WO2016132981A1 - 密封装置及び密封構造 - Google Patents

密封装置及び密封構造 Download PDF

Info

Publication number
WO2016132981A1
WO2016132981A1 PCT/JP2016/053908 JP2016053908W WO2016132981A1 WO 2016132981 A1 WO2016132981 A1 WO 2016132981A1 JP 2016053908 W JP2016053908 W JP 2016053908W WO 2016132981 A1 WO2016132981 A1 WO 2016132981A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal ring
peripheral surface
sealing device
inner peripheral
groove
Prior art date
Application number
PCT/JP2016/053908
Other languages
English (en)
French (fr)
Inventor
勝好 佐久間
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Priority to JP2017500625A priority Critical patent/JP6432670B2/ja
Publication of WO2016132981A1 publication Critical patent/WO2016132981A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/18Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings

Definitions

  • the present invention relates to a sealing device and a sealing structure for sealing an annular gap between a shaft and a shaft hole of a housing.
  • FIG. 16 is a schematic cross-sectional view of a seal ring according to a conventional example, showing a state in which the hydraulic pressure is not held on the left side in the drawing and a state in which the hydraulic pressure is held on the right side in the drawing.
  • the seal ring 500 according to the conventional example is mounted in an annular groove 210 provided on the outer peripheral surface side of the shaft 200.
  • the seal ring 500 is configured to seal the annular gap between the shaft 200 and the shaft hole of the housing 300 by slidably contacting the side wall surface of the annular groove 210.
  • the peripheral length of the outer peripheral surface of the seal ring 500 is configured to be shorter than the peripheral length of the inner peripheral surface of the shaft hole of the housing 300 and is configured not to have a tightening allowance.
  • the seal ring 500 is in close contact with the inner peripheral surface of the shaft hole and the side wall surface of the annular groove 210 and exhibits a function of sufficiently holding the hydraulic pressure (See the figure on the right side in FIG. 16).
  • the right side is the high pressure side (H) and the left side is the low pressure side (L).
  • the seal ring 500 can be separated from the inner peripheral surface of the shaft hole and the side wall surface of the annular groove 210 (see the left side in FIG. 16).
  • the sealing function is not exhibited in a state where no hydraulic pressure is applied.
  • the seal ring 500 is sealed in the no-load state where the hydraulic pump is stopped (for example, when idling is stopped).
  • the oil returns to the oil pan without being sealed, and the oil in the vicinity of the seal ring 500 disappears. Therefore, when the engine is started (restarted) from this state, the operation is started in a state where there is no oil in the vicinity of the seal ring 500 and there is no lubrication.
  • the resin seal ring tries to expand its diameter by thermal expansion, but its deformation is suppressed by the shaft hole of the housing. Thereby, the progress of creep of the seal ring is promoted.
  • An object of the present invention is to provide a sealing device and a sealing structure that can exert a sealing function even in a state where the fluid pressure is low and can suppress the progress of creep of a resin seal ring. .
  • the present invention employs the following means in order to solve the above problems.
  • the sealing device of the present invention is A seal target region that is mounted in an annular groove provided on the outer peripheral surface side of the shaft and seals an annular gap between the relatively rotating shaft and the housing so that the fluid pressure changes.
  • An annular mounting groove is formed on the outer peripheral surface side, and a resin-made first seal ring that slides against a low-pressure side wall surface of the annular groove;
  • a second seal ring made of an elastic material that is in close contact with the bottom surface of the mounting groove and the inner peripheral surface of the shaft hole through which the shaft of the housing is inserted; It is characterized by providing.
  • the sealing structure of the present invention is A shaft provided with an annular groove on the outer peripheral surface side; A housing having a shaft hole through which the shaft is inserted; A sealing device that is mounted in the annular groove and seals the annular gap between the relatively rotating shaft and the housing, and holds the fluid pressure in the region to be sealed configured to change the fluid pressure;
  • the sealing device includes: An annular mounting groove is formed on the outer peripheral surface side, and a resin-made first seal ring that slides against a low-pressure side wall surface of the annular groove; A second seal ring made of an elastic material that is in close contact with the bottom surface of the mounting groove and the inner peripheral surface of the shaft hole; It is characterized by providing.
  • the “high pressure side” means a side that becomes high pressure when differential pressure is generated on both sides of the sealing device
  • the “low pressure side” means that differential pressure is generated on both sides of the sealing device. It means the side that is at low pressure.
  • a configuration including an elastic second seal ring that is in close contact with the bottom surface of the mounting groove formed in the first seal ring and the inner peripheral surface of the shaft hole in the housing is employed. ing. Therefore, the sealing function is exhibited even when the fluid pressure is not acting (no differential pressure is generated) or the fluid pressure is hardly acting (the differential pressure is hardly generated). Therefore, the fluid pressure can be maintained immediately after the fluid pressure in the seal target region starts to increase. Moreover, even if the diameter of the first seal ring made of resin is increased due to thermal expansion, the repulsive force against the first seal ring can be suppressed by the second seal ring made of an elastic body. Thereby, the progress of creep of the first seal ring can be suppressed.
  • the sliding resistance with respect to the side wall surface on the low pressure side in the annular groove in the first seal ring is smaller than the sliding resistance with respect to the inner peripheral surface of the shaft hole in the second seal ring.
  • the axial width of the first seal ring is preferably narrower on the inner peripheral surface side than on the outer peripheral surface side.
  • fluid pressure acts from both side surfaces of the first seal ring in the portion where the width on the inner peripheral surface side of the first seal ring is narrow. Therefore, the sliding resistance with respect to the side wall surface on the low pressure side in the annular groove formed by the first seal ring can be further reduced.
  • first seal ring may be provided with a through hole extending from the groove bottom surface of the mounting groove to the inner peripheral surface of the first seal ring.
  • the portion located in the vicinity of the through hole in the second seal ring made of an elastic body does not adhere to the groove bottom surface of the mounting groove, and therefore, in this portion, the second seal ring covers the inner peripheral surface of the shaft hole.
  • the pressing force decreases. This reduces the resistance (sliding resistance in the axial direction) when the sealing device moves in the axial direction (for example, the direction from the high pressure side to the low pressure side) in the annular groove of the shaft. Responsiveness when fluid pressure begins to increase.
  • a recess recessed inward in the radial direction may be provided on the groove bottom surface of the mounting groove in the first seal ring.
  • the portion located in the vicinity of the recess in the second seal ring made of an elastic material does not adhere to the groove bottom surface of the mounting groove, and for the same reason, the response when the fluid pressure in the seal target region starts to increase. Increases nature.
  • the first seal ring may be composed of an endless annular member.
  • an abutment portion may be provided at one place in the circumferential direction of the first seal ring.
  • the sealing function can be exhibited even in a state where the fluid pressure is low, and the progress of creep of the resin seal ring can be suppressed.
  • FIG. 1 is a schematic view of a sealing device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the sealing device according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic cross-sectional view of the sealing structure according to the first embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a sealing structure according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a sealing structure according to Embodiment 3 of the present invention.
  • FIG. 6 is a side view of the first seal ring according to the fourth embodiment of the present invention.
  • FIG. 7 is a partially enlarged view of a side view of the first seal ring according to the fourth embodiment of the present invention.
  • FIG. 8 is a partially enlarged view of a side view of the first seal ring according to the fourth embodiment of the present invention.
  • FIG. 9 is a partially enlarged view of the first seal ring according to the fourth embodiment of the present invention as viewed from the outer peripheral surface side.
  • FIG. 10 is a partially enlarged view of the first seal ring according to the fourth embodiment of the present invention as viewed from the inner peripheral surface side.
  • FIG. 11 is a perspective view of the joint portion of the first seal ring according to the fourth embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view of a sealing structure according to Embodiment 5 of the present invention.
  • FIG. 13 is a side view of the first seal ring according to the fifth embodiment of the present invention.
  • FIG. 14 is a schematic cross-sectional view of a sealing structure according to Embodiment 5 of the present invention.
  • FIG. 15 is a schematic sectional view of a sealing structure according to Embodiment 6 of the present invention.
  • FIG. 16 is a schematic cross-sectional view showing a state where the hydraulic pressure is not maintained and a state where the hydraulic pressure is maintained in the seal ring according to the conventional example.
  • the sealing device according to the present embodiment is used for sealing an annular gap between a relatively rotating shaft and a housing in order to maintain hydraulic pressure in a transmission such as an AT or CVT for an automobile. It is used.
  • high pressure side means a side that becomes high pressure when differential pressure occurs on both sides of the sealing device
  • low pressure side means that differential pressure occurs on both sides of the sealing device. This means the side that is at low pressure.
  • FIG. 1 is a schematic view of a sealing device according to Embodiment 1 of the present invention.
  • a plan view of the sealing device is shown on the left side, and a partially enlarged view of the sealing device viewed from the outer peripheral surface side is shown on the right side.
  • FIG. 2 is a schematic cross-sectional view of the sealing device according to Embodiment 1 of the present invention. 2 corresponds to a cross-sectional view along AA in FIG. However, in FIG.
  • FIG. 3 is a schematic cross-sectional view of the sealing structure according to the first embodiment of the present invention.
  • the sealing device 100 according to the present embodiment is mounted in an annular groove 210 provided on the outer peripheral surface side of the shaft 200 and relatively rotates the shaft 200 and the housing 300 (the shaft hole 310 through which the shaft 200 in the housing 300 is inserted. An annular gap between the inner peripheral surface) and the inner peripheral surface is sealed. As a result, the sealing device 100 maintains the fluid pressure in the region to be sealed configured so that the fluid pressure (hydraulic pressure in this embodiment) changes.
  • the sealing device 100 plays a role of maintaining the fluid pressure in the region to be sealed on the right side in FIG. ing.
  • the sealing device 100 plays a role of maintaining the fluid pressure in the region to be sealed on the right side in FIG. ing.
  • the sealing device 100 includes a first seal ring 110 and a second seal ring 120 made of an elastic material such as rubber.
  • the first seal ring 110 is composed of an endless annular member made of resin such as polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE).
  • An annular mounting groove 111 is provided on the outer peripheral surface side of the first seal ring 110.
  • the first seal ring 110 has a configuration in which a mounting groove 111 having a rectangular cross section is formed on the outer peripheral surface side of an annular member having a rectangular cross section.
  • the mounting groove 111 can be obtained by cutting after forming an annular member having a rectangular cross section.
  • the production method is not particularly limited.
  • the second seal ring 120 is mounted in the mounting groove 111 provided in the first seal ring 110.
  • the second seal ring 120 is an O-ring having a circular cross section.
  • the second seal ring in the present invention is not limited to the O-ring, and various elastic seal rings such as a square ring having a rectangular cross section can be applied.
  • the inner diameter of the first seal ring 110 is larger than the outer diameter at the groove bottom surface of the annular groove 210. Further, the outer diameter of the first seal ring 110 is smaller than the inner diameter of the inner peripheral surface of the shaft hole 310 of the housing 300. Accordingly, the inner peripheral surface of the first seal ring 110 does not contact the groove bottom surface of the annular groove 210 of the shaft 200, and the outer peripheral surface of the first seal ring 110 does not contact the inner peripheral surface of the shaft hole 310 of the housing 300. . Further, the width of the first seal ring 110 (the width in the axial direction) is narrower than the groove width of the annular groove 210. Accordingly, the first seal ring 110 is movable in the axial direction within the annular groove 210.
  • the inner diameter of the second seal ring 120 is smaller than the outer diameter of the groove bottom surface 111a of the mounting groove 111 provided in the first seal ring 110. Further, the outer diameter of the second seal ring 120 is larger than the inner diameter of the inner peripheral surface of the shaft hole 310 of the housing 300. Therefore, the second seal ring 120 is in close contact with the groove bottom surface 111 a of the mounting groove 111 and the inner peripheral surface of the shaft hole 310 in the housing 300. Further, the width (the width in the axial direction) of the second seal ring 120 is narrower than the groove width of the mounting groove 111. Therefore, the second seal ring 120 is movable in the axial direction within the mounting groove 111.
  • the low pressure side (L) side of the annular groove 210 in the first seal ring 110 rather than the sliding resistance with respect to the inner peripheral surface of the shaft hole 310 in the second seal ring 120.
  • the sliding resistance with respect to the wall surface 211 is designed to be smaller. That is, the dimensions of each member are designed based on the fluid pressure (hydraulic pressure) in the usage environment, the material of each member, and the characteristics of the fluid to be sealed. Note that the pressing force of the second seal ring 120 against the inner peripheral surface of the shaft hole 310 is affected by the elastic repulsive force of the second seal ring 120 itself and the fluid pressure (hydraulic pressure) applied to the inner peripheral surface side of the sealing device 100.
  • the pressing force on the side wall surface 211 on the low pressure side (L) in the annular groove 210 in the first seal ring 110 is affected by the fluid pressure from the high pressure side (H) with respect to the sealing device 100.
  • the dimensions of the seal rings are determined so that the sliding resistance is as described above.
  • the second seal ring 120 is in close contact with the groove bottom surface 111a of the mounting groove 111 and the inner peripheral surface of the shaft hole 310 in the housing 300. Therefore, even when the engine is stopped and there is no differential pressure in the left and right regions (or almost no differential pressure) through the sealing device 100 and there is no load, the first seal ring 110 and the shaft hole 310 Is sealed.
  • the first seal ring 110 has the low pressure side (L) side surface 112 caused by the fluid pressure from the high pressure side (H).
  • the annular groove 210 is in close contact with the low-pressure side (L) side wall surface 211.
  • the second seal ring 120 maintains the sealed state between the first seal ring 110 and the shaft hole 310.
  • the second seal ring 120 is in close contact with the groove bottom surface 111 a of the mounting groove 111 and the inner peripheral surface of the shaft hole 310 in the housing 300. Therefore, even when the fluid pressure is not acting (no differential pressure is generated) or the fluid pressure is hardly acting (the differential pressure is hardly generated), the first seal ring 110 and the shaft hole 310 are Is sealed by the second seal ring 120. Thus, as long as the first seal ring 110 is kept in close contact with the low-pressure side (L) side wall surface 211 in the annular groove 210, the sealing function is exhibited.
  • L low-pressure side
  • the fluid pressure can be maintained immediately after the fluid pressure in the seal target region starts to increase.
  • an engine having an idling stop function immediately after the engine is started by releasing the brake pedal or depressing the accelerator from the engine stopped state, immediately after the hydraulic pressure on the seal target region side starts to increase. Hydraulic pressure can be maintained.
  • the function of suppressing fluid leakage is not so much exhibited.
  • the second seal ring 120 made of an elastic body, a function of suppressing fluid leakage to some extent is exhibited. Therefore, even after the operation of the pump or the like is stopped by stopping the engine, it is possible to maintain a state in which the differential pressure is generated for a while. Therefore, in an engine having an idling stop function, when the engine is not stopped so long, the state in which the differential pressure is generated can be maintained. Therefore, when the engine is restarted, the fluid pressure is preferably adjusted immediately after that. Can be retained.
  • the differential pressure becomes zero.
  • the first seal ring 110 can be separated from the side wall surface of the annular groove 210 (the side wall surface 211 on the low pressure side (L) when a differential pressure is generated). Therefore, fluid leakage can occur.
  • the differential pressure can be maintained, so that the first seal ring 110 is in close contact with the side wall surface 211 on the low pressure side (L) of the annular groove 210. Can be maintained. Therefore, even in a low load state, the function of suppressing fluid leakage is exhibited.
  • a configuration in which the resistance is smaller is employed. Accordingly, the first seal ring 110 is slid between the low pressure side (L) side wall surface 211 of the annular groove 210, and the second seal ring 120 is slid between the shaft hole 310 and the inner peripheral surface thereof. It can be made not to move. Moreover, it can suppress that the 1st seal ring 110 and the 2nd seal ring 120 carry around. Thereby, it can suppress that the 2nd seal ring 120 wears.
  • first seal ring 110 is configured by an endless annular member, it is possible to more reliably suppress fluid leakage in the seal target region.
  • the repulsive force against the first seal ring 110 can be suppressed by the second seal ring 120 made of an elastic body. . Thereby, the progress of creep of the first seal ring 110 can be suppressed.
  • FIG. 4 shows a second embodiment of the present invention.
  • the present embodiment in the configuration shown in the first embodiment, by providing annular notches on the inner peripheral surface side of the both side surfaces of the first seal ring, the outer circumferential surface of the width in the axial direction of the first seal ring is obtained.
  • the case where the inner peripheral surface side is configured to be narrower than the side is shown. Since other configurations and operations are the same as those in the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 4 is a schematic cross-sectional view of a sealing structure according to Example 2 of the present invention.
  • FIG. 4 shows a state in which the engine is started and the fluid pressure in the right region is higher than that in the left region through the sealing device 100.
  • the sealing device 100 according to the present embodiment also includes the first seal ring 110 made of resin and the second seal ring 120 made of an elastic body such as rubber, as in the case of the first embodiment.
  • the first seal ring 110 according to the present embodiment is provided with annular notches 113 on the inner peripheral surfaces of both side surfaces. Other configurations are the same as those described in the first embodiment.
  • the sealing device 100 when a differential pressure is generated on both sides via the sealing device 100, the fluid pressure is applied to the notches 113 provided on both side surfaces of the first seal ring 110, respectively. Act. Therefore, in the region where the notch 113 is provided, the fluid pressure in the axial direction maintains an equilibrium state (see the arrow in the figure). Therefore, the pressing force against the low pressure side (L) side wall surface 211 in the annular groove 210 by the first seal ring 110 is applied to the region where the notch 113 is not provided on the high pressure side (H) side surface of the first seal ring 110. Only the fluid pressure from the high pressure side (H) to the low pressure side (L).
  • FIG. 5 shows a third embodiment of the present invention.
  • the both side surfaces of the first seal ring are tapered surfaces, so that the axial width of the first seal ring is on the inner peripheral surface side rather than the outer peripheral surface side.
  • the case where is configured narrower is shown. Since other configurations and operations are the same as those in the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 5 is a schematic cross-sectional view of a sealing structure according to Example 3 of the present invention.
  • FIG. 5 shows a state in which the engine is started and the fluid pressure in the right region is higher than that in the left region through the sealing device 100.
  • the sealing device 100 according to the present embodiment also includes the first seal ring 110 made of resin and the second seal ring 120 made of an elastic body such as rubber, as in the case of the first embodiment.
  • both side surfaces are constituted by tapered surfaces 114.
  • variety of the axial direction of a 1st seal ring is gradually narrowed as it goes to an inner peripheral surface side from an outer peripheral surface side.
  • Other configurations are the same as those described in the first embodiment.
  • the sealing device 100 when a differential pressure is generated on both sides via the sealing device 100, the fluid pressure is respectively applied to the both side surfaces except for the outer peripheral edge of the first seal ring 110.
  • the fluid pressure in the axial direction maintains an equilibrium state (see the arrow in the figure). Therefore, the sliding resistance with respect to the side wall surface 211 on the low pressure side (L) in the annular groove 210 by the first seal ring 110 can be further reduced as compared with the case of the second embodiment.
  • Example 4 6 to 11 show a fourth embodiment of the present invention.
  • a configuration in which an abutment portion is provided for the first seal ring shown in the first embodiment is shown. Since other configurations and operations are the same as those in the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the case where the first seal ring 110 is constituted by an endless annular member is shown. In this case, it is excellent in terms of suppressing leakage of the fluid to be sealed. However, in this case, it takes time to attach the first seal ring 110 to the annular groove 210. Therefore, for the first seal ring 110, a configuration in which an abutment portion is provided at one place in the circumferential direction may be employed. For the joint portion, various known techniques such as straight cut, bias cut, and step cut can be employed. However, it is desirable to employ a special step cut that can maintain stable sealing performance even if the circumference of the first seal ring 110 changes due to thermal expansion and contraction. Therefore, a configuration in the case where a special step cut is provided in the first seal ring 110 will be described with reference to FIGS.
  • FIG. 6 is a side view of the first seal ring according to the fourth embodiment of the present invention.
  • 7 is a partially enlarged view of a side view of the first seal ring according to the fourth embodiment of the present invention, and is an enlarged view of a circled portion in FIG.
  • FIG. 8 is a partially enlarged view of a side view of the first seal ring according to the fourth embodiment of the present invention, and is an enlarged view of the surface on the opposite side of the circled portion in FIG. 9 is a partially enlarged view of the first seal ring according to the fourth embodiment of the present invention as viewed from the outer peripheral surface side, and is a view of the circled portion in FIG. 6 as viewed from the outer peripheral surface side. .
  • FIG. 8 is a partially enlarged view of a side view of the first seal ring according to the fourth embodiment of the present invention as viewed from the outer peripheral surface side, and is a view of the circled portion in FIG. 6 as viewed from the outer peripheral surface side. .
  • FIG. 10 is a partially enlarged view of the first seal ring according to the fourth embodiment of the present invention as viewed from the inner peripheral surface side, and is a view of the circled portion in FIG. 6 as viewed from the inner peripheral surface side. It is.
  • FIG. 11 is a perspective view (a perspective view of a portion surrounded by a circle in FIG. 6) of the joint portion of the first seal ring according to the fourth embodiment of the present invention.
  • (A) shows the edge part of the both sides via a cutting part
  • (B) has shown the edge part of the one side via a cutting part.
  • an abutment portion 150 is provided at one place in the circumferential direction.
  • the joint portion 150 employs a special step cut that is cut in a step shape when viewed from either the outer peripheral surface side or both side wall surfaces.
  • the 1st fitting convex part 151 and the 1st fitting recessed part 154 are provided in the outer peripheral side of one side via a cutting part, and the outer peripheral side of the other side is provided.
  • a second fitting concave portion 153 into which the first fitting convex portion 151 is fitted and a second fitting convex portion 152 to be fitted into the first fitting concave portion 154 are provided.
  • the end surface 155 on the inner peripheral surface side on one side and the end surface 156 on the inner peripheral side on the other side are opposed to each other through the cutting portion. Since the special step cut is a known technique, a detailed description thereof will be omitted, but it has a characteristic of maintaining a stable sealing performance even if the circumference of the first seal ring 110X is changed due to thermal expansion and contraction.
  • an abutment portion (particularly, a special step cut) may be provided for the first seal ring shown in the second and third embodiments.
  • Example 5 12 to 14 show a fifth embodiment of the present invention.
  • the first seal ring in the configuration shown in the first embodiment, is provided with a through hole extending from the groove bottom surface of the mounting groove to the inner peripheral surface of the first seal ring. Since other configurations and operations are the same as those in the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 12 is a schematic cross-sectional view of a sealing structure according to Example 5 of the present invention.
  • FIG. 12 shows a state in which no differential pressure is generated on both sides of the sealing device 100 and the sealing device 100 is separated from any side wall surface of the annular groove 210.
  • FIG. 13 is a side view of the first seal ring according to the fifth embodiment.
  • the cross section of the first seal ring 110 shown in FIG. 12 corresponds to the BB cross section in FIG. 13 and shows a cross section of a portion where the through hole 116 is formed.
  • FIG. 14 is a schematic cross-sectional view of the sealing structure according to the fifth embodiment, in which the engine is started and the fluid pressure in the right region is higher than that in the left region via the sealing device 100. Show.
  • the sealing device 100 also includes a first seal ring 110 made of resin and a second seal ring 120 made of an elastic body such as rubber.
  • the first seal ring 110 according to the present embodiment is provided with a through hole 116 extending from the groove bottom surface 111 a of the mounting groove 111 to the inner peripheral surface 115 of the first seal ring 110.
  • a total of eight through holes 116 are provided at equal intervals in the circumferential direction, and each is formed linearly in the radial direction. Other configurations are the same as those described in the first embodiment.
  • the second seal ring 120 includes the groove bottom surface 111 a of the mounting groove 111 and the shaft hole 310 in the housing 300. It is in close contact with the peripheral surface. Accordingly, the second seal ring 120 made of an elastic body is in a state of being elastically compressed by the groove bottom surface 111a and the inner peripheral surface of the shaft hole 310. Therefore, the second seal ring 120 presses the inner peripheral surface of the shaft hole 310 by the elastic repulsive force of the second seal ring 120 itself.
  • the portion located in the vicinity of the through hole 116 in the second seal ring 120 is It does not adhere to the groove bottom surface 111 a of the mounting groove 111. That is, as shown in FIG. 12, the portion of the second seal ring 120 located in the vicinity of the through hole 116 is deformed so that the inner peripheral side enters the through hole 116. As a result, the portion is not compressed more than the other portions of the second seal ring 120, and thus the force with which the second seal ring 120 presses the inner peripheral surface of the shaft hole 310 is reduced in the portion.
  • the pressing force against the inner peripheral surface of the shaft hole 310 in the second seal ring 120 is locally reduced.
  • the resistance that acts when the sealing device 100 moves in the axial direction decreases.
  • the sealing device 100 As described above, according to the sealing device 100 according to the present embodiment, the responsiveness when the fluid pressure in the sealing target region starts to increase is enhanced. That is, as shown in FIG. 12, even if the sealing device 100 is separated from any side wall surface of the annular groove 210 because no differential pressure is generated on both sides of the sealing device 100, the fluid in the region to be sealed When the pressure starts to increase, the sealing device 100 moves to the low pressure side (L) due to the fluid pressure acting from the high pressure side (H).
  • the sealing device 100 according to the present embodiment has a resistance acting when moving in the axial direction because the pressing force against the inner peripheral surface of the shaft hole 310 in the second seal ring 120 is locally reduced.
  • the low-pressure side (L) side surface 112 of the first seal ring 110 is the low-pressure side (L) side wall surface of the annular groove 210 as shown in FIG.
  • the state can be more quickly shifted to the state of being in close contact with 211, that is, the state where the fluid pressure is maintained.
  • the same effects as those of the first embodiment can be obtained.
  • the number of the through holes 116 is not particularly limited, and at least one may be sufficient.
  • the number and shape of the second seal ring 120 can be set as appropriate based on the elastic coefficient, dimensions, and the like of the second seal ring 120 so that a desired effect can be obtained.
  • an abutment portion (particularly, a special step cut) may be provided for the first seal ring 110 according to the present embodiment.
  • FIG. 15 shows a sixth embodiment of the present invention.
  • a case is shown in which a recess recessed radially inward is provided on the groove bottom surface of the mounting groove in the first seal ring.
  • the groove bottom surface of the mounting groove in place of the through hole provided in the first seal ring, is provided with a recess recessed radially inward. Can be caught. Since other configurations and operations are the same as those in the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 15 is a schematic cross-sectional view of the sealing structure according to the fifth embodiment of the present invention.
  • the engine is started, and the fluid pressure in the right region is higher than the left region through the sealing device 100. Shows the state.
  • the sealing device 100 according to the present embodiment also includes a first seal ring 110 made of resin and a second seal ring 120 made of an elastic body such as rubber.
  • the recessed part 117 dented in radial direction inner side is provided in the groove bottom face 111a of the mounting groove 111 in the 1st seal ring 110 which concerns on a present Example.
  • a total of eight recesses 117 are provided at equal intervals in the circumferential direction. Other configurations are the same as those described in the first embodiment.
  • the second seal ring 120 is positioned in the vicinity of the recess 117 as in the fifth embodiment.
  • the part that is present does not adhere to the groove bottom surface 111 a of the mounting groove 111. That is, as shown in FIG. 15, the portion of the second seal ring 120 located in the vicinity of the recess 117 is deformed so that the inner peripheral side enters the recess 117.
  • the deformed portion may or may not contact the bottom surface of the recess 117.
  • the portion is not compressed more than the other portions of the second seal ring 120, and therefore, the force with which the second seal ring 120 presses the inner peripheral surface of the shaft hole 310 in the portion. Decreases. Therefore, similarly to the sealing device in the fifth embodiment, also in the sealing device 100 according to the present embodiment, the responsiveness when the fluid pressure in the sealing target region starts to increase is enhanced.
  • the number of the concave portions 117 is not particularly limited, and at least one recess may be provided.
  • the number and shape (depth) of the second seal ring 120 can be appropriately set based on the elastic coefficient, dimensions, and the like of the second seal ring 120 so that a desired effect can be obtained.
  • an abutment portion (particularly, a special step cut) may be provided for the first seal ring 110 according to the present embodiment.
  • Sealing device 110,110X 1st seal ring 111 Mounting groove 111a Groove bottom surface 112 Side surface 113 Notch 114 Tapered surface 115 Inner peripheral surface 116 Through hole 117 Recessed part 120 Second seal ring 150 Joint part 151 First fitting convex part 152 First 2 fitting convex part 153 2nd fitting recessed part 154 1st fitting recessed part 155,156 end surface 200 shaft 210 annular groove 211 side wall surface 300 housing 310 shaft hole

Abstract

流体圧力が低い状態においても封止機能を発揮させることができ、かつ樹脂製のシールリングのクリープの進行を抑制することのできる密封装置を提供する。軸(200)の外周面側に設けられた環状溝(210)に装着され、相対的に回転する軸(200)とハウジング(300)との間の環状隙間を封止して、流体圧力が変化するように構成されたシール対象領域の流体圧力を保持する密封装置(100)において、外周面側に環状の装着溝(111)が形成され、かつ環状溝(210)における低圧側(L)の側壁面(211)に対して摺動する樹脂製の第1シールリング(110)と、装着溝(111)の溝底面と、ハウジング(300)における軸(200)が挿通される軸孔(310)の内周面とに対してそれぞれ密着する弾性体製の第2シールリング(120)と、を備えることを特徴とする。

Description

密封装置及び密封構造
 本発明は、軸とハウジングの軸孔との間の環状隙間を封止する密封装置及び密封構造に関する。
 自動車用のATやCVTにおいては、油圧を保持させるために、相対的に回転する軸とハウジングとの間の環状隙間を封止するシールリングが設けられている。図16を参照して、従来例に係るシールリングについて説明する。図16は従来例に係るシールリングの模式的断面図であり、図中左側に油圧を保持していない状態を示し、図中右側に油圧を保持している状態を示している。従来例に係るシールリング500は、軸200の外周面側に設けられた環状溝210に装着される。そして、シールリング500は、環状溝210の側壁面に摺動自在に接触することで、軸200とハウジング300の軸孔との間の環状隙間を封止するように構成される。
 上記のような用途で用いられるシールリング500においては、熱膨張により拡径する。そのため、シールリング500の外周面の周長はハウジング300の軸孔の内周面の周長よりも短く構成されており、締め代を持たないように構成されている。そして、自動車のエンジンがかかり油圧が高くなっている状態においては、シールリング500は、軸孔の内周面と環状溝210の側壁面に密着して十分に油圧を保持する機能を発揮する(図16中の右側の図参照)。なお、図16中の右側の図においては、右側が高圧側(H)であり、左側が低圧側(L)である。これに対して、エンジンの停止により油圧がかからない状態においては、シールリング500は軸孔の内周面や環状溝210の側壁面から離れた状態となり得る(図16中の左側の図参照)。
 しかしながら、上記のように構成されたシールリング500の場合、油圧がかからない状態では封止機能を発揮しない。そのため、ATやCVTのように油圧ポンプによって圧送される油により変速制御が行われる構成においては、油圧ポンプが停止した無負荷状態(例えば、アイドリングストップ時)では、シールリング500がシールしていた油がシールされずにオイルパンに戻って、シールリング500の近傍の油がなくなってしまう。従って、この状態からエンジンを始動(再始動)させると、シールリング500の近傍には油がなく潤滑のない状態で作動が開始されるので、応答性や作動性が悪いという問題がある。
 また、樹脂製のシールリングは、熱膨張により拡径しようとするが、ハウジングの軸孔によって、その変形が抑制される。これにより、シールリングのクリープの進行が促進されてしまう。
特開2007-170629号公報 特開昭53-60447号公報
 本発明の目的は、流体圧力が低い状態においても封止機能を発揮させることができ、かつ樹脂製のシールリングのクリープの進行を抑制することのできる密封装置及び密封構造を提供することにある。
 本発明は、上記課題を解決するために以下の手段を採用した。
 すなわち、本発明の密封装置は、
 軸の外周面側に設けられた環状溝に装着され、相対的に回転する前記軸とハウジングとの間の環状隙間を封止して、流体圧力が変化するように構成されたシール対象領域の流体圧力を保持する密封装置において、
 外周面側に環状の装着溝が形成され、かつ前記環状溝における低圧側の側壁面に対して摺動する樹脂製の第1シールリングと、
 前記装着溝の溝底面と、前記ハウジングにおける前記軸が挿通される軸孔の内周面とに対してそれぞれ密着する弾性体製の第2シールリングと、
 を備えることを特徴とする。
 また、本発明の密封構造は、
 外周面側に環状溝を備える軸と、
 該軸が挿通される軸孔を備えるハウジングと、
 前記環状溝に装着され、相対的に回転する前記軸とハウジングとの間の環状隙間を封止して、流体圧力が変化するように構成されたシール対象領域の流体圧力を保持する密封装置と、を備える密封構造において、
 前記密封装置は、
 外周面側に環状の装着溝が形成され、かつ前記環状溝における低圧側の側壁面に対して摺動する樹脂製の第1シールリングと、
 前記装着溝の溝底面と、前記軸孔の内周面とに対してそれぞれ密着する弾性体製の第2シールリングと、
 を備えることを特徴とする。
 なお、本発明において、「高圧側」とは、密封装置の両側に差圧が生じた際に高圧となる側を意味し、「低圧側」とは、密封装置の両側に差圧が生じた際に低圧となる側を意味する。
 本発明によれば、第1シールリングに形成された装着溝の溝底面と、ハウジングにおける軸孔の内周面とに対してそれぞれ密着する弾性体製の第2シールリングを備える構成を採用している。そのため、流体圧力が作用してない(差圧が生じていない)、または流体圧力が殆ど作用していない(差圧が殆ど生じていない)状態においても、封止機能が発揮される。従って、シール対象領域の流体圧力が高まりだした直後から流体圧力を保持させることができる。また、樹脂製の第1シールリングが熱膨張により拡径しても、弾性体製の第2シールリングによって第1シールリングに対する反発力を抑制させることができる。これにより、第1シールリングのクリープの進行を抑制することができる。
 そして、第2シールリングにおける前記軸孔の内周面に対する摺動抵抗よりも、第1シールリングにおける前記環状溝における低圧側の側壁面に対する摺動抵抗の方が小さいとよい。
 これにより、第1シールリングと環状溝における低圧側の側壁面との間で摺動させ、かつ、第2シールリングと軸孔の内周面との間では摺動しないようにさせることができる。
 また、第1シールリングの軸線方向の幅は、外周面側よりも内周面側の方が狭く構成されているとよい。
 これにより、第1シールリングにおける内周面側の幅が狭く構成されている部分では、第1シールリングの両側面側からそれぞれ流体圧力が作用する。従って、第1シールリングによる環状溝における低圧側の側壁面に対する摺動抵抗をより一層低減させることができる。
 また、第1シールリングには、装着溝の溝底面から第1シールリングの内周面に至る貫通孔が設けられていてもよい。
 これにより、弾性体製の第2シールリングにおける貫通孔近傍に位置している部位が装着溝の溝底面に密着しなくなるため、当該部位においては、第2シールリングが軸孔の内周面を押圧する力が低下する。これにより、軸の環状溝内において密封装置が軸方向(例えば、高圧側から低圧側に向かう方向)に移動するときの抵抗(軸方向の摺動抵抗)が低減されるため、シール対象領域の流体圧力が高まりだしたときの応答性が高くなる。
 また、第1シールリングにおける装着溝の溝底面には、径方向内側に凹んだ凹部が設けられていてもよい。
 これにより、弾性体製の第2シールリングにおける凹部近傍に位置している部位が装着溝の溝底面に密着しなくなるため、同様の理由により、シール対象領域の流体圧力が高まりだしたときの応答性が高くなる。
 また、第1シールリングは、無端状の環状部材により構成されているとよい。
 これにより、シール対象領域の流体の漏れを抑制することができる。
 また、第1シールリングの周方向の1箇所には合口部が設けられていてもよい。
 これにより、第1シールリングの環状溝への取り付け作業を容易にすることができる。
 以上説明したように、本発明によれば、流体圧力が低い状態においても封止機能を発揮させることができ、かつ樹脂製のシールリングのクリープの進行を抑制することができる。
図1は本発明の実施例1に係る密封装置の概略図である。 図2は本発明の実施例1に係る密封装置の模式的断面図である。 図3は本発明の実施例1に係る密封構造の模式的断面図である。 図4は本発明の実施例2に係る密封構造の模式的断面図である。 図5は本発明の実施例3に係る密封構造の模式的断面図である。 図6は本発明の実施例4に係る第1シールリングの側面図である。 図7は本発明の実施例4に係る第1シールリングの側面図の一部拡大図である。 図8は本発明の実施例4に係る第1シールリングの側面図の一部拡大図である。 図9は本発明の実施例4に係る第1シールリングの外周面側から見た図の一部拡大図である。 図10は本発明の実施例4に係る第1シールリングの内周面側から見た図の一部拡大図である。 図11は本発明の実施例4に係る第1シールリングの合口部の斜視図である。 図12は本発明の実施例5に係る密封構造の模式的断面図である。 図13は本発明の実施例5に係る第1シールリングの側面図である。 図14は本発明の実施例5に係る密封構造の模式的断面図である。 図15は本発明の実施例6に係る密封構造の模式的断面図である。 図16は従来例に係るシールリングにおける油圧を保持していない状態と油圧を保持している状態を示す模式的断面図である。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。なお、本実施例に係る密封装置は、自動車用のATやCVTなどの変速機において、油圧を保持させるために、相対的に回転する軸とハウジングとの間の環状隙間を封止する用途に用いられるものである。また、以下の説明において、「高圧側」とは、密封装置の両側に差圧が生じた際に高圧となる側を意味し、「低圧側」とは、密封装置の両側に差圧が生じた際に低圧となる側を意味する。
 (実施例1)
 図1~図3を参照して、本発明の実施例1に係る密封装置について説明する。図1は本発明の実施例1に係る密封装置の概略図である。図1においては、左側に密封装置の平面図を示し、右側に密封装置を外周面側から見た図の一部拡大図を示している。図2は本発明の実施例1に係る密封装置の模式的断面図である。なお、図2は図1中のAA断面図に相当する。ただし、図2においては、密封装置を構成する第1シールリング110及び第2シールリング120の寸法関係が分かり易いように、これらのシールリングについては外力がかかっていない状態における断面図を示している。従って、第1シールリング110と第2シールリング120は一部重なった状態で示されている。また、図2においては、密封装置が装着される軸200及びハウジング300についても、各シールリングとの寸法関係が分かり易いように点線で示している。図3は本発明の実施例1に係る密封構造の模式的断面図である。
 <密封装置の構成>
 本発明の実施例に係る密封装置100の構成について説明する。本実施例に係る密封装置100は、軸200の外周面側に設けられた環状溝210に装着され、相対的に回転する軸200とハウジング300(ハウジング300における軸200が挿通される軸孔310の内周面)との間の環状隙間を封止する。これにより、密封装置100は、流体圧力(本実施例では油圧)が変化するように構成されたシール対象領域の流体圧力を保持する。ここで、本実施例においては、図3中の右側の領域の流体圧力が変化するように構成されており、密封装置100は図3中右側のシール対象領域の流体圧力を保持する役割を担っている。なお、自動車のエンジンが停止した状態においては、シール対象領域の流体圧力は低く、無負荷の状態となっており、エンジンをかけるとシール対象領域の流体圧力は高くなる。
 本実施例に係る密封装置100は、第1シールリング110と、ゴムなどの弾性体製の第2シールリング120とから構成される。
 第1シールリング110は、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリテトラフルオロエチレン(PTFE)などの樹脂製の無端状の環状部材により構成されている。また、第1シールリング110の外周面側には、環状の装着溝111が設けられている。この第1シールリング110は、断面が矩形の環状部材に対して、その外周面側に断面が矩形の装着溝111が形成された構成である。例えば、断面が矩形の環状部材を成形した後に、装着溝111を切削加工により得ることができる。ただし、製法は特に限定されるものではない。
 第2シールリング120は、第1シールリング110に設けられた装着溝111に装着される。第2シールリング120は、断面が円形のOリングである。ただし、本発明における第2シールリングについては、Oリングに限らず、断面が矩形の角リングなど、各種の弾性体製のシールリングを適用可能である。
 <密封装置と軸とハウジングとの寸法関係>
 特に、図2を参照して、外力が作用していない状態における密封装置100と軸200とハウジング300との寸法関係について説明する。第1シールリング110の内径は、環状溝210における溝底面における外径よりも大きい。また、第1シールリング110の外径は、ハウジング300の軸孔310の内周面の内径よりも小さい。従って、第1シールリング110の内周面は軸200の環状溝210の溝底面には接触せず、第1シールリング110の外周面はハウジング300の軸孔310の内周面にも接触しない。また、第1シールリング110の幅(軸線方向の幅)は、環状溝210の溝幅よりも狭い。従って、第1シールリング110は、環状溝210内において、軸線方向に移動可能である。
 そして、第2シールリング120の内径は、第1シールリング110に設けられた装着溝111の溝底面111aにおける外径よりも小さい。また、第2シールリング120の外径は、ハウジング300の軸孔310の内周面の内径よりも大きい。従って、第2シールリング120は、装着溝111の溝底面111aと、ハウジング300における軸孔310の内周面とに対してそれぞれ密着する。また、第2シールリング120の幅(軸線方向の幅)は、装着溝111の溝幅よりも狭い。従って、第2シールリング120は、装着溝111内において、軸線方向に移動可能である。
 また、本実施例に係る密封装置100においては、第2シールリング120における軸孔310の内周面に対する摺動抵抗よりも、第1シールリング110における環状溝210における低圧側(L)の側壁面211に対する摺動抵抗の方が小さくなるように設計されている。すなわち、使用環境における流体圧力(油圧)と各種部材の材質及びシール対象流体の特性に基づいて、各部材の寸法が設計されている。なお、第2シールリング120における軸孔310の内周面に対する押圧力は、第2シールリング120自体の弾性反発力と、密封装置100の内周面側にかかる流体圧力(油圧)に影響される。また、第1シールリング110における環状溝210における低圧側(L)の側壁面211に対する押圧力は、密封装置100に対する高圧側(H)からの流体圧力に影響される。これらの押圧力と各部材同士の摩擦係数に応じて、上記のような摺動抵抗の関係となるように、各シールリングの寸法が定められる。
 <密封装置の使用時のメカニズム>
 特に、図3を参照して、本実施例に係る密封装置100の使用時のメカニズムについて説明する。なお、図3においては、エンジンがかかり、密封装置100を介して、左側の領域に比べて右側の領域の流体圧力の方が高くなった状態を示している。
 本実施例に係る密封装置100においては、上記の通り、第2シールリング120は、装着溝111の溝底面111aと、ハウジング300における軸孔310の内周面とに対してそれぞれ密着する。そのため、エンジンが停止して、密封装置100を介して左右の領域の差圧がなく(または、差圧が殆どなく)、無負荷の状態であっても、第1シールリング110と軸孔310との間は封止されている。
 そして、エンジンがかかり、差圧が生じた状態においては、図3に示すように、高圧側(H)からの流体圧力によって、第1シールリング110は、その低圧側(L)の側面112が環状溝210における低圧側(L)の側壁面211に密着した状態となる。なお、第2シールリング120によって、第1シールリング110と軸孔310との間を封止した状態を維持していることは言うまでもない。
 <本実施例に係る密封装置の優れた点>
 本実施例に係る密封装置100によれば、上記の通り、第2シールリング120は、装着溝111の溝底面111aと、ハウジング300における軸孔310の内周面とに対してそれぞれ密着する。そのため、流体圧力が作用してない(差圧が生じていない)、または流体圧力が殆ど作用していない(差圧が殆ど生じていない)状態においても、第1シールリング110と軸孔310との間は第2シールリング120により封止されている。これにより、第1シールリング110が環状溝210における低圧側(L)の側壁面211に密着した状態を維持する限り、封止機能が発揮される。従って、シール対象領域の流体圧力が高まりだした直後から流体圧力を保持させることができる。つまり、アイドリングストップ機能を有するエンジンにおいては、エンジン停止状態から、ブレーキペダルが解除されたり、アクセルが踏み込まれたりすることでエンジンが始動することによって、シール対象領域側の油圧が高まりだした直後から油圧を保持させることができる。
 ここで、一般的には、樹脂製のシールリングの場合、流体の漏れを抑制する機能はあまり発揮されない。しかしながら、本実施例においては、弾性体製の第2シールリング120が設けられることにより、ある程度流体の漏れを抑制する機能が発揮される。そのため、エンジンが停止することでポンプなどによる作用が停止した後も、しばらくの間差圧が生じた状態を維持させることが可能となる。従って、アイドリングストップ機能を有するエンジンにおいて、エンジンの停止状態がそれほど長くない場合には、差圧が生じた状態を維持できるので、エンジンを再始動させた際に、その直後から好適に流体圧力を保持させることができる。
 なお、エンジンが停止してから、かなりの時間が経過した状態では、流体圧力が完全に作用しなくなる(差圧がゼロになる)。この場合、第1シールリング110が環状溝210の側壁面(差圧が生じた際における低圧側(L)の側壁面211)から離れ得る。そのため、流体の漏れが生じ得る。しかしながら、上記の通り、エンジンの停止状態がそれほど長くない場合には、差圧が生じた状態を維持できるので、第1シールリング110が環状溝210の低圧側(L)の側壁面211に密着した状態を維持することができる。従って、低負荷の状態であっても、流体の漏れを抑制する機能が発揮される。
 また、本実施例においては、第2シールリング120における軸孔310の内周面に対する摺動抵抗よりも、第1シールリング110における環状溝210における低圧側(L)の側壁面211に対する摺動抵抗の方が小さくなるような構成が採用されている。これにより、第1シールリング110と環状溝210における低圧側(L)の側壁面211との間で摺動させ、かつ、第2シールリング120と軸孔310の内周面との間では摺動しないようにさせることができる。また、第1シールリング110と第2シールリング120が供回りしてしまうことを抑制できる。これにより、第2シールリング120が摩耗してしまうことを抑制することができる。
 また、本実施例に係る第1シールリング110は、無端状の環状部材により構成されているので、シール対象領域の流体の漏れをより確実に抑制することができる。
 更に、本実施例においては、樹脂製の第1シールリング110が熱膨張により拡径しても、弾性体製の第2シールリング120によって第1シールリング110に対する反発力を抑制させることができる。これにより、第1シールリング110のクリープの進行を抑制することができる。
 (実施例2)
 図4には、本発明の実施例2が示されている。本実施例においては、上記実施例1に示す構成において、第1シールリングの両側面の内周面側に環状の切り欠きを設けることによって、第1シールリングの軸線方向の幅について、外周面側よりも内周面側の方が狭く構成される場合を示す。その他の構成および作用については実施例1と同一なので、同一の構成部分については同一の符号を付して、その説明は省略する。
 図4は本発明の実施例2に係る密封構造の模式的断面図である。なお、図4においては、エンジンがかかり、密封装置100を介して、左側の領域に比べて右側の領域の流体圧力の方が高くなった状態を示している。本実施例に係る密封装置100においても、上記実施例1の場合と同様に、樹脂製の第1シールリング110と、ゴムなどの弾性体製の第2シールリング120とから構成される。本実施例に係る第1シールリング110には、その両側面の内周面側に環状の切り欠き113が設けられている。その他の構成については、上記実施例1に示した構成と同一である。
 本実施例に係る密封装置100によれば、密封装置100を介して両側に差圧が生じた場合に、第1シールリング110の両側面に設けられた各切り欠き113に対してそれぞれ流体圧力が作用する。従って、切り欠き113が設けられた領域においては、軸線方向の流体圧力は平衡状態を保つ(図中、矢印参照)。そのため、第1シールリング110による環状溝210における低圧側(L)の側壁面211に対する押圧力は、第1シールリング110の高圧側(H)の側面における切り欠き113が設けられていない領域に対する高圧側(H)から低圧側(L)への流体圧力のみとなる。
 従って、第1シールリング110による環状溝210における低圧側(L)の側壁面211に対する摺動抵抗をより一層低減させることができる。
 (実施例3)
 図5には、本発明の実施例3が示されている。本実施例においては、上記実施例1に示す構成において、第1シールリングの両側面をテーパ面にすることによって、第1シールリングの軸線方向の幅について、外周面側よりも内周面側の方が狭く構成される場合を示す。その他の構成および作用については実施例1と同一なので、同一の構成部分については同一の符号を付して、その説明は省略する。
 図5は本発明の実施例3に係る密封構造の模式的断面図である。なお、図5においては、エンジンがかかり、密封装置100を介して、左側の領域に比べて右側の領域の流体圧力の方が高くなった状態を示している。本実施例に係る密封装置100においても、上記実施例1の場合と同様に、樹脂製の第1シールリング110と、ゴムなどの弾性体製の第2シールリング120とから構成される。本実施例に係る第1シールリング110においては、その両側面がテーパ面114により構成されている。これにより、第1シールリングの軸線方向の幅は、外周面側から内周面側に向かうにつれて徐々に狭くなっている。その他の構成については、上記実施例1に示した構成と同一である。
 本実施例に係る密封装置100によれば、密封装置100を介して両側に差圧が生じた場合に、第1シールリング110における外周端縁を除き、その両側面に対してそれぞれ流体圧力が作用する。従って、第1シールリング110における外周端縁を除く領域においては、軸線方向の流体圧力は平衡状態を保つ(図中、矢印参照)。従って、上記実施例2の場合よりも、第1シールリング110による環状溝210における低圧側(L)の側壁面211に対する摺動抵抗をより一層低減させることができる。
 (実施例4)
 図6~図11には、本発明の実施例4が示されている。本実施例においては、上記実施例1に示す第1シールリングに対して合口部を設ける場合の構成を示す。その他の構成および作用については実施例1と同一なので、同一の構成部分については同一の符号を付して、その説明は省略する。
 上記実施例1においては、第1シールリング110が無端状の環状部材により構成される場合を示した。この場合、シール対象流体の漏れを抑制する観点では優れている。ただし、この場合には、環状溝210への第1シールリング110の取り付け作業に手間がかかる。従って、第1シールリング110については、周方向の1箇所に合口部を設ける構成を採用することもできる。合口部については、ストレートカットやバイアスカットやステップカットなどの各種の公知技術を採用することができる。ただし、熱膨張収縮により第1シールリング110の周長が変化しても安定したシール性能を維持させることが可能な特殊ステップカットを採用するのが望ましい。そこで、第1シールリング110に特殊ステップカットを設ける場合の構成について、図6~図11を参照して説明する。
 図6は本発明の実施例4に係る第1シールリングの側面図である。図7は本発明の実施例4に係る第1シールリングの側面図の一部拡大図であり、図6中の丸で囲った部分を拡大した図である。図8は本発明の実施例4に係る第1シールリングの側面図の一部拡大図であり、図6中の丸で囲った部分の反対側の面を拡大した図である。図9は本発明の実施例4に係る第1シールリングの外周面側から見た図の一部拡大図であり、図6中の丸で囲った部分を外周面側から見た図である。図10は本発明の実施例4に係る第1シールリングの内周面側から見た図の一部拡大図であり、図6中の丸で囲った部分を内周面側から見た図である。図11は本発明の実施例4に係る第1シールリングの合口部の斜視図(図6中の丸で囲った部分の斜視図)である。なお、(A)は切断部を介した両側の端部を示し、(B)は切断部を介した一方側の端部を示している。
 本実施例に係る第1シールリング110Xにおいては、周方向の1箇所に合口部150が設けられている。この合口部150は、外周面側及び両側壁面側のいずれから見ても階段状に切断された特殊ステップカットを採用している。これにより、第1シールリング110Xにおいては、切断部を介して一方の側の外周側には第1嵌合凸部151及び第1嵌合凹部154が設けられ、他方の側の外周側には第1嵌合凸部151が嵌る第2嵌合凹部153と第1嵌合凹部154に嵌る第2嵌合凸部152が設けられている。なお、切断部を介して一方の側の内周面側の端面155と他方の側の内周側の端面156は互いに対向している。特殊ステップカットに関しては公知技術であるので、その詳細な説明は省略するが、熱膨張収縮により第1シールリング110Xの周長が変化しても安定したシール性能を維持する特性を有する。
 なお、上記実施例2,3に示す第1シールリングに対しても、合口部(特に、特殊ステップカット)を設けてもよいことは言うまでもない。
 (実施例5)
 図12~14には、本発明の実施例5が示されている。本実施例においては、上記実施例1に示す構成において、第1シールリングに、装着溝の溝底面から第1シールリングの内周面に至る貫通孔が設けられる場合を示す。その他の構成および作用については実施例1と同一なので、同一の構成部分については同一の符号を付して、その説明は省略する。
 図12は本発明の実施例5に係る密封構造の模式的断面図である。図12においては、密封装置100の両側に差圧が生じておらず、密封装置100が環状溝210の何れの側壁面からも離間している状態を示している。図13は、実施例5に係る第1シールリングの側面図である。なお、図12に示される第1シールリング110の断面は、図13中のBB断面に相当し、貫通孔116が形成されている部位の断面を示している。図14は実施例5に係る密封構造の模式的断面図であって、エンジンがかかり、密封装置100を介して、左側の領域に比べて右側の領域の流体圧力の方が高くなった状態を示している。本実施例に係る密封装置100も、上記実施例1の場合と同様に、樹脂製の第1シールリング110と、ゴムなどの弾性体製の第2シールリング120とから構成される。そして、本実施例に係る第1シールリング110には、装着溝111の溝底面111aから第1シールリング110の内周面115に至る貫通孔116が設けられている。図13に示されるように、本実施例においては、貫通孔116は周方向に等間隔に合計8つ設けられており、それぞれは径方向に直線的に形成されている。その他の構成については、上記実施例1に示した構成と同一である。
 上記の実施例1についての説明において既に述べたように、本実施例に係る密封装置100においても、第2シールリング120は、装着溝111の溝底面111aと、ハウジング300における軸孔310の内周面とに対してそれぞれ密着している。これにより、弾性体製の第2シールリング120は、溝底面111aと軸孔310の内周面とによって弾性的に圧縮された状態にある。したがって、第2シールリング120自体の弾性反発力によって、第2シールリング120は軸孔310の内周面を押圧している。
 ここで、本実施例に係る密封装置100においては、第1シールリング110に複数の貫通孔116が設けられているため、第2シールリング120における貫通孔116の近傍に位置している部位は装着溝111の溝底面111aに密着しない。つまり、図12に示されるように、第2シールリング120における貫通孔116の近傍に位置している部位は、その内周側が貫通孔116内に入り込むように変形する。これにより、当該部位は、第2シールリング120の他の部位よりも圧縮されなくなるため、当該部位においては、第2シールリング120が軸孔310の内周面を押圧する力が低下する。つまり、第2シールリング120における軸孔310の内周面に対する押圧力が局所的に低下する。これにより、軸200の環状溝210内において、密封装置100が軸方向に移動するときに作用する抵抗(第2シールリング120に作用する軸方向の摺動抵抗)が低下する。
 以上より、本実施例に係る密封装置100によれば、シール対象領域の流体圧力が高まりだしたときの応答性が高くなる。つまり、図12に示されるように、密封装置100の両側に差圧が生じていないことによって、密封装置100が環状溝210の何れの側壁面から離間していたとしても、シール対象領域の流体圧力が高まりだしたときには、高圧側(H)から作用する流体圧力によって密封装置100は低圧側(L)に移動する。ここで、本実施例に係る密封装置100は、第2シールリング120における軸孔310の内周面に対する押圧力が局所的に低下していることから、軸方向に移動するときに作用する抵抗が低いため、上記の実施例1に係る密封装置などと比べて、より速やかに低圧側(L)に移動することができる。したがって、本実施例に係る密封装置100によれば、図14に示されるような、第1シールリング110における低圧側(L)の側面112が、環状溝210における低圧側(L)の側壁面211に密着した状態、すなわち、流体圧力が保持された状態に、より速やかに移行することができる。なお、本実施例に係る密封装置100においても、上記実施例1と同様の効果が奏される。
 本実施例に係る密封装置100においては、貫通孔116の個数は特に限定されず、少なくとも1つあればよい。そして、その個数や形状は、所望の効果が奏されるように、第2シールリング120の弾性係数や寸法等に基づいて適宜設定することができる。また、上記実施例4と同様に、本実施例に係る第1シールリング110に対しても、合口部(特に、特殊ステップカット)を設けてもよいことは言うまでもない。
 (実施例6)
 図15には、本発明の実施例6が示されている。本実施例においては、上記実施例1に示す構成において、第1シールリングにおける装着溝の溝底面に、径方向内側に凹んだ凹部が設けられる場合を示す。なお、本実施例は、上記実施例5に示す構成において、第1シールリングに設けられた貫通孔に替えて、装着溝の溝底面に径方向内側に凹んだ凹部が設けられた実施例とも捉えることができる。その他の構成および作用については実施例1と同一なので、同一の構成部分については同一の符号を付して、その説明は省略する。
 図15は本発明の実施例5に係る密封構造の模式的断面図であって、エンジンがかかり、密封装置100を介して、左側の領域に比べて右側の領域の流体圧力の方が高くなった状態を示している。本実施例に係る密封装置100も、上記実施例1の場合と同様に、樹脂製の第1シールリング110と、ゴムなどの弾性体製の第2シールリング120とから構成される。そして、本実施例に係る第1シールリング110における装着溝111の溝底面111aには、径方向内側に凹んだ凹部117が設けられている。なお、特に図示していないが、本実施例においては、上記実施例5における貫通孔116と同様に、凹部117は周方向に等間隔に合計8つ設けられている。その他の構成については、上記実施例1に示した構成と同一である。
 本実施例に係る密封装置100においては、第1シールリング110に複数の凹部117が設けられているため、上記実施例5と同様に、第2シールリング120における凹部117の近傍に位置している部位が装着溝111の溝底面111aに密着しなくなる。つまり、図15に示されるように、第2シールリング120における凹部117の近傍に位置している部位は、その内周側が凹部117内に入り込むように変形する。なお、変形した部位は、凹部117の底面に接触してもよいし、しなくてもよい。何れの場合であっても、当該部位は、第2シールリング120の他の部位よりも圧縮されなくなるため、当該部位においては、第2シールリング120が軸孔310の内周面を押圧する力が低下する。したがって、実施例5における密封装置と同様に、本実施例に係る密封装置100においても、シール対象領域の流体圧力が高まりだしたときの応答性が高くなる。
 本実施例に係る密封装置100においても、凹部117の個数は特に限定されず、少なくとも1つあればよい。そして、その個数や形状(深さ)は、所望の効果が奏されるように、第2シールリング120の弾性係数や寸法等に基づいて適宜設定することができる。また、上記実施例4と同様に、本実施例に係る第1シールリング110に対しても、合口部(特に、特殊ステップカット)を設けてもよいことは言うまでもない。
 100 密封装置
 110,110X 第1シールリング
 111 装着溝
 111a 溝底面
 112 側面
 113 切り欠き
 114 テーパ面
 115 内周面
 116 貫通孔
 117 凹部
 120 第2シールリング
 150 合口部
 151 第1嵌合凸部
 152 第2嵌合凸部
 153 第2嵌合凹部
 154 第1嵌合凹部
 155,156 端面
 200 軸
 210 環状溝
 211 側壁面
 300 ハウジング
 310 軸孔

Claims (13)

  1.  軸の外周面側に設けられた環状溝に装着され、相対的に回転する前記軸とハウジングとの間の環状隙間を封止して、流体圧力が変化するように構成されたシール対象領域の流体圧力を保持する密封装置において、
     外周面側に環状の装着溝が形成され、かつ前記環状溝における低圧側の側壁面に対して摺動する樹脂製の第1シールリングと、
     前記装着溝の溝底面と、前記ハウジングにおける前記軸が挿通される軸孔の内周面とに対してそれぞれ密着する弾性体製の第2シールリングと、
     を備えることを特徴とする密封装置。
  2.  第1シールリングの軸線方向の幅は、外周面側よりも内周面側の方が狭く構成されていることを特徴とする請求項1に記載の密封装置。
  3.  第1シールリングには、前記装着溝の溝底面から第1シールリングの内周面に至る貫通孔が設けられていることを特徴とする請求項1または2に記載の密封装置。
  4.  第1シールリングにおける前記装着溝の溝底面には、径方向内側に凹んだ凹部が設けられていることを特徴とする請求項1または2に記載の密封装置。
  5.  第1シールリングは、無端状の環状部材により構成されていることを特徴とする請求項1から4の何れか1項に記載の密封装置。
  6.  第1シールリングの周方向の1箇所には合口部が設けられていることを特徴とする請求項1から4の何れか1項に記載の密封装置。
  7.  外周面側に環状溝を備える軸と、
     該軸が挿通される軸孔を備えるハウジングと、
     前記環状溝に装着され、相対的に回転する前記軸とハウジングとの間の環状隙間を封止して、流体圧力が変化するように構成されたシール対象領域の流体圧力を保持する密封装置と、を備える密封構造において、
     前記密封装置は、
     外周面側に環状の装着溝が形成され、かつ前記環状溝における低圧側の側壁面に対して摺動する樹脂製の第1シールリングと、
     前記装着溝の溝底面と、前記軸孔の内周面とに対してそれぞれ密着する弾性体製の第2シールリングと、
     を備えることを特徴とする密封構造。
  8.  第2シールリングにおける前記軸孔の内周面に対する摺動抵抗よりも、第1シールリングにおける前記環状溝における低圧側の側壁面に対する摺動抵抗の方が小さいことを特徴とする請求項7に記載の密封構造。
  9.  第1シールリングの軸線方向の幅は、外周面側よりも内周面側の方が狭く構成されていることを特徴とする請求項8に記載の密封構造。
  10.  第1シールリングには、前記装着溝の溝底面から第1シールリングの内周面に至る貫通孔が設けられていることを特徴とする請求項7から9の何れか1項に記載の密封構造。
  11.  第1シールリングにおける前記装着溝の溝底面には、径方向内側に凹んだ凹部が設けられていることを特徴とする請求項7から9の何れか1項に記載の密封構造。
  12.  第1シールリングは、無端状の環状部材により構成されていることを特徴とする請求項7から11の何れか1項に記載の密封構造。
  13.  第1シールリングの周方向の1箇所には合口部が設けられていることを特徴とする請求項7から11の何れか1項に記載の密封構造。
PCT/JP2016/053908 2015-02-17 2016-02-10 密封装置及び密封構造 WO2016132981A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017500625A JP6432670B2 (ja) 2015-02-17 2016-02-10 密封装置及び密封構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015028853 2015-02-17
JP2015-028853 2015-02-17

Publications (1)

Publication Number Publication Date
WO2016132981A1 true WO2016132981A1 (ja) 2016-08-25

Family

ID=56689268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053908 WO2016132981A1 (ja) 2015-02-17 2016-02-10 密封装置及び密封構造

Country Status (2)

Country Link
JP (1) JP6432670B2 (ja)
WO (1) WO2016132981A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111734825A (zh) * 2020-05-20 2020-10-02 上海巨乾工贸有限公司 一种恒定压力推进挤压密封环

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102498260B1 (ko) * 2021-05-04 2023-02-10 주식회사 엔티엠 멀티웨이밸브 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547623U (ja) * 1991-11-29 1993-06-25 エヌオーケー株式会社 密封装置
JP2010059991A (ja) * 2008-09-01 2010-03-18 Nok Corp 密封装置
JP2012255495A (ja) * 2011-06-09 2012-12-27 Nok Corp シールリング
WO2015020075A1 (ja) * 2013-08-08 2015-02-12 Nok株式会社 シールリング

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4140833C3 (de) * 1991-04-30 1995-03-16 Busak & Luyken Gmbh & Co Dichtungsanordnung
JPH09133215A (ja) * 1995-11-06 1997-05-20 Nok Corp 密封装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547623U (ja) * 1991-11-29 1993-06-25 エヌオーケー株式会社 密封装置
JP2010059991A (ja) * 2008-09-01 2010-03-18 Nok Corp 密封装置
JP2012255495A (ja) * 2011-06-09 2012-12-27 Nok Corp シールリング
WO2015020075A1 (ja) * 2013-08-08 2015-02-12 Nok株式会社 シールリング

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111734825A (zh) * 2020-05-20 2020-10-02 上海巨乾工贸有限公司 一种恒定压力推进挤压密封环

Also Published As

Publication number Publication date
JP6432670B2 (ja) 2018-12-05
JPWO2016132981A1 (ja) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6491374B2 (ja) シールリング
US10359114B2 (en) Sealing device
JP6314689B2 (ja) 密封装置
JP6432670B2 (ja) 密封装置及び密封構造
WO2016113923A1 (ja) シールリング及び密封構造
WO2017094779A1 (ja) 軸及び密封構造
JP5545420B1 (ja) シールリング
WO2014045838A1 (ja) 密封装置
WO2015020075A1 (ja) シールリング
JP6458905B2 (ja) シールリング
JP2017133571A (ja) 密封装置
JP6170271B2 (ja) シールリング
JP2017125570A (ja) 密封装置
JP6865122B2 (ja) 密封構造
JP6623775B2 (ja) 密封構造
JP6566040B2 (ja) シールリング
JP2017145878A (ja) 密封装置及び密封構造
JP2017150504A (ja) 密封構造
JP2017155771A (ja) 密封装置及び密封構造
JP2017150590A (ja) 密封装置
JP2017150594A (ja) 密封構造
JP2013072472A (ja) 密封装置
JP2014109347A (ja) 密封構造
JP2017122474A (ja) 密封構造
JP2017082877A (ja) シールリング

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500625

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16752367

Country of ref document: EP

Kind code of ref document: A1