WO2016127279A1 - (ZrM)-(CuN)-Ni-Al-(Re)非晶合金、制备方法及应用 - Google Patents

(ZrM)-(CuN)-Ni-Al-(Re)非晶合金、制备方法及应用 Download PDF

Info

Publication number
WO2016127279A1
WO2016127279A1 PCT/CN2015/000657 CN2015000657W WO2016127279A1 WO 2016127279 A1 WO2016127279 A1 WO 2016127279A1 CN 2015000657 W CN2015000657 W CN 2015000657W WO 2016127279 A1 WO2016127279 A1 WO 2016127279A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous alloy
amorphous
zrm
cun
alloy
Prior art date
Application number
PCT/CN2015/000657
Other languages
English (en)
French (fr)
Inventor
张海峰
李正坤
于德川
付华萌
朱正旺
王爱民
李宏
张宏伟
Original Assignee
中国科学院金属研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院金属研究所 filed Critical 中国科学院金属研究所
Priority to US15/550,895 priority Critical patent/US20180044770A1/en
Publication of WO2016127279A1 publication Critical patent/WO2016127279A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys

Definitions

  • the invention relates to the technical field of manufacturing Zr-based amorphous alloys, in particular to a (ZrM)-(CuN)-Ni-Al-(Re) amorphous alloy having high amorphous forming ability and manufacturability, preparation and application.
  • Zr-based amorphous alloys have many excellent properties due to their structural specialities, such as high strength (1500-2000 MPa), high hardness (about HRC 50), high elastic limit (about 2%), and excellent corrosion resistance.
  • High strength (1500-2000 MPa)
  • high hardness about HRC 50
  • high elastic limit about 2%
  • excellent corrosion resistance about 2%
  • Sexual and liquid near-end formability, etc. have important application prospects in the fields of consumer electronics, medical and health, aerospace and transportation.
  • Zr-Ti-Cu-Ni-Al and Zr-Nb-Cu-Ni-Al amorphous alloys have an amorphous forming size of ⁇ 15 mm and a relatively low amorphous forming ability; Zr-Al-Ni-Cu alloy developed in Japan
  • the amorphous form size of the system can reach ⁇ 30mm, but the preparation conditions required for the alloy system are harsh, and high-purity raw materials and high-vacuum preparation techniques are required, which restricts its application.
  • the manufacturability of the Zr-Cu-Ni-Al alloy during its use determines the feasibility of its application.
  • the present invention has developed a (ZrM)-(CuN)-Ni-Al-(Re) amorphous alloy which has excellent amorphous forming ability and manufacturability, and has excellent mechanical properties and More excellent antibacterial and antibacterial functions have broad application prospects in the fields of consumer electronics, medical care, transportation and so on.
  • the invention simultaneously adds M, N and Re elements in the Zr-Cu-Ni-Al alloy, and obtains (ZrM)-(CuN) having high amorphous forming ability and manufacturability, excellent mechanical properties and antibacterial function.
  • (ZrM)-(CuN) having high amorphous forming ability and manufacturability, excellent mechanical properties and antibacterial function.
  • )-Ni-Al-(Re) alloy which laid the foundation for the application of the alloy.
  • Zr-Cu-Ni-Al amorphous alloy has excellent mechanical properties and forming ability, but its manufacturing ability is relatively poor, that is, comprehensive consideration of forming, defect control, production efficiency and cost in practical application preparation: actual The purity of the raw materials produced and the degree of vacuum prepared are relatively low, so that the amorphous forming ability is greatly reduced, the manufacturing ability is reduced, and the practical application is restricted.
  • the invention comprehensively considers the Zr-Cu-Ni-Al system amorphous forming ability and manufacturability, and aims to solve the bottleneck problem that restricts its application. It is found through research that the Zr-Al-Ni-Cu alloy melt is easy to precipitate CuZr compounds during solidification.
  • the invention proposes adding a small amount of Cu, Zr phase similar elements and rare earth elements Re in the CuZr compound which is easy to precipitate, and a similar element N(Ag) with the Cu phase, and an element M(Hf, Ti) similar to the Zr phase, resulting in During the solidification of the alloy, Cu and N and Zr elements compete with each other to form compounds (CuZr and AgCu compounds), and Zr and M (Hf, Ti) elements compete with each other to form compounds (such as CuZr, CuHf). The result of competing is that the solidification process is caused.
  • rare earth element Re Complex, inhibiting the precipitation of CuZr compounds, and enhancing the amorphous forming ability and manufacturability of the alloy; adding a small amount of rare earth element Re can effectively reduce the influence of the increase of oxygen content on the amorphous forming ability due to the low degree of vacuum, on the one hand, rare earth elements Re combines with oxygen to form an oxide, which floats on the surface, thereby inhibiting the combination of oxygen with other elements.
  • the addition of Re increases the complexity of the alloying elements and enhances the amorphous forming ability.
  • Simultaneous addition of M, N and Re in the Zr-Cu-Ni-Al alloy significantly increases the forming ability and manufacturability of the alloy. Adding M, N, and Re separately has a certain effect, but at the same time, the best effect is added.
  • a class of (ZrM)-(CuN)-Ni-Al-(Re) amorphous alloys in terms of atomic percentage, the composition range of the alloy is: Zr 40-65%, Cu 18-46%, Ni 2-15%, Al 4 to 15%, M 0.1 to 3%, N 0.05 to 3%, and rare earth element Re 0.1 to 2%, wherein M is Hf and/or Ti, N is Ag, and rare earth element Re is Y, Gd, Er , Sc or a combination thereof.
  • the optimum composition range is: Zr 50 to 55%, Cu 28 to 35%, Ni 4 to 7%, Al 5 to 11%, M 0.1 to 1.0%, N 0.05 to 1.0%, and rare earth element Re 0.1 to 1.0%.
  • the invention is characterized in that a small amount of M, N and Re elements are simultaneously added on the basis of the Zr-Cu-Ni-Al alloy.
  • the atomic percentages of Hf, Ag and Re are controlled at ⁇ 1%, respectively, and Ti ⁇ 2%.
  • the preparation method of the (ZrM)-(CuN)-Ni-Al-Re amorphous alloy according to the present invention is characterized in that the industrial grade purity metals Zr, Cu, Ni, Al, M, N and Re are used as raw materials.
  • the mother alloy ingot of the desired composition is prepared by arc melting or induction melting; then arc heating or induction heating, and the amorphous alloy sample is obtained by metal mold casting or die casting method, and the preparation process parameters are: vacuum degree 1 ⁇ 10 1 ⁇ 10 -3 Pa, or filled with argon, melting temperature 860 ⁇ 1200 ° C, cooling rate 10 ⁇ 10 3 K / s.
  • the (ZrM)-(CuN)-Ni-Al-Re amorphous alloy of the present invention can be used in the fields of consumer electronics, medical and health, aerospace or transportation to prepare complex components.
  • the (ZrM)-(CuN)-Ni-Al-(Re) amorphous alloy of the present invention has the following characteristics:
  • the amorphous alloy has high forming ability, especially has good manufacturability, and the optimal amorphous forming ability is greater than 20 mm. Using industrial manufacturing technology, the alloy is repeatedly melted and cast to prepare samples for more than 4 times, and can still form amorphous, ensuring quality and meeting actual production needs.
  • the mechanical properties of the amorphous alloy are: the compressive fracture strength is greater than 1500 Pa, and the amorphous alloy has more excellent antibacterial and antibacterial function due to the presence of Ag in the alloy.
  • the amorphous alloy can be prepared by using industrial grades of metal Zr, Cu, Ni, Al, M, N and Re as raw materials, and the vacuum degree is not high.
  • the amorphous alloy can be widely used in the fields of consumer electronics, medical and health, transportation, etc. It is an ideal material for preparing complex and thin-walled components, and has broad application prospects.
  • Figure 1 is a schematic view of the amorphous alloy parts.
  • the raw materials (Zr, Hf, Ti, Cu, Ni, Al, Ag, Y, Gd, Sc) used in this embodiment are all industrial grade purity metals, Zr and Ti metals are sponge zirconium and sponge titanium, and Hf can also be used.
  • the sponge zirconium containing a certain amount of Hf is selected, and the raw material is prepared by atomic percentage, and then the mother alloy ingot is prepared by arc melting or induction melting under argon gas protection.
  • the induction heating temperature is about 1000 ° C, and the degree of vacuum is 10 -1 to 10 -2 Pa.
  • the antibacterial property of amorphous alloy was tested by the coating method (refer to JIS Z 2801-2000) to analyze the bactericidal rate of the amorphous alloy after the action of common Escherichia coli ATCC25922, and the concentration of the bacterial liquid was 4.2 ⁇ 105 cfu/ml. The results show that the bactericidal rate of this kind of amorphous alloy to E. coli is ⁇ 99.9%.
  • Zr-Cu-Ni-Al quaternary amorphous alloys reported in the literature is Zr 55 Cu 30 Ni 5 Al 10 alloy with a forming capacity of ⁇ 30 mm, but the purity and preparation of the alloy system. The process conditions are very demanding.
  • the experiment uses industrial grade purity raw materials and a vacuum degree of 1 ⁇ 10 1 ⁇ 10 -2 Pa to cast the sample to form an amorphous size of only ⁇ 4 mm; Zr 54 Hf 1 Cu with a small amount of Hf or Ti added separately.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种(ZrM)-(CuN)-Ni-Al-(RE)非晶合金,按原子百分比计,Zr 40~65%,Cu 18~46%,Ni 2~15%,Al 4~15%,M 0.1~3%,N 0.05~3%,稀土元素RE 0.1~2%;其中M为Hf、Ti或Hf+Ti,N为Ag。该合金在Zr-Al-Ni-Cu非晶合金基础上添加少量Hf、Ti、Ag和RE元素,保持了Zr-Al-Ni-Cu非晶合金的力学性能,并具有较强的非晶形成能力、可制造能力以及抗菌性能。

Description

(ZrM)-(CuN)-Ni-Al-(Re)非晶合金、制备方法及应用 技术领域
本发明涉及Zr基非晶合金制造技术领域,具体涉及一种具有高非晶形成能力和可制造能力的(ZrM)-(CuN)-Ni-Al-(Re)非晶合金、制备和应用。
背景技术
Zr基非晶合金由于其结构的特殊性使其具有诸多优异的性能,如:高强度(1500-2000MPa)、高硬度(约HRC 50)、高弹性极限(约2%)、优异的耐腐蚀性和液态近终成形性等,在消费电子、医疗卫生、航空航天和交通运输等领域具有重要应用前景。
对于Zr基非晶合金,目前已经开发出多种合金成分,如美国开发的Zr-Ti-Cu-Ni-Be体系的合金系,临界冷速达到1K/s,非晶形成能力强、可制造能力强,但该合金体系中由于有毒元素Be元素的存在,制约其广泛应用。Zr-Ti-Cu-Ni-Al与Zr-Nb-Cu-Ni-Al非晶合金,其非晶形成尺寸为φ15mm,非晶形成能力相对较弱;日本开发的Zr-Al-Ni-Cu合金体系,其非晶形成尺寸可以达到φ30mm,但该合金体系所需制备条件比较苛刻,需要高纯度原材料和高真空度制备技术,制约了其应用。
为了提高Zr基非晶合金形成能力,通过调整Zr-Cu-Ni-Al合金成分和加入合金元素的方法做了大量研究工作,但工作主要集中于Zr-Cu-Ni-Al非晶合金本身的形成能力的研究。在Zr-Cu-Ni-Al合金单独加入Ag、Ti、Fe、Hf和稀土Re元素,也有Ag与Re同时加入,但其加入的原理没有明确说 明(或机理不清),以至于所加元素及其含量没有针对性,所述合金的非晶可制造能力提高不明显或未知。
Zr-Cu-Ni-Al合金使用过程中可制造能力(即采用工业级原材料、低真空制备和多次循环利用制备对非晶形成能力的影响)决定了其应用的可行性。针对此,本发明开发了一种(ZrM)-(CuN)-Ni-Al-(Re)非晶合金,该非晶合金具有优异的非晶形成能力和可制造能力,具有优异的力学性能和更为优异的抗菌抑菌功能,在消费电子、医疗卫生、交通运输等领域中具有广阔的应用前景。
发明内容
本发明在Zr-Cu-Ni-Al合金中同时添加M、N和Re元素,获得了具有高非晶形成能力和可制造能力、优异的力学性能和抗菌抑菌功能的(ZrM)-(CuN)-Ni-Al-(Re)合金,为该合金的应用奠定了基础。
Zr-Cu-Ni-Al非晶合金具有优异的力学性能和形成能力,但其可制造能力相对较差,即在实际应用制备过程中综合考虑成形、缺陷控制、生产效率和成本等因素:实际生产原料纯度和制备真空度相对较低,使其非晶形成能力大幅度降低,可制造能力降低,制约了实际应用。本发明综合考虑了Zr-Cu-Ni-Al系非晶形成能力和可制造能力,旨在解决制约其应用的瓶颈问题。通过研究发现,Zr-Al-Ni-Cu合金熔体在凝固过程中易于析出CuZr化合物,如果有效抑制CuZr化合物的析出,可以使其可制造能力获得提高。本发明提出添加少量与易于析出CuZr化合物中Cu、Zr相近似元素和稀土元素Re:与Cu相近似元素N(Ag),与Zr相近似元素M(Hf,Ti),致使 在合金凝固过程中Cu和N与Zr元素相互竞争形成化合物(CuZr和AgCu化合物)、Zr和M(Hf,Ti)元素相互竞争形成化合物(如CuZr,CuHf),互相竞争的结果是致使凝固过程复杂,抑制了CuZr化合物的析出,使合金非晶形成能力和可制造能力增强;添加少量稀土元素Re,能够有效降低由于真空度低导致氧含量增加对非晶形成能力的影响,一方面稀土元素Re与氧结合形成氧化物,浮于表面,从而抑制了氧与其它元素结合,另一方面Re的添加增加了合金元素的复杂性,使其非晶形成能力增强。在Zr-Cu-Ni-Al合金中同时添加M、N和Re显著增加了该合金的形成能力和可制造性。单独添加M、N、Re都有一定作用,但同时添加效果最佳。
本发明的技术方案:
一类(ZrM)-(CuN)-Ni-Al-(Re)非晶合金,按原子百分比计,合金的成分范围为:Zr 40~65%,Cu 18~46%,Ni 2~15%,Al 4~15%,M 0.1~3%,N0.05~3%,稀土元素Re 0.1~2%,其中,M为Hf和/或Ti,N为Ag,稀土元素Re为Y、Gd、Er、Sc或其组合。
最佳成分范围:Zr 50~55%,Cu 28~35%,Ni 4~7%,Al 5~11%,M0.1~1.0%,N 0.05~1.0%,稀土元素Re 0.1~1.0%。
本发明的特点是在Zr-Cu-Ni-Al合金基础上同时添加少量M、N和Re元素。在实际应用中,综合考虑成本、力学性能和样件表面质量等因素,Hf、Ag和Re元素原子百分比含量分别控制在≤1%为最佳,Ti≤2%。
本发明所述(ZrM)-(CuN)-Ni-Al-Re非晶合金的制备方法,其特征在于:以工业级纯度的金属Zr、Cu、Ni、Al、M、N和Re为原料,通过电弧熔炼或者感应熔炼的方法制备所需成分的母合金锭;然后电弧加热或感应加热, 并通过金属模浇铸或压铸方法获得所述非晶合金样件,制备工艺参数为:真空度1×101~10-3Pa,或充入氩气,熔化温度860~1200℃,冷却速度10~103K/s。
本发明所述(ZrM)-(CuN)-Ni-Al-Re非晶合金可应用于消费电子、医疗卫生、航空航天或交通运输领域中,用于制备复杂构件。
本发明所述(ZrM)-(CuN)-Ni-Al-(Re)非晶合金具有如下特点:
1、该非晶合金具有高的形成能力,尤其是具有较好的可制造能力,最优非晶形成能力大于20mm。利用工业化制造技术,该合金重复熔化浇铸制备样件4次以上,仍能够形成非晶,保证了质量,能够满足实际生产需求。
2、该非晶合金的力学性能为:压缩断裂强度大于1500Pa,由于合金中有Ag元素存在,所述非晶合金具有更为优异的抗菌抑菌功能。
3、以工业级纯度的金属Zr、Cu、Ni、Al、M、N和Re为原料即可制备该非晶合金,且对真空度要求不高。
4、该非晶合金可广泛应用于消费电子、医疗卫生、交通运输等领域中,是制备复杂、薄壁零部件的理想材料,具有广阔的应用前景。
附图说明
图1非晶合金零部件示意图。
具体实施方式
本实施例所采用的原料(Zr,Hf,Ti,Cu,Ni,Al,Ag,Y,Gd、Sc)均为工业级纯度的金属,Zr和Ti金属为海绵锆、海绵钛,Hf也可以选择含一定量Hf的海绵锆,按原子百分比配好原料后,在氩气保护下,经电弧熔炼或感应熔炼制备出母合金锭。为了保证所炼合金锭均匀,在电弧熔炼母 合金锭时,需翻转3~4次,然后通过Cu模具浇铸,感应加热温度约1000℃,真空度10-1~10-2Pa。
实施例1~23如表1所示(制备工艺相同):
表1.(ZrM)-(CuN)-Ni-Al-(Re)合金成分、形成非晶尺寸和力学性能
Figure PCTCN2015000657-appb-000001
Figure PCTCN2015000657-appb-000002
非晶态合金抗菌性能的检测采用覆膜法(参照JIS Z 2801-2000)分析非晶态合金对常见大肠杆菌ATCC25922作用后的杀菌率,菌液浓度为4.2×105cfu/ml。结果表明该类非晶态合金对大肠杆菌的杀菌率≥99.9%。
实施例24
利用(Zr54.4Hf0.4Cu29.9Ag0.3Ni5Al10)99.5Y0.5合金,感应熔炼30kg,真空度10-1~10-2Pa。真空压铸制备非晶构件,加热温度900~1000℃,真空度10~10-1Pa,重复使用合金5次,制备的构件仍能保证材料的非晶结构,制备的零部件如图1所示。重复使用合金四次浇铸φ5mm样品,都能保证形成非晶。
比较例1
目前文献报道的Zr-Cu-Ni-Al四元系非晶合金中形成能力最强之一为Zr55Cu30Ni5Al10合金,形成能力为φ30mm,但该合金体系对成分的纯度和制备工艺条件要求非常苛刻,实验采用工业级纯度原材料和真空度 1×101~10-2Pa条件下浇铸样品,形成非晶尺寸仅为φ4mm;单独加入少量Hf或Ti元素的Zr54Hf1Cu30Ni5Al10(Zr54Ti1Cu30Ni5Al10)形成非晶尺寸为φ4.5mm;单独加入少量Ag元素的Zr55Cu29.9Ag0.1Ni5Al10形成非晶尺寸为φ5mm;同时加入少量Hf和Ag的合金Zr54.4Hf0.4Cu29.9Ag0.3Ni5Al10形成非晶尺寸为φ8mm;同时加入少量Ag和Y的合金(Zr54.8Cu29.9Ag0.3Ni5Al10)99.5Y0.5形成非晶尺寸为φ15mm;而本发明提出的同时加入少量Hf、Ag和Y的合金(Zr54.4Hf0.4Cu29.9Ag0.3Ni5Al10)99.5Y0.5形成非晶尺寸为φ20mm以上。
比较例2
Zr54.4Hf0.4Cu29.9Ag0.3Ni5Al10非晶合金重复第二次制备样品,已经发生部分晶化现象,但(Zr54.4Hf0.4Cu29.9Ag0.3Ni5Al10)99.5Y0.5非晶合金重复第4次制备样品时依然为非晶,样品为φ5×50mm圆棒。

Claims (6)

  1. 一种(ZrM)-(CuN)-Ni-Al-(Re)非晶合金,其特征在于,按原子百分比计:Zr 40~65%,Cu 18~46%,Ni 2~15%,Al 4~15%,M 0.1~3%,N0.05~3%,稀土元素Re 0.1~2%,其中,M为Hf和/或Ti,N为Ag,稀土元素Re为Y、Gd、Er、Sc或其组合。
  2. 按照权利要求1所述的(ZrM)-(CuN)-Ni-Al-(Re)非晶合金,其特征在于:Hf、Ag和Re原子百分比分别控制在≤1%,Ti≤2%。
  3. 按照权利要求1所述(ZrM)-(CuN)-Ni-Al-Re非晶合金,其特征在于,按原子百分比计,优化的合金成分范围为:Zr 50~55%,Cu 28~35%,Ni4~7%,Al 5~11%,M 0.1~1.0%,N 0.05~1.0%,稀土元素Re 0.1~1.0%。
  4. 一种权利要求1所述(ZrM)-(CuN)-Ni-Al-Re非晶合金的制备方法,其特征在于:以工业级纯度的金属Zr、Cu、Ni、Al、M、N和Re为原料,通过电弧熔炼或者感应熔炼的方法制备所需成分的母合金锭;然后电弧加热或感应加热,并通过金属模浇铸或压铸方法获得所述非晶合金样件,制备工艺参数为:真空度1×101~10-3Pa,或充入氩气,熔化温度860~1200℃,冷却速度10~103K/s。
  5. 一种权利要求1所述(ZrM)-(CuN)-Ni-Al-Re非晶合金的应用,其特征在于:所述非晶合金可应用于消费电子、医疗卫生、航空航天或交通运输领域中。
  6. 按照权利要求5所述(ZrM)-(CuN)-Ni-Al-Re非晶合金的应用,其特征在于:所述非晶合金用于制备复杂构件。
PCT/CN2015/000657 2015-02-15 2015-09-22 (ZrM)-(CuN)-Ni-Al-(Re)非晶合金、制备方法及应用 WO2016127279A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/550,895 US20180044770A1 (en) 2015-02-15 2015-09-22 (ZrM)-(CuN)-Ni-Al-RE amorphous alloy and manufacturing method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510082525.9 2015-02-15
CN201510082525.9A CN104651756B (zh) 2015-02-15 2015-02-15 (ZrM)-(CuN)-Ni-Al-(Re)非晶合金、制备方法及应用

Publications (1)

Publication Number Publication Date
WO2016127279A1 true WO2016127279A1 (zh) 2016-08-18

Family

ID=53243391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000657 WO2016127279A1 (zh) 2015-02-15 2015-09-22 (ZrM)-(CuN)-Ni-Al-(Re)非晶合金、制备方法及应用

Country Status (3)

Country Link
US (1) US20180044770A1 (zh)
CN (1) CN104651756B (zh)
WO (1) WO2016127279A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651756B (zh) * 2015-02-15 2016-11-23 中国科学院金属研究所 (ZrM)-(CuN)-Ni-Al-(Re)非晶合金、制备方法及应用
CN105154796B (zh) * 2015-08-31 2017-03-22 深圳市锆安材料科技有限公司 一种锆基非晶合金及其制备方法
CN105220085A (zh) * 2015-10-21 2016-01-06 东莞宜安科技股份有限公司 一种高强度非晶合金及其制备方法和应用
CN105220083B (zh) * 2015-10-21 2017-05-31 东莞宜安科技股份有限公司 一种耐磨耐蚀的非晶合金及其制备方法和应用
CN105316604B (zh) * 2015-10-26 2017-04-19 宋佳 一种高硬度非晶合金及其制备方法
CN105316603B (zh) * 2015-10-26 2017-05-24 深圳市锆安材料科技有限公司 一种高韧性非晶合金及其制备方法
CN105401103B (zh) * 2015-11-13 2017-07-28 东莞宜安科技股份有限公司 一种高韧性的非晶复合材料及其制备方法和应用
CN105239024A (zh) * 2015-11-13 2016-01-13 东莞宜安科技股份有限公司 一种高硬度非晶复合材料及其制备方法和应用
CN105296896B (zh) * 2015-11-13 2017-04-05 宋佳 一种抗菌非晶合金及其制备方法
CN107099757B (zh) * 2016-02-23 2019-12-10 中国科学院金属研究所 一种可重复熔炼的Zr基非晶合金及其制备方法
CN106947925A (zh) * 2017-03-22 2017-07-14 中国科学院金属研究所 一种Zr基块体非晶合金及其制备方法和应用
CN107236913B (zh) * 2017-05-18 2019-04-26 中国科学院金属研究所 一种锆基非晶合金及其制备方法
WO2020223162A1 (en) * 2019-04-30 2020-11-05 Oregon State University Cu-based bulk metallic glasses in the cu-zr-hf-al and related systems
CN110295293A (zh) * 2019-06-28 2019-10-01 中国科学院金属研究所 一种非晶合金构件及其制备方法
CN113913710A (zh) * 2021-10-14 2022-01-11 盘星新型合金材料(常州)有限公司 无Be添加的低密度块体非晶合金及其制备方法、应用
CN114032479A (zh) * 2021-11-11 2022-02-11 盘星新型合金材料(常州)有限公司 适于小型电子器材的Zr基块体非晶合金及其制备方法
CN115247243B (zh) * 2022-08-24 2023-06-27 盘星新型合金材料(常州)有限公司 含Hf的轻质大尺寸块体非晶合金及其制备方法、应用
CN115354246B (zh) * 2022-08-24 2023-05-09 盘星新型合金材料(常州)有限公司 稀土改性的轻质块体非晶合金及其制备方法、应用
CN115961221B (zh) * 2022-12-08 2024-04-05 大连理工大学 一种块体非晶合金药型罩及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912261A (zh) * 2012-10-23 2013-02-06 上海交通大学 一种锆基非晶合金及其制备方法
CN102965599A (zh) * 2012-11-26 2013-03-13 华为技术有限公司 一种锆基非晶合金
US20130255837A1 (en) * 2012-03-29 2013-10-03 Atakan Peker Zirconium based bulk metallic glasses
CN104032240A (zh) * 2014-03-05 2014-09-10 中国科学院金属研究所 一种Zr-Cu-Ni-Al-Ag-Y块状非晶合金及其制备方法和应用
CN104651756A (zh) * 2015-02-15 2015-05-27 中国科学院金属研究所 (ZrM)-(CuN)-Ni-Al-(Re)非晶合金、制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080196B (zh) * 2009-11-30 2012-09-12 比亚迪股份有限公司 一种锆基非晶合金及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130255837A1 (en) * 2012-03-29 2013-10-03 Atakan Peker Zirconium based bulk metallic glasses
CN102912261A (zh) * 2012-10-23 2013-02-06 上海交通大学 一种锆基非晶合金及其制备方法
CN102965599A (zh) * 2012-11-26 2013-03-13 华为技术有限公司 一种锆基非晶合金
CN104032240A (zh) * 2014-03-05 2014-09-10 中国科学院金属研究所 一种Zr-Cu-Ni-Al-Ag-Y块状非晶合金及其制备方法和应用
CN104651756A (zh) * 2015-02-15 2015-05-27 中国科学院金属研究所 (ZrM)-(CuN)-Ni-Al-(Re)非晶合金、制备方法及应用

Also Published As

Publication number Publication date
CN104651756B (zh) 2016-11-23
CN104651756A (zh) 2015-05-27
US20180044770A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
WO2016127279A1 (zh) (ZrM)-(CuN)-Ni-Al-(Re)非晶合金、制备方法及应用
US11072841B2 (en) High-strength dual-scale structure titanium alloy, preparation method therefor, and application thereof
US9334553B2 (en) Zirconium based bulk metallic glasses
JP2019534374A (ja) ボロンドーピングされた高エントロピー合金およびその製造方法
WO2015131431A1 (zh) 一种Zr-Cu-Ni-Al-Ag-Y块状非晶合金及其制备方法和应用
WO2016015488A1 (zh) 铝合金及其制备方法和应用
EP3045557B1 (en) Zirconium-based amorphous alloy and preparation method therefor
US10240227B2 (en) Zirconium based bulk metallic glasses with hafnium
US10431439B2 (en) Tantalum sputtering target
JP2015507693A (ja) Zr系アモルファス合金
WO2018045695A1 (zh) 抗软化铜合金、制备方法及其应用
CN107488803A (zh) 一种生物医用前过渡族金属高熵合金
CN104164585B (zh) 铂基高弹性合金及其制备方法
JP6393696B2 (ja) Cu−Ga−In−Naターゲット
KR20140093989A (ko) 벌크 금속성 유리 형성 합금
JP6997860B2 (ja) バルク金属ガラスの製造のための銅に基づく合金
JP2004353053A (ja) チタン基非晶質合金
CN106903294A (zh) 一种低成本非晶合金件的制备方法及低成本非晶合金件
CN101418423B (zh) 一种镁基非晶合金复合材料
WO2017080211A1 (zh) 一种高硬度非晶复合材料及其制备方法和应用
TW201619416A (zh) 濺鍍靶用母合金及濺鍍靶之製造方法
Zeng et al. Ni-rich Ni–Pd–P bulk metallic glasses with significantly improved glass-forming ability and mechanical properties by Si addition
CN106244946B (zh) 一种含钼的高强塑性锆基非晶合金及制备方法
Ma et al. Wettability of molten Sn on AlCoCrCuxFeNi high-entropy alloy
Bazlov et al. Investigation of the structure and properties of the Fe-Ni-Co-Cu-V multiprincipal element alloys

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881441

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15550895

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881441

Country of ref document: EP

Kind code of ref document: A1