WO2016133170A1 - イオン交換膜 - Google Patents

イオン交換膜 Download PDF

Info

Publication number
WO2016133170A1
WO2016133170A1 PCT/JP2016/054753 JP2016054753W WO2016133170A1 WO 2016133170 A1 WO2016133170 A1 WO 2016133170A1 JP 2016054753 W JP2016054753 W JP 2016054753W WO 2016133170 A1 WO2016133170 A1 WO 2016133170A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
exchange membrane
ion exchange
polymer
polyvinyl alcohol
Prior art date
Application number
PCT/JP2016/054753
Other languages
English (en)
French (fr)
Inventor
泰輔 鎌田
正博 馬場
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2017500737A priority Critical patent/JPWO2016133170A1/ja
Priority to CN201680011037.1A priority patent/CN107428969A/zh
Priority to US15/552,172 priority patent/US20180044491A1/en
Publication of WO2016133170A1 publication Critical patent/WO2016133170A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/422Electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/383Polyvinylacetates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F261/00Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00
    • C08F261/02Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols
    • C08F261/04Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols on to polymers of vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/42Ion-exchange membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation

Definitions

  • the present invention relates to an ion exchange membrane having practical dimensional stability and electrodialysis performance, and a method for producing the ion exchange membrane.
  • Ion exchange membranes are used as ion separation membranes for electrodialysis, diffusion dialysis, etc. for a wide variety of applications, such as seawater concentration, groundwater desalination for drinking water, removal of nitrate nitrogen, food production processes Is used for applications such as salt removal and concentration of active pharmaceutical ingredients.
  • the main ion exchange membranes used for these applications are styrene-divinylbenzene-based ion exchange membranes and fluorocarbon-based ion exchange membranes.
  • Styrene-divinylbenzene ion exchange membranes are manufactured by introducing anionic groups such as sulfonic acid groups and cationic groups such as quaternary ammonium groups into the styrene-divinylbenzene copolymer by post-modification. It is known to do (Patent Documents 1 and 2). However, since the ion exchange membrane of a styrene-divinylbenzene polymer has poor processability of the polymer, it is necessary to give a form using a support during the polymerization. In addition, since post-denaturation treatment is required, the manufacturing cost increases.
  • Fluorocarbon-based ion exchange membranes are known to be produced using a perfluoroalkyl sulfonic acid type polymer in which a sulfonic acid group is bonded to a side chain of a perfluoro skeleton (Patent Document 3).
  • Patent Document 3 Fluorocarbon-based ion exchange membrane has a problem in that it uses a fluorocarbon-based material that is difficult to significantly reduce costs because the polymer manufacturing process is complicated.
  • Patent Documents 4 and 5 an ion exchange membrane using a polyvinyl alcohol copolymer having excellent ion exchange ability and selective permeation ability, excellent organic contamination resistance, high processability, and cost reduction has been reported and attracted attention.
  • the ion exchange membrane using the polyvinyl alcohol-based copolymer uses hydrophilic polyvinyl alcohol as a base material, it is usually a bifunctional hydroxyl crosslinking agent such as glutaraldehyde or a hydroxyl modification such as formaldehyde. Insolubilization with chemicals is essential. Moreover, even after insolubilization treatment, the water content is high and dimensional stability may be poor, and further improvements are required.
  • An object of the present invention is to provide a vinyl alcohol ion exchange membrane having practical dimensional stability and electrodialysis performance.
  • the present invention includes the following preferred embodiments.
  • [1] The absorbance of the absorption wavelength of 1690 cm -1 in the infrared absorption spectrum of the ion exchange membrane and X, the absorbance of the absorption wavelength of 1720 cm -1 and Y, the region between the absorption wavelength 1690 cm -1 and 1720 cm -1
  • the formula (A) An ion exchange membrane that satisfies the relationship indicated by.
  • [2] The ion exchange membrane according to [1] above, comprising a polyvinyl alcohol polymer or a composition containing the polymer.
  • the polymer is represented by the following general formula (1): [In the formula, 0.5000 ⁇ o 1 / (n 1 + o 1 ) ⁇ 0.9999, and 0.01 ⁇ m 1 / (m 1 + n 1 + o 1 ) ⁇ 0.50.
  • M is a structural unit derived from the monomer M ′ having an anionic group or a cationic group.
  • the production method according to [6] above which is a block copolymer (BP) represented by [8]
  • the polymer is represented by the following general formula (2): [Wherein, 0.5000 ⁇ o 2 / (n 2 + o 2 ) ⁇ 0.9999, 0.001 ⁇ q 2 / (n 2 + o 2 + q 2 ) ⁇ 0.05, 0.01 ⁇ q 2 m 2 / (q 2 m 2 + n 2 + o 2) is ⁇ 0.50.
  • R 1 is a hydrogen atom or a carboxyl group.
  • R 2 is a hydrogen atom, a methyl group, a carboxyl group or a carboxymethyl group.
  • L is a divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms which may contain a nitrogen atom and / or an oxygen atom.
  • R 1 is a carboxyl group or R 2 is a carboxyl group or a carboxymethyl group, R 1 and R 2 may each form a ring with an adjacent hydroxyl group.
  • M is a structural unit derived from the monomer M ′ having an anionic group or a cationic group.
  • the ion exchange membrane of the present invention that satisfies the relationship represented by the above formula (A) has practical dimensional stability and electrodialysis performance.
  • Ion-exchange membrane of the present invention the absorbance of the absorption wavelength of 1690 cm -1 in the infrared absorption spectrum and X, the absorbance of the absorption wavelength of 1720 cm -1 and Y, between the absorption wavelength 1690 cm -1 and 1720 cm -1
  • the integral value (integral value of absorbance) for the region is Z and the thickness of the ion exchange membrane is Tcm
  • the value (hereinafter also referred to as “parameter A”) calculated by the above formula ⁇ Z ⁇ (X + Y) ⁇ 30/2 ⁇ / T is 30 or more. Yes, preferably 50 or more. It is preferable that the parameter A is equal to or more than the above lower limit because water resistance and electrodialysis performance are high.
  • the upper limit of the parameter A is not particularly limited, but is, for example, 1000 or less, preferably 800 or less.
  • the parameter A is a parameter corresponding to the area of the projection of the absorption curve between the absorption wavelength of the absorption wavelength and 1720 cm -1 in 1690 cm -1 in the infrared absorption spectrum. Specifically, in the infrared absorption spectrum shown example in Figure 1, the trapezoidal portion contained in the region from the integration value (integral value of the absorbance) Z to the area between the absorption wavelength 1690 cm -1 and 1720 cm -1 The area of the hatched portion after subtracting is equivalent to the parameter A.
  • the parameter A is considered to increase as the number of ketone groups increases in the ion exchange membrane. When there are too few ketone groups in the ion exchange membrane, the water resistance of the ion exchange membrane is insufficient, which is not preferable.
  • an ion exchange membrane that satisfies the relationship represented by the above formula (A) is preferable. Moreover, when there are too many ketone groups in an ion exchange membrane, the intensity
  • the value of the parameter A can be increased by, for example, a method of performing a heat treatment described later, a method of increasing the heat treatment temperature in the heat treatment, a method of extending the heat treatment time in the heat treatment, a method of adjusting pH, and the like. By these methods, the value of the parameter A can be adjusted to the above range.
  • the ion exchange membrane of the present invention is not particularly limited as long as it satisfies the relationship represented by the above formula (A), but is preferably an ion exchange membrane containing a polymer having an ionic group.
  • the ionic group is an anionic group or a cationic group.
  • the ion exchange membrane can be used as a cation exchange membrane.
  • the ion exchange membrane contains a polymer having a cationic group
  • the ion exchange membrane can be used as an anion exchange membrane.
  • the amount of the ionic group is preferably 1 to 50, with the total of the structural units of all the polymers contained in the ion exchange membrane being 100 mol%.
  • the mol% more preferably 3 to 30 mol%, still more preferably 5 to 25 mol%.
  • the amount of the ionic group is not more than the above upper limit because swelling of the ion exchange membrane is easily suppressed. It is preferable that the amount of the ionic group is equal to or more than the above lower limit because ion exchange performance is easily improved by increasing ion conductivity.
  • anionic group examples include a sulfonic acid group, a phosphoric acid group, a carboxylic acid group, a boronic acid group, and a sulfonylimide group. Although it does not specifically limit as a cation of a counter, Monovalent cations, such as an alkali metal ion, H ⁇ +> , quaternary ammonium ion, are preferable.
  • cationic groups include amino groups such as unsubstituted amino groups, N-alkylamino groups, and N-dialkylamino groups, nitrogen-containing heterocycles such as pyridyl groups and imidazolyl groups, N-trialkylammonium groups, N And quaternary ammonium groups such as -alkylpyridinium group, N-alkylimidazolium group, thiouronium group, and isothiouronium group.
  • the anion of the quaternary ammonium group counter is not particularly limited, but a halogenated anion of a Group 5B element such as PF 6 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , a halogenated anion of a Group 3B element such as BF 4 ⁇ , I - (I 3 -), Br -, Cl - and a halogen anion, ClO 4 - halogen anion such as, AlCl 4 -, FeCl 4 - , SnCl 5 - represented by - metal halide anions such as, NO 3 Nitrate anion, p-toluenesulfonate anion, naphthalenesulfonate anion, organic sulfonate anions such as CH 3 SO 3 ⁇ , CF 3 SO 3 — , carboxylate anions such as CF 3 COO ⁇ , C 6 H 5 COO ⁇ , OH - 1 monovalent
  • the ion exchange membrane of the present invention is not particularly limited as long as it is an ion exchange membrane satisfying the relationship represented by the above formula (A), but is preferably an ion containing a polyvinyl alcohol polymer, for example, a polymer having a polyvinyl alcohol unit. It is an exchange membrane.
  • the amount of the polyvinyl alcohol unit is 100 mol% of the total of the constituent units of all the polymers contained in the ion exchange membrane. Is preferably 1 to 90 mol%, more preferably 5 to 80 mol%, and still more preferably 10 to 60 mol%. It is preferable for the amount of the polyvinyl alcohol unit to be not more than the above upper limit because the swelling of the ion exchange membrane is easily suppressed. It is preferable that the amount of the polyvinyl alcohol unit is equal to or more than the above lower limit because ion exchange performance is easily improved by increasing ion conductivity.
  • the polymer having a polyvinyl alcohol unit may be a polymer different from the polymer having the ionic group, or may be the same polymer as the polymer having the ionic group.
  • the polymer having a polyvinyl alcohol unit and the polymer having an ionic group are the same polymer
  • the ion exchange membrane of the present invention includes a polymer having an ionic group and a polyvinyl alcohol unit. Represents that.
  • polyvinyl alcohol units examples include polyvinyl alcohol units derived from polyvinyl alcohol homopolymers and polyvinyl alcohol copolymers.
  • the polyvinyl alcohol copolymer is preferably a block copolymer or a graft copolymer.
  • the ion exchange membrane of the present invention may contain one type of polymer or a combination of two or more types of polymers.
  • the ion exchange membrane of the present invention includes a polymer having an ionic group and a polymer having a polyvinyl alcohol unit, or a polymer having an ionic group and a polyvinyl alcohol unit.
  • Crosslinks may be introduced into the polymer contained in the ion exchange membrane.
  • the ion exchange membrane of the present invention may be used in a form provided with a reinforcing material.
  • the reinforcing material include a continuous support made of a porous film, a mesh, or a nonwoven fabric.
  • the nonwoven fabric may be a wet nonwoven fabric of polyvinyl alcohol-based short fibers.
  • the ion exchange membrane of the present invention can be produced, for example, by heat-treating a polyvinyl alcohol polymer P (hereinafter also simply referred to as polymer P) or a composition containing the polymer.
  • the present invention also relates to a method for producing an ion exchange membrane comprising heat-treating a composition comprising a polymer P having a polyvinyl alcohol unit.
  • polyvinyl alcohol polymer P or a composition containing the polymer examples include a polymer composition containing a polymer P1 having a polyvinyl alcohol unit and a polymer P2 having an ionic group, a polyvinyl alcohol unit and an ionic group. And polymer P3 having, and compositions containing these.
  • polymer P1 which has a polyvinyl alcohol unit used in order to manufacture the ion exchange membrane of this invention a polyvinyl alcohol homopolymer is mentioned, for example.
  • the polymer P1 having a polyvinyl alcohol unit is preferably the following general formula (P1): [Wherein, 0.5000 ⁇ o 0 / (n 0 + o 0 ) ⁇ 0.9999. ] The polymer shown by these is mentioned.
  • Examples of the polymer P2 having an ionic group used for producing the ion exchange membrane of the present invention include a monomer composed of an anionic group or a cationic group and at least one ethylenically unsaturated monomer. These homopolymers are mentioned.
  • the polymer P2 having an ionic group is preferably the following general formula (P2): [M is a structural unit derived from the monomer M ′ having an anionic group or a cationic group. ] The polymer shown by these is mentioned.
  • Examples of the polymer P3 having a polyvinyl alcohol unit and an ionic group used for producing the ion exchange membrane of the present invention include a polyvinyl alcohol copolymer.
  • Examples of the polyvinyl alcohol copolymer include a block copolymer and a graft copolymer.
  • the polymer P3 having a polyvinyl alcohol unit and an ionic group is preferably represented by the following general formula (1): [In the formula, 0.5000 ⁇ o 1 / (n 1 + o 1 ) ⁇ 0.9999, and 0.01 ⁇ m 1 / (m 1 + n 1 + o 1 ) ⁇ 0.50.
  • M is a structural unit derived from the monomer M ′ having an anionic group or a cationic group.
  • a block copolymer (BP) represented by the following general formula (2): [Wherein, 0.5000 ⁇ o 2 / (n 2 + o 2 ) ⁇ 0.9999, 0.001 ⁇ q 2 / (n 2 + o 2 + q 2 ) ⁇ 0.05, 0.01 ⁇ q 2 m 2 / (q 2 m 2 + n 2 + o 2) is ⁇ 0.50.
  • R 1 is a hydrogen atom or a carboxyl group.
  • R 2 is a hydrogen atom, a methyl group, a carboxyl group or a carboxymethyl group.
  • L is a divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms which may contain a nitrogen atom and / or an oxygen atom.
  • R 1 is a carboxyl group or R 2 is a carboxyl group or a carboxymethyl group
  • R 1 and R 2 each form a ring (cyclic structure) with an adjacent hydroxyl group (ie, a hydroxyl group contained in an adjacent structural unit). You may do it.
  • M is a structural unit derived from the monomer M ′ having an anionic group or a cationic group. ]
  • the graft copolymer (GP) shown by these is mentioned.
  • o 0 / (n 0 + o 0 ) represents a ratio of vinyl alcohol units contained in the polymer P1 having polyvinyl alcohol units.
  • the lower limit of o 0 / (n 0 + o 0 ) is preferably 0.5000 or more, more preferably 0.7000 or more, and further preferably 0.8000 or more.
  • the upper limit of o 0 / (n 0 + o 0 ) is preferably 0.9999 or less, more preferably 0.999 or less, and further preferably 0.995 or less. From the viewpoint of ease of production, o 0 / (n 0 + o 0 ) is preferably within the above range.
  • M in the general formula (P2) is a structural unit derived from a monomer having an anionic group or a cationic group (hereinafter also referred to as “monomer M ′”).
  • Examples of the monomer M ′ include a monomer composed of at least one anionic group or cationic group and at least one ethylenically unsaturated monomer.
  • Examples of the anionic group and the cationic group in the monomer M ′ include the anionic group and the cationic group described above for the copolymer.
  • Examples of the ethylenically unsaturated monomer in the monomer M ′ include ⁇ -olefins such as ethylene, propylene, n-butene and isobutylene; styrenes such as styrene and ⁇ -methylstyrene; acrylic acid and methyl acrylate Acrylic acid or esters thereof such as ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate; methacrylic acid, methyl methacrylate, Methacrylic acid or esters thereof such as ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate; acrylamide, N-methylacrylamide, N
  • Examples of the monomer M composed of an anionic group and an ethylenically unsaturated monomer include compounds represented by the following general formulas (3) to (9).
  • R 3 represents a hydrogen atom or an alkali metal atom.
  • R 3 has the same meaning as described above, and R 4 represents a hydrogen atom or a methyl group.
  • Examples of the monomer M composed of a cationic group and an ethylenically unsaturated monomer include compounds represented by the following general formulas (10) to (19).
  • X ⁇ represents a halogenated anion of a group 5B element such as PF 6 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , a halogenated anion of a group 3B element such as BF 4 ⁇ , I ⁇ (I 3 ⁇ ), Halogen anions such as Br ⁇ and Cl ⁇ , halogen acid anions such as ClO 4 ⁇ , metal halide anions such as AlCl 4 ⁇ , FeCl 4 ⁇ and SnCl 5 ⁇ , nitrate anions represented by NO 3 ⁇ , p-toluenesulfone Acid anions, naphthalene sulfonate anions, organic sulfonate anions such as CH 3 SO 3 ⁇ and CF 3 SO 3 — , carboxylic acid anions such as CF 3 COO ⁇ and C 6 H 5 COO ⁇ , and monovalent OH ⁇ An anion, and R 4
  • R 4 has the same meaning as described above and may be the same as or different from each other. ]
  • o 1 / (n 1 + o 1 ) represents a ratio of vinyl alcohol units to the total of vinyl alcohol units and vinyl acetate units.
  • the lower limit of o 1 / (n 1 + o 1 ) is preferably 0.5000 or more, more preferably 0.7000 or more, and further preferably 0.8000 or more.
  • the upper limit of o 1 / (n 1 + o 1 ) is preferably 0.9999 or less, more preferably 0.999 or less, and further preferably 0.995 or less. It is preferable from the viewpoint of ease of production that o 1 / (n 1 + o 1 ) is within the above range.
  • m 1 / (m 1 + n 1 + o 1 ) represents a ratio of polymer components having an anionic group or a cationic group in the copolymer.
  • the lower limit of m 1 / (m 1 + n 1 + o 1 ) is preferably 0.01 or more, more preferably 0.03 or more, and further preferably 0.05 or more.
  • the upper limit of m 1 / (m 1 + n 1 + o 1 ) is preferably 0.50 or less, more preferably 0.30 or less, and even more preferably 0.25 or less.
  • M in the general formula (1) has the same meaning as M described for the general formula (P2).
  • o 2 / (n 2 + o 2 ) represents a ratio of vinyl alcohol units contained in the vinyl alcohol polymer component in the copolymer.
  • the lower limit of o 2 / (n 2 + o 2 ) is preferably 0.5000 or more, more preferably 0.7000 or more, and further preferably 0.8000 or more.
  • the upper limit of o 2 / (n 2 + o 2 ) is preferably 0.9999 or less, more preferably 0.999 or less, and even more preferably 0.995 or less. From the viewpoint of ease of production, o 2 / (n 2 + o 2 ) is preferably within the above range.
  • q 2 / (n 2 + o 2 + q 2 ) represents a mole fraction of branching units contained in the graft copolymer (GP).
  • the lower limit of q 2 / (n 2 + o 2 + q 2 ) is preferably 0.001 or more, more preferably 0.002 or more, and further preferably 0.003 or more.
  • the upper limit of q 2 / (n 2 + o 2 + q 2 ) is preferably 0.05 or less, more preferably 0.02 or less, and still more preferably 0.01 or less. It is preferable that q 2 / (n 2 + o 2 + q 2 ) is within the above range from the viewpoint of easy control of the copolymerization reaction.
  • q 2 m 2 / in the general formula (2) (q 2 m 2 + n 2 + o 2) is contained in the polymer component having a vinyl alcohol polymer component and an anionic group or cationic group in the copolymer
  • the ratio of the polymer component having an anionic group or a cationic group is shown.
  • the lower limit of q 2 m 2 / (q 2 m 2 + n 2 + o 2 ) is preferably 0.01 or more, more preferably 0.03 or more, and further preferably 0.05 or more.
  • the upper limit of q 2 m 2 / (q 2 m 2 + n 2 + o 2 ) is preferably 0.50 or less, more preferably 0.30 or less, and even more preferably 0.25 or less.
  • M in the general formula (2) has the same meaning as M described for the general formula (P2).
  • L in the general formula (2) is a divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms which may contain a nitrogen atom and / or an oxygen atom.
  • the number of nitrogen atoms and / or oxygen atoms contained in L is not particularly limited.
  • the aliphatic hydrocarbon group may be linear, branched or cyclic, and is preferably linear or branched.
  • the number of carbon atoms at the site branched from the main chain of the aliphatic hydrocarbon group (a chain in which atoms are continuous between a sulfur atom and a nitrogen atom) is 1 to 5.
  • L contains a nitrogen atom and / or an oxygen atom
  • examples of the case where L contains a nitrogen atom and / or an oxygen atom include, for example, a carbonyl bond in which the aliphatic hydrocarbon group has a nitrogen atom and / or an oxygen atom inserted into the aliphatic hydrocarbon group ( -CO-), ether bond (-O-), amino bond [-NR- (R is a hydrogen atom or a group containing carbon bonded to N)], amide bond (-CONH-), etc.
  • the aliphatic hydrocarbon group may contain a nitrogen atom and / or an oxygen atom as a carboxyl group (—COOH), a hydroxyl group (—OH), or the like that replaces the aliphatic hydrocarbon group.
  • L is preferably a linear or branched alkylene group having a total carbon number of 1 to 20, which may have a carboxyl group, and has a total carbon number of Is more preferably a linear or branched alkylene group having 2 to 15 and optionally having a carboxyl group, and having a total carbon number of 2 to 10 and optionally having a carboxyl group. More preferably, it is a chain or branched alkylene group.
  • R 1 in the general formula (2) is a hydrogen atom or a carboxyl group
  • R 2 is a hydrogen atom, a methyl group, a carboxyl group, or a carboxymethyl group.
  • R 1 and R 2 are each independently selected.
  • each repeating unit is represented, and independently of each other, it may be preferably 1 to 10000, more preferably 5 to 9000, and still more preferably 10 to 8000.
  • the general formulas (P1), (P2), (1) and (2) do not mean that the repeating units in parentheses are arranged as shown, but simply each repeating unit is present. Represents that.
  • the repeating units are usually arranged randomly at each other, but the same repeating units may be arranged continuously.
  • the composition containing the polymer P1 having a polyvinyl alcohol unit and the polymer P2 having an ionic group that can be used for producing the ion exchange membrane of the present invention is, for example, anionic polymerization using a polymerizable monomer, It can be produced by performing radical polymerization, cationic polymerization, coordination polymerization and the like. Moreover, when a polymer is a copolymer, it can manufacture by performing a copolymerization using another polymerizable monomer with a polymerizable monomer.
  • the polymer P3 having a polyvinyl alcohol unit and an ionic group that can be used to produce the ion exchange membrane of the present invention is, for example, (Ia) A method of producing a vinyl alcohol polymer and then binding an ionic group to the vinyl alcohol polymer, or (Ib) a vinyl alcohol polymer and at least one monomer having an ionic group It can manufacture by the method of polymerizing.
  • one or more hydroxyl group modifiers for example, butyraldehyde sulfonic acid or its alkali metal salt, benzaldehyde sulfonic acid or its alkali metal salt, cationic ammonium aldehyde, etc.
  • hydroxyl group modifiers for example, butyraldehyde sulfonic acid or its alkali metal salt, benzaldehyde sulfonic acid or its alkali metal salt, cationic ammonium aldehyde, etc.
  • Is preferably reacted to introduce an ionic group into the vinyl alcohol polymer to produce a copolymer from the viewpoint of industrial ease.
  • the method of (Ib) it is possible to produce a copolymer by radical polymerization of at least one monomer containing an ionic group in the presence of a vinyl alcohol polymer containing a mercapto group. It is preferable because of its ease. Since the type and amount of each component can be easily controlled, the method
  • a block copolymer (BP) is described in, for example, Patent Document 3 and Patent Document 4 using a terminal mercapto group-containing vinyl alcohol polymer and a monomer (M) having an ionic group. Can be produced by the polymerization method.
  • the content rate of the vinyl alcohol unit in the above-mentioned terminal mercapto group-containing vinyl alcohol polymer is not particularly limited, but 100 mol of all the structural units in the polymer. % Is preferably 50 mol% or more, more preferably 70 mol% or more, and still more preferably 80 mol% or more.
  • the upper limit of the content of the vinyl alcohol unit is preferably 99.99 mol% or less, more preferably 99.9 mol% or less, and even more preferably 99 mol%, based on 100 mol% of all structural units in the polymer. .5 mol% or less.
  • the viscosity average degree of polymerization of the above-mentioned terminal mercapto group-containing vinyl alcohol polymer measured according to JIS K6726 is not particularly limited, and is preferably 100 to 5,000, more preferably 200 to 4,000. .
  • the viscosity average degree of polymerization is preferably at least the above lower limit from the viewpoint of the mechanical strength of the derived copolymer. It is preferable that the viscosity average degree of polymerization is not more than the above upper limit because a vinyl alcohol polymer is easily produced industrially.
  • the graft copolymer (GP) is Formula (20): [Wherein, R 1 , R 2 and L are as defined above. ] A general formula (21) composed of a structural unit represented by [Wherein, n 4 , o 4 , q, L, R 1 and R 2 are as defined above. ] Produced by the polymerization method described in, for example, Patent Document 3 and Patent Document 4 using a side chain mercapto group-containing vinyl alcohol polymer represented by the formula (I) and a monomer (M) having an ionic group. can do.
  • the structural unit represented by the general formula (20) can be derived from an unsaturated monomer that can be converted into the structural unit, and preferably the general formula (22): [Wherein, R 1a and R 1b are a hydrogen atom or a carboxyl group, provided that at least one of R 1a and R 1b is a hydrogen atom, and R 3 is a methyl group or a specific carbon contained in L A cyclic structure is formed by covalent bonding with an atom, and R 2 and L are as defined above. ] It can derive from the thioester type monomer which has an unsaturated double bond shown by these.
  • the thioester monomer having an unsaturated double bond represented by the general formula (22) can be produced according to a known method.
  • Preferred specific examples of the thioester monomer having an unsaturated double bond represented by the general formula (22) include, for example, thioacetic acid S- (3-methyl-3-buten-1-yl) ester, thioacetic acid S-17-octadecene-1-yl ester, thioacetic acid S-15-hexadecene-1-yl ester, thioacetic acid S-14-pentadecene-1-yl ester, thioacetic acid S-13-tetradecene-1-yl ester, Thioacetic acid S-12-tridecen-1-yl ester, thioacetic acid S-11-dodecen-1-yl ester, thioacetic acid S-10-undecen-1-yl ester, thioacetic acid S-9-decene-1-yl Ester, thioacetic acid S-8-nonen-1-yl ester, thioacetic acid S-7
  • thioacetic acid S-7-octen-1-yl ester chemical formulas (a-6), (a-7), (a-9) from the viewpoints of availability of raw materials and ease of synthesis , (A-10), (a-11), (a-12), (a-14), (a-15), (a-16), (a-17), (a-19), ( a-20), (a-21), (a-22), (a-24), (a-25), (a-26), (a-27), (a-29), (a- 30) is preferred.
  • the content of the structural unit represented by the general formula (20) in the side-chain mercapto group-containing vinyl alcohol polymer represented by the general formula (21) is not particularly limited, but the total structural unit in the polymer is 100 mol%. Is preferably 0.1 to 5 mol%, more preferably 0.2 to 2 mol%, and still more preferably 0.3 to 1 mol%.
  • the side chain mercapto group-containing vinyl alcohol polymer represented by the general formula (21) can have one or more structural units represented by the formula (20). When it has 2 or more types of the said structural unit, it is preferable that the sum total of the content rate of these 2 or more types of structural units exists in the said range.
  • the content of the vinyl alcohol unit in the side chain mercapto group-containing vinyl alcohol polymer represented by the general formula (21) is not particularly limited.
  • the total constituent unit in the content is 100 mol%, preferably 50 mol% or more, more preferably 70 mol% or more, and further preferably 80 mol% or more.
  • the upper limit of the content of the vinyl alcohol unit is preferably 99.99 mol% or less, more preferably 99.9 mol% or less, and even more preferably 99 mol%, based on 100 mol% of all structural units in the polymer. .5 mol% or less.
  • the vinyl alcohol unit in the side chain mercapto group-containing vinyl alcohol polymer represented by the general formula (21) can be derived from the vinyl ester unit by hydrolysis, alcoholysis or the like. Although it does not specifically limit as vinyl ester of the vinyl ester unit converted into a vinyl alcohol unit, Vinyl acetate is preferable from an industrial viewpoint.
  • the side chain mercapto group-containing vinyl alcohol polymer represented by the general formula (21) is a structural unit other than the structural unit represented by the formula (20), the vinyl alcohol unit and the vinyl ester unit as long as the effect of the present invention is obtained. Can further be included.
  • the structural unit includes, for example, an unsaturated monomer that can be copolymerized with a vinyl ester and can be converted into a structural unit represented by the formula (20), and an ethylenically unsaturated monomer that can be copolymerized with a vinyl ester. It is a derived structural unit.
  • the ethylenically unsaturated monomer is synonymous with the ethylenically unsaturated monomer described for the monomer M '.
  • the arrangement order of the structural unit represented by the formula (20), the vinyl alcohol unit, and other arbitrary structural units in the side chain mercapto group-containing vinyl alcohol polymer represented by the general formula (21) is not particularly limited. , Block, alternating, etc.
  • the viscosity average polymerization degree measured in accordance with JIS K6726 of the side chain mercapto group-containing vinyl alcohol polymer represented by the general formula (21) is not particularly limited, and is preferably 100 to 5,000, more preferably. 200 to 4,000.
  • the viscosity average degree of polymerization is preferably at least the above lower limit from the viewpoint of the mechanical strength of the derived copolymer. It is preferable that the viscosity average degree of polymerization is not more than the above upper limit because a vinyl alcohol polymer is easily produced industrially.
  • the method for producing the side chain mercapto group-containing vinyl alcohol polymer represented by the general formula (21) is not particularly limited as long as the target side chain mercapto group-containing vinyl alcohol polymer can be produced.
  • a production method includes copolymerization of a vinyl ester and an unsaturated monomer that can be copolymerized with the vinyl ester and can be converted into a structural unit represented by the general formula (20).
  • a conversion step of converting the structural unit into the structural unit represented by the general formula (20) is not particularly limited as long as the target side chain mercapto group-containing vinyl alcohol polymer can be produced.
  • such a production method includes copolymerization of a vinyl ester and an unsaturated monomer that can be copolymerized with the vinyl ester and
  • thioester monomer (22) a thioester monomer having an unsaturated double bond represented by the general formula (22) (hereinafter referred to as “thioester monomer (22)”).
  • the ester bond of the vinyl ester unit of the copolymer and the thioester bond of the structural unit derived from the thioester monomer (22) are hydrolyzed or alcoholically decomposed to give a vinyl alcohol unit and a general formula (20), respectively.
  • the method of converting to the structural unit shown is simple and preferably used.
  • the copolymerization of the vinyl ester and the thioester monomer (22) employs a known method and conditions for homopolymerizing the vinyl ester. Can be done. At the time of copolymerization, a monomer copolymerizable with the vinyl ester and thioester monomer (22) may be further copolymerized.
  • the copolymerizable monomer is the same as the ethylenically unsaturated monomer described for the monomer M ′.
  • the ester bond of the vinyl ester unit of the obtained copolymer and the thioester bond of the structural unit derived from the thioester monomer (22) can be hydrolyzed or alcoholically decomposed under substantially the same conditions. Therefore, hydrolysis or alcoholysis of the ester bond of the vinyl ester unit and the thioester bond of the structural unit derived from the thioester monomer (22) of the obtained copolymer is used to saponify the vinyl ester homopolymer.
  • the known methods and conditions can be employed.
  • a desired form can be imparted to the composition containing the polymer P having a polyvinyl alcohol unit obtained in this manner, and a film-like molded product can be produced.
  • a copolymerization form at the time of producing a film-shaped molded object, It is preferable to produce a film-shaped molded object using the solution containing the polymer P from a workability viewpoint.
  • the solvent is not particularly limited, and water, methanol, ethanol, isopropanol, diethyl ether, tetrahydrofuran, 1,4-dioxane, acetone, methyl ethyl ketone, N-methylpyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, methyl ethyl Examples thereof include polar solvents such as sulfoxide and diethyl sulfoxide, or mixed solvents thereof. From the viewpoint of the solubility of the polymer P, it is preferable to use water as a solvent.
  • the concentration of the solution is not particularly limited, but the amount of the polymer P with respect to 100 parts by mass of the solvent is preferably 0.1 to 50 parts by mass, and more preferably 5 to 30 parts by mass.
  • additives may be added as necessary, and the order of addition can also be arbitrarily selected.
  • the additive can be appropriately selected from known additives, for example, metal fine particles, inorganic fine particles, inorganic salts, ultraviolet absorbers, antioxidants, deterioration inhibitors, dispersants, surfactants, Examples thereof include polymerization inhibitors, thickeners, conductive assistants, surface modifiers, antiseptics, antifungal agents, antibacterial agents, antifoaming agents, and plasticizers. These 1 type may be used independently and may use 2 or more types together.
  • polyvinyl alcohol may be appropriately added to the composition containing the polymer P for the purpose of improving the strength of the molded product.
  • the viscosity average polymerization degree of the polyvinyl alcohol is not particularly limited, and is preferably 500 to 8,000, more preferably 1,000 to 7,000 as measured according to JIS K6726.
  • the pH of the composition containing the polymer P is preferably less than 3.0 and more preferably less than 2.0 from the viewpoint of easily enhancing the effect of the subsequent heat treatment.
  • the method for adjusting the pH of the composition containing the polymer P is not particularly limited.
  • the pH is adjusted with acidic compounds such as sulfuric acid, hydrochloric acid, acetic acid, ammonium chloride, sodium hydroxide, potassium hydroxide, ammonia, sodium acetate, and the like.
  • the basic compound may be added to the intermediate solution to adjust, or may be adjusted using an ion exchange resin such as anion exchange resin or cation exchange resin, or adjusted by electrodialysis. Also good.
  • a method for producing a film-like molded product by imparting a desired shape to the polymer P is not particularly limited, but for example, the composition containing the polymer P is heated to plasticize the polymer and mold the polymer. Molding into a film by melt-molding methods (for example, extrusion molding, injection molding, inflation molding, press molding, blow molding) or by removing the solvent by drying after casting the solution into a film Examples include a solvent casting method. By these molding methods, a film-shaped molded article having a desired thickness such as a film or a sheet can be obtained.
  • thermoplastic resin In the case of using the melt molding method, an arbitrary thermoplastic resin may be added to the composition containing the polymer P as necessary, and the order of addition may be arbitrarily selected.
  • the thermoplastic resin is not particularly limited, and a general thermoplastic resin can be used.
  • a film-shaped molded product may be laminated on a polymer film such as a polyethylene terephthalate film, nylon film, or polypropylene, on a metal foil such as a copper foil or an aluminum foil, or on an inorganic substrate such as a glass substrate or a silicon substrate.
  • the film-shaped molded body may have a multilayer structure.
  • the membrane-like molded product may be composited with a porous material such as a porous film, mesh, nonwoven fabric, porous ceramics and zeolite, or molding of a three-dimensionally processed polymer, metal, ceramics, glass, etc. It may be formed on the surface of the body.
  • the film thickness of the ion exchange membrane of the present invention is preferably about 30 to 1000 ⁇ m, more preferably 40 to 500 ⁇ m, from the viewpoints of performance required for an electrolyte membrane for electrodialysis, mechanical strength, handling properties, and the like.
  • the thickness is preferably 50 to 300 ⁇ m. It is preferable from a viewpoint of the mechanical strength of the film
  • the film thickness is preferably not more than the above upper limit from the viewpoint of reducing the membrane resistance and enhancing the ion exchange property.
  • the film thickness can be measured with a micrometer.
  • the film-like molded body is reinforced by adding a reinforcing material made of an inorganic material, an organic material, or an organic-inorganic hybrid material to the composition containing the polymer P.
  • the reinforcing material may be a fibrous material, a particulate material, or a flaky material.
  • a continuous support such as a porous film, a mesh, and a nonwoven fabric may be used.
  • a fibrous material or the above-mentioned continuous support as a reinforcing material because the mechanical strength and dimensional stability of the finally obtained ion exchange membrane are easily improved.
  • stacked the layer which does not reinforce and the layer which carried out the said reinforcement layer in the multilayer form by arbitrary methods is also preferable.
  • the reinforcing material may be added to the composition containing the polymer P, mixed and used, or the reinforcing material is impregnated with the composition containing the polymer P.
  • the reinforcing material and the film-shaped formed body after film formation may be laminated.
  • the reinforcing material is preferably a continuous support made of a porous film, a mesh, or a nonwoven fabric, more preferably a nonwoven fabric, from the viewpoint of strength and processability.
  • the nonwoven fabric is preferably a wet nonwoven fabric formed from short fibers (fiber length: 1 to 30 mm).
  • the polymer that forms the nonwoven fabric (or the constituent polymer of the main fiber) is not particularly limited, and examples thereof include polyester (PET, PTT, etc.), polyvinyl alcohol, and the like, and polyvinyl alcohol is particularly preferable.
  • a particularly preferable nonwoven fabric sheet includes a wet nonwoven fabric mainly composed of polyvinyl alcohol short fibers.
  • the wet non-woven fabric is made by dispersing the main fibers and a small amount of binder fibers for bonding between the main fibers in water and making the slurry uniform with gentle stirring.
  • a sheet can be formed and manufactured using an apparatus for papermaking having at least one of wires such as a formula.
  • the polyvinyl alcohol-based main fiber preferably does not dissolve in water at 90 ° C. or less and has a saponification degree of 99.9 mol% or more.
  • the polyvinyl alcohol main fiber in which the acetalization process is performed is also preferable.
  • the degree of acetalization is preferably 15 to 40 mol%, more preferably 25 to 35 mol%.
  • the degree of polymerization of the polyvinyl alcohol constituting the polyvinyl alcohol-based main fiber is preferably 1000 to 2500.
  • a known method can be adopted as a method for producing the polyvinyl alcohol-based main fiber, and any one of a wet spinning method, a dry wet spinning method, and a dry spinning method may be adopted. Since the polyvinyl alcohol-based main fiber used in this embodiment is used as a wet nonwoven fabric, its fineness is preferably 0.3 to 10 dtex, more preferably 0.5 to 5 dtex.
  • the inorganic material used as the reinforcing material is not particularly limited as long as it has a reinforcing effect.
  • the organic material used as the reinforcing material is not particularly limited as long as it has a reinforcing effect.
  • polyvinyl alcohol polyphenylene sulfide, polyphenylene ether, polysulfone, polyether sulfone, polyether ether sulfone, polyether ketone, polyether ether ketone , Polythioether sulfone, polythioether ether sulfone, polythioether ketone, polythioether ether ketone, polybenzimidazole, polybenzoxazole, polyoxadiazole, polybenzoxazinone, polyxylylene, polyphenylene, polythiophene, polypyrrole, polyaniline, polyacene, polycyanogen , Polynaphthyridine, polyphenylene sulfide sulfone, polyphenylene sulfone, polyimide, poly Etherimide, polyesterimide, polyamideimide, polyamide, aromatic polyamide, polystyrene, acrylonitrile-styrene resin, polysty
  • An organic-inorganic hybrid material can also be used as a reinforcing material, and examples thereof include organosilicon polymer compounds having a silsesquioxane structure or a siloxane structure such as POSS (Polyhederal Oligomeric Silsesquioxanes) or silicone rubber.
  • organosilicon polymer compounds having a silsesquioxane structure or a siloxane structure such as POSS (Polyhederal Oligomeric Silsesquioxanes) or silicone rubber.
  • An ion exchange membrane satisfying the relationship represented by the above formula (A) can be obtained by heat-treating the composition containing the polymer P obtained as described above.
  • the heat treatment method may be appropriately selected depending on the type and form of the film-shaped molded body, and generally known methods can be used.
  • the heat treatment can be performed using, for example, a hot air dryer, a hot press, a hot plate, an infrared heater, a roller heater, or the like.
  • a planar heating means is preferable, and a hot press, a hot plate, an infrared heater, a roller heater, and the like are more preferable.
  • the conditions for the heat treatment are not particularly limited, and are preferably 100 to 250 ° C., more preferably 140 to 200 ° C., preferably 5 seconds in the air, in an inert gas atmosphere such as nitrogen, or under reduced pressure.
  • the heat treatment may be performed for a heating time of ⁇ 4 hours, more preferably 1 minute to 2 hours.
  • the heat treatment may be performed in a plurality of times.
  • the ion exchange membrane of the present invention may be subjected to a crosslinking treatment as necessary. It is preferable to introduce a cross-linking bond by performing a cross-linking treatment because the electrodialysis performance is easily further improved and the mechanical strength of the ion exchange membrane is easily increased.
  • the method for the crosslinking treatment is not particularly limited as long as it is a method capable of bonding the molecular chains of the polymer by chemical bonding. Usually, a method of immersing an ion exchange membrane in a solution containing a crosslinking agent is used. Examples of the crosslinking agent include formaldehyde or dialdehyde compounds such as glyoxal and glutaraldehyde.
  • a method for performing the crosslinking treatment a method in which the above-mentioned crosslinking agent is mixed in advance with the composition containing the polymer P before the heat treatment to produce a film-shaped molded body, and then a heat treatment is performed, and obtained after the heat treatment is performed.
  • a method of performing a crosslinking treatment by immersing the ion exchange membrane in a solution in which a dialdehyde compound is dissolved in water, alcohol or a mixed solvent thereof under acidic conditions. In consideration of process passability, it is preferable to perform the crosslinking treatment by the latter method.
  • a solution having a volume concentration of the crosslinking treatment agent with respect to the solution of 0.001 to 10% by volume is usually used.
  • Membrane resistance of the ion exchange membrane of the present invention is preferably 10 .OMEGA.cm 2 or less, and more preferably 5Omucm 2 or less.
  • Membrane resistance of the ion exchange membrane may be any 0Omucm 2 or more, usually at least about 0.1? Cm 2.
  • the dynamic transport number of the ion exchange membrane is such that the ion exchange membrane is sandwiched in a two-chamber cell having a platinum black electrode plate shown in FIG. 2, and 0.5 mol / L-NaCl solution is filled on both sides of the ion exchange membrane. Went.
  • t d + dynamic transport number
  • F Faraday constant
  • the membrane resistance was determined by sandwiching an ion exchange membrane in a two-chamber cell having a platinum black electrode plate shown in FIG. 3, filling a 0.5 mol / L-NaCl solution on both sides of the membrane, and an AC bridge (frequency 1000 cycles / second). Then, the resistance between the electrodes at 25 ° C. was measured, and the resistance was calculated from the difference between the resistance between the electrodes and the resistance between the electrodes when no ion exchange membrane was installed. The membrane used for the above measurement was previously equilibrated in a 0.5 mol / L-NaCl solution.
  • Synthesis Example 2 Synthesis of thioester monomer-modified polyvinyl acetate (preceding stage of synthesis of side chain mercapto group-containing polyvinyl alcohol) In a reactor equipped with a stirrer, a reflux condenser, an argon inlet, a comonomer addition port and a polymerization initiator addition port, 450 parts by mass of vinyl acetate, and the thioester monomer represented by the above chemical formula (a-11) as a comonomer 0.64 parts by mass and 330 parts by mass of methanol were charged, and the system was purged with argon for 30 minutes while carrying out argon bubbling.
  • a methanol solution (concentration of 4% by mass) of the thioester monomer (a-11) was prepared as a comonomer sequential addition solution (hereinafter referred to as a delay solution), and argon was bubbled for 30 minutes.
  • the temperature of the reactor was increased, and when the internal temperature reached 60 ° C., 0.1 part by mass of 2,2′-azobisisobutyronitrile was added to initiate polymerization. While the polymerization reaction was in progress, the prepared delay solution was dropped into the system so that the monomer composition (molar ratio of vinyl acetate and thioester monomer (a-11)) in the polymerization solution became constant. . After polymerization at 60 ° C.
  • Synthesis Example 3 Synthesis of Side Chain Mercapto Group-Containing Polyvinyl Alcohol (PVA-2) Methanol was added to a methanol solution of polyvinyl acetate into which the thioester monomer (a-11) obtained in Synthesis Example 2 was introduced.
  • Sodium hydroxide methanol solution (concentration 12.8%) was added, and saponification was performed at 40 ° C. (polyvinyl acetate concentration in which thioester monomer (a-11) of saponification solution was introduced, thioester concentration)
  • the molar ratio of sodium hydroxide to vinyl acetate units in the polyvinyl acetate in which the monomer (a-11) was introduced was 0.040).
  • a gelled product was formed about 8 minutes after the addition of the sodium hydroxide methanol solution. This was pulverized by a pulverizer and further allowed to stand at 40 ° C. for 52 minutes to allow saponification to proceed. Methyl acetate was added thereto to neutralize the remaining alkali, and then thoroughly washed with methanol and dried in a vacuum dryer at 40 ° C. for 12 hours to obtain a side chain mercapto group-containing PVA (PVA-2). .
  • chemical shift values obtained by 1 H-NMR measurement are shown below.
  • Formula (I) determined by 1 H-NMR measurement The content of the structural unit represented by (modified amount) was 1.0 mol%. Moreover, the viscosity average degree of polymerization measured according to JIS K6726 was 1000, and the degree of saponification was 97.9 mol%.
  • Synthesis Example 4 Aqueous solution P-1 (Aqueous solution of block copolymer PVA-b-PSS) In a 300 mL four-necked separable flask equipped with a reflux condenser and a stirring blade, 136 g of water, 25.0 g of PVA-1 as a polyvinyl alcohol having a mercapto group at the end and sodium parastyrenesulfonate (purity 90%: Tosoh Corporation) 14.0 g of Organic Chemical Co., Ltd.) was charged and heated to 90 ° C. with stirring to dissolve nitrogen while bubbling.
  • PVA-1 Aqueous solution of block copolymer PVA-b-PSS
  • Synthesis Example 5 Aqueous solution P-2 (Aqueous solution of block copolymer PVA-b-PSS) In a 300 mL four-necked separable flask equipped with a reflux condenser and a stirring blade, 144 g of water and 25.0 g of PVA-1 as polyvinyl alcohol having a mercapto group at the end and sodium parastyrenesulfonate (purity 90%: Tosoh Corporation) (Organic Chemical Co., Ltd.) was charged with 17.2 g, heated to 90 ° C. with stirring, and dissolved while bubbling nitrogen.
  • PVA-1 polyvinyl alcohol having a mercapto group at the end
  • sodium parastyrenesulfonate purity 90%: Tosoh Corporation
  • Synthesis Example 6 Aqueous solution P-3 (aqueous solution of graft copolymer PVA-g-PSS) In a 300 mL four-necked separable flask equipped with a reflux condenser and a stirring blade, 136 g of water, 25.0 g of PVA-2 as a polyvinyl alcohol having a mercapto group in the side chain, and sodium parastyrenesulfonate (purity 90%: 14.0 g of Tosoh Organic Chemical Co., Ltd.) was charged and heated to 90 ° C. with stirring to dissolve nitrogen while bubbling.
  • PVA-2 aqueous solution of graft copolymer PVA-g-PSS
  • Synthesis Example 7 Aqueous solution P-4 (Aqueous solution of blend of PVA and PSS) In a 300 mL four-necked separable flask equipped with a reflux condenser and a stirring blade, 136 g of water, 25.0 g of polyvinyl alcohol (“PVA-117” manufactured by Kuraray Co., Ltd.) and sodium parastyrenesulfonate (purity 90%: 14.0 g of Tosoh Organic Chemical Co., Ltd.) was charged and heated to 90 ° C. with stirring to dissolve nitrogen while bubbling.
  • PVA-117 polyvinyl alcohol
  • sodium parastyrenesulfonate purity 90%: 14.0 g of Tosoh Organic Chemical Co., Ltd.
  • Synthesis Example 8 Aqueous solution P-5 (Aqueous solution of block copolymer PVA-b-AMPS) In a 500 mL four-necked separable flask equipped with a reflux condenser and a stirring blade, 136 g of water, 25.0 g of polyvinyl alcohol (PVA-1) containing a terminal mercapto group and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) ) was charged to 90 ° C. with stirring and dissolved while bubbling nitrogen.
  • PVA-1 polyvinyl alcohol
  • AMPS 2-acrylamido-2-methylpropanesulfonic acid
  • Example 1 After adding 3.61 g of 47% sulfuric acid to 100 g of the aqueous solution P-1 obtained in Synthesis Example 4, it was applied on a PET film with a gap of 850 ⁇ m using an applicator bar.
  • a vinylon nonwoven fabric BNF No. 2 (made by Kuraray Co., Ltd.) was bonded and dried at 80 ° C. for 30 minutes using a hot air dryer. Thereafter, the PET film was peeled off, and heat treatment was performed at 150 ° C. for 30 minutes with a high-temperature heat treatment machine to obtain an ion exchange membrane Q-1.
  • Example 2 An ion exchange membrane Q-2 was obtained in the same manner as in Example 1 except that the amount of sulfuric acid added was changed to 2.59 g.
  • Example 3 An ion exchange membrane Q-3 was obtained in the same manner as in Example 1 except that the amount of sulfuric acid added was changed to 1.57 g.
  • Example 4 An ion exchange membrane Q-4 was obtained in the same manner as in Example 1 except that the amount of sulfuric acid to be added was changed to 1.02 g.
  • Example 5 An ion exchange membrane Q-5 was obtained in the same manner as in Example 1 except that the heat treatment condition in the high temperature heat treatment machine was changed to 130 ° C. for 30 minutes.
  • Example 6 The same procedure as in Example 1 was performed except that the aqueous solution P-2 obtained in Synthesis Example 5 was used instead of the aqueous solution P-1, and the amount of sulfuric acid to be added was changed to 1.57 g. Got.
  • Example 7 The same procedure as in Example 1 was performed except that the aqueous solution P-3 obtained in Synthesis Example 6 was used in place of the aqueous solution P-1, and the amount of sulfuric acid added was changed to 1.57 g. Got.
  • Example 8 An ion exchange membrane Q-8 was obtained in the same manner as in Example 1 except that the aqueous solution P-4 obtained in Synthesis Example 7 was used instead of the aqueous solution P-1.
  • Example 9 An ion exchange membrane Q-9 was obtained in the same manner as in Example 1 except that the aqueous solution P-5 obtained in Synthesis Example 8 was used instead of the aqueous solution P-1, and sulfuric acid was not added.
  • Example 10 An ion exchange membrane Q-10 was obtained in the same manner as in Example 1 except that the aqueous solution P-6 obtained in Synthesis Example 9 was used instead of the aqueous solution P-1.
  • Example 11 The same procedure as in Example 1 was performed except that the aqueous solution P-6 obtained in Synthesis Example 9 was used in place of the aqueous solution P-1, and the amount of sulfuric acid to be added was changed to 2.59 g. Got.
  • Example 12 The same procedure as in Example 1 was performed except that the aqueous solution P-6 obtained in Synthesis Example 9 was used instead of the aqueous solution P-1, and the amount of sulfuric acid added was changed to 1.57 g. Got.
  • Example 13 An ion exchange membrane Q-13 was prepared in the same manner as in Example 1 except that the aqueous solution P-6 obtained in Synthesis Example 9 was used in place of the aqueous solution P-1, and the amount of sulfuric acid added was changed to 1.02 g. Got.
  • Comparative Example 1 An ion exchange membrane Q-14 was obtained in the same manner as in Example 1 except that the heat treatment conditions in the high-temperature heat treatment machine were changed to 110 ° C. for 30 minutes.
  • Comparative Example 2 An ion exchange membrane Q-15 was obtained in the same manner as in Example 1 except that no sulfuric acid was added and no heat treatment was performed in a high-temperature heat treatment machine.
  • Comparative Example 3 The same procedure as in Example 1 was performed except that the aqueous solution P-6 obtained in Synthesis Example 9 was used in place of the aqueous solution P-1, no sulfuric acid was added, and no heat treatment was performed using a high-temperature heat treatment machine. Exchange membrane Q-16 was obtained.
  • Table 1 shows that an ion exchange membrane having a parameter A in the range of 30 or higher has high water resistance, low membrane resistance, and high dynamic transport number, so that the performance as an ion exchange membrane is also high (Examples). 1-13).
  • the ion exchange membrane of Comparative Example 1 in which the parameter A is not in the range of 30 or more has a low membrane resistance, but does not have a sufficient dynamic transport number, and does not have sufficient performance as an ion exchange membrane.
  • the ion exchange membranes of Comparative Examples 2 and 3 whose parameter A is not in the range of 30 or more have low water resistance, and are eluted when measuring membrane resistance or dynamic transport number, and these can be measured. There wasn't.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

 本発明は、実用的な寸法安定性及び電気透析性能を有するビニルアルコール系イオン交換膜、ならびにその製造方法を提供する。本発明は、イオン交換膜の赤外吸収スペクトルにおける1690cm-1の吸収波長の吸光度をXとし、1720cm-1の吸収波長の吸光度をYとし、吸収波長1690cm-1と1720cm-1との間の領域に対する積分値をZとし、イオン交換膜の厚みをTcmとしたとき、式(A):で示される関係を満足する、イオン交換膜に関する。

Description

イオン交換膜
 本発明は、実用的な寸法安定性及び電気透析性能を有するイオン交換膜及び該イオン交換膜の製造方法に関する。
 イオン交換膜は、電気透析法、拡散透析法などに使用するイオン分離膜として、多種多様な用途、例えば海水の濃縮、飲料水用の地下鹹水の脱塩や硝酸性窒素の除去、食品製造工程における塩分除去や医薬品の有効成分の濃縮などの用途に使用されている。これらの用途に使用される主なイオン交換膜は、スチレン-ジビニルベンゼン系のイオン交換膜や、フルオロカーボン系のイオン交換膜である。
 スチレン-ジビニルベンゼン系のイオン交換膜は、スチレン-ジビニルベンゼン系共重合体に対して、スルホン酸基等のアニオン性基や4級アンモニウム基等のカチオン性基を後変性により導入することによって製造することが知られている(特許文献1及び2)。しかしながら、スチレン-ジビニルベンゼン系重合体のイオン交換膜は、重合体の加工性が乏しいため、重合時に支持体を用いて形態を付与しておく必要性がある。また、後変性処理が必要であるため製造コストが増加するという問題点を抱えている。
 フルオロカーボン系のイオン交換膜は、パーフルオロ骨格の側鎖にスルホン酸基が結合したパーフルオロアルキルスルホン酸型高分子を用いて製造することが知られている(特許文献3)。しかしながら、フルオロカーボン系のイオン交換膜は、高分子の製造工程が複雑でコストの大幅低減が困難なフッ化炭素系材料を使用するという問題点を抱えている。
 そこで最近、イオン交換能や選択透過能に優れ、耐有機汚染性に優れると共に加工性が高く、コスト抑制が可能なポリビニルアルコール系共重合体を用いるイオン交換膜が報告され、注目されている(特許文献4及び5)。しかしながら、前記ポリビニルアルコール系共重合体を用いるイオン交換膜は、親水性のポリビニルアルコールを基材に用いることから、通常、グルタルアルデヒドのような二官能性の水酸基架橋剤やホルムアルデヒドのような水酸基変性剤による不溶化処理が不可欠である。また、不溶化処理後も含水率が高く寸法安定性に乏しい場合があり、さらなる改善が求められている。
特開2008-266443号公報 特開2008-285665号公報 特開2005-78895号公報 特許第4776683号公報 国際公開第2010/110333号パンフレット
 本発明は、実用的な寸法安定性及び電気透析性能を有するビニルアルコール系イオン交換膜を提供することを課題とする。
 本発明者らは、上記課題を解決するために種々のイオン交換膜について詳細に検討を重ね、本発明を完成させるに至った。
 すなわち、本発明は、以下の好適な態様を包含する。
〔1〕イオン交換膜の赤外吸収スペクトルにおける1690cm-1の吸収波長の吸光度をXとし、1720cm-1の吸収波長の吸光度をYとし、吸収波長1690cm-1と1720cm-1との間の領域に対する積分値をZとし、イオン交換膜の厚みをTcmとしたとき、式(A):
Figure JPOXMLDOC01-appb-M000004
で示される関係を満足する、イオン交換膜。
〔2〕ポリビニルアルコール系重合体又は該重合体を含む組成物を含む、前記〔1〕に記載のイオン交換膜。
〔3〕ポリビニルアルコール系重合体又は該重合体を含む組成物はイオン性基を含む、前記〔2〕に記載のイオン交換膜。
〔4〕イオン性基はアニオン性基である、前記〔3〕に記載のイオン交換膜。
〔5〕イオン性基はカチオン性基である、前記〔3〕に記載のイオン交換膜。
〔6〕ポリビニルアルコール系重合体又は該重合体を含む組成物を熱処理することを含む、前記〔1〕~〔5〕のいずれかに記載のイオン交換膜の製造方法。
〔7〕前記重合体が、下記一般式(1):
Figure JPOXMLDOC01-appb-C000005
[式中、0.5000≦o/(n+o)≦0.9999であり、0.01≦m/(m+n+o)≦0.50である。Mはアニオン性基又はカチオン性基を有する単量体M’に由来する構成単位である。]
で示されるブロック共重合体(BP)である、前記〔6〕に記載の製造方法。
〔8〕前記重合体が、下記一般式(2):
Figure JPOXMLDOC01-appb-C000006
[式中、0.5000≦o/(n+o)≦0.9999であり、0.001≦q/(n+o+q)≦0.05であり、0.01≦q/(q+n+o)≦0.50である。Rは、水素原子又はカルボキシル基である。Rは、水素原子、メチル基、カルボキシル基又はカルボキシメチル基である。Lは、窒素原子及び/又は酸素原子を含んでいてもよい炭素数1~20の2価の脂肪族炭化水素基である。Rがカルボキシル基の場合やRがカルボキシル基又はカルボキシメチル基の場合は、R及びRはそれぞれ隣接する水酸基と環を形成していてもよい。Mはアニオン性基又はカチオン性基を有する単量体M’に由来する構成単位である。]
で示されるグラフト共重合体(GP)である、前記〔6〕に記載の製造方法。
 上記式(A)で示される関係を満足する本発明のイオン交換膜は、実用的な寸法安定性及び電気透析性能を有する。
本発明のイオン交換膜における式(A)を説明するための図である。 本発明のイオン交換膜の動的輸率の測定に用いる装置の断面図である。 本発明のイオン交換膜の膜抵抗の測定に用いる装置の断面図である。
 本発明のイオン交換膜は、赤外吸収スペクトルにおける1690cm-1の吸収波長の吸光度をXとし、1720cm-1の吸収波長の吸光度をYとし、吸収波長1690cm-1と1720cm-1との間の領域に対する積分値(吸光度の積分値)をZとし、イオン交換膜の厚みをTcmとしたとき、式(A):
Figure JPOXMLDOC01-appb-M000007
で示される関係を満足する。
 本発明のイオン交換膜の赤外吸収スペクトルから、上記{Z-(X+Y)×30/2}/Tの式により算出される値(以下において、「パラメータA」とも称する)は、30以上であり、好ましくは50以上である。パラメータAが上記の下限以上であると、耐水性と電気透析性能が高いため好ましい。該パラメータAの上限は特に限定されないが、例えば1000以下であり、好ましくは800以下である。
 前記パラメータAは、赤外吸収スペクトルにおける1690cm-1の吸収波長と1720cm-1の吸収波長との間の吸収曲線の凸部の面積に相当するパラメータである。具体的には、例えば図1に示される赤外吸収スペクトルにおいては、吸収波長1690cm-1と1720cm-1との間の領域に対する積分値(吸光度の積分値)Zから該領域に含まれる台形部分を差し引いた斜線部の面積がパラメータAに相当する。パラメータAは、イオン交換膜中にケトン基が多くなるにつれて高くなると考えられる。イオン交換膜中にケトン基が少なすぎる場合には、イオン交換膜の耐水性が不十分であり、好ましくない。そのため、上記式(A)で示される関係を満足するイオン交換膜が好ましい。また、イオン交換膜中にケトン基が多すぎる場合には、イオン交換膜の強度が低下する場合がある。
 パラメータAの値は、例えば後述する熱処理を行う方法、熱処理における加熱処理温度を高める方法、熱処理における加熱処理時間を長くする方法、pHを調節する方法などにより高くすることができる。これらの方法により、パラメータAの値を上記範囲に調整することができる。
 本発明のイオン交換膜は、上記式(A)で示される関係を満足するイオン交換膜である限り特に限定されないが、好ましくは、イオン性基を有する重合体を含むイオン交換膜である。イオン性基は、アニオン性基又はカチオン性基である。イオン交換膜が、アニオン性基を有する重合体を含む場合、該イオン交換膜をカチオン交換膜として使用することができる。該イオン交換膜がカチオン性基を有する重合体を含む場合、該イオン交換膜をアニオン交換膜として使用することができる。
 本発明のイオン交換膜がイオン性基を有する重合体を含む場合、イオン性基の量は、イオン交換膜に含まれる全重合体の構成単位の合計を100モル%として、好ましくは1~50モル%、より好ましくは3~30モル%、さらに好ましくは5~25モル%である。イオン性基の量が上記の上限以下であると、イオン交換膜の膨潤を抑制しやすいため好ましい。イオン性基の量が上記の下限以上であると、イオン伝導性が高まることによりイオン交換性能を高めやすいため好ましい。
 アニオン性基としては、例えばスルホン酸基、リン酸基、カルボン酸基、ボロン酸基、スルホニルイミド基等が挙げられる。カウンターのカチオンとしては特に限定されないが、アルカリ金属イオン、H、4級アンモニウムイオン等の1価のカチオンが好ましい。
 カチオン性基としては、例えば、無置換アミノ基、N-アルキルアミノ基、N-ジアルキルアミノ基等のアミノ基、ピリジル基、イミダゾリル基等の含窒素複素環や、N-トリアルキルアンモニウム基、N-アルキルピリジニウム基、N-アルキルイミダゾリウム基、チオウロニウム基、イソチオウロニウム基等の四級アンモニウム基が挙げられる。四級アンモニウム基のカウンターのアニオンとしては特に限定されないが、PF 、SbF 、AsF 等の5B族元素のハロゲン化アニオン、BF 等の3B族元素のハロゲン化アニオン、I(I )、Br、Cl等のハロゲンアニオン、ClO 等のハロゲン酸アニオン、AlCl 、FeCl 、SnCl 等の金属ハロゲン化物アニオン、NO で示される硝酸アニオン、p-トルエンスルホン酸アニオン、ナフタレンスルホン酸アニオン、CHSO 、CFSO 等の有機スルホン酸アニオン、CFCOO、CCOO等のカルボン酸アニオン、OH等の1価のアニオンが好ましい。
 本発明のイオン交換膜は、上記式(A)で示される関係を満足するイオン交換膜である限り特に限定されないが、好ましくはポリビニルアルコール系重合体、例えばポリビニルアルコール単位を有する重合体を含むイオン交換膜である。
 本発明のイオン交換膜がポリビニルアルコール系重合体、例えばポリビニルアルコール単位を有する重合体を含む場合、ポリビニルアルコール単位の量は、イオン交換膜に含まれる全重合体の構成単位の合計を100モル%として、好ましくは1~90モル%、より好ましくは5~80モル%、さらに好ましくは10~60モル%である。ポリビニルアルコール単位の量が上記の上限以下であると、イオン交換膜の膨潤を抑制しやすいため好ましい。ポリビニルアルコール単位の量が上記の下限以上であると、イオン伝導性が高まることによりイオン交換性能を高めやすいため好ましい。ここで、ポリビニルアルコール単位を有する重合体は、前記イオン性基を有する重合体とは別の重合体であってもよいし、前記イオン性基を有する重合体と同一の重合体であってもよい。ここで、ポリビニルアルコール単位を有する重合体と前記イオン性基を有する重合体とが同一の重合体であるとは、本発明のイオン交換膜がイオン性基及びポリビニルアルコール単位を有する重合体を含むことを表す。
 ポリビニルアルコール単位としては、例えばポリビニルアルコール系単独重合体やポリビニルアルコール系共重合体に由来するポリビニルアルコール単位が挙げられる。ポリビニルアルコール系共重合体は、ブロック共重合体又はグラフト共重合体であることが好ましい。
 本発明のイオン交換膜は、1種類の重合体を含んでいてもよいし、2種以上の重合体を組み合わせて含んでいてもよい。本発明の好ましい一態様において、本発明のイオン交換膜は、イオン性基を有する重合体及びポリビニルアルコール単位を有する重合体を含むか、又は、イオン性基及びポリビニルアルコール単位を有する重合体を含む。イオン交換膜に含まれる重合体に架橋結合が導入されていてもよい。
 本発明のイオン交換膜は、補強材を備える態様で使用してもよい。補強材としては、例えば多孔膜、メッシュ又は不織布からなる、連続した支持体が挙げられる。前記不織布は、ポリビニルアルコール系短繊維の湿式不織布であってもよい。
〔イオン交換膜の製造〕
 本発明のイオン交換膜は、例えばポリビニルアルコール系重合体P(以下、単に重合体Pと称することもある)又は該重合体を含む組成物を熱処理することにより製造することができる。本発明は、ポリビニルアルコール単位を有する重合体Pを含む組成物を熱処理することを含むイオン交換膜の製造方法にも関する。
 ポリビニルアルコール系重合体P又は該重合体を含む組成物としては、例えば、ポリビニルアルコール単位を有する重合体P1及びイオン性基を有する重合体P2を含む重合体組成物、ポリビニルアルコール単位及びイオン性基を有する重合体P3、及びこれらを含む組成物等が挙げられる。
 本発明のイオン交換膜を製造するために用いるポリビニルアルコール単位を有する重合体P1としては、例えばポリビニルアルコール単独重合体が挙げられる。
 ポリビニルアルコール単位を有する重合体P1としては、好ましくは、下記一般式(P1):
Figure JPOXMLDOC01-appb-C000008
[式中、0.5000≦o/(n+o)≦0.9999である。]
で示される重合体が挙げられる。
 本発明のイオン交換膜を製造するために用いるイオン性基を有する重合体P2としては、例えばアニオン性基又はカチオン性基と少なくとも1つのエチレン性不飽和単量体とから構成される単量体の単独重合体が挙げられる。
 イオン性基を有する重合体P2としては、好ましくは、下記一般式(P2):
Figure JPOXMLDOC01-appb-C000009
[Mはアニオン性基又はカチオン性基を有する単量体M’に由来する構成単位である。]
で示される重合体が挙げられる。
 本発明のイオン交換膜を製造するために用いるポリビニルアルコール単位及びイオン性基を有する重合体P3としては、例えばポリビニルアルコール系共重合体が挙げられる。ポリビニルアルコール系共重合体としてはブロック共重合体及びグラフト共重合体が挙げられる。
 ポリビニルアルコール単位及びイオン性基を有する重合体P3としては、好ましくは、下記一般式(1):
Figure JPOXMLDOC01-appb-C000010
[式中、0.5000≦o/(n+o)≦0.9999であり、0.01≦m/(m+n+o)≦0.50である。Mはアニオン性基又はカチオン性基を有する単量体M’に由来する構成単位である。]
で示されるブロック共重合体(BP)、又は、下記一般式(2):
Figure JPOXMLDOC01-appb-C000011
[式中、0.5000≦o/(n+o)≦0.9999であり、0.001≦q/(n+o+q)≦0.05であり、0.01≦q/(q+n+o)≦0.50である。Rは、水素原子又はカルボキシル基である。Rは、水素原子、メチル基、カルボキシル基又はカルボキシメチル基である。Lは、窒素原子及び/又は酸素原子を含んでいてもよい炭素数1~20の2価の脂肪族炭化水素基である。Rがカルボキシル基の場合もしくはRがカルボキシル基又はカルボキシメチル基の場合、R及びRはそれぞれ隣接する水酸基(すなわち、隣接する構成単位に含まれる水酸基)と環(環状構造)を形成していてもよい。Mはアニオン性基又はカチオン性基を有する単量体M’に由来する構成単位である。]
で示されるグラフト共重合体(GP)が挙げられる。
 前記一般式(P1)、(P2)、(1)及び(2)中の記号について説明する。
 前記一般式(P1)におけるo/(n+o)は、ポリビニルアルコール単位を有する重合体P1に含まれるビニルアルコール単位の比率を示す。o/(n+o)の下限は、好ましくは0.5000以上であり、より好ましくは0.7000以上であり、さらに好ましくは0.8000以上である。また、o/(n+o)の上限は、好ましくは0.9999以下であり、より好ましくは0.999以下であり、さらに好ましくは0.995以下である。o/(n+o)が上記の範囲内であることが製造しやすさの観点から好ましい。
 前記一般式(P2)におけるMは、アニオン性基又はカチオン性基を有する単量体(以下において「単量体M’」とも称する)に由来する構成単位である。
 単量体M’としては、少なくとも1つのアニオン性基又はカチオン性基と少なくとも1つのエチレン性不飽和単量体とから構成される単量体が挙げられる。単量体M’におけるアニオン性基及びカチオン性基としては、共重合体について上記に記載したアニオン性基及びカチオン性基が挙げられる。
 単量体M’におけるエチレン性不飽和単量体としては、例えばエチレン、プロピレン、n-ブテン、イソブチレン等のα-オレフィン類;スチレン、α-メチルスチレン等のスチレン類;アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル等のアクリル酸又はそのエステル類;メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル等のメタクリル酸又はそのエステル類;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド等のアクリルアミド類;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロピルジメチルアミン等のメタクリルアミド類;メチルビニルエーテル、エチルビニルエーテル、n―プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル、2,3-ジアセトキシ-1-ビニルオキシプロパン等のビニルエーテル類;酢酸アリル、2,3-ジアセトキシ-1-アリルオキシプロパン、塩化アリル等のアリル化合物;マレイン酸、イタコン酸、フマル酸等の不飽和ジカルボン酸又はそのエステル類等が挙げられる。
 アニオン性基とエチレン性不飽和単量体とから構成される単量体Mの例としては、例えば、次の一般式(3)~(9)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
[式中、Rは水素原子又はアルカリ金属原子である。]
Figure JPOXMLDOC01-appb-C000013
[式中、Rは前記と同義である。]
Figure JPOXMLDOC01-appb-C000014
[式中、Rは前記と同義である。]
Figure JPOXMLDOC01-appb-C000015
[式中、Rは前記と同義である。]
Figure JPOXMLDOC01-appb-C000016
[式中、Rは前記と同義である。]
Figure JPOXMLDOC01-appb-C000017
[式中、Rは前記と同義であり、Rは水素原子又はメチル基である。]
Figure JPOXMLDOC01-appb-C000018
[式中、RとRは前記と同義である。]
 カチオン性基とエチレン性不飽和単量体とから構成される単量体Mの例としては、例えば、次の一般式(10)~(19)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000019
[式中、Xは、PF 、SbF 、AsF 等の5B族元素のハロゲン化アニオン、BF 等の3B族元素のハロゲン化アニオン、I(I )、Br、Cl等のハロゲンアニオン、ClO 等のハロゲン酸アニオン、AlCl 、FeCl 、SnCl 等の金属ハロゲン化物アニオン、NO で示される硝酸アニオン、p-トルエンスルホン酸アニオン、ナフタレンスルホン酸アニオン、CHSO 、CFSO 等の有機スルホン酸アニオン、CFCOO、CCOO等のカルボン酸アニオン、OH等の1価のアニオンであり、Rは前記と同義である。]
Figure JPOXMLDOC01-appb-C000020
[式中、Xは前記と同義である。]
Figure JPOXMLDOC01-appb-C000021
[式中、Xは前記と同義である。]
Figure JPOXMLDOC01-appb-C000022
[式中、Xは前記と同義である。]
Figure JPOXMLDOC01-appb-C000023
[式中、Xは前記と同義である。]
Figure JPOXMLDOC01-appb-C000024
[式中、Rは前記と同義であり、相互に同一であっても異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000025
[式中、Rは前記と同義である。]
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 前記一般式(1)におけるo/(n+o)は、ビニルアルコール単位と酢酸ビニル単位の合計に対する、ビニルアルコール単位の比率を示す。o/(n+o)の下限は、好ましくは0.5000以上であり、より好ましくは0.7000以上であり、さらに好ましくは0.8000以上である。また、o/(n+o)の上限は、好ましくは0.9999以下であり、より好ましくは0.999以下であり、さらに好ましくは0.995以下である。o/(n+o)が上記の範囲内であることが製造しやすさの観点から好ましい。
 前記一般式(1)におけるm/(m+n+o)は、共重合体中のアニオン性基又はカチオン性基を有する重合体成分の比率を示す。m/(m+n+o)の下限は、好ましくは0.01以上であり、より好ましくは0.03以上であり、さらに好ましくは0.05以上である。m/(m+n+o)の上限は、好ましくは0.50以下であり、より好ましくは0.30以下であり、さらに好ましくは0.25以下である。
 前記一般式(1)におけるMは、一般式(P2)について記載したMと同義である。
 前記一般式(2)におけるo/(n+o)は、共重合体中のビニルアルコール系重合体成分に含まれるビニルアルコール単位の比率を示す。o/(n+o)の下限は、好ましくは0.5000以上であり、より好ましくは0.7000以上であり、さらに好ましくは0.8000以上である。o/(n+o)の上限は、好ましくは0.9999以下であり、より好ましくは0.999以下であり、さらに好ましくは0.995以下である。o/(n+o)が上記の範囲内であることが製造しやすさの観点から好ましい。
 前記一般式(2)におけるq/(n+o+q)は、グラフト共重合体(GP)に含まれる枝分かれユニットのモル分率を示す。q/(n+o+q)の下限は、好ましくは0.001以上であり、より好ましくは0.002以上であり、さらに好ましくは0.003以上である。q/(n+o+q)の上限は、好ましくは0.05以下であり、より好ましくは0.02以下であり、さらに好ましくは0.01以下である。q/(n+o+q)が上記の範囲内であることが共重合反応を制御しやすい観点から好ましい。
 前記一般式(2)におけるq/(q+n+o)は、共重合体中のビニルアルコール系重合体成分及びアニオン性基又はカチオン性基を有する重合体成分に含まれるアニオン性基又はカチオン性基を有する重合体成分の比率を示す。q/(q+n+o)の下限は、好ましくは0.01以上であり、より好ましくは0.03以上であり、さらに好ましくは0.05以上である。q/(q+n+o)の上限は、好ましくは0.50以下であり、より好ましくは0.30以下であり、さらに好ましくは0.25以下である。q/(q+n+o)が上記の上限以下であると、イオン交換膜の膨潤を良好に抑制できるため好ましく、上記の下限以上であると、イオン伝導性が良好であり、イオン交換性能を高めやすいため好ましい。
 前記一般式(2)におけるMは、一般式(P2)について記載したMと同義である。
 前記一般式(2)におけるLは、窒素原子及び/又は酸素原子を含んでいてもよい炭素数1~20の2価の脂肪族炭化水素基である。Lが含む窒素原子及び/又は酸素原子の数は特に限定されない。前記脂肪族炭化水素基は、直鎖状、分岐状、環状のいずれであってもよく、好ましくは直鎖又は分岐状である。前記脂肪族炭化水素基が分岐状であると、脂肪族炭化水素基の主鎖(硫黄原子と窒素原子との間で原子が連続する鎖)から分岐した部位の炭素数は、1~5であることが好ましい。Lが窒素原子及び/又は酸素原子を含む場合の例としては、例えば、前記脂肪族炭化水素基が、窒素原子及び/又は酸素原子を、前記脂肪族炭化水素基に挿入された、カルボニル結合(-CO-)、エーテル結合(-O-)、アミノ結合〔-NR-(Rは水素原子又はNと結合する炭素を含む基)〕、アミド結合(-CONH-)等として含む場合や、前記脂肪族炭化水素基が、窒素原子及び/又は酸素原子を、前記脂肪族炭化水素基を置換する、カルボキシル基(-COOH)、水酸基(-OH)等として含む場合がある。原料入手性、合成上の容易さから、Lは、合計炭素数が1~20の、カルボキシル基を有していてもよい直鎖状又は分岐状のアルキレン基であることが好ましく、合計炭素数が2~15の、カルボキシル基を有していてもよい直鎖状又は分岐状のアルキレン基であることがより好ましく、合計炭素数が2~10の、カルボキシル基を有していてもよい直鎖状又は分岐状のアルキレン基であることがさらに好ましい。
 一般式(2)におけるRは、水素原子又はカルボキシル基であり、Rは、水素原子、メチル基、カルボキシル基又はカルボキシメチル基である。R及びRは、それぞれ互いに独立して選択される。
 一般式(P1)、(P2)、(1)及び(2)における、n、n、n、o、o、o、m、m、m及びqは、各繰返し単位の数を表し、それぞれ互いに独立して、好ましくは1~10000、より好ましくは5~9000、さらに好ましくは10~8000であり得る。前記一般式(P1)、(P2)、(1)及び(2)は、括弧内の繰り返し単位が表示されたとおりに配置されていることを意味するのではなく、単に各繰り返し単位が存在することを表している。繰返し単位は、通常は互いにランダムに配置されているが、同一の繰返し単位が連続して配置されてもよい。
 本発明のイオン交換膜を製造するために用い得るポリビニルアルコール単位を有する重合体P1及びイオン性基を有する重合体P2を含む組成物は、例えば、重合性単量体を用いて、アニオン重合、ラジカル重合、カチオン重合、配位重合などを行うことによって製造することができる。また、重合体が共重合体である場合は、重合性単量体と共に他の重合性単量体を用いて共重合を行って製造することができる。
 本発明のイオン交換膜を製造するために用い得るポリビニルアルコール単位及びイオン性基を有する重合体P3は、例えば、
 (Ia)ビニルアルコール系重合体を製造した後、該ビニルアルコール系重合体にイオン性基を結合させる方法、又は
 (Ib)ビニルアルコール系重合体と、イオン性基を有する少なくとも1つの単量体とを重合させる方法
により製造することができる。
 (Ia)の方法としては、ビニルアルコール系重合体の存在下、1つ以上の水酸基変性剤(例えばブチルアルデヒドスルホン酸又はそのアルカリ金属塩、ベンズアルデヒドスルホン酸又はそのアルカリ金属塩、カチオン性アンモニウムアルデヒドなど)を反応させて、ビニルアルコール系重合体にイオン性基を導入し共重合体を製造することが、工業的な容易さから好ましい。(Ib)の方法としては、メルカプト基を含有するビニルアルコール系重合体の存在下、イオン性基を含有する少なくとも1つの単量体をラジカル重合させることにより共重合体を製造することが、工業的な容易さから好ましい。各成分の種類や量を容易に制御できることから、(Ib)の方法がより好ましい。
 例えば、ブロック共重合体(BP)は、末端メルカプト基含有ビニルアルコール系重合体と、イオン性基有する単量体(M)とを用いて、例えば前記特許文献3や前記特許文献4等に記載された重合方法で製造することができる。
 上述の末端メルカプト基含有ビニルアルコール系重合体におけるビニルアルコール単位の含有率(すなわち、末端メルカプト基含有ビニルアルコール系重合体のけん化度)は特に限定されないが、重合体中の全構成単位を100モル%として、好ましくは50モル%以上であり、より好ましくは70モル%以上であり、さらに好ましくは80モル%以上である。ビニルアルコール単位の含有率の上限は、重合体中の全構成単位を100モル%として、好ましくは99.99モル%以下であり、より好ましくは99.9モル%以下であり、さらに好ましくは99.5モル%以下である。
 上述の末端メルカプト基含有ビニルアルコール系重合体のJIS K6726に準拠して測定した粘度平均重合度は特に限定されず、好ましくは100~5,000であり、より好ましくは200~4,000である。粘度平均重合度が上記の下限以上であることが、誘導される共重合体の機械的強度の観点から好ましい。粘度平均重合度が上記の上限以下であることが、ビニルアルコール系重合体を工業的に製造しやすいため好ましい。
 例えば、グラフト共重合体(GP)は、
一般式(20):
Figure JPOXMLDOC01-appb-C000029
[式中、R、R及びLは前記と同義である。]
で示される構成単位及びビニルアルコール系構成単位から構成される、一般式(21):
Figure JPOXMLDOC01-appb-C000030
[式中、n、o、q、L、R及びRは前記と同義である。]
で示される側鎖メルカプト基含有ビニルアルコール系重合体と、イオン性基を有する単量体(M)とを用いて、例えば前記特許文献3や前記特許文献4等に記載された重合方法で製造することができる。
 一般式(20)で示される構成単位は、該構成単位に変換可能な不飽和単量体より誘導することができ、好ましくは一般式(22):
Figure JPOXMLDOC01-appb-C000031
[式中、R1a及びR1bは、水素原子又はカルボキシル基であり、但しR1a及びR1bの少なくとも一方は水素原子であり、Rはメチル基であるか、Lに含まれる特定の炭素原子と共有結合して環状構造を形成し、R及びLは前記と同義である。]
で示される不飽和二重結合を有するチオエステル系単量体から誘導することができる。
 一般式(22)で示される不飽和二重結合を有するチオエステル系単量体は、公知の方法に準じて製造することができる。
 一般式(22)で示される不飽和二重結合を有するチオエステル系単量体の好ましい具体例としては、例えば、チオ酢酸S-(3-メチル-3-ブテン-1-イル)エステル、チオ酢酸S-17-オクタデセン-1-イルエステル、チオ酢酸S-15-ヘキサデセン-1-イルエステル、チオ酢酸S-14-ペンタデセン-1-イルエステル、チオ酢酸S-13-テトラデセン-1-イルエステル、チオ酢酸S-12-トリデセン-1-イルエステル、チオ酢酸S-11-ドデセン-1-イルエステル、チオ酢酸S-10-ウンデセン-1-イルエステル、チオ酢酸S-9-デセン-1-イルエステル、チオ酢酸S-8-ノネン-1-イルエステル、チオ酢酸S-7-オクテン-1-イルエステル、チオ酢酸S-6-ヘプテン-1-イルエステル、チオ酢酸S-5-ヘキセン-1-イルエステル、チオ酢酸S-4-ペンテン-1-イルエステル、チオ酢酸S-3-ブテン-1-イルエステル、チオ酢酸S-2-プロペン-1-イルエステル、チオ酢酸S-[1-(2-プロペン-1-イル)ヘキシル]エステル、チオ酢酸S-(2,3-ジメチル-3-ブテン-1-イル)エステル、チオ酢酸S-(1-エテニルブチル)エステル、チオ酢酸S-(2-ヒドロキシ-5-ヘキセン-1-イル)エステル、チオ酢酸S-(2-ヒドロキシ-3-ブテン-1-イル)エステル、チオ酢酸S-(1,1-ジメチル-2-プロペン-1-イル)エステル、2-[(アセチルチオ)メチル]-4-ペンテン酸、チオ酢酸S-(2-メチル-2-プロペン-1-イル)エステル等、ならびに下記化学式(a-1)~(a-30)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
 上記化合物群の中でも、原料入手性、合成上の容易さの観点から、チオ酢酸S-7-オクテン-1-イルエステル、化学式(a-6)、(a-7)、(a-9)、(a-10)、(a-11)、(a-12)、(a-14)、(a-15)、(a-16)、(a-17)、(a-19)、(a-20)、(a-21)、(a-22)、(a-24)、(a-25)、(a-26)、(a-27)、(a-29)、(a-30)で示される化合物が好ましい。
 一般式(21)で示される側鎖メルカプト基含有ビニルアルコール系重合体における、一般式(20)で示される構成単位の含有率は特に限定されないが、重合体中の全構成単位を100モル%として、好ましくは0.1~5モル%であり、より好ましくは0.2~2モル%であり、さらに好ましくは0.3~1モル%である。
 一般式(21)で示される側鎖メルカプト基含有ビニルアルコール系重合体は、式(20)で示される構成単位を1種又は2種以上有することができる。2種以上の当該構成単位を有する場合、これら2種以上の構成単位の含有率の合計が上記範囲にあることが好ましい。
 一般式(21)で示される側鎖メルカプト基含有ビニルアルコール系重合体におけるビニルアルコール単位の含有率(すなわち、側鎖メルカプト基含有ビニルアルコール系重合体のけん化度)は特に限定されないが、重合体中の全構成単位を100モル%として、好ましくは50モル%以上であり、より好ましくは70モル%以上、さらに好ましくは80モル%以上である。ビニルアルコール単位の含有率の上限は、重合体中の全構成単位を100モル%として、好ましくは99.99モル%以下であり、より好ましくは99.9モル%以下であり、さらに好ましくは99.5モル%以下である。
 一般式(21)で示される側鎖メルカプト基含有ビニルアルコール系重合体におけるビニルアルコール単位は、加水分解や加アルコール分解等によってビニルエステル単位から誘導することができる。ビニルアルコール単位へと変換されるビニルエステル単位のビニルエステルとしては特に限定されないが、酢酸ビニルが工業的観点から好ましい。
 一般式(21)で示される側鎖メルカプト基含有ビニルアルコール系重合体は、本発明の効果が得られる限り、式(20)で示される構成単位、ビニルアルコール単位及びビニルエステル単位以外の構成単位をさらに有することができる。当該構成単位は、例えば、ビニルエステルと共重合可能でありかつ式(20)で示される構成単位に変換可能な不飽和単量体及びビニルエステルと共重合可能なエチレン性不飽和単量体に由来する構成単位である。エチレン性不飽和単量体は、単量体M’について記載した前記エチレン性不飽和単量体と同義である。
 一般式(21)で示される側鎖メルカプト基含有ビニルアルコール系重合体における式(20)で示される構成単位、ビニルアルコール単位、及びその他の任意の構成単位の配列順序は特に限定されず、ランダム、ブロック、交互等のいずれであってもよい。
 一般式(21)で示される側鎖メルカプト基含有ビニルアルコール系重合体のJIS K6726に準拠して測定した粘度平均重合度は特に限定されず、好ましくは100~5,000であり、より好ましくは200~4,000である。粘度平均重合度が上記の下限以上であることが、誘導される共重合体の機械的強度の観点から好ましい。粘度平均重合度が上記の上限以下であることが、ビニルアルコール系重合体を工業的に製造しやすいため好ましい。
 一般式(21)で示される側鎖メルカプト基含有ビニルアルコール系重合体の製造方法は、目的とする側鎖メルカプト基含有ビニルアルコール系重合体が製造できる限り特に限定されない。例えば、そのような製造方法としては、ビニルエステルと、該ビニルエステルと共重合可能であり、かつ一般式(20)で示される構成単位に変換可能な不飽和単量体とを共重合する共重合工程と、得られた共重合体のビニルエステル単位を加溶媒分解によりビニルアルコール単位に変換し、一方で一般式(20)で示される構成単位に変換可能な不飽和単量体に由来する構成単位を一般式(20)で示される構成単位に変換する変換工程とを含む方法が挙げられる。
 特に、ビニルエステルと一般式(22)で示される不飽和二重結合を有するチオエステル系単量体(以下において「チオエステル系単量体(22)」と称する)とを共重合し、得られた共重合体のビニルエステル単位のエステル結合、及び、チオエステル系単量体(22)由来の構成単位のチオエステル結合を、加水分解又は加アルコール分解して、それぞれビニルアルコール単位及び一般式(20)で示される構成単位に変換する方法が簡便であり好ましく用いられる。
 一般式(21)で示される重合体の上記の好ましい製造方法において、ビニルエステルとチオエステル系単量体(22)との共重合は、ビニルエステルを単独重合する際の公知の方法及び条件を採用して行うことができる。共重合の際、ビニルエステル及びチオエステル系単量体(22)と共重合可能な単量体をさらに共重合させてもよい。当該共重合可能な単量体は、単量体M’について記載した前記エチレン性不飽和単量体と同様である。
 得られた共重合体のビニルエステル単位のエステル結合、及び、チオエステル系単量体(22)由来の構成単位のチオエステル結合は、ほぼ同じ条件で加水分解又は加アルコール分解することができる。したがって、得られた共重合体のビニルエステル単位のエステル結合及びチオエステル系単量体(22)由来の構成単位のチオエステル結合の加水分解又は加アルコール分解を、ビニルエステルの単独重合体をけん化する際の公知の方法及び条件を採用して行うことができる。
 このようにして得たポリビニルアルコール単位を有する重合体Pを含む組成物に所望の形態を付与し、膜状成形体を作製することができる。膜状成形体を作製する際の共重合の形態としては特に限定されないが、加工性の観点から、重合体Pを含む溶液を用いて膜状成形体を作製することが好ましい。溶媒としては特に限定されず、水、メタノール、エタノール、イソプロパノール、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、アセトン、メチルエチルケトン、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルスルフォキシド、メチルエチルスルホキシド、ジエチルスルホキシド等の極性溶媒、又はこれらの混合溶媒が挙げられる。重合体Pの溶解性の観点から、溶媒として水を使用することが好ましい。溶液の濃度は特に限定されないが、上記の溶媒100質量部に対する重合体Pの量が、0.1~50質量部であることが好ましく、5~30質量部であることがより好ましい。
 重合体Pを含む組成物中には、前記重合体P及び溶媒の他に、必要に応じて任意の添加剤を添加してよく、添加順序も任意に選択することができる。添加剤としては、公知の添加剤等の中から適宜選択することができ、例えば、金属微粒子、無機微粒子、無機塩、紫外線吸収剤、酸化防止剤、劣化防止剤、分散剤、界面活性剤、重合禁止剤、増粘剤、導電補助剤、表面改質剤、防腐剤、防カビ剤、抗菌剤、消泡剤、可塑剤等が挙げられる。これらの1種を単独で使用してもよく、2種以上を併用してもよい。
 重合体Pを含む組成物中に、前記重合体P及び溶媒の他に、成形物の強度向上を目的として、適宜ポリビニルアルコールを添加してもよい。該ポリビニルアルコールの粘度平均重合度は特に限定されず、JIS K6726に準拠して測定して、好ましくは500~8,000であり、より好ましくは1,000~7,000である。
 重合体Pを含む組成物のpHは、続く熱処理の効果を高めやすい観点から、3.0未満であることが好ましく、2.0未満であることがより好ましい。重合体Pを含む組成物のpHの調整方法は特に限定されず、例えば、該pHを、硫酸、塩酸、酢酸、塩化アンモニウム等の酸性化合物や水酸化ナトリウム、水酸化カリウム、アンモニア、酢酸ナトリウム等の塩基性化合物を中間体の溶液中に添加して調整してもよいし、アニオン交換樹脂やカチオン交換樹脂等のイオン交換樹脂を用いて調整してもよいし、電気透析法により調整してもよい。
 前記重合体Pに所望の形態を付与し膜状成形体を製造する方法としては、特に限定されないが、例えば重合体Pを含む組成物を加熱することにより当該重合体を可塑化させて成形する溶融成形方法(例えば押出成形法、射出成形法、インフレ成形法、プレス成形法、ブロー成形法)や、溶液を膜状にキャストした後に、乾燥により溶媒を除去することにより、膜状に成形する溶媒キャスト法などが挙げられる。これらの成形方法により、フィルム、シートなどの所望の厚みを有する膜状成形体が得られる。
 溶融成形法を用いる場合、重合体Pを含む組成物に必要に応じて任意の熱可塑性樹脂を添加してもよく、その添加する順序も任意に選択することができる。熱可塑性樹脂としては、特に限定されることなく、一般の熱可塑性樹脂を用いることができる。
 溶媒キャスト法を用いる場合、キャスティングマシーン、フィルムアプリケーター等を用いることができるが、特にそれらに限定されるものではない。ポリエチレンテレフタレートフィルム、ナイロンフィルム、ポリプロピレン等のポリマーフィルム上や、銅箔、アルミ箔等の金属箔上や、ガラス基板、シリコン基板等の無機基板上に、膜状成形体を積層させてもよく、膜状成形体が多層構造を有してもよい。また、膜状成形体を、多孔性フィルム、メッシュ、不織布、多孔性セラミックス、ゼオライト等の多孔性材料に複合化させてもよく、あるいは三次元加工されたポリマー、金属、セラミックス、ガラス等の成形体の表面に形成させてもよい。
 本発明のイオン交換膜の膜厚は、電気透析用電解質膜として必要な性能、機械的強度、ハンドリング性等の観点から、30~1000μm程度であることが好ましく、40~500μmであることがより好ましく、50~300μmであることがさらに好ましい。膜厚が上記の下限以上であることが、得られる膜の機械的強度の観点から好ましい。膜厚が上記の上限以下であることが、膜抵抗を小さくし、イオン交換性を高めやすい観点から好ましい。膜厚は、マイクロメーターにより測定することができる。
 重合体Pを含む組成物に所望の形態を付与する際、重合体Pを含む組成物に無機材ないし有機材又は有機無機ハイブリッド材からなる補強材料を添加することにより、膜状成形体を補強することもできる。補強材料は繊維状物でもよいし、粒子状物質でもよいし、薄片状物質でもよい。また、多孔膜、メッシュ及び不織布などの連続した支持体でもよい。補強材料を添加することにより、最終的に得られるイオン交換膜の力学強度及び寸法安定性をさらに向上させることができる。特に繊維状物又は上述の連続した支持体を補強材料に用いることが、最終的に得られるイオン交換膜の力学強度及び寸法安定性を向上しやすいため、好ましい。また、補強しない層と上記補強層した層とを任意の方法で多層状に積層したものも好ましい。
 補強材料を膜状成形体に加工する際に、補強材料を重合体Pを含む組成物に添加、混合して使用してもよいし、補強材料に重合体Pを含む組成物を含浸させてもよいし、補強材料と製膜後の膜状成形体とを積層させてもよい。
 補強材料は、強度及び工程通過性観点から、多孔膜、メッシュ又は不織布からなる連続した支持体であることが好ましく、不織布であることがより好ましい。不織布としては、短繊維(繊維長:1~30mm)から形成される湿式不織布が好ましい。不織布を形成するポリマー(又は主体繊維の構成ポリマー)としては、特に限定されないが、例えばポリエステル(PET、PTTなど)、ポリビニルアルコールなどが挙げられ、特にポリビニルアルコールが好ましい。特に好ましい不織布シートとしては、ポリビニルアルコール短繊維を主体繊維とする湿式不織布が挙げられる。ここで、湿式不織布は、主体繊維と、主体繊維間を結合する少量のバインダー繊維とを、水中に分散させ、緩やかな撹拌下で、均一なスラリーとし、このスラリーを丸網、長網、傾斜式などのワイヤーのうち少なくとも1つを有する抄紙用の装置を用いてシートを形成して製造することができる。
 補強材料として不織布を用いる本発明の一態様において、ポリビニルアルコール系主体繊維としては、90℃以下の水には溶解せず、ケン化度が99.9モル%以上のものが好ましい。また、アセタール化処理が施されているポリビニルアルコール主体繊維も好ましい。なお、アセタール化度は15~40モル%が好ましく、25~35モル%がより好ましい。ポリビニルアルコール系主体繊維を構成するポリビニルアルコールの重合度は1000~2500であることが好ましい。ポリビニルアルコール系主体繊維の製法は、公知の方法を採用することでき、湿式紡糸法、乾湿式紡糸法、乾式紡糸法のいずれかを採用すればよい。本態様において使用するポリビニルアルコール系主体繊維は、湿式不織布として使用されるため、その繊度は好ましくは0.3~10dtexであり、より好ましくは0.5~5dtexである。
 補強材料として用いる無機材は補強効果のあるものであれば特に限定されず、例えばガラス繊維、炭素繊維、セルロース繊維、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、タルク、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、炭酸カルシウム、ケイ酸カルシウム、ケイ藻土、ケイ砂、鉄フェライト、水酸化アルミニウム、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化ジルコニウム、グラファイト、フラーレン、カーボンナノチューブ、及びカーボンナノホーン等が挙げられる。補強材として用いる有機材も、補強効果のあるものであれば特に限定されず、例えばポリビニルアルコール、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリチオエーテルスルホン、ポリチオエーテルエーテルスルホン、ポリチオエーテルケトン、ポリチオエーテルエーテルケトン、ポリベンゾイミダゾール、ポリベンゾオキサゾール、ポリオキサジアゾール、ポリベンゾオキサジノン、ポリキシリレン、ポリフェニレン、ポリチオフェン、ポリピロール、ポリアニリン、ポリアセン、ポリシアノゲン、ポリナフチリジン、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、ポリイミド、ポリエーテルイミド、ポリエステルイミド、ポリアミドイミド、ポリアミド、芳香族ポリアミド、ポリスチレン、アクリロニトリル-スチレン樹脂、ポリスチレン-水素添加されたポリブタジエン-ポリスチレンブロック共重合体、アクリロニトリル-ブタジエン-スチレン樹脂、ポリエステル、ポリアリレート、液晶ポリエステル、ポリカーボネート、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリ塩化ビニリデン、ビニロン繊維、メタクリル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ウレタン樹脂、セルロース、ポリケトン、ポリアセタール、ポリプロピレン及びポリエチレンなどが挙げられる。有機無機ハイブリッド材もまた補強材として用いることができ、例えば、POSS(Polyhedral Oligomeric  Silsesquioxanes)やシリコーンゴム等のシルセスキオキサン構造やシロキサン構造を有した有機ケイ素高分子化合物などが挙げられる。
 上記のようにして得た重合体Pを含む組成物を熱処理することにより、上記式(A)で示される関係を満足するイオン交換膜を得ることができる。熱処理の方法は、膜状成形体の種類や形態によって適宜選択してよく、一般に公知の方法を用いることができる。熱処理を、例えば熱風乾燥機、ホットプレス、ホットプレート、赤外線ヒーター、ローラーヒーター等を用いて行うことができる。大面積の熱処理を行う場合、面状加熱手段が好ましく、ホットプレス、ホットプレート、赤外線ヒーター、ローラーヒーター等がより好ましい。熱処理の条件としては特に限定されず、大気下、窒素などの不活性ガス雰囲気下又は減圧下で、好ましくは100~250℃、より好ましくは140~200℃の加熱処理温度で、好ましくは5秒~4時間、より好ましくは1分~2時間の加熱時間で熱処理を行ってよい。熱処理を、複数回に分けて行ってもよい。
 ここで、重合体Pを含む組成物を熱処理することにより、水酸基の一部がカルボニル基に変換されるため、このようにして製造したイオン交換膜が上記式(A)で示される関係を満足すると考えられる。
 本発明のイオン交換膜に、必要に応じて架橋処理を施してもよい。架橋処理を施すことにより架橋結合を導入することが、電気透析性能をさらに向上させやすく、イオン交換膜の機械的強度をより高めやすいため好ましい。架橋処理の方法は、重合体の分子鎖同士を化学結合によって結合できる方法であればよく、特に限定されない。通常、架橋処理剤を含む溶液にイオン交換膜を浸漬する方法などが用いられる。該架橋処理剤としては、例えばホルムアルデヒド、或いはグリオキザールやグルタルアルデヒドなどのジアルデヒド化合物が挙げられる。
 架橋処理を施す方法としては、熱処理を行う前の重合体Pを含む組成物に上記架橋剤を予め混合して膜状成形体を製造した後で熱処理を行う方法、及び、熱処理後に得られたイオン交換膜を、酸性条件下で、水、アルコール又はそれらの混合溶媒にジアルデヒド化合物を溶解させた溶液に浸漬させることにより、架橋処理を行う方法が挙げられる。工程通過性を考慮すると、後者の方法で架橋処理を行うことが好ましい。後者の方法で架橋処理を行う場合、通常、溶液に対する架橋処理剤の体積濃度が0.001~10体積%である溶液が用いられる。
 本発明のイオン交換膜の膜抵抗は、電力コストの観点から、10Ωcm以下であることが好ましく、5Ωcm以下であることがより好ましい。該イオン交換膜の膜抵抗は、0Ωcm以上であればよく、通常は0.1Ωcm程度以上である。
 以下、本発明をさらに詳細に説明するため実施例を挙げるが、本発明はこれらの実施例に限定されるものではない。
〔パラメータA〕
 イオン交換膜の赤外吸収スペクトルは、フーリエ変換赤外分光光度計(サーモフィッシャーサイエンティフィック株式会社製「Nicolet iS10」)を用いて、透過法にて測定した。
 得られたスペクトルから、1690cm-1の吸収波長の吸光度(X)、1720cm-1の吸収波長の吸光度(Y)、及び、吸収波長1690cm-1と1720cm-1との間の領域に対する積分値(Z)を求め、次の式に代入することでパラメータAを算出した。なお、Tはイオン交換膜の厚み(cm)であり、マイクロメーターにより測定することができる。
Figure JPOXMLDOC01-appb-M000037
〔動的輸率〕
 イオン交換膜の動的輸率は、図2に示される白金黒電極板を有する2室セル中にイオン交換膜を挟み、イオン交換膜の両側に0.5mol/L-NaCl溶液を満たし電気透析を行った。イオンクロマトグラフィーを用いて、透析前後のイオン量の変化を計算し、次の式に代入することで動的輸率t を算出した。
Figure JPOXMLDOC01-appb-M000038
 t :動的輸率
 Ea:理論当量=I・t/F
 Δm:移動当量
 F:Faraday定数
〔膜抵抗〕
 膜抵抗は、図3に示される白金黒電極板を有する2室セル中にイオン交換膜を挟み、膜の両側に0.5mol/L-NaCl溶液を満たし、交流ブリッジ(周波数1000サイクル/秒)により25℃における電極間の抵抗を測定し、該電極間抵抗とイオン交換膜を設置しない場合の電極間抵抗との差により求めた。上記測定に使用する膜は、あらかじめ0.5mol/L-NaCl溶液中で平衡にしたものを用いた。
合成例1:末端メルカプト基含有ポリビニルアルコール(PVA-1)の合成
 特開昭59-187003号公報に記載された方法(末端にメルカプト基を有するポリビニルアルコール系重合体及びその方法)によって、末端にメルカプト基を有するポリビニルアルコール(PVA-1)を合成した。得られたPVA-1のJIS K6726に準拠して測定した粘度平均重合度は1500、けん化度は99.9モル%であった。
合成例2:チオエステル系単量体変性ポリビニルアセテートの合成(側鎖メルカプト基含有ポリビニルアルコール合成の前段階)
 攪拌機、還流冷却管、アルゴン導入管、コモノマー添加口及び重合開始剤の添加口を備えた反応器に、酢酸ビニル450質量部、コモノマーとして前記化学式(a-11)で示されるチオエステル系単量体、0.64質量部、及びメタノール330質量部を仕込み、アルゴンバブリングをしながら30分間系内をアルゴン置換した。これとは別に、コモノマーの逐次添加溶液(以降ディレー溶液と表記する)としてチオエステル系単量体(a-11)のメタノール溶液(濃度4質量%)を調製し、30分間アルゴンをバブリングした。反応器の昇温を開始し、内温が60℃となったところで、2,2’-アゾビスイソブチロニトリル0.1質量部を添加し重合を開始した。重合反応の進行中は、調製したディレー溶液を系内に滴下することで、重合溶液におけるモノマー組成(酢酸ビニルとチオエステル系単量体(a-11)のモル比率)が一定となるようにした。60℃で210分間重合した後、冷却して重合を停止した。重合停止時の重合率は40%であった。次に、30℃の減圧下でメタノールを追加しながら未反応の酢酸ビニルモノマーを留去し、チオエステル系単量体(a-11)が導入された変性ポリビニルアセテートのメタノール溶液を得た。
合成例3:側鎖メルカプト基含有ポリビニルアルコール(PVA-2)の合成
 合成例2で得たチオエステル系単量体(a-11)が導入されたポリ酢酸ビニルのメタノール溶液にメタノールを加え、さらに水酸化ナトリウムメタノール溶液(濃度12.8%)を添加して、40℃でけん化を行った(けん化溶液のチオエステル系単量体(a-11)が導入されたポリ酢酸ビニル濃度30%、チオエステル系単量体(a-11)が導入されたポリ酢酸ビニル中の酢酸ビニルユニットに対する水酸化ナトリウムのモル比0.040)。水酸化ナトリウムメタノール溶液を添加後約8分でゲル化物が生成したので、これを粉砕機にて粉砕し、さらに40℃で52分間放置してけん化を進行させた。これに酢酸メチルを加えて残存するアルカリを中和した後、メタノールでよく洗浄し、真空乾燥機中40℃で12時間乾燥することにより、側鎖メルカプト基含有PVA(PVA-2)を得た。また、H-NMR測定により得られた化学シフト値を以下に示す。H-NMR測定により求めた式(I):
Figure JPOXMLDOC01-appb-C000039
で表される構成単位の含有量(変性量)は1.0モル%であった。また、JIS K6726に準拠して測定した粘度平均重合度は1000、けん化度は97.9モル%であった。
 H-NMR(270MHz,DO(DSS含有),60℃)
 δ(ppm):1.3-1.9(-CHCH(OH)-)、2.0-2.2(-CHCH(OCOCH)-)、2.5-2.6(CONHCHCHSH)、3.5-4.2(-CHCH(OH)-,-CH(COOH)CH-,CONHCHCHSH)
合成例4:水溶液P-1(ブロック共重合体PVA-b-PSSの水溶液)
 還流冷却管、攪拌翼を備え付けた300mLの四つ口セパラブルフラスコに、水136g、末端にメルカプト基を有するポリビニルアルコールとしてPVA-1を25.0gとパラスチレンスルホン酸ナトリウム(純度90%:東ソー有機化学株式会社製)を14.0g仕込み、攪拌下90℃まで加熱して窒素をバブリングしつつ溶解した。窒素置換後、上記水溶液に2,2'-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-2-プロピオンアミド]の2.0%水溶液11.8mLを1.5時間かけて逐次的に添加して重合を開始させ、進行させた。次いで、系内温度を90℃に4時間維持して重合をさらに進行させた後、冷却し、ポリビニルアルコールとパラスチレンスルホン酸ナトリウムのブロック共重合体PVA-b-PSSの水溶液P-1を作製した。該水溶液のpHは7.0であった。水溶液P-1の一部を乾燥した後、重水に溶解し、500MHzでのH-NMR測定に付した結果、PSS単位の変性量は10モル%であった。
合成例5:水溶液P-2(ブロック共重合体PVA-b-PSSの水溶液)
 還流冷却管、攪拌翼を備え付けた300mLの四つ口セパラブルフラスコに、水144g、末端にメルカプト基を有するポリビニルアルコールとしてPVA-1を25.0gとパラスチレンスルホン酸ナトリウム(純度90%:東ソー有機化学株式会社製)を17.2g仕込み、攪拌下90℃まで加熱して窒素をバブリングしつつ溶解した。窒素置換後、上記水溶液に2,2'-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-2-プロピオンアミド]の2.0%水溶液14.5mLを1.5時間かけて逐次的に添加して重合を開始させ、進行させた。次いで、系内温度を90℃に4時間維持して重合をさらに進行させた後、冷却し、ポリビニルアルコールとパラスチレンスルホン酸ナトリウムのブロック共重合体PVA-b-PSSの水溶液P-2を作製した。該水溶液のpHは7.0であった。水溶液P-10の一部を乾燥した後、重水に溶解し、500MHzでのH-NMR測定に付した結果、PSS単位の変性量は12モル%であった。
合成例6:水溶液P-3(グラフト共重合体PVA-g-PSSの水溶液)
 還流冷却管、攪拌翼を備え付けた300mLの四つ口セパラブルフラスコに、水136g、側鎖にメルカプト基を有するポリビニルアルコールとしてPVA-2を25.0gとパラスチレンスルホン酸ナトリウム(純度90%:東ソー有機化学株式会社製)を14.0g仕込み、攪拌下90℃まで加熱して窒素をバブリングしつつ溶解した。窒素置換後、上記水溶液に2,2'-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-2-プロピオンアミド]の2.0%水溶液11.8mLを1.5時間かけて逐次的に添加して重合を開始させ、進行させた。次いで、系内温度を90℃に4時間維持して重合をさらに進行させた後、冷却し、ポリビニルアルコールとパラスチレンスルホン酸ナトリウムのグラフト共重合体PVA-g-PSSの水溶液P-3を作製した。該水溶液のpHは7.0であった。水溶液P-3の一部を乾燥した後、重水に溶解し、500MHzでのH-NMR測定に付した結果、PSS単位の変性量は10モル%であった。
合成例7:水溶液P-4(PVAとPSSとのブレンドの水溶液)
 還流冷却管、攪拌翼を備え付けた300mLの四つ口セパラブルフラスコに、水136g、ポリビニルアルコール(株式会社クラレ製「PVA-117」)を25.0gとパラスチレンスルホン酸ナトリウム(純度90%:東ソー有機化学株式会社製)を14.0g仕込み、攪拌下90℃まで加熱して窒素をバブリングしつつ溶解した。窒素置換後、上記水溶液に2,2'-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-2-プロピオンアミド]の2.0%水溶液11.8mLを1.5時間かけて逐次的に添加して重合を開始させ、進行させた。次いで、系内温度を90℃に4時間維持して重合をさらに進行させた後、冷却し、ポリビニルアルコールとポリスチレンスルホン酸ナトリウムの混合水溶液P-4を作製した。該水溶液のpHは7.0であった。
合成例8:水溶液P-5(ブロック共重合体PVA-b-AMPSの水溶液)
 還流冷却管、攪拌翼を備え付けた500mLの四つ口セパラブルフラスコに、水136g、末端メルカプト基含有ポリビニルアルコール(PVA-1)を25.0gと2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)を13.1g仕込み、攪拌下90℃まで加熱して窒素をバブリングしつつ溶解した。窒素置換後、上記水溶液に2,2'-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-2-プロピオンアミド]の2.0%水溶液11.9mLを1.5時間かけて逐次的に添加して重合を開始させ、進行させた。次いで、系内温度を90℃に4時間維持して重合をさらに進行させた後、冷却し、ポリビニルアルコールと2-アクリルアミド-2-メチルプロパンスルホン酸のブロック共重合体PVA-b-AMPSの水溶液P-5を作製した。該水溶液のpHは0.9であった。水溶液P-5の一部を乾燥した後、重水に溶解し、500MHzでのH-NMR測定に付した結果、AMPS単位の変性量は10モル%であった。
合成例9:水溶液P-6(ブロック共重合体PVA-b-VBTACの水溶液)
 還流冷却管、攪拌翼を備え付けた500mLの四つ口セパラブルフラスコに、水137g、末端メルカプト基含有ポリビニルアルコール(PVA-1)を25.0gとビニルベンジルトリメチルアンモニウムクロライド(VBTAC)を13.4g仕込み、攪拌下90℃まで加熱して窒素をバブリングしつつ溶解した。窒素置換後、上記水溶液に2,2'-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-2-プロピオンアミド]の2.0%水溶液12.2mLを1.5時間かけて逐次的に添加して重合を開始させ、進行させた。次いで、系内温度を90℃に24時間維持して重合をさらに進行させた後、冷却し、ポリビニルアルコールとビニルベンジルトリメチルアンモニウムクロライドのブロック共重合体PVA-b-VBTACの水溶液P-6を作製した。該水溶液のpHは8.0であった。水溶液P-6の一部を乾燥した後、重水に溶解し、500MHzでのH-NMR測定に付した結果、VBTAC単位の変性量は10モル%であった。
実施例1
合成例4で得た水溶液P-1 100gに対して、47%硫酸を3.61g添加した後、PETフィルム上にアプリケーターバーを用いてギャップ850μmにて塗布した。その上に、ビニロン不織布BNF No.2(株式会社クラレ製)を貼合し、熱風乾燥機を用いて80℃で30分乾燥させた。その後、PETフィルムを剥離して、高温熱処理機にて150℃30分間の条件で熱処理を行い、イオン交換膜Q-1を得た。
実施例2
 添加する硫酸量を2.59gに変更したこと以外は実施例1と同様の操作を行い、イオン交換膜Q-2を得た。
実施例3
 添加する硫酸量を1.57gに変更したこと以外は実施例1と同様の操作を行い、イオン交換膜Q-3を得た。
実施例4
 添加する硫酸量を1.02gに変更したこと以外は実施例1と同様の操作を行い、イオン交換膜Q-4を得た。
実施例5
 高温熱処理機での熱処理条件を130℃30分間に変更したこと以外は実施例1と同様の操作を行い、イオン交換膜Q-5を得た。
実施例6
 水溶液P-1に代えて合成例5で得た水溶液P-2を用い、添加する硫酸量を1.57gに変更したこと以外は実施例1と同様の操作を行い、イオン交換膜Q-6を得た。
実施例7
 水溶液P-1に代えて合成例6で得た水溶液P-3を用い、添加する硫酸量を1.57gに変更したこと以外は実施例1と同様の操作を行い、イオン交換膜Q-7を得た。
実施例8
 水溶液P-1に代えて合成例7で得た水溶液P-4を用いたこと以外は実施例1と同様の操作を行い、イオン交換膜Q-8を得た。
実施例9
 水溶液P-1に代えて合成例8で得た水溶液P-5を用い、硫酸の添加を行わないこと以外は実施例1と同様の操作を行い、イオン交換膜Q-9を得た。
実施例10
 水溶液P-1に代えて合成例9で得た水溶液P-6を用いたこと以外は実施例1と同様の操作を行い、イオン交換膜Q-10を得た。
実施例11
 水溶液P-1に代えて合成例9で得た水溶液P-6を用い、添加する硫酸量を2.59gに変更したこと以外は実施例1と同様の操作を行い、イオン交換膜Q-11を得た。
実施例12
 水溶液P-1に代えて合成例9で得た水溶液P-6を用い、添加する硫酸量を1.57gに変更したこと以外は実施例1と同様の操作を行い、イオン交換膜Q-12を得た。
実施例13
 水溶液P-1に代えて合成例9で得た水溶液P-6を用い、添加する硫酸量を1.02gに変更したこと以外は実施例1と同様の操作を行い、イオン交換膜Q-13を得た。
比較例1
 高温熱処理機での熱処理条件を110℃30分間に変更したこと以外は実施例1と同様の操作を行い、イオン交換膜Q-14を得た。
比較例2
 硫酸の添加を行わず、高温熱処理機での熱処理を行わないこと以外は実施例1と同様の操作を行い、イオン交換膜Q-15を得た。
比較例3
 水溶液P-1に代えて合成例9で得た水溶液P-6を用い、硫酸の添加を行わず、高温熱処理機での熱処理を行わないこと以外は実施例1と同様の操作を行い、イオン交換膜Q-16を得た。
〔評価〕
 得られたイオン交換膜Q-1~16のパラメータA、膜抵抗、動的輸率を測定した。結果を表1に示す。






Figure JPOXMLDOC01-appb-T000040
 表1より、パラメータAが30以上の範囲であるイオン交換膜は、耐水性が高く、低い膜抵抗及び高い動的輸率を有することからイオン交換膜としての性能も高いことが分かる(実施例1~13)。一方、パラメータAが30以上の範囲でない比較例1のイオン交換膜は、低い膜抵抗を有するものの、十分な動的輸率を有するものではなく、イオン交換膜としての十分な性能を有するものではなかった。また、パラメータAが30以上の範囲でない比較例2及び3のイオン交換膜は、耐水性が低く、膜抵抗又は動的輸率を測定する際に溶出してしまい、これらを測定することができなかった。
  A:電源
  B:アンペアメーター
  C:クーロンメーター
  D:ボルトメーター
  E:モーター
  F:スターラー
  G:カソード電極
  H:アノード電極
  I:0.5M NaCl水溶液
  J:イオン交換膜(有効膜面積8.0cm
  K:イオン交換膜(有効膜面積1.0cm
  L:白金電極
  M:NaCl水溶液
  N:水浴
  O:LCRメーター

Claims (8)

  1.  イオン交換膜の赤外吸収スペクトルにおける1690cm-1の吸収波長の吸光度をXとし、1720cm-1の吸収波長の吸光度をYとし、吸収波長1690cm-1と1720cm-1との間の領域に対する積分値をZとし、イオン交換膜の厚みをTcmとしたとき、式(A):
    Figure JPOXMLDOC01-appb-M000001
    で示される関係を満足する、イオン交換膜。
  2.  ポリビニルアルコール系重合体又は該重合体を含む組成物を含む、請求項1に記載のイオン交換膜。
  3.  ポリビニルアルコール系重合体又は該重合体を含む組成物はイオン性基を含む、請求項2に記載のイオン交換膜。
  4.  イオン性基はアニオン性基である、請求項3に記載のイオン交換膜。
  5.  イオン性基はカチオン性基である、請求項3に記載のイオン交換膜。
  6.  ポリビニルアルコール系重合体又は該重合体を含む組成物を熱処理することを含む、請求項1~5のいずれかに記載のイオン交換膜の製造方法。
  7.  前記重合体が、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000002
    [式中、0.5000≦o/(n+o)≦0.9999であり、0.01≦m/(m+n+o)≦0.50である。Mはアニオン性基又はカチオン性基を有する単量体M’に由来する構成単位である。]
    で示されるブロック共重合体(BP)である、請求項6に記載の製造方法。
  8.  前記重合体が、下記一般式(2):
    Figure JPOXMLDOC01-appb-C000003
    [式中、0.5000≦o/(n+o)≦0.9999であり、0.001≦q/(n+o+q)≦0.05であり、0.01≦q/(q+n+o)≦0.50である。Rは、水素原子又はカルボキシル基である。Rは、水素原子、メチル基、カルボキシル基又はカルボキシメチル基である。Lは、窒素原子及び/又は酸素原子を含んでいてもよい炭素数1~20の2価の脂肪族炭化水素基である。Rがカルボキシル基の場合やRがカルボキシル基又はカルボキシメチル基の場合、R及びRはそれぞれ隣接する水酸基と環を形成していてもよい。Mはアニオン性基又はカチオン性基を有する単量体M’に由来する構成単位である。]
    で示されるグラフト共重合体(GP)である、請求項6に記載の製造方法。
PCT/JP2016/054753 2015-02-20 2016-02-18 イオン交換膜 WO2016133170A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017500737A JPWO2016133170A1 (ja) 2015-02-20 2016-02-18 イオン交換膜
CN201680011037.1A CN107428969A (zh) 2015-02-20 2016-02-18 离子交换膜
US15/552,172 US20180044491A1 (en) 2015-02-20 2016-02-18 Ion-exchange membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015032174 2015-02-20
JP2015-032174 2015-02-20

Publications (1)

Publication Number Publication Date
WO2016133170A1 true WO2016133170A1 (ja) 2016-08-25

Family

ID=56689354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054753 WO2016133170A1 (ja) 2015-02-20 2016-02-18 イオン交換膜

Country Status (5)

Country Link
US (1) US20180044491A1 (ja)
JP (1) JPWO2016133170A1 (ja)
CN (1) CN107428969A (ja)
TW (1) TW201636099A (ja)
WO (1) WO2016133170A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115315299A (zh) * 2020-07-13 2022-11-08 日本碍子株式会社 精制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108107677B (zh) * 2017-12-06 2020-12-22 中国乐凯集团有限公司 一种感光树脂组合物及水洗树脂版

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369835A (ja) * 1986-09-12 1988-03-29 Nichibi:Kk アニオン交換繊維及びその製造方法
JP2005243493A (ja) * 2004-02-27 2005-09-08 Toyobo Co Ltd イオン交換膜
JP2008188518A (ja) * 2007-02-02 2008-08-21 Yamaguchi Univ イオンバリヤー膜および該イオンバリヤー膜を使用した分離装置
JP2014229440A (ja) * 2013-05-21 2014-12-08 国立大学法人東京工業大学 固体高分子電解質の製造方法、固体高分子電解質、イオン伝導体、及び、膜電極接合体
WO2015030084A1 (ja) * 2013-08-30 2015-03-05 株式会社クラレ 新規なビニルアルコール系共重合体、その製造方法およびイオン交換膜
JP2015110735A (ja) * 2013-10-30 2015-06-18 日本合成化学工業株式会社 アセトアセチル基含有ポリビニルアルコール系樹脂粉末およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE509383T1 (de) * 2003-07-31 2011-05-15 Toyo Boseki Elektrolyt-membran-elektroden-baugruppe, brennstoffzelle damit und verfahren zur herstellung einer elektrolyt-membran-elektroden- baugruppe
WO2008090774A1 (ja) * 2007-01-23 2008-07-31 Kuraray Co., Ltd. 高分子電解質膜及びその製法、並びに膜-電極接合体及び固体高分子型燃料電池
US8716358B2 (en) * 2009-03-25 2014-05-06 Kuraray Co., Ltd. Anion exchange membrane and method for producing same
JP5531267B2 (ja) * 2009-04-13 2014-06-25 国立大学法人山口大学 イオン交換膜およびその製造方法
WO2014087981A1 (ja) * 2012-12-04 2014-06-12 株式会社クラレ ビニルアルコール系グラフト重合体、その製造方法およびそれを用いるイオン交換膜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369835A (ja) * 1986-09-12 1988-03-29 Nichibi:Kk アニオン交換繊維及びその製造方法
JP2005243493A (ja) * 2004-02-27 2005-09-08 Toyobo Co Ltd イオン交換膜
JP2008188518A (ja) * 2007-02-02 2008-08-21 Yamaguchi Univ イオンバリヤー膜および該イオンバリヤー膜を使用した分離装置
JP2014229440A (ja) * 2013-05-21 2014-12-08 国立大学法人東京工業大学 固体高分子電解質の製造方法、固体高分子電解質、イオン伝導体、及び、膜電極接合体
WO2015030084A1 (ja) * 2013-08-30 2015-03-05 株式会社クラレ 新規なビニルアルコール系共重合体、その製造方法およびイオン交換膜
JP2015110735A (ja) * 2013-10-30 2015-06-18 日本合成化学工業株式会社 アセトアセチル基含有ポリビニルアルコール系樹脂粉末およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115315299A (zh) * 2020-07-13 2022-11-08 日本碍子株式会社 精制方法
CN115315299B (zh) * 2020-07-13 2024-06-04 日本碍子株式会社 精制方法

Also Published As

Publication number Publication date
TW201636099A (zh) 2016-10-16
CN107428969A (zh) 2017-12-01
JPWO2016133170A1 (ja) 2017-12-07
US20180044491A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
WO2015030084A1 (ja) 新規なビニルアルコール系共重合体、その製造方法およびイオン交換膜
JP5715558B2 (ja) 陰イオン交換膜及びその製造方法
US9908961B2 (en) Vinyl alcohol-based graft polymer, method for producing same, and ion-exchange membrane using same
Chen et al. Enhanced proton conductivity and dimensional stability of proton exchange membrane based on sulfonated poly (arylene ether sulfone) and graphene oxide
Abbas et al. Surface Modification of TFC‐PA RO Membrane by Grafting Hydrophilic pH Switchable Poly (Acrylic Acid) Brushes
WO2016133170A1 (ja) イオン交換膜
JP2016155107A (ja) 有機性廃水の処理方法
JP6227296B2 (ja) イオン交換膜
JP5413683B2 (ja) モザイク荷電膜の製造方法
JP2016155109A (ja) フッ素イオンの除去方法
JP2016073897A (ja) 電気透析装置
JP2017164718A (ja) イオン交換膜
KR102478269B1 (ko) 아민화된 폴리스티렌에틸렌부틸렌스틸렌 공중합체를 포함하는 연료전지용 음이온교환막 및 이의 제조방법
JP2016155106A (ja) 硝酸イオンの分離方法
JP2016154503A (ja) 減塩醤油の製造方法
JP2016155724A (ja) リチウム塩の回収方法
JP2016155723A (ja) 塩の製造方法
JP7020654B2 (ja) 陰イオン交換膜およびその製造方法
JP2016154504A (ja) 梅漬調味液の脱塩方法
JP2016155110A (ja) 酸の回収方法
Sun et al. An effective approach towards endowing membranes with tunable charge characteristics and large nanopores
JP2015168689A (ja) イオン交換膜
JP2016155108A (ja) 埋立地浸出液の処理方法
JP2016154505A (ja) 果汁含有アルコール溶液中の電解質の除去方法
JP2018070797A (ja) アニオン交換膜、その製造方法及びその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752556

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500737

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15552172

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16752556

Country of ref document: EP

Kind code of ref document: A1