dimethylphenyl) -s-triazine, 2- (2-hydroxy-4-hexyl) Oxyphenyl) -4,6-diphenyl-s-triazine, 2- (2-hydroxy-4-propoxy-5-methylphenyl) -4,6-bis (2,4-dimethylphenyl) -s-triazine, 2 -[2-hydroxy-4- (3-dodecyloxy-2-hydroxypropyloxy) phenyl] -4,6-bis (2,4-dimethylphenyl) -s-triazine, 2- [2-hydroxy-4- (3-tridecyloxy-2-hydroxypropyloxy) phenyl] -4,6-bis (2,4-dimethylphenyl) -s-triazine, 2- [2-hydroxy-4- (3-tridecyloxy-2-hydroxypropyloxy
- HALS hindered amine light stabilizer
- the content of the light stabilizer is 1 part by mass or more with respect to 100 parts by mass of the acrylic polymer from the viewpoints of desired weather resistance, deterioration of characteristics over time, and thickness of the adhesive layer. preferable. More preferably, it is 2 parts by mass or more. Further, if it is excessively added, there are adverse effects such as precipitation, bleeding, and a decrease in adhesion, and therefore it is preferably 6 parts by mass or less. More preferably, it is 4 parts by mass or less.
- antioxidants examples include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like. In this, a phenolic antioxidant is preferable.
- phenolic antioxidants examples include 2,6-di-tert-butyl-p-cresol, C2-10 alkylene bis (tert-butylphenol) [for example, 2,2′-methylene bis (4-methyl-6- Tert-butylphenol), 4,4'-methylenebis (2,6-di-tert-butylphenol), etc.], tris (di-tert-butyl-hydroxybenzyl) benzene [eg 1,3,5-trimethyl -2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, etc.], C2-10 alkanediol-bis [(di-tert-butyl-hydroxyphenyl) propionate] [Eg, 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] etc.], di- or trioxy 2-4 alkanediol-bis (
- Phosphorus antioxidants include triphenyl phosphite, trisnonylphenyl phosphite, tris (2,4-ditertiarybutylphenyl) phosphite, tris (2,4-ditertiarybutyl-5-methylphenyl) Phosphite, tris [2-tert-butyl-4- (3-tert-butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl] phosphite, tridecyl phosphite, octyl diphenyl phosphite, di (Decyl) monophenyl phosphite, di (tridecyl) pentaerythritol diphosphite, di (nonylphenyl) pentaerythritol diphosphite, bis (2,4-ditertiarybutylphenyl) pentaerythritol
- Sulfur antioxidants include dilauryl 3,3′-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, pentaerythrityl tetrakis (3-lauryl) Thiopropionate) and sulfur compounds such as 2-mercaptobenzimidazole.
- the content of the antioxidant is 0.01 parts by mass or more with respect to 100 parts by mass of the acrylic polymer from the viewpoints of desired weather resistance, deterioration of characteristics over time, and thickness of the adhesive layer. It is preferable. More preferably, it is 0.05 mass part or more. Further, if it is excessively added, there are adverse effects such as precipitation, bleeding, and a decrease in adhesion, so that the amount is preferably 2.0 parts by mass or less. More preferably, it is 1.0 mass part or less.
- the thickness of the pressure-sensitive adhesive layer is preferably 12 ⁇ m or more from the viewpoint of ensuring adhesive strength and ensuring water drainage with a squeegee. More preferably, it is 18 micrometers or more, More preferably, it is 24 micrometers or more. On the other hand, the thickness is preferably 50 ⁇ m or less from the viewpoint of suppressing distortion caused by thickness unevenness and suppressing cost. More preferably, it is 40 ⁇ m or less.
- the base film is preferably a light-transmitting polymer film from the viewpoint of excellent transparency and durability as an adhesive film for window pasting.
- the light transmittance means that the transmittance value in the wavelength region of 360 to 830 nm is 50% or more.
- polyester resins such as polyethylene terephthalate (PET), polyethylene naphtholate (PEN), and polybutylene terephthalate (PBT), polyethylene, polypropylene, Polyolefin resin such as cycloolefin polymer, acrylic resin such as polymethyl methacrylate, polycarbonate (polycarbonate resin), polyvinyl chloride (vinyl chloride resin), ethylene-vinyl acetate copolymer, polystyrene, polyamide , Polymer materials such as polyetheretherketone, polyvinylidene chloride, triacetylcellulose, and polyurethane.
- PET polyethylene terephthalate
- PEN polyethylene naphtholate
- PBT polybutylene terephthalate
- Polyethylene polypropylene
- Polyolefin resin such as cycloolefin polymer, acrylic resin such as polymethyl methacrylate, polycarbonate (polycarbonate resin), polyvinyl chloride (vinyl chloride
- polyester resins polyolefin resins, acrylic resins, polycarbonate resins, and vinyl chloride resins are preferable materials from the viewpoint of excellent transparency, durability, and processability.
- polyethylene terephthalate, polycarbonate, polymethyl methacrylate, polyethylene, polypropylene, and cycloolefin polymer are more preferable materials.
- polyethylene, polypropylene, and cycloolefin polymers are more preferable materials from the viewpoints of excellent flexibility, good drainage by a squeegee, easy construction, economical efficiency (low cost), and the like.
- the thickness of the base film may be appropriately adjusted in consideration of the use, optical characteristics, material type, durability, and the like. For example, it is preferably 25 ⁇ m or more from the viewpoints of being difficult to wrinkle during processing, difficult to break, handling properties when applied as an adhesive film for window pasting, anti-scattering performance and the like. More preferably, it is 38 ⁇ m or more. Further, from the viewpoint of flexibility, handleability, economical efficiency, etc., 125 ⁇ m or less is preferable. More preferably, it is 100 micrometers or less, More preferably, it is 50 micrometers or less.
- 125 micrometers or less are preferable from a viewpoint of ensuring the outstanding softness
- the adhesive film for pasting windows according to the present invention can be suitably used as a film that can be stuck to windows such as glass of buildings such as buildings and houses and windows of vehicles such as automobiles.
- the adhesive film for window pasting which concerns on this invention has a functional layer for providing functions, such as solar radiation shielding, to a window.
- a functional layer may be between a base film and an adhesion layer, and may be on the base film surface opposite to an adhesion layer.
- the window-adhesive adhesive film according to the present invention may further have a metal layer made of a metal thin film.
- the metal layer is made of a metal that easily reflects near infrared rays and far infrared rays, and functions as a solar radiation shielding layer that reflects heat rays (sunlight) and as a heat insulation layer that reflects indoor heating heat to ensure heat insulation. . That is, it has heat insulation and heat insulation.
- the adhesive film for window pasting according to the present invention may further have a high refractive index layer in addition to the metal layer.
- the high refractive index layer can exhibit functions such as increasing light transmittance by being laminated together with the metal layer.
- the high refractive index layer has a higher refractive index than the base film and the metal layer.
- the refractive index refers to the refractive index for light of 633 nm. Examples of the high refractive index layer include metal oxide thin films and organic thin films.
- the metal layer may be one layer or two or more layers. Further, a metal layer and a high refractive index layer may be formed to overlap each other.
- the number of metal layers and high refractive index layers and their positions are not particularly limited. From the viewpoint of light transmittance, a configuration in which metal layers and high refractive index layers are alternately arranged is more preferable.
- the total number of layers of the metal layer and the high refractive index layer may be appropriately set according to demands for optical properties such as light transmittance and solar shading. Considering the film thickness, production cost, etc., it is preferably within the range of 1 to 10 layers. In consideration of optical characteristics, odd-numbered layers are more preferable, and 1-layer, 3-layer, 5-layer, 7-layer, and 9-layer are particularly preferable. Moreover, 3 layers are more preferable from the surface of cost.
- a particularly preferable configuration is shown as follows: metal layer (one layer), high refractive index layer / metal layer (two layers), metal layer / high refractive index layer (two layers), high refractive index layer / metal layer / high Refractive index layer (3 layers), metal layer / high refractive index layer / metal layer (3 layers), high refractive index layer / metal layer / high refractive index layer / metal layer / high refractive index layer (5 layers), metal layer / High refractive index layer / Metal layer / High refractive index layer / Metal layer (5 layers), High refractive index layer / Metal layer / High refractive index layer / Metal layer / High refractive index layer / Metal layer / High refractive index layer ( 7 layers), metal layer / high refractive index layer / metal layer / high refractive index layer / metal layer / high refractive index layer / metal layer (7 layers), and the like.
- a barrier thin film may be formed on one side or both sides of the metal layer.
- the barrier thin film is a thin film accompanying the metal layer, and is counted as one layer together with the metal layer.
- the barrier thin film suppresses diffusion of elements constituting the metal layer into the metal oxide thin film.
- all the high refractive index layers may be made of the same material, or some of the high refractive index layers are made of a material different from the others. Alternatively, all the high refractive index layers may be made of different materials.
- FIG. 1 shows an adhesive film for pasting a window according to an embodiment of the present invention.
- the adhesive film 10 for pasting a window has a functional layer 14, an adhesive layer 16, a polyolefin layer 18, and a hard coat layer 20 in this order on one surface of the base film 12, and the base film 12
- An adhesive layer 22 and a separator 24 are provided on the other surface.
- the functional layer 14 is directly formed on one surface of the base film 12.
- the adhesive layer 16 is a layer that adheres the functional layer 14 and the polyolefin layer 18, and is in contact with both the functional layer 14 and the polyolefin layer 18.
- the hard coat layer 20 is formed directly on the surface of the polyolefin layer 18. Therefore, the adhesive film 10 for pasting a window includes a base film 12, a functional layer 14 in contact with the base film 12, an adhesive layer 16 in contact with the functional layer 14, a polyolefin layer 18 in contact with the adhesive layer 16, and a polyolefin layer 18 And a hard coat layer 20 in contact with the substrate.
- the adhesive layer 22 is for attaching the adhesive film 10 for attaching a window to a window such as glass.
- the adhesive film 10 for pasting a window can be peeled off the separator 24 and stuck to the window via the adhesive layer 22.
- the pressure-sensitive adhesive layer 22 is the pressure-sensitive adhesive layer according to the present invention described above.
- the adhesive layer 22 is directly formed on the other surface of the base film 12.
- the separator 24 is made of, for example, a polymer film.
- the functional layer 14 has a metal layer made of a metal thin film and functions as a solar radiation shielding layer.
- a structure of the functional layer 14 the thing of the 3 layer structure which consists of a high refractive index layer / metal layer / high refractive index layer is mentioned as a suitable thing from the base film 12 side.
- the high refractive index layer a layer made of a metal oxide thin film is preferable.
- a metal of a metal layer silver and a silver alloy are mentioned as a suitable thing.
- As a metal oxide of the high refractive index layer titanium oxide is preferable.
- a barrier thin film may be formed on one surface or both surfaces of the metal thin film.
- a metal oxide thin film is preferable.
- titanium oxide is preferable.
- PET polyethylene terephthalate
- the polyolefin layer 18 is made of a material containing polyolefin.
- the polyolefin layer 18 covers the surface of the functional layer 14 and can prevent salt water from entering the metal thin film from the surface of the functional layer 14.
- the polyolefin layer 18 is preferably formed from a polyolefin film for reasons such as excellent effect of suppressing salt water corrosion from the surface of the functional layer 14.
- polyolefin is a relatively flexible material
- the polyolefin layer 18 is excellent in flexibility and can relieve squeegee stress when the window-adhesive adhesive film 10 is applied to a window.
- the material of the polyolefin layer 18 is not particularly limited as long as it is a polyolefin.
- Examples of the material of the polyolefin layer 18 include polypropylene and polycycloolefin.
- the material of the polyolefin layer 18 is preferably polypropylene from the viewpoint of excellent light transmittance.
- biaxially oriented polypropylene (OPP) is preferred.
- the thickness of the polyolefin layer 18 is preferably 30 ⁇ m or less from the viewpoint of excellent heat insulation (suppressing the heat flow rate low). More preferably, it is 24 ⁇ m or less. Moreover, it is preferable that it is 10 micrometers or more from a viewpoint of being excellent in the effect which relieve
- the adhesive layer 16 can adhere the polyolefin layer 18 on the surface of the functional layer 14. By having the adhesive layer 16 between the functional layer 14 and the polyolefin layer 18, interlayer adhesion between the functional layer 14 and the polyolefin layer 18 can be improved.
- the adhesive layer 16 contains an adhesive.
- the pressure-sensitive adhesive is applied by applying pressure using the adhesiveness of the surface, and is distinguished from an adhesive that exhibits a peeling resistance force by solidification as a pressure-sensitive adhesive.
- Examples of the pressure-sensitive adhesive include acrylic resin-based pressure-sensitive adhesives, silicone resin-based pressure-sensitive adhesives, and urethane-based pressure-sensitive adhesives.
- the adhesive layer 16 is shown, but an adhesive layer containing an adhesive may be used instead of the adhesive layer 16.
- the thickness of the pressure-sensitive adhesive layer 16 is preferably 22.0 ⁇ m or less from the viewpoint of excellent heat insulating properties (suppressing the heat flow rate low). More preferably, it is 5.0 micrometers or less, More preferably, it is 2.0 micrometers or less. Moreover, it is preferable that it is 0.3 micrometer or more from a viewpoint of being excellent in adhesiveness with the polyolefin layer 18, etc. More preferably, it is 0.5 micrometer or more, More preferably, it is 1.0 micrometer or more. Moreover, it is preferable that it is 0.3 micrometer or more from a viewpoint of being excellent in a high temperature creep characteristic. More preferably, it is 0.5 micrometer or more, More preferably, it is 1.0 micrometer or more.
- the hard coat 20 covers the surfaces of the functional layer 14 and the polyolefin layer 18 and can suppress the surface from being scratched.
- the thickness of the hard coat layer 20 is preferably 0.4 ⁇ m or more from the viewpoint of excellent scratch resistance. More preferably, it is 0.6 micrometer or more, More preferably, it is 0.8 micrometer or more. On the other hand, it is preferable that it is 2.0 micrometers or less from a viewpoint of being excellent in heat insulation (suppressing heat transmissivity low). More preferably, it is 1.6 micrometers or less, More preferably, it is 1.0 micrometers or less.
- Suitable examples of the hard coat layer 20 include a layer containing a curable resin and a layer containing an organic-inorganic hybrid material.
- Suitable examples of the curable resin include a silicone resin and an acrylic resin.
- the silicone resin and acrylic resin may be thermosetting, photocurable, or water curable.
- Suitable acrylic resins include acrylic / urethane resins, silicone acrylic resins, acrylic / melamine resins, and the like.
- An organic / inorganic hybrid material is formed of an organic material (raw material of an organic component) and an inorganic material (raw material of an inorganic component), and the organic material and the inorganic material are combined at the nano level or the molecular level.
- Organic-inorganic hybrid materials are, for example, network-like cross-linked structures in which inorganic materials dispersed in organic materials and organic materials undergo a reaction such as a polymerization reaction, and inorganic components are highly dispersed in organic components through chemical bonds. It is what has. Since the hard coat layer 20 is made of an organic-inorganic hybrid material, the interlayer adhesion between the polyolefin layer 18 and the hard coat layer 20 is improved. This is presumably because hardening shrinkage of the hard coat layer 20 is suppressed by adding an inorganic component to the material forming the hard coat layer 20.
- a curable resin or the like can be given as a raw material of the organic component forming the organic-inorganic hybrid material.
- the curable resin include acrylic resin, epoxy resin, and urethane resin. These may be used alone or in combination of two or more.
- a metal compound etc. are mentioned as a raw material of an inorganic component.
- the metal compound include a Si compound, a Ti compound, and a Zr compound. These may be used alone or in combination of two or more.
- the metal compound is a compound containing an inorganic component such as Si, Ti, or Zr, and can be compounded by causing a reaction such as a polymerization reaction with a raw material of the organic component.
- examples of the metal compound include organometallic compounds. Examples of organometallic compounds include silane coupling agents, metal alkoxides, metal acylates, metal chelates, and silazanes.
- the content ratio of the metal component contained in the hard coat layer 20 made of an organic-inorganic hybrid material is preferably 5.9% by mass or more. More preferably, it is 23.7 mass% or more. When the content ratio of the metal component is 5.9% by mass or more, the interlayer adhesion between the polyolefin layer 18 and the hard coat layer 20 is remarkably improved. Further, the content ratio of the metal component contained in the hard coat layer 20 made of an organic-inorganic hybrid material is preferably 41.4% by mass or less. More preferably, it is 35.5 mass% or less. When the content ratio of the metal component is 41.4% by mass or less, the stability of the coating liquid is excellent, and a decrease in light transmittance of the hard coat layer 20 is suppressed.
- the content of the metal component contained in the hard coat layer made of an organic-inorganic hybrid material can be examined using a heating residue analysis, X-ray photoelectron spectroscopy (XPS), or the like.
- XPS X-ray photoelectron spectroscopy
- the surface of the polyolefin layer 18 that is in contact with the adhesive layer 16 or the surface that is in contact with the hard coat layer 20 may be subjected to surface treatment for the purpose of improving interlayer adhesion, if necessary.
- surface treatment include corona treatment.
- an easy adhesion layer may be provided on the surface of the polyolefin layer 18 in contact with the adhesive layer 16 or the surface in contact with the hard coat layer 20 for the purpose of improving interlayer adhesion.
- the easy adhesion layer include a modified polyolefin layer having a polar group and an acrylic resin layer.
- the polar group include those having a heteroatom such as N, O, and S.
- modified polyolefin examples include a polypropylene copolymer having a polar group, polyethylene having a polar group, polyisoprene having a polar group, polyisobutylene having a polar group, and the like.
- the window pasting adhesive film 10 can be manufactured, for example, as follows.
- the functional layers 14 are formed by sequentially stacking the thin films by a predetermined thin film forming method so as to have a predetermined laminated structure. Thereafter, heat treatment such as post-oxidation is performed as necessary. Thereafter, an adhesive is applied to the surface of the functional layer 14 to form the adhesive layer 16. Thereafter, a polyolefin film is placed on the surface of the adhesive layer 16 and pressure is applied to form the polyolefin layer 18.
- the hard coat layer 20 is formed by applying a curable resin or an organic-inorganic hybrid material on the surface of the polyolefin layer 18 to form a coating film, and performing a curing process on the formed coating film. be able to.
- the adhesive may be cured after coating the surface of the functional layer 14 and disposing a polyolefin film on the coating film.
- the adhesive layer 22 can be formed by applying an adhesive to the surface of the base film 12 or the surface of the separator 24.
- FIG. 2 shows another window sticking adhesive film according to an embodiment of the present invention.
- the adhesive film 30 for pasting a window has a functional layer 14, an adhesive layer 22, and a separator 24 in this order on one surface of the substrate film 12, and a hard layer on the other surface of the substrate film 12.
- a coat layer 20 is provided. That is, the adhesive film 30 for pasting a window includes the base film 12, the functional layer 14 in contact with the base film 12, the adhesive layer 22 in contact with the functional layer 14, and the separator 24 in contact with the adhesive layer 22 in this order. Have.
- the hard coat layer 20 is directly formed on the other surface of the base film 12. The structure of each layer is the same as that of the adhesive film 10 for window pasting shown in FIG.
- Still another window sticking adhesive film includes the window sticking adhesive film 40 shown in FIG.
- the base film 12 is made of a polyolefin film
- the high refractive index layer of the functional layer 14 is made of an organic thin film, compared to the adhesive film for window pasting 30 shown in FIG.
- the functional layer 14 has a three-layer structure composed of an organic thin film / metal layer / organic thin film from the base film 12 side). The structure other than this is the same as that of the adhesive film 30 for window pasting shown in FIG.
- polyolefin is a relatively flexible material
- the polyolefin film is excellent in flexibility and can relieve squeegee stress when the window sticking adhesive film 40 is applied to a window.
- the film is a thin film, and generally has a thickness of 200 ⁇ m or less or 250 ⁇ m or less. What is necessary is just to have the softness
- the film is generally delivered as a roll.
- the polyolefin film is preferably 25 ⁇ m or more from the viewpoints of processability, handling properties as an adhesive film for window pasting, anti-scattering performance and the like. More preferably, it is 38 ⁇ m or more. Moreover, 125 micrometers or less are preferable from a viewpoint of ensuring the outstanding softness
- Examples of the polyolefin of the polyolefin film include chain polyolefin and cyclic polyolefin.
- Examples of the chain polyolefin include polyethylene, polypropylene, and ethylene- ⁇ olefin copolymer.
- Examples of the cyclic polyolefin include cycloolefin polymers.
- polypropylene is preferable from the viewpoints of light transmittance, durability, workability, and the like. In particular, from the viewpoint of light transmittance and the like, biaxially oriented polypropylene (OPP) is preferable.
- OPP biaxially oriented polypropylene
- the polyolefin film may be subjected to surface treatment on one or both surfaces for the purpose of improving interlayer adhesion with the functional layer 14 or the hard coat layer 20 in contact therewith. Further, for the purpose of improving interlayer adhesion, an easy adhesion layer may be provided on one or both surfaces thereof. Further, for the purpose of improving interlayer adhesion, a surface treatment may be performed on one surface, and an easy adhesion layer may be provided on the other surface. Examples of such surface treatment include corona treatment and plasma treatment. Thereby, a hydroxyl group and an oxygen group are formed on the surface of the polyolefin film. Examples of the easy adhesion layer include a modified polyolefin layer having a polar group and an acrylic resin layer.
- Examples of the polar group include those having a heteroatom such as N, O, and S.
- Examples of the modified polyolefin include a polypropylene copolymer having a polar group, polyethylene having a polar group, polyisoprene having a polar group, polyisobutylene having a polar group, and the like.
- a polyolefin film has a surface treatment applied to one or both surfaces, an easy-adhesion layer is provided on one or both surfaces, or a surface on one surface thereof. It is preferable that the process is performed and the easily bonding layer is provided in the other surface. In particular, it is preferable that one or both surfaces be subjected to surface treatment.
- the adhesion with the functional layer 14 tends to be poor as compared with a base film made of PET film.
- the adhesive film 40 for pasting a window pasted at the time of replacement is peeled off from the window, the adhesive is peeled off between the functional layer 14 and the base film 12 made of a polyolefin film (the adhesive layer 22 and the functional layer 14 are windows).
- the adhesion can be adjusted by selecting the material of the adhesive layer 22, the type of additive such as a plasticizer, the amount of addition, the surface treatment of the base film 12 with plasma or corona, and the like.
- the base film 12 is made of a polyolefin film
- the adhesion with the hard coat layer 20 tends to be poor as compared with a base film made of PET film.
- the hard-coat layer 20 is comprised from an organic inorganic hybrid material.
- the hard coat layer 20 is composed of an organic-inorganic hybrid material, the interlayer adhesion between the polyolefin film and the hard coat layer 20 is improved. This is presumably because curing shrinkage of the hard coat layer 20 was suppressed by adding an inorganic component to the material forming the hard coat layer 20.
- the curing shrinkage of the hard coat layer 20 affects the distortion of the adhesive film 40 for window pasting
- the curing shrinkage of the hard coat layer 20 is caused by the polyolefin film and the functional layer 14 included in the adhesive film 40 for window pasting. It also affects interlayer adhesion. That is, by suppressing the curing shrinkage of the hard coat layer 20, the distortion of the window pasting adhesive film 40 is reduced, and as a result, the stress to be peeled between the polyolefin film and the functional layer 14 is reduced. Therefore, the hard coat layer 20 made of an organic-inorganic hybrid material suppresses deterioration of interlayer adhesion between the polyolefin film and the functional layer 14 and improves the condition.
- the base film 12 is made of a PET film, and the stiffness is strong.
- the PET film easily absorbs infrared rays due to its functional group, but when the adhesive film 10 for pasting a window is affixed to the indoor side of the window, the PET film is disposed on the outdoor side of the functional layer 14, so Heating heat is reflected by the metal layer of the functional layer 14 before being absorbed by the PET film, so that the heat insulation can be made excellent. Therefore, the adhesive film 10 for pasting a window is excellent in heat insulation and heat insulation (insulation heat type).
- the adhesive film 20 for pasting a window shown in FIG. 2 is strong because the base film 12 is made of a PET film, and is suitable for pasting a window.
- the PET film is disposed on the indoor side of the functional layer 14, so that the heat insulating property is inferior to the adhesive film 10 for pasting a window shown in FIG. It becomes.
- the adhesive film 20 for pasting a window is excellent in cost and heat shielding properties (low cost heat shielding type).
- the adhesive film 30 for pasting a window shown in FIG. 3 has little infrared absorption because the base film 12 is made of a polyolefin film.
- a polyolefin film is disposed on the indoor side of the functional layer 14, but since the infrared ray absorption is small, reflection by the metal layer of the functional layer 14 is not hindered. . For this reason, heat insulation can be made excellent.
- the adhesive film 30 for pasting a window is excellent in cost, heat insulation, and heat insulation (low cost insulation heat type).
- the adhesive film for pasting windows according to the present invention is stuck to a window through an adhesive layer. At this time, it may be applied to the adherend without using the application liquid, but it is better to apply the application liquid using the application liquid.
- the construction liquid it is easy to adjust the application position at the time of construction, and it is easy to remove bubbles and wrinkles generated between the window and the adhesive film for window pasting according to the present invention. Become.
- the adhesive surface of the adhesive film is matched to the surface of the adherend to which the construction liquid is applied.
- the construction position of the pressure-sensitive adhesive film is adjusted while sliding the pressure-sensitive adhesive film with respect to the adherend using the construction liquid.
- the application liquid is applied from the outside of the adhesive film, and air bubbles generated between the adhesive film and the adherend are extruded with a jig such as a squeegee without causing damage to the adhesive film through the application liquid. Stretch the wrinkles generated in the adhesive film.
- the construction liquid between the adhesive film and the adherend and the construction liquid on the outer surface of the adhesive film are discharged.
- the construction liquid may be a liquid containing an additive that imparts slipperiness such as a surfactant such as a neutral detergent, or water that does not contain an additive that imparts slipperiness such as a surfactant (or water Only).
- a surfactant such as a neutral detergent
- water that does not contain an additive that imparts slipperiness such as a surfactant (or water Only).
- other additives include alcohols.
- Construction fluids containing additives that impart slipperiness, such as surfactants are excellent in terms of adjusting the above-mentioned sticking position and removing bubbles from wrinkles, etc. Excellent in that it is difficult to give.
- the construction liquid containing the additive tends to remain at the interface between the adhesive film and the glass, that is, the poor appearance of the window due to poor drainage.
- a conventional functional film uses an adhesive having a high elastic modulus. For this reason, at the time of water pasting construction using a water-based construction liquid, unevenness in the transmission of the squeegee force is likely to occur, a place where the necessary force is not applied occurs, and water remains between the adhesive film and the window. . This deteriorates the appearance of the window. In particular, in a functional film having a metal layer, the evaporation of water through the film is hindered by the metal layer after the construction, and therefore, it is necessary to reduce the amount of water remaining at the time of water pasting as compared with the case where the metal layer is not included.
- the indentation hardness is 3.0 N / m ⁇ m 2 or less
- the adhesive layer containing an acrylic polymer has a slip property such as a surfactant. Even when it is constructed with a liquid containing an additive for imparting water, or when it has a metal layer and the remaining water tends to be a problem, good drainage and workability can be realized.
- it can be set as the adhesive film which was excellent in visible light transmission by including an acryl-type polymer, and was excellent in the optical characteristic with few hazes.
- adhesion power which can ensure the scattering prevention of glass can be provided.
- the adhesive film for window pasting having a metal layer is drained from the surface after water pasting, that is, the evaporation of moisture through the film is hindered by the metal layer, but according to the adhesive film for window pasting according to the present invention, Since it is excellent in water drainage at the time of water pasting construction, deterioration of the appearance of the window due to water residue can be suppressed even in the configuration having a metal layer.
- the adhesive film for window pasting having a polyolefin layer does not have good drainage from the surface after water pasting, but according to the adhesive film for window pasting according to the present invention, Moreover, since it is excellent in the water drainage property at the time of water pasting construction, even if it is the structure which has a polyolefin layer, the external appearance deterioration of the window by water remaining is suppressed.
- the adhesive film for window pasting having a high refractive index layer made of a metal oxide thin film is prevented from draining from the surface after water pasting by the metal oxide thin film, but according to the adhesive film for window pasting according to the present invention.
- the metal oxide thin film is formed by a sol-gel method, the water permeability is higher than that of a metal oxide thin film formed by a physical method such as sputtering due to formation of holes due to curing shrinkage, Water drainage from the surface after applying water is improved. Therefore, water can be expected to escape from the surface after the water application.
- the window pasting adhesive film 30 shown in FIG. 2 has relatively few layer structures. Although the window sticking adhesive film 40 shown in FIG. 3 has a relatively small layer structure, it has a polyolefin layer. Therefore, among these, regarding the water drainage from the surface after the water pasting construction, the window pasting adhesive film 30 shown in FIG. 2 is the best, and the window pasting adhesive film 40 shown in FIG.
- metal oxide thin film metal thin film
- barrier thin film organic thin film of the functional layer 14
- the metal oxide thin film can be formed by either a vapor phase method or a liquid phase method.
- the liquid phase method does not need to be evacuated or use a large electric power as compared with the gas phase method. Therefore, it is advantageous in terms of cost, and is excellent in productivity.
- the sol-gel method can be preferably used from the viewpoint of easily leaving the organic component.
- the metal oxide thin film is mainly composed of the metal oxide described above, but may contain an organic component in addition to the metal oxide. It is because the softness
- this type of organic component include components derived from a material for forming a metal oxide thin film, such as a component derived from a starting material of a sol-gel method.
- an organic metal compound such as a metal alkoxide, metal acylate, metal chelate or the like of a metal oxide, or the above organic metal compound
- additives such as an organic compound (described later) that reacts to form an ultraviolet-absorbing chelate can be exemplified. These may be contained alone or in combination of two or more.
- the lower limit of the content of the organic component contained in the metal oxide thin film is preferably 3% by mass or more, more preferably 5% by mass or more, and still more preferably, from the viewpoint of easily imparting flexibility. It is good that it is 7% by mass or more.
- the upper limit of the content of the organic component contained in the metal oxide thin film is preferably 30% by mass or less, from the viewpoint of easily ensuring a high refractive index and easily ensuring solvent resistance. More preferably, it is 25 mass% or less, More preferably, it is good in it being 20 mass% or less.
- the organic content can be examined using X-ray photoelectron spectroscopy (XPS) or the like. Moreover, the kind of said organic content can be investigated using infrared spectroscopy (IR) (infrared absorption analysis) etc.
- a coating liquid containing a metal organometallic compound that constitutes a metal oxide is coated in a thin film shape, and this is dried as necessary to obtain a metal oxide.
- examples include a method of forming a precursor thin film of a thin film and then hydrolyzing and condensing an organometallic compound in the precursor thin film to synthesize an oxide of a metal constituting the organometallic compound. .
- a metal oxide thin film containing a metal oxide as a main component and containing an organic component can be formed.
- the coating liquid can be prepared by dissolving the organometallic compound in a suitable solvent.
- the organometallic compound include organic compounds of metals such as titanium, zinc, indium, tin, magnesium, aluminum, zirconium, niobium, cerium, silicon, hafnium, and lead. Can do. These may be contained alone or in combination of two or more.
- organometallic compound examples include metal alkoxides, metal acylates, and metal chelates of the above metals.
- a metal chelate is preferable from the viewpoint of stability in air.
- organometallic compound a metal organic compound that can be a metal oxide having a high refractive index can be preferably used.
- organometallic compounds include organic titanium compounds.
- organic titanium compound examples include M—O—R bonds such as tetra-n-butoxytitanium, tetraethoxytitanium, tetra-i-propoxytitanium, and tetramethoxytitanium (R represents an alkyl group).
- M represents a titanium atom
- an acylate of titanium having a MO—CO—R bond R represents an alkyl group and M represents a titanium atom
- titanium chelates such as diisopropoxy titanium bisacetylacetonate, dihydroxy bis lactato titanium, diisopropoxy bis triethanolaminato titanium, diisopropoxy bis ethyl acetoacetate titanium, and the like. These may be used alone or in combination. These may be either monomers or multimers.
- the content of the organometallic compound in the coating liquid is preferably 1 to 20% by mass, more preferably 3 to 3% from the viewpoints of film thickness uniformity of the coating film and film thickness that can be applied at one time. It is good that it is in the range of 15% by mass, more preferably 5-10% by mass.
- the solvent for dissolving the organometallic compound examples include alcohols such as methanol, ethanol, propanol, butanol, heptanol and isopropyl alcohol, organic acid esters such as ethyl acetate, acetonitrile, acetone and methyl ethyl ketone.
- organic acid esters such as ethyl acetate, acetonitrile, acetone and methyl ethyl ketone.
- ketones such as tetrahydrofuran, cycloethers such as dioxane, acid amides such as formamide and N, N-dimethylformamide, hydrocarbons such as hexane, and aromatics such as toluene. These may be used alone or in combination.
- the amount of the solvent is preferably 5 to 100 times the amount of the solid content mass of the organometallic compound from the viewpoint of the film thickness uniformity of the coating film and the film thickness that can be applied at one time. More preferably, the amount is 7 to 30 times, more preferably 10 to 20 times.
- the amount of the solvent is more than 100 times, the film thickness that can be formed by a single coating becomes thin, and there is a tendency that many coatings are required to obtain a desired film thickness.
- the amount is less than 5 times, the film thickness becomes too thick, and there is a tendency that the hydrolysis / condensation reaction of the organometallic compound does not proceed sufficiently. Therefore, the amount of the solvent is preferably selected in consideration of these.
- the coating liquid is prepared, for example, by mixing an organometallic compound weighed so as to have a predetermined ratio, an appropriate amount of solvent, and other components added as necessary, with a stirring means such as a stirrer for a predetermined time. It can be prepared by a method such as stirring and mixing. In this case, the components may be mixed at a time or may be mixed in a plurality of times.
- a coating method of the coating liquid from the viewpoint of easy uniform coating, a micro gravure method, a gravure method, a reverse roll coating method, a die coating method, a knife coating method, a dip coating method, a spin coating method, a bar coating method, and the like.
- Various wet coating methods such as a coating method can be exemplified as suitable ones. These may be appropriately selected and used, and one or more may be used in combination.
- the coated coating liquid when dried, it may be dried using a known drying apparatus.
- Specific examples of the drying conditions include a temperature range of 80 ° C. to 120 ° C., Examples include a drying time of 0.5 minute to 5 minutes.
- the means for hydrolyzing and condensing the organometallic compound in the precursor thin film include various means such as irradiation with light energy such as ultraviolet rays, electron beams, and X-rays, and heating. can do. These may be used alone or in combination of two or more. Among these, preferably, irradiation with light energy, particularly ultraviolet irradiation can be suitably used.
- sol-gel method using light energy at the time of sol-gel curing is adopted, a rough metal oxide thin film can be obtained as compared with a metal oxide thin film formed by sputtering or the like. Therefore, when water is applied to the window glass of a building, even when water remains between the window glass, good water drainage can be obtained and the water application workability can be improved. Because there is an advantage.
- ultraviolet irradiator used at this time include a mercury lamp, a xenon lamp, a deuterium lamp, an excimer lamp, a metal halide lamp, and the like. These may be used alone or in combination of two or more.
- the amount of light energy to be irradiated can be variously adjusted in consideration of the kind of organometallic compound mainly forming the precursor thin film, the thickness of the precursor thin film, and the like.
- the amount of light energy to be irradiated is too small, it is difficult to increase the refractive index of the metal oxide thin film.
- the amount of light energy to be irradiated is excessively large, the light transmissive polymer film may be deformed by heat generated during the light energy irradiation. Therefore, these should be noted.
- the amount of light is preferably from 300 to 8000 mJ at a measurement wavelength of 300 to 390 nm from the viewpoint of the refractive index of the metal oxide thin film, damage to the light transmissive polymer film, and the like.
- / Cm 2 more preferably in the range of 500 to 5000 mJ / cm 2 .
- light energy irradiation When light energy irradiation is used as a means for hydrolyzing and condensing the organometallic compound in the precursor thin film, it reacts with the organometallic compound in the coating liquid described above to absorb light (for example, absorbs ultraviolet rays). It is preferable to add an additive such as an organic compound that forms a chelate.
- an additive such as an organic compound that forms a chelate.
- additives such as ⁇ diketones, alkoxy alcohols, alkanolamines, and the like. More specifically, examples of the ⁇ diketones include acetylacetone, benzoylacetone, ethyl acetoacetate, methyl acetoacetate, diethyl malonate, and the like.
- alkoxy alcohols include 2-methoxyethanol, 2-ethoxyethanol, 2-methoxy-2-propanol and the like.
- alkanolamines include monoethanolamine, diethanolamine, and triethanolamine. These may be used alone or in combination.
- ⁇ diketones are particularly preferred, and acetylacetone can be most preferably used.
- the blending ratio of the additive is preferably 0.1 to 1 with respect to 1 mol of the metal atom in the organometallic compound from the viewpoint of easiness of increasing the refractive index and stability in the state of the coating film. It should be in the range of 2 moles, more preferably 0.5 to 1.5 moles.
- the film thickness of the metal oxide thin film can be adjusted in consideration of solar shading, visibility, reflection color, and the like.
- the lower limit value of the thickness of the metal oxide thin film is preferably 10 nm or more, more preferably 15 nm, from the viewpoints of easily suppressing the red and yellow coloring of the reflected color and obtaining high transparency. As described above, more preferably, it is 20 nm or more.
- the upper limit value of the thickness of the metal oxide thin film is preferably 90 nm or less, more preferably 85 nm, from the viewpoints of easily suppressing the green color of the reflected color and easily obtaining high transparency. Hereinafter, more preferably, it is 80 nm or less.
- Metals of the metal thin film include metals such as silver, gold, platinum, copper, aluminum, chromium, titanium, zinc, tin, nickel, cobalt, niobium, tantalum, tungsten, zirconium, lead, palladium, and indium.
- An alloy etc. are mentioned. These may be contained alone or in combination of two or more.
- the metal of the metal thin film silver or a silver alloy is preferable from the viewpoint of being excellent in visible light transmittance, heat ray reflectivity, conductivity, and the like when laminated. More preferably, from the viewpoint of improving durability against environment such as heat, light, and water vapor, the main component is silver, and at least one metal element such as copper, bismuth, gold, palladium, platinum, and titanium is included. It should be a silver alloy. More preferably, a silver alloy containing copper (Ag—Cu alloy), a silver alloy containing bismuth (Ag—Bi alloy), a silver alloy containing titanium (Ag—Ti alloy), or the like is preferable. This is because there are advantages such as a large silver diffusion suppression effect and cost advantage.
- the other elements include elements that can be dissolved in Ag such as Mg, Pd, Pt, Au, Zn, Al, Ga, In, Sn, Sb, Li, Cd, Hg, and As.
- Ag-Cu alloys such as Be, Ru, Rh, Os, Ir, Bi, Ge, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Si, Tl, Pb, etc.
- Element which can be precipitated as a single phase in Y La, Ce, Nd, Sm, Gd, Tb, Dy, Ti, Zr, Hf, Na, Ca, Sr, Ba, Sc, Pr, Eu, Ho, Er, Tm
- elements capable of precipitating intermetallic compounds with Ag such as Yb, Lu, S, Se, and Te. These may be contained alone or in combination of two or more.
- the lower limit of the copper content is preferably 1 atomic% or more, more preferably 2 atomic% or more, and even more preferably 3 atomic% or more, from the viewpoint of obtaining the effect of addition. Good to be.
- the upper limit of the copper content is preferably 20 atomic% or less, more preferably 10 atomic%, from the viewpoint of manufacturability such as easy to ensure high transparency and easy production of a sputtering target. Hereinafter, it is more preferable that it is 5 atomic% or less.
- the other elements include elements that can be dissolved in Ag such as Mg, Pd, Pt, Au, Zn, Al, Ga, In, Sn, Sb, Li, Cd, Hg, and As. ; Be, Ru, Rh, Os, Ir, Cu, Ge, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Si, Tl, Pb, etc.
- the lower limit of the bismuth content is preferably 0.01 atomic% or more, more preferably 0.05 atomic% or more, and still more preferably, from the viewpoint of obtaining the effect of addition. It may be 0.1 atomic% or more.
- the upper limit of the bismuth content is preferably 5 atomic% or less, more preferably 2 atomic% or less, and still more preferably 1 atomic% from the viewpoint of manufacturability such as easy production of a sputtering target. It is good to be below.
- the other elements include elements that can be dissolved in Ag such as Mg, Pd, Pt, Au, Zn, Al, Ga, In, Sn, Sb, Li, Cd, Hg, and As. ; Be-Ru, Rh, Os, Ir, Cu, Ge, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Si, Tl, Pb, Bi, etc., Ag-Ti system Elements that can be precipitated as a single phase in the alloy; Y, La, Ce, Nd, Sm, Gd, Tb, Dy, Zr, Hf, Na, Ca, Sr, Ba, Sc, Pr, Eu, Ho, Er, Tm Examples include elements capable of precipitating intermetallic compounds with Ag such as Yb, Lu, S, Se, and Te. These may be contained alone or in combination of two or more.
- the lower limit value of the titanium content is preferably 0.01 atomic% or more, more preferably 0.05 atomic% or more, and still more preferably, from the viewpoint of obtaining an addition effect. It may be 0.1 atomic% or more.
- the upper limit of the content of titanium is preferably 2 atomic% or less, more preferably 1.75 atomic% or less, and still more preferably, from the viewpoint that a complete solid solution is easily obtained when it is formed into a film. Is preferably 1.5 atomic% or less.
- the ratio of subelements such as copper, bismuth and titanium can be measured using ICP analysis. Further, the metal (including alloy) constituting the metal thin film may be partially oxidized.
- the lower limit of the thickness of the metal thin film is preferably 3 nm or more, more preferably 5 nm or more, and further preferably 7 nm or more, from the viewpoints of stability and heat ray reflectivity.
- the upper limit value of the thickness of the metal thin film is preferably 30 nm or less, more preferably 20 nm or less, and further preferably 15 nm or less, from the viewpoint of transparency of visible light, economy, and the like.
- a method of forming the metal thin film specifically, for example, physical vapor deposition (PVD) such as vacuum deposition, sputtering, ion plating, MBE, laser ablation, thermal CVD, etc.
- PVD physical vapor deposition
- a vapor phase method such as a chemical vapor deposition method (CVD) such as a plasma CVD method.
- CVD chemical vapor deposition method
- the metal thin film may be formed using any one of these methods, or may be formed using two or more methods.
- sputtering methods such as DC magnetron sputtering method and RF magnetron sputtering method can be preferably used from the viewpoint of obtaining a dense film quality and relatively easy film thickness control.
- the metal thin film may be oxidized within a range that does not impair the function of the metal thin film due to post-oxidation described later.
- the barrier thin film associated with the metal thin film mainly has a barrier function that suppresses diffusion of elements constituting the metal thin film into the metal oxide thin film. Moreover, by interposing between a metal oxide thin film and a metal thin film, it can also contribute to the improvement of adhesiveness of both.
- the barrier thin film may have discontinuous portions such as floating islands as long as the diffusion can be suppressed.
- the metal oxide constituting the barrier thin film include, for example, titanium oxide, zinc oxide, indium oxide, tin oxide, indium and tin oxide, and magnesium oxide. And aluminum oxide, zirconium oxide, niobium oxide, cerium oxide, and the like. These may be contained alone or in combination of two or more. Further, these metal oxides may be double oxides in which two or more metal oxides are combined.
- the barrier thin film may contain inevitable impurities in addition to the metal oxide.
- the barrier thin film is mainly composed of a metal oxide contained in the metal oxide thin film from the viewpoint of excellent diffusion suppression effect of the metal constituting the metal thin film and excellent adhesion. good.
- the barrier thin film is a titanium oxide thin film mainly composed of an oxide of Ti that is a metal contained in the TiO 2 thin film. Good to have.
- the barrier thin film when the barrier thin film is a titanium oxide thin film, the barrier thin film may be a thin film formed as titanium oxide from the beginning, a thin film formed by post-oxidizing a metal Ti thin film, or It may be a thin film formed by post-oxidizing a partially oxidized titanium oxide thin film.
- the barrier thin film is mainly composed of a metal oxide in the same manner as the metal oxide thin film, but is set to be thinner than the metal oxide thin film. This is because the diffusion of the metal constituting the metal thin film occurs at the atomic level, so that it is not necessary to increase the film thickness to a sufficient level to ensure a sufficient refractive index. Further, by forming the thin film, the film formation cost can be reduced correspondingly, and the production cost can be reduced.
- the lower limit value of the thickness of the barrier thin film is preferably 1 nm or more, more preferably 1.5 nm or more, and further preferably 2 nm or more from the viewpoint of easily ensuring barrier properties.
- the upper limit value of the thickness of the barrier thin film is preferably 15 nm or less, more preferably 10 nm or less, and still more preferably 8 nm or less, from the viewpoint of economy and the like.
- the lower limit value of the atomic molar ratio Ti / O of titanium to oxygen in the titanium oxide is 1.0 / 4.0 or more from the viewpoint of barrier properties and the like.
- the upper limit value of the atomic molar ratio Ti / O of titanium to oxygen in the titanium oxide is preferably 1.0 / 0.5 or less, more preferably 1.0 / 0.7 or less, more preferably 1.0 / 1.0 or less, even more preferably 1.0 / 1.2 or less, most preferably 1 0.0 / 1.5 or less is preferable.
- the Ti / O ratio can be calculated from the composition of the thin film.
- energy dispersive X-ray fluorescence analysis EDX
- EDX energy dispersive X-ray fluorescence analysis
- a test piece having a thickness of 100 nm or less in the cross-sectional direction of the functional layer including the thin film to be analyzed is prepared using an ultrathin section method (microtome) or the like.
- the positions of the functional layer and the thin film are confirmed by a transmission electron microscope (TEM) from the cross-sectional direction.
- TEM transmission electron microscope
- an electron beam is emitted from the electron gun of the EDX apparatus and is incident on the vicinity of the central portion of the thin film to be analyzed.
- Electrons incident from the surface of the test specimen enter to a certain depth and generate various electron beams and X-rays. By detecting and analyzing characteristic X-rays at this time, the constituent elements of the thin film can be analyzed.
- a vapor phase method can be suitably used from the viewpoint that a dense film can be formed, and a thin film of about several nm to several tens of nm can be formed with a uniform film thickness.
- the vapor phase method include physical vapor deposition methods (PVD) such as vacuum deposition, sputtering, ion plating, MBE, and laser ablation, thermal CVD, and plasma CVD. Examples thereof include chemical vapor deposition (CVD) and the like.
- PVD physical vapor deposition methods
- CVD chemical vapor deposition
- a sputtering method such as a DC magnetron sputtering method or an RF magnetron sputtering method is preferable from the viewpoint of excellent adhesion at the film interface as compared with a vacuum deposition method and the like and easy control of the film thickness. Can be used.
- Each barrier thin film included in the functional layer may be formed using any one of these vapor phase methods, or may be formed using two or more methods. May be.
- the barrier thin film may be formed as a metal oxide thin film from the beginning by using the above-described vapor phase method, or a metal thin film or a partially oxidized metal oxide thin film is once formed. Later, it can be formed by oxidizing it afterwards.
- the partially oxidized metal oxide thin film refers to a metal oxide thin film that has room for further oxidation.
- a gas containing oxygen as a reactive gas is mixed with an inert gas such as argon or neon as a sputtering gas, and the metal and oxygen are mixed.
- a thin film may be formed while reacting (reactive sputtering method).
- the oxygen concentration in the atmosphere is the above-described film thickness range. The optimum ratio may be appropriately selected in consideration of the above.
- the functional layer is formed on the light-transmitting substrate, and then the function is performed.
- the metal thin film in the layer or the partially oxidized metal oxide thin film may be post-oxidized.
- the sputtering method or the like may be used for forming the metal thin film, and the reactive sputtering method or the like described above may be used for forming the partially oxidized metal oxide thin film.
- examples of the post-oxidation method include heat treatment, pressure treatment, chemical treatment, and natural oxidation.
- heat treatment is preferable from the viewpoint of enabling post-oxidation relatively easily and reliably.
- examples of the heat treatment include, for example, a method in which a light transmissive polymer film having the above-described functional layer is present in a heating atmosphere such as a heating furnace, a method of immersing in warm water, a method of microwave heating, Examples thereof include a method of energizing and heating a metal thin film, a partially oxidized metal oxide thin film, and the like. These may be performed in combination of one or two or more.
- the heating conditions at the time of the heat treatment are, for example, preferably 30 ° C. to 60 ° C., more preferably 32 ° C. to 57 ° C., and still more preferably 35 ° C. to 55 ° C.
- the heating time is preferably selected from 5 days or longer, more preferably 10 days or longer, and even more preferably 15 days or longer. This is because the post-oxidation effect, the thermal deformation / fusing suppression of the light transmissive polymer film 12 and the like are good within the above heating condition range.
- the heating atmosphere at the time of the heat treatment is preferably an atmosphere containing oxygen or moisture, such as the air, a high oxygen atmosphere, or a high humidity atmosphere. Particularly preferably, it is in the air from the viewpoint of manufacturability and cost reduction.
- the metal oxide thin film is included in the functional layer, since the moisture and oxygen contained in the metal oxide thin film are consumed during the post-oxidation, the metal oxide is exposed to sunlight.
- the thin film becomes difficult to chemically react.
- the metal oxide thin film is formed by a sol-gel method, the water and oxygen contained in the metal oxide thin film are consumed during post-oxidation.
- the starting material (metal alkoxide, etc.) by the sol-gel method remaining in the thin film and moisture (adsorbed water, etc.), oxygen, etc. are difficult to undergo sol-gel curing reaction by sunlight. Therefore, it becomes possible to relieve internal stress caused by volume change such as curing shrinkage, and it becomes easy to suppress interfacial peeling of the functional layer, and to improve durability against sunlight.
- the organic thin film has a refractive index of 1.58 for the light of 633 nm of the polyethylene terephthalate film, so the refractive index of the organic thin film for the light of 633 nm is at least 1.59 or more. , Preferably 1.60 or more. More preferably, it is 1.65 or more.
- the organic thin film is made of a polymer having a higher refractive index than that of the metal thin film and the base film and having a functional group containing at least one element selected from N, S, and O. Further, among N, S, and O, a polymer containing N and S is preferable in that the refractive index tends to be relatively high.
- Examples of the functional group containing N include a carbazole group, an imide group, and a nitrile group.
- Examples of the polymer having a functional group containing N include polyvinyl carbazole (PVK) and polyimide.
- Examples of the functional group containing S include a sulfonyl group (—SO 2 —), a thiol group, and a thioester group.
- Examples of the polymer having a functional group containing S include polyethersulfone (PES), polysulfone, and polyphenylsulfone.
- Examples of the functional group containing O include a carboxyl group, an ester group, a ketone group, and a hydroxyl group. And as a polymer which has a functional group containing O, an epoxy resin etc. are mentioned.
- the polymer has a functional group including N, S, and O, those having a refractive index of less than 1.60 with respect to light of 633 nm cannot obtain good optical characteristics as a heat ray cut film, so that an organic thin film It cannot be used as a material.
- Isocyanate compounds are difficult to use as organic thin film materials from the standpoint of toxicity.
- Polyurethane resins are vulnerable to heat and are difficult to use as materials for heat ray cut films that are exposed to solar radiation.
- it is highly hydrolyzable and deteriorates over time due to moisture, it is not practical in terms of durability as a material for a heat ray cut film that is stuck to an adherend such as a window glass for a long time.
- Polystyrene resin does not have a functional group of N, S, and O, so it does not adhere to the metal thin film, and has a hard and brittle property, so it is difficult to use as a material for a heat ray cut film.
- the polymer of the organic thin film is preferably excellent in heat resistance.
- the glass transition point (Tg) of the polymer of the organic thin film is preferably 60 ° C. or higher. More preferably, it is 80 ° C. or higher.
- the thickness of the organic thin film can be adjusted in consideration of solar shading, visibility, reflection color, and the like.
- the film thickness of the organic thin film may be the same or different.
- the lower limit of the film thickness of the organic thin film is preferably 10 nm or more, more preferably 15 nm or more, from the viewpoints of easily suppressing the red and yellow colors of the reflected color and easily obtaining high light transmittance. More preferably, it is 20 nm or more.
- the upper limit value of the film thickness of the organic thin film is preferably 90 nm or less, more preferably 85 nm or less, from the viewpoints of easily suppressing the green color of the reflected color and easily obtaining high light transmittance. More preferably, it is 80 nm or less.
- the organic thin film can be formed by preparing a coating solution containing a polymer, coating the surface of the substrate film, etc., and then drying to form a coating film.
- a solvent for dissolving the polymer can be used as necessary.
- solvents include alcohols such as methanol, ethanol, propanol, butanol, heptanol, and isopropyl alcohol, organic acid esters such as ethyl acetate, ketones such as acetonitrile, acetone, and methyl ethyl ketone, and cycloethers such as tetrahydrofuran and dioxane.
- Acid amides such as formamide and N, N-dimethylformamide, hydrocarbons such as hexane, aromatics such as toluene and xylene, and the like. These may be used alone or in combination.
- Adhesive film A An adhesive film A having a base film and an adhesive layer formed on one surface of the base film was prepared as an adhesive film for window pasting according to Examples and Comparative Examples.
- Base film PET Polyethylene terephthalate film (Toyobo Co., Ltd., “Cosmo Shine (registered trademark) A4100”), thickness 50 ⁇ m
- OPP Biaxially stretched polypropylene film (Toray “2500”), thickness 40 ⁇ m
- a pressure-sensitive adhesive solution was prepared by dissolving each component in toluene so as to have the composition (parts by mass) shown in Table 1. The details of each component are as shown below.
- the pressure-sensitive adhesive liquid was coated on the easy-adhesion layer surface of the PET film or on one surface of the OPP film that had been previously corona-treated by the blade method, and dried at 130 ° C. to form a pressure-sensitive adhesive layer. .
- the adhesive layer was measured for thickness and indentation hardness.
- the thickness of the adhesive layer was measured with a dial gauge in accordance with JIS Z 0237.
- the indentation hardness was measured with an ultra-fine indentation hardness tester (Elionix Co., Ltd., “ENT-2100”) according to ISO14577-1.
- the sample is cut into 10 mm width and 30 mm length, and the indentation load is 10 ⁇ N and the step interval time is 20 by using the above-mentioned ultra-fine indentation hardness tester and using a triangular pyramid shaped indenter (edge angle 115 °).
- the adhesive surface was measured at 10 random locations, the indentation hardness was calculated from the obtained load-displacement curve, and the arithmetic average value was calculated as the indentation hardness of the adhesive layer. did.
- Each produced adhesive film was affixed on one side of 3 mm thick float glass. Specifically, as shown in FIG. 4, one end side of the adhesive film 1 is fixed to the support 2 with the tape 3, the adhesive film 1 is bent outward with the adhesive surface 1 a facing outward, and the other end The side of the glass plate 4 having a width of 50 mm and a thickness of 3 mm is aligned with one side of the glass plate 4, and the support 2 is moved from one side of the glass plate 4 to the opposite side. The adhesive film 1 was bonded to the glass plate 4 by combining the surfaces 1a. The bonding speed was 1.0 m / min.
- the bonding was performed by a method using the construction liquid A (water containing 0.1% by mass of neutral detergent “Charmy V Quick”).
- the application liquid A was sprayed onto both the glass surface 4a and the adhesive surface 1a before bonding, and then bonded together. After the bonding, the application liquid A was sprayed again onto the film surface, and the surface was rubbed with a squeegee. Then, the construction liquid was extruded from the bonding interface and brought into close contact.
- the size of the float glass 4 was 200 mm ⁇ 300 mm ⁇ 3 mmt.
- a urethane squeegee (size: 200 ⁇ 120 mm, thickness: 6 mm, “33-6082” manufactured by Kyokuto Sangyo Co., Ltd.) is used as the squeegee for bonding the adhesive film 1, the construction load is 200 g, and the number of squeegees is 2 Times.
- the water remaining rate was evaluated when 168 hours (one week) had passed after the water application. From this water remaining rate, water drainage was evaluated.
- the remaining water ratio was the ratio (%) of the remaining water area to the glass area. The remaining water area was determined from the area of water bubbles remaining between the float glass 4 and the adhesive film 1.
- the optical comb 7 has a plurality of slits (0.05 mm, 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm) having different slit intervals, and the optical comb 3 is in the direction of the arrow in which the slits are arranged. Moved to.
- the image definition was measured in accordance with JIS K7374, and was the value when the slit interval was 0.05 mm, and the average value of the image definition in the MD direction and the image definition in the TD direction.
- Adhesion evaluation 1 After a predetermined time has elapsed after bonding (1 hour, 3 hours, 24 hours, and 72 hours), the adhesive strength (N / 25 mm) is applied by the 180 degree peeling method specified in JIS-A-5759. It was measured. The width of the sample was 50 mm, and the tensile speed was 50 mm / min.
- Adhesion evaluation 2 After pasting, in accordance with JIS-Z-0237, when a static load in the length direction is applied to the adhesive layer of the film, after a predetermined time has elapsed (1 hour, 3 hours, 24 hours, 72 hours) The movement distance (slipping amount) from the initial sticking position of (after) or the time for dropping from the glass was measured.
- Comparative Example 1 an acrylic polymer having low durometer type A hardness was used as the material for the adhesive layer, and the indentation hardness of the adhesive layer was small, but no plasticizer was blended, so the initial (after 1 hour) There is a possibility that the adhesive film for window sticking is not held on the window at the time of water sticking construction, and peeling from the window may occur. Moreover, the adhesiveness over time (after 72 hours) is low, and the scattering prevention property of the window glass is inferior.
- Comparative Example 2 an acrylic polymer having high hardness in durometer type A is used as the material for the adhesive layer, and the indentation hardness of the adhesive layer is large, so that the water remaining rate is high and the drainage property is poor.
- the adhesiveness over time (after 24 hours) is high, and the reworkability is poor.
- an acrylic resin is used as the material for the adhesive layer, and the indentation hardness of the adhesive layer is large, so the water remaining rate is poor and the water drainage property is poor.
- the adhesiveness over time (after 24 hours) is high, and the reworkability is poor.
- a styrene-based polymer is used as the material for the adhesive layer, and the indentation hardness of the adhesive layer is small, but the initial (after 1 hour) adhesion is poor, and the amount of slipping is also large, so Sometimes the adhesive film for pasting a window is not held on the window, and peeling or dropping off from the window may occur. Moreover, the adhesiveness over time (after 72 hours) is low, and the scattering prevention property of the window glass is inferior.
- an acrylic polymer having a low durometer type A hardness is used as the material for the adhesive layer, and the indentation hardness of the adhesive layer is small, so that the water remaining rate is low and the water draining property is excellent.
- the plasticizer is mix
- the material of the adhesive layer of the example is superior in terms of image definition as compared with the material of the adhesive layer of Comparative Examples 2, 3, and 4. That is, according to the material of the pressure-sensitive adhesive layer of the example, it can be seen that appearance distortion caused by the pressure-sensitive adhesive layer can be easily suppressed.
- Adhesive film B As an adhesive film for window pasting according to Example 9 and Comparative Example 5, as shown in FIG. 3, a functional layer and an adhesive layer formed on one surface of the base film, and a base material An adhesive film B having a hard coat layer formed on the other side of the film was produced. That is, an adhesive film B was prepared by laminating in the order of adhesive layer / organic thin film / metal layer / organic thin film / base film / hard coat layer. In addition, the thing of the same structure as Example 8 was used for the base film (OPP film). As the pressure-sensitive adhesive liquid for forming the pressure-sensitive adhesive layer, the same composition as in Example 8 or Comparative Example 3 was used.
- ⁇ Preparation of adhesive film B> The organic thin film was formed by applying the coating liquid for organic thin film on one side of the OPP film that had been subjected to corona treatment in advance using a micro gravure coater and drying it. Next, an Ag—Cu alloy thin film was formed on the first organic thin film by sputtering. Next, a second organic thin film was formed on the Ag—Cu alloy thin film in the same manner as the formation of the first organic thin film. Next, an adhesive solution having the same composition as in Example 8 or Comparative Example 3 was applied on the second organic thin film by the blade method and dried at 130 ° C. to form an adhesive layer.
- a hard coat layer (HC layer) was formed on the other side of the OPP film that had been previously subjected to corona treatment.
- the material of the hard coat layer is the following UV curable organic-inorganic hybrid material, which was UV cured after coating.
- Organic / inorganic hybrid material TG series manufactured by Dainichi Seika Kogyo Co., Ltd., UV curing type
- the thickness of the adhesive layer, the indentation hardness, the water remaining ratio, and the adhesiveness were the same as in Examples 1 to 8 and Comparative Examples 1 to 4. 1, 2 and image sharpness were measured and evaluated. In addition, measurement and evaluation of the heat flow rate and adhesive residue were performed. The results are shown in Table 2. The measurement and evaluation of the heat transmissibility and adhesive residue are as follows.
- the sub-element (Cu) content in the Ag—Cu alloy thin film was determined as follows. That is, under each film forming condition, a test piece in which an Ag—Cu alloy thin film was formed on a glass substrate was separately prepared, and this test piece was immersed in a 6% HNO 3 solution and eluted with ultrasonic waves for 20 minutes. Then, it measured by the concentration method of ICP analysis method using the obtained sample solution. The Cu content was 4 atomic%.
- the film thickness of each thin film is determined by the field emission electron microscope (HRTEM) of a test piece in which an organic thin film / Ag—Cu alloy thin film / organic thin film is separately formed on a glass substrate under each film forming condition (JEOL Ltd.) Manufactured, “JEM2001F”).
- HRTEM field emission electron microscope
- JEM2001F film thicknesses of the first organic thin film, the Ag—Cu alloy thin film, and the second organic thin film were 20 nm, 10 nm, and 20 nm, respectively.
- the adhesive surface of the adhesive layer of the adhesive film B was affixed on one side of the plate glass. Measuring light was incident from the adhesive film B side, the vertical emissivities of the glass surface and the film surface were determined according to JIS R3106, and the thermal conductivity (W / m 2 K) was determined according to JIS A5759.
- Adhesive residue evaluation In accordance with the method shown in FIG. 4, after the entire surface of the adhesive film is bonded to the float glass (after water application), the adhesive film is peeled off from the glass plate after 336 hours (after two weeks). The surface of the glass plate was observed. The case where it is confirmed that the adhesive of the adhesive layer does not remain on the surface of the glass plate is evaluated as “good”, and the case where it is confirmed that the adhesive of the adhesive layer remains on the surface of the glass plate is determined as “bad”. ⁇ ”.
- Comparative Example 5 like Comparative Example 3, uses an acrylic resin as the material for the adhesive layer, and because the indentation hardness of the adhesive layer is large, the water remaining rate is poor and the water drainage property is poor. Moreover, the adhesiveness over time (after 24 hours) is high, and the reworkability is poor.
- Example 9 uses an acrylic polymer having a low durometer type A hardness as the material of the adhesive layer, and the indentation hardness of the adhesive layer is small. Excellent slipping.
- the plasticizer is mix
- Example 9 is excellent in heat insulation, since the heat transmissivity is suppressed from the layer structure. In addition, no adhesive residue was observed, and it was confirmed that the pasting was easy. On the other hand, in Comparative Example 5, adhesive residue is observed, and it can be seen that the pasting is inferior. In Comparative Example 5, when the pressure-sensitive adhesive film was peeled from the glass plate, an adhesive residue was generated because of peeling between the organic thin film of the functional layer and the base film (OPP film). This is because the adhesion of the organic thin film of the functional layer to the OPP film is not so high.
- the adhesion of the adhesive layer over time (after 336 hours) is too high as in Comparative Example 5, peeling occurs between the OPP film having weak adhesion and the organic thin film of the functional layer when the adhesive film is peeled off.
- the adhesiveness over time (after 336 hours) can be adjusted depending on the type and blending amount of the plasticizer. By adjusting the adhesiveness according to the type of the base film, it is possible to suppress the peeling between the functional layer and the base film as in Example 9 and to eliminate the adhesive residue, thereby facilitating the replacement.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Laminated Bodies (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Adhesive Tapes (AREA)
Abstract
水貼り施工時の水抜け性および密着性に優れる窓貼り用粘着フィルムを提供する。 アクリルブロック共重合体および可塑剤を含有し、押込み硬さが3.0N/mm2以下である粘着層を有する窓貼り用粘着フィルムとする。窓貼り用粘着フィルムは、水系施工液を用いてガラス面に貼着した後168時間経過したときの水残り率が4.0%以下であることが好ましい。アクリルブロック共重合体のデュロメータータイプAでの硬度が50以下であることが好ましい。
Description
本発明は、窓貼り用粘着フィルムに関し、さらに詳しくは、ビル・住宅等の建築物や自動車等の車両の、ガラスなどからなる窓に水系施工液を用いて貼り付ける水貼り施工に適した窓貼り用粘着フィルムに関するものである。
ビル・住宅等の建築物のガラスなどからなる窓や自動車等の車両のガラスなどからなる窓には、日射遮蔽性などの所定の機能を持つ機能性フィルムが施工されることがある。機能性フィルムは、ガラスなどからなる窓に貼り付けるための粘着層を有する。
従来の機能性フィルムは、ガラスの飛散防止を保証するため密着力が大きく、弾性率の高い粘着剤を用いている。施工時の密着力も大きいため水貼り施工時において水が排出される隙間が塞がれ易く、また弾性率が高いため水貼り施工時のスキージ作業で力の伝達にムラが生じやすく、必要な力がかからない場所が発生して、機能性フィルムと窓との間に水残りが多くなる。すなわちスキージ作業で力がかかりにくいので水抜け性が悪い。これにより、ガラスとフィルムの界面での透過光の散乱が大きくなり、また光の透過度が場所ごとに不均一となるためガラスが部分的に白っぽく見えたり、景色が部分的に歪んで見えたりする。すなわち窓の外観が悪化する。特に金属層を有する機能性フィルムでは施工後にフィルムを通しての水の蒸発が金属層によって妨げられるため、水貼り施工時の水残りを、金属層を含まない場合よりもより少なくする必要がある。
特許文献1には、自己粘着性組成物を用いた粘着性フィルムが開示されている。しかし、特許文献1の自己粘着性組成物は、シランカップリング剤によるガラスへの接着力が経時的に増加する効果を利用したものであり、その粘着性フィルムは水貼り施工するものではなく、施工時の水抜け性が課題となるものではない。
特許文献2には、アクリル系ブロック共重合体を含有する光学フィルム用粘着剤組成物が開示されている。しかし、特許文献2の光学フィルムは、液晶パネルなどの画像表示装置に貼り付けるものであり、水貼り施工に適さない。また、この種の光学フィルムには、ホットメルト型粘着剤を用いる記載がある。したがって、施工時の水抜け性が課題となるものではない。
本発明が解決しようとする課題は、水貼り施工時の水抜け性および密着性に優れる窓貼り用粘着フィルムを提供することにある。
上記課題を解決するため本発明に係る窓貼り用粘着フィルムは、アクリルブロック共重合体および可塑剤を含有し、押込み硬さが3.0N/mm2以下である粘着層を有することを要旨とするものである。
上記窓貼り用粘着フィルムは、水系施工液を用いてガラス面に貼着した後168時間経過したときの水残り率が4.0%以下であることが望ましい。前記アクリルブロック共重合体のデュロメータータイプAでの硬度は、50以下であることが望ましい。前記可塑剤の溶解度パラメータは、8.0~9.9の範囲内であることが望ましい。前記可塑剤の分子量は、300~500の範囲内であることが望ましい。前記可塑剤は、フタル酸エステルまたはアジピン酸エステルであることが望ましい。前記可塑剤は、フタル酸ジオクチル(DOP)、アジピン酸ジオクチル(DOA)、フタル酸ジイソノニル(DINP)のいずれか1種または2種以上であることが望ましい。前記可塑剤の含有量は、前記アクリルブロック共重合体100質量部に対し1~40質量部の範囲内であることが望ましい。前記粘着層は、さらに光安定剤を含有することが望ましい。前記光安定剤は、ヒンダートアミン系化合物であることが望ましい。前記粘着層の厚みは、12~50μmの範囲内であることが望ましい。
上記窓貼り用粘着フィルムは、さらに金属層を有していてもよい。前記金属層の金属は、銀、銀合金、アルミニウム、合金鋼(鉄合金)、金のいずれか1種または2種以上であることが望ましい。上記窓貼り用粘着フィルムは、さらに、前記金属層よりも屈折率の高い高屈折率層を有していてもよい。前記高屈折率層は、金属酸化物薄膜および有機薄膜のいずれか1種または2種以上であることが望ましい。前記金属酸化物層は、ゾル-ゲル法により形成されたものであることが望ましい。上記窓貼り用粘着フィルムは、さらに基材フィルムを有していてもよい。前記基材フィルムの厚みは、25~125μmの範囲内であることが望ましい。前記基材フィルムのベースポリマーは、ポリエステル系樹脂、ポリオレフィン系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂のいずれか1種であることが望ましい。前記基材フィルムは、二軸延伸ポリプロピレンフィルムであることが望ましい。上記窓貼り用粘着フィルムは、前記粘着層、前記金属層、前記金属層よりも屈折率の高い高屈折率層としての前記有機薄膜、基材フィルムを備え、粘着層/有機薄膜/金属層/有機薄膜/基材フィルムの順に積層されていてもよい。
本発明に係る窓貼り用粘着フィルムによれば、粘着層にアクリルブロック共重合体および可塑剤を含有し、粘着層の押込み硬さが3.0N/mm2以下であることから、水貼り施工時の水抜け性および密着性に優れる。粘着層の押込み硬さが小さいことで水貼り施工時にスキージがかかり易く、水貼り施工時の水抜け性がよくなり、窓貼り用粘着フィルムと窓との間の水残りが少なくなる。粘着層にアクリル系重合体を含むことで、可視光透過性に優れ、ヘイズの少ない光学特性に優れた粘着フィルムとすることができる。またガラスの飛散防止を保証できる強い密着力を付与することができる。多くのアクリル系重合体では、高密着力を得るには大きな押込み硬さが必要となる。ガラスの飛散防止性能の保証を諦めて、密着力を下げて施工時の水抜け性とリワーク性を改善するために押込み硬さを小さくすると、凝集力が低いためにガラスに一度触れると、貼り位置をずらしたり剥がす際に、ガラス上に糊残りしたりフィルムとガラス間で糸をひいたりして光学的に均一でなくなる現象がおこり施工が困難となる。しかし、アクリル系重合体がアクリルブロック共重合体であることで、押込み硬さを低くしても、分子内のソフトブロック、ハードブロックに起因した相分離構造により高い凝集力を保つことができるため、糊残り等の問題が起こらず、良好な水抜け性とリワーク性を実現できる。そして、粘着層に可塑剤を含むことで、粘着力を調整することができる。この際、適当な可塑剤種、配合量を選ぶことで経時的粘着力を制御できる。
ここで、水系施工液を用いてガラス面に貼着した後168時間経過したときの水残り率が4.0%以下であると、水抜け性に優れるため、窓の外観が良好である。そして、アクリルブロック共重合体のデュロメータータイプAでの硬度が50以下であると、粘着層の押込み硬さを低くしやすい。上記可塑剤は、アクリルブロック共重合体と良好に相容することが望ましい。上記可塑剤がフタル酸エステルまたはアジピン酸エステルであると、アクリルブロック共重合体との相溶性に優れ、初期の密着性が確保され、水貼り施工時に上記窓貼り用粘着フィルムが窓に保持されやすい。また、経時で密着力が向上し、窓の破損時に破片の飛散を防止する。上記可塑剤がアジピン酸ジオクチル、フタル酸ジイソノニルのいずれかであると、経時で密着力が適度に向上し、上記窓貼り用粘着フィルムの位置調整や貼り直しを容易にする。上記粘着層の厚みが12~50μmの範囲内であると、所望の密着力を確保しやすく、水貼り施工時のスキージをかけやすく、厚みムラによる歪みが抑えられる。上記窓貼り用粘着フィルムがさらに金属層を有すると、日射遮蔽性に優れる。上記窓貼り用粘着フィルムは、水貼り施工時の水抜け性に優れるため、金属層を有する構成であっても、水残りによる窓の外観悪化が抑えられる。
以下、本発明について詳細に説明する。
本発明に係る窓貼り用粘着フィルムは、アクリルブロック共重合体および可塑剤を含有し、押込み硬さが3.0N/mm2以下である粘着層を有する。
粘着層の押込み硬さが小さいことで、水貼り施工時にスキージがかかり易く、水貼り施工時の水抜け性がよくなり、窓貼り用粘着フィルムと窓との間の水残りが少なくなる。粘着層の押込み硬さは、ISO14577-1に準拠し測定を行う。三角錐圧子を用いたナノインデンテーション試験による測定値である。粘着層の押込み硬さは、高分子フィルムを基材とし、基材フィルムの面上に形成した粘着層の押込み硬さである。粘着層の押込み硬さは、より好ましくは2.0N/mm2以下、さらに好ましくは1.0N/mm2以下である。
粘着層の押込み硬さを低くしやすいなどの観点から、アクリルブロック共重合体は、デュロメータータイプAでの硬度が50以下であることが好ましい。より好ましくは40以下である。
粘着層にアクリル系重合体を含むことで、可視光透過性に優れ、ヘイズの少ない光学特性に優れた粘着フィルムとすることができる。またガラスの飛散防止を保証できる強い密着力を付与することができる。
アクリル系重合体のうち、アクリルブロック共重合体は、多くの他のアクリル系重合体と比べて分子量分布が狭く低分子量成分が少ないこと、分子内のソフトブロック、ハードブロックに起因した相分離構造を取り得ることから、タック性が低く、高い凝集力を保てるため、押込み硬さを低くしても糊残り等の問題が起こらず良好な施工性(水抜け性、リワーク性)を実現できる。
アクリルブロック共重合体は、分子量分布を狭く制御することにより被着体に転写して表面を汚したり、凝集力を下げたりする低分子量成分を減らし、機械特性や密着力の変動を抑えることができるなどの観点から、分子量分布の指標であるMw/Mnの値が、1.0~1.5の範囲内であることが好ましい。より好ましくは1.0~1.3の範囲内、さらに好ましくは1.0~1.2の範囲内である。
分子内のソフトブロック、ハードブロックに起因した相分離構造の取り易さという観点では、マルチブロック共重合体よりも2種の重合体ブロックAおよびBからなるA-B型のジブロック共重合体や、3種の重合体ブロックAおよびB(及びA’)からなるA-B-AまたはA-B-A’型のトリブロック共重合体が好ましい。この場合、AおよびA’(すなわち高Tgの重合体)がハードセグメント、B(すなわち低Tgの重合体)がソフトセグメントであることが望ましい。アルキル部が同じ場合メタクリル酸アルキルエステルはアクリル酸アルキルエステルよりTgが高いため高Tg重合体はメタアクリル酸アルキルエステル重合体、低Tg重合体はアクリル酸アルキルエステル重合体とすることが一般的である。すなわちトリブロック体であればメタアクリル酸アルキルエステル重合体-アクリル酸アルキルエステル重合体―メタアクリル酸アルキルエステル重合体であることが望ましい。AおよびA’とBの種類と比率を変えることで押し込み硬さを調整することが可能である。
アクリルブロック共重合体は、1種のアクリルブロック共重合体で構成されていてもよいし、2種以上のアクリルブロック共重合体で構成されていてもよい。1種のアクリルブロック共重合体としては、ジブロック共重合体から選択される1種やトリブロック共重合体から選択される1種などが挙げられる。2種以上のアクリルブロック共重合体としては、ジブロック共重合体から選択される2種以上、トリブロック共重合体から選択される2種以上、ジブロック共重合体から選択される1種以上およびトリブロック共重合体から選択される1種以上などが挙げられる。ジブロック共重合体は柔軟性や被着体表面との濡れ性に優れトリブロック共重合体は凝集力に優れる。
上記重合体ブロックAは、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸t-ブチル、メタクリル酸n-ヘキシル、メタクリル酸シクロペンチル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸n-オクチル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、メタクリル酸イソボルニルなどの重合体及び、これらの単量体の有する水素原子の一部又は全部を置換基で置換したもの、これらの単量体のアルキル又はシクロアルキルの炭素原子をヘテロ原子で置換したものなどが挙げられる。これらの中で、メタクリル酸アルキルエステルに由来するものが好ましく、アルキルの炭素数が1以上4以下のメタクリル酸アルキルエステルが好ましく、メタクリル酸エチル又はメタクリル酸メチルがさらに好ましい。
上記重合体ブロックBは、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸t-ブチル、アクリル酸n-ヘキシル、アクリル酸シクロペンチル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸ラウリル、アクリル酸トリデシル、およびアクリル酸ステアリルなどの重合体及び、これらの単量体の有する水素原子の一部又は全部を置換基で置換したもの、これらの単量体のアルキル又はシクロアルキルの炭素原子をヘテロ原子で置換したものなどが挙げられる。アルキル基の炭素数が多いほうが低Tgとなりソフトセグメントになりやすい。これらの中で、アクリル酸アルキルエステルに由来するものが好ましく、アルキルの炭素数が3以上6以下のアクリル酸アルキルエステルに由来するものがより好ましく、アクリル酸ブチルに由来するものがさらに好ましい。
上記置換基としては、例えばハロゲン原子、ヒドロキシ基、カルボキシ基、ニトロ基、シアノ基等が挙げられる。これらの中で、ヒドロキシ基又はカルボキシ基が好ましい。上記へテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、ケイ素原子、リン原子、ホウ素原子等が挙げられる。
また、重合体ブロックAのガラス転移温度の上限としては、140℃が好ましく、120℃がより好ましい。一方、重合体ブロックAのガラス転移温度の下限としては、80℃が好ましく、100℃がより好ましい。重合体ブロックBのガラス転移温度の上限としては、-20℃が好ましく、-40℃がより好ましい。一方、重合体ブロックBのガラス転移温度の下限としては、-60℃が好ましく、-50℃がより好ましい。
アクリルブロック共重合体が、ジブロック共重合体から選択される1種とトリブロック共重合体から選択される1種とで構成される場合、ジブロック共重合体としては、メタクリル酸メチル/アクリル酸ブチル、メタクリル酸エチル/アクリル酸ブチル、メタクリル酸メチル/アクリル酸2エチルヘキシル、メタクリル酸エチル/アクリル酸2エチルヘキシルなどが挙げられ、トリブロック共重合体としては、メタクリル酸メチル/アクリル酸ブチル/メタクリル酸メチル、メタクリル酸エチル/アクリル酸ブチル/メタクリル酸エチル、メタクリル酸メチル/アクリル酸2エチルヘキシル/メタクリル酸メチル、メタクリル酸エチル/アクリル酸2エチルヘキシル/メタクリル酸エチルなどが挙げられる。
粘着層は、粘着力を調整するための可塑剤を含む。適当な可塑剤種、量を選ぶことで経時的粘着力を制御できる。デュロメータータイプAでの硬度が小さいアクリル系重合体、特にアクリルブロック共重合体の場合、密着力が低く施工時の水抜け性に優れるが、密着力が低すぎるため施工時にフィルムが自重で下にずれたり、フィルムの巻癖のため貼り合せたフィルムの端部が浮いたりする場合がある。また経時的な密着力の増加が少なく割れた窓のガラスの飛散を防止するために必要な密着力が得られない場合がある。このような場合に、可塑剤を添加することによりそのような課題を解決できる。
可塑剤はアクリルブロック共重合体と相溶することが望ましい。この観点で可塑剤の溶解度パラメータ(Small法によるSP値)が8.0~9.9の範囲内であることが好ましい。SP値がこの範囲内にあると、可塑剤とアクリルブロック共重合体との相溶性に優れ、相分離のない均一な組成物を形成することができる。これにより、密着性の面でムラの少ない粘着面を形成することができる。SP値としては、上記及び塗工性、塗工後の外観の観点から、より好ましくは8.2~9.1の範囲内、さらに好ましくは8.3~8.9の範囲内である。また同様の観点から、分子量が300~500の範囲内であることが好ましい。分子量がこの範囲内にあると可塑剤とアクリルブロック共重合体との相溶性に優れ、相分離のない均一な組成物を形成することができる。これにより、密着性の面でムラの少ない粘着面を形成することができる。可塑剤の分子量としては、上記観点から、より好ましくは340~430の範囲内、さらに好ましくは350~400の範囲内である。具体的には、フタル酸エステルまたはアジピン酸エステルであると、相溶性に優れ、初期の密着性が確保され、水貼り施工時に上記窓貼り用粘着フィルムが窓に保持されやすいので好適である。
フタル酸エステルとしては、フタル酸ジオクチル(DOP)、フタル酸ビス(2-ブトキシエチル(DBEP))、フタル酸ジイソノニル(DINP)などが挙げられる。アジピン酸エステルとしては、アジピン酸ジオクチル(DOA)、アジピン酸ジイソデシル(DIDA)、アジピン酸ビス(2-ブトキシエチル)(DBEA)などが挙げられる。これらのうちでは、初期の密着性に優れる、72時間以上の経時での密着力の増加が大きい、アクリルブロック共重合体との相溶性に優れ、相分離のない均一な組成物を形成し、密着性の面でムラの少ない粘着面を形成することができる、比較的安価で入手する事が可能などの観点から、フタル酸ジオクチル(DOP)、フタル酸ジイソノニル(DINP)、アジピン酸ジオクチル(DOA)が好ましい。また、経時での密着力に関し、10~24時間後の密着力の増加が抑えられて、位置調整や貼り直しをしやすい(リワーク性に優れる)などの観点から、フタル酸ジイソノニル(DINP)、アジピン酸ジオクチル(DOA)がより好ましい。また、経時での密着力に関し、3~5時間後の密着力の増加が抑えられて、位置調整や貼り直しをしやすい(リワーク性に優れる)などの観点から、アジピン酸ジオクチル(DOA)が特に好ましい。
初期の密着性は、施工から1時間後までの密着性であり、適度な密着力を有する事により水抜け性やリワーク性等の施工性に優れ、またフィルムが自重で下にずれたり、フィルムの巻癖のため貼り合せたフィルムの端部が浮いたりすることなるフィルムを窓に保持することができる。72時間以上の経時での密着力は、窓の破損時に破片の飛散を防止する飛散防止性に貢献する。そして、3~24時間後の密着力は、リワーク性に関係する。初期の密着力、3~24時間後の密着力は、保持性の観点から、0.05N/25mm以上であることが好ましい。また、リワーク性の観点から、4.0N/25mm未満であることが好ましい。72時間以上の経時での密着力は、飛散防止性の観点から、4.0N/25mm以上であることが好ましい。密着力は、JIS-K-6854-2に準拠し、引張速度50mm/分の条件で測定される。
可塑剤の含有量は、粘着力の観点から、アクリル系重合体100質量部に対し1質量部以上であることが好ましい。より好ましくは3質量部以上である。一方、アクリル系重合体との相溶性維持、密着力調整剤のブリード防止の観点から、40質量部以下であることが好ましい。また、3~5時間後の密着力の増加が抑えられる観点から、20質量部以下であることが好ましい。さらに、10~24時間後の密着力の増加が抑えられる観点から、10質量部以下であることが好ましい。
粘着層は、さらに光安定剤を含有してもよい。光安定剤の添加により、耐候性が向上し、光照射等による経時的な特性の低下が抑えられる。種類によっては、密着力を経時的に増加させる効果もある。また、粘着層は、さらに酸化防止剤を含有してもよい。
光安定剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤、HALS(ヒンダードアミン光安定剤)などが挙げられる。これらのうちでは、密着力を経時的に増加させる効果に優れるなどの観点から、HALS(ヒンダードアミン光安定剤)が好ましい。
ベンゾトリアゾール系紫外線吸収剤としては、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ第三ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’-第三ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’-5’-ジ-第三ペンチル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-第三オクチルフェニル)ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェニル、2-(2’-ヒドロキシ-3’,5’-ジクミルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-第三ブチル-5’-カルボキシフェニル)ベンゾトリアゾール、2,2’-メチレンビス(4-第三オクチル-6-ベンゾトリアゾリル)フェノール等の2-(2’-ヒドロキシフェニル)ベンゾトリアゾール類などが挙げられる。
ベンゾフェノン系紫外線吸収剤としては、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルフォン酸3ハイドレイト、2-ヒロドキシ-4-n-オクチルオキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類などが挙げられる。
トリアジン系紫外線吸収剤としては、2-(2-ヒドロキシ-4-オクトキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-プロポキシ-5-メチルフェニル)-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-[2-ヒドロキシ-4-(3-ドデシルオキシ-2-ヒドロキシプロピルオキシ)フェニル]-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-[2-ヒドロキシ-4-(3-トリデシルオキシ-2-ヒドロキシプロピルオキシ)フェニル]-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-[2-ヒドロキシ-4-[3-(2-エチルヘキシルオキシ)-2-ヒドロキシプロピルオキシ]フェニル]-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-4,6-ジビフェニル-s-トリアジン、2-[2-ヒドロキシ-4-[1-(i-オクチルオキシカルボニル)エチルオキシ]フェニル]-4,6-ジビフェニル-s-トリアジン、2,4-ビス(2-ヒドロキシ-4-オクトキシフェニル)-6-(2,4-ジメチルフェニル)-s-トリアジン、2,4-ビス(4-ブトキシ-2-ヒドロキシフェニル)-6-(2,4-ジブトキシフェニル)-s-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-オクトキシフェニル)-s-トリアジン等のトリアリールトリアジン類などが挙げられる。
HALS(ヒンダードアミン光安定剤)としては、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルメタアクリレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジニル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジルブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジルブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5―ジ―第三ブチル-4-ヒロドキシペンジル)-2-n-ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ第三ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノール/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/ジブロモエタン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-第三オクチルアミノ-s-トリアジン重縮合物、コハク酸ジメチル・1-(2ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチル-4-ピペリジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イルアミノウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イルアミノウンデカン、2-デカン二酸ビス(2,2,6,6-テトラメチル-1-オクチルオキシ)―4―ピペリジニル)エステルと1,1ジメチルエチルヒドロポルオキシドとオクタンの反応物ポリプロピレンなどが挙げられる。紫外線吸収剤とHALSは相補完的に働くので双方を添加することが好ましい。また遮熱層の紫外線による劣化を防ぐために紫外線吸収剤を添加することが好ましい。
光安定剤の含有量は、所望の耐候性、経時的な特性の低下、及び粘着層の厚みなどの観点から、上記のアクリル系重合体100質量部に対し、1質量部以上であることが好ましい。より好ましくは2質量部以上である。また、過剰に入れすぎると析出したり、ブリードしたり、密着力が低下する等の弊害があるため、6質量部以下であることが好ましい。より好ましくは4質量部以下である。
酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などが挙げられる。この中では、フェノール系酸化防止剤が好ましい。
フェノール系酸化防止剤としては、2,6-ジ-第三-ブチル-p-クレゾール、C2-10アルキレンビス(第三-ブチルフェノール)[例えば、2,2′-メチレンビス(4-メチル-6-第三-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-第三-ブチルフェノール)等]、トリス(ジ-第三-ブチル-ヒドロキシベンジル)ベンゼン[例えば、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-第三-ブチル-4-ヒドロキシベンジル)ベンゼン等]、C2-10アルカンジオール-ビス[(ジ-第三-ブチル-ヒドロキシフェニル)プロピオネート][例えば、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-第三-ブチル-4-ヒドロキシフェニル)プロピオネート]等]、ジ又はトリオキシC2-4アルカンジオール-ビス(第三-ブチル-ヒドロキシフェニル)プロピオネート[例えば、トリエチレングリコール-ビス[3-(3-第三-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]等]、C3-8アルカントリオール-ビス[(ジ-第三-ブチル-ヒドロキシフェニル)プロピオネート]、C4-8アルカンテトラオールテトラキス[(ジ-第三-ブチル-ヒドロキシフェニル)プロピオネート][例えば、ペンタエリスリトールテトラキス[3-(3,5-ジ-第三-ブチル-4-ヒドロキシフェニル)プロピオネート]等]、長鎖アルキル(ジ-第三-ブチルフェニル)プロピオネート[例えば、n-オクタデシル-3-(4’,5’-ジ-第三-ブチルフェニル)プロピオネート、ステアリル-2-(3,5-ジ-第三-ブチル-4-ヒドロキシフェニル)プロピオネート等]、2-第三-ブチル-6-(3-第三-ブチル-5-メチル-2-ヒドロキシベンジル)-4-メチルフェニルアクリレート、4,4’-チオビス(3-メチル-6-第三-ブチルフェノール)などが挙げられる。
リン系酸化防止剤としては、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ第三ブチルフェニル)ホスファイト、トリス(2,4-ジ第三ブチル-5-メチルフェニル)ホスファイト、トリス〔2-第三ブチル-4-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ第三ブチル-4-メチルフェニル)ペンタエリスリトールジホスフィト、ビス(2,4,6-トリ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4’-n-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ第三ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4,6-第三ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-第三ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ第三ブチルフェニル)フルオロホスファイト、トリス(2-〔(2,4,8,10-テトラキス第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、2-エチル-2-ブチルプロピレングリコールと2,4,6-トリ第三ブチルフェノールのホスファイト等が挙げられる。
イオウ系酸化防止剤としては、ジラウリル3,3’-チオジプロピオネート、ジミリスチル3,3’-チオジプロピオネート、ジステアリル3,3’-チオジプロピオネート、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)、2-メルカプトベンズイミダゾール等のイオウ系化合物等が挙げられる。
酸化防止剤の含有量は、所望の耐候性、経時的な特性の低下、及び粘着層の厚みなどの観点から、上記のアクリル系重合体100質量部に対し、0.01質量部以上であることが好ましい。より好ましくは0.05質量部以上である。また、過剰に入れすぎると、析出したりブリードしたり密着力が低下する等の弊害があるため、2.0質量部以下であることが好ましい。より好ましくは1.0質量部以下である。
粘着層の厚みは、粘着力を確保する、スキージによる水抜け性を確保するなどの観点から、12μm以上であることが好ましい。より好ましくは18μm以上、さらに好ましくは24μm以上である。一方、厚みムラによって歪みが生じるのを抑える、コストを抑えるなどの観点から、50μm以下であることが好ましい。より好ましくは40μm以下である。
基材フィルムは、窓貼り用粘着フィルムとしての透明性、耐久性に優れるなどの観点から、光透過性高分子フィルムが好ましい。光透過性とは、波長領域360~830nmにおける透過率の値が50%以上であることをいう。
光透過性高分子フィルムの材料(ベースポリマー)としては、具体的には、ポリエチレンテレフタレート(PET)、ポリエチレンナフレート(PEN)、ポリブチレンテレフタレート(PBT)などのポリエステル系樹脂や、ポリエチレン、ポリプロピレン、シクロオレフィンポリマーなどのポリオレフィン系樹脂や、ポリメタクリル酸メチルなどのアクリル系樹脂や、ポリカーボネート(ポリカーボネート系樹脂)や、ポリ塩化ビニル(塩化ビニル系樹脂)、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリアミド、ポリエーテルエーテルケトン、ポリ塩化ビニリデン、トリアセチルセルロース、ポリウレタンなどの高分子材料が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらのうちでは、透明性、耐久性、加工性に優れるなどの観点から、ポリエステル系樹脂、ポリオレフィン系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂が好ましい材料として挙げられる。また、ポリエチレンテレフタレート、ポリカーボネート、ポリメタクリル酸メチル、ポリエチレン、ポリプロピレン、シクロオレフィンポリマーがより好ましい材料として挙げられる。また、柔軟性に優れ、スキージによる水抜け性がよく、施工しやすい、経済性(低コスト)などの観点から、ポリエチレン、ポリプロピレン、シクロオレフィンポリマーがより好ましい材料として挙げられる。
基材フィルムの厚みは、用途、光学特性、材料種、耐久性などを考慮して適宜調整すればよい。例えば加工時にしわが入りにくい、破断しにくい、窓貼り用粘着フィルムとして施工する際のハンドリング性、飛散防止性能などの観点から、25μm以上が好ましい。より好ましくは38μm以上である。また、柔軟性、取り扱い性、経済性などの観点から、125μm以下が好ましい。より好ましくは100μm以下、更に好ましくは50μm以下である。また、所定以下の厚みとすることでより優れた柔軟性を確保してスキージによる水抜け性を確保しやすいなどの観点から、125μm以下が好ましい。より好ましくは100μm以下である。更に好ましくは50μm以下である。
本発明に係る窓貼り用粘着フィルムは、ビル・住宅等の建築物のガラスなどの窓や自動車等の車両のガラスなどの窓に貼り着けるフィルムとして好適に用いることができる。本発明に係る窓貼り用粘着フィルムは、窓に日射遮蔽性などの機能を付与するための機能層を有する。機能層は、基材フィルムと粘着層の間にあってもよいし、粘着層とは反対の基材フィルム面上にあってもよい。
本発明に係る窓貼り用粘着フィルムは、さらに金属薄膜からなる金属層を有してもよい。金属層は、近赤外線や遠赤外線を反射しやすい金属から構成され、熱線(日射)を反射する日射遮蔽層として、また、室内の暖房熱を反射して断熱性を確保する断熱層として機能する。つまり、遮熱性および断熱性を備える。
本発明に係る窓貼り用粘着フィルムは、上記金属層に加えて、さらに高屈折率層を有してもよい。高屈折率層は、金属層とともに積層されることで光透過性を高めるなどの機能を発揮することができる。高屈折率層は、基材フィルムや上記金属層よりも高い屈折率を持つ。屈折率は、633nmの光に対する屈折率をいう。高屈折率層としては、金属酸化物薄膜や有機薄膜などが挙げられる。
本発明に係る窓貼り用粘着フィルムにおいて、金属層は、1層であってもよいし、2層以上であってもよい。さらに、金属層および高屈折率層を重ねて形成してもよい。金属層および高屈折率層の数やその位置は特に限定されるものではない。光透過性の観点から、金属層と高屈折率層とが交互に配置される構成がより好ましい。
金属層および高屈折率層の合計層数は、光透過性、日射遮蔽性などの光学特性の要求などに応じて適宜設定すればよい。膜厚、製造コストなどを考慮すると、1~10層の範囲内であることが好ましい。また、光学特性を考慮すると、奇数層がより好ましく、特に1層、3層、5層、7層、9層が好ましい。また、コストの面から3層がより好ましい。
特に好ましい構成を具体的に示すと、金属層(1層)、高屈折率層/金属層(2層)、金属層/高屈折率層(2層)、高屈折率層/金属層/高屈折率層(3層)、金属層/高屈折率層/金属層(3層)、高屈折率層/金属層/高屈折率層/金属層/高屈折率層(5層)、金属層/高屈折率層/金属層/高屈折率層/金属層(5層)、高屈折率層/金属層/高屈折率層/金属層/高屈折率層/金属層/高屈折率層(7層)、金属層/高屈折率層/金属層/高屈折率層/金属層/高屈折率層/金属層(7層)などが挙げられる。
高屈折率層が金属酸化物薄膜からなる場合には、金属層の一方面または両面にバリア薄膜が形成されていてもよい。バリア薄膜は金属層に付随する薄膜であり、金属層とともに1層として数える。バリア薄膜は、金属層を構成する元素が金属酸化物薄膜中に拡散するのを抑制する。
高屈折率層を2層以上有する場合、すべての高屈折率層が同一の材料からなるものであってもよいし、一部の高屈折率層が他とは異なる材料からなるものであってもよいし、すべての高屈折率層が互いに異なる材料からなるものであってもよい。
次に、本発明の一実施形態に係る窓貼り用粘着フィルムについて、図面を用いて説明する。
図1には、本発明の一実施形態に係る窓貼り用粘着フィルムを示す。窓貼り用粘着フィルム10は、基材フィルム12の一方面上に、機能層14と、粘着層16と、ポリオレフィン層18と、ハードコート層20と、をこの順で有し、基材フィルム12の他方面上に、粘着層22と、セパレータ24と、を有している。
機能層14は、基材フィルム12の一方面上に直接形成されている。粘着層16は、機能層14とポリオレフィン層18とを密着させる層であり、機能層14とポリオレフィン層18の両方に接している。ハードコート層20は、ポリオレフィン層18の面上に直接形成されている。よって、窓貼り用粘着フィルム10は、基材フィルム12と、基材フィルム12に接する機能層14と、機能層14に接する粘着層16と、粘着層16に接するポリオレフィン層18と、ポリオレフィン層18に接するハードコート層20と、をこの順で有している。
粘着層22は、窓貼り用粘着フィルム10をガラスなどの窓に貼着するためのものである。窓貼り用粘着フィルム10は、セパレータ24を剥がして粘着層22を介して窓に貼着することができる。粘着層22が、上述する本発明に係る粘着層となる。粘着層22は、基材フィルム12の他方面上に直接形成されている。セパレータ24は、例えば高分子フィルムなどで構成される。
機能層14は、金属薄膜からなる金属層を有し、日射遮蔽層として機能する層である。機能層14の構成としては、基材フィルム12側から、高屈折率層/金属層/高屈折率層からなる3層構成のものが好適なものとして挙げられる。高屈折率層としては、金属酸化物薄膜からなる層が好適なものとして挙げられる。金属層の金属としては、銀、銀合金が好適なものとして挙げられる。高屈折率層の金属酸化物としては、酸化チタンが好適なものとして挙げられる。金属薄膜の一方面または両面には、バリア薄膜が形成されていてもよい。バリア薄膜としては、金属酸化物薄膜が好適なものとして挙げられる。バリア薄膜の金属酸化物としては、酸化チタンが好適なものとして挙げられる。
基材フィルム12としては、ポリエチレンテレフタレート(PET)フィルムが好適なものとして挙げられる。
ポリオレフィン層18は、ポリオレフィンが含まれる材料で構成される。ポリオレフィン層18は、機能層14の面を覆っており、機能層14の面から金属薄膜に塩水が浸入するのを抑えることができる。機能層14の面からの塩水腐食を抑える効果に優れるなどの理由で、ポリオレフィン層18はポリオレフィンフィルムから形成されることが好ましい。また、ポリオレフィンは比較的柔軟な材料であることから、ポリオレフィン層18は、柔軟性に優れ、窓貼り用粘着フィルム10を窓に施工するときのスキージ応力を緩和することができる。ポリオレフィン層18の材料としては、ポリオレフィンであれば特に限定されるものではない。ポリオレフィン層18の材料としては、ポリプロピレン、ポリシクロオレフィンなどが挙げられる。ポリオレフィン層18の材料としては、光透過性に優れるなどの観点から、ポリプロピレンが好ましい。特に、二軸延伸ポリプロピレン(OPP)が好ましい。
ポリオレフィン層18の厚みとしては、断熱性に優れる(熱貫流率を低く抑える)などの観点から、30μm以下であることが好ましい。より好ましくは24μm以下である。また、施工時のスキージ応力を緩和する効果に優れるなどの観点から、10μm以上であることが好ましい。より好ましくは13μm以上である。
粘着層16は、ポリオレフィン層18を機能層14の面上に接着することができる。機能層14とポリオレフィン層18の間に粘着層16を有していることで、機能層14とポリオレフィン層18の層間密着性を良好にできる。粘着層16は、粘着剤を含有する。粘着剤は、表面の粘着性を利用して圧力をかけて接着するものであり、感圧接着剤として、固化により剥離抵抗力を発揮する接着剤とは区別される。粘着剤としては、アクリル樹脂系粘着剤、シリコーン樹脂系粘着剤、ウレタン系粘着剤などが挙げられる。なお、ここでは、粘着層16と示しているが、粘着層16に代えて接着剤を含有する接着層としてもよい。
粘着層16の厚みとしては、断熱性に優れる(熱貫流率を低く抑える)などの観点から、22.0μm以下であることが好ましい。より好ましくは5.0μm以下、さらに好ましくは2.0μm以下である。また、ポリオレフィン層18との密着性に優れるなどの観点から、0.3μm以上であることが好ましい。より好ましくは0.5μm以上、さらに好ましくは1.0μm以上である。また、高温クリープ特性に優れるなどの観点から、0.3μm以上であることが好ましい。より好ましくは0.5μm以上、さらに好ましくは1.0μm以上である。
ハードコート20は、機能層14やポリオレフィン層18の面上を覆っており、これらの表面に傷が付くのを抑えることができる。ハードコート層20の厚みは、耐擦傷性に優れるなどの観点から、0.4μm以上であることが好ましい。より好ましくは0.6μm以上、さらに好ましくは0.8μm以上である。一方、断熱性に優れる(熱貫流率を低く抑える)などの観点から、2.0μm以下であることが好ましい。より好ましくは1.6μm以下、さらに好ましくは1.0μm以下である。ハードコート層20としては、硬化性樹脂を含有する層や、有機無機ハイブリッド材料を含有する層が好適なものとして挙げられる。
硬化性樹脂としては、シリコーン樹脂やアクリル樹脂などが好適なものとして挙げられる。シリコーン樹脂やアクリル樹脂は、熱硬化性であっても良いし、光硬化性であっても良いし、水硬化性であっても良い。アクリル樹脂としては、アクリル・ウレタン樹脂、シリコンアクリル樹脂、アクリル・メラミン樹脂などが好適なものとして挙げられる。
有機無機ハイブリッド材料は、有機材料(有機成分の原料)と無機材料(無機成分の原料)により形成され、有機材料と無機材料とがナノレベルあるいは分子レベルで複合化している。有機無機ハイブリッド材料は、例えば、有機材料中に分散させた無機材料と有機材料とが重合反応などの反応を起こし、化学結合を介して無機成分が有機成分中に高分散した網目状の架橋構造を有するものである。ハードコート層20が有機無機ハイブリッド材料で構成されたことにより、ポリオレフィン層18とハードコート層20の層間密着性が良好となる。これは、ハードコート層20を形成する材料に無機成分を添加したことでハードコート層20の硬化収縮が抑えられるためと推察される。
有機無機ハイブリッド材料を形成する有機成分の原料としては、硬化性樹脂などが挙げられる。硬化性樹脂としては、アクリル樹脂、エポキシ樹脂、ウレタン樹脂などが挙げられる。これらは単独で用いられてもよいし、2種以上組み合わされてもよい。また、無機成分の原料としては、金属化合物などが挙げられる。金属化合物としては、Si化合物、Ti化合物、Zr化合物などが挙げられる。これらは単独で用いられてもよいし、2種以上組み合わされてもよい。金属化合物は、Si、Ti、Zrなどの無機成分を含有する化合物で、有機成分の原料と重合反応などの反応を起こすなどにより複合化できるものからなる。金属化合物としては、より具体的には、有機金属化合物などが挙げられる。有機金属化合物としては、シランカップリング剤、金属アルコキシド、金属アシレート、金属キレート、シラザンなどが挙げられる。
さらに、有機無機ハイブリッド材料からなるハードコート層20に含まれる金属成分の含有比率は、5.9質量%以上が好ましい。より好ましくは23.7質量%以上である。金属成分の含有比率が5.9質量%以上であるとポリオレフィン層18とハードコート層20の層間密着性が格段に向上する。また、有機無機ハイブリッド材料からなるハードコート層20に含まれる金属成分の含有比率は、41.4質量%以下が好ましい。より好ましくは35.5質量%以下である。金属成分の含有比率が41.4質量%以下であると、塗液の安定性に優れ、ハードコート層20の光透過性の低下が抑えられる。
有機無機ハイブリッド材料からなるハードコート層に含まれる金属成分の含有量は、加熱残分量分析、X線光電子分光分析(XPS)などを用いて調べることができる。
ポリオレフィン層18の粘着層16に接する面やハードコート層20に接する面には、必要に応じて、層間密着性を向上させるなどの目的で、表面処理が施されていてもよい。このような表面処理としては、コロナ処理などが挙げられる。また、ポリオレフィン層18の粘着層16に接する面やハードコート層20に接する面には、層間密着性を向上させるなどの目的で、易接着層が設けられていてもよい。易接着層としては、極性基を有する変性ポリオレフィン層、アクリル樹脂層などが挙げられる。極性基としては、N、O、Sなどのヘテロ原子を有するものなどが挙げられる。変性ポリオレフィンとしては、極性基を有するポリプロピレンコポリマー、極性基を有するポリエチレン、極性基を有するポリイソプレン、極性基を有するポリイソブチレンなどが挙げられる。
窓貼り用粘着フィルム10は、例えば、以下のようにして製造することができる。基材フィルム12上に、所定の積層構造となるように各薄膜を所定の薄膜形成手法によって順次積み上げて機能層14を形成する。その後、必要に応じて、後酸化等の熱処理を行う。その後、機能層14の表面に、粘着剤を塗工して粘着層16を形成する。その後、粘着層16の表面に、ポリオレフィンフィルムを配置して圧力を加えてポリオレフィン層18を形成する。ハードコート層20は、ポリオレフィン層18の面上に硬化性樹脂あるいは有機無機ハイブリッド材料を塗工して塗工膜を形成するとともに、形成した塗工膜に対して硬化処理を行うことにより形成することができる。なお、粘着剤に代えて接着剤を用いる場合には、機能層14の表面に接着剤を塗工し、その塗工膜上にポリオレフィンフィルムを配置した後、接着剤を硬化させればよい。粘着層22は、基材フィルム12の表面あるいはセパレータ24の表面に粘着剤を塗工して形成することができる。
図2には、本発明の一実施形態に係る他の窓貼り用粘着フィルムを示す。窓貼り用粘着フィルム30は、基材フィルム12の一方面上に、機能層14と、粘着層22と、セパレータ24と、をこの順で有し、基材フィルム12の他方面上に、ハードコート層20を有している。つまり、窓貼り用粘着フィルム30は、基材フィルム12と、基材フィルム12に接する機能層14と、機能層14に接する粘着層22と、粘着層22に接するセパレータ24と、をこの順で有している。ハードコート層20は、基材フィルム12の他方面上に直接形成されている。各層の構成は、符号の同じものは図1に示す窓貼り用粘着フィルム10と同じ構成である。
本発明の一実施形態に係るさらに他の窓貼り用粘着フィルムは、図3に示す窓貼り用粘着フィルム40からなる。図3に示す窓貼り用粘着フィルム40は、図2に示す窓貼り用粘着フィルム30と比較して、基材フィルム12がポリオレフィンフィルムからなり、機能層14の高屈折率層が有機薄膜からなる層である(機能層14が、基材フィルム12側から、有機薄膜/金属層/有機薄膜からなる3層構成である)点が相違する。これ以外の構成は、図2に示す窓貼り用粘着フィルム30と同様である。
ポリオレフィンは比較的柔軟な材料であることから、ポリオレフィンフィルムは、柔軟性に優れ、窓貼り用粘着フィルム40を窓に施工するときのスキージ応力を緩和することができる。また、柔軟性があるので、スキージによる水抜け性がよく施工しやすい。フィルムとは、薄い膜状のものであり、一般には200μm以下あるいは250μm以下の厚みのものである。ロール状に巻けるほどの柔軟性を有するものであればよく、そのようなものであれば、200μm以上あるいは250μm以上の厚いものであってもよい。フィルムは、一般にロール状物として供出される。ポリオレフィンフィルムは、加工性や、窓貼り用粘着フィルムとしてのハンドリング性、飛散防止性能などの観点から、25μm以上が好ましい。より好ましくは38μm以上である。また、所定以下の厚みとすることでより優れた柔軟性を確保してスキージによる水抜け性を確保しやすいなどの観点から、125μm以下が好ましい。より好ましくは100μm以下である。更に好ましくは50μm以下である。
ポリオレフィンフィルムのポリオレフィンとしては、鎖状ポリオレフィン、環状ポリオレフィンが挙げられる。鎖状ポリオレフィンとしては、ポリエチレン、ポリプロピレン、エチレン-αオレフィン共重合体などが挙げられる。環状ポリオレフィンとしては、シクロオレフィンポリマーなどが挙げられる。ポリオレフィンとしては、光透過性、耐久性、加工性などの観点から、ポリプロピレンが好ましい。特に、光透過性などの観点から、二軸延伸ポリプロピレン(OPP)が好ましい。
ポリオレフィンフィルムは、これに接する機能層14やハードコート層20などとの層間密着性を向上させるなどの目的で、その一方あるいは両方の表面に表面処理が施されていてもよい。また、層間密着性を向上させるなどの目的で、その一方あるいは両方の表面に易接着層が設けられていてもよい。また、層間密着性を向上させるなどの目的で、その一方の表面に表面処理が施され、他方の表面に易接着層が設けられていてもよい。このような表面処理としては、コロナ処理、プラズマ処理などが挙げられる。これにより、ポリオレフィンフィルムの表面に水酸基や酸素基が形成される。易接着層としては、極性基を有する変性ポリオレフィン層、アクリル樹脂層などが挙げられる。極性基としては、N、O、Sなどのヘテロ原子を有するものなどが挙げられる。変性ポリオレフィンとしては、極性基を有するポリプロピレンコポリマー、極性基を有するポリエチレン、極性基を有するポリイソプレン、極性基を有するポリイソブチレンなどが挙げられる。
ポリオレフィンフィルムは、層間密着性の観点から、その一方あるいは両方の表面に表面処理が施されている、その一方あるいは両方の表面に易接着層が設けられている、あるいは、その一方の表面に表面処理が施され、他方の表面に易接着層が設けられていることが好ましい。特に、その一方あるいは両方の表面に表面処理が施されていることが好ましい。
窓貼り用粘着フィルム40においては、基材フィルム12がポリオレフィンフィルムからなることから、PETフィルムからなる基材フィルムと比較して機能層14との密着性が悪い傾向にある。例えば貼り替え時において貼り付けた窓貼り用粘着フィルム40を窓から剥がすときに機能層14とポリオレフィンフィルムからなる基材フィルム12の間で剥離して糊残り(粘着層22と機能層14が窓に残る)が生じない程度に基材フィルム12の材質などを考慮して粘着層22の窓への密着力を調整することが好ましい。密着力の調整は、粘着層22の材質の選定、可塑剤等の添加剤の種類、添加量の変量、基材フィルム12のプラズマやコロナ等による表面処理などにより行うことができる。
また、窓貼り用粘着フィルム40においては、基材フィルム12がポリオレフィンフィルムからなることから、PETフィルムからなる基材フィルムと比較してハードコート層20との密着性が悪い傾向にある。このため、ハードコート層20は、有機無機ハイブリッド材料から構成されることが好ましい。ハードコート層20が有機無機ハイブリッド材料で構成されると、ポリオレフィンフィルムとハードコート層20の層間密着性が良好となる。これは、ハードコート層20を形成する材料に無機成分を添加したことでハードコート層20の硬化収縮が抑えられたためと推察される。つまり、ハードコート層20の硬化収縮が抑えられることで窓貼り用粘着フィルム40の歪みが小さくなり、ポリオレフィンフィルムとハードコート層20の層間で剥離させる応力が小さくなるためと推察される。
また、ハードコート層20の硬化収縮は、窓貼り用粘着フィルム40の歪みに影響することから、ハードコート層20の硬化収縮は、窓貼り用粘着フィルム40に含まれるポリオレフィンフィルムと機能層14の層間密着性にも影響を与える。つまり、ハードコート層20の硬化収縮が抑えられることで窓貼り用粘着フィルム40の歪みが小さくなり、その結果、ポリオレフィンフィルムと機能層14の層間で剥離させる応力が小さくなる。したがって、ハードコート層20が有機無機ハイブリッド材料で構成されたことにより、ポリオレフィンフィルムと機能層14の層間密着性が悪化するのを抑え、良好にする。
図1に示す窓貼り用粘着フィルム10は、基材フィルム12がPETフィルムからなるため、コシが強く、窓貼り用として好適である。PETフィルムは、その官能基によって赤外線を吸収しやすいが、窓貼り用粘着フィルム10を窓の室内側に貼り付けたときには、機能層14よりも屋外側にPETフィルムが配置されるため、屋内の暖房熱はPETフィルムに吸収される前に機能層14の金属層によって反射され、断熱性を優れたものにすることができる。よって、窓貼り用粘着フィルム10は、遮熱性および断熱性に優れる(遮断熱タイプ)。
図2に示す窓貼り用粘着フィルム20は、基材フィルム12がPETフィルムからなるため、コシが強く、窓貼り用として好適である。窓貼り用粘着フィルム20を窓の室内側に貼り付けたときには、機能層14よりも屋内側にPETフィルムが配置されるため、図1に示す窓貼り用粘着フィルム10よりも断熱性に劣るものとなる。しかし、層構成が少ないため、コストの面で有利である。よって、窓貼り用粘着フィルム20は、コスト、遮熱性に優れる(低コスト遮熱タイプ)。
図3に示す窓貼り用粘着フィルム30は、基材フィルム12がポリオレフィンフィルムからなるため、赤外線の吸収が少ない。窓貼り用粘着フィルム30を窓の室内側に貼り付けたときには、機能層14よりも屋内側にポリオレフィンフィルムが配置されるが、赤外線吸収が少ないため、機能層14の金属層による反射を妨げない。このため、断熱性を優れたものにすることができる。また、層構成が少ないため、コストの面でも有利である。よって、窓貼り用粘着フィルム30は、コスト、遮熱性、断熱性に優れる(低コスト遮断熱タイプ)。
本発明に係る窓貼り用粘着フィルムは、粘着層を介して窓に貼り着けられる。このとき、施工液を用いないで被着体に施工してもよいが、施工液を用いて被着体に施工するほうがよい。施工液を用いると、施工時において貼付位置の調整が容易である、施工時において窓と(本発明に係る窓貼り用粘着フィルムとの間に生じた気泡やシワなどを除去することが容易となる。
施工液を用いるフィルム施工は、例えば、被着体の面や粘着面に施工液を塗布した後、被着体の施工液が塗布された面に粘着フィルムの粘着面を合わせる。この際、施工液を媒介にして、被着体に対して粘着フィルムを滑らせながら粘着フィルムの施工位置を調整する。また、粘着フィルムの外側から施工液を塗布し、この施工液を媒介にして粘着フィルムへの外傷を与えることなくスキージ等の治具にて粘着フィルムと被着体の間に生じた気泡を押し出し、粘着フィルムに生じたシワを伸ばす。同時に、粘着フィルムと被着体の間の施工液や粘着フィルムの外側面の施工液を排出する。
施工液は、中性洗剤等の界面活性剤などの滑り性を付与する添加剤を含む液であってもよいし、界面活性剤などの滑り性を付与する添加剤を含有しない水(あるいは水のみ)であってもよい。その他の添加剤としては、アルコール類などが挙げられる。界面活性剤などの滑り性を付与する添加剤を含む施工液は、上述の貼付位置の調整、気泡がシワなどの除去の点で優れ、また粘着フィルムにスキージ作業の際に粘着フィルムに外傷を与えにくいという点で優れる。しかし、添加剤を含む施工液は粘着フィルムとガラスとの界面に残留しやすい、すなわち水抜け性が悪いため窓の外観不良が発生しやすい。
従来の機能性フィルムは、弾性率の高い粘着剤を用いている。このため、水系の施工液を用いた水貼り施工時に、スキージの力の伝導にムラが生じやすく、必要な力がかからない場所が発生して、粘着フィルムと窓との間に水残りが多くなる。これにより、窓の外観が悪化する。特に金属層を有する機能性フィルムでは施工後にフィルムを通しての水の蒸発が金属層によって妨げられるため、水貼り施工時の水残りを、金属層を含まない場合よりもより少なくする必要がある。
本発明に係る窓貼り用粘着フィルムによれば、押込み硬さが3.0N/m・m2以下であり、アクリル系重合体を含有する粘着層を有することで、界面活性剤などの滑り性を付与する添加剤を含む液にて施工する場合や、金属層を有し、水残りがより課題になり易い場合であっても、良好な水抜け性、施工性を実現できる。またアクリル系重合体を含むことで可視光透過に優れ、ヘイズの少ない光学特性に優れた粘着フィルムとすることができる。またガラスの飛散防止を保証できる強い密着力を付与することができる。アクリル系重合体としてデュロメータータイプAでの硬度が50以下のものを使う、またアクリルブロック共重合体を使うことにより、良好な施工性、水抜け性とリワーク性とを実現できる。
適当な可塑剤を配合することにより適度に密着力の経時変化を制御できる。可塑剤を配合することで、初期の密着性が確保され、水貼り施工時に窓貼り用粘着フィルムが窓に保持されやすく、作業性に優れる。そして、可塑剤により72時間以上の経時での密着力が増大することで、飛散防止性が確保される。さらに、3~24時間後の密着力が抑えられることで、リワーク性が確保される。
金属層を有する窓貼り用粘着フィルムは、水貼り施工後の面からの水抜け、すなわちフィルムを通しての水分の蒸発が金属層によって妨げられるが、本発明に係る窓貼り用粘着フィルムによれば、水貼り施工時の水抜け性に優れるため、金属層を有する構成であっても、水残りによる窓の外観悪化が抑えられる。また、ポリオレフィン層は透水性がよくないため、ポリオレフィン層を有する窓貼り用粘着フィルムは、水貼り施工後の面からの水抜けがよくないが、本発明に係る窓貼り用粘着フィルムによれば、水貼り施工時の水抜け性に優れるため、ポリオレフィン層を有する構成であっても、水残りによる窓の外観悪化が抑えられる。
金属酸化物薄膜からなる高屈折率層を有する窓貼り用粘着フィルムは、水貼り施工後の面からの水抜けが金属酸化物薄膜によって妨げられるが、本発明に係る窓貼り用粘着フィルムによれば、水貼り施工時の水抜け性に優れるため、金属酸化物薄膜を有する構成であっても、水残りによる窓の外観悪化が抑えられる。この際、金属酸化物薄膜がゾル-ゲル法により形成されるものであると、硬化収縮等による孔の形成によりスパッタ等の物理的手法によって形成された金属酸化物薄膜よりも透水性が高く、水貼り施工後の面からの水抜けが向上する。よって、水貼り施工後の面からの水抜けが期待できる。
図1に示す窓貼り用粘着フィルム10は、層構成が多く、金属層、ポリオレフィン層を有する。図2に示す窓貼り用粘着フィルム30は、比較的層構成が少ない。図3に示す窓貼り用粘着フィルム40は、比較的層構成が少ないが、ポリオレフィン層を有する。したがって、これらのうちでは、水貼り施工後の面からの水抜けに関し、図2に示す窓貼り用粘着フィルム30が最もよく、図3に示す窓貼り用粘着フィルム40が次によく、図1に示す窓貼り用粘着フィルム10が最もよくない。
以下、機能層14の金属酸化物薄膜、金属薄膜、バリア薄膜、有機薄膜について詳細に説明する。
機能層の金属酸化物薄膜の金属酸化物としては、チタンの酸化物、亜鉛の酸化物、インジウムの酸化物、スズの酸化物、インジウムとスズとの酸化物、マグネシウムの酸化物、アルミニウムの酸化物、ジルコニウムの酸化物、ニオブの酸化物、セリウムの酸化物などが挙げられる。これらは1種または2種以上含まれていても良い。また、これら金属酸化物は、2種以上の金属酸化物が複合した複合酸化物であっても良い。これらのうちでは、可視光に対する屈折率が比較的大きいなどの観点から、チタンの酸化物、インジウムとスズとの酸化物、亜鉛の酸化物、スズの酸化物などが好ましい。
金属酸化物薄膜は、気相法、液相法の何れでも形成することができる。液相法は、気相法と比較して、真空引きしたり、大電力を使用したりする必要がない。そのため、その分、コスト的に有利であり、生産性にも優れているので好適である。液相法としては、有機分を残存させやすいなどの観点から、ゾル-ゲル法を好適に利用することができる。
金属酸化物薄膜は、主として上述した金属酸化物より構成されているが、金属酸化物以外にも、有機分を含有していても良い。有機分を含有することで、光透過性積層体の柔軟性をより向上させることができるためである。この種の有機分としては、具体的には、例えば、ゾル-ゲル法の出発原料に由来する成分等、金属酸化物薄膜の形成材料に由来する成分などを例示することができる。
上記有機分としては、より具体的には、例えば、金属酸化物を構成する金属の金属アルコキシド、金属アシレート、金属キレートなどといった有機金属化合物(その分解物なども含む)や、上記有機金属化合物と反応して紫外線吸収性のキレートを形成する有機化合物(後述する)等の各種添加剤などを例示することができる。これらは1種または2種以上含まれていても良い。
金属酸化物薄膜中に含まれる有機分の含有量の下限値は、柔軟性を付与しやすいなどの観点から、好ましくは、3質量%以上、より好ましくは、5質量%以上、さらに好ましくは、7質量%以上であると良い。一方、金属酸化物薄膜中に含まれる有機分の含有量の上限値は、高屈折率を確保しやくなる、耐溶剤性を確保しやすくなるなどの観点から、好ましくは、30質量%以下、より好ましくは、25質量%以下、さらに好ましくは、20質量%以下であると良い。有機分の含有量は、X線光電子分光法(XPS)などを用いて調べることができる。また、上記有機分の種類は、赤外分光法(IR)(赤外吸収分析)などを用いて調べることができる。
上記ゾル-ゲル法としては、より具体的には、例えば、金属酸化物を構成する金属の有機金属化合物を含有するコーティング液を薄膜状にコーティングし、これを必要に応じて乾燥させ、金属酸化物薄膜の前駆体薄膜を形成した後、この前駆体薄膜中の有機金属化合物を加水分解・縮合反応させ、有機金属化合物を構成する金属の酸化物を合成するなどの方法を例示することができる。これによれば、金属酸化物を主成分として含み、有機分を含有する金属酸化物薄膜を形成することができる。以下、上記方法について詳細に説明する。
上記コーティング液は、上記有機金属化合物を適当な溶媒に溶解して調製することができる。この際、有機金属化合物としては、具体的には、例えば、チタン、亜鉛、インジウム、スズ、マグネシウム、アルミニウム、ジルコニウム、ニオブ、セリウム、シリコン、ハフニウム、鉛などの金属の有機化合物などを例示することができる。これらは1種または2種以上含まれていても良い。
上記有機金属化合物としては、具体的には、例えば、上記金属の金属アルコキシド、金属アシレート、金属キレートなどを例示することができる。好ましくは、空気中での安定性などの観点から、金属キレートであると良い。
上記有機金属化合物としては、とりわけ、高屈折率を有する金属酸化物になり得る金属の有機化合物を好適に用いることができる。このような有機金属化合物としては、例えば、有機チタン化合物などを例示することができる。
上記有機チタン化合物としては、具体的には、例えば、テトラ-n-ブトキシチタン、テトラエトキシチタン、テトラ-i-プロポキシチタン、テトラメトキシチタンなどのM-O-R結合(Rはアルキル基を示し、Mはチタン原子を示す)を有するチタンのアルコキシドや、イソプロポキシチタンステアレートなどのM-O-CO-R結合(Rはアルキル基を示し、Mはチタン原子を示す)を有するチタンのアシレートや、ジイソプロポキシチタンビスアセチルアセトナート、ジヒドロキシビスラクタトチタン、ジイソプロポキシビストリエタノールアミナトチタン、ジイソプロポキシビスエチルアセトアセタトチタンなどのチタンのキレートなどを例示することができる。これらは1種または2種以上混合されていても良い。また、これらは単量体、多量体の何れであっても良い。
上記コーティング液中に占める有機金属化合物の含有量は、塗膜の膜厚均一性や一回に塗工できる膜厚などの観点から、好ましくは、1~20質量%、より好ましくは、3~15質量%、さらに好ましくは、5~10質量%の範囲内にあると良い。
また、上記有機金属化合物を溶解させる溶媒としては、具体的には、例えば、メタノール、エタノール、プロパノール、ブタノール、ヘプタノール、イソプロピルアルコールなどのアルコール類、酢酸エチルなどの有機酸エステル、アセトニトリル、アセトン、メチルエチルケトンなどのケトン類、テトラヒドロフラン、ジオキサンなどのシクロエーテル類、ホルムアミド、N,N-ジメチルホルムアミドなどの酸アミド類、ヘキサンなどの炭化水素類、トルエンなどの芳香族類などを例示することができる。これらは1種または2種以上混合されていても良い。
この際、上記溶媒量は、上記有機金属化合物の固形分質量に対して、塗膜の膜厚均一性や一回に塗工できる膜厚などの観点から、好ましくは、5~100倍量、より好ましくは、7~30倍量、さらに好ましくは、10~20倍量の範囲内であると良い。
上記溶媒量が100倍量より多くなると、一回のコーティングで形成できる膜厚が薄くなり、所望の膜厚を得るために多数回のコーティングが必要となる傾向が見られる。一方、5倍量より少なくなると、膜厚が厚くなり過ぎ、有機金属化合物の加水分解・縮合反応が十分に進行し難くなる傾向が見られる。したがって、上記溶媒量は、これらを考慮して選択すると良い。
上記コーティング液の調製は、例えば、所定割合となるように秤量した有機金属化合物と、適当な量の溶媒と、必要に応じて添加される他の成分とを、攪拌機などの撹拌手段により所定時間撹拌・混合するなどの方法により調製することができる。この場合、各成分の混合は、1度に混合しても良いし、複数回に分けて混合しても良い。
また、上記コーティング液のコーティング法としては、均一なコーティングが行いやすいなどの観点から、マイクログラビア法、グラビア法、リバースロールコート法、ダイコート法、ナイフコート法、ディップコート法、スピンコート法、バーコート法など、各種のウェットコーティング法を好適なものとして例示することができる。これらは適宜選択して用いることができ、1種または2種以上併用しても良い。
また、コーティングされたコーティング液を乾燥する場合、公知の乾燥装置などを用いて乾燥させれば良く、この際、乾燥条件としては、具体的には、例えば、80℃~120℃の温度範囲、0.5分~5分の乾燥時間などを例示することができる。
また、前駆体薄膜中の有機金属化合物を加水分解・縮合反応させる手段としては、具体的には、例えば、紫外線、電子線、X線等の光エネルギーの照射、加熱など、各種の手段を例示することができる。これらは1種または2種以上組み合わせて用いても良い。これらのうち、好ましくは、光エネルギーの照射、とりわけ、紫外線照射を好適に用いることができる。他の手段と比較した場合、低温、短時間で金属酸化物を生成できるし、熱劣化など、熱による負荷を光透過性高分子フィルムに与え難いからである(とりわけ、紫外線照射の場合は、比較的簡易な設備で済む利点がある。)。また、有機分として、有機金属化合物(その分解物なども含む)などを残存させやすい利点もあるからである。
さらには、ゾルゲル硬化時に光エネルギーを用いるゾル-ゲル法を採用した場合には、スパッタ等により形成した金属酸化物薄膜に比べ、粗な金属酸化物薄膜とすることができる。そのため、建築物の窓ガラスなどに水貼り施工した場合に、窓ガラスとの間に水が残ったときでも、良好な水抜け性が得られ、水貼り施工性を向上させることができるなどの利点があるからである。
この際、用いる紫外線照射機としては、具体的には、例えば、水銀ランプ、キセノンランプ、重水素ランプ、エキシマランプ、メタルハライドランプなどを例示することができる。これらは1種または2種以上組み合わせて用いても良い。
また、照射する光エネルギーの光量は、前駆体薄膜を主に形成している有機金属化合物の種類、前駆体薄膜の厚みなどを考慮して種々調節することができる。もっとも、照射する光エネルギーの光量が過度に小さすぎると、金属酸化物薄膜の高屈折率化を図り難くなる。一方、照射する光エネルギーの光量が過度に大きすぎると、光エネルギーの照射の際に生じる熱により光透過性高分子フィルムが変形することがある。したがって、これらに留意すると良い。
照射する光エネルギーが紫外線である場合、その光量は、金属酸化物薄膜の屈折率、光透過性高分子フィルムが受けるダメージなどの観点から、測定波長300~390nmのとき、好ましくは、300~8000mJ/cm2、より好ましくは、500~5000mJ/cm2の範囲内であると良い。
なお、前駆体薄膜中の有機金属化合物を加水分解・縮合反応させる手段として、光エネルギーの照射を用いる場合、上述したコーティング液中に、有機金属化合物と反応して光吸収性(例えば、紫外線吸収性)のキレートを形成する有機化合物等の添加剤を添加しておくと良い。出発溶液であるコーティング液中に上記添加剤が添加されている場合には、予め光吸収性キレートが形成されたところに光エネルギーの照射がなされるので、比較的低温下において金属酸化物薄膜の高屈折率化を図り得やすくなるからである。
上記添加剤としては、具体的には、例えば、βジケトン類、アルコキシアルコール類、アルカノールアミン類などの添加剤を例示することができる。より具体的には、上記βジケトン類としては、例えば、アセチルアセトン、ベンゾイルアセトン、アセト酢酸エチル、アセト酢酸メチル、マロン酸ジエチルなどを例示することができる。上記アルコキシアルコール類としては、例えば、2-メトキシエタノール、2-エトキシエタノール、2-メトキシ-2-プロパノールなどを例示することができる。上記アルカノールアミン類としては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどを例示することができる。これらは1種または2種以上混合されていても良い。
これらのうち、とりわけ、βジケトン類が好ましく、中でもアセチルアセトンを最も好適に用いることができる。
また、上記添加剤の配合割合としては、屈折率の上がりやすさ、塗膜状態での安定性などの観点から、上記有機金属化合物における金属原子1モルに対して、好ましくは、0.1~2倍モル、より好ましくは、0.5~1.5倍モルの範囲内にあると良い。
金属酸化物薄膜の膜厚は、日射遮蔽性、視認性、反射色などを考慮して調節することができる。金属酸化物薄膜の膜厚の下限値は、反射色の赤色や黄色の着色を抑制しやすくなる、高透明性が得られやすくなるなどの観点から、好ましくは、10nm以上、より好ましくは、15nm以上、さらに好ましくは、20nm以上であると良い。一方、金属酸化物薄膜の膜厚の上限値は、反射色の緑色の着色を抑制しやすくなる、高透明性が得られやすくなるなどの観点から、好ましくは、90nm以下、より好ましくは、85nm以下、さらに好ましくは、80nm以下であると良い。
金属薄膜の金属としては、銀、金、白金、銅、アルミニウム、クロム、チタン、亜鉛、スズ、ニッケル、コバルト、ニオブ、タンタル、タングステン、ジルコニウム、鉛、パラジウム、インジウムなどの金属や、これら金属の合金などが挙げられる。これらは1種または2種以上含まれていても良い。
金属薄膜の金属としては、積層時の可視光透過性、熱線反射性、導電性などに優れるなどの観点から、銀または銀合金が好ましい。より好ましくは、熱、光、水蒸気などの環境に対する耐久性が向上するなどの観点から、銀を主成分とし、銅、ビスマス、金、パラジウム、白金、チタンなどの金属元素を少なくとも1種以上含んだ銀合金であると良い。さらに好ましくは、銅を含む銀合金(Ag-Cu系合金)、ビスマスを含む銀合金(Ag-Bi系合金)、チタンを含む銀合金(Ag-Ti系合金)等であると良い。銀の拡散抑制効果が大きい、コスト的に有利であるなどの利点があるからである。
銅を含む銀合金を用いる場合、銀、銅以外にも、例えば、銀の凝集・拡散抑制効果に悪影響を与えない範囲内であれば、他の元素、不可避不純物を含有していても良い。
上記他の元素としては、具体的には、例えば、Mg、Pd、Pt、Au、Zn、Al、Ga、In、Sn、Sb、Li、Cd、Hg、AsなどのAgに固溶可能な元素;Be、Ru、Rh、Os、Ir、Bi、Ge、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Co、Ni、Si、Tl、Pbなど、Ag-Cu系合金中に単相として析出可能な元素;Y、La、Ce、Nd、Sm、Gd、Tb、Dy、Ti、Zr、Hf、Na、Ca、Sr、Ba、Sc、Pr、Eu、Ho、Er、Tm、Yb、Lu、S、Se、TeなどのAgとの金属間化合物を析出可能な元素などを例示することができる。これらは1種または2種以上含有されていても良い。
銅を含む銀合金を用いる場合、銅の含有量の下限値は、添加効果を得る観点から、好ましくは、1原子%以上、より好ましくは、2原子%以上、さらに好ましくは、3原子%以上であると良い。一方、銅の含有量の上限値は、高透明性を確保しやすくなる、スパッタターゲットが作製しやすい等の製造性などの観点から、好ましくは、20原子%以下、より好ましくは、10原子%以下、さらに好ましくは、5原子%以下であると良い。
また、ビスマスを含む銀合金を用いる場合、銀、ビスマス以外にも、例えば、銀の凝集・拡散抑制効果に悪影響を与えない範囲内であれば、他の元素、不可避不純物を含有していても良い。
上記他の元素としては、具体的には、例えば、Mg、Pd、Pt、Au、Zn、Al、Ga、In、Sn、Sb、Li、Cd、Hg、AsなどのAgに固溶可能な元素;Be、Ru、Rh、Os、Ir、Cu、Ge、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Co、Ni、Si、Tl、Pbなど、Ag-Bi系合金中に単相として析出可能な元素;Y、La、Ce、Nd、Sm、Gd、Tb、Dy、Ti、Zr、Hf、Na、Ca、Sr、Ba、Sc、Pr、Eu、Ho、Er、Tm、Yb、Lu、S、Se、TeなどのAgとの金属間化合物を析出可能な元素などを例示することができる。これらは1種または2種以上含有されていても良い。
ビスマスを含む銀合金を用いる場合、ビスマスの含有量の下限値は、添加効果を得る観点から、好ましくは、0.01原子%以上、より好ましくは、0.05原子%以上、さらに好ましくは、0.1原子%以上であると良い。一方、ビスマスの含有量の上限値は、スパッタターゲットが作製しやすい等の製造性などの観点から、好ましくは、5原子%以下、より好ましくは、2原子%以下、さらに好ましくは、1原子%以下であると良い。
また、チタンを含む銀合金を用いる場合、銀、チタン以外にも、例えば、銀の凝集・拡散抑制効果に悪影響を与えない範囲内であれば、他の元素、不可避不純物を含有していても良い。
上記他の元素としては、具体的には、例えば、Mg、Pd、Pt、Au、Zn、Al、Ga、In、Sn、Sb、Li、Cd、Hg、AsなどのAgに固溶可能な元素;Be、Ru、Rh、Os、Ir、Cu、Ge、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Co、Ni、Si、Tl、Pb、Biなど、Ag-Ti系合金中に単相として析出可能な元素;Y、La、Ce、Nd、Sm、Gd、Tb、Dy、Zr、Hf、Na、Ca、Sr、Ba、Sc、Pr、Eu、Ho、Er、Tm、Yb、Lu、S、Se、TeなどのAgとの金属間化合物を析出可能な元素などを例示することができる。これらは1種または2種以上含有されていても良い。
チタンを含む銀合金を用いる場合、チタンの含有量の下限値は、添加効果を得る観点から、好ましくは、0.01原子%以上、より好ましくは、0.05原子%以上、さらに好ましくは、0.1原子%以上であると良い。一方、チタンの含有量の上限値は、膜にした場合、完全な固溶体が得られやすくなるなどの観点から、好ましくは、2原子%以下、より好ましくは、1.75原子%以下、さらに好ましくは、1.5原子%以下であると良い。
なお、上記銅、ビスマス、チタン等の副元素割合は、ICP分析法を用いて測定することができる。また、上記金属薄膜を構成する金属(合金含む)は、部分的に酸化されていても良い。
金属薄膜の膜厚の下限値は、安定性、熱線反射性などの観点から、好ましくは、3nm以上、より好ましくは、5nm以上、さらに好ましくは、7nm以上であると良い。一方、金属薄膜の膜厚の上限値は、可視光の透明性、経済性などの観点から、好ましくは、30nm以下、より好ましくは、20nm以下、さらに好ましくは、15nm以下であると良い。
ここで、金属薄膜を形成する方法としては、具体的には、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、MBE法、レーザーアブレーションなどといった物理的気相成長法(PVD)、熱CVD法、プラズマCVD法などといった化学的気相成長法(CVD)などの気相法などを例示することができる。金属薄膜は、これらのうち何れか1つの方法を用いて形成されていても良いし、あるいは、2つ以上の方法を用いて形成されていても良い。
これら方法のうち、緻密な膜質が得られる、膜厚制御が比較的容易であるなどの観点から、好ましくは、DCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法などのスパッタリング法を好適に用いることができる。
なお、金属薄膜は、後述する後酸化等を受けて、金属薄膜の機能を損なわない範囲内で酸化されていても良い。
金属薄膜に付随するバリア薄膜は、主として、金属薄膜を構成する元素が、金属酸化物薄膜中へ拡散するのを抑制するバリア的な機能を有している。また、金属酸化物薄膜と金属薄膜との間に介在することで、両者の密着性の向上にも寄与しうる。バリア薄膜は、上記拡散を抑制できれば、浮島状など、不連続な部分があっても良い。
バリア薄膜を構成する金属酸化物としては、具体的には、例えば、チタンの酸化物、亜鉛の酸化物、インジウムの酸化物、スズの酸化物、インジウムとスズとの酸化物、マグネシウムの酸化物、アルミニウムの酸化物、ジルコニウムの酸化物、ニオブの酸化物、セリウムの酸化物などを例示することができる。これらは1種または2種以上含まれていても良い。また、これら金属酸化物は、2種以上の金属酸化物が複合した複酸化物であっても良い。なお、バリア薄膜は、上記金属酸化物以外に不可避不純物などを含んでいても良い。
ここで、バリア薄膜としては、金属薄膜を構成する金属の拡散抑制効果に優れる、密着性に優れるなどの観点から、金属酸化物薄膜中に含まれる金属の酸化物より主に構成されていると良い。
より具体的には、例えば、金属酸化物薄膜としてTiO2薄膜を選択した場合、バリア薄膜は、TiO2薄膜中に含まれる金属であるTiの酸化物より主に構成されるチタン酸化物薄膜であると良い。
また、バリア薄膜がチタン酸化物薄膜である場合、当該バリア薄膜は、当初からチタン酸化物として形成された薄膜であっても良いし、金属Ti薄膜が後酸化されて形成された薄膜、または、部分酸化されたチタン酸化物薄膜が後酸化されて形成された薄膜等であっても良い。
バリア薄膜は、金属酸化物薄膜と同じように主に金属酸化物から構成されるが、金属酸化物薄膜よりも膜厚が薄く設定される。これは、金属薄膜を構成する金属の拡散は、原子レベルで生じるので、屈折率を十分確保するのに必要な膜厚まで厚くする必要性が低いからである。また、薄く形成することで、その分、成膜コストが安価になり、製造コストの低減にも寄与することができる。
バリア薄膜の膜厚の下限値は、バリア性を確保しやすくなるなどの観点から、好ましくは、1nm以上、より好ましくは、1.5nm以上、さらに好ましくは、2nm以上であると良い。一方、バリア薄膜の膜厚の上限値は、経済性などの観点から、好ましくは、15nm以下、より好ましくは、10nm以下、さらに好ましくは、8nm以下であると良い。
バリア薄膜が主にチタン酸化物より構成される場合、チタン酸化物における酸素に対するチタンの原子モル比Ti/Oの下限値は、バリア性などの観点から、1.0/4.0以上、より好ましくは、1.0/3.8以上、さらに好ましくは、1.0/3.5以上、さらにより好ましくは、1.0/3.0以上、最も好ましくは、1.0/2.8以上であると良い。
バリア薄膜が主にチタン酸化物より構成される場合、チタン酸化物における酸素に対するチタンの原子モル比Ti/Oの上限値は、可視光の透明性などの観点から、好ましくは、1.0/0.5以下、より好ましくは、1.0/0.7以下、さらに好ましくは、1.0/1.0以下、さらにより好ましくは、1.0/1.2以下、最も好ましくは、1.0/1.5以下であると良い。
上記Ti/O比は、当該薄膜の組成から算出することができる。当該薄膜の組成分析方法としては、極めて薄い薄膜の組成を比較的正確に分析することが可能な観点から、エネルギー分散型蛍光X線分析(EDX)を好適に用いることができる。
具体的な組成分析方法について説明すると、先ず、超薄切片法(ミクロトーム)などを用いて、分析対象となる当該薄膜を含む機能層の断面方向の厚みが100nm以下の試験片を作製する。次いで、断面方向から機能層と当該薄膜の位置を、透過型電子顕微鏡(TEM)により確認する。次いで、EDX装置の電子銃から電子線を放出させ、分析対象となる当該薄膜の膜厚中央部近傍に入射させる。試験片表面から入射した電子は、ある深さまで入り込み、各種の電子線やX線を発生させる。この際の特性X線を検出して分析することで、当該薄膜の構成元素分析を行うことができる。
バリア薄膜は、緻密な膜を形成できる、数nm~数十nm程度の薄膜を均一な膜厚で形成できるなどの観点から、気相法を好適に利用することができる。
上記気相法としては、具体的には、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、MBE法、レーザーアブレーションなどといった物理的気相成長法(PVD)、熱CVD法、プラズマCVD法などといった化学的気相成長法(CVD)などを例示することができる。上記気相法としては、真空蒸着法などと比較して膜界面の密着性に優れる、膜厚制御が容易であるなどの観点から、DCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法などのスパッタリング法を好適に用いることができる。
なお、上記機能層に含まれる各バリア薄膜は、これら気相法のうち何れか1つの方法を利用して形成されていても良いし、あるいは、2つ以上の方法を利用して形成されていても良い。
また、上記バリア薄膜は、上述した気相法を利用し、当初から金属酸化物薄膜として成膜しても良いし、あるいは、一旦、金属薄膜や部分酸化された金属酸化物薄膜を成膜した後、これを事後的に酸化して形成することも可能である。なお、部分酸化された金属酸化物薄膜とは、さらに酸化される余地がある金属酸化物薄膜を指す。
当初から金属酸化物薄膜として成膜する場合、具体的には、例えば、スパッタリングガスとしてのアルゴン、ネオンなどの不活性ガスに、さらに反応性ガスとして酸素を含むガスを混合し、金属と酸素とを反応させながら薄膜を形成すれば良い(反応性スパッタリング法)。反応性スパッタリング法を用いて、例えば、上記Ti/O比を有するチタン酸化物薄膜を得る場合、雰囲気中の酸素濃度(不活性ガスに対する酸素を含むガスの体積割合)は、上述した膜厚範囲を考慮して最適な割合を適宜選択すれば良い。
一方、金属薄膜や部分酸化された金属酸化物薄膜を成膜した後、これを事後的に後酸化する場合、具体的には、光透過性基板上に上述した機能層を形成した後、機能層中の金属薄膜や部分酸化された金属酸化物薄膜を後酸化させる等すれば良い。なお、金属薄膜の成膜には、スパッタリング法等を、部分酸化された金属酸化物薄膜の成膜には、上述した反応性スパッタリング法等を用いれば良い。
また、後酸化手法としては、加熱処理、加圧処理、化学処理、自然酸化等を例示することができる。これら後酸化手法のうち、比較的簡単かつ確実に後酸化を行うことができるなどの観点から、加熱処理が好ましい。上記加熱処理としては、例えば、上述した機能層を有する光透過性高分子フィルムを加熱炉等の加熱雰囲気中に存在させる方法、温水中に浸漬する方法、マイクロ波加熱する方法や、機能層中の金属薄膜や部分酸化された金属酸化物薄膜等を通電加熱する方法などを例示することができる。これらは1または2以上組み合わせて行っても良い。
上記加熱処理時の加熱条件としては、具体的には、例えば、好ましくは、30℃~60℃、より好ましくは、32℃~57℃、さらに好ましくは、35℃~55℃の加熱温度、加熱雰囲気中に存在させる場合、好ましくは、5日間以上、より好ましくは、10日間以上、さらに好ましくは、15日間以上の加熱時間から選択すると良い。上記加熱条件の範囲内であれば、後酸化効果、光透過性高分子フィルム12の熱変形・融着抑制等が良好だからである。
また、上記加熱処理時の加熱雰囲気は、大気中、高酸素雰囲気中、高湿度雰囲気中など酸素や水分の存在する雰囲気が好ましい。特に好ましくは、製造性、低コスト化等の観点から、大気中であると良い。
機能層中に上述した後酸化薄膜を含んでいる場合には、後酸化時に、金属酸化物薄膜中に含まれていた水分や酸素が消費されているため、太陽光が当たっても金属酸化物薄膜が化学反応し難くなる。具体的には、例えば、金属酸化物薄膜がゾル-ゲル法により形成されている場合、後酸化時に、金属酸化物薄膜中に含まれていた水分や酸素が消費されているため、金属酸化物薄膜中に残存していたゾル-ゲル法による出発原料(金属アルコキシド等)と水分(吸着水等)・酸素等とが、太陽光によってゾルゲル硬化反応し難くなる。そのため、硬化収縮等の体積変化によって生じる内部応力を緩和することが可能となり、機能層の界面剥離等を抑制しやすくなる等、太陽光に対する耐久性を向上させやすくなる。
有機薄膜は、基材フィルムがポリエチレンテレフタレートフィルムからなる場合には、ポリエチレンテレフタレートフィルムの633nmの光に対する屈折率が1.58であるため、有機薄膜の633nmの光に対する屈折率は少なくとも1.59以上、好ましくは1.60以上である必要がある。より好ましくは1.65以上である。
有機薄膜は、金属薄膜および基材フィルムよりも高屈折率で、N、S、Oから選択される少なくとも一種の元素を含む官能基を有するポリマーからなる。また、N、S、Oの中でも特にN、Sを含むポリマーは屈折率が比較的高い傾向にある点で、好ましい。
Nを含む官能基としては、カルバゾール基、イミド基、ニトリル基などが挙げられる。そして、Nを含む官能基を有するポリマーとしては、ポリビニルカルバゾール(PVK)、ポリイミドなどが挙げられる。
Sを含む官能基としては、スルホニル基(-SO2-)、チオール基、チオエステル基などが挙げられる。そして、Sを含む官能基を有するポリマーとしては、ポリエーテルスルホン(PES)、ポリスルホン、ポリフェニルスルホンなどが挙げられる。
Oを含む官能基としては、カルボキシル基、エステル基、ケトン基、ヒドロキシル基などが挙げられる。そして、Oを含む官能基を有するポリマーとしては、エポキシ樹脂などが挙げられる。
ただし、N、S、Oを含む官能基を有するポリマーであっても、633nmの光に対する屈折率が1.60未満のものは、熱線カットフィルムとして良好な光学特性が得られないため、有機薄膜の材料として用いることができない。このような材料としては、ポリメタアクリロニトリル(n=1.40)、2-ヒドロキシエチルメタアクリレートなどのアクリレート(n=1.4程度)、ポリビニルアルコール(n=1.53)、ポリエステル樹脂(n=1.58)、ポリビニルブチラール(n=1.485)などがある。また、N、S、Oを含まないポリマーであるが、フッ化ビニル-ヘキサフルオロプロピレン共重合体(n=1.4188)なども比較的、屈折率の低い材料である。また、テトラブチルチタネート(n=1.491)なども比較的、屈折率の低い材料である。
イソシアネート化合物は、毒性の面から、有機薄膜の材料として用いることが困難である。ポリウレタン樹脂は、熱に弱く、日射を受ける熱線カットフィルムの材料として用いることが困難である。また、加水分解性が高く湿気により経年劣化するため、長時間、窓ガラスなどの被着体に貼り付けられる熱線カットフィルムの材料として、耐久性の面で実用性に乏しい。ポリスチレン樹脂は、N、S、Oの官能基を有していないため金属薄膜と密着せず、更に硬く脆い性質を有するため、熱線カットフィルムの材料として用いることが困難である。
また、有機薄膜のポリマーは、耐熱性に優れることが好ましい。この観点から、有機薄膜のポリマーのガラス転移点(Tg)は60℃以上であることが好ましい。より好ましくは80℃以上である。
有機薄膜の膜厚は、日射遮蔽性、視認性、反射色などを考慮して調節することができる。有機薄膜の膜厚は、同一であってもよいし、異なっていてもよい。有機薄膜の膜厚の下限値は、反射色の赤色や黄色の着色を抑制しやすくなる、高い光透過性が得られやすくなるなどの観点から、好ましくは、10nm以上、より好ましくは、15nm以上、さらに好ましくは、20nm以上であると良い。一方、有機薄膜の膜厚の上限値は、反射色の緑色の着色を抑制しやすくなる、高い光透過性が得られやすくなるなどの観点から、好ましくは、90nm以下、より好ましくは、85nm以下、さらに好ましくは、80nm以下であると良い。
有機薄膜は、ポリマーを含む塗工液を調製し、これを基材フィルムの面などに塗工した後、乾燥させて塗工膜とすることにより形成できる。塗工液の調製には、ポリマーを溶解させる溶剤を必要に応じて用いることができる。このような溶剤としては、メタノール、エタノール、プロパノール、ブタノール、ヘプタノール、イソプロピルアルコールなどのアルコール類、酢酸エチルなどの有機酸エステル、アセトニトリル、アセトン、メチルエチルケトンなどのケトン類、テトラヒドロフラン、ジオキサンなどのシクロエーテル類、ホルムアミド、N,N-ジメチルホルムアミドなどの酸アミド類、ヘキサンなどの炭化水素類、トルエン、キシレンなどの芳香族類などが挙げられる。これらは1種または2種以上混合されていても良い。
以下、実施例および比較例を用いて本発明を詳細に説明する。
<粘着フィルムA>
実施例および比較例に係る窓貼り用粘着フィルムとして、基材フィルムと、基材フィルムの一方面に形成された粘着層と、を有する粘着フィルムAを作製した。
・基材フィルム
PET:ポリエチレンテレフタレートフィルム(東洋紡績(株)製、「コスモシャイン(登録商標)A4100」)、厚み50μm
OPP:二軸延伸ポリプロピレンフィルム(東レ製「2500」)、厚み40μm
実施例および比較例に係る窓貼り用粘着フィルムとして、基材フィルムと、基材フィルムの一方面に形成された粘着層と、を有する粘着フィルムAを作製した。
・基材フィルム
PET:ポリエチレンテレフタレートフィルム(東洋紡績(株)製、「コスモシャイン(登録商標)A4100」)、厚み50μm
OPP:二軸延伸ポリプロピレンフィルム(東レ製「2500」)、厚み40μm
(粘着剤液の調製)
表1に記載の配合組成(質量部)となるように各成分をトルエンに溶解することにより、粘着剤液を調製した。なお、各成分の詳細は以下に示す通りである。
表1に記載の配合組成(質量部)となるように各成分をトルエンに溶解することにより、粘着剤液を調製した。なお、各成分の詳細は以下に示す通りである。
(アクリルブロック共重合体)
・クラリティLA2330:(クラレ社製、デュロメータータイプA硬度32)
・クラリティLA2250:(クラレ社製、デュロメータータイプA硬度65)
(アクリル系樹脂)
・BPS5260:東洋インキ製(主剤)
・BHS8515:東洋インキ製(硬化剤)
(スチレン系エラストマー)
・SEPS(セプトン2063):(クラレ社製、デュロメータータイプA硬度36)
(可塑剤)
・DOA:アジピン酸ジオクチル(試薬)
・DOP:フタル酸ジオクチル(試薬)
・DINP:フタル酸ジイソノニル(試薬)
(ヒンダートアミン系光安定剤)
・TINUVIN622:(BASF社製)
・クラリティLA2330:(クラレ社製、デュロメータータイプA硬度32)
・クラリティLA2250:(クラレ社製、デュロメータータイプA硬度65)
(アクリル系樹脂)
・BPS5260:東洋インキ製(主剤)
・BHS8515:東洋インキ製(硬化剤)
(スチレン系エラストマー)
・SEPS(セプトン2063):(クラレ社製、デュロメータータイプA硬度36)
(可塑剤)
・DOA:アジピン酸ジオクチル(試薬)
・DOP:フタル酸ジオクチル(試薬)
・DINP:フタル酸ジイソノニル(試薬)
(ヒンダートアミン系光安定剤)
・TINUVIN622:(BASF社製)
(粘着層の形成)
上記粘着剤液を上記PETフィルムの易接着層面の上または予めコロナ処理が施された上記OPPフィルムの一方面上にブレード法で塗工し、130℃で乾燥することにより、粘着層を形成した。粘着層について、厚み、押し込み硬さを測定した。粘着層の厚みは、JIS Z 0237に準拠し、ダイヤルゲージにて粘着層の厚み(μm)を測定した。押込み硬さは、ISO14577-1に準拠し、超微小押し込み硬さ試験機((株)エリオニクス、「ENT-2100」)にて測定を行った。次いで、10mm幅、30mm長にカットしサンプルを切り出し、上記超微小押し込み硬さ試験機を用いて、三角錐形状圧子(稜間角115度)を使用し、押込み荷重10μN、ステップインターバル時間20秒、測定温度20℃で、粘着表面をランダムに10箇所測定し、得られた荷重-変位曲線から、押し込み硬さを算出し、その相加平均値を計算したものを粘着層の押し込み硬さとした。
上記粘着剤液を上記PETフィルムの易接着層面の上または予めコロナ処理が施された上記OPPフィルムの一方面上にブレード法で塗工し、130℃で乾燥することにより、粘着層を形成した。粘着層について、厚み、押し込み硬さを測定した。粘着層の厚みは、JIS Z 0237に準拠し、ダイヤルゲージにて粘着層の厚み(μm)を測定した。押込み硬さは、ISO14577-1に準拠し、超微小押し込み硬さ試験機((株)エリオニクス、「ENT-2100」)にて測定を行った。次いで、10mm幅、30mm長にカットしサンプルを切り出し、上記超微小押し込み硬さ試験機を用いて、三角錐形状圧子(稜間角115度)を使用し、押込み荷重10μN、ステップインターバル時間20秒、測定温度20℃で、粘着表面をランダムに10箇所測定し、得られた荷重-変位曲線から、押し込み硬さを算出し、その相加平均値を計算したものを粘着層の押し込み硬さとした。
(水貼り施工)
作製した各粘着フィルムを、厚さ3mmのフロートガラスの片面に貼り付けた。具体的には、図4に示すように、粘着フィルム1の一端側を支持体2にテープ3で固定し、粘着面1aを外側にして粘着フィルム1を180°湾曲させた状態で、他端側の辺を幅50mm、厚み3mmのガラス板4の一辺に合わせ、ガラス板4の一辺から対向する他辺に向かって支持体2を移動させながらガラス板4の面4aに粘着フィルム1の粘着面1aを合わせることにより、ガラス板4に粘着フィルム1を貼り合わせた。貼り合わせ速度は1.0m/分とした。ただし、貼り合わせは、施工液A(中性洗剤「チャーミーVクイック」0.1質量%含有水)を用いた方法で行った。施工液Aは、霧吹きを用い、貼り合わせ前にガラス面4aおよび粘着面1aの両方に吹き付けた上で貼り合せ、貼り合せ後に再度フィルム表面に施工液Aを霧吹きで吹き付け、スキージで表面を擦って貼り合せ界面から施工液を押し出して密着させた。
作製した各粘着フィルムを、厚さ3mmのフロートガラスの片面に貼り付けた。具体的には、図4に示すように、粘着フィルム1の一端側を支持体2にテープ3で固定し、粘着面1aを外側にして粘着フィルム1を180°湾曲させた状態で、他端側の辺を幅50mm、厚み3mmのガラス板4の一辺に合わせ、ガラス板4の一辺から対向する他辺に向かって支持体2を移動させながらガラス板4の面4aに粘着フィルム1の粘着面1aを合わせることにより、ガラス板4に粘着フィルム1を貼り合わせた。貼り合わせ速度は1.0m/分とした。ただし、貼り合わせは、施工液A(中性洗剤「チャーミーVクイック」0.1質量%含有水)を用いた方法で行った。施工液Aは、霧吹きを用い、貼り合わせ前にガラス面4aおよび粘着面1aの両方に吹き付けた上で貼り合せ、貼り合せ後に再度フィルム表面に施工液Aを霧吹きで吹き付け、スキージで表面を擦って貼り合せ界面から施工液を押し出して密着させた。
(水残り率)
上記水貼り施工に際し、上記フロートガラス4のサイズは、200mm×300mm×3mmtとした。また、粘着フィルム1を貼り合わせるときのスキージは、ウレタンスキージ(サイズ:200×120mm、厚み:6mm、極東産機社製「33-6082」)を用い、施工荷重を200gとし、スキージ回数を2回とした。水貼り施工後168時間(1週間)経過したときの水残り率を評価した。この水残り率から、水抜け性を評価した。水残り率は、ガラス面積に対する水残り面積の割合(%)とした。水残り面積は、フロートガラス4と粘着フィルム1の間に残る水泡面積から求めた。
上記水貼り施工に際し、上記フロートガラス4のサイズは、200mm×300mm×3mmtとした。また、粘着フィルム1を貼り合わせるときのスキージは、ウレタンスキージ(サイズ:200×120mm、厚み:6mm、極東産機社製「33-6082」)を用い、施工荷重を200gとし、スキージ回数を2回とした。水貼り施工後168時間(1週間)経過したときの水残り率を評価した。この水残り率から、水抜け性を評価した。水残り率は、ガラス面積に対する水残り面積の割合(%)とした。水残り面積は、フロートガラス4と粘着フィルム1の間に残る水泡面積から求めた。
(像鮮明度)
図5に示すように、粘着層を介して粘着フィルム5を板ガラス6に貼り付けた状態において、ガラス面側から入射角θ(=30度、90度)で光を入射し、光学櫛7の光透過部での最高光量と遮光部での最低光量を受光部8にて測定した。光学櫛7には、スリット間隔の異なる複数のスリット(0.05mm、0.125mm、0.25mm、0.5mm、1.0mm)を有するものを用い、光学櫛3をスリットの並ぶ矢印の方向に移動させた。像鮮明度は、JIS K7374に準拠して測定され、スリット間隔が0.05mmのときの値とし、MD方向の像鮮明度とTD方向の像鮮明度の平均値とした。
図5に示すように、粘着層を介して粘着フィルム5を板ガラス6に貼り付けた状態において、ガラス面側から入射角θ(=30度、90度)で光を入射し、光学櫛7の光透過部での最高光量と遮光部での最低光量を受光部8にて測定した。光学櫛7には、スリット間隔の異なる複数のスリット(0.05mm、0.125mm、0.25mm、0.5mm、1.0mm)を有するものを用い、光学櫛3をスリットの並ぶ矢印の方向に移動させた。像鮮明度は、JIS K7374に準拠して測定され、スリット間隔が0.05mmのときの値とし、MD方向の像鮮明度とTD方向の像鮮明度の平均値とした。
(密着性評価1)
貼り合わせてから所定時間経過後(1時間後、3時間後、24時間後、72時間後)に、JIS-A-5759に規定される180度剥離法により、密着力(N/25mm)を測定した。なお、サンプルの幅は50mm、引張速度は50mm/分とした。
貼り合わせてから所定時間経過後(1時間後、3時間後、24時間後、72時間後)に、JIS-A-5759に規定される180度剥離法により、密着力(N/25mm)を測定した。なお、サンプルの幅は50mm、引張速度は50mm/分とした。
(密着性評価2)
貼り合わせてから、JIS-Z-0237に準拠し、フィルムの粘着層に長さ方向の静加重をかけたときの、所定時間経過後(1時間後、3時間後、24時間後、72時間後)の初期貼付位置から移動距離(ずり落ち量)、またはガラスから落下する時間を測定した。
貼り合わせてから、JIS-Z-0237に準拠し、フィルムの粘着層に長さ方向の静加重をかけたときの、所定時間経過後(1時間後、3時間後、24時間後、72時間後)の初期貼付位置から移動距離(ずり落ち量)、またはガラスから落下する時間を測定した。
比較例1では、粘着層の材料としてデュロメータータイプAでの硬度の低いアクリル系重合体を用い、粘着層の押込み硬さは小さいが、可塑剤を配合していないため、初期(1時間後)の密着性が悪く、水貼り施工時に窓貼り用粘着フィルムが窓に保持されず、窓からの剥離が発生する可能性が有る。また、経時(72時間後)の密着性が低く、窓ガラスの飛散防止性に劣る。比較例2では、粘着層の材料としてデュロメータータイプAでの硬度の高いアクリル系重合体を用い、粘着層の押込み硬さが大きいため、水残り率が高く、水抜き性が悪い。また、経時(24時間後)の密着性が高く、リワーク性に劣る。比較例3では、粘着層の材料としてアクリル系樹脂を用い、粘着層の押し込み硬さが大きいため、水残り率が悪く、水抜け性が悪い。また、経時(24時間後)の密着性が高く、リワーク性に劣る。比較例4では、粘着層の材料としてスチレン系重合体を用い、粘着層の押込み硬さは小さいが、初期(1時間後)の密着性が悪く、さらにずり落ち量も大きいため、水貼り施工時に窓貼り用粘着フィルムが窓に保持されず、窓からの剥離、脱落が発生する可能性がある。また、経時(72時間後)の密着性が低く、窓ガラスの飛散防止性に劣る。
これに対し、実施例では、粘着層の材料としてデュロメータータイプAでの硬度の低いアクリル系重合体を用い、粘着層の押込み硬さが小さいため、水残り率が低く、水抜き性に優れる。また、可塑剤を配合しているため、初期(1時間後)の密着性に優れ、施工性に優れる。さらに、経時(72時間後)の密着性に優れるため、窓ガラスの飛散防止性に優れる。そして、実施例1,4,5によれば、可塑剤としてDOAあるいはDINPを用いることで、経時(3時間後)の密着性が抑えられ、リワーク性に優れる。また、可塑剤としてDOAを用いることで、経時(24時間後)の密着性も抑えられるため、さらにリワーク性に優れる。また、実施例1,7によれば、粘着層の厚みが厚いこと(33μm)で水抜け性、施工性に優れる。また、実施例1,8によれば、基材フィルムをPETからOPP(ポリオレフィンフィルム)にしたことにより、柔軟性が高くなり、水抜け性がよくなって施工性が向上していることがわかる。また、水抜け性の向上により水残り率が大幅に低下したことで、フィルム施工後の像鮮明度が格段に向上していることがわかる。
そして、実施例の粘着層の材料は、比較例2、3、4の粘着層の材料と比べ、像鮮明度の点でも優れている。つまり、実施例の粘着層の材料によれば、粘着層に起因する外観歪みが抑えられやすいこともわかる。
<粘着フィルムB>
次に、実施例9および比較例5に係る窓貼り用粘着フィルムとして、図3に示すような、基材フィルムと、基材フィルムの一方面に形成された機能層および粘着層と、基材フィルムの他方面に形成されたハードコート層と、を有する粘着フィルムBを作製した。すなわち、粘着層/有機薄膜/金属層/有機薄膜/基材フィルム/ハードコート層の順に積層されてなる粘着フィルムBを作製した。なお、基材フィルム(OPPフィルム)は、実施例8と同じ構成のものを用いた。粘着層を形成するための粘着剤液は、実施例8または比較例3と同じ構成のものを用いた。
次に、実施例9および比較例5に係る窓貼り用粘着フィルムとして、図3に示すような、基材フィルムと、基材フィルムの一方面に形成された機能層および粘着層と、基材フィルムの他方面に形成されたハードコート層と、を有する粘着フィルムBを作製した。すなわち、粘着層/有機薄膜/金属層/有機薄膜/基材フィルム/ハードコート層の順に積層されてなる粘着フィルムBを作製した。なお、基材フィルム(OPPフィルム)は、実施例8と同じ構成のものを用いた。粘着層を形成するための粘着剤液は、実施例8または比較例3と同じ構成のものを用いた。
<有機薄膜用塗工液の調製>
グラビアコーターで塗工可能な粘度(0.1~3.0mPa・s)にトリアジン環含有重合体(日産化学工業社製「UR-108NT3」)を希釈(溶媒:PGMEA)することにより、有機薄膜用塗工液を調製した。
グラビアコーターで塗工可能な粘度(0.1~3.0mPa・s)にトリアジン環含有重合体(日産化学工業社製「UR-108NT3」)を希釈(溶媒:PGMEA)することにより、有機薄膜用塗工液を調製した。
<粘着フィルムBの作製>
予めコロナ処理が施されたOPPフィルムの一方面上にマイクログラビアコーターを用いて上記の有機薄膜用塗工液を塗工し、これを乾燥させることにより、有機薄膜を形成した。次いで、この1層目の有機薄膜上にスパッタリングによりAg-Cu合金薄膜を成膜した。次いで、1層目の有機薄膜の形成と同様にしてこのAg-Cu合金薄膜上に2層目の有機薄膜を形成した。次いで、この2層目の有機薄膜上に、実施例8または比較例3と同じ組成の粘着剤液をブレード法で塗工し、130℃で乾燥することにより、粘着層を形成した。さらに、予めコロナ処理が施されたOPPフィルムの他方面上にハードコート層(HC層)を形成した。ハードコート層の材料は、以下のUV硬化型の有機無機ハイブリッド材であり、塗工後、UV硬化させた。
・有機無機ハイブリッド材:大日精化工業社製TGシリーズ、UV硬化型
予めコロナ処理が施されたOPPフィルムの一方面上にマイクログラビアコーターを用いて上記の有機薄膜用塗工液を塗工し、これを乾燥させることにより、有機薄膜を形成した。次いで、この1層目の有機薄膜上にスパッタリングによりAg-Cu合金薄膜を成膜した。次いで、1層目の有機薄膜の形成と同様にしてこのAg-Cu合金薄膜上に2層目の有機薄膜を形成した。次いで、この2層目の有機薄膜上に、実施例8または比較例3と同じ組成の粘着剤液をブレード法で塗工し、130℃で乾燥することにより、粘着層を形成した。さらに、予めコロナ処理が施されたOPPフィルムの他方面上にハードコート層(HC層)を形成した。ハードコート層の材料は、以下のUV硬化型の有機無機ハイブリッド材であり、塗工後、UV硬化させた。
・有機無機ハイブリッド材:大日精化工業社製TGシリーズ、UV硬化型
得られた実施例9および比較例5に係る窓貼り用粘着フィルムについて、実施例1~8および比較例1~4と同様にして、粘着層の厚み、押込み硬さ、水残り率、密着性1,2、像鮮明度をそれぞれ測定・評価した。また、熱貫流率と糊残りの測定・評価を行った。その結果を表2に示す。熱貫流率と糊残りの測定・評価は、以下の通りである。
(Cu含有量の測定)
Ag-Cu合金薄膜中の副元素(Cu)含有量は、次のようにして求めた。すなわち、各成膜条件において、別途、ガラス基板上にAg-Cu合金薄膜を形成した試験片を作製し、この試験片を6%HNO3溶液に浸漬し、20分間超音波による溶出を行った後、得られた試料液を用いて、ICP分析法の濃縮法により測定した。Cu含有量は4原子%であった。
Ag-Cu合金薄膜中の副元素(Cu)含有量は、次のようにして求めた。すなわち、各成膜条件において、別途、ガラス基板上にAg-Cu合金薄膜を形成した試験片を作製し、この試験片を6%HNO3溶液に浸漬し、20分間超音波による溶出を行った後、得られた試料液を用いて、ICP分析法の濃縮法により測定した。Cu含有量は4原子%であった。
(薄膜の膜厚の測定)
各薄膜の膜厚は、各成膜条件において、別途、ガラス基板上に有機薄膜/Ag-Cu合金薄膜/有機薄膜を形成した試験片の電界放出型電子顕微鏡(HRTEM)(日本電子(株)製、「JEM2001F」)による断面観察から測定した。1層目の有機薄膜、Ag-Cu合金薄膜、2層目の有機薄膜の膜厚は、それぞれ20nm、10nm、20nmであった。
各薄膜の膜厚は、各成膜条件において、別途、ガラス基板上に有機薄膜/Ag-Cu合金薄膜/有機薄膜を形成した試験片の電界放出型電子顕微鏡(HRTEM)(日本電子(株)製、「JEM2001F」)による断面観察から測定した。1層目の有機薄膜、Ag-Cu合金薄膜、2層目の有機薄膜の膜厚は、それぞれ20nm、10nm、20nmであった。
(熱貫流率)
粘着フィルムBの粘着層の粘着面を板ガラスの片面に貼り付けた。粘着フィルムB側から測定光を入射し、 JIS R3106に準拠し、ガラス面およびフィルム面の垂直放射率を求め、JIS A5759に準拠して熱貫流率(W/m2K)を求めた。
粘着フィルムBの粘着層の粘着面を板ガラスの片面に貼り付けた。粘着フィルムB側から測定光を入射し、 JIS R3106に準拠し、ガラス面およびフィルム面の垂直放射率を求め、JIS A5759に準拠して熱貫流率(W/m2K)を求めた。
(糊残り評価)
図4に示す方法に準拠して粘着フィルムの全面をフロートガラスに貼り合わせてから(水貼り施工してから)336時間後(2週間後)に、粘着フィルムをガラス板から剥がし、剥がした後のガラス板の表面を観察した。粘着層の粘着剤がガラス板の表面に残っていないことが確認された場合を良好「○」とし、粘着層の粘着剤がガラス板の表面に残っていることが確認された場合を不良「×」とした。
図4に示す方法に準拠して粘着フィルムの全面をフロートガラスに貼り合わせてから(水貼り施工してから)336時間後(2週間後)に、粘着フィルムをガラス板から剥がし、剥がした後のガラス板の表面を観察した。粘着層の粘着剤がガラス板の表面に残っていないことが確認された場合を良好「○」とし、粘着層の粘着剤がガラス板の表面に残っていることが確認された場合を不良「×」とした。
比較例5は、比較例3と同様、粘着層の材料としてアクリル系樹脂を用い、粘着層の押し込み硬さが大きいため、水残り率が悪く、水抜け性が悪い。また、経時(24時間後)の密着性が高く、リワーク性に劣る。一方、実施例9は、実施例8と同様、粘着層の材料としてデュロメータータイプAでの硬度の低いアクリル系重合体を用い、粘着層の押込み硬さが小さいため、水残り率が低く、水抜け性に優れる。また、アクリル系重合体をベースに可塑剤を配合しているため、初期(1時間後)の密着性に優れ、施工性に優れる。さらに、経時(72時間後)の密着性に優れるため、窓ガラスの飛散防止性に優れる。
そして、実施例9は、層構成から熱貫流率が抑えられており、断熱性に優れる。また、糊残りも観測されず、貼り替えが容易であることが確認できた。一方、比較例5は、糊残りが観測され、貼り替えやすさに劣っていることがわかる。比較例5では、粘着フィルムをガラス板から剥がす際に、機能層の有機薄膜と基材フィルム(OPPフィルム)との間で剥離したために糊残りが生じた。これは、OPPフィルムに対する機能層の有機薄膜の密着性がそれほど高くないためである。比較例5のように粘着層の経時(336時間後)の密着性が高すぎると、粘着フィルムを剥がす際に密着力の弱いOPPフィルムと機能層の有機薄膜との間で剥がれが生じる。そして、比較例5の材料構成では、経時(336時間後)の密着性の調整が難しく、OPPフィルムと機能層の有機薄膜との間の密着力よりも低いものにすることが難しい。これに対し、実施例では、可塑剤の種類、配合量などによって経時(336時間後)の密着性の調整が可能である。基材フィルムの種類に合わせて密着性を調整することにより、実施例9のように機能層と基材フィルムの間の剥離を抑えて糊残りを無くし、貼り替えを容易にすることができる。
以上、本発明の実施形態・実施例について説明したが、本発明は上記実施形態・実施例に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改変が可能である。
Claims (20)
- アクリルブロック共重合体および可塑剤を含有し、押込み硬さが3.0N/mm2以下である粘着層を有することを特徴とする窓貼り用粘着フィルム。
- 水系施工液を用いてガラス面に貼着した後168時間経過したときの水残り率が4.0%以下であることを特徴とする請求項1に記載の窓貼り用粘着フィルム。
- 前記アクリルブロック共重合体のデュロメータータイプAでの硬度が50以下であることを特徴とする請求項1または2に記載の窓貼り用粘着フィルム。
- 前記可塑剤の溶解度パラメータが、8.0~9.9の範囲内であることを特徴とする請求項1から3のいずれか1項に記載の窓貼り用粘着フィルム。
- 前記可塑剤の分子量が、300~500の範囲内であることを特徴とする請求項1から4のいずれか1項に記載の窓貼り用粘着フィルム。
- 前記可塑剤が、フタル酸エステルまたはアジピン酸エステルであることを特徴とする請求項1から5のいずれか1項に記載の窓貼り用粘着フィルム。
- 前記可塑剤が、フタル酸ジオクチル、アジピン酸ジオクチル、フタル酸ジイソノニルのいずれか1種または2種以上であることを特徴とする請求項6に記載の窓貼り用粘着フィルム。
- 前記可塑剤の含有量が、前記アクリルブロック共重合体100質量部に対し1~40質量部の範囲内であることを特徴とする請求項1から7のいずれか1項に記載の窓貼り用粘着フィルム。
- 前記粘着層が、さらに光安定剤を含有することを特徴とする請求項1から8のいずれか1項に記載の窓貼り用粘着フィルム。
- 前記光安定剤が、ヒンダートアミン系化合物であることを特徴とする請求項9に記載の窓貼り用粘着フィルム。
- 前記粘着層の厚みが、12~50μmの範囲内であることを特徴とする請求項1から10のいずれか1項に記載の窓貼り用粘着フィルム。
- さらに金属層を有することを特徴とする請求項1から11のいずれか1項に記載の窓貼り用粘着フィルム。
- 前記金属層の金属が、銀、銀合金、アルミニウム、合金鋼、金のいずれか1種または2種以上であることを特徴とする請求項12に記載の窓貼り用粘着フィルム。
- さらに、前記金属層よりも屈折率の高い高屈折率層を有することを特徴とする請求項12または13に記載の窓貼り用粘着フィルム。
- 前記高屈折率層が、金属酸化物薄膜および有機薄膜のいずれか1種または2種以上であることを特徴とする請求項14に記載の窓貼り用粘着フィルム。
- 前記金属酸化物薄膜が、ゾル-ゲル法により形成されたものであることを特徴とする請求項15に記載の窓貼り用粘着フィルム。
- 基材フィルムの厚みが、25~125μmの範囲内であることを特徴とする請求項1から16のいずれか1項に記載の窓貼り用粘着フィルム。
- 基材フィルムのベースポリマーが、ポリエステル系樹脂、ポリオレフィン系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂のいずれか1種であることを特徴とする請求項1から17のいずれか1項に記載の窓貼り用粘着フィルム。
- 基材フィルムが、二軸延伸ポリプロピレンフィルムであることを特徴とする請求項1から18のいずれか1項に記載の窓貼り用粘着フィルム。
- 前記粘着層、前記金属層、前記金属層よりも屈折率の高い高屈折率層としての前記有機薄膜、基材フィルムを備え、粘着層/有機薄膜/金属層/有機薄膜/基材フィルムの順に積層されていることを特徴とする請求項15、請求項15を引用する請求項17から19のいずれか1項に記載の窓貼り用粘着フィルム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017501830A JPWO2016135997A1 (ja) | 2015-02-27 | 2015-06-29 | 窓貼り用粘着フィルム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-038675 | 2015-02-27 | ||
JP2015038675 | 2015-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016135997A1 true WO2016135997A1 (ja) | 2016-09-01 |
Family
ID=56788078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/068709 WO2016135997A1 (ja) | 2015-02-27 | 2015-06-29 | 窓貼り用粘着フィルム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016135997A1 (ja) |
WO (1) | WO2016135997A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019097889A1 (ja) * | 2017-11-20 | 2019-05-23 | 富士フイルム株式会社 | 積層体、偏光板、及び画像表示装置、および積層体の製造方法 |
CN110861325A (zh) * | 2018-08-27 | 2020-03-06 | 日东电工株式会社 | 拉伸树脂膜的制造方法、偏光件的制造方法、及拉伸树脂膜的制造装置 |
WO2020049986A1 (ja) * | 2018-09-06 | 2020-03-12 | 日東電工株式会社 | 粘着シート |
JP2021028393A (ja) * | 2020-11-04 | 2021-02-25 | 日東電工株式会社 | 粘着シート |
JP2021028392A (ja) * | 2020-11-04 | 2021-02-25 | 日東電工株式会社 | 粘着シート |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11198303A (ja) * | 1998-01-12 | 1999-07-27 | Dainippon Printing Co Ltd | 窓貼り用シート |
JP2000096009A (ja) * | 1998-09-18 | 2000-04-04 | Teijin Ltd | 窓貼り用積層フィルムおよびそれからなる積層体 |
JP2005307063A (ja) * | 2004-04-23 | 2005-11-04 | Kuraray Co Ltd | アクリル系ブロック共重合体組成物 |
JP2009102467A (ja) * | 2007-10-22 | 2009-05-14 | Mitsubishi Plastics Inc | アクリル系透明粘着剤組成物 |
JP2009544778A (ja) * | 2006-07-28 | 2009-12-17 | テーザ・アクチエンゲゼルシャフト | 家庭用電化製品のガラス製ウインドに飛散防止カバーとして貼り付けるための光学的に高透明度の接着フィルム |
JP2010163597A (ja) * | 2008-12-17 | 2010-07-29 | Dainippon Printing Co Ltd | シリコン酸化膜面保護用粘着フィルム |
JP2011001393A (ja) * | 2009-06-16 | 2011-01-06 | Dainippon Printing Co Ltd | 飛散防止フィルム及びその製造方法 |
JP2014515049A (ja) * | 2011-03-24 | 2014-06-26 | スリーエム イノベイティブ プロパティズ カンパニー | 難燃接着剤 |
WO2014185350A1 (ja) * | 2013-05-13 | 2014-11-20 | 株式会社クラレ | ブロック共重合体を含有する粘着剤 |
JP2015025932A (ja) * | 2013-07-26 | 2015-02-05 | アキレス株式会社 | 窓貼り用熱線遮蔽フィルム |
JP2015140379A (ja) * | 2014-01-28 | 2015-08-03 | 住友理工株式会社 | フィルム用粘着剤組成物およびこれを用いた粘着フィルムならびに遮熱性粘着フィルム、粘着フィルムの施工方法ならびに遮熱性粘着フィルムの施工方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170044101A (ko) * | 2014-08-20 | 2017-04-24 | 주식회사 쿠라레 | 아크릴계 점착제 조성물 및 점착 제품 |
US10370528B2 (en) * | 2015-01-27 | 2019-08-06 | Kuraray Co., Ltd. | Acrylic block copolymer and adhesive composition |
-
2015
- 2015-06-29 JP JP2017501830A patent/JPWO2016135997A1/ja active Pending
- 2015-06-29 WO PCT/JP2015/068709 patent/WO2016135997A1/ja active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11198303A (ja) * | 1998-01-12 | 1999-07-27 | Dainippon Printing Co Ltd | 窓貼り用シート |
JP2000096009A (ja) * | 1998-09-18 | 2000-04-04 | Teijin Ltd | 窓貼り用積層フィルムおよびそれからなる積層体 |
JP2005307063A (ja) * | 2004-04-23 | 2005-11-04 | Kuraray Co Ltd | アクリル系ブロック共重合体組成物 |
JP2009544778A (ja) * | 2006-07-28 | 2009-12-17 | テーザ・アクチエンゲゼルシャフト | 家庭用電化製品のガラス製ウインドに飛散防止カバーとして貼り付けるための光学的に高透明度の接着フィルム |
JP2009102467A (ja) * | 2007-10-22 | 2009-05-14 | Mitsubishi Plastics Inc | アクリル系透明粘着剤組成物 |
JP2010163597A (ja) * | 2008-12-17 | 2010-07-29 | Dainippon Printing Co Ltd | シリコン酸化膜面保護用粘着フィルム |
JP2011001393A (ja) * | 2009-06-16 | 2011-01-06 | Dainippon Printing Co Ltd | 飛散防止フィルム及びその製造方法 |
JP2014515049A (ja) * | 2011-03-24 | 2014-06-26 | スリーエム イノベイティブ プロパティズ カンパニー | 難燃接着剤 |
WO2014185350A1 (ja) * | 2013-05-13 | 2014-11-20 | 株式会社クラレ | ブロック共重合体を含有する粘着剤 |
JP2015025932A (ja) * | 2013-07-26 | 2015-02-05 | アキレス株式会社 | 窓貼り用熱線遮蔽フィルム |
JP2015140379A (ja) * | 2014-01-28 | 2015-08-03 | 住友理工株式会社 | フィルム用粘着剤組成物およびこれを用いた粘着フィルムならびに遮熱性粘着フィルム、粘着フィルムの施工方法ならびに遮熱性粘着フィルムの施工方法 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019097889A1 (ja) * | 2017-11-20 | 2019-05-23 | 富士フイルム株式会社 | 積層体、偏光板、及び画像表示装置、および積層体の製造方法 |
CN110861325A (zh) * | 2018-08-27 | 2020-03-06 | 日东电工株式会社 | 拉伸树脂膜的制造方法、偏光件的制造方法、及拉伸树脂膜的制造装置 |
CN112714786A (zh) * | 2018-09-06 | 2021-04-27 | 日东电工株式会社 | 粘合片 |
JP2020041008A (ja) * | 2018-09-06 | 2020-03-19 | 日東電工株式会社 | 粘着シート |
WO2020049986A1 (ja) * | 2018-09-06 | 2020-03-12 | 日東電工株式会社 | 粘着シート |
TWI730394B (zh) * | 2018-09-06 | 2021-06-11 | 日商日東電工股份有限公司 | 黏著片材 |
TWI760221B (zh) * | 2018-09-06 | 2022-04-01 | 日商日東電工股份有限公司 | 黏著片材 |
TWI779611B (zh) * | 2018-09-06 | 2022-10-01 | 日商日東電工股份有限公司 | 黏著片材 |
US12122947B2 (en) | 2018-09-06 | 2024-10-22 | Nitto Denko Corporation | Adhesive sheet |
JP2021028393A (ja) * | 2020-11-04 | 2021-02-25 | 日東電工株式会社 | 粘着シート |
JP2021028392A (ja) * | 2020-11-04 | 2021-02-25 | 日東電工株式会社 | 粘着シート |
JP7007446B2 (ja) | 2020-11-04 | 2022-02-10 | 日東電工株式会社 | 粘着シート |
JP7007445B2 (ja) | 2020-11-04 | 2022-02-10 | 日東電工株式会社 | 粘着シート |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016135997A1 (ja) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016135997A1 (ja) | 窓貼り用粘着フィルム | |
JP7019659B2 (ja) | 偏光フィルムおよびその製造方法 | |
US9804305B2 (en) | Methods for sealing the edges of multi-layer articles | |
JP5959746B2 (ja) | 光透過性積層体 | |
DE102007045168A1 (de) | Transparentes Klebeband | |
JP2015140379A (ja) | フィルム用粘着剤組成物およびこれを用いた粘着フィルムならびに遮熱性粘着フィルム、粘着フィルムの施工方法ならびに遮熱性粘着フィルムの施工方法 | |
WO2014049891A1 (ja) | 透明積層フィルム | |
JP6926506B2 (ja) | バリアフィルム及びそれを用いた波長変換シート | |
JP6181981B2 (ja) | 透明積層フィルム | |
WO2017168869A1 (ja) | 光学フィルム用粘着剤組成物および光学フィルム | |
EP2042578A1 (de) | Transparentes Klebeband | |
JP2012030577A (ja) | 透明積層フィルム | |
JP2013151103A (ja) | 透明積層フィルム | |
JP6828261B2 (ja) | バリアフィルム及びその製造方法、並びに、波長変換シート及びその製造方法 | |
JP2015140378A (ja) | フィルム用粘着剤組成物およびこれを用いた粘着フィルムならびに遮熱性粘着フィルム、粘着フィルムの施工方法ならびに遮熱性粘着フィルムの施工方法 | |
CN109073800B (zh) | 阻隔膜及其制造方法、波长转换片及其制造方法、以及光学层叠体及其制造方法 | |
JP2012135888A (ja) | 透明積層フィルムおよび透明積層フィルムの使用方法 | |
JP2011133721A (ja) | 透明積層フィルム | |
US20180275327A1 (en) | Light-transmitting laminate and method for producing light-transmitting laminate | |
JP6297290B2 (ja) | 光透過性積層体 | |
JP6134223B2 (ja) | 光透過性積層体 | |
JP5421505B1 (ja) | 透明積層フィルム | |
JP2015189232A (ja) | 光透過性積層フィルム | |
JP6280758B2 (ja) | 光透過性積層体 | |
JP2015189233A (ja) | 光透過性積層フィルムおよびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15883287 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017501830 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15883287 Country of ref document: EP Kind code of ref document: A1 |