WO2016129167A1 - エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 - Google Patents

エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 Download PDF

Info

Publication number
WO2016129167A1
WO2016129167A1 PCT/JP2015/083361 JP2015083361W WO2016129167A1 WO 2016129167 A1 WO2016129167 A1 WO 2016129167A1 JP 2015083361 W JP2015083361 W JP 2015083361W WO 2016129167 A1 WO2016129167 A1 WO 2016129167A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
prepreg
component
epoxy
Prior art date
Application number
PCT/JP2015/083361
Other languages
English (en)
French (fr)
Inventor
佐野健太郎
高岩玲生
平野啓之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP15882041.5A priority Critical patent/EP3257884B1/en
Priority to US15/549,527 priority patent/US10344117B2/en
Priority to KR1020177012484A priority patent/KR102389775B1/ko
Priority to CN201580073822.5A priority patent/CN107250197B/zh
Publication of WO2016129167A1 publication Critical patent/WO2016129167A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4021Ureas; Thioureas; Guanidines; Dicyandiamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/04Epoxynovolacs

Definitions

  • the present invention relates to an epoxy resin composition preferably used as a matrix resin of a fiber reinforced composite material suitable for sports applications and general industrial applications, and a prepreg and a fiber reinforced composite material using the epoxy resin composition as a matrix resin.
  • Epoxy resins take advantage of their excellent mechanical properties and are widely used in various industrial fields such as paints, adhesives, electrical and electronic information materials, and advanced composite materials.
  • epoxy resins are frequently used in fiber-reinforced composite materials composed of matrix fibers and reinforcing fibers such as carbon fibers, glass fibers, and aramid fibers.
  • prepregs for the production of fiber reinforced composite materials, prepregs in which a carbon fiber base material is impregnated with an epoxy resin in advance are generally used.
  • the prepreg is heated after being laminated or preformed to cure the epoxy resin, thereby giving a molded product.
  • the properties required for prepregs are particularly demanded in recent years for excellent productivity, that is, fast curability. This tendency is particularly strong in industrial applications such as automobiles that require productivity.
  • the current prepreg is reactive at room temperature and usually needs to be stored frozen. For this, preparation of refrigeration equipment and thawing before use are required, and therefore, a prepreg excellent in storage stability that can be stored and handled at room temperature is required.
  • Patent Document 1 discloses a method of coating the particle surface of an imidazole derivative with a controlled particle size with a borate ester compound, which achieves both good storage stability and curing speed. It is stated that it is possible.
  • Patent Document 2 describes that an epoxy resin composition having long-term storage stability can be obtained by controlling the amount of hydrolyzed chlorine in the epoxy resin within an appropriate range.
  • Patent Document 3 discloses a method of controlling the time from the curing start temperature until the degree of curing reaches a certain level, and using a curing agent that limits the particle size and the curing temperature, and provides storage stability and fast curability. It is described as compatible.
  • Patent Document 1 since the method described in Patent Document 1 uses a highly active imidazole derivative, long-term storage stability may be lost due to thermal history during resin preparation, prepreg preparation, and prepreg storage / transport. It was.
  • Patent Documents 2 and 3 show resin compositions having relatively high storage stability, but the storage stability was not sufficient. There was no mention of the elastic modulus and deflection of the cured resin, which is important for the mechanical properties of the carbon fiber composite material.
  • the present invention provides an epoxy resin composition and a prepreg that are stable with respect to the heat history during the manufacturing process and storage / transport, have a high level of storage stability, and have excellent mechanical properties as a fiber-reinforced composite material. It is an object of the present invention to provide an epoxy resin composition having the following formula.
  • the present inventors have found an epoxy resin composition having the following constitution, and have completed the present invention. That is, the epoxy resin composition of this invention consists of the following structures.
  • Component [A] includes epoxy resin, [B] dicyandiamide, [C] aromatic urea compound, and [D] boric acid ester, and is any of the following (i) to (iii) Epoxy resin composition.
  • R 1 , R 2 and R 3 represent a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
  • Component [A] contains [A2] trifunctional or higher functional glycidylamine type epoxy resin in an amount of 10 to 50 parts by mass in 100 parts by mass of all epoxy resins.
  • the prepreg of the present invention is a prepreg composed of the epoxy resin composition and carbon fiber.
  • the fiber-reinforced composite material of the present invention is a fiber-reinforced composite material obtained by curing the prepreg.
  • an epoxy resin composition that is stable with respect to the manufacturing process and thermal history during storage / transport, has excellent storage stability, and has a high mechanical property in a fiber-reinforced composite material obtained by molding a prepreg. And a prepreg and a fiber-reinforced composite material using the epoxy resin composition can be provided.
  • the epoxy resin composition of the present invention contains component [A]: epoxy resin, component [B]: dicyandiamide, component [C]: aromatic urea compound, and component [D] boric acid ester as essential components. First, these components will be described.
  • Component [A] in the present invention is an epoxy resin.
  • an epoxy resin for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, novolac type epoxy resin, epoxy resin having fluorene skeleton, phenol compound and dicyclopentadiene Polymer-based epoxy resin, diglycidyl resorcinol, glycidyl ether type epoxy resin such as tetrakis (glycidyloxyphenyl) ethane, tris (glycidyloxyphenyl) methane, tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylamino Examples thereof include glycidylamine type epoxy resins such as cresol and tetraglycidylxylenediamine. Epoxy resins may be used alone or in combination.
  • Component [A] preferably contains a trifunctional or higher polyfunctional epoxy resin.
  • a trifunctional or higher polyfunctional epoxy resin By including a trifunctional or higher polyfunctional epoxy resin, an epoxy resin composition having a very high storage stability and a good curing rate can be obtained.
  • the trifunctional or higher polyfunctional epoxy resin is represented by the component [A1] represented by the following formula (I) and / or the following formula (II) from the viewpoint of the balance between curing speed, storage stability, and mechanical properties of the cured product.
  • An epoxy resin is preferred.
  • Component [A1] is generally known as a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, or a dicyclopentadiene type epoxy resin, and is commercially available as a mixture of bifunctional or higher polyfunctional epoxy resins. .
  • Component [A1] is preferably contained in an amount of 10 to 50 parts by mass in 100 parts by mass of the total epoxy resin contained in the epoxy resin composition from the viewpoint of the balance between storage stability and curing rate. From the viewpoint of curing speed, the proportion of the trifunctional or higher polyfunctional epoxy resin in the component [A1] is preferably large. From this viewpoint, the average number of functional groups of the epoxy group of the component [A1] is 3.0 or more. It is preferable that
  • R 1 , R 2 and R 3 represent a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
  • N represents an integer of 1 or more.
  • [A1] Commercially available components [A1] include “jER (registered trademark)” 152, 154, 180S (manufactured by Mitsubishi Chemical Corporation), “Epiclon (registered trademark)” N-740, N-770, N— 775, N-660, N-665, N-680, N-695, HP7200L, HP7200, HP7200H, HP7200HH, HP7200HHH (above, manufactured by DIC Corporation), PY307, EPN1179, EPN1180, ECN9511, ECN1273, ECN1280, ECN1285 ECN1299 (above, manufactured by Huntsman Advanced Material), YDPN638, YDPN638P, YDCN-701, YDCN-702, YDCN-703, YDCN-704 (above, manufactured by Toto Kasei Co., Ltd.), DEN431, DEN438, DEN43 9 (above, manufactured by Dow Chemical Company).
  • the glycidylamine type epoxy resin more than the component [A2] trifunctional is included as a polyfunctional epoxy resin more than trifunctional.
  • component [A2] include tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol, tetraglycidylxylylenediamine, and the like.
  • [A2] include tetraglycidyldiaminodiphenylmethane, “Sumiepoxy (registered trademark)” ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), YH434L (manufactured by Tohto Kasei Co., Ltd.), “jER (registered trademark). “604 (manufactured by Mitsubishi Chemical Corporation)”, “Araldite (registered trademark)” MY720, MY721 (manufactured by Huntsman Advanced Materials), etc. can be used.
  • TTRAD tetraglycidylxylylenediamine and hydrogenated products thereof
  • TETRAD registered trademark
  • X tetraglycidylxylylenediamine
  • TETRAD registered trademark
  • C manufactured by Mitsubishi Gas Chemical Co., Inc.
  • Component [A2] is preferably contained in an amount of 10 to 50 parts by mass in 100 parts by mass of the total epoxy resin from the viewpoint of the balance between storage stability and curing rate.
  • component [A3] bisphenol F type epoxy resin is included as component [A] from the viewpoint of the balance between storage stability and elastic modulus of the cured resin.
  • Component [A3] preferably contains 20 to 90 parts by mass in 100 parts by mass of the total epoxy resin.
  • Examples of commercially available components [A3] include “jER (registered trademark)” 806, 807, 4002P, 4004P, 4007P, 4009P (manufactured by Mitsubishi Chemical Corporation), “Epototo (registered trademark)” YDF-2001, YDF-2004 (manufactured by Toto Kasei Co., Ltd.) and the like.
  • the average epoxy equivalent of all epoxy resins is preferably 165 g / eq or more and 265 g / eq or less from the viewpoint of the balance between storage stability and curing speed.
  • the average epoxy equivalent of all the epoxy resins is less than 165 g / eq, storage stability at room temperature is often insufficient.
  • the average epoxy equivalent of all the epoxy resins is larger than 265 g / eq, the curing rate is often insufficient or the mechanical properties of the cured resin are often lowered.
  • the average epoxy equivalent of all epoxy resins can be calculated by the following method.
  • Dicyandiamide is a compound represented by the chemical formula (H 2 N) 2 C ⁇ N—CN. Dicyandiamide is excellent in terms of imparting high mechanical properties and heat resistance to the cured resin, and is widely used as a curing agent for epoxy resins. Examples of such commercially available dicyandiamide include DICY7 and DICY15 (manufactured by Mitsubishi Chemical Corporation).
  • dicyandiamide [B] it is preferable to blend dicyandiamide [B] as a powder into the epoxy resin composition from the viewpoints of storage stability at room temperature and viscosity stability during prepreg production.
  • the average particle size is preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less.
  • the average particle diameter is 10 ⁇ m or less, the resin impregnation property inside the fiber bundle is good.
  • the total amount of dicyandiamide [B] is 0.3 to 1.2 equivalents, more preferably 0.3 to 0.7 equivalents of active hydrogen groups, based on the epoxy groups of all epoxy resin components contained in the epoxy resin composition. It is preferable to set the amount within a range. When the amount of active hydrogen groups falls within this range, a cured resin product having an excellent balance between heat resistance and mechanical properties can be obtained.
  • the curing temperature of the resin composition can be lowered as compared with the case where component [B] is blended alone.
  • component [B] in order to obtain a good curing rate, it is necessary to use the component [B] and the component [C] in combination.
  • the epoxy resin composition of the present invention needs to contain an aromatic urea compound as component [C].
  • Component [C] serves as a curing accelerator, and a good curing rate can be obtained when used in combination with component [B].
  • aromatic urea compound in component [C] examples include 3- (3,4-dichlorophenyl) -1,1-dimethylurea, 3- (4-chlorophenyl) -1,1-dimethylurea, phenyldimethylurea And toluenebisdimethylurea. Further, as commercially available aromatic urea compounds, DCMU-99 (Hodogaya Chemical Co., Ltd.), “Omicure (registered trademark)” 24 (PTI Japan Ltd.), etc. are used. be able to.
  • the amount of the aromatic urea compound in component [C] is preferably 1 to 8 parts by weight, more preferably 1.5 to 6 parts by weight, based on 100 parts by weight of the epoxy resin of component [A]. More preferably, it is 2 to 4 parts by mass.
  • component [C] is known as a curing accelerator having relatively high storage stability
  • the reaction with the epoxy resin proceeds slowly even at room temperature
  • long-term storage stability is not always sufficient.
  • a mechanism has been proposed in which an amine compound liberated by the decomposition of the urea group reacts with the epoxy resin.
  • the present inventors considered the reason why long-term stability cannot be obtained at room temperature as follows. That is, since the urea group dissociation reaction is a reversible reaction, it is considered that a small amount of amine compound is contained in the epoxy resin composition containing the component [C].
  • the nucleophilic reaction between the amine compound and the epoxy resin is an irreversible reaction.
  • the epoxy resin composition of the present invention needs to contain a borate ester as component [D].
  • a borate ester as component [D].
  • the reaction between the component [C] and the epoxy resin at the storage temperature is suppressed, so that the storage stability of the prepreg is significantly improved.
  • the mechanism is not clear, since the component [D] has Lewis acidity, the amine compound liberated from the component [C] and the component [D] interact to reduce the reactivity of the amine compound. I think that there is not.
  • a resin composition having excellent stability to heat history can be obtained.
  • stabilization of an amine compound using the component [D] has been known so far (for example, described in Patent Document 1), this technique stabilizes an amine compound having high reactivity with an epoxy resin. It was to become.
  • heat may be applied to the resin composition, but the highly reactive amine compound and component [D] In the combined use, stability to heat history at that time was not sufficient.
  • the component [C] and the component [D] are used together as in the present application, the amount of the amine compound liberated from the component [C] is limited, so the component [C] is used alone. Better stability to thermal history than if Also from this viewpoint, it is necessary to use the component [C] and the component [D] in combination.
  • borate ester of component [D] examples include trimethyl borate, triethyl borate, tributyl borate, tri-n-octyl borate, tri (triethylene glycol methyl ether) borate ester, tricyclohexyl borate, and trimentyl borate.
  • Aromatic borate esters such as alkyl borate ester, tri-o-cresyl borate, tri-m-cresyl borate, tri-p-cresyl borate, triphenyl borate, tri (1,3-butanediol) biborate, tri (2 -Methyl-2,4-pentanediol) biborate, trioctylene glycol diborate and the like.
  • a cyclic borate ester having a cyclic structure in the molecule can also be used.
  • the cyclic borate include tris-o-phenylene bisborate, bis-o-phenylene pyroborate, bis-2,3-dimethylethylenephenylene pyroborate, bis-2,2-dimethyltrimethylene pyroborate, and the like. .
  • boric acid esters examples include “Cureduct (registered trademark)” L-01B (Shikoku Kasei Kogyo Co., Ltd.) and “Cureduct (registered trademark)” L-07N (Shikoku Kasei Kogyo Co., Ltd.). )
  • the amount of component [D] is preferably 0.1 to 8 parts by weight, more preferably 0.15 to 5 parts by weight, even more preferably 100 parts by weight of the epoxy resin of component [A]. Is 0.2 to 4 parts by mass.
  • thermo analysis using a differential scanning calorimeter is used to measure the curing rate of the epoxy resin composition.
  • the exotherm that can be observed with a differential scanning calorimeter is caused by the reaction of the epoxy resin composition. Therefore, in the isothermal measurement, the time until exotherm appears is related to the reaction rate of the epoxy resin composition.
  • the peak top of the exotherm in the isothermal measurement represents the time when the reaction is most active at that temperature, and can be used as an index of reactivity.
  • T (100 ° C isothermal measurement of an epoxy resin composition using a differential scanning calorimeter) when the isothermal measurement at 100 ° C. is performed with a differential scanning calorimeter, the time from when the temperature reaches 100 ° C. until the heat flow reaches the top of the exothermic peak is defined as T (100).
  • T (100) is preferably 60 minutes or less, more preferably 45 minutes or less, and even more preferably 30 minutes or less.
  • the epoxy resin composition of the present invention has T (60) when T (60) is the time from reaching 60 ° C. until the heat flow reaches the exothermic peak top. ) Is preferably 25 hours or longer, more preferably 28 hours or longer.
  • T (60) is the time from reaching 60 ° C. until the heat flow reaches the exothermic peak top.
  • the resin composition in the present application needs to be any of the following (i) to (iii).
  • the conditions [a] to [e] are as follows.
  • T (100) of epoxy resin composition is 60 minutes or less
  • T (60) of epoxy resin composition is 25 hours or more
  • Average epoxy equivalent of all epoxy resins is 165 g / eq or more 265 g / eq or less
  • Component [A] contains component [A1] and 10 to 50 parts by mass of 100 parts by mass of total epoxy resin
  • Component [A] contains component [A2], 10 parts by mass to 50 parts by mass per 100 parts by mass of the epoxy resin.
  • thermoplastic resin in the epoxy resin composition of the present invention, can be blended as component [E] within a range not losing the effects of the present invention.
  • a thermoplastic resin is not an essential component in the present invention, it can control viscoelasticity or impart toughness to a cured product by blending it in an epoxy resin composition.
  • thermoplastic resins include at least selected from polymethyl methacrylate, polyvinyl formal, polyvinyl butyral, polyvinyl acetal, polyvinyl pyrrolidone, aromatic vinyl monomer / vinyl cyanide monomer / rubber polymer.
  • examples thereof include polymers having two types as constituents, polyamide, polyester, polycarbonate, polyarylene oxide, polysulfone, polyethersulfone, and polyimide.
  • polymers comprising at least two types selected from aromatic vinyl monomers, vinyl cyanide monomers, and rubbery polymers include acrylonitrile-butadiene-styrene copolymers (ABS resins), acrylonitrile -Styrene copolymer (AS resin) and the like.
  • ABS resins acrylonitrile-butadiene-styrene copolymers
  • AS resin acrylonitrile -Styrene copolymer
  • Polysulfone and polyimide may have an ether bond or an amide bond in the main chain.
  • Polymethyl methacrylate, polyvinyl formal, polyvinyl butyral, and polyvinyl pyrrolidone have good compatibility with many kinds of epoxy resins such as bisphenol A type epoxy resin and novolac type epoxy resin, and control the flowability of the epoxy resin composition.
  • epoxy resins such as bisphenol A type epoxy resin and novolac type epoxy resin
  • polyvinyl formal is particularly preferable.
  • thermoplastic resins include “Denka Butyral (registered trademark)” and “Denka Formal (registered trademark)” (manufactured by Denki Kagaku Kogyo Co., Ltd.), “Vinilec (registered trademark)” (JNC Corporation ) Made).
  • the polymer itself of polysulfone, polyethersulfone, and polyimide has excellent heat resistance.
  • Glycidylamines such as tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol, and tetraglycidylxylenediamine, which are epoxy resins often used in applications requiring heat resistance, such as aircraft structural members It is a polymer having a resin skeleton having moderate compatibility with a type epoxy resin. And if this is used, the effect of the fluidity
  • polymers examples include “Radel (registered trademark)” A (manufactured by Solvay Advanced Polymers) for polysulfone, “Sumika Excel (registered trademark)” PES (manufactured by Sumitomo Chemical Co., Ltd.), and “ Ultem (registered trademark) "(manufactured by GE Plastics),” Matrimid (registered trademark) "5218 (manufactured by Huntsman), and the like.
  • the epoxy resin composition of the present invention contains a thermoplastic resin, it is preferably contained in an amount of 1 to 60 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the epoxy resin composition.
  • the epoxy resin composition of the present invention is a coupling agent, thermosetting resin particles, or conductive particles such as carbon black, carbon particles and metal plating organic particles, or silica gel as long as the effects of the present invention are not hindered.
  • An inorganic filler such as clay can be blended.
  • Method for preparing epoxy resin composition For the preparation of the epoxy resin composition of the present invention, for example, a kneader, a planetary mixer, a three-roll extruder and a twin-screw extruder may be used for kneading. If uniform kneading is possible, a beaker and Use a spatula or the like and mix by hand.
  • the flexural modulus of the cured resin when the epoxy resin composition of the present invention is cured at 130 ° C. for 2 hours is preferably 3.5 GPa or more, and more preferably 3.7 GPa or more.
  • the elastic modulus is 3.5 GPa or more, a fiber-reinforced composite material having excellent static strength can be obtained.
  • the upper limit of the flexural modulus is generally 5.0 GPa or less.
  • the methods for measuring the bending elastic modulus and the bending deflection of the cured resin are as follows. It is cured for 2 hours at a temperature of 130 ° C. in a mold set to a thickness of 2 mm with a spacer to obtain a cured resin product having a thickness of 2 mm. A test piece having a width of 10 mm and a length of 60 mm was cut out from the cured resin, and the span length was set to 32 mm and the crosshead speed was set to 2.5 mm / min using an Instron universal testing machine (manufactured by Instron). By carrying out a three-point bending test according to K7171 (1994), the bending elastic modulus and the bending deflection can be measured.
  • the curing temperature and curing time for obtaining the resin cured product are not particularly limited, and the optimum conditions vary depending on the shape and thickness of the molded product. From the viewpoint of forming in a short time while suppressing, the condition of curing at a temperature of 130 ° C. to 150 ° C. for 90 minutes to 2 hours is preferable.
  • a fiber reinforced composite material containing the cured product of the epoxy resin composition of the present invention as a matrix resin can be obtained by compositely integrating the epoxy resin composition of the present invention with reinforcing fibers and then curing.
  • the reinforcing fiber used in the present invention is not particularly limited, and glass fiber, carbon fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber and the like are used. Two or more of these fibers may be mixed and used. Among these, it is preferable to use carbon fibers from which a lightweight and highly rigid fiber-reinforced composite material can be obtained.
  • prepreg composed of an epoxy resin composition and reinforcing fibers in advance.
  • This is a material form in which the arrangement of the prepreg fibers and the ratio of the resin can be precisely controlled, and the characteristics of the composite material can be maximized.
  • the prepreg can be obtained by impregnating the reinforcing fiber base material with the epoxy resin composition of the present invention. Examples of the impregnation method include known methods such as a hot melt method (dry method).
  • the hot melt method is a method in which a reinforcing fiber is impregnated directly with an epoxy resin composition whose viscosity is reduced by heating, or a film in which an epoxy resin composition is coated on a release paper is prepared, and then both sides of the reinforcing fiber are prepared.
  • it is a method of impregnating a reinforcing fiber with a resin by overlapping the film from one side and heating and pressing.
  • a press molding method as a method for applying heat and pressure, a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, or the like can be used as appropriate.
  • the cured product of the epoxy resin composition of the present invention and a fiber-reinforced composite material containing reinforcing fibers are preferably used for sports applications, general industrial applications, and aerospace applications. More specifically, in sports applications, it is preferably used for golf shafts, fishing rods, tennis and badminton rackets, hockey sticks, ski poles, and the like. Furthermore, in general industrial applications, structural materials for moving bodies such as automobiles, bicycles, ships and railway vehicles, drive shafts, leaf springs, windmill blades, pressure vessels, flywheels, paper rollers, roofing materials, cables, and repair reinforcement materials It is preferably used for such as.
  • Aromatic urea compounds [C] [C] -1 DCMU99 (3- (3,4-dichlorophenyl) -1,1-dimethylurea, manufactured by Hodogaya Chemical Co., Ltd.) [C] -2 “Omicure (registered trademark)” 24 (4,4′-methylenebis (phenyldimethylurea, manufactured by PTI Japan).
  • bisphenol S is added, kneaded at room temperature using a kneader, and then passed twice between the rolls using a three roll, Produced.
  • Epoxy resin [A] excluding 10 parts by mass and 90 parts by mass of thermoplastic resin [E] are charged, heated to 150 ° C. while kneading, and kneaded at 150 ° C. for 1 hour. Thus, a transparent viscous liquid was obtained. The temperature of the viscous liquid was lowered while kneading to 60 ° C., and then the curing agent master prepared in (1) was blended and kneaded at 60 ° C. for 30 minutes to obtain an epoxy resin composition.
  • Tables 1 to 5 show the composition ratios of the examples and comparative examples.
  • T (100) 3 mg of the epoxy resin composition was weighed into a sample pan and heated for 8 hours after being heated from 30 ° C. to 100 ° C./minute using a differential scanning calorimeter (Q-2000: manufactured by TA Instruments). Isothermal measurements were made. 42 seconds after the temperature rise start time was set as the isothermal measurement start time, and the time from the isothermal measurement start time until the heat flow reached the exothermic peak top was measured and obtained as the time to the peak top during the 100 ° C. isothermal measurement. . The measurement was performed 3 samples per level, and the average value was adopted. Hereinafter, the average value obtained in this measurement is expressed as T (100) (however, the unit of T (100) is [minute]).
  • T (60) 3 mg of the epoxy resin composition was weighed into a sample pan, heated for 48 hours after being heated from 30 ° C. to 100 ° C./min using a differential scanning calorimeter (Q-2000: manufactured by TA Instruments) for 48 hours. Isothermal measurements were made. The isothermal measurement start time is 18 seconds after the temperature rise start time, and the time from the isothermal measurement start time until the heat flow reaches the exothermic peak top is measured and obtained as the time to the peak top at the 60 ° C. isothermal measurement. . The measurement was performed 3 samples per level, and the average value was adopted. Hereinafter, the average value obtained in this measurement is expressed as T (60) (however, the unit of T (60) is [time]). In addition, when the peak top did not appear even after 48 hours, the value of T (60) was set to 48 or more.
  • Preparation method of prepreg The epoxy resin composition prepared according to the above ⁇ Preparation method of epoxy resin composition> was applied onto release paper using a film coater, and a resin film having a basis weight of 74 g / m 2 was prepared. .
  • This resin film is set in a prepreg forming apparatus and heated and pressed from both sides of a carbon fiber “Torayca” (registered trademark) T700S (manufactured by Toray Industries, Inc., weight per unit: 150 g / m 2 ) that is aligned in one direction. Impregnation was performed to obtain a prepreg having a resin content of 33% by mass.
  • Torayca registered trademark
  • T700S manufactured by Toray Industries, Inc., weight per unit: 150 g / m 2
  • the curing rate of the prepreg was determined by cutting the prepreg into 20 cm squares, sandwiching it with a 150 ⁇ m thick “Teflon (registered trademark)” sheet, pressing it at 130 ° C., and taking it out. Judged by gender. The handleability was judged according to the following criteria, and A to C were accepted. A: The prepreg did not deform when taken out after 20 minutes. B: The prepreg was deformed when removed after 20 minutes, but was not deformed when removed after 30 minutes. C: The prepreg was deformed when taken out after 30 minutes, but was not deformed when taken out after 40 minutes. D: The prepreg was deformed when the curing speed was insufficient and the film was taken out after 40 minutes.
  • the storage stability of prepreg was determined by the amount of increase in glass transition temperature when prepreg was cut into 10 cm square and left at 40 ° C. for 60 days.
  • the glass transition temperature was measured at 8 ° C./min from ⁇ 50 ° C. to 50 ° C. using a differential scanning calorimeter (Q-2000: manufactured by TA Instruments) by measuring 8 mg of the prepreg after storage in a sample pan. Measured by warming.
  • the midpoint of the inflection point of the obtained exothermic curve was obtained as Tg.
  • CFRP unidirectional laminate used for CFRP characteristic evaluation was produced by the following method.
  • the fiber direction of the unidirectional prepreg produced according to the above ⁇ prepreg production method> was aligned, and 13 ply was laminated.
  • the laminated prepreg was covered with a nylon film so as not to have a gap, and was cured by heating and pressing at 130 ° C. and an internal pressure of 0.3 MPa for 2 hours in an autoclave to prepare a unidirectional laminate.
  • Example 1 [A] 30 parts by mass of “jER (registered trademark)” 154 as epoxy resin, 40 parts by mass of “jER (registered trademark)” 828, 30 parts by mass of jER (registered trademark) 1001, and [B] DICY7 as dicyandiamide 5.3 parts by weight, and 3.0 parts by weight of DCMU99 as [C] aromatic urea compound, and 3.0 parts by weight of “Cureduct®” L-07N as a mixture containing [D] borate ester
  • the epoxy resin composition was prepared using 3.0 parts by mass of “Vinylec (registered trademark)” K as a thermoplastic resin according to the above ⁇ Method for producing epoxy resin composition>, that is, a liquid resin [A].
  • T (100) and T (60) were measured for this epoxy resin composition, T (100) was 43 minutes and T (60) was 29 hours.
  • the epoxy resin composition was cured by the method described in the above ⁇ Method for producing and evaluating resin cured product> to produce a resin cured product, and the three-point bending test described above was performed.
  • the mechanical properties of the cured resin were also good with 3 GPa and deflection of 10.2 mm.
  • a prepreg was produced from the obtained epoxy resin composition by the method described in ⁇ Preparation Method and Evaluation Method of Prepreg>.
  • the obtained prepreg had sufficient tack and drape properties.
  • the obtained prepreg was evaluated for the curing speed and storage stability described in the above, and as a result, the prepreg was cured within 130 minutes at 130 ° C. until it was not deformed.
  • the prepreg had only a sufficient curing rate and storage stability.
  • the stability to the thermal history the storage stability of the prepreg after heat treatment at 80 ° C. for 1 hour was evaluated. After storage for 60 days at 40 ° C., the Tg remained at 3 ° C., and before the heat treatment at 80 ° C. It had almost the same storage stability.
  • Example 2 to 16 An epoxy resin composition, a cured resin product, and a prepreg were produced in the same manner as in Example 1 except that the resin composition was changed as shown in Tables 1 to 3, respectively.
  • the obtained prepregs showed sufficient tack and drape properties as in Example 1.
  • T (100) and T (60) were as shown in Tables 1 to 3, respectively.
  • Example 1 About the resin composition shown in Table 4, the epoxy resin composition, the prepreg, and the resin cured material were produced by the same method as Example 1. The resin composition characteristics and evaluation results are shown in Table 4.
  • the T (60) value of the epoxy resin composition was 23 hours and less than 25 hours, and the storage stability of the prepreg was insufficient. Moreover, when the storage stability of the prepreg after heat treatment at 80 ° C. for 1 hour was evaluated, Tg was greatly increased to 44 ° C. because of containing bisphenol S, and stability to thermal history was not obtained.
  • Example 2 About the resin composition shown in Table 4, the epoxy resin composition, the prepreg, and the resin cured material were produced by the same method as Example 1. This composition corresponds to a composition obtained by removing bisphenol S from Comparative Example 1. The resin composition characteristics and evaluation results are shown in Table 4. Although the storage stability and cured product properties of the prepreg were good and had stability to thermal history, the T (100) value of the epoxy resin composition was longer than 70 minutes and 60 minutes, and the obtained prepreg The curing rate was insufficient.
  • Example 3 An epoxy resin composition, a prepreg, and a cured resin were prepared in the same manner as in Example 4 except that Component [D] was not added.
  • the resin composition characteristics and evaluation results are shown in Table 4.
  • the T (60) value of the epoxy resin composition was 19 hours and less than 25 hours, and the storage stability of the prepreg was insufficient. Further, when the storage stability of the prepreg after heat treatment at 80 ° C. for 1 hour was evaluated, the Tg greatly increased to 43 ° C., and stability to thermal history was not obtained.
  • Example 4 The epoxy resin composition and prepreg were prepared in the same manner as in Example 2 except that the curing accelerator was changed to “CURESOL®” 2PHZ-PW (1.0 part by mass) and component [D] was not added. And a cured resin product.
  • the resin composition characteristics and evaluation results are shown in Table 4.
  • the storage stability and cured product properties of the prepreg were good and had stability to thermal history, but the T (100) value of the epoxy resin composition was much longer than 300 minutes and 60 minutes. The curing speed of was insufficient.
  • Example 5 An epoxy resin composition and a prepreg were prepared in the same manner as in Example 2 except that the curing accelerator was changed to “Curazole®” 2P4MHZ-PW (1.0 part by mass) and component [D] was not added. And a cured resin product.
  • the resin composition characteristics and evaluation results are shown in Table 4.
  • the value of T (60) of the epoxy resin composition was 24 hours and less than 25 hours, and the storage stability of the prepreg was insufficient. Further, when the storage stability of the prepreg after heat treatment at 80 ° C. for 1 hour was evaluated, the Tg greatly increased to 44 ° C., and stability to thermal history was not obtained.
  • Example 6 An epoxy resin composition, a prepreg, and a cured resin were prepared in the same manner as in Example 1 except that the resin composition was changed as shown in Table 5.
  • the resin composition characteristics and evaluation results are shown in Table 4.
  • the value of T (60) of the epoxy resin composition was 15 hours and less than 25 hours, and the storage stability of the prepreg was insufficient. Further, when the storage stability of the prepreg after heat treatment at 80 ° C. for 1 hour was evaluated, Tg increased greatly to 42 ° C., and stability to thermal history was not obtained. Further, the balance between the elastic modulus and the bending of the cured resin was deteriorated, and the 90 ° bending strength of CFRP was as low as 83 MPa.
  • Example 7 An epoxy resin composition, a prepreg, and a cured resin were prepared in the same manner as in Example 1 except that the resin composition was changed as shown in Table 5. The resin composition characteristics and evaluation results are shown in Table 5. Although the storage stability and cured product properties of the prepreg were good and the thermal history was stable, the T (100) value of the epoxy resin composition was much longer than 70 minutes and 60 minutes, and the obtained prepreg The curing speed of was insufficient.
  • Example 11 An epoxy resin composition, a prepreg, and a cured resin were prepared in the same manner as in Example 1 except that the resin composition was changed as shown in Table 5.
  • the resin composition characteristics and evaluation results are shown in Table 5.
  • the T (60) value of the epoxy resin composition was 13 hours and less than 25 hours, and the storage stability of the prepreg was insufficient. Further, when the storage stability of the prepreg after heat treatment at 80 ° C. for 1 hour was evaluated, the Tg greatly increased to 43 ° C., and stability to thermal history was not obtained. Further, the balance between the elastic modulus and the bending of the cured resin was deteriorated, and the 90 ° bending strength of CFRP was as low as 73 MPa.
  • the epoxy resin composition of the present invention is excellent in storage stability and excellent in mechanical properties when cured, and therefore is suitably used as a matrix resin for fiber-reinforced composite materials.
  • the prepreg and fiber-reinforced composite material of the present invention are preferably used for sports applications, general industrial applications, and aerospace applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

製造時および保管・輸送時の熱履歴に対し安定で、保管安定性に優れたエポキシ樹脂組成物およびプリプレグ、かつ繊維強化複合材料として優れた機械特性を示すエポキシ樹脂組成物。[A]エポキシ樹脂、[B]ジシアンジアミド、[C]芳香族ウレア、[D]ホウ酸エステルを含み、かつ、(i)[a]と[b]、(ii)[c]と[d]、(iii)[c]と[e]、のいずれかを満たす。 [a]:示差走査熱量分析で、100℃から熱流量がピークトップまで60分以下。 [b]:示差走査熱量分析で、60℃から熱流量がピークトップまで25時間以上。 [c]:全エポキシ樹脂の平均が165g/eq以上265g/eq以下。 [d]:[A]が[A1]式(I)および/または式(II)の樹脂を、全エポキシ樹脂中10~50質量部含む。 [e]:[A]が[A2]3官能以上のグリシジルアミン型樹脂を、全エポキシ樹脂中10~50質量部含む。

Description

エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
 本発明は、スポーツ用途および一般産業用途に適した繊維強化複合材料のマトリックス樹脂として好ましく用いられるエポキシ樹脂組成物、ならびに、これをマトリックス樹脂としたプリプレグおよび繊維強化複合材料に関するものである。
 エポキシ樹脂はその優れた機械的特性をいかし、塗料、接着剤、電気電子情報材料、先端複合材料など、各種産業分野に広く使用されている。特に炭素繊維、ガラス繊維、アラミド繊維などの強化繊維とマトリックス樹脂からなる繊維強化複合材料ではエポキシ樹脂が多用されている。
 繊維強化複合材料の製造は、炭素繊維の基材にあらかじめエポキシ樹脂を含浸させた、プリプレグが汎用される。プリプレグは、積層もしくはプリフォーム後、加熱してエポキシ樹脂を硬化させることで、成形品を与える。プリプレグに要求される特性は、成形品が優れた機械特性を示すことに加え、特に近年では、優れた生産性、すなわち速硬化性が求められている。この傾向は、特に生産性が要求される自動車などの産業用途で強い。
 また、現行のプリプレグは室温においても反応性があり、通常冷凍保管が必要である。それには冷凍設備の手配や使用前の解凍が要求されることから、常温で保管、取扱いが可能な、保管安定性に優れたプリプレグが求められている。
 保管安定性を高める技術として、特許文献1には、粒径を制御したイミダゾール誘導体の粒子表面をホウ酸エステル化合物でコーティングする方法が開示されており、良好な保管安定性と硬化速度の両立が可能であると記載されている。
 特許文献2には、エポキシ樹脂中の加水分解塩素量を適切な範囲に制御することにより、長期保存安定性を有するエポキシ樹脂組成物が得られると記載されている。
 特許文献3には、硬化開始温度から硬化度が一定に達するまでの時間を制御し、粒径や硬化温度を限定した硬化剤を用いる方法が開示されており、保管安定性と速硬化性を両立したと記載されている。
特開平9-157498号公報 特開2003-301029号公報 特開2004-75914号公報
 しかし、特許文献1に記載された方法では、活性の高いイミダゾール誘導体を用いるため、樹脂の調合時やプリプレグ作製時およびプリプレグ保管・輸送時の熱履歴により、長期保存安定性が失われる場合があった。
 また、特許文献2および3には、比較的高い保存安定性をもつ樹脂組成物が示されているものの、保存安定性は十分とは言えなかった。また炭素繊維複合材料の力学特性に重要な、樹脂硬化物の弾性率や撓みに関する言及もなかった。
 そこで、本発明は、製造プロセスや保管・輸送時の熱履歴に対し安定で、保管安定性を高いレベルで有するエポキシ樹脂組成物およびプリプレグを提供すること、かつ繊維強化複合材料として優れた機械特性を示すエポキシ樹脂組成物を提供することを課題とする。
 本発明者らは、前記課題を解決すべく鋭意検討した結果、下記構成からなるエポキシ樹脂組成物を見いだし、本発明を完成させるに至った。すなわち本発明のエポキシ樹脂組成物は、以下の構成からなる。
 成分[A]エポキシ樹脂、[B]ジシアンジアミド、[C]芳香族ウレア化合物、および[D]ホウ酸エステルを含み、かつ、下記(i)~(iii)のいずれかであることを特徴とするエポキシ樹脂組成物。
 (i)条件[a]および条件[b]を満たす。
 (ii)条件[c]および条件[d]を満たす。
 (iii)条件[c]および条件[e]を満たす。
但し、条件[a]~条件[e]は以下のとおりである。
[a]:窒素気流下、100℃の等温で示差走査熱量分析計によりエポキシ樹脂組成物を分析したとき、100℃に達してから熱流量がピークトップに至るまでの時間が60分以下である。
[b]:窒素気流下、60℃の等温で示差走査熱量分析計によりエポキシ樹脂組成物を分析したとき、60℃に達してから熱流量がピークトップに至るまでの時間が25時間以上である。
[c]:全エポキシ樹脂の平均エポキシ当量が165g/eq以上265g/eq以下である。
[d]:成分[A]が[A1]式(I)および/または式(II)で示されるエポキシ樹脂を、全エポキシ樹脂100質量部中10質量部~50質量部含む。
Figure JPOXMLDOC01-appb-C000003
(式中、R、R、Rは、水素原子またはメチル基を表す。また、nは1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000004
(nは1以上の整数を表す。)。
[e]:成分[A]が[A2]3官能以上のグリシジルアミン型エポキシ樹脂を、全エポキシ樹脂100質量部中10質量部~50質量部含む。
 また、本発明のプリプレグは、前記エポキシ樹脂組成物と炭素繊維からなるプリプレグである。
 また、本発明の繊維強化複合材料は、前記プリプレグを硬化して得られる繊維強化複合材料である。
 本発明によれば、製造プロセスおよび保管・輸送時の熱履歴に対し安定で、保管安定性に極めて優れるとともに、プリプレグを成形して得られる繊維強化複合材料が高い機械特性を有するエポキシ樹脂組成物、ならびに、該エポキシ樹脂組成物を用いたプリプレグおよび繊維強化複合材料を提供することができる。
 本発明のエポキシ樹脂組成物は、成分[A]:エポキシ樹脂、成分[B]:ジシアンジアミド、成分[C]:芳香族ウレア化合物、成分[D]ホウ酸エステルを必須成分として含む。まずはこれらの構成要素について説明する。
 (成分[A])
 本発明における成分[A]はエポキシ樹脂である。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂、フルオレン骨格を有するエポキシ樹脂、フェノール化合物とジシクロペンタジエンの共重合体を原料とするエポキシ樹脂、ジグリシジルレゾルシノール、テトラキス(グリシジルオキシフェニル)エタン、トリス(グリシジルオキシフェニル)メタンのようなグリシジルエーテル型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシレンジアミンのようなグリシジルアミン型エポキシ樹脂が挙げられる。エポキシ樹脂は、これらを単独で用いても、複数種類を組み合わせても良い。
 成分[A]としては、3官能以上の多官能エポキシ樹脂を含むことが好ましい。3官能以上の多官能エポキシ樹脂を含むことにより、極めて高い保管安定性を有しながら、硬化速度も良好なエポキシ樹脂組成物が得られる。
 3官能以上の多官能エポキシ樹脂としては、硬化速度と保管安定性、および硬化物の力学特性のバランスの観点から、成分[A1]下記式(I)および/または下記式(II)で示されるエポキシ樹脂であることが好ましい。成分[A1]は、一般にフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、またはジシクロペンタジエン型エポキシ樹脂として知られているものであり、2官能以上の多官能エポキシ樹脂の混合物として市販されている。
 成分[A1]は、エポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部中10質量部~50質量部含むことが、保管安定性と硬化速度のバランスの観点から好ましい。また、硬化速度の観点から、成分[A1]中の3官能以上の多官能エポキシ樹脂の割合は多いほうが好ましく、その観点から、成分[A1]のエポキシ基の平均官能基数は3.0個以上であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、R、R、Rは、水素原子またはメチル基を表す。また、nは1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000006
(nは1以上の整数を表す。)。
 成分[A1]の市販品としては、“jER(登録商標)”152、154、180S(以上、三菱化学(株)製)、“エピクロン(登録商標)”N-740,N-770,N-775,N-660,N-665,N-680,N-695,HP7200L,HP7200,HP7200H,HP7200HH,HP7200HHH(以上、DIC(株)製)、PY307,EPN1179,EPN1180,ECN9511,ECN1273,ECN1280,ECN1285,ECN1299(以上、ハンツマン・アドバンスト・マテリアル社製)、YDPN638,YDPN638P,YDCN-701,YDCN-702,YDCN-703,YDCN-704(以上、東都化成(株)製)、DEN431,DEN438,DEN439(以上、ダウケミカル社製)などがある。
 また、3官能以上の多官能エポキシ樹脂として、成分[A2]3官能以上のグリシジルアミン型エポキシ樹脂を含むことが好ましい。
 成分[A2]の具体例としては、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシリレンジアミンなどが挙げられる。
 成分[A2]の市販品としては、テトラグリシジルジアミノジフェニルメタンとして、“スミエポキシ(登録商標)”ELM434(住友化学工業(株)製)、YH434L(東都化成(株)製)、“jER(登録商標)”604(三菱化学(株)製)、“アラルダイト(登録商標)”MY720、MY721(ハンツマン・アドバンスト・マテリアルズ社製)等を使用することができる。トリグリシジルアミノフェノール又はトリグリシジルアミノクレゾールとしては、“スミエポキシ(登録商標)”ELM100、ELM120(住友化学工業(株)製)、“アラルダイト(登録商標)”MY0500、MY0510、MY0600(ハンツマン・アドバンスト・マテリアルズ社製)、“jER(登録商標)”630(三菱化学(株)製)等を使用することができる。テトラグリシジルキシリレンジアミンおよびその水素添加品として、“TETRAD(登録商標)”-X、“TETRAD(登録商標)”-C(三菱ガス化学(株)製)等を使用することができる。
 成分[A2]は、全エポキシ樹脂100質量部中10質量部~50質量部含むことが、保管安定性と硬化速度のバランスの観点から好ましい。
 成分[A]として、成分[A3]ビスフェノールF型エポキシ樹脂を含むことも、保管安定性と樹脂硬化物の弾性率のバランスの観点から好ましい。成分[A3]は、全エポキシ樹脂100質量部中20質量部~90質量部含むことが好ましい。
 成分[A3]の市販品としては、例えば“jER(登録商標)”806、807、4002P、4004P、4007P、4009P(以上三菱化学(株)製)、“エポトート(登録商標)”YDF-2001、YDF-2004(以上東都化成(株)製)などが挙げられる。
 本願発明では、保管安定性と硬化速度のバランスの観点から、全エポキシ樹脂の平均エポキシ当量は、165g/eq以上265g/eq以下であることが好ましい。全エポキシ樹脂の平均エポキシ当量が165g/eq未満であると、室温における保管安定性が不十分なものとなることが多い。また、全エポキシ樹脂の平均エポキシ当量が265g/eqよりも大きいと、硬化速度が不十分なものとなったり、樹脂硬化物の機械特性が低下したりすることが多い。
 全エポキシ樹脂の平均エポキシ当量は、以下の方法で算出可能である。
 (全エポキシ樹脂の平均エポキシ当量)
 n種類のエポキシ樹脂を併用し、エポキシ当量がEx(g/eq)のエポキシ樹脂XがWx質量部配合されている場合の全エポキシ樹脂の平均エポキシ当量は、以下の数式(1)によって算出することができる。(ここで、x=1、2、3、・・・、nである。)
Figure JPOXMLDOC01-appb-M000007
 (成分[B])
 本発明における成分[B]は、ジシアンジアミドである。ジシアンジアミドは、化学式(HN)C=N-CNであらわされる化合物である。ジシアンジアミドは、樹脂硬化物に高い力学特性や耐熱性を与える点で優れており、エポキシ樹脂の硬化剤として広く用いられる。かかるジシアンジアミドの市販品としては、DICY7、DICY15(以上、三菱化学(株)製)などが挙げられる。
 ジシアンジアミド[B]を粉体としてエポキシ樹脂組成物に配合することは、室温での保管安定性や、プリプレグ製造時の粘度安定性の観点から好ましい。また、ジシアンジアミド[B]を予め成分[A]のエポキシ樹脂の一部に三本ロールなどを用いて分散させておくことは、エポキシ樹脂組成物を均一にし、硬化物の物性を向上させるため好ましい。
 ジシアンジアミドを粉体として樹脂に配合する場合、その平均粒径は10μm以下であることが好ましく、さらに好ましくは7μm以下である。例えば、プリプレグ製造工程において加熱加圧により強化繊維束にエポキシ樹脂組成物を含浸させる際、平均粒径が10μm以下であれば、繊維束内部への樹脂の含浸性が良好となる。
 また、ジシアンジアミド[B]の総量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂成分のエポキシ基に対し、活性水素基が0.3~1.2当量、さらに0.3~0.7当量の範囲となる量とすることが好ましい。活性水素基の量がこの範囲となることにより、耐熱性と機械特性のバランスに優れた樹脂硬化物を得ることができる。
 ジシアンジアミド[B]は、後述の成分[C]と併用することにより、成分[B]を単独で配合した場合と比較し、樹脂組成物の硬化温度を下げることができる。本願発明においては、良好な硬化速度を得るために、成分[B]と成分[C]を併用することが必要である。
 (成分[C])
 本発明のエポキシ樹脂組成物には、成分[C]として、芳香族ウレア化合物が含まれている必要がある。成分[C]は硬化促進剤としてはたらき、成分[B]と併用した場合に良好な硬化速度を得ることができる。
 成分[C]における芳香族ウレア化合物の具体例としては、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、3-(4-クロロフェニル)-1,1-ジメチルウレア、フェニルジメチルウレア、トルエンビスジメチルウレアなどが挙げられる。また、芳香族ウレア化合物の市販品としては、DCMU-99(保土ヶ谷化学工業(株)製)、“Omicure(登録商標)”24(ピィ・ティ・アイ・ジャパン(株)製)などを使用することができる。
 成分[C]における芳香族ウレア化合物の配合量は、成分[A]のエポキシ樹脂100質量部に対し、好ましくは1~8質量部であり、より好ましくは1.5~6質量部であり、さらに好ましくは2~4質量部である。成分[C]をこの範囲で配合することにより、保管安定性と硬化速度のバランスに優れ、物性が良好な樹脂硬化物を与えるエポキシ樹脂組成物が得られる。
 なお、成分[C]は比較的保管安定性が高い硬化促進剤として知られているが、室温でもゆっくりとエポキシ樹脂との反応が進行するため、長期の保管安定性は必ずしも十分ではなかった。エポキシ樹脂と成分[C]の反応メカニズムには諸説あるが、ウレア基の分解により遊離したアミン化合物が、エポキシ樹脂と反応するメカニズムが提唱されている。本願発明者らは、室温において長期の安定性が得られない理由について、以下のように考えた。すなわち、ウレア基の解離反応は可逆反応であるため、成分[C]を含むエポキシ樹脂組成物中には、微量のアミン化合物が遊離して含まれていると考えられる。一方で、アミン化合物とエポキシ樹脂の求核反応は不可逆反応である。遊離した大半のアミン化合物は可逆反応によりウレアに戻るが、一部エポキシ基と反応すれば、不可逆に架橋反応が進行する。これが繰り返されることで、樹脂組成物の長期の安定性が損なわれるのではないかと考えた。そこで、極めて高い保管安定性を得るためには、後述する成分[D]との併用が必要である。
 (成分[D])
 本発明のエポキシ樹脂組成物には、成分[D]として、ホウ酸エステルが含まれている必要がある。成分[C]と成分[D]とを併用することにより、保管温度における成分[C]とエポキシ樹脂の反応が抑制されるため、プリプレグの保管安定性が著しく向上する。そのメカニズムは定かではないが、成分[D]はルイス酸性を持つため、成分[C]から遊離したアミン化合物と成分[D]が相互作用し、アミン化合物の反応性を低下させているのではないかと考えている。
 また、成分[C]と成分[D]を併用することにより、熱履歴への安定性に優れた樹脂組成物が得られる。成分[D]を用いたアミン化合物の安定化についてはこれまで知られていた(例えば、特許文献1に記載されている)が、この技術は、エポキシ樹脂との反応性が高いアミン化合物を安定化するものであった。樹脂組成物の調合工程や、強化繊維とあわせてプリプレグとする場合における強化繊維への含浸工程などでは、樹脂組成物に熱を加えることがあるが、反応性の高いアミン化合物と成分[D]の併用では、その際の熱履歴への安定性が十分ではなかった。一方で、本願のように、成分[C]と成分[D]を併用した場合には、成分[C]から遊離するアミン化合物の量は限定的であるため、成分[C]を単独で用いた場合よりも優れた熱履歴への安定性が得られる。この観点においても、成分[C]と成分[D]を併用する必要がある。
 成分[D]のホウ酸エステルの具体例としては、トリメチルボレート、トリエチルボレート、トリブチルボレート、トリn-オクチルボレート、トリ(トリエチレングリコールメチルエーテル)ホウ酸エステル、トリシクロヘキシルボレート、トリメンチルボレートなどのアルキルホウ酸エステル、トリo-クレジルボレート、トリm-クレジルボレート、トリp-クレジルボレート、トリフェニルボレートなどの芳香族ホウ酸エステル、トリ(1,3-ブタンジオール)ビボレート、トリ(2-メチル-2,4-ペンタンジオール)ビボレート、トリオクチレングリコールジボレートなどが挙げられる。
 また、ホウ酸エステルとして、分子内に環状構造を有する環状ホウ酸エステルを用いることもできる。環状ホウ酸エステルとしては、トリス-o-フェニレンビスボレート、ビス-o-フェニレンピロボレート、ビス-2,3-ジメチルエチレンフェニレンピロボレート、ビス-2,2-ジメチルトリメチレンピロボレートなどが挙げられる。
 かかるホウ酸エステルを含む製品としては、たとえば、“キュアダクト(登録商標)”L-01B(四国化成工業(株))、“キュアダクト(登録商標)”L-07N(四国化成工業(株))がある。
 かかる成分[D]の配合量は、成分[A]のエポキシ樹脂100質量部に対し、好ましくは0.1~8質量部であり、より好ましくは0.15~5質量部であり、さらに好ましくは0.2~4質量部である。成分[D]をこの範囲で配合することにより、保管安定性と硬化速度のバランスに優れ、物性が良好な樹脂硬化物を与えるエポキシ樹脂組成物が得られる。
 (示差走査熱量分析計を用いたエポキシ樹脂組成物の分析)
 本発明において、エポキシ樹脂組成物の硬化速度の測定には、たとえば示差走査熱量分析計を用いた熱分析が用いられる。
 示差走査熱量分析計で観測できる発熱は、エポキシ樹脂組成物の反応によって生じるものである。従って、等温測定において、発熱が現れるまでの時間は、エポキシ樹脂組成物の反応速度と関係がある。等温測定における発熱のピークトップは、その温度で反応が最も活発化する時を表しており、反応性の指標として用いることができる。
 (示差走査熱量分析計を用いたエポキシ樹脂組成物の100℃等温測定)
 本発明のエポキシ樹脂組成物は、示差走査熱量分析計で100℃の等温測定を行った場合、100℃に達してから熱流量が発熱ピークトップに至るまでの時間をT(100)としたとき、T(100)が60分以下であることが好ましく、45分以下であることがより好ましく、30分以下であることがさらに好ましい。T(100)が60分以下であるエポキシ樹脂組成物をマトリックス樹脂として用いることにより、生産性を損なわない範囲での硬化速度を与えることができる。T(100)が60分より大きくなるエポキシ樹脂組成物をマトリックス樹脂として用いたプリプレグでは、硬化速度が不十分なものとなる。
 (示差走査熱量分析計を用いたエポキシ樹脂組成物の60℃等温測定)
 また、本発明のエポキシ樹脂組成物は、60℃で等温測定を行った場合、60℃に達してから熱流量が発熱ピークトップに至るまでの時間をT(60)としたとき、T(60)が25時間以上であることが好ましく、28時間以上であることがより好ましい。T(60)が25時間以上であるエポキシ樹脂組成物をマトリックス樹脂として用いることにより、プリプレグに長期的な保管安定性を与えることができる。25時間未満となるエポキシ樹脂組成物をマトリックス樹脂として用いたプリプレグは、室温における保管安定性が不十分なものとなることが多い。
 本願における樹脂組成物は、下記(i)~(iii)のいずれかであることが必要である。
(i)条件[a]および条件[b]を満たす。
(ii)条件[c]および条件[d]を満たす。
(iii)条件[c]および条件[e]を満たす。
但し、条件[a]~条件[e]は以下のとおりである。
[a]:エポキシ樹脂組成物のT(100)が60分以下
[b]:エポキシ樹脂組成物のT(60)が25時間以上
[c]:全エポキシ樹脂の平均エポキシ当量が165g/eq以上265g/eq以下
[d]:成分[A]が成分[A1]を、全エポキシ樹脂100質量部中10質量部~50質量部含む
[e]:成分[A]が成分[A2]を、全エポキシ樹脂100質量部中10質量部~50質量部含む。
 成分[A]エポキシ樹脂、[B]ジシアンジアミド、[C]芳香族ウレア化合物、および[D]ホウ酸エステルを含み、かつ、上記(i)~(iii)のいずれかであることにより、保管安定性と硬化速度のバランスに優れ、物性が良好な樹脂硬化物を与えるエポキシ樹脂組成物が得られる。
 (成分[E])
 本発明のエポキシ樹脂組成物には、本発明の効果を失わない範囲において、成分[E]として熱可塑性樹脂を配合することができる。熱可塑性樹脂は本発明に必須の成分ではないが、エポキシ樹脂組成物に配合することにより、粘弾性を制御したり、硬化物に靭性を付与したりすることができる。
 このような熱可塑性樹脂の例としては、ポリメタクリル酸メチル、ポリビニルホルマール、ポリビニルブチラール、ポリビニルアセタール、ポリビニルピロリドン、芳香族ビニル単量体・シアン化ビニル単量体・ゴム質重合体から選ばれる少なくとも2種類を構成成分とする重合体、ポリアミド、ポリエステル、ポリカーボネート、ポリアリーレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミドなどが挙げられる。芳香族ビニル単量体・シアン化ビニル単量体・ゴム質重合体から選ばれる少なくとも2種類を構成成分とする重合体の例としては、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、アクリロニトリル-スチレン共重合体(AS樹脂)などが挙げられる。ポリスルホン、ポリイミドは、主鎖にエーテル結合や、アミド結合を有するものであってもよい。
 ポリメタクリル酸メチル、ポリビニルホルマール、ポリビニルブチラール、ポリビニルピロリドンは、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂などの多くの種類のエポキシ樹脂と良好な相溶性を有し、エポキシ樹脂組成物の流動性制御の効果が大きい点で好ましく、ポリビニルホルマールが特に好ましい。これらの熱可塑性樹脂の市販品を例示すると、“デンカブチラール(登録商標)”および“デンカホルマール(登録商標)”(電気化学工業(株)製)、“ビニレック(登録商標)”(JNC(株)製)などがある。
 また、ポリスルホン、ポリエーテルスルホン、ポリイミドの重合体は、樹脂そのものが耐熱性に優れる。そして、耐熱性が要求される用途、例えば、航空機の構造部材などでよく用いられるエポキシ樹脂である、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシレンジアミンのようなグリシジルアミン型エポキシ樹脂と適度な相溶性を有する樹脂骨格をもつ重合体である。そして、これを使用するとエポキシ樹脂組成物の流動性制御の効果が大きい。そして、繊維強化樹脂複合材料の耐衝撃性を高める効果があるため好ましい。このような重合体の例としては、ポリスルホンでは“レーデル(登録商標)”A(ソルベイアドバンスドポリマーズ社製)、“スミカエクセル(登録商標)”PES(住友化学(株)製)など、ポリイミドでは“ウルテム(登録商標)”(ジーイープラスチックス社製)、“Matrimid(登録商標)”5218(ハンツマン社製)などが挙げられる。
 本発明のエポキシ樹脂組成物において、熱可塑性樹脂を含む場合は、エポキシ樹脂組成物に含まれるエポキシ樹脂100質量部に対して、1~60質量部含まれることが好ましい。
 (粒子の配合)
 本発明のエポキシ樹脂組成物は、本発明の効果を妨げない範囲で、カップリング剤や、熱硬化性樹脂粒子、または、カーボンブラック、カーボン粒子や金属めっき有機粒子等の導電性粒子、あるいはシリカゲル、クレー等の無機フィラーを配合することができる。これらの添加には、エポキシ樹脂組成物の粘度を高め、樹脂フローを小さくする粘度調整効果、樹脂硬化物の弾性率、耐熱性を向上させる効果、耐摩耗性を向上させる効果がある。
 (エポキシ樹脂組成物の調製方法)
 本発明のエポキシ樹脂組成物の調製には、例えばニーダー、プラネタリーミキサー、3本ロールおよび2軸押出機といった機械を用いて混練しても良いし、均一な混練が可能であれば、ビーカーとスパチュラなどを用い、手で混ぜても良い。
 (エポキシ樹脂硬化物の曲げ特性)
 本発明のエポキシ樹脂組成物を130℃で2時間硬化させた際の樹脂硬化物の曲げ弾性率は、3.5GPa以上であることが好ましく、3.7GPa以上であることがより好ましい。弾性率が3.5GPa以上であると、静的強度に優れた繊維強化複合材料が得られる。曲げ弾性率の上限は、一般には5.0GPa以下である。
 ここで、樹脂硬化物の曲げ弾性率および曲げ撓み量の測定法は以下の通りである。スペーサーにより厚み2mmとなるように設定したモールド中で130℃の温度で2時間硬化させ、厚さ2mmの樹脂硬化物を得る。この樹脂硬化物から幅10mm、長さ60mmの試験片を切り出し、インストロン万能試験機(インストロン社製)を用い、スパン間長さを32mm、クロスヘッドスピードを2.5mm/分とし、JIS K7171(1994)に従って3点曲げ試験を実施することにより、曲げ弾性率および曲げ撓み量が測定できる。
 なお、樹脂硬化物を得るための硬化温度や硬化時間は特に限定されず、成形品の形状や厚みにより最適な条件は変わるため、使用者により任意に選択されるものであるが、暴走反応を抑えつつ、短時間で成形する観点から、130℃~150℃の温度で90分~2時間硬化させる条件が好ましい。
 (繊維強化複合材料)
 次に、繊維強化複合材料について説明する。本発明のエポキシ樹脂組成物を、強化繊維と複合一体化した後、硬化させることにより、本発明のエポキシ樹脂組成物の硬化物をマトリックス樹脂として含む繊維強化複合材料を得ることができる。
 本発明に用いられる強化繊維は特に限定されるものではなく、ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが用いられる。これらの繊維を2種以上混合して用いても構わない。この中で、軽量かつ高剛性な繊維強化複合材料が得られる炭素繊維を用いることが好ましい。
 (プリプレグ)
 繊維強化複合材料を得るにあたり、あらかじめエポキシ樹脂組成物と強化繊維からなるプリプレグとしておくが好ましい。プリプレグ繊維の配置および樹脂の割合を精密に制御でき、複合材料の特性を最大限に引き出すことのできる材料形態である。プリプレグは、本発明のエポキシ樹脂組成物を強化繊維基材に含浸させて得ることができる。含浸させる方法としては、ホットメルト法(ドライ法)などの公知の方法を挙げることができる。
 ホットメルト法は、加熱により低粘度化したエポキシ樹脂組成物を直接強化繊維に含浸させる方法、または離型紙などの上にエポキシ樹脂組成物をコーティングしたフィルムを作製しておき、次いで強化繊維の両側または片側から前記フィルムを重ね、加熱加圧することにより強化繊維に樹脂を含浸させる方法である。
 プリプレグ積層成形法において、熱および圧力を付与する方法としては、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法などを適宜使用することができる。
 本発明のエポキシ樹脂組成物の硬化物と、強化繊維を含む繊維強化複合材料は、スポーツ用途、一般産業用途および航空宇宙用途に好ましく用いられる。より具体的には、スポーツ用途では、ゴルフシャフト、釣り竿、テニスやバドミントンのラケット、ホッケーなどのスティック、およびスキーポールなどに好ましく用いられる。さらに一般産業用途では、自動車、自転車、船舶および鉄道車両などの移動体の構造材、ドライブシャフト、板バネ、風車ブレード、圧力容器、フライホイール、製紙用ローラ、屋根材、ケーブル、および補修補強材料などに好ましく用いられる。
 以下に実施例を示し、本発明をさらに具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。
 本実施例で用いる構成要素は以下の通りである。
 <使用した材料>
 ・エポキシ樹脂[A]
[A1]-1 “jER(登録商標)”154(フェノールノボラック型エポキシ樹脂、エポキシ当量:178、平均官能基数:3.0個/分子、三菱化学(株)製)
[A1]-2 “エピクロン(登録商標)”N-775(フェノールノボラック型エポキシ樹脂、エポキシ当量:190、平均官能基数:6.5個/分子、DIC(株)製)
[A1]-3 “エピクロン(登録商標)”HP-7200H(ジシクロペンタジエン型エポキシ樹脂、エポキシ当量:279、平均官能基数:3.0個/分子、DIC(株)製)
[A1]-4 “jER(登録商標)”152(フェノールノボラック型エポキシ樹脂、エポキシ当量:177、平均官能基数:2.2個/分子、三菱化学(株)製)
[A2]-1 “スミエポキシ(登録商標)”ELM434(テトラグリシジルジアミノジフェニルメタン、エポキシ当量:125、住友化学工業(株)製)
[A2]-2 “アラルダイト(登録商標)”MY0600(トリグリシジルm-アミノフェノール、エポキシ当量:118、ハンツマン・アドバンスト・マテリアルズ社製)
[A3]-1 “エピクロン(登録商標)”830(液状ビスフェノールF型エポキシ樹脂、エポキシ当量:168、DIC(株)製)
[A3]-2 “エポトート(登録商標)”YDF-2001(固形ビスフェノールF型エポキシ樹脂、エポキシ当量:475、東都化成(株)製)
[A]-1 “jER(登録商標)”828(液状ビスフェノールA型エポキシ樹脂、エポキシ当量:189、三菱化学(株)製)
[A]-2 “jER(登録商標)”1001(固形ビスフェノールA型エポキシ樹脂、エポキシ当量:475、三菱化学(株)製)。
 ・ジシアンジアミド[B]
[B]-1 DICY7(ジシアンジアミド、三菱化学(株)製)。
 ・芳香族ウレア化合物[C]
[C]-1 DCMU99(3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、保土ヶ谷化学工業(株)製)
[C]-2 “Omicure(登録商標)”24(4,4’-メチレンビス(フェニルジメチルウレア、ピィ・ティ・アイ・ジャパン(株)製)。
 ・芳香族ウレア化合物以外の硬化促進剤[C’]
[C’]-1 “キュアゾール(登録商標)”2PHZ-PW(2-フェニル-4,5-ジヒドロキシメチルイミダゾール、四国化成工業(株)製)
[C’]-2 “キュアゾール(登録商標)”2P4MHZ-PW(2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、四国化成工業(株)製)
[C’]-3 “キュアダクト(登録商標)”P-0505(エポキシ-イミダゾールアダクト、四国化成工業(株)製)。
 ・ホウ酸エステルを含む混合物[D]
[D]-1 “キュアダクト(登録商標)”L-07N(ホウ酸エステル化合物を5質量部含む組成物、四国化成工業(株)製)。
 ・熱可塑性樹脂[E]
[E]-1 “ビニレック(登録商標)”K(ポリビニルホルマール、JNC(株)製)。
 ・その他の化合物
ビスフェノールS(東京化成工業(株)製ビス(ヒドロキシフェニル)スルホンをハンマーミルで粉砕した後、ふるいで分級したもの。平均粒径14.8μm。)。
 <エポキシ樹脂組成物の調製方法>
 (1)硬化促進剤マスター、硬化剤マスターの作製方法
 液状樹脂である[A3]-1(“エピクロン(登録商標)”830)または[A]-1(“jER(登録商標)”828)10質量部(エポキシ樹脂[A]100質量部のうちの10質量部)に対し、芳香族ウレア化合物[C]または硬化促進剤[C’]、および、ホウ酸エステルを含む混合物[D]を添加し、ニーダーを用いて室温で混練した。三本ロールを用いて混合物をロール間に2回通し、硬化促進剤マスターを調製した。硬化促進剤マスターにジシアンジアミド[B]、およびビスフェノールSを含む場合はビスフェノールSを添加し、ニーダーを用いて室温で混練した後、三本ロールを用いてロール間に2回通し、硬化剤マスターを作製した。
 (2)エポキシ樹脂組成物の作製方法
 ニーダー中に、エポキシ樹脂[A]のうち前記(1)で使用した[A3]-1(“エピクロン(登録商標)”830)または[A]-1(“jER(登録商標)”828)10質量部を除くエポキシ樹脂[A]90質量部および熱可塑性樹脂[E]を投入し、混練しながら150℃まで昇温し、150℃において1時間混練することで、透明な粘調液を得た。粘調液を60℃まで混練しながら降温させた後、前記(1)で作製した硬化剤マスターを配合し、60℃において30分間混練することにより、エポキシ樹脂組成物を得た。
 各実施例および比較例の成分配合比について表1~5に示した。
 <樹脂組成物特性の評価方法>
 (1)T(100)
 エポキシ樹脂組成物3mgをサンプルパンに量り取り、示差走査熱量分析計(Q-2000:TAインスツルメント社製)を用い、30℃から100℃/分で100℃まで昇温した後に8時間の等温測定を行った。昇温開始時刻から42秒後を等温測定開始時刻とし、等温測定開始時刻から熱流量が発熱ピークトップに至るまでの時間を測定し、100℃の等温測定時のピークトップまでの時間として取得した。測定は1つの水準あたり3サンプルずつ行い、その平均値を採用した。以後、本測定で得られた平均値をT(100)と表記する(ただし、T(100)の単位は[分]である。)。
 (2)T(60)
 エポキシ樹脂組成物3mgをサンプルパンに量り取り、示差走査熱量分析計(Q-2000:TAインスツルメント社製)を用い、30℃から100℃/分で60℃まで昇温した後に48時間の等温測定を行った。昇温開始時刻から18秒後を等温測定開始時刻とし、等温測定開始時刻から熱流量が発熱ピークトップに至るまでの時間を測定し、60℃の等温測定時のピークトップまでの時間として取得した。測定は1つの水準あたり3サンプルずつ行い、その平均値を採用した。以後、本測定で得られた平均値をT(60)と表記する(ただし、T(60)の単位は[時間]である。)。なお、48時間たってもピークトップが現れなかった場合は、T(60)の値は48以上とした。
 <樹脂硬化物の作製方法と評価方法>
 (1)樹脂硬化物の弾性率と撓み
 エポキシ樹脂組成物を真空中で脱泡した後、2mm厚の“テフロン”(登録商標)製スペーサーにより厚み2mmになるように設定したモールド中で、130℃の温度で90分間硬化させ、厚さ2mmの板状の樹脂硬化物を得た。この樹脂硬化物から、幅10mm、長さ60mmの試験片を切り出し、インストロン万能試験機(インストロン社製)を用い、スパンを32mm、クロスヘッドスピードを100mm/分とし、JIS K7171(1994)に従って3点曲げを実施し、弾性率および撓みを測定した。サンプル数n=5で測定した値の平均値を弾性率と撓みの値とした。
 <プリプレグの作製方法と評価方法>
 (1)プリプレグの作製方法
 上記<エポキシ樹脂組成物の作製方法>に従い作製したエポキシ樹脂組成物を、フィルムコーターを用いて離型紙上に塗布し、目付が74g/mの樹脂フィルムを作製した。
 この樹脂フィルムをプリプレグ化装置にセットし、一方向に引き揃えたシート状にした炭素繊維“トレカ”(登録商標)T700S(東レ(株)製、目付150g/m)の両面から加熱加圧含浸し、樹脂含有率33質量%のプリプレグを得た。
 (2)プリプレグの硬化速度の評価方法
 プリプレグの硬化速度は、プリプレグを20cm四方に切り取り、厚さ150μmの“テフロン(登録商標)”シートで挟み込み、130℃でプレスした後に、取り出した時の取り扱い性によって判定した。取り扱い性は以下の基準で判定し、A~Cを合格とした。
A:20分後に取り出した時にプリプレグが変形しなかった。
B:20分後に取り出した時はプリプレグが変形したが、30分後に取り出した時は変形しなかった。
C:30分後に取り出した時はプリプレグが変形したが、40分後に取り出した時は変形しなかった。
D:硬化速度が不十分で40分後に取り出した場合にプリプレグが変形した。
 (3)プリプレグの保管安定性の評価方法
 プリプレグの保管安定性は、プリプレグを10cm四方に切り取り、40℃で60日放置した場合のガラス転移温度の増加量によって判定した。ガラス転移温度は、保管後のプリプレグ8mgをサンプルパンに測り取り、示差走査熱量分析計(Q-2000:TAインスツルメント社製)を用い、-50℃から50℃まで10℃/分で昇温して測定した。得られた発熱カーブの変曲点の中点をTgとして取得した。
 (4)プリプレグの80℃1時間熱処理後の保管安定性の評価方法
 熱履歴を加えた際の保管安定性の指標として、80℃で1時間の熱処理を加えたプリプレグの保管安定性を評価した。プリプレグを10cm四方に切り取り、80℃に調製したプレス機の盤面にプリプレグを1時間静置し、その後室温のアルミ板の上で急冷し、熱履歴を加えたプリプレグサンプルを調製した。得られたサンプルについて、(3)と同様の方法で、40℃で60日放置した場合のガラス転移温度の増加量を測定することにより、保管安定性を評価した。
 <炭素繊維複合材料(CFRP)の特性評価方法>
 (1)CFRPの一方向積層板の作製方法
 CFRPの特性評価に用いる一方向積層板は、次の方法によって作製した。上記<プリプレグの作製方法>に従って作製した一方向プリプレグの繊維方向を揃え、13ply積層した。積層したプリプレグをナイロンフィルムで隙間のないように覆い、これをオートクレーブ中で130℃、内圧0.3MPaで2時間加熱加圧して硬化し、一方向積層板を作製した。
 (2)CFRPの0°曲げ強度の評価方法
 上記に従い作製した一方向積層板を、厚み2mm、幅15mm、長さ100mmとなるように切り出した。インストロン万能試験機(インストロン社製)を用いJIS K7074(1988)に従って3点曲げを実施した。スパンを80mm、クロスヘッドスピードを5.0mm/分、厚子径10mm、支点径4.0mmで測定を行い、0°曲げ強度を測定した。サンプル数n=6で測定した値の平均値を0°曲げ強度の値とした。
 (3)CFRPの90°曲げ強度の評価方法
 上記に従い作製した一方向積層板を、厚み2mm、幅15mm、長さ60mmとなるように切り出した。インストロン万能試験機(インストロン社製)を用いJIS K7074(1988)に従って3点曲げを実施した。スパンを40mm、クロスヘッドスピードを1.0mm/分、厚子径10mm、支点径4.0mmで測定を行い、90°曲げ強度を測定した。サンプル数n=6で測定した値の平均値を90°曲げ強度の値とした。
 (実施例1)
 [A]エポキシ樹脂として“jER(登録商標)”154を30質量部、“jER(登録商標)”828を40質量部、jER(登録商標)”1001を30質量部、[B]ジシアンジアミドとしてDICY7を5.3質量部、および[C]芳香族ウレア化合物としてDCMU99を3.0質量部、[D]ホウ酸エステルを含む混合物として“キュアダクト(登録商標)”L-07Nを3.0質量部、熱可塑樹脂として“ビニレック(登録商標)”Kを3.0質量部用い、上記<エポキシ樹脂組成物の作製方法>に従ってエポキシ樹脂組成物を作製した。すなわち、液状樹脂である[A]-1(“jER(登録商標)”828)10質量部(エポキシ樹脂[A]100質量部のうちの10質量部)に対し、DCMU99を3.0質量部、および“キュアダクト(登録商標)”L-07Nを3.0質量部添加しニーダーを用いて室温で混練した。三本ロールを用いて混合物をロール間に2回通し、硬化促進剤マスターを調製した。硬化促進剤マスターにDICY7を5.3質量部添加し、ニーダーを用いて室温で混練した後、三本ロールを用いてロール間に2回通し、硬化剤マスターを作製した。
ニーダー中に、残りのエポキシ樹脂[A]90質量部として、“jER(登録商標)”154を30質量部、“jER(登録商標)”828を30質量部、jER(登録商標)”1001を30質量部投入し、さらに“ビニレック(登録商標)”Kを3.0質量部投入した。混練しながら150℃まで昇温し、150℃において1時間混練することで、透明な粘調液を得た。粘調液を60℃まで混練しながら降温させた後、上記で作製した硬化剤マスターを配合し、60℃において30分間混練することにより、エポキシ樹脂組成物を得た。
 このエポキシ樹脂組成物について、T(100)およびT(60)を測定したところ、T(100)は43分、T(60)は29時間であった。
 また、エポキシ樹脂組成物を上記<樹脂硬化物の作製方法と評価方法>に記載の方法で硬化して樹脂硬化物を作製し、同記載の3点曲げ試験を行った結果、弾性率は3.3GPa、撓みは10.2mmと、樹脂硬化物の力学特性も良好であった。
 さらに、得られたエポキシ樹脂組成物から、<プリプレグの作製方法と評価方法>に記載の方法でプリプレグを作製した。得られたプリプレグは十分なタック性・ドレープ性を有していた。得られたプリプレグに関し、同記載の硬化速度と保管安定性の評価を行ったところ、130℃において30分以内にプリプレグは変形しなくなる程度まで硬化し、また、40℃において60日間保管後にTgは2℃の上昇に留まり、プリプレグは十分な硬化速度と保管安定性を有していた。さらに、熱履歴への安定性について、80℃で1時間熱処理後のプリプレグの保管安定性を評価したところ、40℃において60日間保管後にTgは3℃の上昇に留まり、80℃での熱処理前とほぼ同等の保管安定性を有していた。
 <炭素繊維複合材料(CFRP)の評価方法>に記載の方法で積層・硬化して一方向積層板を作製し、3点曲げ試験を行った結果、0°曲げ強度は1420MPa、90°曲げ強度は105MPaと、CFRPの力学特性も良好であった。
 (実施例2~16)
 樹脂組成をそれぞれ表1~3に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、樹脂硬化物、およびプリプレグを作製した。得られたプリプレグは、実施例1と同様、いずれも十分なタック性・ドレープ性を示した。
 各実施例のエポキシ樹脂組成物に関して、T(100)、T(60)は、それぞれ表1~3に記載の通りであった。
 プリプレグの硬化速度と保管安定性、および熱履歴への安定性について、実施例1と同様の評価を行った結果、全ての水準において十分な硬化速度と保管安定性、熱履歴への安定性を示した。
 また、樹脂硬化物の弾性率と撓みの値は、いずれも良好であり、CFRPの力学特性も良好であった。
 (比較例1)
 表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表4に示した。エポキシ樹脂組成物のT(60)の値が23時間と25時間未満であり、プリプレグの保管安定性は不十分であった。また、80℃で1時間熱処理後のプリプレグの保管安定性を評価したところ、ビスフェノールSを含むためか、Tgは44℃と大きく上昇し、熱履歴への安定性は得られなかった。
 (比較例2)
 表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。本組成は、比較例1からビスフェノールSを除いた組成にあたる。樹脂組成物特性および評価結果は表4に示した。プリプレグの保管安定性および硬化物特性は良好であり、熱履歴への安定性も有したが、エポキシ樹脂組成物のT(100)の値が70分と60分より長く、得られたプリプレグの硬化速度が不十分であった。
 (比較例3)
 成分[D]を添加しなかった以外は、実施例4と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表4に示した。エポキシ樹脂組成物のT(60)の値が19時間と25時間未満であり、プリプレグの保管安定性は不十分であった。また、80℃で1時間熱処理後のプリプレグの保管安定性を評価したところ、Tgは43℃と大きく上昇し、熱履歴への安定性は得られなかった。
 (比較例4)
 硬化促進剤を“キュアゾール(登録商標)”2PHZ-PW(1.0質量部)に変更し、成分[D]を添加しなかった以外は、実施例2と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表4に示した。プリプレグの保管安定性および硬化物特性は良好であり、熱履歴への安定性も有したが、エポキシ樹脂組成物のT(100)の値が300分と60分より極めて長く、得られたプリプレグの硬化速度が不十分であった。
 (比較例5)
 硬化促進剤を“キュアゾール(登録商標)”2P4MHZ-PW(1.0質量部)に変更し、成分[D]を添加しなかった以外は、実施例2と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表4に示した。エポキシ樹脂組成物のT(60)の値が24時間と25時間未満であり、プリプレグの保管安定性は不十分であった。また、80℃で1時間熱処理後のプリプレグの保管安定性を評価したところ、Tgは44℃と大きく上昇し、熱履歴への安定性は得られなかった。
 (比較例6)
 樹脂組成をそれぞれ表5に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表4に示した。エポキシ樹脂組成物のT(60)の値が15時間と25時間未満であり、プリプレグの保管安定性は不十分であった。また、80℃で1時間熱処理後のプリプレグの保管安定性を評価したところ、Tgは42℃と大きく上昇し、熱履歴への安定性は得られなかった。また、樹脂硬化物の弾性率と撓みのバランスが悪化し、CFRPの90°曲げ強度は83MPaと低いものであった。
 (比較例7)
 樹脂組成をそれぞれ表5に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表5に示した。プリプレグの保管安定性および硬化物特性は良好であり、熱履歴への安定性も有したが、エポキシ樹脂組成物のT(100)の値が70分と60分より極めて長く、得られたプリプレグの硬化速度が不十分であった。
 (比較例8)
 樹脂組成をそれぞれ表5に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表5に示した。エポキシ樹脂組成物のT(60)の値が24時間と25時間未満であり、プリプレグの保管安定性は不十分であった。
 (比較例9)
 樹脂組成をそれぞれ表5に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表5に示した。プリプレグの保管安定性および硬化物特性は良好であり、熱履歴への安定性も有したが、エポキシ樹脂組成物のT(100)の値が65分と60分より極めて長く、得られたプリプレグの硬化速度が不十分であった。
 (比較例10)
 樹脂組成をそれぞれ表5に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表5に示した。エポキシ樹脂組成物のT(60)の値が22時間と25時間未満であり、プリプレグの保管安定性は不十分であった。
 (比較例11)
 樹脂組成をそれぞれ表5に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および樹脂硬化物を作製した。樹脂組成物特性および評価結果は表5に示した。エポキシ樹脂組成物のT(60)の値が13時間と25時間未満であり、プリプレグの保管安定性は不十分であった。また、80℃で1時間熱処理後のプリプレグの保管安定性を評価したところ、Tgは43℃と大きく上昇し、熱履歴への安定性は得られなかった。また、樹脂硬化物の弾性率と撓みのバランスが悪化し、CFRPの90°曲げ強度は73MPaと低いものであった。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 本発明のエポキシ樹脂組成物は、保管安定性が極めて優れており、硬化したときの力学特性にも優れるため、繊維強化複合材料のマトリックス樹脂として好適に用いられる。また、本発明のプリプレグおよび繊維強化複合材料は、スポーツ用途、一般産業用途および航空宇宙用途に好ましく用いられる。

Claims (9)

  1.  成分[A]エポキシ樹脂、[B]ジシアンジアミド、[C]芳香族ウレア、および[D]ホウ酸エステルを含み、かつ、下記(i)~(iii)のいずれかであることを特徴とするエポキシ樹脂組成物。
     (i)条件[a]および条件[b]を満たす。
     (ii)条件[c]および条件[d]を満たす。
     (iii)条件[c]および条件[e]を満たす。
    但し、条件[a]~条件[e]は以下のとおりである。
    [a]:窒素気流下、100℃の等温で示差走査熱量分析計によりエポキシ樹脂組成物を分析したとき、100℃に達してから熱流量がピークトップに至るまでの時間が60分以下である。
    [b]:窒素気流下、60℃の等温で示差走査熱量分析計によりエポキシ樹脂組成物を分析したとき、60℃に達してから熱流量がピークトップに至るまでの時間が25時間以上である。
    [c]:全エポキシ樹脂の平均エポキシ当量が165g/eq以上265g/eq以下である。
    [d]:成分[A]が[A1]式(I)および/または式(II)で示されるエポキシ樹脂を、全エポキシ樹脂100質量部中10質量部~50質量部含む。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、R、Rは、水素原子またはメチル基を表す。また、nは1以上の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (nは1以上の整数を表す。)
    [e]:成分[A]が[A2]3官能以上のグリシジルアミン型エポキシ樹脂を、全エポキシ樹脂100質量部中10質量部~50質量部含む。
  2.  上記(i)を満たす場合であって、成分[A]が3官能以上の多官能エポキシ樹脂を含む請求項1に記載のエポキシ樹脂組成物。
  3.  上記(i)を満たす場合であって、さらに上記条件[d]を満たす請求項1または2に記載のエポキシ樹脂組成物。
  4.  上記条件[d]を満たす場合であって、[A1]式(I)および/または式(II)で示されるエポキシ樹脂のエポキシ基の平均官能基数が3.0個/分子以上である請求項1~3のいずれかに記載のエポキシ樹脂組成物。
  5.  上記(i)または(ii)を満たす場合であって、さらに上記条件[e]を満たす請求項1~4のいずれかに記載のエポキシ樹脂組成物。
  6.  成分[A]が[A3]ビスフェノールF型エポキシ樹脂を全エポキシ樹脂100質量部中20質量部~90質量部含む請求項1~5のいずれかに記載のエポキシ樹脂組成物。
  7.  130℃で2時間加熱し硬化させた樹脂硬化物の曲げ弾性率が3.5GPa以上である請求項1~6のいずれかに記載のエポキシ樹脂組成物。
  8.  請求項1~7のいずれかに記載のエポキシ樹脂組成物と炭素繊維からなるプリプレグ。
  9.  請求項8に記載のプリプレグを硬化して得られる繊維強化複合材料。
PCT/JP2015/083361 2015-02-09 2015-11-27 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 WO2016129167A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15882041.5A EP3257884B1 (en) 2015-02-09 2015-11-27 Epoxy resin composition, prepreg, and fiber-reinforced composite material
US15/549,527 US10344117B2 (en) 2015-02-09 2015-11-27 Epoxy resin composition, prepreg, and fiber reinforced composite material
KR1020177012484A KR102389775B1 (ko) 2015-02-09 2015-11-27 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합재료
CN201580073822.5A CN107250197B (zh) 2015-02-09 2015-11-27 环氧树脂组合物、预浸料坯及纤维增强复合材料

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-022917 2015-02-09
JP2015022917 2015-02-09
JP2015-022916 2015-02-09
JP2015022915 2015-02-09
JP2015022916 2015-02-09
JP2015-022915 2015-02-09

Publications (1)

Publication Number Publication Date
WO2016129167A1 true WO2016129167A1 (ja) 2016-08-18

Family

ID=56615634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083361 WO2016129167A1 (ja) 2015-02-09 2015-11-27 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Country Status (6)

Country Link
US (1) US10344117B2 (ja)
EP (1) EP3257884B1 (ja)
KR (1) KR102389775B1 (ja)
CN (1) CN107250197B (ja)
TW (1) TWI675881B (ja)
WO (1) WO2016129167A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11345808B2 (en) * 2017-07-21 2022-05-31 Toray Industries, Inc. Epoxy resin composition, prepreg, and fiber-reinforced composite material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201515715D0 (en) * 2015-09-04 2015-10-21 Gurit Uk Ltd Prepregs and production of composite material using prepregs
EP3722356A4 (en) * 2017-12-04 2021-08-25 Toray Industries, Inc. PREPREG AND FIBER REINFORCED COMPOSITE MATERIAL
KR102552930B1 (ko) 2018-06-27 2023-07-07 삼성디스플레이 주식회사 패널 하부 부재 및 이를 포함하는 표시 장치
WO2020161515A1 (en) * 2019-02-08 2020-08-13 Toray Industries, Inc. Resin composition for carbon fiber composite material, towpreg
DE102019121195A1 (de) * 2019-08-06 2021-02-11 Alzchem Trostberg Gmbh Lagerstabile Epoxidharz-Zusammensetzung
DE102021101685A1 (de) 2021-01-26 2022-07-28 Alzchem Trostberg Gmbh Lagerstabile Epoxidharz-Zusammensetzung (II)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182793A (ja) * 1996-12-26 1998-07-07 Toray Ind Inc エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料
JPH10330513A (ja) * 1997-06-02 1998-12-15 Toray Ind Inc プリプレグ及び繊維強化複合材料
JP2002284852A (ja) * 2001-01-19 2002-10-03 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2005225982A (ja) * 2004-02-13 2005-08-25 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2013139511A (ja) * 2011-12-29 2013-07-18 Dunlop Sports Co Ltd 繊維強化エポキシ樹脂材料製の管状体
JP2014167102A (ja) * 2013-01-29 2014-09-11 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2014167103A (ja) * 2013-01-29 2014-09-11 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127498A (ja) * 1995-10-27 1997-05-16 Casio Comput Co Ltd カラー液晶表示素子
JPH09157498A (ja) 1995-12-12 1997-06-17 Toray Ind Inc 繊維強化複合材料用エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料
JPH11256013A (ja) * 1998-03-12 1999-09-21 Ajinomoto Co Inc エポキシ樹脂組成物
JP4719976B2 (ja) * 1999-03-11 2011-07-06 東レ株式会社 エポキシ樹脂組成物及び繊維強化複合材料用エポキシ樹脂組成物並びにそれを有してなる繊維強化複合材料
JP4975217B2 (ja) * 2001-03-06 2012-07-11 三菱レイヨン株式会社 炭素繊維とその製造方法、炭素繊維用前駆体繊維の製造方法並びにプリプレグ
JP2003301029A (ja) 2002-04-10 2003-10-21 Toray Ind Inc エポキシ樹脂組成物およびプリプレグ
JP2004075914A (ja) 2002-08-21 2004-03-11 Toray Ind Inc エポキシ樹脂組成物及びプリプレグ
EP1707585B1 (en) * 2004-01-22 2011-09-28 Ajinomoto Co., Inc. One-component epoxy resin composition
WO2012147418A1 (ja) * 2011-04-28 2012-11-01 Dic株式会社 水性複合樹脂組成物及び物品
SG194558A1 (en) * 2011-05-02 2013-12-30 Dow Global Technologies Llc Trimethyl borate in epoxy resins
JP5561350B2 (ja) * 2012-12-21 2014-07-30 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
TWI621639B (zh) * 2013-01-07 2018-04-21 東麗股份有限公司 環氧樹脂組成物及預浸漬物
JP2014185296A (ja) 2013-03-25 2014-10-02 Asahi Kasei E-Materials Corp 液状樹脂組成物及び加工品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182793A (ja) * 1996-12-26 1998-07-07 Toray Ind Inc エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料
JPH10330513A (ja) * 1997-06-02 1998-12-15 Toray Ind Inc プリプレグ及び繊維強化複合材料
JP2002284852A (ja) * 2001-01-19 2002-10-03 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2005225982A (ja) * 2004-02-13 2005-08-25 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2013139511A (ja) * 2011-12-29 2013-07-18 Dunlop Sports Co Ltd 繊維強化エポキシ樹脂材料製の管状体
JP2014167102A (ja) * 2013-01-29 2014-09-11 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2014167103A (ja) * 2013-01-29 2014-09-11 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3257884A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11345808B2 (en) * 2017-07-21 2022-05-31 Toray Industries, Inc. Epoxy resin composition, prepreg, and fiber-reinforced composite material

Also Published As

Publication number Publication date
EP3257884A1 (en) 2017-12-20
CN107250197A (zh) 2017-10-13
EP3257884A4 (en) 2018-08-01
CN107250197B (zh) 2019-08-20
KR20170116003A (ko) 2017-10-18
US20180022862A1 (en) 2018-01-25
TWI675881B (zh) 2019-11-01
KR102389775B1 (ko) 2022-04-22
US10344117B2 (en) 2019-07-09
EP3257884B1 (en) 2021-09-15
TW201632579A (zh) 2016-09-16

Similar Documents

Publication Publication Date Title
JP6771883B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP6771884B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
KR102389775B1 (ko) 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합재료
EP2947109B1 (en) Epoxy resin composition, prepreg, and carbon-fiber-reinforced composite material
JP6623757B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP6771885B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP6977560B2 (ja) プリプレグおよび繊維強化複合材料
WO2016080202A1 (ja) エポキシ樹脂組成物、プリプレグ、樹脂硬化物および繊維強化複合材料
US11345808B2 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP7423891B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP6547478B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP6421897B1 (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料およびその製造方法
JP2019023281A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP7215001B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP7215002B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2023067809A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2022033709A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2019210464A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2015108052A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
KR20200088291A (ko) 프리프레그 및 섬유 강화 복합 재료

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177012484

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015882041

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15549527

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE