WO2014049891A1 - 透明積層フィルム - Google Patents

透明積層フィルム Download PDF

Info

Publication number
WO2014049891A1
WO2014049891A1 PCT/JP2012/083803 JP2012083803W WO2014049891A1 WO 2014049891 A1 WO2014049891 A1 WO 2014049891A1 JP 2012083803 W JP2012083803 W JP 2012083803W WO 2014049891 A1 WO2014049891 A1 WO 2014049891A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
thin film
cured resin
transparent
Prior art date
Application number
PCT/JP2012/083803
Other languages
English (en)
French (fr)
Inventor
正隆 犬塚
徹司 楢崎
翔一 池野
雅史 廣瀬
元法 牛尾
竹内 哲也
Original Assignee
東海ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海ゴム工業株式会社 filed Critical 東海ゴム工業株式会社
Priority to RU2015112123/05A priority Critical patent/RU2605568C2/ru
Priority to JP2013531036A priority patent/JP5421505B1/ja
Priority to EP12885295.1A priority patent/EP2902190B1/en
Priority to KR1020157007549A priority patent/KR101758539B1/ko
Priority to CN201280014183.1A priority patent/CN103930267B/zh
Publication of WO2014049891A1 publication Critical patent/WO2014049891A1/ja
Priority to US14/661,540 priority patent/US20150190989A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/584Scratch resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • G02B1/105
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a transparent laminated film suitably used for window glass of buildings such as buildings and houses, and window glass of vehicles such as automobiles.
  • a heat ray reflective film may be applied to a window glass of a building such as a building or a house or a window glass of a vehicle such as an automobile for the purpose of shielding sunlight. Since it is applied to the window, the heat ray reflective film is required to have transparency as well as solar shading.
  • this type of heat ray reflective film one having a multilayer film in which metal oxide layers and metal layers are alternately laminated is known (Patent Documents 1 and 2). Such a heat ray reflective film is provided with an excellent heat insulating property that improves the cooling and heating effect in the room due to the multilayer film.
  • a protective layer is formed on the multilayer film for the purpose of protecting the multilayer film of the heat ray reflective film.
  • the heat ray reflective film of Patent Document 1 has a problem that the surface of the heat ray reflective film is easily scratched because the protective layer is made of a polycycloolefin layer.
  • the protective layer consists of a cured resin layer in the heat ray reflective film of Patent Document 2
  • squeegee stress during construction of the heat ray reflective film is easily transmitted to the multilayer film, and the multilayer film may be destroyed.
  • deterioration due to salt water corrosion may occur.
  • the problem to be solved by the present invention is a transparent laminated film that has good solar shading, transparency, heat insulation, scratch resistance, can relieve squeegee stress during construction, and suppress deterioration due to salt water corrosion Is to provide.
  • a transparent laminated film according to the present invention is in contact with a transparent laminated portion in which metal oxide thin films and metal thin films are alternately laminated on the surface of a transparent polymer film, and the transparent laminated portion.
  • the gist of the present invention is to have an adhesive layer, a polyolefin layer in contact with the adhesive layer, and a cured resin layer in this order.
  • the wetting tension of the surface of the polyolefin layer in contact with the pressure-sensitive adhesive layer is 35 mN / m or more.
  • the surface of the polyolefin layer in contact with the pressure-sensitive adhesive layer may be subjected to corona treatment.
  • the wetting tension of the surface in contact with the cured resin layer is preferably 43 mN / m or more.
  • an easy adhesion layer is preferably formed on the surface of the polyolefin layer on the cured resin layer side.
  • the easy adhesion layer is a layer in contact with the cured resin layer.
  • the said easily bonding layer is a modified polyolefin layer which has a polar group in the surface which contact
  • the thickness of the pressure-sensitive adhesive layer is preferably in the range of 1.0 to 5.0 ⁇ m.
  • the thickness of the cured resin layer is preferably in the range of 1.0 to 2.0 ⁇ m.
  • the polyolefin layer preferably has a thickness in the range of 10 to 30 ⁇ m.
  • the transparent laminated film of the present invention on the surface of the transparent polymer film, a transparent laminated portion in which metal oxide thin films and metal thin films are alternately laminated, and an adhesive layer in contact with the transparent laminated portion, Since the polyolefin layer in contact with the pressure-sensitive adhesive layer and the cured resin layer in this order, it has good solar shading, transparency, heat insulation, scratch resistance, Squeegee stress can be relieved and deterioration due to salt water corrosion can be suppressed.
  • the wetting tension of the surface of the polyolefin layer in contact with the pressure-sensitive adhesive layer is 35 mN / m or more, the polyolefin layer and the pressure-sensitive adhesive layer are excellent in adhesion, and peeling from the polyolefin layer can be suppressed. And the wetting tension of the surface which contact
  • the wetting tension of the surface in contact with the cured resin layer is 43 mN / m or more, the cured resin layer is excellent in adhesiveness, and peeling of the cured resin layer is suppressed. And the wetting tension of the surface which contact
  • the easy adhesion layer is a modified polyolefin layer having a polar group on the surface in contact with the cured resin layer, the wetting tension of the surface in contact with the cured resin layer can be increased.
  • the thickness of the pressure-sensitive adhesive layer is within a specific range, the adhesion between the polyolefin layer and the pressure-sensitive adhesive layer and the heat insulation can be highly compatible. Further, when the thickness of the cured resin layer is within a specific range, both heat insulation and scratch resistance can be achieved at a high level. Further, when the thickness of the polyolefin layer is in the range of 10 to 30 ⁇ m, both the effect of reducing squeegee stress during construction and the heat insulation can be achieved at a high level.
  • the transparent laminated film according to this embodiment will be described in detail.
  • FIG. 1 is a cross-sectional view of a transparent laminated film according to an embodiment of the present invention.
  • the transparent laminated film 10 includes a transparent polymer film 12, a transparent laminated portion 14, an adhesive layer 16, a polyolefin layer 18, and a cured resin layer 20.
  • the transparent laminated portion 14 is provided on the surface of the transparent polymer film 12.
  • the pressure-sensitive adhesive layer 16 is provided in contact with the transparent laminated portion 14, and the polyolefin layer 18 is provided in contact with the pressure-sensitive adhesive layer 16.
  • An easy adhesion layer 22 is formed on the surface 18 b of the polyolefin layer 18 on the cured resin layer 20 side, and the easy adhesion layer 22 is in contact with the cured resin layer 20.
  • the transparent polymer film 12 is a base material serving as a base for forming the transparent laminated portion 14.
  • the material of the transparent polymer film 12 is not particularly limited as long as it has transparency in the visible light region and can form a thin film on the surface without hindrance.
  • the material of the transparent polymer film 12 include polyethylene terephthalate, polycarbonate, polymethyl methacrylate, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, polystyrene, polyimide, polyamide, polybutylene terephthalate, polyethylene naphthalate.
  • Polymer materials such as polysulfone, polyethersulfone, polyetheretherketone, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, triacetyl cellulose, polyurethane, and cycloolefin polymer. These may be used alone or in combination of two or more.
  • polyethylene terephthalate, polycarbonate, polymethyl methacrylate, and cycloolefin polymer are more preferable materials from the viewpoint of excellent transparency, durability, and processability.
  • the transparent laminated portion 14 has a multilayer laminated structure in which metal oxide thin films and metal thin films are alternately laminated in the order of a metal oxide thin film, a metal thin film, a metal oxide thin film, ... from the transparent polymer film 12 side. Consists of. It is preferable that a metal oxide thin film is disposed on the innermost layer on the transparent polymer film 12 side and the outermost layer on the opposite side of the transparent polymer film 12. A barrier film may be further formed on one or both surfaces of the metal thin film. The barrier film is a thin film layer attached to the metal thin film, and is counted as one layer together with the metal thin film. The barrier film suppresses diffusion of elements constituting the metal thin film into the metal oxide thin film.
  • the metal oxide thin film exhibits functions such as enhancing transparency (excellent transparency in the visible light region) by being laminated together with the metal thin film, and can mainly function as a high refractive index layer.
  • High refractive index means a case where the refractive index for light of 633 nm is 1.7 or more.
  • the metal thin film can function mainly as a solar radiation shielding layer. By such a transparent laminated part 14, it has favorable visible-light transmittance (transparency), solar shading, and heat insulation.
  • the number of layers of the transparent laminated portion 14 is appropriately set according to the optical characteristics such as visible light transmission (transparency), solar shading, and heat insulation, and electrical characteristics such as the surface resistance of the entire film. That's fine.
  • the number of layers of the transparent laminated portion 14 is preferably in the range of 2 to 10 layers in consideration of the material, film thickness, manufacturing cost, etc. of each thin film. In consideration of optical characteristics, odd-numbered layers are more preferable, and 3 layers, 5 layers, and 7 layers are particularly preferable.
  • the pressure-sensitive adhesive layer 16 is used for bonding the polyolefin layer 18 to the transparent laminated portion 14.
  • the pressure-sensitive adhesive include acrylic resin-based pressure-sensitive adhesives, silicone resin-based pressure-sensitive adhesives, and urethane-based pressure-sensitive adhesives.
  • the thickness of the pressure-sensitive adhesive layer 16 is preferably 5.0 ⁇ m or less from the viewpoint of heat insulation (suppressing the heat transmissivity low). More preferably, it is 2.0 ⁇ m or less. Further, from the viewpoint of adhesion to the polyolefin layer 18, the thickness is preferably 1.0 ⁇ m or more. More preferably, it is 1.2 ⁇ m or more.
  • the polyolefin layer 18 is excellent in flexibility, it is used to relieve squeegee stress during film construction. Moreover, it covers the surface of the transparent laminated part 14 and is used as what suppresses that salt water penetrate
  • the material of the polyolefin layer 18 is not particularly limited as long as it is a polyolefin, but polypropylene is preferable from the viewpoint of excellent transparency. In particular, biaxially oriented polypropylene (OPP) is preferred.
  • the thickness of the polyolefin layer 18 is preferably 30 ⁇ m or less from the viewpoint of heat insulation (suppressing the heat transmissivity low). More preferably, it is 24 ⁇ m or less. Moreover, it is preferable that it is 10 micrometers or more from a viewpoint of being excellent in the effect which eases the squeegee stress at the time of film construction. More preferably, it is 13 ⁇ m or more.
  • the cured resin layer 20 is used to enhance the scratch resistance and is disposed in the outermost layer.
  • the cured resin include acrylic resin, epoxy resin, and urethane resin. Specific examples include acrylic resins, acrylic / urethane resins, silicon acrylic resins, acrylic / melamine resins, and the like.
  • the thickness of the cured resin layer 20 is preferably 2.0 ⁇ m or less from the viewpoint of heat insulating properties (suppressing the heat transmissibility low). More preferably, it is 1.6 ⁇ m or less. Moreover, it is preferable that it is 1.0 micrometer or more from a viewpoint of being excellent in abrasion resistance. More preferably, it is 1.3 ⁇ m or more.
  • the cured resin layer 20 is disposed as the outermost layer, and the polyolefin layer 18 is disposed between the transparent laminated portion 14 and the cured resin layer 20.
  • the effect which can relieve stress can be made compatible. Those having only one of them cannot achieve both of these effects. Further, even when the arrangement of these layers is different, these effects cannot be achieved at the same time.
  • the wetting tension of the surface 18a of the polyolefin layer 18 in contact with the pressure-sensitive adhesive layer 16 is preferably 35 mN / m or more. More preferably, it is 41 mN / m or more.
  • a method for increasing the wetting tension include a method in which a surface 18a of the polyolefin layer 18 that is in contact with the pressure-sensitive adhesive layer 16 is subjected to corona treatment. From the viewpoint of increasing the wetting tension, the surface 18a of the polyolefin layer 18 that contacts the pressure-sensitive adhesive layer 16 is preferably subjected to corona treatment.
  • the wetting tension is measured according to JIS K6768.
  • the wetting tension of the surface 18b in contact with the cured resin layer 20 is preferably 43 mN / m or more. More preferably, it is 46 mN / m or more.
  • the adhesiveness of the cured resin layer 20 is enhanced, and peeling of the cured resin layer 20 is suppressed.
  • a method of increasing the wetting tension a method of forming the easy-adhesion layer 22 on the surface 18b of the polyolefin layer 18 on the cured resin layer 20 side can be mentioned.
  • the surface in contact with the cured resin layer 20 is the surface of the easy adhesion layer 22. From the viewpoint of increasing the wetting tension, it is preferable to form the easy adhesion layer 22 on the surface 18b of the polyolefin layer 18 on the cured resin layer 20 side.
  • Examples of the easy-adhesion layer 22 include a modified polyolefin layer having a polar group on the surface in contact with the cured resin layer 20 and an acrylic resin layer.
  • Examples of the polar group include those having a heteroatom such as N, O, and S.
  • Examples of the modified polyolefin include a polypropylene copolymer having a polar group, polyethylene having a polar group, polyisoprene having a polar group, polyisobutylene having a polar group, and the like.
  • the adhesion between the polyolefin layer 18 and the pressure-sensitive adhesive layer 16 is preferably 3 N / 25 mm or more. More preferably, it is 7 N / 25 mm or more.
  • the adhesion between the polyolefin layer 18 and the pressure-sensitive adhesive layer 16 is measured according to JIS A5759.
  • the adhesion between the polyolefin layer 18 and the cured resin layer 20 is preferably 20 masses or more. More preferably, it is 25 squares or more.
  • the adhesion between the polyolefin layer 18 and the cured resin layer 20 is measured according to JIS K5600-5-6.
  • the transparent laminated film 10 can be manufactured as follows, for example. On the transparent polymer film 12, each thin film is sequentially stacked by a predetermined thin film forming method so as to form a predetermined laminated structure, thereby forming a transparent laminated portion. Thereafter, heat treatment such as post-oxidation is performed as necessary. Thereafter, an adhesive is applied to the surface of the transparent laminated portion 14 to form the adhesive layer 16. Thereafter, a polyolefin film having the easy-adhesion layer 22 on one surface is disposed on the surface of the pressure-sensitive adhesive layer 16 and pressure is applied to form the polyolefin layer 18.
  • the transparent laminated film 10 can be obtained by the above.
  • the transparent laminated film 10 is suitably applied to window glass of buildings such as buildings and houses, and window glass of vehicles such as automobiles.
  • FIG. 2 the state which constructed the transparent laminated film 10 to the window glass 24 is shown.
  • the transparent laminated film 10 is arranged on the indoor side, the surface on which the transparent laminated portion 14 is formed is on the indoor side, and the surface on which the transparent laminated portion 14 is not formed is on the outdoor side, Affixed to the window glass 24.
  • the transparent laminated film 10 can be attached to the window glass 24 using the adhesive 26.
  • the transparent laminated film 10 reflects the solar radiation inserted from the outdoors by the transparent laminated part 14, it has favorable solar radiation shielding properties. Moreover, since the air-conditioning effect in a room improves with the transparent laminated part 14, it is equipped with the outstanding heat insulation.
  • the outermost cured resin layer 20 exhibits good scratch resistance, and the polyolefin layer 18 disposed between the cured resin layer 20 and the transparent laminated portion 14 relieves squeegee stress during construction, and the pressure-sensitive adhesive layer. 16 ensures the adhesion of the polyolefin layer 18. Further, since the adhesive layer 16 suppresses salt water corrosion at the film edge and the polyolefin layer 18 suppresses salt water corrosion on the film surface, deterioration due to salt water corrosion is suppressed.
  • FIG. 3 is a cross-sectional view of a transparent laminated film according to another embodiment of the present invention.
  • the transparent laminated film 30 includes a transparent polymer film 12, a transparent laminated portion 14, an adhesive layer 16, a polyolefin layer 18, and a cured resin layer 20.
  • the transparent laminated portion 14 is provided on the surface of the transparent polymer film 12.
  • the pressure-sensitive adhesive layer 16 is provided in contact with the transparent laminated portion 14, and the polyolefin layer 18 is provided in contact with the pressure-sensitive adhesive layer 16.
  • the easy adhesion layer is not formed on the surface 18 b of the polyolefin layer 18 on the cured resin layer 20 side, and the cured resin layer 20 is provided in contact with the polyolefin layer 18.
  • the transparent laminated film 30 does not have an easy adhesion layer formed on the surface 18 b of the polyolefin layer 18 on the cured resin layer 20 side.
  • the surface in contact with the cured resin layer 20 is the surface 18b of the polyolefin layer 18 on the cured resin layer 20 side.
  • the wetting tension of the surface in contact with the cured resin layer 20 is preferably 43 mN / m or more. More preferably, it is 46 mN / m or more.
  • Examples of a method for increasing the wetting tension include a method in which a surface 18b of the polyolefin layer 18 in contact with the cured resin layer 20 is subjected to corona treatment. From the viewpoint of increasing the wetting tension, it is preferable that the surface 18b of the polyolefin layer 18 in contact with the cured resin layer 20 is subjected to corona treatment.
  • the metal oxide thin film, the metal thin film, and the barrier film of the transparent laminated portion 14 will be described in detail.
  • Examples of the metal oxide of the metal oxide thin film of the transparent laminate 14 include titanium oxide, zinc oxide, indium oxide, tin oxide, indium and tin oxide, magnesium oxide, and aluminum. Oxide, zirconium oxide, niobium oxide, cerium oxide, and the like. These may be contained alone or in combination of two or more. These metal oxides may be composite oxides in which two or more metal oxides are combined. Among these, titanium oxide, indium and tin oxide, zinc oxide, tin oxide, and the like are preferable from the viewpoint of relatively high refractive index with respect to visible light.
  • the metal oxide thin film can be formed by either a vapor phase method or a liquid phase method.
  • the liquid phase method does not need to be evacuated or use a large electric power as compared with the gas phase method. Therefore, it is advantageous in terms of cost, and is excellent in productivity.
  • the sol-gel method can be preferably used from the viewpoint of easily leaving the organic component.
  • the metal oxide thin film is mainly composed of the metal oxide described above, but may contain an organic component in addition to the metal oxide. It is because the softness
  • this type of organic component include components derived from a material for forming a metal oxide thin film, such as a component derived from a starting material of a sol-gel method.
  • an organic metal compound such as a metal alkoxide, metal acylate, metal chelate or the like of a metal oxide, or the above organic metal compound
  • additives such as an organic compound (described later) that reacts to form an ultraviolet-absorbing chelate can be exemplified. These may be contained alone or in combination of two or more.
  • the lower limit of the content of the organic component contained in the metal oxide thin film is preferably 3% by mass or more, more preferably 5% by mass or more, and still more preferably, from the viewpoint of easily imparting flexibility. It is good that it is 7% by mass or more.
  • the upper limit of the content of the organic component contained in the metal oxide thin film is preferably 30% by mass or less, from the viewpoint of easily ensuring a high refractive index and easily ensuring solvent resistance. More preferably, it is 25 mass% or less, More preferably, it is good in it being 20 mass% or less.
  • the organic content can be examined using X-ray photoelectron spectroscopy (XPS) or the like. Moreover, the kind of said organic content can be investigated using infrared spectroscopy (IR) (infrared absorption analysis) etc.
  • a coating liquid containing a metal organometallic compound that constitutes a metal oxide is coated in a thin film shape, and this is dried as necessary to obtain a metal oxide.
  • examples include a method of forming a precursor thin film of a thin film and then hydrolyzing and condensing an organometallic compound in the precursor thin film to synthesize an oxide of a metal constituting the organometallic compound. .
  • a metal oxide thin film containing a metal oxide as a main component and containing an organic component can be formed.
  • the coating liquid can be prepared by dissolving the organometallic compound in a suitable solvent.
  • the organometallic compound include organic compounds of metals such as titanium, zinc, indium, tin, magnesium, aluminum, zirconium, niobium, cerium, silicon, hafnium, and lead. Can do. These may be contained alone or in combination of two or more.
  • organometallic compound examples include metal alkoxides, metal acylates, and metal chelates of the above metals.
  • a metal chelate is preferable from the viewpoint of stability in air.
  • organometallic compound a metal organic compound that can be a metal oxide having a high refractive index can be preferably used.
  • organometallic compounds include organic titanium compounds.
  • organic titanium compound examples include M—O—R bonds such as tetra-n-butoxytitanium, tetraethoxytitanium, tetra-i-propoxytitanium, and tetramethoxytitanium (R represents an alkyl group).
  • M represents a titanium atom
  • an acylate of titanium having a MO—CO—R bond R represents an alkyl group and M represents a titanium atom
  • titanium chelates such as diisopropoxy titanium bisacetylacetonate, dihydroxy bis lactato titanium, diisopropoxy bis triethanolaminato titanium, diisopropoxy bis ethyl acetoacetate titanium, and the like. These may be used alone or in combination. These may be either monomers or multimers.
  • the content of the organometallic compound in the coating liquid is preferably 1 to 20% by mass, more preferably 3 to 3% from the viewpoints of film thickness uniformity of the coating film and film thickness that can be applied at one time. It is good that it is in the range of 15% by mass, more preferably 5-10% by mass.
  • the solvent for dissolving the organometallic compound examples include alcohols such as methanol, ethanol, propanol, butanol, heptanol and isopropyl alcohol, organic acid esters such as ethyl acetate, acetonitrile, acetone and methyl ethyl ketone.
  • organic acid esters such as ethyl acetate, acetonitrile, acetone and methyl ethyl ketone.
  • ketones such as tetrahydrofuran, cycloethers such as dioxane, acid amides such as formamide and N, N-dimethylformamide, hydrocarbons such as hexane, and aromatics such as toluene. These may be used alone or in combination.
  • the amount of the solvent is preferably 5 to 100 times the amount of the solid content weight of the organometallic compound from the viewpoint of the film thickness uniformity and the film thickness that can be applied at one time. More preferably, the amount is 7 to 30 times, more preferably 10 to 20 times.
  • the amount of the solvent is more than 100 times, the film thickness that can be formed by a single coating becomes thin, and there is a tendency that many coatings are required to obtain a desired film thickness.
  • the amount is less than 5 times, the film thickness becomes too thick, and there is a tendency that the hydrolysis / condensation reaction of the organometallic compound does not proceed sufficiently. Therefore, the amount of the solvent is preferably selected in consideration of these.
  • the coating liquid is prepared, for example, by mixing an organometallic compound weighed so as to have a predetermined ratio, an appropriate amount of solvent, and other components added as necessary, with a stirring means such as a stirrer for a predetermined time. It can be prepared by a method such as stirring and mixing. In this case, the components may be mixed at a time or may be mixed in a plurality of times.
  • a coating method of the coating liquid from the viewpoint of easy uniform coating, a micro gravure method, a gravure method, a reverse roll coating method, a die coating method, a knife coating method, a dip coating method, a spin coating method, a bar coating method, and the like.
  • Various wet coating methods such as a coating method can be exemplified as suitable ones. These may be appropriately selected and used, and one or more may be used in combination.
  • the coated coating liquid when dried, it may be dried using a known drying apparatus.
  • Specific examples of the drying conditions include a temperature range of 80 ° C. to 120 ° C., Examples include a drying time of 0.5 minute to 5 minutes.
  • the means for hydrolyzing and condensing the organometallic compound in the precursor thin film include various means such as irradiation with light energy such as ultraviolet rays, electron beams, and X-rays, and heating. can do. These may be used alone or in combination of two or more. Among these, preferably, irradiation with light energy, particularly ultraviolet irradiation can be suitably used.
  • sol-gel method using light energy at the time of sol-gel curing is adopted, a rough metal oxide thin film can be obtained as compared with a metal oxide thin film formed by sputtering or the like. Therefore, when water is applied to a laminated laminated film on a window glass of a building, even when water remains between the window glass, good water drainage can be obtained and the water application workability can be improved. This is because there are advantages such as being able to.
  • ultraviolet irradiator used at this time include a mercury lamp, a xenon lamp, a deuterium lamp, an excimer lamp, a metal halide lamp, and the like. These may be used alone or in combination of two or more.
  • the amount of light energy to be irradiated can be variously adjusted in consideration of the kind of organometallic compound mainly forming the precursor thin film, the thickness of the precursor thin film, and the like.
  • the amount of light energy to be irradiated is too small, it is difficult to increase the refractive index of the metal oxide thin film.
  • the transparent polymer film may be deformed by heat generated during the light energy irradiation. Therefore, these should be noted.
  • the amount of light is preferably from 300 to 8000 mJ / cm at a measurement wavelength of 300 to 390 nm from the viewpoint of the refractive index of the metal oxide thin film and damage to the transparent polymer film. 2 , more preferably in the range of 500 to 5000 mJ / cm 2 .
  • light energy irradiation When light energy irradiation is used as a means for hydrolyzing and condensing the organometallic compound in the precursor thin film, it reacts with the organometallic compound in the coating liquid described above to absorb light (for example, absorbs ultraviolet rays). It is preferable to add an additive such as an organic compound that forms a chelate.
  • an additive such as an organic compound that forms a chelate.
  • additives such as ⁇ diketones, alkoxy alcohols, alkanolamines, and the like. More specifically, examples of the ⁇ diketones include acetylacetone, benzoylacetone, ethyl acetoacetate, methyl acetoacetate, diethyl malonate, and the like.
  • alkoxy alcohols include 2-methoxyethanol, 2-ethoxyethanol, 2-methoxy-2-propanol and the like.
  • alkanolamines include monoethanolamine, diethanolamine, and triethanolamine. These may be used alone or in combination.
  • ⁇ diketones are particularly preferred, and acetylacetone can be most preferably used.
  • the blending ratio of the additive is preferably 0.1 to 1 with respect to 1 mol of the metal atom in the organometallic compound from the viewpoint of easiness of increasing the refractive index and stability in the state of the coating film. It should be in the range of 2 moles, more preferably 0.5 to 1.5 moles.
  • the film thickness of the metal oxide thin film can be adjusted in consideration of solar shading, visibility, reflection color, and the like.
  • the lower limit value of the thickness of the metal oxide thin film is preferably 10 nm or more, more preferably 15 nm, from the viewpoints of easily suppressing the red and yellow coloring of the reflected color and obtaining high transparency. As described above, more preferably, it is 20 nm or more.
  • the upper limit value of the thickness of the metal oxide thin film is preferably 90 nm or less, more preferably 85 nm, from the viewpoints of easily suppressing the green color of the reflected color and easily obtaining high transparency. Hereinafter, more preferably, it is 80 nm or less.
  • Metals of the metal thin film include metals such as silver, gold, platinum, copper, aluminum, chromium, titanium, zinc, tin, nickel, cobalt, niobium, tantalum, tungsten, zirconium, lead, palladium, and indium.
  • An alloy etc. are mentioned. These may be contained alone or in combination of two or more.
  • the metal of the metal thin film silver or a silver alloy is preferable from the viewpoint of being excellent in visible light transmittance, heat ray reflectivity, conductivity, and the like when laminated. More preferably, from the viewpoint of improving durability against environment such as heat, light, and water vapor, the main component is silver, and at least one metal element such as copper, bismuth, gold, palladium, platinum, and titanium is included. It should be a silver alloy. More preferably, a silver alloy containing copper (Ag—Cu alloy), a silver alloy containing bismuth (Ag—Bi alloy), a silver alloy containing titanium (Ag—Ti alloy), or the like is preferable. This is because there are advantages such as a large silver diffusion suppression effect and cost advantage.
  • the other elements include elements that can be dissolved in Ag such as Mg, Pd, Pt, Au, Zn, Al, Ga, In, Sn, Sb, Li, Cd, Hg, and As.
  • Ag-Cu alloys such as Be, Ru, Rh, Os, Ir, Bi, Ge, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Si, Tl, Pb, etc.
  • Element which can be precipitated as a single phase in Y La, Ce, Nd, Sm, Gd, Tb, Dy, Ti, Zr, Hf, Na, Ca, Sr, Ba, Sc, Pr, Eu, Ho, Er, Tm
  • elements capable of precipitating intermetallic compounds with Ag such as Yb, Lu, S, Se, and Te. These may be contained alone or in combination of two or more.
  • the lower limit of the copper content is preferably 1 atomic% or more, more preferably 2 atomic% or more, and even more preferably 3 atomic% or more, from the viewpoint of obtaining the effect of addition. Good to be.
  • the upper limit of the copper content is preferably 20 atomic% or less, more preferably 10 atomic%, from the viewpoint of manufacturability such as easy to ensure high transparency and easy production of a sputtering target. Hereinafter, it is more preferable that it is 5 atomic% or less.
  • the other elements include elements that can be dissolved in Ag such as Mg, Pd, Pt, Au, Zn, Al, Ga, In, Sn, Sb, Li, Cd, Hg, and As. ; Be, Ru, Rh, Os, Ir, Cu, Ge, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Si, Tl, Pb, etc.
  • the lower limit of the bismuth content is preferably 0.01 atomic% or more, more preferably 0.05 atomic% or more, and still more preferably, from the viewpoint of obtaining the effect of addition. It may be 0.1 atomic% or more.
  • the upper limit of the bismuth content is preferably 5 atomic% or less, more preferably 2 atomic% or less, and still more preferably 1 atomic% from the viewpoint of manufacturability such as easy production of a sputtering target. It is good to be below.
  • the other elements include elements that can be dissolved in Ag such as Mg, Pd, Pt, Au, Zn, Al, Ga, In, Sn, Sb, Li, Cd, Hg, and As. ; Be-Ru, Rh, Os, Ir, Cu, Ge, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Si, Tl, Pb, Bi, etc., Ag-Ti system Elements that can be precipitated as a single phase in the alloy; Y, La, Ce, Nd, Sm, Gd, Tb, Dy, Zr, Hf, Na, Ca, Sr, Ba, Sc, Pr, Eu, Ho, Er, Tm Examples include elements capable of precipitating intermetallic compounds with Ag such as Yb, Lu, S, Se, and Te. These may be contained alone or in combination of two or more.
  • the lower limit value of the titanium content is preferably 0.01 atomic% or more, more preferably 0.05 atomic% or more, and still more preferably, from the viewpoint of obtaining an addition effect. It may be 0.1 atomic% or more.
  • the upper limit of the content of titanium is preferably 2 atomic% or less, more preferably 1.75 atomic% or less, and still more preferably, from the viewpoint that a complete solid solution is easily obtained when it is formed into a film. Is preferably 1.5 atomic% or less.
  • the ratio of subelements such as copper, bismuth and titanium can be measured using ICP analysis. Further, the metal (including alloy) constituting the metal thin film may be partially oxidized.
  • the lower limit of the thickness of the metal thin film is preferably 3 nm or more, more preferably 5 nm or more, and further preferably 7 nm or more, from the viewpoints of stability and heat ray reflectivity.
  • the upper limit value of the thickness of the metal thin film is preferably 30 nm or less, more preferably 20 nm or less, and further preferably 15 nm or less, from the viewpoint of transparency of visible light, economy, and the like.
  • a method of forming the metal thin film specifically, for example, physical vapor deposition (PVD) such as vacuum deposition, sputtering, ion plating, MBE, laser ablation, thermal CVD, etc.
  • PVD physical vapor deposition
  • a vapor phase method such as a chemical vapor deposition method (CVD) such as a plasma CVD method.
  • CVD chemical vapor deposition method
  • the metal thin film may be formed using any one of these methods, or may be formed using two or more methods.
  • sputtering methods such as DC magnetron sputtering method and RF magnetron sputtering method can be preferably used from the viewpoint of obtaining a dense film quality and relatively easy film thickness control.
  • the metal thin film may be oxidized within a range that does not impair the function of the metal thin film due to post-oxidation described later.
  • the barrier film attached to the metal thin film mainly has a barrier function that suppresses diffusion of elements constituting the metal thin film into the metal oxide thin film. Moreover, by interposing between a metal oxide thin film and a metal thin film, it can also contribute to the improvement of adhesiveness of both.
  • the barrier film may have discontinuous portions such as floating islands as long as the diffusion can be suppressed.
  • the metal oxide constituting the barrier film include titanium oxide, zinc oxide, indium oxide, tin oxide, indium and tin oxide, and magnesium oxide. And aluminum oxide, zirconium oxide, niobium oxide, cerium oxide, and the like. These may be contained alone or in combination of two or more. Further, these metal oxides may be double oxides in which two or more metal oxides are combined. Note that the barrier film may contain inevitable impurities in addition to the metal oxide.
  • the barrier film is mainly composed of a metal oxide contained in the metal oxide thin film from the viewpoint of excellent diffusion suppression effect of the metal constituting the metal thin film and excellent adhesion. good.
  • the barrier film is a titanium oxide layer mainly composed of an oxide of Ti that is a metal contained in the TiO 2 layer. Good to have.
  • the barrier film when the barrier film is a titanium oxide layer, the barrier film may be a thin film layer formed as titanium oxide from the beginning, or a thin film layer formed by post-oxidation of a metal Ti layer, Alternatively, it may be a thin film layer formed by post-oxidizing a partially oxidized titanium oxide layer.
  • the barrier film is mainly composed of a metal oxide in the same manner as the metal oxide thin film, but is set to be thinner than the metal oxide thin film. This is because the diffusion of the metal constituting the metal thin film occurs at the atomic level, so that it is not necessary to increase the film thickness to a sufficient level to ensure a sufficient refractive index. Moreover, by forming it thinly, the film-forming cost is reduced correspondingly, and it can contribute to the reduction of the manufacturing cost of the transparent laminated film.
  • the lower limit value of the thickness of the barrier film is preferably 1 nm or more, more preferably 1.5 nm or more, and further preferably 2 nm or more, from the viewpoint of easily ensuring barrier properties.
  • the upper limit value of the film thickness of the barrier film is preferably 15 nm or less, more preferably 10 nm or less, and still more preferably 8 nm or less from the viewpoint of economy.
  • the lower limit value of the atomic molar ratio Ti / O of titanium to oxygen in the titanium oxide is 1.0 / 4.0 or more from the viewpoint of barrier properties and the like.
  • the upper limit of the atomic molar ratio Ti / O of titanium to oxygen in the titanium oxide is preferably 1.0 / 0.5 or less, more preferably 1.0 / 0.7 or less, more preferably 1.0 / 1.0 or less, even more preferably 1.0 / 1.2 or less, most preferably 1 0.0 / 1.5 or less is preferable.
  • the Ti / O ratio can be calculated from the composition of the layer.
  • energy dispersive X-ray fluorescence analysis EDX
  • EDX energy dispersive X-ray fluorescence analysis
  • a test piece having a thickness of 100 nm or less in the cross-sectional direction of the laminated structure including the layer to be analyzed is prepared using an ultrathin section method (microtome) or the like.
  • the laminated structure and the position of the layer are confirmed by a transmission electron microscope (TEM) from the cross-sectional direction.
  • TEM transmission electron microscope
  • an electron beam is emitted from the electron gun of the EDX apparatus and is incident on the vicinity of the center of the film thickness of the layer to be analyzed.
  • Electrons incident from the surface of the test specimen enter to a certain depth and generate various electron beams and X-rays. By detecting and analyzing characteristic X-rays at this time, the constituent elements of the layer can be analyzed.
  • a vapor phase method can be suitably used from the viewpoint that a dense film can be formed and a thin film layer of about several nm to several tens of nm can be formed with a uniform film thickness.
  • the vapor phase method include physical vapor deposition methods (PVD) such as vacuum deposition, sputtering, ion plating, MBE, and laser ablation, thermal CVD, and plasma CVD. Examples thereof include chemical vapor deposition (CVD) and the like.
  • PVD physical vapor deposition methods
  • CVD chemical vapor deposition
  • a sputtering method such as a DC magnetron sputtering method or an RF magnetron sputtering method is preferable from the viewpoint of excellent adhesion at the film interface as compared with a vacuum deposition method and the like and easy control of the film thickness. Can be used.
  • Each barrier film that can be included in the laminated structure may be formed using any one of these vapor phase methods, or may be formed using two or more methods. May be.
  • the barrier film may be formed as a metal oxide thin film from the beginning by using the above-described vapor phase method, or a metal thin film or a partially oxidized metal oxide thin film is once formed. Later, it can be formed by oxidizing it afterwards.
  • the partially oxidized metal oxide thin film refers to a metal oxide thin film that has room for further oxidation.
  • a gas containing oxygen as a reactive gas is mixed with an inert gas such as argon or neon as a sputtering gas, and the metal and oxygen are mixed.
  • a thin film may be formed while reacting (reactive sputtering method).
  • reacting reactive sputtering method
  • the oxygen concentration in the atmosphere is the film thickness range described above. The optimum ratio may be appropriately selected in consideration of the above.
  • examples of the post-oxidation method include heat treatment, pressure treatment, chemical treatment, and natural oxidation. Of these post-oxidation techniques, heat treatment is preferable from the viewpoint of enabling post-oxidation relatively easily and reliably.
  • examples of the heat treatment include a method of causing the transparent polymer film having the above-described laminated structure to exist in a heating atmosphere such as a heating furnace, a method of immersing in warm water, a method of microwave heating, and a metal in the laminated structure. Examples thereof include a method of energizing and heating a thin film, a partially oxidized metal oxide thin film, and the like. These may be performed in combination of one or two or more.
  • the heating conditions at the time of the heat treatment are, for example, preferably 30 ° C. to 60 ° C., more preferably 32 ° C. to 57 ° C., and still more preferably 35 ° C. to 55 ° C.
  • the heating time is preferably selected from 5 days or longer, more preferably 10 days or longer, and even more preferably 15 days or longer. This is because the post-oxidation effect, the thermal deformation / fusion suppression of the transparent polymer film 12 and the like are good within the above heating condition range.
  • the heating atmosphere at the time of the heat treatment is preferably an atmosphere containing oxygen or moisture, such as the air, a high oxygen atmosphere, or a high humidity atmosphere. Particularly preferably, it is in the air from the viewpoint of manufacturability and cost reduction.
  • the moisture and oxygen contained in the metal oxide thin film are consumed during the post-oxidation.
  • the thin film becomes difficult to chemically react.
  • the metal oxide thin film is formed by a sol-gel method
  • the water and oxygen contained in the metal oxide thin film are consumed during post-oxidation.
  • the starting material (metal alkoxide, etc.) by the sol-gel method remaining in the thin film and moisture (adsorbed water, etc.), oxygen, etc. are difficult to undergo sol-gel curing reaction by sunlight. Therefore, it is possible to relieve internal stress caused by volume change such as curing shrinkage, and it is easy to suppress interfacial peeling of the laminated structure, and to improve durability against sunlight.
  • the wetting tension of the surface of the OPP film was measured.
  • an adhesive (“Main Agent: BPS5260, Curing Agent: BHS8515” manufactured by Toyo Ink Co., Ltd.) was applied to the inner surface or outer surface of the OPP film so that the adhesive layer had a thickness of 1.5 ⁇ m, and the pressure was applied and adhered. An adhesive layer was formed.
  • the adhesion between the OPP film (polyolefin layer) and the pressure-sensitive adhesive layer was measured. The results are shown in Table 1 and FIG.
  • the measurement was performed according to JIS A5759.
  • the OPP film on which the pressure-sensitive adhesive layer was formed was affixed to a plate glass and allowed to stand for 24 hours or more, and then a 180 ° peel test was performed.
  • peeling was performed at a tensile speed of 300 mm / min, and loads at four points were measured at 20 mm intervals.
  • the adhesion force was an average value of four measurement loads. This was performed on three test pieces (OPP film on which an adhesive layer was formed), and the average value of the three test pieces was obtained.
  • Example 1 As a transparent laminated film according to Example 1, a transparent laminated portion having a roughly three-layer laminated structure described below, a pressure-sensitive adhesive layer laminated in contact with the transparent laminated portion, and a polyolefin laminated in contact with the pressure-sensitive adhesive layer A transparent laminated film having a layer, an easy adhesion layer laminated in contact with the polyolefin layer, and a cured resin layer laminated in contact with the easy adhesion layer was produced.
  • the titanium oxide thin film is formed by thermally oxidizing a metal Ti thin film, and this corresponds to a barrier thin film.
  • This titanium oxide thin film is included in the Ag—Cu alloy thin film as a thin film accompanying the Ag—Cu alloy thin film, and the number of laminated layers is counted.
  • a coating solution used for forming a TiO 2 thin film by a sol-gel method was prepared. That is, tetra-n-butoxytitanium tetramer (manufactured by Nippon Soda Co., Ltd., “B4”) as titanium alkoxide, and acetylacetone as an additive that forms a UV-absorbing chelate, n-butanol and isopropyl It mix
  • tetra-n-butoxytitanium tetramer manufactured by Nippon Soda Co., Ltd., “B4”
  • acetylacetone as an additive that forms a UV-absorbing chelate, n-butanol and isopropyl It mix
  • composition of tetra-n-butoxy titanium tetramer / acetylacetone / n-butanol / isopropyl alcohol was 6.75 mass% / 3.38 mass% / 59.87 mass% / 30.00 mass%, respectively. did.
  • PET film a polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., “Cosmo Shine (registered trademark) A4100”) (hereinafter referred to as “PET film”) having an easy-adhesion layer on one side is used.
  • PET film a polyethylene terephthalate film having an easy-adhesion layer on one side.
  • a TiO 2 thin film was formed as a first layer on the surface (PET surface) side opposite to the easily adhesive layer surface side of this PET film by the following procedure.
  • the coating liquid was continuously applied to the PET surface side of the PET film with a gravure roll having a predetermined groove volume using a micro gravure coater.
  • the coating film was dried at 100 ° C. for 80 seconds using an in-line drying furnace to form a precursor film of a TiO 2 thin film.
  • an in-line ultraviolet irradiator high pressure mercury lamp (160 W / cm)
  • the precursor film was continuously irradiated with ultraviolet rays for 1.5 seconds at the same linear velocity as that during the coating.
  • a TiO 2 thin film (first layer) was formed on the PET film by a sol-gel method using ultraviolet energy at the time of sol-gel curing (hereinafter sometimes abbreviated as “(sol gel + UV)”).
  • each thin film constituting the second layer was formed on the first layer.
  • a lower metal Ti thin film was formed by sputtering on the first TiO 2 thin film using a DC magnetron sputtering apparatus.
  • an Ag—Cu alloy thin film was formed on the lower metal Ti thin film by sputtering.
  • an upper metal Ti thin film was formed on this Ag—Cu alloy thin film by sputtering.
  • the film formation conditions of the upper and lower metal Ti thin films were as follows: Ti target (purity 4N), vacuum ultimate pressure: 5 ⁇ 10 ⁇ 6 (Torr), inert gas: Ar, gas pressure: 2.5 ⁇ 10 ⁇ 3 (Torr), input power: 1.5 (kW), and film formation time: 1.1 seconds.
  • the film formation conditions of the Ag—Cu alloy thin film are as follows: Ag—Cu alloy target (Cu content: 4 atomic%), vacuum ultimate pressure: 5 ⁇ 10 ⁇ 6 (Torr), inert gas: Ar, gas pressure: 2.5 ⁇ 10 ⁇ 3 (Torr), input power: 1.5 (kW), and film formation time: 1.1 seconds.
  • a TiO 2 thin film by (sol gel + UV) was formed on the second layer.
  • the film forming procedure according to the first layer is performed twice to obtain a predetermined film thickness.
  • the obtained film with a transparent laminated portion is heat-treated in the heating furnace at 40 ° C. for 300 hours in the atmosphere to thermally oxidize the metal Ti thin film contained in the laminated structure, thereby obtaining a titanium oxide.
  • a thin film was formed.
  • the refractive index (measurement wavelength is 633 nm) of the TiO 2 thin film was measured by FilmTek 3000 (manufactured by Scientific Computing International).
  • EDX analysis was performed on a titanium oxide thin film formed by thermally oxidizing a metal Ti thin film, and a Ti / O ratio was obtained as follows.
  • a film with a transparent laminated portion is cut out by a microtome (LKB Co., Ltd., “Ultrome V2088”), and the thickness of the laminated structure including the titanium oxide thin film (barrier thin film) to be analyzed is 100 nm or less in thickness.
  • a piece was made.
  • the cross section of the produced test piece was confirmed with a field emission electron microscope (HRTEM) (manufactured by JEOL Ltd., “JEM2001F”).
  • HRTEM field emission electron microscope
  • an electron beam is emitted from the electron gun of this apparatus, and a titanium oxide thin film (barrier thin film) to be analyzed
  • the elemental element of the titanium oxide thin film (barrier thin film) was analyzed by detecting the incident characteristic X-ray and analyzing it.
  • the content of the subelement (Cu) in the alloy thin film was determined as follows. That is, under each film forming condition, a test piece in which an Ag—Cu alloy thin film was formed on a glass substrate was separately prepared, and this test piece was immersed in a 6% HNO 3 solution and eluted with ultrasonic waves for 20 minutes. Then, it measured by the concentration method of ICP analysis method using the obtained sample solution.
  • the film thickness of each thin film was measured from the cross-sectional observation of the test piece by the field emission electron microscope (HRTEM) (manufactured by JEOL Ltd., “JEM2001F”).
  • HRTEM field emission electron microscope
  • Table 3 shows the detailed layer structure of the transparent laminated part.
  • Corona treatment was added to the outer surface (no corona treatment) of the OPP film (OPP ⁇ 1>, “P2111” manufactured by Toyobo Co., Ltd., thickness: 20 ⁇ m, inner surface: easy adhesion layer, outer surface: no corona treatment)
  • An outer surface (added with corona treatment) of the OPP film (OPP ⁇ 1>) was placed thereon and brought into close contact with pressure to form a polyolefin layer (thickness 20 ⁇ m).
  • Example 2 to 9 Transparent laminated films according to Examples 2 to 9 were produced in the same manner as in Example 1 except that the thickness of the pressure-sensitive adhesive layer or the cured resin layer ⁇ 1> was changed.
  • Example 10 Without adding corona treatment to the outer surface (no corona treatment) of the OPP film (OPP ⁇ 1>), the outer surface (no corona treatment) of the OPP film (OPP ⁇ 1>) is brought into contact with the pressure-sensitive adhesive layer, and pressure is applied.
  • a transparent laminated film according to Example 10 was produced in the same manner as in Example 1 except that a polyolefin layer (thickness 20 ⁇ m) was formed.
  • Example 11 Instead of OPP film (OPP ⁇ 1>), OPP film (OPP ⁇ 3>, “EM-501” manufactured by Oji Specialty Paper Co., Ltd., thickness: 15 ⁇ m, inner surface: with corona treatment, outer surface: without corona treatment)
  • the inner surface (with corona treatment) of the OPP film (OPP ⁇ 3>) is brought into contact with the agent layer and brought into close contact with pressure to form a polyolefin layer (thickness 15 ⁇ m), which is cured on the outer surface (without corona treatment).
  • a transparent laminated film according to Example 11 was produced in the same manner as in Example 1 except that the resin layer ⁇ 1> was formed.
  • Example 12 Invert OPP ⁇ 3>, the surface in contact with the adhesive layer is the outer surface of OPP ⁇ 3> (no corona treatment), and the surface in contact with the cured resin layer ⁇ 1> is the inner surface of OPP ⁇ 3> (with corona treatment)
  • a transparent laminated film according to Example 12 was produced in the same manner as Example 11 except that.
  • Example 13 instead of the OPP film (OPP ⁇ 1>), an OPP film (OPP ⁇ 2>, “FOR-2” manufactured by Phutamura Chemical Co., Ltd., thickness: 15 ⁇ m, inner surface: corona treatment present, outer surface: corona treatment present), and pressure-sensitive adhesive
  • the inner surface (with corona treatment) of the OPP film (OPP ⁇ 2>) is brought into contact with the layer and brought into close contact with pressure to form a polyolefin layer (thickness 15 ⁇ m), and a cured resin is formed on the outer surface (with corona treatment).
  • a transparent laminated film according to Example 13 was produced in the same manner as in Example 1 except that the layer ⁇ 1> was formed.
  • Example 14 Invert OPP ⁇ 2>, the surface in contact with the pressure-sensitive adhesive layer is the outer surface of OPP ⁇ 2> (with corona treatment), and the surface in contact with the cured resin layer ⁇ 1> is the inner surface of OPP ⁇ 2> (with corona treatment)
  • a transparent laminated film according to Example 14 was produced in the same manner as Example 13 except that.
  • Example 15 to 18 Transparent laminated films according to Examples 15 to 18 were produced in the same manner as Example 1 except that the thickness of the pressure-sensitive adhesive layer was changed.
  • Comparative Example 1 The transparent laminate according to Comparative Example 1 was performed in the same manner as in Example 1 except that the cured resin layer ⁇ 1> (thickness: 1.0 ⁇ m) was formed directly on the surface of the transparent laminate without forming the adhesive layer and the polyolefin layer. A film was prepared.
  • the measurement was performed according to JIS A5759. Using a spectrophotometer (Shimadzu "UV3100"), measuring the transmission spectrum and reflection spectrum at a wavelength of 300-2500 nm, calculate the solar transmittance and solar reflectance, and correct the solar transmittance and solar reflectance. The solar shading coefficient was calculated from the emissivity.
  • Tables 4 and 5 collectively show the schematic configuration and evaluation results of the protective layer of each transparent laminated film.
  • the cured resin layer ⁇ 1> is formed directly on the surface of the transparent laminate. For this reason, it is inferior to the adhesiveness of cured resin layer ⁇ 1>.
  • the salt water corrosion test corrosion was observed from both the surface and the edge. This is because the cure shrinkage of the cured resin layer ⁇ 1> is large, and the metal oxide layer in contact with the cured resin layer ⁇ 1> peels off due to the cure shrinkage of the cured resin layer ⁇ 1>, and salt water enters the inside from the end. It is guessed. Moreover, it is guessed that a crack was formed in the surface by the curing shrinkage of the cured resin layer ⁇ 1>, and salt water entered from the surface into the inside.
  • Comparative Example 1 the transparent laminated portion was further broken during film construction.
  • Comparative Example 2 the cured resin layer ⁇ 2> was sandwiched between the transparent laminated portion and the cured resin layer ⁇ 1>.
  • the salt water corrosion test corrosion was observed from both the surface and the edge. Furthermore, destruction of the transparent laminated part occurred at the time of film construction.
  • Example 6 has a relatively low scratch resistance because the thickness of the cured resin layer ⁇ 1> is relatively thin.
  • Example 8 since the thickness of the cured resin layer ⁇ 1> is relatively thick, the heat insulating property is relatively low.
  • Example 7 has a relatively thin adhesive layer, the adhesion between the polyolefin layer and the adhesive layer is relatively low.
  • Example 18 since the thickness of the pressure-sensitive adhesive layer is relatively thick, the heat insulating property is relatively low.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

 良好な日射遮蔽性、透明性、断熱性、耐擦傷性を有しつつ、施工時のスキージ応力を緩和できるとともに、塩水腐食による劣化が抑えられる透明積層フィルムを提供する。 透明高分子フィルム10は、透明高分子フィルム12の面上に、金属酸化物薄膜と金属薄膜とが交互に積層されてなる透明積層部14と、透明積層部14に接する粘着剤層16と、粘着剤層16に接するポリオレフィン層18と、硬化樹脂層20と、をこの順で有している。

Description

透明積層フィルム
 本発明は、ビル・住宅等の建築物の窓ガラスや自動車等の車両の窓ガラスなどに好適に用いられる透明積層フィルムに関するものである。
 ビル・住宅等の建築物の窓ガラスや自動車等の車両の窓ガラスなどには日射を遮蔽する目的で熱線反射フィルムが施工されることがある。窓に施工されることから、熱線反射フィルムには日射遮蔽性とともに透明性が要求される。この種の熱線反射フィルムとしては、金属酸化物層と金属層とを交互に積層した多層膜を有するものが知られている(特許文献1、2)。このような熱線反射フィルムは、多層膜により、室内における冷暖房効果を向上させる優れた断熱性を備える。
特開2011-104887号公報 特開2012-030577公報
 熱線反射フィルムの多層膜を保護する目的で、多層膜の上には保護層が形成されている。しかしながら特許文献1の熱線反射フィルムは、保護層がポリシクロオレフィン層からなるため、熱線反射フィルムの表面に傷が付きやすいという問題がある。また、特許文献2の熱線反射フィルムは、保護層が硬化樹脂層からなるため、熱線反射フィルムの施工時のスキージ応力が多層膜に伝わりやすく、多層膜の破壊が生じることがあった。また、塩水腐食による劣化が生じることがあった。
 本発明が解決しようとする課題は、良好な日射遮蔽性、透明性、断熱性、耐擦傷性を有しつつ、施工時のスキージ応力を緩和できるとともに、塩水腐食による劣化が抑えられる透明積層フィルムを提供することにある。
 上記課題を解決するため本発明に係る透明積層フィルムは、透明高分子フィルムの面上に、金属酸化物薄膜と金属薄膜とが交互に積層されてなる透明積層部と、前記透明積層部に接する粘着剤層と、前記粘着剤層に接するポリオレフィン層と、硬化樹脂層と、をこの順で有していることを要旨とするものである。
 前記ポリオレフィン層の粘着剤層に接する面のぬれ張力は35mN/m以上であることが好ましい。このとき、前記ポリオレフィン層の粘着剤層に接する面にはコロナ処理が施されているとよい。
 また、前記硬化樹脂層に接する面のぬれ張力は43mN/m以上であることが好ましい。このとき、前記ポリオレフィン層の硬化樹脂層側の面上に易接着層が形成されているとよい。この場合、前記易接着層が前記硬化樹脂層に接する層となる。そして、前記易接着層は前記硬化樹脂層に接する面に極性基を有する変性ポリオレフィン層であることが好ましい。
 そして、前記粘着剤層の厚みは1.0~5.0μmの範囲内であることが好ましい。また、前記硬化樹脂層の厚みは1.0~2.0μmの範囲内であることが好ましい。また、前記ポリオレフィン層の厚みは10~30μmの範囲内であることが好ましい。
 本発明に係る透明積層フィルムによれば、透明高分子フィルムの面上に、金属酸化物薄膜と金属薄膜とが交互に積層されてなる透明積層部と、前記透明積層部に接する粘着剤層と、前記粘着剤層に接するポリオレフィン層と、硬化樹脂層と、をこの順で有していることから、良好な日射遮蔽性、透明性、断熱性、耐擦傷性を有しつつ、施工時のスキージ応力を緩和できるとともに、塩水腐食による劣化が抑えられる。
 塩水腐食は、透明積層フィルムの断面(端部)から透明積層部の金属薄膜に塩水が侵入することによる腐食と、透明積層フィルムの表面から透明積層部の金属薄膜に塩水が侵入することによる腐食とがある。透明積層部に接する層が収縮の小さい粘着剤層であるため、粘着剤層の収縮応力による金属酸化物薄膜の剥離が抑えられ、透明積層フィルムの断面(端部)から透明積層部の金属薄膜への塩水の侵入(侵食の進行)が抑えられると推察される。また、ポリオレフィン層により、透明積層フィルムの表面から透明積層部の金属薄膜への塩水が侵入が抑えられると推察される。
 この場合、ポリオレフィン層の粘着剤層に接する面のぬれ張力が35mN/m以上であると、ポリオレフィン層と粘着剤層の密着性に優れ、ポリオレフィン層からの剥離が抑えられる。そして、ポリオレフィン層の粘着剤層に接する面にコロナ処理が施されることにより、ポリオレフィン層の粘着剤層に接する面のぬれ張力を大きくすることができる。
 また、硬化樹脂層に接する面のぬれ張力が43mN/m以上であると、硬化樹脂層の密着性に優れ、硬化樹脂層の剥離が抑えられる。そして、ポリオレフィン層の硬化樹脂層側の面上に易接着層が形成されることにより、硬化樹脂層に接する面のぬれ張力を大きくすることができる。そして、易接着層が硬化樹脂層に接する面に極性基を有する変性ポリオレフィン層であると、硬化樹脂層に接する面のぬれ張力を大きくすることができる。
 そして、粘着剤層の厚みが特定範囲内であると、ポリオレフィン層と粘着剤層の密着性と、断熱性を高度に両立できる。また、硬化樹脂層の厚みが特定範囲内であると、断熱性と耐擦傷性を高度に両立できる。また、ポリオレフィン層の厚みが10~30μmの範囲内であると、施工時のスキージ応力を緩和できる効果と、断熱性を高度に両立できる。
本発明の一実施形態に係る透明積層フィルムの断面図である。 一実施形態に係る透明積層フィルムを窓ガラスに施工した状態を示す断面図である。 本発明の他の実施形態に係る透明積層フィルムの断面図である。 粘着剤層とポリオレフィン層の間におけるぬれ張力と密着性の関係を示したグラフである。 ポリオレフィン層と硬化樹脂層の間におけるぬれ張力と密着性の関係を示したグラフである。
 本実施形態に係る透明積層フィルムについて詳細に説明する。
 図1は、本発明の一実施形態に係る透明積層フィルムの断面図である。図1に示すように、透明積層フィルム10は、透明高分子フィルム12と、透明積層部14と、粘着剤層16と、ポリオレフィン層18と、硬化樹脂層20と、を有している。透明積層部14は、透明高分子フィルム12の面上に設けられている。粘着剤層16は透明積層部14に接して設けられており、ポリオレフィン層18は粘着剤層16に接して設けられている。ポリオレフィン層18の硬化樹脂層20側の面18b上には易接着層22が形成されており、易接着層22が硬化樹脂層20に接している。
 透明高分子フィルム12は、透明積層部14を形成するためのベースとなる基材である。透明高分子フィルム12の材料としては、可視光領域において透明性を有し、その表面に薄膜を支障なく形成できるものであれば、特に限定されるものではない。
 透明高分子フィルム12の材料としては、具体的には、ポリエチレンテレフタレート、ポリカーボネート、ポリメタクリル酸メチル、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリイミド、ポリアミド、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、トリアセチルセルロース、ポリウレタン、シクロオレフィンポリマーなどの高分子材料が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらのうちでは、透明性、耐久性、加工性に優れるなどの観点から、ポリエチレンテレフタレート、ポリカーボネート、ポリメタクリル酸メチル、シクロオレフィンポリマーがより好ましい材料として挙げられる。
 透明積層部14は、透明高分子フィルム12側から金属酸化物薄膜・金属薄膜・金属酸化物薄膜・・・の順で金属酸化物薄膜と金属薄膜とが交互に積層された多層積層構造のものからなる。透明高分子フィルム12側の最内層と透明高分子フィルム12とは反対側の最外層には金属酸化物薄膜が配置されていることが好ましい。金属薄膜の一方面または両面には、さらにバリア膜が形成されていてもよい。バリア膜は金属薄膜に付随する薄膜層であり、金属薄膜とともに1層として数える。バリア膜は、金属薄膜を構成する元素が金属酸化物薄膜中に拡散するのを抑制する。
 金属酸化物薄膜は、金属薄膜とともに積層されることで透明性を高める(可視光領域で透過性に優れる)などの機能を発揮するものであり、主として高屈折率層として機能しうるものである。高屈折率とは、633nmの光に対する屈折率が1.7以上ある場合をいう。金属薄膜は、主として日射遮蔽層として機能しうる。このような透明積層部14により、良好な可視光透過性(透明性)、日射遮蔽性、断熱性を有する。
 なお、透明積層部14の層数は、可視光透過性(透明性)、日射遮蔽性、断熱性などの光学特性やフィルム全体の表面抵抗値などの電気特性の求めなどに応じて適宜設定すればよい。透明積層部14の層数としては、各薄膜の材料や膜厚、製造コストなどを考慮すると、2~10層の範囲内であることが好ましい。また、光学特性を考慮すると、奇数層がより好ましく、特に3層、5層、7層が好ましい。
 粘着剤層16は、透明積層部14にポリオレフィン層18を接着するものとして用いられる。粘着剤としては、アクリル樹脂系粘着剤、シリコーン樹脂系粘着剤、ウレタン系粘着剤などが挙げられる。粘着剤ではなく接着剤を用いると収縮が大きくなるため、収縮応力による金属酸化物薄膜の剥離が生じやすくなる。粘着剤を用いることにより、収縮を小さくして収縮応力による金属酸化物薄膜の剥離を抑える。フィルム端部は切断面であり、透明積層部14の金属薄膜の端部は露出している。このため、金属薄膜の端部は塩水腐食する。しかしながら、金属酸化物薄膜の剥離が抑えられるため、フィルム端部から内部への塩水の侵入は抑えられ、フィルム内部での塩水腐食の進行が抑えられる。
 粘着剤層16の厚みとしては、断熱性(熱貫流率を低く抑える)などの観点から、5.0μm以下であることが好ましい。より好ましくは2.0μm以下である。また、ポリオレフィン層18との密着性などの観点から、1.0μm以上であることが好ましい。より好ましくは1.2μm以上である。
 ポリオレフィン層18は、柔軟性に優れるため、フィルム施工時のスキージ応力を緩和するものとして用いられる。また、透明積層部14の表面を覆って表面から透明積層部14の金属薄膜に塩水が侵入するのを抑えるものとして用いられる。ポリオレフィン層18の材料としては、ポリオレフィンであれば特に限定されるものではないが、透明性に優れるなどの観点から、ポリプロピレンが好ましい。特に、二軸延伸ポリプロピレン(OPP)が好ましい。
 ポリオレフィン層18の厚みとしては、断熱性(熱貫流率を低く抑える)などの観点から、30μm以下であることが好ましい。より好ましくは24μm以下である。また、フィルム施工時のスキージ応力を緩和する効果に優れるなどの観点から、10μm以上であることが好ましい。より好ましくは13μm以上である。
 硬化樹脂層20は、耐擦傷性を高めるものとして用いられ、最外層に配置される。硬化樹脂としては、アクリル樹脂、エポキシ樹脂、ウレタン樹脂などが挙げられる。具体的には、アクリル樹脂、アクリル・ウレタン樹脂、シリコンアクリル樹脂、アクリル・メラミン樹脂などが挙げられる。
 硬化樹脂層20の厚みとしては、断熱性(熱貫流率を低く抑える)などの観点から、2.0μm以下であることが好ましい。より好ましくは1.6μm以下である。また、耐擦傷性に優れるなどの観点から、1.0μm以上であることが好ましい。より好ましくは1.3μm以上である。
 そして、透明積層フィルム10においては、最外層に硬化樹脂層20が配置され、透明積層部14と硬化樹脂層20の間にポリオレフィン層18が配置されているので、耐擦傷性と施工時のスキージ応力を緩和できる効果を両立することができる。いずれか一方のみを有するものでは、これらの効果を両立することができない。また、これらの層の配置が異なる場合にも、これらの効果を両立することができない。
 ここで、ポリオレフィン層18の粘着剤層16に接する面18aのぬれ張力は35mN/m以上であることが好ましい。より好ましくは41mN/m以上である。ポリオレフィン層18の粘着剤層16に接する面18aのぬれ張力を大きくすることで、ポリオレフィン層18と粘着剤層16の密着性が高められ、ポリオレフィン層18からの剥離が抑えられる。ぬれ張力を大きくする方法としては、ポリオレフィン層18の粘着剤層16に接する面18aにコロナ処理を施す方法などが挙げられる。ぬれ張力を大きくするなどの観点から、ポリオレフィン層18の粘着剤層16に接する面18aにはコロナ処理が施されていることが好ましい。ぬれ張力は、JIS K6768に準拠して測定される。
 また、硬化樹脂層20に接する面18bのぬれ張力は43mN/m以上であることが好ましい。より好ましくは46mN/m以上である。硬化樹脂層20に接する面18bのぬれ張力を大きくすることで、硬化樹脂層20の密着性が高められ、硬化樹脂層20の剥離が抑えられる。ぬれ張力を大きくする方法としては、ポリオレフィン層18の硬化樹脂層20側の面18b上に易接着層22を形成する方法が挙げられる。この場合、硬化樹脂層20に接する面は易接着層22の表面である。ぬれ張力を大きくするなどの観点から、ポリオレフィン層18の硬化樹脂層20側の面18b上に易接着層22を形成することが好ましい。
 易接着層22としては、硬化樹脂層20に接する面に極性基を有する変性ポリオレフィン層、アクリル樹脂層などが挙げられる。極性基としては、N、O、Sなどのヘテロ原子を有するものなどが挙げられる。変性ポリオレフィンとしては、極性基を有するポリプロピレンコポリマー、極性基を有するポリエチレン、極性基を有するポリイソプレン、極性基を有するポリイソブチレンなどが挙げられる。
 ポリオレフィン層18と粘着剤層16の間の密着力としては、3N/25mm以上であることが好ましい。より好ましくは7N/25mm以上である。ポリオレフィン層18と粘着剤層16の間の密着力は、JIS A5759に準拠して測定される。また、ポリオレフィン層18と硬化樹脂層20の間の密着力としては、20マス以上であることが好ましい。より好ましくは25マス以上である。ポリオレフィン層18と硬化樹脂層20の間の密着力は、JIS K5600-5-6に準拠して測定される。
 透明積層フィルム10は、例えば、以下のようにして製造することができる。透明高分子フィルム12上に、所定の積層構造となるように各薄膜を所定の薄膜形成手法によって順次積み上げて透明積層部14を形成する。その後、必要に応じて、後酸化等の熱処理を行う。その後、透明積層部14の表面に、粘着剤を塗工して粘着剤層16を形成する。その後、粘着剤層16の表面に、易接着層22を一方面に有するポリオレフィンフィルムを配置して圧力を加えてポリオレフィン層18を形成する。その後、ポリオレフィン層18の面上の易接着層22の表面に硬化性樹脂を塗工して塗工膜を形成するとともに、形成した塗工膜に対して硬化処理を行い、硬化樹脂層20を形成する。以上により透明積層フィルム10を得ることができる。
 透明積層フィルム10は、ビル・住宅等の建築物の窓ガラスや自動車等の車両の窓ガラスなどに好適に施工される。図2には、透明積層フィルム10を窓ガラス24に施工した状態を示す。図2に示すように、透明積層フィルム10は、室内側に配置され、透明積層部14が形成されている面を室内側に、透明積層部14が形成されていない面を屋外側にして、窓ガラス24に貼り付けられる。この際、接着剤26を用いて透明積層フィルム10を窓ガラス24に貼り付けることができる。
 こうして透明積層フィルム10は、屋外から差し込む日射を透明積層部14で反射するので、良好な日射遮蔽性を有する。また、透明積層部14によって室内における冷暖房効果が向上するので、優れた断熱性を備える。そして、最外層の硬化樹脂層20によって良好な耐擦傷性が発揮され、硬化樹脂層20と透明積層部14の間に配置されたポリオレフィン層18よって施工時のスキージ応力が緩和され、粘着剤層16によってポリオレフィン層18の密着性が確保される。また、粘着剤層16によりフィルム端部での塩水腐食が抑えられ、ポリオレフィン層18によりフィルム表面での塩水腐食が抑えられるので、塩水腐食による劣化が抑えられる。
 次に、本発明の他の実施形態に係る透明積層フィルムについて説明する。
 図3は、本発明の他の実施形態に係る透明積層フィルムの断面図である。図3に示すように、透明積層フィルム30は、透明高分子フィルム12と、透明積層部14と、粘着剤層16と、ポリオレフィン層18と、硬化樹脂層20と、を有している。透明積層部14は、透明高分子フィルム12の面上に設けられている。粘着剤層16は透明積層部14に接して設けられており、ポリオレフィン層18は粘着剤層16に接して設けられている。ポリオレフィン層18の硬化樹脂層20側の面18b上には易接着層が形成されておらず、硬化樹脂層20はポリオレフィン層18に接して設けられている。
 透明積層フィルム10と比較して、透明積層フィルム30はポリオレフィン層18の硬化樹脂層20側の面18b上に易接着層が形成されていない。この場合、硬化樹脂層20に接する面はポリオレフィン層18の硬化樹脂層20側の面18bである。この場合においても、硬化樹脂層20に接する面のぬれ張力は43mN/m以上であることが好ましい。より好ましくは46mN/m以上である。ぬれ張力を大きくする方法としては、ポリオレフィン層18の硬化樹脂層20に接する面18bにコロナ処理を施す方法などが挙げられる。ぬれ張力を大きくするなどの観点から、ポリオレフィン層18の硬化樹脂層20に接する面18bにはコロナ処理が施されていることが好ましい。
 以下、透明積層部14の金属酸化物薄膜、金属薄膜、バリア膜について詳細に説明する。
 透明積層部14の金属酸化物薄膜の金属酸化物としては、チタンの酸化物、亜鉛の酸化物、インジウムの酸化物、スズの酸化物、インジウムとスズとの酸化物、マグネシウムの酸化物、アルミニウムの酸化物、ジルコニウムの酸化物、ニオブの酸化物、セリウムの酸化物などが挙げられる。これらは1種または2種以上含まれていても良い。また、これら金属酸化物は、2種以上の金属酸化物が複合した複合酸化物であっても良い。これらのうちでは、可視光に対する屈折率が比較的大きいなどの観点から、チタンの酸化物、インジウムとスズとの酸化物、亜鉛の酸化物、スズの酸化物などが好ましい。
 金属酸化物薄膜は、気相法、液相法の何れでも形成することができる。液相法は、気相法と比較して、真空引きしたり、大電力を使用したりする必要がない。そのため、その分、コスト的に有利であり、生産性にも優れているので好適である。液相法としては、有機分を残存させやすいなどの観点から、ゾル-ゲル法を好適に利用することができる。
 金属酸化物薄膜は、主として上述した金属酸化物より構成されているが、金属酸化物以外にも、有機分を含有していても良い。有機分を含有することで、透明積層フィルムの柔軟性をより向上させることができるためである。この種の有機分としては、具体的には、例えば、ゾル-ゲル法の出発原料に由来する成分等、金属酸化物薄膜の形成材料に由来する成分などを例示することができる。
 上記有機分としては、より具体的には、例えば、金属酸化物を構成する金属の金属アルコキシド、金属アシレート、金属キレートなどといった有機金属化合物(その分解物なども含む)や、上記有機金属化合物と反応して紫外線吸収性のキレートを形成する有機化合物(後述する)等の各種添加剤などを例示することができる。これらは1種または2種以上含まれていても良い。
 金属酸化物薄膜中に含まれる有機分の含有量の下限値は、柔軟性を付与しやすいなどの観点から、好ましくは、3質量%以上、より好ましくは、5質量%以上、さらに好ましくは、7質量%以上であると良い。一方、金属酸化物薄膜中に含まれる有機分の含有量の上限値は、高屈折率を確保しやくなる、耐溶剤性を確保しやすくなるなどの観点から、好ましくは、30質量%以下、より好ましくは、25質量%以下、さらに好ましくは、20質量%以下であると良い。有機分の含有量は、X線光電子分光法(XPS)などを用いて調べることができる。また、上記有機分の種類は、赤外分光法(IR)(赤外吸収分析)などを用いて調べることができる。
 上記ゾル-ゲル法としては、より具体的には、例えば、金属酸化物を構成する金属の有機金属化合物を含有するコーティング液を薄膜状にコーティングし、これを必要に応じて乾燥させ、金属酸化物薄膜の前駆体薄膜を形成した後、この前駆体薄膜中の有機金属化合物を加水分解・縮合反応させ、有機金属化合物を構成する金属の酸化物を合成するなどの方法を例示することができる。これによれば、金属酸化物を主成分として含み、有機分を含有する金属酸化物薄膜を形成することができる。以下、上記方法について詳細に説明する。
 上記コーティング液は、上記有機金属化合物を適当な溶媒に溶解して調製することができる。この際、有機金属化合物としては、具体的には、例えば、チタン、亜鉛、インジウム、スズ、マグネシウム、アルミニウム、ジルコニウム、ニオブ、セリウム、シリコン、ハフニウム、鉛などの金属の有機化合物などを例示することができる。これらは1種または2種以上含まれていても良い。
 上記有機金属化合物としては、具体的には、例えば、上記金属の金属アルコキシド、金属アシレート、金属キレートなどを例示することができる。好ましくは、空気中での安定性などの観点から、金属キレートであると良い。
 上記有機金属化合物としては、とりわけ、高屈折率を有する金属酸化物になり得る金属の有機化合物を好適に用いることができる。このような有機金属化合物としては、例えば、有機チタン化合物などを例示することができる。
 上記有機チタン化合物としては、具体的には、例えば、テトラ-n-ブトキシチタン、テトラエトキシチタン、テトラ-i-プロポキシチタン、テトラメトキシチタンなどのM-O-R結合(Rはアルキル基を示し、Mはチタン原子を示す)を有するチタンのアルコキシドや、イソプロポキシチタンステアレートなどのM-O-CO-R結合(Rはアルキル基を示し、Mはチタン原子を示す)を有するチタンのアシレートや、ジイソプロポキシチタンビスアセチルアセトナート、ジヒドロキシビスラクタトチタン、ジイソプロポキシビストリエタノールアミナトチタン、ジイソプロポキシビスエチルアセトアセタトチタンなどのチタンのキレートなどを例示することができる。これらは1種または2種以上混合されていても良い。また、これらは単量体、多量体の何れであっても良い。
 上記コーティング液中に占める有機金属化合物の含有量は、塗膜の膜厚均一性や一回に塗工できる膜厚などの観点から、好ましくは、1~20質量%、より好ましくは、3~15質量%、さらに好ましくは、5~10質量%の範囲内にあると良い。
 また、上記有機金属化合物を溶解させる溶媒としては、具体的には、例えば、メタノール、エタノール、プロパノール、ブタノール、ヘプタノール、イソプロピルアルコールなどのアルコール類、酢酸エチルなどの有機酸エステル、アセトニトリル、アセトン、メチルエチルケトンなどのケトン類、テトラヒドロフラン、ジオキサンなどのシクロエーテル類、ホルムアミド、N,N-ジメチルホルムアミドなどの酸アミド類、ヘキサンなどの炭化水素類、トルエンなどの芳香族類などを例示することができる。これらは1種または2種以上混合されていても良い。
 この際、上記溶媒量は、上記有機金属化合物の固形分重量に対して、塗膜の膜厚均一性や一回に塗工できる膜厚などの観点から、好ましくは、5~100倍量、より好ましくは、7~30倍量、さらに好ましくは、10~20倍量の範囲内であると良い。
 上記溶媒量が100倍量より多くなると、一回のコーティングで形成できる膜厚が薄くなり、所望の膜厚を得るために多数回のコーティングが必要となる傾向が見られる。一方、5倍量より少なくなると、膜厚が厚くなり過ぎ、有機金属化合物の加水分解・縮合反応が十分に進行し難くなる傾向が見られる。したがって、上記溶媒量は、これらを考慮して選択すると良い。
 上記コーティング液の調製は、例えば、所定割合となるように秤量した有機金属化合物と、適当な量の溶媒と、必要に応じて添加される他の成分とを、攪拌機などの撹拌手段により所定時間撹拌・混合するなどの方法により調製することができる。この場合、各成分の混合は、1度に混合しても良いし、複数回に分けて混合しても良い。
 また、上記コーティング液のコーティング法としては、均一なコーティングが行いやすいなどの観点から、マイクログラビア法、グラビア法、リバースロールコート法、ダイコート法、ナイフコート法、ディップコート法、スピンコート法、バーコート法など、各種のウェットコーティング法を好適なものとして例示することができる。これらは適宜選択して用いることができ、1種または2種以上併用しても良い。
 また、コーティングされたコーティング液を乾燥する場合、公知の乾燥装置などを用いて乾燥させれば良く、この際、乾燥条件としては、具体的には、例えば、80℃~120℃の温度範囲、0.5分~5分の乾燥時間などを例示することができる。
 また、前駆体薄膜中の有機金属化合物を加水分解・縮合反応させる手段としては、具体的には、例えば、紫外線、電子線、X線等の光エネルギーの照射、加熱など、各種の手段を例示することができる。これらは1種または2種以上組み合わせて用いても良い。これらのうち、好ましくは、光エネルギーの照射、とりわけ、紫外線照射を好適に用いることができる。他の手段と比較した場合、低温、短時間で金属酸化物を生成できるし、熱劣化など、熱による負荷を透明高分子フィルムに与え難いからである(とりわけ、紫外線照射の場合は、比較的簡易な設備で済む利点がある。)。また、有機分として、有機金属化合物(その分解物なども含む)などを残存させやすい利点もあるからである。
 さらには、ゾルゲル硬化時に光エネルギーを用いるゾル-ゲル法を採用した場合には、スパッタ等により形成した金属酸化物薄膜に比べ、粗な金属酸化物薄膜とすることができる。そのため、建築物の窓ガラスに透明積層フィルムを水貼り施工した場合に、窓ガラスとの間に水が残ったときでも、良好な水抜け性が得られ、水貼り施工性を向上させることができるなどの利点があるからである。
 この際、用いる紫外線照射機としては、具体的には、例えば、水銀ランプ、キセノンランプ、重水素ランプ、エキシマランプ、メタルハライドランプなどを例示することができる。これらは1種または2種以上組み合わせて用いても良い。
 また、照射する光エネルギーの光量は、前駆体薄膜を主に形成している有機金属化合物の種類、前駆体薄膜の厚みなどを考慮して種々調節することができる。もっとも、照射する光エネルギーの光量が過度に小さすぎると、金属酸化物薄膜の高屈折率化を図り難くなる。一方、照射する光エネルギーの光量が過度に大きすぎると、光エネルギーの照射の際に生じる熱により透明高分子フィルムが変形することがある。したがって、これらに留意すると良い。
 照射する光エネルギーが紫外線である場合、その光量は、金属酸化物薄膜の屈折率、透明高分子フィルムが受けるダメージなどの観点から、測定波長300~390nmのとき、好ましくは、300~8000mJ/cm、より好ましくは、500~5000mJ/cmの範囲内であると良い。
 なお、前駆体薄膜中の有機金属化合物を加水分解・縮合反応させる手段として、光エネルギーの照射を用いる場合、上述したコーティング液中に、有機金属化合物と反応して光吸収性(例えば、紫外線吸収性)のキレートを形成する有機化合物等の添加剤を添加しておくと良い。出発溶液であるコーティング液中に上記添加剤が添加されている場合には、予め光吸収性キレートが形成されたところに光エネルギーの照射がなされるので、比較的低温下において金属酸化物薄膜の高屈折率化を図り得やすくなるからである。
 上記添加剤としては、具体的には、例えば、βジケトン類、アルコキシアルコール類、アルカノールアミン類などの添加剤を例示することができる。より具体的には、上記βジケトン類としては、例えば、アセチルアセトン、ベンゾイルアセトン、アセト酢酸エチル、アセト酢酸メチル、マロン酸ジエチルなどを例示することができる。上記アルコキシアルコール類としては、例えば、2-メトキシエタノール、2-エトキシエタノール、2-メトキシ-2-プロパノールなどを例示することができる。上記アルカノールアミン類としては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどを例示することができる。これらは1種または2種以上混合されていても良い。
 これらのうち、とりわけ、βジケトン類が好ましく、中でもアセチルアセトンを最も好適に用いることができる。
 また、上記添加剤の配合割合としては、屈折率の上がりやすさ、塗膜状態での安定性などの観点から、上記有機金属化合物における金属原子1モルに対して、好ましくは、0.1~2倍モル、より好ましくは、0.5~1.5倍モルの範囲内にあると良い。
 金属酸化物薄膜の膜厚は、日射遮蔽性、視認性、反射色などを考慮して調節することができる。金属酸化物薄膜の膜厚の下限値は、反射色の赤色や黄色の着色を抑制しやすくなる、高透明性が得られやすくなるなどの観点から、好ましくは、10nm以上、より好ましくは、15nm以上、さらに好ましくは、20nm以上であると良い。一方、金属酸化物薄膜の膜厚の上限値は、反射色の緑色の着色を抑制しやすくなる、高透明性が得られやすくなるなどの観点から、好ましくは、90nm以下、より好ましくは、85nm以下、さらに好ましくは、80nm以下であると良い。
 金属薄膜の金属としては、銀、金、白金、銅、アルミニウム、クロム、チタン、亜鉛、スズ、ニッケル、コバルト、ニオブ、タンタル、タングステン、ジルコニウム、鉛、パラジウム、インジウムなどの金属や、これら金属の合金などが挙げられる。これらは1種または2種以上含まれていても良い。
 金属薄膜の金属としては、積層時の可視光透過性、熱線反射性、導電性などに優れるなどの観点から、銀または銀合金が好ましい。より好ましくは、熱、光、水蒸気などの環境に対する耐久性が向上するなどの観点から、銀を主成分とし、銅、ビスマス、金、パラジウム、白金、チタンなどの金属元素を少なくとも1種以上含んだ銀合金であると良い。さらに好ましくは、銅を含む銀合金(Ag-Cu系合金)、ビスマスを含む銀合金(Ag-Bi系合金)、チタンを含む銀合金(Ag-Ti系合金)等であると良い。銀の拡散抑制効果が大きい、コスト的に有利であるなどの利点があるからである。
 銅を含む銀合金を用いる場合、銀、銅以外にも、例えば、銀の凝集・拡散抑制効果に悪影響を与えない範囲内であれば、他の元素、不可避不純物を含有していても良い。
 上記他の元素としては、具体的には、例えば、Mg、Pd、Pt、Au、Zn、Al、Ga、In、Sn、Sb、Li、Cd、Hg、AsなどのAgに固溶可能な元素;Be、Ru、Rh、Os、Ir、Bi、Ge、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Co、Ni、Si、Tl、Pbなど、Ag-Cu系合金中に単相として析出可能な元素;Y、La、Ce、Nd、Sm、Gd、Tb、Dy、Ti、Zr、Hf、Na、Ca、Sr、Ba、Sc、Pr、Eu、Ho、Er、Tm、Yb、Lu、S、Se、TeなどのAgとの金属間化合物を析出可能な元素などを例示することができる。これらは1種または2種以上含有されていても良い。
 銅を含む銀合金を用いる場合、銅の含有量の下限値は、添加効果を得る観点から、好ましくは、1原子%以上、より好ましくは、2原子%以上、さらに好ましくは、3原子%以上であると良い。一方、銅の含有量の上限値は、高透明性を確保しやすくなる、スパッタターゲットが作製しやすい等の製造性などの観点から、好ましくは、20原子%以下、より好ましくは、10原子%以下、さらに好ましくは、5原子%以下であると良い。
 また、ビスマスを含む銀合金を用いる場合、銀、ビスマス以外にも、例えば、銀の凝集・拡散抑制効果に悪影響を与えない範囲内であれば、他の元素、不可避不純物を含有していても良い。
 上記他の元素としては、具体的には、例えば、Mg、Pd、Pt、Au、Zn、Al、Ga、In、Sn、Sb、Li、Cd、Hg、AsなどのAgに固溶可能な元素;Be、Ru、Rh、Os、Ir、Cu、Ge、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Co、Ni、Si、Tl、Pbなど、Ag-Bi系合金中に単相として析出可能な元素;Y、La、Ce、Nd、Sm、Gd、Tb、Dy、Ti、Zr、Hf、Na、Ca、Sr、Ba、Sc、Pr、Eu、Ho、Er、Tm、Yb、Lu、S、Se、TeなどのAgとの金属間化合物を析出可能な元素などを例示することができる。これらは1種または2種以上含有されていても良い。
 ビスマスを含む銀合金を用いる場合、ビスマスの含有量の下限値は、添加効果を得る観点から、好ましくは、0.01原子%以上、より好ましくは、0.05原子%以上、さらに好ましくは、0.1原子%以上であると良い。一方、ビスマスの含有量の上限値は、スパッタターゲットが作製しやすい等の製造性などの観点から、好ましくは、5原子%以下、より好ましくは、2原子%以下、さらに好ましくは、1原子%以下であると良い。
 また、チタンを含む銀合金を用いる場合、銀、チタン以外にも、例えば、銀の凝集・拡散抑制効果に悪影響を与えない範囲内であれば、他の元素、不可避不純物を含有していても良い。
 上記他の元素としては、具体的には、例えば、Mg、Pd、Pt、Au、Zn、Al、Ga、In、Sn、Sb、Li、Cd、Hg、AsなどのAgに固溶可能な元素;Be、Ru、Rh、Os、Ir、Cu、Ge、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Co、Ni、Si、Tl、Pb、Biなど、Ag-Ti系合金中に単相として析出可能な元素;Y、La、Ce、Nd、Sm、Gd、Tb、Dy、Zr、Hf、Na、Ca、Sr、Ba、Sc、Pr、Eu、Ho、Er、Tm、Yb、Lu、S、Se、TeなどのAgとの金属間化合物を析出可能な元素などを例示することができる。これらは1種または2種以上含有されていても良い。
 チタンを含む銀合金を用いる場合、チタンの含有量の下限値は、添加効果を得る観点から、好ましくは、0.01原子%以上、より好ましくは、0.05原子%以上、さらに好ましくは、0.1原子%以上であると良い。一方、チタンの含有量の上限値は、膜にした場合、完全な固溶体が得られやすくなるなどの観点から、好ましくは、2原子%以下、より好ましくは、1.75原子%以下、さらに好ましくは、1.5原子%以下であると良い。
 なお、上記銅、ビスマス、チタン等の副元素割合は、ICP分析法を用いて測定することができる。また、上記金属薄膜を構成する金属(合金含む)は、部分的に酸化されていても良い。
 金属薄膜の膜厚の下限値は、安定性、熱線反射性などの観点から、好ましくは、3nm以上、より好ましくは、5nm以上、さらに好ましくは、7nm以上であると良い。一方、金属薄膜の膜厚の上限値は、可視光の透明性、経済性などの観点から、好ましくは、30nm以下、より好ましくは、20nm以下、さらに好ましくは、15nm以下であると良い。
 ここで、金属薄膜を形成する方法としては、具体的には、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、MBE法、レーザーアブレーションなどといった物理的気相成長法(PVD)、熱CVD法、プラズマCVD法などといった化学的気相成長法(CVD)などの気相法などを例示することができる。金属薄膜は、これらのうち何れか1つの方法を用いて形成されていても良いし、あるいは、2つ以上の方法を用いて形成されていても良い。
 これら方法のうち、緻密な膜質が得られる、膜厚制御が比較的容易であるなどの観点から、好ましくは、DCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法などのスパッタリング法を好適に用いることができる。
 なお、金属薄膜は、後述する後酸化等を受けて、金属薄膜の機能を損なわない範囲内で酸化されていても良い。
 金属薄膜に付随するバリア膜は、主として、金属薄膜を構成する元素が、金属酸化物薄膜中へ拡散するのを抑制するバリア的な機能を有している。また、金属酸化物薄膜と金属薄膜との間に介在することで、両者の密着性の向上にも寄与しうる。バリア膜は、上記拡散を抑制できれば、浮島状など、不連続な部分があっても良い。
 バリア膜を構成する金属酸化物としては、具体的には、例えば、チタンの酸化物、亜鉛の酸化物、インジウムの酸化物、スズの酸化物、インジウムとスズとの酸化物、マグネシウムの酸化物、アルミニウムの酸化物、ジルコニウムの酸化物、ニオブの酸化物、セリウムの酸化物などを例示することができる。これらは1種または2種以上含まれていても良い。また、これら金属酸化物は、2種以上の金属酸化物が複合した複酸化物であっても良い。なお、バリア膜は、上記金属酸化物以外に不可避不純物などを含んでいても良い。
 ここで、バリア膜としては、金属薄膜を構成する金属の拡散抑制効果に優れる、密着性に優れるなどの観点から、金属酸化物薄膜中に含まれる金属の酸化物より主に構成されていると良い。
 より具体的には、例えば、金属酸化物薄膜としてTiO層を選択した場合、バリア膜は、TiO層中に含まれる金属であるTiの酸化物より主に構成されるチタン酸化物層であると良い。
 また、バリア膜がチタン酸化物層である場合、当該バリア膜は、当初からチタン酸化物として形成された薄膜層であっても良いし、金属Ti層が後酸化されて形成された薄膜層、または、部分酸化されたチタン酸化物層が後酸化されて形成された薄膜層等であっても良い。
 バリア膜は、金属酸化物薄膜と同じように主に金属酸化物から構成されるが、金属酸化物薄膜よりも膜厚が薄く設定される。これは、金属薄膜を構成する金属の拡散は、原子レベルで生じるので、屈折率を十分確保するのに必要な膜厚まで厚くする必要性が低いからである。また、薄く形成することで、その分、成膜コストが安価になり、透明積層フィルムの製造コストの低減にも寄与することができる。
 バリア膜の膜厚の下限値は、バリア性を確保しやすくなるなどの観点から、好ましくは、1nm以上、より好ましくは、1.5nm以上、さらに好ましくは、2nm以上であると良い。一方、バリア膜の膜厚の上限値は、経済性などの観点から、好ましくは、15nm以下、より好ましくは、10nm以下、さらに好ましくは、8nm以下であると良い。
 バリア膜が主にチタン酸化物より構成される場合、チタン酸化物における酸素に対するチタンの原子モル比Ti/Oの下限値は、バリア性などの観点から、1.0/4.0以上、より好ましくは、1.0/3.8以上、さらに好ましくは、1.0/3.5以上、さらにより好ましくは、1.0/3.0以上、最も好ましくは、1.0/2.8以上であると良い。
 バリア膜が主にチタン酸化物より構成される場合、チタン酸化物における酸素に対するチタンの原子モル比Ti/Oの上限値は、可視光の透明性などの観点から、好ましくは、1.0/0.5以下、より好ましくは、1.0/0.7以下、さらに好ましくは、1.0/1.0以下、さらにより好ましくは、1.0/1.2以下、最も好ましくは、1.0/1.5以下であると良い。
 上記Ti/O比は、当該層の組成から算出することができる。当該層の組成分析方法としては、極めて薄い薄膜層の組成を比較的正確に分析することが可能な観点から、エネルギー分散型蛍光X線分析(EDX)を好適に用いることができる。
 具体的な組成分析方法について説明すると、先ず、超薄切片法(ミクロトーム)などを用いて、分析対象となる当該層を含む積層構造の断面方向の厚みが100nm以下の試験片を作製する。次いで、断面方向から積層構造と当該層の位置を、透過型電子顕微鏡(TEM)により確認する。次いで、EDX装置の電子銃から電子線を放出させ、分析対象となる当該層の膜厚中央部近傍に入射させる。試験片表面から入射した電子は、ある深さまで入り込み、各種の電子線やX線を発生させる。この際の特性X線を検出して分析することで、当該層の構成元素分析を行うことができる。
 バリア膜は、緻密な膜を形成できる、数nm~数十nm程度の薄膜層を均一な膜厚で形成できるなどの観点から、気相法を好適に利用することができる。
 上記気相法としては、具体的には、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、MBE法、レーザーアブレーションなどといった物理的気相成長法(PVD)、熱CVD法、プラズマCVD法などといった化学的気相成長法(CVD)などを例示することができる。上記気相法としては、真空蒸着法などと比較して膜界面の密着性に優れる、膜厚制御が容易であるなどの観点から、DCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法などのスパッタリング法を好適に用いることができる。
 なお、上記積層構造中に含まれうる各バリア膜は、これら気相法のうち何れか1つの方法を利用して形成されていても良いし、あるいは、2つ以上の方法を利用して形成されていても良い。
 また、上記バリア膜は、上述した気相法を利用し、当初から金属酸化物薄膜として成膜しても良いし、あるいは、一旦、金属薄膜や部分酸化された金属酸化物薄膜を成膜した後、これを事後的に酸化して形成することも可能である。なお、部分酸化された金属酸化物薄膜とは、さらに酸化される余地がある金属酸化物薄膜を指す。
 当初から金属酸化物薄膜として成膜する場合、具体的には、例えば、スパッタリングガスとしてのアルゴン、ネオンなどの不活性ガスに、さらに反応性ガスとして酸素を含むガスを混合し、金属と酸素とを反応させながら薄膜を形成すれば良い(反応性スパッタリング法)。反応性スパッタリング法を用いて、例えば、上記Ti/O比を有するチタン酸化物層を得る場合、雰囲気中の酸素濃度(不活性ガスに対する酸素を含むガスの体積割合)は、上述した膜厚範囲を考慮して最適な割合を適宜選択すれば良い。
 一方、金属薄膜や部分酸化された金属酸化物薄膜を成膜した後、これを事後的に後酸化する場合、具体的には、透明高分子フィルム12上に上述した積層構造を形成した後、積層構造中の金属薄膜や部分酸化された金属酸化物薄膜を後酸化させる等すれば良い。なお、金属薄膜の成膜には、スパッタリング法等を、部分酸化された金属酸化物薄膜の成膜には、上述した反応性スパッタリング法等を用いれば良い。
 また、後酸化手法としては、加熱処理、加圧処理、化学処理、自然酸化等を例示することができる。これら後酸化手法のうち、比較的簡単かつ確実に後酸化を行うことができるなどの観点から、加熱処理が好ましい。上記加熱処理としては、例えば、上述した積層構造を有する透明高分子フィルムを加熱炉等の加熱雰囲気中に存在させる方法、温水中に浸漬する方法、マイクロ波加熱する方法や、積層構造中の金属薄膜や部分酸化された金属酸化物薄膜等を通電加熱する方法などを例示することができる。これらは1または2以上組み合わせて行っても良い。
 上記加熱処理時の加熱条件としては、具体的には、例えば、好ましくは、30℃~60℃、より好ましくは、32℃~57℃、さらに好ましくは、35℃~55℃の加熱温度、加熱雰囲気中に存在させる場合、好ましくは、5日間以上、より好ましくは、10日間以上、さらに好ましくは、15日間以上の加熱時間から選択すると良い。上記加熱条件の範囲内であれば、後酸化効果、透明高分子フィルム12の熱変形・融着抑制等が良好だからである。
 また、上記加熱処理時の加熱雰囲気は、大気中、高酸素雰囲気中、高湿度雰囲気中など酸素や水分の存在する雰囲気が好ましい。特に好ましくは、製造性、低コスト化等の観点から、大気中であると良い。
 積層構造中に上述した後酸化薄膜を含んでいる場合には、後酸化時に、金属酸化物薄膜中に含まれていた水分や酸素が消費されているため、太陽光が当たっても金属酸化物薄膜が化学反応し難くなる。具体的には、例えば、金属酸化物薄膜がゾル-ゲル法により形成されている場合、後酸化時に、金属酸化物薄膜中に含まれていた水分や酸素が消費されているため、金属酸化物薄膜中に残存していたゾル-ゲル法による出発原料(金属アルコキシド等)と水分(吸着水等)・酸素等とが、太陽光によってゾルゲル硬化反応し難くなる。そのため、硬化収縮等の体積変化によって生じる内部応力を緩和することが可能となり、積層構造の界面剥離等を抑制しやすくなる等、太陽光に対する耐久性を向上させやすくなる。
 以下、実施例および比較例を用いて本発明を詳細に説明する。
1.ポリオレフィン層-粘着剤層間の密着性の検討
(実験例1~6)
 使用したOPPフィルムの構成は以下の通りである。なお、ぬれ張力を変えるため、必要に応じて追加のコロナ処理を行っている。
・OPP<1>:東洋紡社製「P2111」、厚み:20μm、内面:易接着層 有、外面:コロナ処理 無
・OPP<2>:フタムラ化学社製「FOR-2」、厚み:15μm、内面:コロナ処理 有、外面:コロナ処理 有
・OPP<3>:王子特殊紙社製「EM-501」、厚み:15μm、内面:コロナ処理 有、外面:コロナ処理 無
・OPP<4>:東レ社製「S-648」、厚み:20μm、内面:コロナ処理 有、外面:易接着層 有
 OPPフィルムの表面のぬれ張力を測定した。次いで、OPPフィルムの内面あるいは外面に粘着剤(東洋インキ社製「主剤:BPS5260、硬化剤:BHS8515」)を粘着剤層が1.5μm厚になるように塗布し、圧力をかけて密着させ、粘着剤層を形成した。次いで、OPPフィルム(ポリオレフィン層)-粘着剤層間の密着力を測定した。その結果を、表1、図4に示す。
(ぬれ張力の測定)
 JIS K6768に準拠して測定した。すなわち、綿棒を用いてフィルム表面を所定のぬれ試薬で6cm以上濡らし、2秒後に塗布したぬれ試薬の状態を目視で観察した(N=3)。塗布したぬれ試薬が弾いた場合は、ぬれ試薬の張力に達していないと判断した。32mN/mから試験を行った。
(密着力の測定)
 JIS A5759に準拠して測定した。粘着剤層を形成したOPPフィルムを板ガラスに貼り付け、24時間以上静置させた上で180度引き剥がし試験を実施した。180度引き剥がし試験は、引張速度300mm/minで引き剥がし、20mm間隔で4点の荷重を測定した。密着力は、4点の測定荷重の平均値とした。これを3枚の試験片(粘着剤層を形成したOPPフィルム)について行い、3枚の試験片の平均値とした。
Figure JPOXMLDOC01-appb-T000001
 表1より、OPPフィルム(ポリオレフィン層)の表面のぬれ張力が大きくなるにつれてポリオレフィン層-粘着剤層間の密着力が大きくなることが確認された。つまり、ポリオレフィン層-粘着剤層間の密着力を大きくするにはOPPフィルム(ポリオレフィン層)の表面のぬれ張力を大きくすることが有効であることが確認された。また、OPPフィルム(ポリオレフィン層)の表面のぬれ張力が35mN/m以上であれば、ポリオレフィン層-粘着剤層間の密着力を3N/25mm以上にできることが確認された。
2.ポリオレフィン層-硬化樹脂層間の密着性の検討
(実験例7~16)
 OPPフィルムの表面のぬれ張力を測定した。次いで、OPPフィルムの内面あるいは外面に硬化性樹脂(DICグラフィックス社製アクリルUV硬化性樹脂「UVTクリヤーTEF-046」)を塗布し、UV硬化させて、1.3μm厚の硬化樹脂層を形成した。次いで、OPPフィルム(ポリオレフィン層)-硬化樹脂層間の密着性を評価した。その結果を、表2、図5に示す。
(密着性評価)
 JIS K5600-5-6に準拠して測定した。硬化樹脂層を形成したOPPフィルムの面に対して垂直になるように刃を当て、2mm間隔で6本の切り込みを入れた後、90度方向を変えて先の切り込みと直交する6本の切り込みを2mm間隔で入れて、25マスを作製した。その後、フィルムの格子にカットした部分にテープを貼り、テープ上をこすった。その後、テープを60度に近い角度で確実に引き剥がした上で、残マス数を目視にて確認した。
Figure JPOXMLDOC01-appb-T000002
 表2より、OPPフィルム(ポリオレフィン層)の表面のぬれ張力が大きくなるにつれてOPPフィルム(ポリオレフィン層)-硬化樹脂層間の密着性が高くなることが確認された。つまり、OPPフィルム(ポリオレフィン層)-硬化樹脂層間の密着性を高くするにはOPPフィルム(ポリオレフィン層)の表面のぬれ張力を大きくすることが有効であることが確認された。また、OPPフィルム(ポリオレフィン層)の表面のぬれ張力が43mN/m以上であれば、ポリオレフィン層-硬化樹脂層間の密着性を高くできることが確認された。
3.透明積層フィルムの作製
<実施例1>
 実施例1に係る透明積層フィルムとして、概略以下の3層積層構造からなる透明積層部と、この透明積層部に接して積層された粘着剤層と、この粘着剤層に接して積層されたポリオレフィン層と、このポリオレフィン層に接して積層された易接着層と、この易接着層に接して積層された硬化樹脂層とを有する透明積層フィルムを作製した。
 すなわち、実施例1に係る透明積層フィルムは、透明高分子フィルムの一方面に、ゾル-ゲル法及びUV照射によるTiO薄膜(1層目)│チタン酸化物薄膜/Ag-Cu合金薄膜/チタン酸化物薄膜(2層目)│ゾル-ゲル法及びUV照射によるTiO薄膜(3層目)が順に積層されてなる透明積層部を有している。
 なお、チタン酸化物薄膜は、金属Ti薄膜が熱酸化されて形成されたものであり、これがバリア薄膜に該当する。このチタン酸化物薄膜は、Ag-Cu合金薄膜に付随する薄膜として、Ag-Cu合金薄膜に含めて積層数を数えている。
 以下、具体的な作製手順を示す。
(コーティング液の調製)
 先ず、ゾル-ゲル法によるTiO薄膜の形成に使用するコーティング液を調製した。すなわち、チタンアルコキシドとして、テトラ-n-ブトキシチタン4量体(日本曹達(株)製、「B4」)と、紫外線吸収性のキレートを形成する添加剤として、アセチルアセトンとを、n-ブタノールとイソプロピルアルコールとの混合溶媒に配合し、これを攪拌機を用いて10分間混合することにより、コーティング液を調製した。この際、テトラ-n-ブトキシチタン4量体/アセチルアセトン/n-ブタノール/イソプロピルアルコールの配合は、それぞれ6.75質量%/3.38質量%/59.87質量%/30.00質量%とした。
(透明積層部の形成)
 透明高分子フィルムとして、一方面に易接着層を有する厚み50μmのポリエチレンテレフタレートフィルム(東洋紡績(株)製、「コスモシャイン(登録商標)A4100」)(以下、「PETフィルム」という。)を用い、このPETフィルムの易接着層面側とは反対側の面(PET面)側に、1層目として、TiO薄膜を以下の手順により成膜した。
 すなわち、PETフィルムのPET面側に、マイクログラビアコーターを用いて、所定の溝容積のグラビアロールで上記コーティング液を連続的に塗工した。次いで、インラインの乾燥炉を用いて、塗工膜を100℃で80秒間乾燥させ、TiO薄膜の前駆体膜を形成した。次いで、インラインの紫外線照射機〔高圧水銀ランプ(160W/cm)〕を用いて、上記塗工時と同線速で、上記前駆体膜に対して連続的に紫外線を1.5秒間照射した。これによりPETフィルム上に、ゾルゲル硬化時に紫外線エネルギーを用いるゾル-ゲル法(以下、「(ゾルゲル+UV)」と省略することがある。)によるTiO薄膜(1層目)を成膜した。
 次に、1層目の上に、2層目を構成する各薄膜を成膜した。
 すなわち、DCマグネトロンスパッタ装置を用い、1層目のTiO薄膜上に、下側の金属Ti薄膜をスパッタリングにより成膜した。次いで、この下側の金属Ti薄膜上に、Ag-Cu合金薄膜をスパッタリングにより成膜した。次いで、このAg-Cu合金薄膜上に、上側の金属Ti薄膜をスパッタリングにより成膜した。
 この際、上側および下側の金属Ti薄膜の成膜条件は、Tiターゲット(純度4N)、真空到達圧:5×10-6(Torr)、不活性ガス:Ar、ガス圧:2.5×10-3(Torr)、投入電力:1.5(kW)、成膜時間:1.1秒とした。
 また、Ag-Cu合金薄膜の成膜条件は、Ag-Cu合金ターゲット(Cu含有量:4原子%)、真空到達圧:5×10-6(Torr)、不活性ガス:Ar、ガス圧:2.5×10-3(Torr)、投入電力:1.5(kW)、成膜時間:1.1秒とした。
 次に、3層目として、2層目の上に、(ゾルゲル+UV)によるTiO薄膜を成膜した。ここでは、1層目に準じた成膜手順を2回行うことにより、所定の膜厚とした。
 次に、得られた透明積層部付きフィルムを、加熱炉内にて、大気中、40℃で300時間加熱処理することにより、積層構造中に含まれる金属Ti薄膜を熱酸化させ、チタン酸化物薄膜とした。
 なお、TiO薄膜の屈折率(測定波長は633nm)を、FilmTek3000(Scientific Computing International社製)により測定した。
 また、TiO薄膜中に含まれる有機分の含有量を、X線光電子分光法(XPS)により測定した。
 また、金属Ti薄膜を熱酸化させて形成したチタン酸化物薄膜についてEDX分析を行い、Ti/O比を次のようにして求めた。
 すなわち、透明積層部付きフィルムをミクロトーム(LKB(株)製、「ウルトロームV2088」)により切り出し、分析対象となるチタン酸化物薄膜(バリア薄膜)を含む積層構造の断面方向の厚みが100nm以下の試験片を作製した。作製した試験片の断面を、電界放出型電子顕微鏡(HRTEM)(日本電子(株)製、「JEM2001F」)により確認した。そして、EDX装置(分解能133eV以下)(日本電子(株)製、「JED-2300T」)を用い、この装置の電子銃から電子線を放出させ、分析対象となるチタン酸化物薄膜(バリア薄膜)の膜厚中央部近傍に入射させ、発生した特性X線を検出して分析することにより、チタン酸化物薄膜(バリア薄膜)の構成元素分析を行った。
 また、合金薄膜中の副元素(Cu)含有量を次のようにして求めた。すなわち、各成膜条件において、別途、ガラス基板上にAg-Cu合金薄膜を形成した試験片を作製し、この試験片を6%HNO溶液に浸漬し、20分間超音波による溶出を行った後、得られた試料液を用いて、ICP分析法の濃縮法により測定した。
 また、各薄膜の膜厚を、上記電界放出型電子顕微鏡(HRTEM)(日本電子(株)製、「JEM2001F」)による試験片の断面観察から測定した。
 表3に、透明積層部の詳細な層構成を示す。
Figure JPOXMLDOC01-appb-T000003
(粘着剤層の形成)
 透明積層部の表面に、アクリル樹脂系粘着剤(東洋インキ社製「主剤:BPS5260、硬化剤:BHS8515」)を塗布して、粘着剤層(厚み1.5μm)を形成した。
(ポリオレフィン層の形成)
 OPPフィルム(OPP<1>、東洋紡社製「P2111」、厚み:20μm、内面:易接着層 有、外面:コロナ処理 無)の外面(コロナ処理 無)にコロナ処理を追加し、粘着剤層の上にOPPフィルム(OPP<1>)の外面(コロナ処理 追加)を載せ、圧力をかけて密着させ、ポリオレフィン層(厚み20μm)を形成した。
(硬化樹脂層<1>の形成)
 紫外線硬化性のアクリル樹脂(DIC(株)製、「UVTクリアーTEF-046」)を濃度20%となるようにMEKで希釈し、塗工液を調製した。次いで、ポリオレフィン層の内面(易接着層 有)に調製した塗工液を塗工し、100℃で2分間乾燥し、さらに400mJ/cmの紫外線を照射して、硬化樹脂層<1>(厚み1.3μm)を形成した。以上により、実施例1に係る透明積層フィルムを作製した。
(実施例2~9)
 粘着剤層あるいは硬化樹脂層<1>の厚みを変更した以外は実施例1と同様にして、実施例2~9に係る透明積層フィルムを作製した。
(実施例10)
 OPPフィルム(OPP<1>)の外面(コロナ処理 無)にコロナ処理を追加しないで、粘着剤層の上にOPPフィルム(OPP<1>)の外面(コロナ処理 無)を接触させ、圧力をかけて密着させ、ポリオレフィン層(厚み20μm)を形成した以外は実施例1と同様にして、実施例10に係る透明積層フィルムを作製した。
(実施例11)
 OPPフィルム(OPP<1>)に代えてOPPフィルム(OPP<3>、王子特殊紙社製「EM-501」、厚み:15μm、内面:コロナ処理 有、外面:コロナ処理 無)を用い、粘着剤層の上にOPPフィルム(OPP<3>)の内面(コロナ処理 有)を接触させ、圧力をかけて密着させ、ポリオレフィン層(厚み15μm)を形成し、その外面(コロナ処理 無)に硬化樹脂層<1>を形成した以外は実施例1と同様にして、実施例11に係る透明積層フィルムを作製した。
(実施例12)
 OPP<3>を反転し、粘着剤層に接する面をOPP<3>の外面(コロナ処理 無)とし、硬化樹脂層<1>に接する面をOPP<3>の内面(コロナ処理 有)とした以外は実施例11と同様にして、実施例12に係る透明積層フィルムを作製した。
(実施例13)
 OPPフィルム(OPP<1>)に代えてOPPフィルム(OPP<2>、フタムラ化学社製「FOR-2」、厚み:15μm、内面:コロナ処理 有、外面:コロナ処理 有)を用い、粘着剤層の上にOPPフィルム(OPP<2>)の内面(コロナ処理 有)を接触させ、圧力をかけて密着させ、ポリオレフィン層(厚み15μm)を形成し、その外面(コロナ処理 有)に硬化樹脂層<1>を形成した以外は実施例1と同様にして、実施例13に係る透明積層フィルムを作製した。
(実施例14)
 OPP<2>を反転し、粘着剤層に接する面をOPP<2>の外面(コロナ処理 有)とし、硬化樹脂層<1>に接する面をOPP<2>の内面(コロナ処理 有)とした以外は実施例13と同様にして、実施例14に係る透明積層フィルムを作製した。
(実施例15~18)
 粘着剤層の厚みを変更した以外は実施例1と同様にして、実施例15~18に係る透明積層フィルムを作製した。
(比較例1)
 粘着剤層、ポリオレフィン層を形成しないで、透明積層部の表面に直接硬化樹脂層<1>(厚み1.0μm)を形成した以外は実施例1と同様にして、比較例1に係る透明積層フィルムを作製した。
(比較例2)
(硬化樹脂層<2>の形成)
 紫外線硬化性のアクリル樹脂(DIC(株)製、「UCシーラーTE-025」)を濃度20%となるようにMEKで希釈し、塗工液を調製した。次いで、透明積層部の表面に調製した塗工液を塗工し、100℃で2分間乾燥し、さらに400mJ/cmの紫外線を照射して、硬化樹脂層<2>(厚み0.8μm)を形成した。
(硬化樹脂層<1>の形成)
 硬化樹脂層<2>の表面に硬化樹脂層<1>(厚み1.0μm)を形成した。以上により、比較例2に係る透明積層フィルムを作製した。
4.透明積層フィルムの特性
 各透明積層フィルムについて、以下の特性を測定した。この際、測定サンプルには、透明積層フィルムの透明積層部側とは反対面に、厚さ25μmのアクリル粘着シート(積水化学工業社製「5402」)を貼り付け、この粘着シートの粘着層を、板ガラスの片面に貼り付けたものを用いた。なお、測定光は、セパレータ面側から入射させた。
(断熱性)
 JIS R3106に準拠し、セパレータ面およびフィルム面の垂直放射率を求め、JIS A5759に準拠して熱貫流率(W/mK)を求めた。
(ポリオレフィン層-硬化樹脂層間、硬化樹脂層<1>-硬化樹脂層<2>間、硬化樹脂層-透明積層部間の密着性)
 JIS K5600-5-6に準拠して測定した。
(ポリオレフィン層-粘着剤層間の密着性)
 JIS A5759に準拠して測定した。
(耐擦傷性)
 スチールウール(日本スチール社製「Bon Star No.0000」)を用い、サンプル表面に一定の荷重(500g)をかけながらスチールウールを10往復擦り付けた。この際、傷が全く観測されなかった場合を「○」、傷が観測された場合を「×」とした。
(端部-塩水腐食性)
 50mm角のガラス上にフィルムを水貼りした直後、フィルムが30mm角となるよう切り出した。切り出したフィルムの端部にNaCl濃度1000ppmに調整した塩水を滴下し、乾燥する前に恒温恒湿槽(50℃95%RH)へ投入した。経時変化でフィルム端部から内部への腐食の進行を目視にて観察し、腐食が進行した長さ(腐食幅)を定規で測定した。恒温恒湿槽へ投入してからの経過時間が105時間において、腐食幅が2mm以下である場合を端部での耐塩水腐食性に優れる「○」とし、腐食幅が2mm超である場合を端部での耐塩水腐食性に劣る「×」とした。
(面-塩水腐食性)
 ガラス上にフィルムを水貼りした後、フィルムの面上にNaCl濃度1000ppmに調整した塩水を滴下し、乾燥する前に恒温恒湿槽(50℃95%RH)へ投入した。経時変化でフィルム内部の腐食の有無を目視にて観察した。恒温恒湿槽へ投入してからの経過時間が24時間において、フィルム内部の腐食が確認されなかった場合を面での耐塩水腐食性に優れる「○」とし、フィルム内部の腐食が確認された場合を面での耐塩水腐食性に劣る「×」とした。
(施工時破壊)
 フィルム施工時に透明積層部の破壊が生じるか否かを目視にて確認した。具体的には、フィルム施工時に発生するフィルムの折れを想定し、フィルムを折り曲げ、折れを加えた状態のフィルムを恒温恒湿槽(60℃90%RH)に入れ、24時間静置した後、透明積層部に変色が生じるか否かを目視にて確認した。この場合、透明積層部に破壊が生じると変色が見られる。透明積層部の破壊が生じた場合を「×」、透明積層部の破壊が生じなかった場合を「○」とした。
(日射遮蔽性)
 JIS A5759に準拠して測定した。分光光度計(島津製作所製「UV3100」)を用い、波長300~2500nmの透過スペクトル、反射スペクトルを測定することにより、日射透過率、日射反射率を計算し、日射透過率、日射反射率、修正放射率から日射遮蔽係数を計算により求めた。
 表4、5に、各透明積層フィルムの保護層の概略構成と評価結果とをまとめて示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 比較例1では、透明積層部の表面に直接、硬化樹脂層<1>を形成している。このため、硬化樹脂層<1>の密着性に劣っている。また、塩水腐食試験において、面および端部の両方から腐食が見られた。これは、硬化樹脂層<1>の硬化収縮が大きく、硬化樹脂層<1>の硬化収縮によって硬化樹脂層<1>に接する金属酸化物層が剥離して端部から内部に塩水が侵入したためと推察される。また、硬化樹脂層<1>の硬化収縮によって面に亀裂が形成され、面から内部に塩水が侵入したためと推察される。比較例1では、さらに、フィルム施工時に透明積層部の破壊が生じた。比較例2では、透明積層部と硬化樹脂層<1>の間に硬化樹脂層<2>を挟んでいるが、塩水腐食試験において、面および端部の両方から腐食が見られた。さらに、フィルム施工時に透明積層部の破壊が生じた。
 これに対し、実施例は、いずれも塩水腐食試験において、面および端部の両方から腐食が見られなかった。また、フィルム施工時に透明積層部の破壊が生じなかった。また、日射遮蔽性、断熱性、耐擦傷性に優れることが確認された。
 実施例1,2,6,8の比較では、実施例6は硬化樹脂層<1>の厚みが比較的薄いので、耐擦傷性が比較的低い。実施例8は硬化樹脂層<1>の厚みが比較的厚いので、断熱性が比較的低い。実施例1,4,7,9,15~18の比較では、実施例7は粘着剤層の厚みが比較的薄いので、ポリオレフィン層-粘着剤層間の密着性が比較的低い。実施例18は粘着剤層の厚みが比較的厚いので、断熱性が比較的低い。
 以上、本発明の実施形態・実施例について説明したが、本発明は上記実施形態・実施例に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改変が可能である。

Claims (9)

  1.  透明高分子フィルムの面上に、金属酸化物薄膜と金属薄膜とが交互に積層されてなる透明積層部と、前記透明積層部に接する粘着剤層と、前記粘着剤層に接するポリオレフィン層と、硬化樹脂層と、をこの順で有していることを特徴とする透明積層フィルム。
  2.  前記ポリオレフィン層の粘着剤層に接する面のぬれ張力が、35mN/m以上であることを特徴とする請求項1に記載の透明積層フィルム。
  3.  前記ポリオレフィン層の粘着剤層に接する面には、コロナ処理が施されていることを特徴とする請求項2に記載の透明積層フィルム。
  4.  前記硬化樹脂層に接する面のぬれ張力が、43mN/m以上であることを特徴とする請求項1から3のいずれか1項に記載の透明積層フィルム。
  5.  前記ポリオレフィン層の硬化樹脂層側の面上には易接着層が形成されており、前記易接着層が前記硬化樹脂層に接していることを特徴とする請求項1から4のいずれか1項に記載の透明積層フィルム。
  6.  前記易接着層が、前記硬化樹脂層に接する面に極性基を有する変性ポリオレフィン層であることを特徴とする請求項5に記載の透明積層フィルム。
  7.  前記粘着剤層の厚みが、1.0~5.0μmの範囲内であることを特徴とする請求項1から6のいずれか1項に記載の透明積層フィルム。
  8.  前記硬化樹脂層の厚みが、1.0~2.0μmの範囲内であることを特徴とする請求項1から7のいずれか1項に記載の透明積層フィルム。
  9.  前記ポリオレフィン層の厚みが、10~30μmの範囲内であることを特徴とする請求項1から8のいずれか1項に記載の透明積層フィルム。
PCT/JP2012/083803 2012-09-28 2012-12-27 透明積層フィルム WO2014049891A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2015112123/05A RU2605568C2 (ru) 2012-09-28 2012-12-27 Прозрачная многослойная пленка
JP2013531036A JP5421505B1 (ja) 2012-09-28 2012-12-27 透明積層フィルム
EP12885295.1A EP2902190B1 (en) 2012-09-28 2012-12-27 Transparent laminate film
KR1020157007549A KR101758539B1 (ko) 2012-09-28 2012-12-27 투명 적층 필름
CN201280014183.1A CN103930267B (zh) 2012-09-28 2012-12-27 透明层叠膜
US14/661,540 US20150190989A1 (en) 2012-09-28 2015-03-18 Transparent laminate film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-215950 2012-09-28
JP2012215950 2012-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/661,540 Continuation US20150190989A1 (en) 2012-09-28 2015-03-18 Transparent laminate film

Publications (1)

Publication Number Publication Date
WO2014049891A1 true WO2014049891A1 (ja) 2014-04-03

Family

ID=50387348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083803 WO2014049891A1 (ja) 2012-09-28 2012-12-27 透明積層フィルム

Country Status (6)

Country Link
US (1) US20150190989A1 (ja)
EP (1) EP2902190B1 (ja)
KR (1) KR101758539B1 (ja)
CN (1) CN103930267B (ja)
RU (1) RU2605568C2 (ja)
WO (1) WO2014049891A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029706A1 (ja) * 2013-08-30 2015-03-05 住友理工株式会社 光透過性積層体
JP2015068882A (ja) * 2013-09-27 2015-04-13 住友理工株式会社 光透過性積層体
CN104553151A (zh) * 2015-02-02 2015-04-29 张家港康得新光电材料有限公司 窗膜
JP2016016611A (ja) * 2014-07-09 2016-02-01 日立マクセル株式会社 透明遮熱断熱部材及びその製造方法
WO2017169136A1 (ja) * 2016-03-30 2017-10-05 パナソニック液晶ディスプレイ株式会社 金属層構造及びその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9401491B2 (en) * 2014-05-30 2016-07-26 Samsung Sdi Co., Ltd. Direct/laminate hybrid encapsulation and method of hybrid encapsulation
JP6423198B2 (ja) * 2014-08-05 2018-11-14 日東電工株式会社 赤外線反射フィルム
US10894385B2 (en) * 2016-03-31 2021-01-19 Konica Minolta, Inc. Optical reflective film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227185A (en) * 1992-06-08 1993-07-13 Minnesota Mining And Manufacturing Company Abrasion-resistant coating composition and abrasion resistant energy control sheet
JPH0694205B2 (ja) * 1987-03-24 1994-11-24 東レ株式会社 複合フィルム
JP2000117919A (ja) * 1998-10-16 2000-04-25 Teijin Ltd 高透明熱線反射フィルム
JP2011104887A (ja) 2009-11-18 2011-06-02 Nitto Denko Corp 赤外線反射基板
JP2012030577A (ja) 2010-06-29 2012-02-16 Tokai Rubber Ind Ltd 透明積層フィルム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3635756A (en) * 1966-07-26 1972-01-18 Nat Patent Dev Corp Nonfogging transparent material
JPS5090643A (ja) * 1973-12-15 1975-07-19
EP0947477A4 (en) * 1996-11-05 2000-10-04 Teijin Ltd Laminated glass for greenhouses
US20080292820A1 (en) * 2007-05-23 2008-11-27 3M Innovative Properties Company Light diffusing solar control film
US20090169879A1 (en) * 2007-12-31 2009-07-02 3M Innovative Properties Company Corrosion resistant multi-layer window film construction
WO2010074050A1 (ja) * 2008-12-25 2010-07-01 東海ゴム工業株式会社 透明積層フィルムおよびその製造方法
KR101307639B1 (ko) * 2009-08-26 2013-09-12 도카이 고무 고교 가부시키가이샤 투명 적층 필름 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694205B2 (ja) * 1987-03-24 1994-11-24 東レ株式会社 複合フィルム
US5227185A (en) * 1992-06-08 1993-07-13 Minnesota Mining And Manufacturing Company Abrasion-resistant coating composition and abrasion resistant energy control sheet
JP2000117919A (ja) * 1998-10-16 2000-04-25 Teijin Ltd 高透明熱線反射フィルム
JP2011104887A (ja) 2009-11-18 2011-06-02 Nitto Denko Corp 赤外線反射基板
JP2012030577A (ja) 2010-06-29 2012-02-16 Tokai Rubber Ind Ltd 透明積層フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2902190A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029706A1 (ja) * 2013-08-30 2015-03-05 住友理工株式会社 光透過性積層体
JP2015063116A (ja) * 2013-08-30 2015-04-09 住友理工株式会社 光透過性積層体
JP2015068882A (ja) * 2013-09-27 2015-04-13 住友理工株式会社 光透過性積層体
JP2016016611A (ja) * 2014-07-09 2016-02-01 日立マクセル株式会社 透明遮熱断熱部材及びその製造方法
US10619068B2 (en) 2014-07-09 2020-04-14 Maxell Holdings, Ltd. Transparent heat shielding and insulating member, and method for producing the same
CN104553151A (zh) * 2015-02-02 2015-04-29 张家港康得新光电材料有限公司 窗膜
WO2017169136A1 (ja) * 2016-03-30 2017-10-05 パナソニック液晶ディスプレイ株式会社 金属層構造及びその製造方法

Also Published As

Publication number Publication date
KR20150046281A (ko) 2015-04-29
CN103930267A (zh) 2014-07-16
EP2902190A4 (en) 2015-11-11
KR101758539B1 (ko) 2017-07-14
EP2902190B1 (en) 2017-02-01
US20150190989A1 (en) 2015-07-09
CN103930267B (zh) 2015-09-30
RU2015112123A (ru) 2016-11-20
EP2902190A1 (en) 2015-08-05
RU2605568C2 (ru) 2016-12-20

Similar Documents

Publication Publication Date Title
WO2014049891A1 (ja) 透明積層フィルム
JP5363508B2 (ja) 透明積層フィルムおよびその製造方法
JP5197850B2 (ja) 透明積層フィルムおよびその製造方法
JP5662824B2 (ja) 遮熱性合わせ構造体の製造方法、遮熱性合わせ構造体、合わせ構造体用透明積層フィルム
JP2013151103A (ja) 透明積層フィルム
JP2012030577A (ja) 透明積層フィルム
JP6181981B2 (ja) 透明積層フィルム
JP5806836B2 (ja) 透明積層フィルムおよびこれを用いた透明積層体ならびに透明積層フィルムの使用方法
JP2012207445A (ja) 透明ロールスクリーン
JP2012135888A (ja) 透明積層フィルムおよび透明積層フィルムの使用方法
JP2013014066A (ja) 窓用透明遮熱積層体および窓用透明遮熱積層体の使用方法
JP2013209230A (ja) 遮熱性合わせ構造体、遮熱性合わせ構造体の製造方法、合わせ構造体用透明積層フィルム
JP5926092B2 (ja) 透明積層フィルム
JP2011133721A (ja) 透明積層フィルム
WO2014050237A1 (ja) 透明積層フィルムおよび透明積層フィルムの製造方法
JP5143717B2 (ja) 透明積層フィルム
JP2009241581A (ja) 透明積層フィルム
JP5314536B2 (ja) 透明積層フィルム
JP5421505B1 (ja) 透明積層フィルム
WO2014050367A1 (ja) 遮熱性合わせ構造体の製造方法、遮熱性合わせ構造体、透明積層フィルム
JP6297290B2 (ja) 光透過性積層体
JP2012161925A (ja) 透明積層フィルムおよび複層ガラス
JP2012207444A (ja) 網入り窓ガラスの日射調整方法
JP6134223B2 (ja) 光透過性積層体
JP6280758B2 (ja) 光透過性積層体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013531036

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885295

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157007549

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012885295

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012885295

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015112123

Country of ref document: RU

Kind code of ref document: A