WO2016132564A1 - 熱硬化性樹脂組成物、プリプレグ、および、積層板 - Google Patents

熱硬化性樹脂組成物、プリプレグ、および、積層板 Download PDF

Info

Publication number
WO2016132564A1
WO2016132564A1 PCT/JP2015/055788 JP2015055788W WO2016132564A1 WO 2016132564 A1 WO2016132564 A1 WO 2016132564A1 JP 2015055788 W JP2015055788 W JP 2015055788W WO 2016132564 A1 WO2016132564 A1 WO 2016132564A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
laminated
resin composition
weight
average particle
Prior art date
Application number
PCT/JP2015/055788
Other languages
English (en)
French (fr)
Inventor
裕紀 奥村
Original Assignee
利昌工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 利昌工業株式会社 filed Critical 利昌工業株式会社
Priority to CN201580076223.9A priority Critical patent/CN107429067B/zh
Priority to KR1020177026102A priority patent/KR102265358B1/ko
Publication of WO2016132564A1 publication Critical patent/WO2016132564A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Definitions

  • the present invention relates to a thermosetting resin composition, a prepreg using the thermosetting resin composition, and a laminate using the prepreg.
  • a substrate on which electronic components with heat generation such as chip LEDs are mounted has a problem in heat dissipation with a conventional substrate, and is disclosed in Patent Document 2, for example, in order to solve such a problem.
  • a surface material layer impregnated with the resin composition on a woven fiber base material was laminated and integrated. Composite laminates have been proposed.
  • the conventional white substrate since titanium dioxide, aluminum oxide, or the like is used as a pigment, there is a merit in that the light emitted from the LED element is efficiently reflected in the visible light region.
  • heat dissipation is not sufficient to dissipate the heat of the electronic component that generates heat due to low thermal conductivity.
  • the conventional white substrate is not imparted with flame retardancy, it has been difficult to achieve V-0 with UL-94, which is required for safety.
  • the conventional composite laminate has the merit of being excellent in thermal conductivity, heat resistance, drill workability and flame retardancy due to the composite structure.
  • it is a composite structure composed of a surface material layer and a core material layer, it has been difficult to reduce the thickness, and there has been a problem that it is restricted in terms of thermal resistance.
  • the present invention is excellent in all of thermal conductivity, visible light region reflectance, discoloration resistance, insulation, flame retardancy, and drill workability, and enables thinning. It is an object of the present invention to provide a laminated board, and further to provide a thermosetting resin composition and a prepreg for achieving this object.
  • thermosetting resin composition of the present invention is a thermosetting resin composition containing 100 to 400 parts by weight of an inorganic filler with respect to 100 parts by weight of the thermosetting resin. It is characterized by having at least titanium dioxide having an average particle diameter of 1 to 1.0 ⁇ m and aluminum hydroxide having an average particle diameter of 1.0 to 20.0 ⁇ m.
  • the prepreg of the present invention is formed by impregnating a fiber base material with the thermosetting resin composition and semi-curing it.
  • a glass woven fabric is used as the fiber base material.
  • the laminated board of the present invention is characterized in that it is formed by laminating one or a plurality of the prepregs, followed by heat and pressure molding.
  • a metal foil is disposed on at least one surface of one or a plurality of the prepregs laminated.
  • a metal foil is disposed on one surface of a laminate of one or a plurality of the prepregs, and a heat radiating metal base plate is disposed on the other surface.
  • One or a plurality of stacked layers are arranged as an insulating layer.
  • thermosetting resin composition of the present invention is a thermosetting resin composition containing 100 to 400 parts by weight of an inorganic filler with respect to 100 parts by weight of the thermosetting resin. Laminate using the thermosetting resin composition by having at least titanium dioxide having an average particle diameter of 1 to 1.0 ⁇ m and aluminum hydroxide having an average particle diameter of 1.0 to 20.0 ⁇ m In addition, it is possible to impart high reflectance in the visible light region, high thermal conductivity, and flame retardancy.
  • the prepreg of the present invention was formed by impregnating a fiber base material with the thermosetting resin composition and semi-curing it, and a glass woven fabric was used as the fiber base material. In this case, thinning can be achieved while maintaining a practical strength, and by achieving thinning, the thermal resistance in the thickness direction of the laminated plate can be reduced.
  • the laminated plate of the present invention is formed by laminating one or a plurality of the prepregs and forming by heat and pressure molding, so that thermal conductivity, visible light region reflectance, discoloration resistance, insulation, flame retardancy are formed.
  • thermal conductivity, visible light region reflectance, discoloration resistance, insulation, flame retardancy are formed.
  • thermosetting resin composition prepreg, and laminate of the present invention will be described. First, the thermosetting resin composition of the present invention will be described.
  • thermosetting resin composition of the present invention is a resin composition that is used by impregnating a fiber base material when forming a prepreg, and 100 to 400 parts by weight of an inorganic filler per 100 parts by weight of the thermosetting resin. Part by weight is contained.
  • the inorganic filler contains at least titanium dioxide having an average particle diameter of 0.1 to 1.0 ⁇ m and aluminum hydroxide having an average particle diameter of 1.0 to 20.0 ⁇ m.
  • thermosetting resin an epoxy resin, an unsaturated polyester resin, a diallyl phthalate resin, a thermosetting polyimide resin, or the like is appropriately selected and used. And the said thermosetting resin is used as a liquid, adding a solvent etc. as needed. Furthermore, additives such as a curing agent and a curing accelerator are added to the thermosetting resin as necessary.
  • the titanium dioxide imparts high reflectivity and high thermal conductivity in the visible light region to the laminate when the thermosetting resin composition of the present invention is used for the laminate.
  • the average particle diameter of the titanium dioxide is 0.1 to 1.0 ⁇ m, preferably 0.1 to 0.8 ⁇ m. When the average particle diameter of the titanium dioxide is less than 0.05 ⁇ m, the visible light reflectance and thermal conductivity of the laminate may be lowered. Moreover, when the average particle diameter of the said titanium dioxide is larger than 1.0 micrometer, the visible light reflectance of the said laminated board may fall.
  • the aluminum hydroxide imparts flame retardancy and thermal conductivity to the laminate when the thermosetting resin composition is used for the laminate.
  • the average particle diameter of the aluminum hydroxide is 1.0 to 20.0 ⁇ m, preferably 1.0 to 15.0 ⁇ m. When the average particle diameter of the aluminum hydroxide is less than 1.0 ⁇ m, flame retardancy and thermal conductivity may be lowered. Moreover, when the average particle diameter of the aluminum hydroxide is larger than 20.0 ⁇ m, drill workability may be lowered.
  • the average particle diameter of the titanium dioxide and the aluminum hydroxide is limited to the above range, and the average particle diameters are different from each other.
  • the inorganic filler is present more densely in the thermosetting resin composition, and when the thermosetting resin composition is used for a laminate, excellent discoloration resistance and thermal conductivity are obtained. It becomes possible to grant.
  • the compounding ratio of the titanium dioxide and the aluminum hydroxide is 1: 0.2 to 1: 1.5, preferably 1: 0.3 to 1: 1.
  • the blending amount of aluminum hydroxide is less than 0.2 with respect to the blending amount 1 of titanium dioxide, flame retardancy and thermal conductivity may be reduced when the thermosetting resin composition is used for a laminate.
  • the compounding quantity of aluminum hydroxide exceeds 1.5 with respect to the compounding quantity 1 of titanium dioxide, when the said thermosetting resin composition is used for a laminated board, heat resistance and discoloration resistance may fall. is there.
  • inorganic filler in addition to titanium dioxide and aluminum hydroxide, for example, oxides such as aluminum oxide, magnesium oxide and silica, hydroxides such as magnesium hydroxide, nitriding such as boron nitride, aluminum nitride and silicon nitride It is also possible to further include carbides such as silicon carbide and boron carbide.
  • oxides such as aluminum oxide, magnesium oxide and silica
  • hydroxides such as magnesium hydroxide
  • nitriding such as boron nitride, aluminum nitride and silicon nitride
  • carbides such as silicon carbide and boron carbide.
  • the Mohs hardness of the inorganic filler contained in the thermosetting resin composition is preferably 8 or less. If the Mohs hardness of the inorganic filler exceeds 8, if the thermosetting resin composition is used for a laminate, drill workability may be reduced.
  • the compounding ratio of the inorganic filler to 100 parts by weight of the thermosetting resin is 100 to 400 parts by weight, preferably 150 to 350 parts by weight.
  • the thermal conductivity may be lowered when the thermosetting resin composition is used for the laminate,
  • the productivity of the laminate using the thermosetting resin composition may be reduced.
  • thermosetting resin composition A method for producing the thermosetting resin composition will be described. Disperse the thermosetting resin with an inorganic filler containing at least titanium dioxide and aluminum hydroxide and, if necessary, stir or knead using a surfactant such as a higher fatty acid and a functional group copolymer. Let At this time, a solvent or the like may be used as necessary.
  • the prepreg of the present invention using the thermosetting resin composition will be described.
  • the prepreg of the present invention is obtained by impregnating the thermosetting resin composition into a fiber substrate in a woven fabric, non-woven fabric or the like, and then drying by heating, whereby the thermosetting resin becomes a semi-cured state. It is done.
  • the fiber base material used in the prepreg of the present invention include glass woven fabric.
  • the fiber of the fiber base material glass fiber, liquid crystal polymer fiber, aramid fiber, carbon fiber, polyester fiber, nylon fiber, acrylic fiber, vinylon fiber and the like are used.
  • the laminate of the present invention is obtained by sandwiching one or a plurality of the prepregs laminated with a metal plate as heating and pressurizing means, and heating and press molding at a predetermined temperature and pressure.
  • the metal foil-clad laminate 1 that is one form of the laminate of the present invention will be described.
  • the metal foil-clad laminate 1 is obtained by arranging the metal foil 3 on at least one surface of one or a plurality of prepregs 2 laminated and then heating and pressing.
  • the metal foil 3 is not particularly limited, a copper foil, an aluminum foil or the like is mainly used.
  • FIG. 1 shows a form in which two prepregs 2 are laminated and metal foils 3 are arranged on both surfaces.
  • the metal foil-clad laminate 1 is impregnated with the thermosetting resin composition in a glass woven fabric that is a fiber base material.
  • the thermosetting resin composition impregnated in the glass woven fabric is dried by heating to obtain the prepreg 2 in which the thermosetting resin composition is in a semi-cured state.
  • the metal foil-clad laminate 1 having a cross-sectional structure as shown in FIG. 1 is completed when sandwiched between metal plates as heating and pressurizing means and heated and pressed at a predetermined temperature and pressure.
  • the laminated plate can achieve thinning while maintaining a practical strength. Furthermore, it is possible to reduce the thermal resistance in the thickness direction by reducing the thickness, and it is possible to increase the heat dissipation.
  • the thermal resistance means, for example, that based on the evaluation method of the heat radiation characteristic defined by the test method in the JPCA standard JPCA-TMC-LED02T-2010.
  • the metal base metal foil-clad laminate 10 has one or more prepregs 2 laminated with a metal foil 3 on one surface and a heat radiating metal base plate 4 on the other surface. It is obtained by heat and pressure molding.
  • the metal-base metal foil-clad laminate 10 shown in FIG. 2 has a metal foil 3 disposed on one surface of a laminate of two prepregs 2 and a heat-dissipation metal base plate 4 disposed on the other surface. It is pressure molded.
  • a laminate of the two prepregs 2 becomes an insulating layer.
  • the prepreg 2 when used as the insulating layer, not only has a low whiteness and a white appearance while maintaining the same heat dissipation.
  • the laminated board of this invention is demonstrated using an Example.
  • Examples 1 to 7 and Comparative Examples 1 to 7 will be described in order.
  • thermosetting resin varnish containing a bisphenol A type epoxy resin and an amine curing agent
  • a thermosetting resin varnish in which 100 parts by weight of aluminum hydroxide having an average particle diameter of 2.3 ⁇ m is uniformly dispersed is prepared.
  • thermosetting resin varnish is impregnated and semi-cured into a glass fiber woven fabric having a basis weight of 203 g / m 2 so that the thickness after molding becomes 0.2 mm to obtain a prepreg.
  • Five prepregs are laminated, 0.035 mm thick copper foil is arranged on both outer layers, and then heated and pressed (temperature: 180 ° C., pressure: 3 MPa) to give a 1.0 mm thick metal foil A laminated laminate is obtained.
  • thermosetting resin varnish having the same conditions as in Example 1 was prepared, and a prepreg was obtained by impregnating and semi-curing a glass fiber woven fabric having a basis weight of 48 g / m 2 so that the thickness after molding was 0.05 mm. .
  • Two prepregs are laminated, a copper foil having a thickness of 0.035 mm is disposed on both outer layers, and then a metal foil having a thickness of 0.1 mm is formed by heating and pressing (temperature: 180 ° C., pressure: 3 MPa). A laminated laminate is obtained.
  • thermosetting resin varnish containing a bisphenol A type epoxy resin and an amine curing agent
  • a thermosetting resin varnish in which 100 parts by weight of aluminum hydroxide having an average particle diameter of 18.6 ⁇ m is uniformly dispersed is prepared.
  • thermosetting resin varnish is impregnated and semi-cured into a glass fiber woven fabric having a basis weight of 203 g / m 2 so that the thickness after molding becomes 0.2 mm to obtain a prepreg.
  • Five prepregs are laminated, 0.035 mm thick copper foil is arranged on both outer layers, and then heated and pressed (temperature: 180 ° C., pressure: 3 MPa) to give a 1.0 mm thick metal foil A laminated laminate is obtained.
  • thermosetting resin varnish containing a bisphenol A type epoxy resin and an amine curing agent; Uniformly 75 parts by weight of titanium dioxide having an average particle diameter of 0.5 ⁇ m, 50 parts by weight of aluminum hydroxide having an average particle diameter of 2.3 ⁇ m, and 50 parts by weight of aluminum hydroxide having an average particle diameter of 18.6 ⁇ m A thermosetting resin varnish dispersed in is prepared.
  • thermosetting resin varnish is impregnated and semi-cured into a glass fiber woven fabric having a basis weight of 203 g / m 2 so that the thickness after molding becomes 0.2 mm to obtain a prepreg.
  • Five prepregs are laminated, 0.035 mm thick copper foil is arranged on both outer layers, and then heated and pressed (temperature: 180 ° C., pressure: 3 MPa) to give a 1.0 mm thick metal foil A laminated laminate is obtained.
  • thermosetting resin varnish containing the bisphenol A type epoxy resin and the amine curing agent
  • a dispersed thermosetting resin varnish is prepared.
  • thermosetting resin varnish is impregnated and semi-cured into a glass fiber woven fabric having a basis weight of 203 g / m 2 so that the thickness after molding becomes 0.2 mm to obtain a prepreg.
  • Five prepregs are laminated, 0.035 mm thick copper foil is arranged on both outer layers, and then heated and pressed (temperature: 180 ° C., pressure: 3 MPa) to give a 1.0 mm thick metal foil A laminated laminate is obtained.
  • thermosetting resin varnish containing a bisphenol A type epoxy resin and an amine curing agent
  • 80 parts by weight of titanium dioxide having an average particle diameter of 0.5 ⁇ m 90 parts by weight of aluminum hydroxide having an average particle diameter of 2.3 ⁇ m, 50 parts by weight of aluminum hydroxide having an average particle diameter of 18.6 ⁇ m
  • 9 A thermosetting resin varnish in which 5 parts by weight of aluminum oxide having an average particle diameter of 2 ⁇ m is uniformly dispersed is prepared.
  • thermosetting resin varnish is impregnated and semi-cured into a glass fiber woven fabric having a basis weight of 203 g / m 2 so that the thickness after molding becomes 0.2 mm to obtain a prepreg.
  • Five prepregs are laminated, 0.035 mm thick copper foil is arranged on both outer layers, and then heated and pressed (temperature: 180 ° C., pressure: 3 MPa) to give a 1.0 mm thick metal foil A laminated laminate is obtained.
  • Example 2 Two prepregs used in Example 2 were stacked, a copper foil having a thickness of 0.035 mm was disposed on one surface, and an aluminum plate having a thickness of 1.0 mm was disposed on the other surface for heat dissipation, A metal-base metal foil-laminated laminate having a thickness of 1.1 mm is obtained by hot pressing (temperature: 180 ° C., pressure: 3 MPa).
  • Comparative Example 1 was the same as Example 1 except that the inorganic filler was not added.
  • Comparative Example 2 was obtained by changing the inorganic filler to 250 parts by weight of titanium dioxide having an average particle diameter of 0.2 ⁇ m in the same manner as in Example 1.
  • Comparative Example 3 was obtained by changing the inorganic filler to 250 parts by weight of aluminum hydroxide having an average particle diameter of 2.3 ⁇ m in the same manner as in Example 1.
  • Comparative Example 4 was obtained by changing the inorganic filler to 250 parts by weight of aluminum oxide having an average particle diameter of 9.2 ⁇ m in the same manner as in Example 1.
  • Example 5 In the same manner as in Example 1, the inorganic filler was changed to 150 parts by weight of titanium dioxide having an average particle diameter of 0.03 ⁇ m and 100 parts by weight of aluminum hydroxide having an average particle diameter of 55.3 ⁇ m. This was designated as Comparative Example 5.
  • Example 6 In the same manner as in Example 1, the inorganic filler was changed to 300 parts by weight of titanium dioxide having an average particle diameter of 0.2 ⁇ m and 200 parts by weight of aluminum hydroxide having an average particle diameter of 2.3 ⁇ m. This was designated as Comparative Example 6.
  • thermosetting resin varnish used in Example 1 a thermosetting resin varnish in which the bisphenol A type epoxy resin is changed to a mixed resin of bisphenol A type epoxy resin and phenoxy resin is prepared.
  • the adhesive sheet is obtained by applying and heat-drying the thermosetting resin varnish on a PET film so that the thickness after molding becomes 0.05 mm.
  • Two sheets of the adhesive sheet were laminated in the same manner as in Example 4, a 0.035 mm thick copper foil was placed on one surface, and a 1.0 mm thick aluminum plate was placed on the other surface for heat dissipation. Then, by heating and pressing (temperature: 180 ° C., pressure: 3 MPa), a metal base metal foil-laminated laminate having a thickness of 1.1 mm is obtained.
  • the metal foil-clad laminates obtained in Examples 1 to 6 and Comparative Examples 1 to 6 were evaluated by the following methods.
  • the results of Examples 1 to 6 are shown in Table 1, and the results of Comparative Examples 1 to 6 are shown in Table 2. Shown in
  • Drilling blade remaining rate With the obtained metal foil-clad laminates stacked, use a 0.3 mm diameter drill and drill 3000 holes under the conditions of a rotation speed of 120,000 rpm and a feed rate of 0.03 mm / rev. The drill blade remaining rate after being provided was calculated by the ratio of the drill blade area after processing to the drill blade area before processing.
  • Thermal conductivity (W / m ⁇ K) density (kg / m 3) ⁇ specific heat capacity (J / g ⁇ K) ⁇ thermal diffusivity (m 2 / s) ⁇ 1000
  • the thermal resistance of the obtained metal foil-clad laminate was measured by a method based on JPCA-TMC-LED02T-2010 of JPCA (Japan Electronic Circuits Association).
  • Example 7 The metal-base metal foil-clad laminate obtained in Example 7 and Comparative Example 7 was evaluated by the following method, and the results are shown in Table 3. The same method as in Table 1 is used for the reflectance measurement and the thermal conductivity calculation method.
  • a predetermined sample was sandwiched between electrodes of the same diameter by a method according to JIS C2110-1, a voltage was applied at a boosting rate of 500 V / s, and the dielectric breakdown voltage was measured.
  • the laminate of the present invention has the effect of being excellent in thermal conductivity by using predetermined particles of titanium dioxide and aluminum hydroxide as the inorganic filler of the thermosetting resin composition of the prepreg.
  • titanium dioxide as the inorganic filler, it has an excellent effect in the visible light region reflectance, and further, by reducing the organic component by making the inorganic filler a higher ratio than before, it is possible to change color resistance. Excellent effect.
  • the inorganic filler by using titanium dioxide as the inorganic filler and further reducing the organic component by setting the inorganic filler to a higher ratio than before, an effect excellent in flame retardancy can be achieved.
  • the use of a low hardness filler such as titanium dioxide or aluminum hydroxide having a predetermined particle diameter as the inorganic filler produces an effect excellent in drill workability.
  • the laminated sheet can be made thin, the thermal resistance is greatly reduced, and the effect of excellent heat dissipation is achieved.
  • the prepreg of the present invention is used for an insulating layer of a metal-based metal foil-clad laminate, the insulation reliability of the metal-based metal foil-clad laminate can be made excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

要約 課題 熱伝導性、可視光領域反射率、耐変色性、絶縁性、難燃性、およびドリル加工性の全てにおいて優れており、かつ薄葉化を可能にする積層板、および積層板に用いられるプリプレグを提供する。 解決手段 熱硬化性樹脂100重量部に対し、無機充填材を100~400重量部含有する熱硬化性樹脂組成物であって、前記無機充填剤として、0.1~1.0μmの平均粒子径を有する二酸化チタン、および、1.0~20.0μmの平均粒子径を有する水酸化アルミニウムを少なくとも有する。

Description

熱硬化性樹脂組成物、プリプレグ、および、積層板
 本発明は、熱硬化性樹脂組成物、前記熱硬化性樹脂組成物を用いたプリプレグ、および、前記プリプレグを用いた積層板に関するものである。
 近年の電力省力化の取り組みに伴い、LED照明に代表される発光ダイオードを用いた電子機器が普及している。このような発光ダイオードとしては電子機器の小型化・薄型化の観点から基板表面に素子を直接実装したチップLEDが増加してきている。LED素子を実装する基板としては、従来から熱硬化性樹脂を含浸した繊維状補強基材の層を1枚または複数枚積層し加熱加圧成形した積層板が使用されている。特に青色・白色のチップLEDでは可視光短波長領域の反射が重要であることから、例えば特許文献1に開示されているような熱硬化性樹脂に着色顔料として二酸化チタン等を含有させた白色基板が使用されている。
 一方でチップLED等の発熱を伴う電子部品を実装する基板については、従来の基板では放熱性に問題があることから、このような問題を解決するために、例えば特許文献2で開示されているような不織繊維基材に無機充填材を含有する熱硬化性樹脂組成物を含浸した芯材層の両表面に、織繊維基材に樹脂組成物を含浸した表材層を積層一体化したコンポジット積層板が提案されている。
特開2003-152295号公報 特開2010-254807号公報
 従来の白色基板では、顔料として二酸化チタンおよび酸化アルミニウム等を用いているためLED素子の発光を可視光領域において効率的に反射する点においてはメリットがあった。しかしながら、熱伝導率が低いために発熱を伴う電子部品の熱を放熱するのに十分な放熱性が得られないと言う問題点があった。また、従来の白色基板には難燃性が付与されていないため、安全面から求められるUL-94でV-0を達成することは困難であった。
 一方、従来のコンポジット積層板では、コンポジット構成により熱伝導性、耐熱性、ドリル加工性および難燃性に優れるというメリットがあった。しかしながら、表材層と芯材層からなるコンポジット構成であるために、薄葉化することが困難であり、熱抵抗の観点で制約を受けるという問題があった。
 また、可視光領域での反射率が低く、かつ熱による反射率の低下が大きいためにチップLEDを実装する場合、白色レジストを塗布する必要があるという問題があった。さらに、芯材層にガラス不織布を用いるために、厚さ方向の膨張係数が大きく、信頼性が必要とされる用途への適用が困難であった。
 そこで、本発明は前記の点を鑑み、熱伝導性、可視光領域反射率、耐変色性、絶縁性、難燃性、およびドリル加工性の全てにおいて優れており、かつ薄葉化を可能にする積層板を提供することを最終目的とし、さらに、この目的を達成するための熱硬化性樹脂組成物およびプリプレグを提供することを目的とする。
 本発明の熱硬化性樹脂組成物は、熱硬化性樹脂100重量部に対し、無機充填材を100~400重量部含有する熱硬化性樹脂組成物であって、前記無機充填剤として、0.1~1.0μmの平均粒子径を有する二酸化チタン、および、1.0~20.0μmの平均粒子径を有する水酸化アルミニウムを少なくとも有することを特徴とする。
 本発明のプリプレグは、前記熱硬化性樹脂組成物を繊維基材に含浸させ、半硬化させて形成されることを特徴とする
 前記繊維基材として、ガラス織布が用いられている。
 本発明の積層板は、前記プリプレグを1枚または複数枚積層し、加熱加圧成型されて形成されることを特徴とする。
 前記加熱加圧成形を行う前に、前記プリプレグを1枚または複数枚積層されたものの少なくとも一方の表面に金属箔が配置される。
 さらに、前記加熱加圧成形を行う前に、前記プリプレグを1枚または複数枚積層したものの一方の表面に金属箔が配置され、他方の表面に放熱用金属ベース板が配置されており、前記プリプレグを1枚または複数枚積層したものを絶縁層として配置される。
 本発明の熱硬化性樹脂組成物は、熱硬化性樹脂100重量部に対し、無機充填材を100~400重量部含有する熱硬化性樹脂組成物であって、前記無機充填剤として、0.1~1.0μmの平均粒子径を有する二酸化チタン、および、1.0~20.0μmの平均粒子径を有する水酸化アルミニウムを少なくとも有することによって、前記熱硬化性樹脂組成物を用いた積層板に、可視光領域における高い反射率、高い熱伝導性、および難燃性を付与することが可能となる。
 本発明のプリプレグは、前記熱硬化性樹脂組成物を繊維基材に含浸させ、半硬化させて形成され、前記繊維基材として、ガラス織布が用いられていることによって、積層板に用いた場合に実用可能な強度を維持しつつ薄葉化を達成することが可能となり、薄葉化を達成することで、積層板の厚み方向の熱抵抗を低減することが可能となる。
 本発明の積層板は、前記プリプレグを1枚または複数枚積層し、加熱加圧成型されて形成されることによって、熱伝導性、可視光領域反射率、耐変色性、絶縁性、難燃性、信頼性、およびドリル加工性の全てにおいて優れ、かつ薄葉化による熱抵抗の低減、および、設計自由度の向上を可能にするプリント配線板に好適な積層板を実現することが可能となる。
本発明の積層板を金属箔貼り積層板とした場合の概略断面図である。 本発明の積層板を金属ベース金属箔貼り積層板とした場合の概略断面図である。
 本発明の熱硬化性樹脂組成物、プリプレグ、および、積層板について説明する。まず初めに、本発明の熱硬化性樹脂組成物について説明する。
 本発明の熱硬化性樹脂組成物は、プリプレグを形成する際に繊維基材に含浸させて使用される樹脂組成物であり、熱硬化性樹脂100重量部に対し、無機充填材を100~400重量部含有させている。前記無機充填剤として、0.1~1.0μmの平均粒子径を有する二酸化チタン、および、1.0~20.0μmの平均粒子径を有する水酸化アルミニウムを少なくとも含有する。本発明の熱硬化性樹脂組成物に用いる熱硬化性樹脂および無機充填材について以下に詳細に説明する。
 前記熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、熱硬化性ポリイミド樹脂等を適宜選択して用いる。そして、前記熱硬化性樹脂は、必要に応じて溶剤等を添加して、液状として用いられる。さらに、前記熱硬化性樹脂は、必要に応じて、硬化剤、硬化促進剤等の添加材が添加される。
 前記二酸化チタンは、本発明の熱硬化性樹脂組成物を積層板に用いた場合、積層板に可視光領域における高い反射率および高い熱伝導性を付与するものである。前記二酸化チタンの平均粒子径は0.1~1.0μmとし、好ましくは0.1~0.8μmとする。前記二酸化チタンの平均粒子径が0.05μm未満の場合、前記積層板の可視光反射率および熱伝導性が低下する可能性がある。また、前記二酸化チタンの平均粒子径が1.0μmより大きい場合、前記積層板の可視光反射率が低下する可能性がある。
 前記水酸化アルミニウムは、前記熱硬化性樹脂組成物を積層板に用いた場合、積層板に難燃性および熱伝導性を付与するものである。前記水酸化アルミニウムの平均粒子径は1.0~20.0μmとし、好ましくは1.0~15.0μmとする。前記水酸化アルミニウムの平均粒子径が1.0μm未満の場合、難燃性および熱伝導性が低下する可能性がある。また、前記水酸化アルミニウムの平均粒子径が20.0μmよりも大きい場合、ドリル加工性が低下する可能性がある。
 前記二酸化チタンと前記水酸化アルミニウムの平均粒子径を上述の様な範囲に限定し、互いに異なる平均粒子径とする。これにより、前記熱硬化性樹脂組成物中において無機充填材がより密に存在することになり、前記熱硬化性樹脂組成物を積層板に用いた場合、優れた耐変色性および熱伝導性を付与することが可能となる。
 前記二酸化チタンと前記水酸化アルミニウムとの配合比は1:0.2~1:1.5とし、好ましくは1:0.3~1:1とする。二酸化チタンの配合量1に対し、水酸化アルミニウムの配合量が0.2未満の場合、前記熱硬化性樹脂組成物を積層板に用いると難燃性および熱伝導性が低下する可能性がある。また、二酸化チタンの配合量1に対し、水酸化アルミニウムの配合量が1.5を超える場合、前記熱硬化性樹脂組成物を積層板に用いると耐熱性および耐変色性が低下する可能性がある。
 前記無機充填材として、二酸化チタンおよび水酸化アルミニウムに加えて、例えば、酸化アルミニウム、酸化マグネシウムおよびシリカなどの酸化物、水酸化マグネシウム等の水酸化物、窒化ホウ素、窒化アルミニウム、窒化ケイ素などの窒化物、炭化ケイ素および炭化ホウ素などの炭化物などを更に含むものとすることも可能である。
 熱硬化性樹脂組成物に含有される無機充填材のモース硬度は8以下とすることが好ましい。これは、無機充填材のモース硬度が8を超える場合、前記熱硬化性樹脂組成物を積層板に用いるとドリル加工性が低下する可能性がある。
 熱硬化性樹脂100重量部に対する無機充填材の配合比は100~400重量部とし、好ましくは150~350重量部とする。熱硬化性樹脂100重量部に対する無機充填材の配合比が100重量部未満の場合、前記熱硬化性樹脂組成物を積層板に用いると熱伝導性が低下する可能性があり、無機充填材の配合比が400重量部を超える場合、前記熱硬化性樹脂組成物を用いた積層板の生産性が低下する可能性がある。
 熱硬化性樹脂組成物の製造方法について説明する。熱硬化性樹脂に少なくとも二酸化チタンおよび水酸化アルミニウムを含む無機充填材を配合し、必要に応じて高級脂肪酸および官能基を有する共重合体等の界面活性剤を用いて攪拌または混練等を行い分散させる。この際に、必要に応じて溶剤などを用いることも可能である。
 次に、前記熱硬化性樹脂組成物を用いた本発明のプリプレグについて説明する。本発明のプリプレグは、織布、不織布等の状態の繊維基材に前記熱硬化性樹脂組成物を含浸させ、その後、加熱乾燥することにより、熱硬化性樹脂が半硬化状態となることにより得られる。
 本発明のプリプレグに用いる繊維基材の具体例としては、ガラス織布などが挙げられる。前記繊維基材の繊維としては、ガラス繊維、液晶ポリマー繊維、アラミド繊維、カーボン繊維、ポリエステル繊維、ナイロン繊維、アクリル繊維、および、ビニロン繊維などが用いられる。
 次に、前記プリプレグを用いた本発明の積層板について説明する。本発明の積層板は、前記プリプレグを1枚または複数枚積層したものを加熱および加圧手段である金属板によって挟み込み、所定の温度および圧力で加熱加圧成型することにより得られる。
 次に、本発明の積層板の1つの形態である、金属箔貼り積層板1について説明する。金属箔貼り積層板1は、プリプレグ2を1枚または複数枚積層したものの少なくとも一表面に金属箔3を配し、その後、加熱加圧成型することにより得られるものである。金属箔3は特に限定するものではないが主として銅箔、アルミ箔などを用いる。
 前記金属箔貼り積層板1の一例として、2枚のプリプレグ2を積層し、両面に金属箔3を配した形態を図1に示す。前記金属箔貼り積層板1は、まず初めに、繊維基材であるガラス織布に前記熱硬化性樹脂組成物を含浸させる。その後、前記ガラス織布に含浸させた前記熱硬化性樹脂組成物を加熱乾燥することにより、熱硬化性樹脂組成物が半硬化状態となったプリプレグ2を得る。
 その後、前記プリプレグ2を2枚積層し、2枚積層した状態のプリプレグ2の両面に2枚の金属箔3を別々に重ねる。その後、加熱および加圧手段である金属板によって挟み込んで所定の温度および圧力で加熱加圧成型すると、図1に示すような断面構造の金属箔貼り積層板1が完成する。
 本実施形態のように繊維基材としてガラス繊維の織布であるガラス織布を用いることにより積層板は、実用可能な強度を維持しつつ薄葉化を達成することができる。さらに、薄葉化によって厚み方向の熱抵抗を低減することが可能となり、放熱性を高くすることも可能となる。前記熱抵抗とは、例えば、JPCA規格のJPCA-TMC-LED02T-2010において試験方法が規定されている放熱特性の評価方法によるものを意味する。
 さらに、本発明の積層板の別の形態である、金属ベース金属箔貼り積層板10について説明する。前記金属ベース金属箔貼り積層板10は、プリプレグ2を1枚または複数枚積層したものの一方の表面に金属箔3を配し、他方の表面に放熱用金属ベース板4を配して、その後、加熱加圧成型することにより得られるものであり。図2に示す金属ベース金属箔貼り積層板10は、プリプレグ2を2枚積層したものの一方の表面に金属箔3を配し、他方の表面に放熱用金属ベース板4を配して、加熱加圧成型したものである。
 前記金属ベース金属箔貼り積層板10では、前記プリプレグ2を2枚積層したものが絶縁層となる。絶縁層として樹脂組成物のみを用いた場合と比べると、前記プリプレグ2を絶縁層として用いた場合は、同等の放熱性を維持しながら、低コストを実現し、さらに白色外観を有するだけでなく、絶縁耐力のバラツキが小さい金属ベース金属箔貼り積層板10を得ることが可能となる。
 実施例を用いて、本発明の積層板について説明する。以下に、実施例1~7と比較例1~7について順に説明する。
 ビスフェノ-ルA型エポキシ樹脂およびアミン系硬化剤を含有する熱硬化性樹脂ワニスの樹脂固形分比100重量部に対し、無機充填材として0.2μmの平均粒子径を有する二酸化チタン150重量部、および、2.3μmの平均粒子径を有する水酸化アルミニウム100重量部を均一に分散した熱硬化性樹脂ワニスを準備する。
 前記熱硬化性樹脂ワニスを、坪量203g/m2のガラス繊維織布に、成形後の厚さが0.2mmとなる様に含浸および半硬化させてプリプレグを得る。前記プリプレグを5枚積層し、両外層に厚さ0.035mmの銅箔を配し、その後、加熱加圧成形(温度:180℃、圧力:3MPa)することで厚さ1.0mmの金属箔貼り積層板を得る。
 実施例1と同じ条件の熱硬化性樹脂ワニスを準備し、坪量48g/m2のガラス繊維織布に、成形後の厚さが0.05mmとなる様に含浸および半硬化させてプリプレグを得る。前記プリプレグを2枚積層し、両外層に厚さ0.035mmの銅箔を配し、その後、加熱加圧成形(温度:180℃、圧力:3MPa)することで厚さ0.1mmの金属箔貼り積層板を得る。
 ビスフェノ-ルA型エポキシ樹脂およびアミン系硬化剤を含有する熱硬化性樹脂ワニスの樹脂固形分比100重量部に対し、無機充填材として0.5μmの平均粒子径を有する二酸化チタン150重量部、および、18.6μmの平均粒子径を有する水酸化アルミニウム100重量部を均一に分散した熱硬化性樹脂ワニスを準備する。
 前記熱硬化性樹脂ワニスを、坪量203g/m2のガラス繊維織布に、成形後の厚さが0.2mmとなる様に含浸および半硬化させてプリプレグを得る。前記プリプレグを5枚積層し、両外層に厚さ0.035mmの銅箔を配し、その後、加熱加圧成形(温度:180℃、圧力:3MPa)することで厚さ1.0mmの金属箔貼り積層板を得る。
 ビスフェノ-ルA型エポキシ樹脂およびアミン系硬化剤を含有する熱硬化性樹脂ワニスの樹脂固形分比100重量部に対し、無機充填材として0.2μmの平均粒子径を有する二酸化チタン75重量部、0.5μmの平均粒子径を有する二酸化チタン75重量部、2.3μmの平均粒子径を有する水酸化アルミニウム50重量部、および、18.6μmの平均粒子径を有する水酸化アルミニウム50重量部を均一に分散した熱硬化性樹脂ワニスを準備する。
 前記熱硬化性樹脂ワニスを、実施例1と同様に、坪量203g/m2のガラス繊維織布に、成形後の厚さが0.2mmとなる様に含浸および半硬化させてプリプレグを得る。前記プリプレグを5枚積層し、両外層に厚さ0.035mmの銅箔を配し、その後、加熱加圧成形(温度:180℃、圧力:3MPa)することで厚さ1.0mmの金属箔貼り積層板を得る。
 ビスフェノ-ルA型エポキシ樹脂およびアミン系硬化剤を含有する熱硬化性樹脂ワニスの樹脂固形分比100重量部に対し、無機充填材として0.2μmの平均粒子径を有する二酸化チタン45重量部、0.5μmの平均粒子径を有する二酸化チタン70重量部、2.3μmの平均粒子径を有する水酸化アルミニウム70重量部、および、9.2μmの平均粒子径を有する酸化アルミニウム5重量部を均一に分散した熱硬化性樹脂ワニスを準備する。
 前記熱硬化性樹脂ワニスを、実施例1と同様に、坪量203g/m2のガラス繊維織布に、成形後の厚さが0.2mmとなる様に含浸および半硬化させてプリプレグを得る。前記プリプレグを5枚積層し、両外層に厚さ0.035mmの銅箔を配し、その後、加熱加圧成形(温度:180℃、圧力:3MPa)することで厚さ1.0mmの金属箔貼り積層板を得る。
 ビスフェノ-ルA型エポキシ樹脂およびアミン系硬化剤を含有する熱硬化性樹脂ワニスの樹脂固形分比100重量部に対し、無機充填材として0.2μmの平均粒子径を有する二酸化チタン150重量部、0.5μmの平均粒子径を有する二酸化チタン80重量部、2.3μmの平均粒子径を有する水酸化アルミニウム90重量部、18.6μmの平均粒子径を有する水酸化アルミニウム50重量部、および、9.2μmの平均粒子径を有する酸化アルミニウム5重量部を均一に分散した熱硬化性樹脂ワニスを準備する。
 前記熱硬化性樹脂ワニスを、実施例1と同様に、坪量203g/m2のガラス繊維織布に、成形後の厚さが0.2mmとなる様に含浸および半硬化させてプリプレグを得る。前記プリプレグを5枚積層し、両外層に厚さ0.035mmの銅箔を配し、その後、加熱加圧成形(温度:180℃、圧力:3MPa)することで厚さ1.0mmの金属箔貼り積層板を得る。
 実施例2で用いたプリプレグを2枚積層し、一方の表面に厚さ0.035mmの銅箔を配し、他方の表面に放熱用として厚さ1.0mmのアルミ板を配し、その後、加熱加圧成形(温度:180℃、圧力:3MPa)することで厚さ1.1mmの金属ベース金属箔貼り積層板を得る。
比較例1
 実施例1と同様の方法で、前記無機充填材を添加しないものを比較例1とした。
比較例2
 実施例1と同様の方法で、前記無機充填材を、0.2μmの平均粒子径を有する二酸化チタン250重量部に変更したものを比較例2とした。
比較例3
 実施例1と同様の方法で、前記無機充填材を、2.3μmの平均粒子径を有する水酸化アルミニウム250重量部に変更したものを比較例3とした。
比較例4
 実施例1と同様の方法で、前記無機充填材を、9.2μmの平均粒子径を有する酸化アルミニウム250重量部に変更したものを比較例4とした。
比較例5
 実施例1と同様の方法で、前記無機充填材を、0.03μmの平均粒子径を有する二酸化チタン150重量部、および、55.3μmの平均粒子径を有する水酸化アルミニウム100重量部に変更したものを比較例5とした。
比較例6
 実施例1と同様の方法で、前記無機充填材を、0.2μmの平均粒子径を有する二酸化チタン300重量部、および、2.3μmの平均粒子径を有する水酸化アルミニウム200重量部に変更したものを比較例6とした。
比較例7
 実施例1で用いた熱硬化性樹脂ワニスにおいて、ビスフェノールA型エポキシ樹脂をビスフェノールA型エポキシ樹脂とフェノキシ樹脂の混合樹脂に変更した熱硬化性樹脂ワニスを準備する。
 前記熱硬化性樹脂ワニスを、PETフィルム上に成形後の厚さが0.05mmとなる様に塗布・加熱乾燥させて接着シートを得る。前記接着シートを、実施例4と同様に2枚積層し、一方の表面に厚さ0.035mmの銅箔を配し、他方の表面に放熱用として厚さ1.0mmのアルミ板を配し、その後、加熱加圧成形(温度:180℃、圧力:3MPa)することで厚さ1.1mmの金属ベース金属箔貼り積層板を得る。
 実施例1~6および比較例1~6によって得られた金属箔貼り積層板を以下の方法で評価し、実施例1~6の結果を表1に、比較例1~6の結果を表2に示す。
 ・反射率
 得られた金属箔貼り積層板の銅箔をエッチングにより除去した後、積層板表面の可視光反射率をJIS-Z8722に準拠しY(D65)値を測定した。
 ・熱劣化後の反射率(耐熱変色性)
 得られた金属箔貼り積層板の銅箔をエッチングにより除去した後、150℃で24時間処理し前記と同様の方法でY(D65)値を測定した。
 ・はんだ耐熱性
 得られた金属箔貼り積層板をJIS-C6481に準拠して作製した試料を、260℃のはんだ槽に120秒間浸漬し、金属箔および積層板に膨れ、または剥がれが生じない最大時間を測定した。
 ・難燃性
 得られた金属箔貼り積層板の銅箔をエッチングにより除去した後、UL-94の燃焼試験法に準じて燃焼試験を行い、判定した。
 ・ドリル刃残存率
 得られた金属箔貼り積層板を2枚重ねた状態で、0.3mm径のドリルを用い、回転数120000rpm、送り速度0.03mm/revの条件にて3000個の穴を設けた後のドリル刃残存率を、加工前のドリル刃面積に対する加工後のドリル刃面積の割合により算出した。
 ・熱伝導率
 得られた金属箔貼り積層板の銅箔をエッチングにより除去した後、水中置換法により密度を測定し、DSC(示差走査熱量測定)法により比熱容量を測定し、レーザーフラッシュ法により熱拡散率を測定し、次式により熱伝導率を算出した。
 熱伝導率(W/m・K)=密度(kg/m3)×比熱容量(J/g・K)×熱拡散率(m2/s)×1000
 ・熱抵抗
 得られた金属箔貼り積層板をJPCA(一般社団法人日本電子回路工業会)規格のJPCA-TMC-LED02T-2010に準拠した方法で熱抵抗を測定した。
 ・成型性
 得られ金属箔貼り積層板の銅箔をエッチングにより除去した外観を確認し、空隙等の成型欠点の有無を判定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1,2を見るとわかるように、比較例1~6は項目によっては実施例1~6と同等の優れた結果を残してはいるが、8項目全てにおいて優れたものではない。これに対し、実施例1~6は全ての項目において優れた結果となっている。また、実施例2の結果から、薄葉化することにより同等の熱伝導率であっても熱抵抗を大きく低減できることが解る。
 実施例7および比較例7によって得られた金属ベース金属箔貼り積層板を以下の方法で評価し、その結果を表3に示す。反射率の測定および熱伝導率の算出方法については、表1と同じ方法を用いる。
 ・絶縁破壊電圧
 JIS C2110-1に準拠した方法で所定の試料を同径電極間に挟み、500V/sの昇圧速度で電圧を印加し、絶縁破壊電圧を測定した。
Figure JPOXMLDOC01-appb-T000003
 表3を見るとわかるように、実施例7のように金属ベース金属箔貼り積層板の絶縁層にプリプレグを用いることにより、比較例7のような従来技術の樹脂シートと比較すると、絶縁破壊電圧は同等でありながら標準偏差を半分以下に低減することが可能となる。従って金属ベース金属箔貼り積層板の絶縁層にプリプレグを用いることで、他の特性を維持しながら絶縁信頼性において優れた効果を奏することが可能となる。
 本発明の積層板は、プリプレグの熱硬化性樹脂組成物の無機充填材として所定粒子の二酸化チタンおよび水酸化アルミニウムを用いることにより、熱伝導性に優れるという効果を奏する。また、前記無機充填材として二酸化チタンを用いることにより可視光領域反射率において優れた効果を奏し、さらに、無機充填材を従来よりも高い割合とすることによる有機成分の低減によって、耐変色性に優れた効果を奏する。
 そして、前記無機充填材として二酸化チタンを用い、さらに無機充填材を従来よりも高い割合とすることによる有機成分の低減によって、難燃性に優れた効果を奏することが可能となる。また、前記無機充填材として所定粒子径の二酸化チタン、水酸化アルミニウム等の低硬度の充填材を用いることによって、ドリル加工性に優れた効果を奏する。さらに、積層板の薄葉化が可能となることで熱抵抗を大幅に低減し、放熱性に優れた効果を奏する。本発明のプリプレグは金属ベース金属箔貼り積層板の絶縁層に用いることによって、金属ベース金属箔貼り積層板の絶縁信頼性を優れたものとすることが可能となる。
  1  金属箔貼り積層板
  2  プリプレグ
  3  金属箔
  4  金属板ベース
  10 金属ベース金属箔貼り積層板 

Claims (6)

  1.  熱硬化性樹脂100重量部に対し、無機充填材を100~400重量部含有する熱硬化性樹脂組成物であって、
     前記無機充填剤として、0.1~1.0μmの平均粒子径を有する二酸化チタン、および、1.0~20.0μmの平均粒子径を有する水酸化アルミニウムを少なくとも有することを特徴とする熱硬化性樹脂組成物。
  2.  請求項1に記載の熱硬化性樹脂組成物を繊維基材に含浸させ、半硬化させて形成されることを特徴とするプリプレグ。
  3.  前記繊維基材として、ガラス織布が用いられていることを特徴とする請求項2に記載のプリプレグ。
  4.  請求項2または3に記載のプリプレグを1枚または複数枚積層し、加熱加圧成型されて形成されることを特徴とする積層板。
  5.  前記加熱加圧成形を行う前に、前記プリプレグを1枚または複数枚積層されたものの少なくとも一方の表面に金属箔が配置されることを特徴とする請求項4に記載の積層板。
  6.  前記加熱加圧成形を行う前に、前記プリプレグを1枚または複数枚積層したものの一方の表面に金属箔が配置され、他方の表面に放熱用金属ベース板が配置されており、
     前記プリプレグを1枚または複数枚積層したものを絶縁層として配置されることを特徴とする請求項5に記載の積層板。
PCT/JP2015/055788 2015-02-16 2015-02-27 熱硬化性樹脂組成物、プリプレグ、および、積層板 WO2016132564A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580076223.9A CN107429067B (zh) 2015-02-16 2015-02-27 绝缘用积层板
KR1020177026102A KR102265358B1 (ko) 2015-02-16 2015-02-27 절연용 적층판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-028101 2015-02-16
JP2015028101A JP6836313B2 (ja) 2015-02-16 2015-02-16 絶縁用積層板

Publications (1)

Publication Number Publication Date
WO2016132564A1 true WO2016132564A1 (ja) 2016-08-25

Family

ID=56692030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055788 WO2016132564A1 (ja) 2015-02-16 2015-02-27 熱硬化性樹脂組成物、プリプレグ、および、積層板

Country Status (5)

Country Link
JP (1) JP6836313B2 (ja)
KR (1) KR102265358B1 (ja)
CN (1) CN107429067B (ja)
TW (1) TWI746432B (ja)
WO (1) WO2016132564A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI627055B (zh) * 2016-11-09 2018-06-21 可成科技股份有限公司 低密度纖維強化塑膠複合板及其製造方法
WO2020246194A1 (ja) * 2019-06-06 2020-12-10 太陽インキ製造株式会社 熱硬化性組成物及びその硬化被膜を有する被覆基材

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102007234B1 (ko) * 2017-12-28 2019-08-05 한화큐셀앤드첨단소재 주식회사 열경화성 백색 필름 및 이의 제조방법
EP3882927A4 (en) * 2018-11-15 2022-07-06 Kyocera Corporation ORGANIC INSULATION, METAL CLAD LAMINATE AND WIRING PLATE
JPWO2022264661A1 (ja) * 2021-06-17 2022-12-22

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211918A (ja) * 2000-11-17 2002-07-31 Showa Denko Kk 水酸化アルミニウム、その製造方法および該水酸化アルミニウムを含む樹脂組成物ならびにこの樹脂組成物を使用したプリント配線基板
JP2005082798A (ja) * 2003-09-11 2005-03-31 Noritake Co Ltd エポキシ樹脂組成物および白色基板
JP2006049374A (ja) * 2004-07-30 2006-02-16 Matsushita Electric Works Ltd 電気用コンポジット白色積層板
JP2006045266A (ja) * 2004-07-30 2006-02-16 Matsushita Electric Works Ltd 電気用白色積層板
JP2006219656A (ja) * 2005-01-14 2006-08-24 Daiso Co Ltd 表面平滑性が良好な高光沢化粧板
JP2008127530A (ja) * 2006-11-24 2008-06-05 Matsushita Electric Works Ltd エポキシ樹脂組成物、プリプレグ、金属張積層体、プリント配線板、及び多層プリント配線板
JP2010000774A (ja) * 2008-05-19 2010-01-07 Panasonic Electric Works Co Ltd 積層板、プリプレグ、金属箔張積層板、回路基板及びled搭載用回路基板
JP2010224171A (ja) * 2009-03-23 2010-10-07 Taiyo Ink Mfg Ltd 硬化性樹脂組成物、それを用いたドライフィルム及びプリント配線板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3948941B2 (ja) 2001-11-19 2007-07-25 利昌工業株式会社 プリント配線基板用白色積層板
JP2008214427A (ja) * 2007-03-01 2008-09-18 Shin Kobe Electric Mach Co Ltd 難燃性エポキシ樹脂組成物並びにプリプレグ、積層板及びプリント配線板
JP4788799B2 (ja) 2009-04-24 2011-10-05 パナソニック電工株式会社 熱硬化性樹脂組成物、プリプレグ、コンポジット積層板、金属箔張積層板、回路基板及びled搭載用回路基板
TWI399294B (zh) * 2008-05-19 2013-06-21 Panasonic Corp Laminated boards, metal foil laminated boards, circuit boards, and circuit boards mounted on light emitting diodes
EP2676999B1 (en) * 2011-02-18 2018-10-17 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, and metal foil-clad laminate
JP6041092B2 (ja) * 2012-06-12 2016-12-07 利昌工業株式会社 積層板、および積層板に用いられるプリプレグ
JP6087127B2 (ja) * 2012-12-14 2017-03-01 株式会社カネカ 流動性を改善した熱硬化性樹脂組成物及びそれを用いた半導体のパッケージ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211918A (ja) * 2000-11-17 2002-07-31 Showa Denko Kk 水酸化アルミニウム、その製造方法および該水酸化アルミニウムを含む樹脂組成物ならびにこの樹脂組成物を使用したプリント配線基板
JP2005082798A (ja) * 2003-09-11 2005-03-31 Noritake Co Ltd エポキシ樹脂組成物および白色基板
JP2006049374A (ja) * 2004-07-30 2006-02-16 Matsushita Electric Works Ltd 電気用コンポジット白色積層板
JP2006045266A (ja) * 2004-07-30 2006-02-16 Matsushita Electric Works Ltd 電気用白色積層板
JP2006219656A (ja) * 2005-01-14 2006-08-24 Daiso Co Ltd 表面平滑性が良好な高光沢化粧板
JP2008127530A (ja) * 2006-11-24 2008-06-05 Matsushita Electric Works Ltd エポキシ樹脂組成物、プリプレグ、金属張積層体、プリント配線板、及び多層プリント配線板
JP2010000774A (ja) * 2008-05-19 2010-01-07 Panasonic Electric Works Co Ltd 積層板、プリプレグ、金属箔張積層板、回路基板及びled搭載用回路基板
JP2010224171A (ja) * 2009-03-23 2010-10-07 Taiyo Ink Mfg Ltd 硬化性樹脂組成物、それを用いたドライフィルム及びプリント配線板

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI627055B (zh) * 2016-11-09 2018-06-21 可成科技股份有限公司 低密度纖維強化塑膠複合板及其製造方法
WO2020246194A1 (ja) * 2019-06-06 2020-12-10 太陽インキ製造株式会社 熱硬化性組成物及びその硬化被膜を有する被覆基材
JP2020200362A (ja) * 2019-06-06 2020-12-17 太陽インキ製造株式会社 熱硬化性組成物及びその硬化被膜を有する被覆基材
JP7336881B2 (ja) 2019-06-06 2023-09-01 太陽ホールディングス株式会社 熱硬化性組成物及びその硬化被膜を有する被覆基材
TWI833019B (zh) * 2019-06-06 2024-02-21 日商太陽控股股份有限公司 熱硬化性組成物及具有其之硬化被膜之被覆基材

Also Published As

Publication number Publication date
TWI746432B (zh) 2021-11-21
KR102265358B1 (ko) 2021-06-14
TW201631047A (zh) 2016-09-01
JP6836313B2 (ja) 2021-02-24
CN107429067A (zh) 2017-12-01
KR20170118184A (ko) 2017-10-24
JP2016150959A (ja) 2016-08-22
CN107429067B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
WO2016132564A1 (ja) 熱硬化性樹脂組成物、プリプレグ、および、積層板
JP5344022B2 (ja) エポキシ樹脂組成物、プリプレグ、積層板、樹脂シート、プリント配線板及び半導体装置
JP4645726B2 (ja) 積層板、プリプレグ、金属箔張積層板、回路基板及びled搭載用回路基板
WO2012150661A1 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、金属箔張積層板、及び回路基板
JP5381869B2 (ja) エポキシ樹脂前駆体組成物、プリプレグ、積層板、樹脂シート、プリント配線板および半導体装置
JP5941847B2 (ja) シリコーン・有機樹脂複合積層板及びその製造方法、並びにこれを使用した発光半導体装置
KR101319689B1 (ko) 적층판, 금속박 피복 적층판, 회로 기판 및 led 탑재용 회로 기판
WO2009142192A1 (ja) 積層板、金属箔張積層板、回路基板及びled搭載用回路基板
WO2010070890A1 (ja) プリプレグ及びその製造方法とこれを用いたプリント配線板
JP5849390B2 (ja) エポキシ樹脂前駆体組成物、プリプレグ、積層板、樹脂シート、プリント配線板および半導体装置
JP2012087250A (ja) 熱伝導性樹脂組成物、樹脂シート、プリプレグ、金属積層板およびプリント配線板
JP4788799B2 (ja) 熱硬化性樹脂組成物、プリプレグ、コンポジット積層板、金属箔張積層板、回路基板及びled搭載用回路基板
WO2020100314A1 (ja) 樹脂組成物、プリプレグ、および、積層板
KR101704793B1 (ko) 에폭시 수지 조성물을 이용한 회로기판과 그 제조방법
JP6041092B2 (ja) 積層板、および積層板に用いられるプリプレグ
JP5716698B2 (ja) 樹脂シート、積層板及びプリント配線板
JP2011102394A (ja) 熱硬化性樹脂組成物、プリプレグ、コンポジット積層板、金属箔張積層板、回路基板、及びled搭載用回路基板
JP5828094B2 (ja) 樹脂シート、樹脂付金属箔、基板材料および部品実装基板
JP2009253138A (ja) コンポジットシートおよびその成形体
JP3826572B2 (ja) 高熱伝導性積層板用基材
JPH06188330A (ja) 低膨張金属箔およびプリント回路用積層板
JPH11291390A (ja) 銅張積層板の製造方法
JP2004106274A (ja) 銅張り積層板およびその製造方法
JP2001038845A (ja) 銅張積層板
JP2012057027A (ja) エポキシ樹脂組成物並びにプリプレグ、積層板及び配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177026102

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15882665

Country of ref document: EP

Kind code of ref document: A1