WO2016125684A1 - 蓄電装置用外装材 - Google Patents

蓄電装置用外装材 Download PDF

Info

Publication number
WO2016125684A1
WO2016125684A1 PCT/JP2016/052521 JP2016052521W WO2016125684A1 WO 2016125684 A1 WO2016125684 A1 WO 2016125684A1 JP 2016052521 W JP2016052521 W JP 2016052521W WO 2016125684 A1 WO2016125684 A1 WO 2016125684A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
elastomer
adhesive
propylene
mass
Prior art date
Application number
PCT/JP2016/052521
Other languages
English (en)
French (fr)
Inventor
悠 荻原
鈴田 昌由
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015020328A external-priority patent/JP6519209B2/ja
Priority claimed from JP2015090263A external-priority patent/JP6572609B2/ja
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to EP16746515.2A priority Critical patent/EP3255695A4/en
Priority to CN201680008591.4A priority patent/CN107210391B/zh
Priority to KR1020177024332A priority patent/KR20170110118A/ko
Publication of WO2016125684A1 publication Critical patent/WO2016125684A1/ja
Priority to US15/666,127 priority patent/US10305069B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/10Homopolymers or copolymers of propene
    • C09J123/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/145Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an exterior material for a power storage device.
  • lithium ion batteries lithium ion batteries
  • nickel metal hydride batteries nickel metal hydride batteries
  • lead storage batteries electrochemical capacitors
  • electrochemical capacitors electric double layer capacitors
  • metal cans have been used as exterior materials used in lithium ion batteries.
  • they are lightweight, have high heat dissipation, and can be produced at low cost (for example, base material layer / metal foil layer / A film having a structure like a sealant layer) is used.
  • a configuration is adopted in which the battery contents are covered with an exterior material including an aluminum foil layer as a metal foil layer in order to prevent moisture from entering the interior.
  • a lithium ion battery employing such a configuration is called an aluminum laminate type lithium ion battery.
  • the battery contents of a lithium ion battery include a positive electrode, a negative electrode, and a separator, and a lithium salt as an electrolyte in an aprotic solvent having penetrating power such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
  • An electrolyte layer made of a dissolved electrolyte solution or a polymer gel impregnated with the electrolyte solution is included.
  • An aluminum laminate type lithium ion battery forms a recess in a part of the exterior material by cold molding, accommodates the battery contents in the recess, folds the remaining part of the exterior material, and heats the edge portion.
  • An embossed type lithium ion battery sealed with a seal is known.
  • the exterior material constituting such a lithium ion battery is required to exhibit stable sealing performance by heat sealing, and to hardly cause a decrease in laminate strength between the aluminum foil layer and the sealant layer due to the electrolyte of the battery contents. ing.
  • Patent Document 1 proposes an exterior material including a heat seal layer (sealant layer) including an adhesive polymethylpentene layer.
  • the energy density of a lithium ion battery can be increased as the recess formed by cold forming is deepened.
  • the deeper the recesses the more easily fine cracks are generated in the sealant layer due to the distortion generated during cold forming, and the whitening phenomenon of the sealant layer is more likely to occur particularly in the narrowed portions such as the molded side surfaces and corners. Since the whitening phenomenon in cold forming brings about a decrease in insulation and promotes deterioration of battery performance, it is required not only to suppress the whitening phenomenon due to cracks but also to suppress whitening due to bending.
  • Patent Document 2 discloses a heat seal comprising a high melting point polypropylene layer having a melting point of 150 ° C. or higher and a propylene-ethylene random copolymer layer as an exterior material exhibiting stable sealing performance, heat resistance, insulation and moldability.
  • An exterior material having a layer (sealant layer) has been proposed.
  • a first object is to provide an exterior material for a power storage device that can be improved.
  • the battery exterior material is required to be thin, and the inner layer, which is an insulator, is also required to be thin.
  • the inner layer which is an insulator
  • the inner layer is made thin, fine cracks are likely to occur in the sealant layer due to stress during cold forming, etc., and the electrolyte penetrates into the cracks, reducing the insulation after forming. There is a problem that it is likely to occur.
  • the present invention has been made in view of the above-described problems of the prior art, and provides an exterior material for a power storage device that has excellent sealing properties involving an electrolytic solution including insulation after molding and degassing heat seal strength.
  • the second purpose is to provide it.
  • the first invention of the present invention comprises at least a base material layer, a first adhesive layer, a metal foil layer provided with a corrosion prevention treatment layer on one or both surfaces, A power storage device exterior material having a structure in which a second adhesive layer or an adhesive resin layer and a sealant layer are laminated in this order, wherein the sealant layer is (A) a propylene-ethylene random copolymer And a layer formed of a resin composition containing (B) 5 to 40% by mass of a polyolefin-based elastomer having a melting point of 150 ° C. or lower and having 1-butene as a comonomer Provide exterior materials.
  • the sealing characteristics involving the electrolyte including degassing heat seal strength can be improved. That is, the (A) propylene-ethylene random copolymer (hereinafter also referred to as “component (A)”) has low crystallinity and good heat sealability, but (B) 1-butene is used as a comonomer. By blending a polyolefin-based elastomer having a melting point of 150 ° C.
  • component (B) or lower
  • Degassing heat seal strength can be improved.
  • the content of the component (B) is less than 5% by mass, particularly the degassing heat seal strength is not sufficiently improved.
  • the elastomer component becomes excessive, and the sealant layer is used as a sealant layer.
  • an excessively sealed portion increases due to an excessive increase in heat sealability at a low temperature, and a further decrease in workability occurs during processing.
  • the generation of an excessive seal portion is suppressed, and the sealing characteristics involving the electrolytic solution including the degassing heat seal strength are improved. be able to.
  • the sealing characteristics involving the electrolytic solution including the degassing heat seal strength are improved. be able to.
  • 1-butene as a comonomer in the component (B)
  • good affinity with the component (A) can be obtained.
  • the generation of cracks during molding is suppressed, and the whitening phenomenon is reduced.
  • the exterior material for a power storage device of the present invention can stabilize the degassing heat seal strength, thereby suppressing the influence of the amount of heat at the time of sealing, and shortening the tact time of manufacturing the power storage device. It becomes possible.
  • the (B) polyolefin-based elastomer is compatible with the (A) propylene-ethylene random copolymer (B-1) the compatible polyolefin-based elastomer and the (A And (B-2) an incompatible polyolefin elastomer that is not compatible with the propylene-ethylene random copolymer.
  • the compatible polyolefin elastomer can provide further low-temperature sealability and anti-molding whitening resistance, and further improve the sealing characteristics involving the electrolyte such as degassing heat seal strength. Can be made.
  • the (B-2) incompatible polyolefin-based elastomer can further improve the sealing characteristics such as degassing heat seal strength and the like in which the electrolytic solution is involved due to the stress relaxation effect.
  • the (B-1) compatible polyolefin-based elastomer is a propylene-1-butene random copolymer
  • the (B-2) incompatible polyolefin-based elastomer is an ethylene-1-butene random copolymer. It is preferably a coalescence. Since the component (A), propylene-1-butene random copolymer and ethylene-1-butene random copolymer have good affinity, the above-mentioned molding whitening resistance and the sealing characteristics related to the electrolyte are further improved. The balance can be improved.
  • the sealant layer A clear sea-island structure is formed inside, and cracks (void-craze) tend to occur at the interface of the sea-island structure due to stress during molding, and there is a tendency to cause whitening.
  • an incompatible elastomer containing 1-butene such as an ethylene-1-butene random copolymer
  • the interfacial adhesion in the sea-island structure can be improved, and stress such as molding is applied. However, the occurrence of whitening is reduced.
  • the metal foil layer and the sealant layer are laminated via the adhesive resin layer, and the adhesive resin layer includes a modified polypropylene as an adhesive resin composition.
  • the adhesive resin layer includes a modified polypropylene as an adhesive resin composition.
  • the modified polyolefin resin forming the adhesive resin contains the modified polypropylene
  • the (B) polyolefin-based elastomer having 1-butene as a comonomer has an affinity with the modified polypropylene forming the adhesive resin. Occurrence of cracks between the adhesive resin layer and the sealant layer is further suppressed, and a higher suppression effect on reduction in seal strength and occurrence of whitening can be obtained.
  • the exterior material for a power storage device includes the metal foil layer and the sealant layer laminated via the adhesive resin layer, and the adhesive resin layer has an adhesive resin composition and an atactic structure. It may contain polypropylene and / or a propylene- ⁇ -olefin copolymer having an atactic structure. In this case, whitening due to molding can be reduced.
  • the adhesive resin layer preferably further contains a propylene- ⁇ -olefin copolymer having an isotactic structure.
  • a propylene- ⁇ -olefin copolymer having an isotactic structure since the flexibility to relieve stress can be imparted to the adhesive resin layer, it is possible to improve the heat seal strength (especially the anti-electrolytic solution) and suppress the degassing seal strength while suppressing the decrease in the electrolyte solution laminate strength. Improvement is possible. Further, by combining with the above-described atactic structure polypropylene and / or atactic structure propylene- ⁇ -olefin copolymer, the whitening phenomenon and the bending resistance can be further improved.
  • the corrosion prevention treatment layer is provided at least on the sealant layer side of the metal foil layer, and the corrosion prevention treatment layer is selected from the group consisting of a cationic polymer and an anionic polymer.
  • the metal foil layer and the sealant layer are laminated via the second adhesive layer, and the second adhesive layer is the second adhesive.
  • a compound having reactivity with the polymer contained in the corrosion prevention treatment layer in contact with the layer may be contained.
  • the adhesion between the corrosion prevention treatment layer and the second adhesive layer is improved because the polymer in the corrosion prevention treatment layer and the compound in the second adhesive layer are firmly bonded to each other. Strength is improved.
  • the corrosion prevention treatment layer contains the polymer and the second adhesive layer contains a compound reactive with the polymer
  • the second adhesive layer is acid-modified.
  • a polyolefin resin may be included. In this case, the adhesiveness between the second adhesive layer and the corrosion prevention treatment layer is further increased, and the solvent resistance of the second adhesive layer is further improved.
  • the corrosion prevention treatment layer includes a rare earth element oxide and 1 to 100 parts by mass of phosphoric acid or phosphate with respect to 100 parts by mass of the rare earth element oxide. You may go out.
  • the second invention of the present invention is a metal foil layer in which a corrosion prevention treatment layer is provided on at least a base material layer, a first adhesive layer, or one of both surfaces, A power storage device exterior material having a structure in which a second adhesive layer or an adhesive resin layer and a sealant layer are laminated in this order, wherein the sealant layer is (A) a propylene-ethylene random copolymer 60-95% by mass and (B ′) a compatible elastomer and / or (A) the propylene-ethylene random copolymer having compatibility with the (A) propylene-ethylene random copolymer.
  • the (B ′) compatible elastomer and the (C) incompatible elastomer have a common comonomer component.
  • Such a power storage device exterior material is provided with the sealant layer having the above-described configuration, thereby being excellent in sealing properties involving an electrolyte including insulation after molding and degassing heat seal strength.
  • the sealant layer is preferably polypropylene from the viewpoint of battery safety.
  • the above (A) propylene-ethylene random copolymer hereinafter also referred to as “component (A)”
  • component (A) has low crystallinity, and therefore, impact strength. Is high, cracks due to molding and stretching are suppressed, and heat sealability is good.
  • (B ′) compatible elastomer hereinafter also referred to as “(B ′) component”
  • (B ′) component compatible elastomer
  • the crystallinity of the sealant layer is further reduced, and the volume change due to heat shrinkage is suppressed, and during cold molding Generation of cracks is suppressed.
  • component (C) an incompatible elastomer
  • the sealing characteristics involving the electrolytic solution such as degassing heat sealing can be further improved.
  • the content of the component (A) is less than 60% by mass, the amount of the elastomer component as the component (B ′) and the component (C) becomes excessive, and the influence of swelling of the elastomer component by the electrolytic solution becomes too large. As a result, the insulation after molding decreases. Moreover, when content of (A) component exceeds 95 mass%, the improvement of the sealing characteristic in which electrolyte solution participates will become inadequate. Therefore, by setting the content of the component (A), the component (B ′) and the component (C) in the above range, the sealing properties involving the electrolyte including the insulation after molding and the degassing heat seal strength are involved. Excellent.
  • component (C) forms a sea-island structure with component (A), it can cause cracks (void-craze) at the interface of the sea-island structure.
  • the occurrence of cracks is sufficiently suppressed when the mass ratio of the content of component (C) is 0 to 1.
  • the (B ′) component and the (C) component have a common comonomer component, good affinity between the (B ′) component and the (C) component and the (A) component can be obtained.
  • the interfacial adhesion of the sea-island structure with the component can be enhanced, and the occurrence of cracks is sufficiently suppressed.
  • the exterior material for a power storage device of the present invention can stabilize the degassing heat seal strength, thereby suppressing the influence of the amount of heat at the time of sealing, and shortening the tact time of manufacturing the power storage device. It becomes possible.
  • the (B ′) compatible elastomer is a propylene-1-butene random copolymer
  • the (C) incompatible elastomer is an ethylene-1-butene random copolymer.
  • an incompatible elastomer containing no 1-butene such as ethylene-propylene elastomer (such as polyethylene (70 to 80% by mass) in which olefin rubber is finely dispersed)
  • ethylene-propylene elastomer such as polyethylene (70 to 80% by mass) in which olefin rubber is finely dispersed
  • a clear sea-island structure is formed, and cracks are likely to occur at the interface of the sea-island structure due to stress during molding.
  • an incompatible elastomer containing 1-butene such as ethylene-1-butene random copolymer is used, the interfacial adhesion in the sea-island structure can be improved, and the generation of cracks is further suppressed.
  • a decrease in insulation caused by penetration of the electrolyte into the cracks is further suppressed.
  • the (B ′) compatible elastomer is preferably a hydrogenated styrene elastomer
  • the (C) incompatible elastomer is preferably a styrene elastomer.
  • the generation of cracks during cold molding can be further suppressed, and the insulation after molding can be further improved.
  • Styrenic elastomers are also excellent in flexibility and elasticity, and can relieve stress such as molding, so that the generation of cracks due to stress such as cold molding is further suppressed. The later insulation can be further improved.
  • the sealant layer is formed of a plurality of layers, and of the multilayers forming the sealant layer, the sealant layer is opposite to the second adhesive layer or the adhesive resin layer.
  • the layer having the above surface as a main surface (hereinafter also referred to as “the innermost layer of the sealant layer”) contains the (A) propylene-ethylene random copolymer, and (B ′) the compatible elastomer and the above (C) Resin composition not containing incompatible elastomer, or (A) Propylene-ethylene random copolymer and (B ′) compatible elastomer, and (C) Incompatible elastomer It is preferable that it is a layer formed with the resin composition which does not contain. In this case, in the innermost layer of the sealant layer, the occurrence of cracks during cold molding is further suppressed, and the insulation after molding can be further improved.
  • the metal foil layer and the sealant layer are laminated via the adhesive resin layer, and the adhesive resin layer includes an adhesive resin composition, an atactic structure polypropylene, and And / or a propylene- ⁇ -olefin copolymer.
  • the adhesive resin layer in this case, generation of cracks due to stress during cold molding or the like is further suppressed, and insulation after molding can be further improved.
  • the metal foil layer and the sealant layer are laminated via the second adhesive layer, and the second adhesive layer includes an acid-modified polyolefin resin and a multifunctional product. It may contain at least one compound selected from the group consisting of an isocyanate compound, a glycidyl compound, a compound having a carboxy group, and a compound having an oxazoline group.
  • adhesion between the second adhesive layer and the sealant layer is improved, delamination due to stress during cold molding and the occurrence of cracks are suppressed, and insulation after molding is reduced. Can be prevented.
  • the corrosion prevention treatment layer includes cerium oxide, 1 to 100 parts by mass of phosphoric acid or phosphate with respect to 100 parts by mass of the cerium oxide, and a cationic polymer. Also good. In this case, the adhesion between the metal layer and the adhesive resin layer or the second adhesive layer is improved, delamination due to stress during cold molding and the occurrence of cracks are suppressed, and after molding It is possible to prevent a decrease in insulation.
  • the corrosion prevention treatment layer is formed by subjecting the metal foil layer to a chemical conversion treatment, and may contain a cationic polymer.
  • the adhesion between the metal layer and the adhesive resin layer or the second adhesive layer is improved, delamination due to stress during cold molding and the occurrence of cracks are suppressed, and after molding It is possible to prevent a decrease in insulation.
  • an electrical storage device that can improve the sealing characteristics involving the electrolyte including degassing heat seal strength while suppressing the occurrence of excessive sealing and the occurrence of molding whitening
  • An exterior material can be provided.
  • the second invention of the present invention it is possible to provide an exterior material for a power storage device that is excellent in insulating properties after molding and sealing properties involving an electrolyte solution including degassing heat seal strength.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of an exterior material for a power storage device of the present invention (first and second inventions).
  • an exterior material (exterior material for a power storage device) 10 of this embodiment includes a base material layer 11 and a first adhesive layer 12 formed on one surface of the base material layer 11.
  • a metal foil layer 13 formed on the surface of the first adhesive layer 12 opposite to the base material layer 11, and a surface of the metal foil layer 13 opposite to the first adhesive layer 12.
  • the corrosion prevention treatment layer 14 formed on the surface, the adhesive resin layer 15 formed on the surface of the corrosion prevention treatment layer 14 opposite to the metal foil layer 13, and the corrosion prevention treatment layer of the adhesion resin layer 15.
  • the 14 is a laminate in which a sealant layer 16 formed on a surface opposite to that of 14 is sequentially laminated.
  • the base material layer 11 is the outermost layer
  • the sealant layer 16 is the innermost layer. That is, the exterior material 10 is used with the base material layer 11 facing the outside of the power storage device and the sealant layer 16 facing the inside of the power storage device.
  • each layer will be described.
  • the base material layer 11 is provided for the purpose of imparting heat resistance in the sealing process during manufacturing of the power storage device, and for countermeasures against pinholes that may occur during processing and distribution, and it is preferable to use an insulating resin layer.
  • a resin layer for example, a stretched or unstretched film such as a polyester film, a polyamide film, or a polypropylene film can be used as a single layer or a multilayer film in which two or more layers are laminated.
  • the thickness of the base material layer 11 is preferably 6 to 40 ⁇ m, and more preferably 10 to 25 ⁇ m.
  • the thickness of the base material layer 11 is 6 ⁇ m or more, there is a tendency that the pinhole resistance and the insulating property of the power storage device exterior material 10 can be improved.
  • the thickness of the base material layer 11 is 40 ⁇ m or less, the deep-drawing moldability of the power storage device exterior material 10 tends to be further improved.
  • the first adhesive layer 12 is a layer that bonds the base material layer 11 and the metal foil layer 13 together.
  • the material constituting the first adhesive layer 12 is, for example, a polyurethane obtained by allowing a bifunctional or higher functional isocyanate compound to act on a main component such as polyester polyol, polyether polyol, acrylic polyol, and carbonate polyol. Examples thereof include resins.
  • Polyester polyol is an aliphatic type such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and brassic acid;
  • One or more acids and aliphatics such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol, methylpentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, dodecanediol; cyclohexanediol, hydrogenated And an alicyclic system such as xylylene glycol; and one or more aromatic diols such as xylylene glycol.
  • the hydroxyl groups at both ends of the polyester polyol obtained by using the above-mentioned dibasic acid and diol are, for example, 2,4- or 2,6-tolylene diisocyanate, xylylene diisocyanate, 4, 4'-diphenylmethane diisocyanate, methylene diisocyanate, isopropylene diisocyanate, lysine diisocyanate, 2,2,4- or 2,4,4-trimethylhexamethylene diisocyanate, 1,6-hexamethylene diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, 4 Of isocyanate compounds selected from 4,4'-dicyclohexylmethane diisocyanate, isopropylidene dicyclohexyl-4,4'-diisocyanate, etc. Body, or adducts of at least one isocyanate compound selected from those
  • polyether polyol it is possible to use an ether-based polyol such as polyethylene glycol or polypropylene glycol, or a polyether urethane polyol in which the above-described isocyanate compound is allowed to act as a chain extender.
  • ether-based polyol such as polyethylene glycol or polypropylene glycol
  • polyether urethane polyol in which the above-described isocyanate compound is allowed to act as a chain extender.
  • acrylic polyol it is possible to use an acrylic resin polymerized using the above-mentioned acrylic monomer.
  • the carbonate polyol can be obtained by reacting a carbonate compound with a diol.
  • the carbonate compound dimethyl carbonate, diphenyl carbonate, ethylene carbonate and the like can be used.
  • the diol includes aliphatic diols such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol, methylpentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, dodecanediol; cyclohexanediol, water Alicyclic diols such as added xylylene glycol; aromatic diols such as xylylene glycol can be used.
  • carbonate polyol chain elongation was performed by using a carbonate polyol using one or more of the above-mentioned carbonate compounds and one or more of the above-mentioned diols, or the above-mentioned isocyanate compound.
  • a polycarbonate urethane polyol is mentioned.
  • the various polyols described above can be used alone or in combination of two or more depending on the function and performance required of the exterior material. Moreover, it is also possible to use it as a polyurethane-type adhesive agent by using the isocyanate compound mentioned above as a hardening
  • a carbodiimide compound, an oxazoline compound, an epoxy compound, a phosphorus compound, a silane coupling agent, or the like may be blended with the above-described polyurethane resin.
  • carbodiimide compound examples include N, N′-di-o-toluylcarbodiimide, N, N′-diphenylcarbodiimide, N, N′-di-2,6-dimethylphenylcarbodiimide, N, N′-bis (2 , 6-Diisopropylphenyl) carbodiimide, N, N′-dioctyldecylcarbodiimide, N-triyl-N′-cyclohexylcarbodiimide, N, N′-di-2,2-di-t-butylphenylcarbodiimide, N-triyl- N'-phenylcarbodiimide, N, N'-di-p-nitrophenylcarbodiimide, N, N'-di-p-aminophenylcarbodiimide, N, N'-di-p-hydroxyphenylcarbodiimide, N, N'- Di-cyclo
  • oxazoline compound examples include monooxazolines such as 2-oxazoline, 2-methyl-2-oxazoline, 2-phenyl-2-oxazoline, 2,5-dimethyl-2-oxazoline, and 2,4-diphenyl-2-oxazoline.
  • monooxazolines such as 2-oxazoline, 2-methyl-2-oxazoline, 2-phenyl-2-oxazoline, 2,5-dimethyl-2-oxazoline, and 2,4-diphenyl-2-oxazoline.
  • 2,2 ′-(1,2-ethylene) -bis (2-oxazoline) 2,2 ′-(1, And dioxazoline compounds
  • epoxy compound examples include diglycidyl ethers of aliphatic diols such as 1,6-hexanediol, neopentyl glycol, and polyalkylene glycol, sorbitol, sorbitan, polyglycerol, pentaerythritol, diglycerol, glycerol, and trimethylol.
  • Polyglycidyl ether of aliphatic polyol such as propane, polyglycidyl ether of alicyclic polyol such as cyclohexanedimethanol, aliphatic, aromatic such as terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, trimellitic acid, adipic acid, sebacic acid Diglycidyl ester or polyglycidyl ester, resorcinol, bis- (p-hydroxyphenyl) methane, 2,2-bis- (p-hydroxypheny ) Diglycidyl ether or polyglycidyl ether of polyhydric phenols such as propane, tris- (p-hydroxyphenyl) methane, 1,1,2,2-tetrakis (p-hydroxyphenyl) ethane, N, N′-diglycidyl N-glycidyl derivatives of amines such as aniline, N, N, N-diglycidyl toluid
  • Examples of the phosphorus compound include tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylenephosphonite, bis (2, 4-di-t-butylphenyl) pentaerythritol-di-phosphite, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol-di-phosphite, 2,2-methylenebis (4 6-di-tert-butylphenyl) octyl phosphite, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) phosphite, 1,1,3-tris (2- Methyl-4-ditridecyl phosphite-5-t-butyl-phenyl
  • silane coupling agents examples include vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -glycol.
  • silane coupling agents such as - ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane can be used.
  • additives and stabilizers may be added to the above-described polyurethane resin.
  • the thickness of the first adhesive layer 12 is not particularly limited, but is preferably 1 to 10 ⁇ m, for example, and 3 to 7 ⁇ m from the viewpoint of obtaining desired adhesive strength, followability, workability, and the like. More preferred.
  • Metal foil layer 13 has a water vapor barrier property that prevents moisture from entering the inside of the power storage device. Moreover, the metal foil layer 13 has spreadability in order to perform deep drawing. Various metal foils, such as aluminum and stainless steel, can be used as the metal foil layer 13, and aluminum foil is preferable from the viewpoint of mass (specific gravity), moisture resistance, workability, and cost.
  • the aluminum foil a general soft aluminum foil can be used, but an aluminum foil containing iron is preferably used for the purpose of imparting further pinhole resistance and extensibility during molding.
  • the content of iron in the aluminum foil is preferably 0.1 to 9.0% by mass, more preferably 0.5 to 2.0% by mass in 100% by mass of the aluminum foil.
  • the iron content is 0.1% by mass or more, it is possible to obtain the exterior material 10 having more excellent pinhole resistance and spreadability.
  • the iron content is 9.0% by mass or less, it is possible to obtain the exterior material 10 having more flexibility.
  • a soft aluminum foil subjected to an annealing treatment for example, an aluminum foil made of 8021 material and 8079 material in the JIS standard
  • an annealing treatment for example, an aluminum foil made of 8021 material and 8079 material in the JIS standard
  • an aluminum foil made of 8021 material and 8079 material in the JIS standard is more preferable from the viewpoint that it can impart a desired extensibility during molding.
  • the thickness of the metal foil layer 13 is not particularly limited, but is preferably 9 to 200 ⁇ m, more preferably 15 to 100 ⁇ m in consideration of barrier properties, pinhole resistance, and workability. .
  • an untreated aluminum foil may be used as the aluminum foil, but it is preferable to use a degreased aluminum foil from the viewpoint of imparting electrolytic solution resistance.
  • the degreasing treatment is roughly classified into a wet type and a dry type.
  • Examples of wet types include acid degreasing and alkali degreasing.
  • Examples of the acid used for acid degreasing include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, and hydrofluoric acid. These inorganic acids may be used alone or in combination of two or more. .
  • various metal salts serving as a supply source of Fe ions, Ce ions, and the like may be blended as necessary.
  • Examples of the alkali used for alkali degreasing include strong etching types such as sodium hydroxide. Moreover, you may use what mix
  • the dry type there is a method of performing a degreasing process in a process of annealing aluminum.
  • a frame process or a corona process may be performed.
  • a degreasing treatment in which pollutants are oxidatively decomposed and removed by active oxygen generated by irradiating with ultraviolet rays having a specific wavelength is also included.
  • the degreasing treatment may be performed on only one surface of the aluminum foil, or the degreasing treatment may be performed on both surfaces.
  • the corrosion prevention treatment layer 14 is a layer provided to prevent corrosion of the metal foil layer 13 due to the electrolytic solution or hydrofluoric acid generated by the reaction between the electrolytic solution and moisture.
  • the corrosion prevention treatment layer 14 is formed by, for example, a degreasing treatment, a hydrothermal alteration treatment, an anodizing treatment, a chemical conversion treatment, or a combination of these treatments.
  • Degreasing treatment includes acid degreasing or alkali degreasing.
  • acid degreasing include a method of using an inorganic acid such as sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid alone, or a mixture thereof.
  • acid degreasing by using an acid degreasing agent in which a fluorine-containing compound such as monosodium ammonium difluoride is dissolved with the above inorganic acid, especially when an aluminum foil is used for the metal foil layer 13, degreasing of aluminum is performed. Not only can the effect be obtained, but a passive aluminum fluoride can be formed, which is effective in terms of resistance to hydrofluoric acid.
  • the alkaline degreasing include a method using sodium hydroxide or the like.
  • hydrothermal modification treatment examples include boehmite treatment in which an aluminum foil is immersed in boiling water to which triethanolamine is added.
  • Examples of the anodizing treatment include alumite treatment.
  • Examples of the chemical conversion treatment include a dipping type and a coating type.
  • Examples of the immersion type chemical conversion treatment include chromate treatment, zirconium treatment, titanium treatment, vanadium treatment, molybdenum treatment, calcium phosphate treatment, strontium hydroxide treatment, cerium treatment, ruthenium treatment, or various chemical conversion treatments composed of these mixed phases. It is done.
  • examples of the coating type chemical conversion treatment include a method of coating a coating agent having corrosion prevention performance on the metal foil layer 13.
  • the corrosion prevention treatment layer is formed by any one of hydrothermal alteration treatment, anodization treatment, and chemical conversion treatment, it is preferable to perform the degreasing treatment described above in advance.
  • the metal foil which has been degreased as the metal foil layer 13 it is not necessary to degrease again in the formation of the corrosion prevention treatment layer 14.
  • the coating agent used for the coating type chemical conversion treatment preferably contains trivalent chromium. Further, the coating agent may contain at least one polymer selected from the group consisting of a cationic polymer and an anionic polymer described later.
  • hydrothermal transformation treatment and anodizing treatment dissolve the aluminum foil surface with a treating agent to form an aluminum compound (boehmite, alumite) having excellent corrosion resistance. Therefore, since it becomes the form which formed the co-continuous structure from the metal foil layer 13 using the aluminum foil to the corrosion prevention process layer 14, it is included in the definition of chemical conversion treatment. Further, as will be described later, the corrosion prevention treatment layer 14 can be formed only by a pure coating method which is not included in the definition of the chemical conversion treatment.
  • a sol of a rare earth element oxide such as cerium oxide having an average particle diameter of 100 nm or less is used as a material that has a corrosion prevention effect (inhibitor effect) of aluminum and is also suitable from an environmental viewpoint.
  • the method to use is mentioned. By using this method, it is possible to impart a corrosion prevention effect to a metal foil such as an aluminum foil even with a general coating method.
  • sols of the rare earth element oxide examples include sols using various solvents such as water-based, alcohol-based, hydrocarbon-based, ketone-based, ester-based, and ether-based solvents. Among these, an aqueous sol is preferable.
  • an inorganic acid such as nitric acid, hydrochloric acid or phosphoric acid or a salt thereof, or an organic acid such as acetic acid, malic acid, ascorbic acid or lactic acid is usually dispersed and stabilized. Used as an agent.
  • phosphoric acid in particular, is improved in adhesion to the metal foil layer 13 using (1) dispersion stabilization of sol and (2) aluminum chelate ability of phosphoric acid in the exterior material 10.
  • Examples of the phosphoric acid or a salt thereof include orthophosphoric acid, pyrophosphoric acid, metaphosphoric acid, and alkali metal salts and ammonium salts thereof.
  • condensed phosphoric acid such as trimetaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid, and ultrametaphosphoric acid, or alkali metal salts and ammonium salts thereof are preferable for the function expression in the outer packaging material 10.
  • the dry film-forming property drying capacity, heat quantity
  • a sodium salt is more preferable from the viewpoint of excellent dehydration condensation properties.
  • As the phosphate a water-soluble salt is preferable.
  • the blending ratio of phosphoric acid (or a salt thereof) to the rare earth element oxide is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the rare earth element oxide. If the said compounding ratio is 1 mass part or more with respect to 100 mass parts of rare earth element oxides, rare earth element oxide sol will become more stable and the function of the cladding
  • the blending ratio is more preferably 50 parts by mass or less and further preferably 20 parts by mass or less with respect to 100 parts by mass of the rare earth element oxide.
  • the corrosion prevention treatment layer 14 formed of the rare earth element oxide sol is an aggregate of inorganic particles, the cohesive strength of the layer itself may be lowered even after a dry curing step. Therefore, the corrosion prevention treatment layer 14 in this case is preferably combined with the following anionic polymer or cationic polymer in order to supplement cohesion.
  • anionic polymer examples include a polymer having a carboxy group, and examples thereof include poly (meth) acrylic acid (or a salt thereof) or a copolymer obtained by copolymerizing poly (meth) acrylic acid as a main component.
  • the copolymer component of this copolymer includes alkyl (meth) acrylate monomers (alkyl groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl group, 2-ethylhexyl group, cyclohexyl group, etc.); (meth) acrylamide, N-alkyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide (alkyl groups include methyl, ethyl, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group, etc.), N-alkoxy (meth) acrylamide, N, N-dialkoxy (Meth) acrylamide, (as alkoxy group, methoxy group,
  • anionic polymers play a role of improving the stability of the corrosion prevention treatment layer 14 (oxide layer) obtained using the rare earth element oxide sol. This is due to the effect of protecting the hard and brittle oxide layer with an acrylic resin component and the effect of capturing ion contamination (particularly sodium ions) derived from phosphate contained in the rare earth oxide sol (cation catcher). Achieved. That is, when an alkali metal ion such as sodium or an alkaline earth metal ion is contained in the corrosion prevention treatment layer 14 obtained by using the rare earth element oxide sol, the corrosion prevention starts from the place containing the ion. The processing layer 14 is likely to deteriorate. Therefore, the resistance of the corrosion prevention treatment layer 14 is improved by immobilizing sodium ions and the like contained in the rare earth element oxide sol with an anionic polymer.
  • the corrosion prevention treatment layer 14 combining the anionic polymer and the rare earth element oxide sol has the same corrosion prevention performance as the corrosion prevention treatment layer 14 formed by subjecting the aluminum foil to the chromate treatment.
  • the anionic polymer is preferably a structure in which a polyanionic polymer that is essentially water-soluble is crosslinked.
  • a crosslinking agent used for formation of this structure the compound which has an isocyanate group, a glycidyl group, a carboxy group, and an oxazoline group is mentioned, for example.
  • Examples of the compound having an isocyanate group include tolylene diisocyanate, xylylene diisocyanate or a hydrogenated product thereof, hexamethylene diisocyanate, 4,4′diphenylmethane diisocyanate or a hydrogenated product thereof, and diisocyanates such as isophorone diisocyanate; Polyisocyanates such as adducts obtained by reacting a polyhydric alcohol with a polyhydric alcohol such as trimethylolpropane, burette obtained by reacting with water, or isocyanurate as a trimer; Examples include blocked polyisocyanates obtained by blocking isocyanates with alcohols, lactams, oximes and the like.
  • Examples of the compound having a glycidyl group include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 1,4-butanediol, 1,6-hexanediol, Epoxy compounds in which glycols such as neopentyl glycol and epichlorohydrin are reacted; Epoxy compounds in which polyhydric alcohols such as glycerin, polyglycerin, trimethylolpropane, pentaerythritol and sorbitol are reacted with epichlorohydrin; phthalic acid And epoxy compounds obtained by reacting dicarboxylic acids such as terephthalic acid, oxalic acid and adipic acid with epichlorohydrin.
  • Examples of the compound having a carboxy group include various aliphatic or aromatic dicarboxylic acids. Further, poly (meth) acrylic acid or alkali (earth) metal salt of poly (meth) acrylic acid may be used.
  • the compound having an oxazoline group for example, a low molecular compound having two or more oxazoline units, or a polymerizable monomer such as isopropenyl oxazoline, (meth) acrylic acid, (meth) acrylic acid alkyl ester And those obtained by copolymerizing acrylic monomers such as hydroxyalkyl (meth) acrylate.
  • the anionic polymer may be selectively reacted with an amine and a functional group to form a siloxane bond at the crosslinking point, like a silane coupling agent.
  • epoxy silane, amino silane, and isocyanate silane are preferable in
  • the ratio of these crosslinking agents to the anionic polymer is preferably 1 to 50 parts by mass, more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the anionic polymer.
  • the ratio of the crosslinking agent is 1 part by mass or more with respect to 100 parts by mass of the anionic polymer, a crosslinked structure is easily formed.
  • the ratio of the crosslinking agent is 50 parts by mass or less with respect to 100 parts by mass of the anionic polymer, the pot life of the coating liquid is improved.
  • the method of crosslinking the anionic polymer is not limited to the above-mentioned crosslinking agent, and may be a method of forming ionic crosslinking using a titanium or zirconium compound.
  • Examples of the cationic polymer include a polymer having an amine, polyethyleneimine, an ionic polymer complex composed of a polymer having polyethyleneimine and a carboxylic acid, a primary amine-grafted acrylic resin in which a primary amine is grafted to an acrylic main skeleton, Examples thereof include cationic polymers such as polyallylamine, derivatives thereof, and aminophenol.
  • the cationic polymer is preferably used in combination with a crosslinking agent having a functional group capable of reacting with an amine / imine such as a carboxy group or a glycidyl group.
  • a crosslinking agent used in combination with the cationic polymer a polymer having a carboxylic acid that forms an ionic polymer complex with polyethyleneimine can also be used.
  • a polycarboxylic acid (salt) such as polyacrylic acid or an ionic salt thereof, or the like.
  • a copolymer having a carboxy group such as carboxymethyl cellulose or an ionic salt thereof.
  • polyallylamine examples include homopolymers or copolymers of allylamine, allylamine amide sulfate, diallylamine, dimethylallylamine, and the like. These amines may be free amines or may be stabilized with acetic acid or hydrochloric acid. Moreover, you may use a maleic acid, sulfur dioxide, etc. as a copolymer component. Furthermore, the type which gave the thermal crosslinking property by partially methoxylating a primary amine can also be used, and aminophenol can also be used. In particular, allylamine or a derivative thereof is preferable.
  • the cationic polymer is also described as one component constituting the corrosion prevention treatment layer 14.
  • the cationic polymer itself also has an electrolyte solution resistance and hydrofluoric acid resistance. This is because it has been found that the compound can be imparted. This factor is presumed to be because the aluminum foil is suppressed from being damaged by supplementing fluorine ions with a cationic group (anion catcher).
  • the cationic polymer is a more preferable material in terms of improving adhesiveness. Moreover, since the cationic polymer is water-soluble like the anionic polymer, it is more preferable to form a crosslinked structure to impart water resistance.
  • the crosslinking agent for forming a crosslinked structure in the cationic polymer the crosslinking agent described in the section of the anionic polymer can be used.
  • a rare earth element oxide sol is used as the corrosion prevention treatment layer 14
  • a cationic polymer may be used instead of the anionic polymer as the protective layer.
  • the anti-corrosion treatment layer represented by the chemical treatment represented by chromate treatment is an aluminum foil that uses a chemical conversion treatment agent that contains hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, or a salt thereof. Then, a chemical conversion treatment layer is formed on the aluminum foil by the action of chromium or a non-chromium compound.
  • the chemical conversion treatment uses an acid as the chemical conversion treatment agent, it involves deterioration of the working environment and corrosion of the coating apparatus.
  • the coating-type corrosion prevention treatment layer 14 described above does not require an inclined structure to be formed on the metal foil layer 13 using an aluminum foil.
  • the properties of the coating agent are not subject to restrictions such as acidity, alkalinity, and neutrality, and a favorable working environment can be realized.
  • the chromate treatment using a chromium compound is preferably the coating-type corrosion prevention treatment layer 14 from the viewpoint that an alternative is required for environmental hygiene.
  • examples of combinations of the above-described coating type corrosion prevention treatments are as follows: (1) only rare earth element oxide sol, (2) only anionic polymer, (3) only cationic polymer, (4) rare earth element Oxide sol + anionic polymer (laminated composite), (5) rare earth element oxide sol + cationic polymer (laminated composite), (6) (rare earth oxide sol + anionic polymer: laminated composite) / Cationic polymer (multilayered), (7) (rare earth element oxide sol + cationic polymer: laminated composite) / anionic polymer (multilayered), and the like.
  • (1) and (4) to (7) are preferable, and (4) to (7) are particularly preferable.
  • the present embodiment is not limited to the above combination.
  • the cationic polymer has good adhesiveness with the modified polyolefin resin mentioned in the explanation of the sealant adhesive layer (adhesive resin layer or second adhesive layer) described later.
  • the sealant adhesive layer is composed of a modified polyolefin resin
  • a cationic polymer is provided on the surface in contact with the sealant adhesive layer (for example, the configurations (5) and (6)). Design) is possible.
  • the corrosion prevention treatment layer 14 is not limited to the above-described layer.
  • it may be formed by using a treating agent in which phosphoric acid and a chromium compound are blended in a resin binder (such as aminophenol) as in the case of a coating chromate that is a known technique. If this processing agent is used, it can be set as the layer which has both a corrosion prevention function and adhesiveness.
  • both the corrosion prevention function and adhesion are achieved by using a coating agent in which the rare earth element oxide sol and the polycationic polymer or polyanionic polymer are preliminarily liquefied. It can be set as the layer which combined.
  • Mass per unit area of the corrosion prevention treatment layer 14 is a multilayer structure, be either single-layer structure, preferably 0.005 ⁇ 0.200g / m 2, 0.010 ⁇ 0.100g / m 2 Gayori preferable.
  • the mass per unit area is 0.005 g / m 2 or more, the metal foil layer 13 is easily imparted with a corrosion prevention function. Moreover, even if the mass per unit area exceeds 0.200 g / m 2 , the corrosion prevention function does not change much.
  • the rare earth element oxide sol is used, if the coating film is thick, curing due to heat at the time of drying becomes insufficient, and there is a possibility that the cohesive force is lowered.
  • the thickness of the corrosion prevention process layer 14 it can convert from the specific gravity.
  • the adhesive resin layer 15 is schematically configured to include an adhesive resin composition as a main component and, if necessary, an additive component.
  • the adhesive resin composition is not particularly limited, but preferably contains a modified polyolefin resin (a) component and a macrophase-separated thermoplastic elastomer (b) component.
  • the additive component preferably contains an atactic polypropylene and / or a propylene- ⁇ -olefin copolymer. Among these, the additive component more preferably contains atactic polypropylene and / or atactic propylene- ⁇ -olefin copolymer (c).
  • each component will be described.
  • modified polyolefin resin (a) is a resin obtained by graft-modifying an unsaturated carboxylic acid derivative component derived from any of unsaturated carboxylic acid, unsaturated carboxylic acid anhydride, and unsaturated carboxylic acid ester to a polyolefin resin. It is preferable that
  • polystyrene resin examples include polyolefin resins such as low density polyethylene, medium density polyethylene, high density polyethylene, ethylene- ⁇ olefin copolymer, homo, block, or random polypropylene, propylene- ⁇ olefin copolymer.
  • polypropylene resin is preferable.
  • Examples of the compound used when graft-modifying these polyolefin resins include unsaturated carboxylic acid derivative components derived from any of unsaturated carboxylic acids, unsaturated carboxylic acid anhydrides, and unsaturated carboxylic acid esters. .
  • examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid, bicyclo [2,2,1] hept-2-ene-5, Examples thereof include 6-dicarboxylic acid.
  • Examples of the acid anhydride of the unsaturated carboxylic acid include maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic anhydride And acid anhydrides of unsaturated carboxylic acids.
  • unsaturated carboxylic acid esters include methyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, dimethyl maleate, monomethyl maleate, diethyl fumarate, dimethyl itaconate, diethyl citraconic acid, tetrahydrophthalic anhydride And esters of unsaturated carboxylic acids such as dimethyl and dimethyl bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylate.
  • the modified polyolefin resin (a) is obtained by graft polymerization (graft modification) of 0.2 to 100 parts by mass of the unsaturated carboxylic acid derivative component described above in the presence of a radical initiator with respect to 100 parts by mass of the base polyolefin resin.
  • graft modification graft polymerization
  • the reaction temperature for graft modification is preferably 50 to 250 ° C, more preferably 60 to 200 ° C.
  • the reaction time is appropriately set according to the production method. For example, in the case of melt graft polymerization using a twin screw extruder, the reaction time is preferably 2 to 30 minutes, specifically 5 to 10 minutes. Minutes are more preferred.
  • the graft modification can be carried out under normal pressure or pressurized conditions.
  • radical initiators used for graft modification include organic peroxides such as alkyl peroxides, aryl peroxides, acyl peroxides, ketone peroxides, peroxyketals, peroxycarbonates, peroxyesters, and hydroperoxides. It is done.
  • organic peroxides can be appropriately selected and used depending on the reaction temperature and reaction time conditions described above.
  • alkyl peroxides, peroxyketals, and peroxyesters are preferred, and specifically, di-t-butyl peroxide, 2,5-dimethyl-2,5-di -T-Butylperoxy-hexyne-3, dicumyl peroxide and the like are preferable.
  • modified polyolefin resin (a) a polyolefin resin modified with maleic anhydride is preferable.
  • “Admer” manufactured by Mitsui Chemicals, “Modic” manufactured by Mitsubishi Chemical, and the like are suitable. Since such a modified polyolefin resin (a) component is excellent in reactivity with various metals and polymers having various functional groups, it is possible to impart adhesiveness to the adhesive resin layer 15 using the reactivity. In addition, the resistance to electrolytic solution can be improved.
  • the macrophase-separated thermoplastic elastomer (b) forms a macrophase-separated structure with respect to the modified polyolefin resin (a) in the range where the dispersed phase size exceeds 200 nm and is 50 ⁇ m or less.
  • the adhesive resin composition contains the macrophase-separated thermoplastic elastomer (b) component
  • the modified polyolefin resin (a) component which is the main component constituting the adhesive resin layer 15 is laminated. Residual stress can be released, and thermoelastic adhesiveness can be imparted to the adhesive resin layer 15. Therefore, the adhesiveness of the adhesive resin layer 15 is further improved, and the exterior material 10 that is more excellent in resistance to electrolytic solution is obtained.
  • the macrophase-separated thermoplastic elastomer (b) exists in a sea-island shape on the modified polyolefin resin (a), but if the dispersed phase size is 200 nm or less, it is difficult to impart improvement in viscoelastic adhesion. become. On the other hand, if the dispersed phase size exceeds 50 ⁇ m, the modified polyolefin resin (a) and the macrophase-separated thermoplastic elastomer (b) are essentially incompatible. The physical strength of the adhesive resin layer 15 tends to decrease. From the above, the dispersed phase size is preferably 500 nm to 10 ⁇ m.
  • the macrophase-separated thermoplastic elastomer (b) is selected from, for example, ethylene and / or propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene.
  • a polyolefin-based thermoplastic elastomer obtained by copolymerizing an ⁇ -olefin may be mentioned.
  • thermoplastic elastomer (b) component As the macrophase-separated thermoplastic elastomer (b) component, commercially available products can be used. For example, “Tuffmer” manufactured by Mitsui Chemicals, “Zeras” manufactured by Mitsubishi Chemical, “Cataloy” manufactured by Montel Is suitable.
  • the content of the macrophase separation thermoplastic elastomer (b) component with respect to the modified polyolefin resin (a) component in the adhesive resin composition is 100 parts by mass of the modified polyolefin resin (a) component.
  • the amount is preferably 1 to 40 parts by mass, and more preferably 5 to 30 parts by mass.
  • the content of the macrophase-separated thermoplastic elastomer (b) component is less than 1 part by mass, improvement in the adhesion of the adhesive resin layer cannot be expected.
  • the modified polyolefin resin (a) component and the macrophase-separated thermoplastic elastomer (b) component are inherently low in compatibility. However, workability is remarkably reduced. Further, since the macrophase-separated thermoplastic elastomer (b) component is not a resin exhibiting adhesiveness, the adhesiveness of the adhesive resin layer 15 to other layers such as the sealant layer 16 and the corrosion prevention treatment layer 14 tends to be lowered. .
  • the adhesive resin layer 15 preferably contains an atactic structure polypropylene and / or an atactic structure propylene- ⁇ -olefin copolymer (hereinafter, simply referred to as “component (c)”) as an additive component.
  • component (c) is a completely amorphous resin component.
  • the atactic structure polypropylene and / or the atactic structure propylene- ⁇ -olefin copolymer indicates that the arrangement of at least one side chain of propylene and the ⁇ -olefin has an atactic structure.
  • such a structure includes the following four cases. (1) When the propylene chain side chain orientation of polypropylene has an atactic structure. (2) When the orientation of the side chain of the propylene chain in the propylene- ⁇ -olefin copolymer is an atactic structure. (3) The case where the orientation of the side chain of the ⁇ -olefin chain in the propylene- ⁇ -olefin copolymer is an atactic structure. (4) The case where the orientation of the side chain of the propylene / ⁇ -olefin composite chain in the propylene- ⁇ -olefin copolymer is an atactic structure.
  • the atactic structure of the polypropylene or propylene- ⁇ -olefin copolymer according to this embodiment can be confirmed by, for example, the following method.
  • homopolypropylene is polymerized using the transition metal complex used for the polymerization of the polypropylene or propylene- ⁇ -olefin copolymer according to this embodiment.
  • the intensity of each signal attributed to mm, mr, and rr of propylene methyl carbon is represented by [mm], [mr], and [rr] by 13 C-NMR spectrum, it is defined by the following formula: F (1) is obtained.
  • F (1) 100 ⁇ [mr] / ([mm] + [mr] + [rr])
  • Component (c) is compatible with the modified polyolefin resin (a) component in the adhesive resin composition when the adhesive resin layer 15 is in a molten state, but is discharged out of the crystal upon crystallization accompanying cooling. Phase separate. Thereby, a component (c) does not inhibit the crystallinity degree of the modified polyolefin resin (a) component in the adhesive resin composition which is a main component. Moreover, since the concentration of the modified polyolefin resin (a) component is diluted by the component (c) and the crystal growth is suppressed by adding the component (c) to the adhesive resin layer 15, the adhesive component of the base resin In other words, the crystal size (spherulite size) of the modified polyolefin resin (a) component can be reduced. The component (c) discharged out of the crystal is uniformly dispersed around the microspheres of the modified polyolefin resin (a) component.
  • a “whitening phenomenon” occurs when an exterior material is cold-molded.
  • the mechanism of the whitening phenomenon will be described by taking as an example the adhesive resin layer 15 in which the macrophase separation thermoplastic elastomer (b) is blended with the modified polyolefin resin (a).
  • the modified polyolefin resin (a) in the adhesive resin layer 15 is crystallized by heat treatment at the time of thermal lamination.
  • the modified polyolefin resin (a) and the macrophase-separated thermoplastic elastomer (b) are incompatible, distortion occurs at the interface between the two due to the crystallization behavior of (1).
  • Light is scattered by the void-craze, and whitening occurs due to optical irregular reflection of light.
  • the crystal size (spherulite size) of the modified polyolefin resin (a) component Since the film thickness can be reduced, flexible and tenacious film characteristics can be obtained. Further, since the component (c) is uniformly dispersed around the modified polyolefin resin (a), the stress can be relieved uniformly, and the generation of void-craze can be suppressed. It is considered possible to alleviate the “whitening phenomenon”.
  • the component (c) as an additive component is added to the adhesive resin composition that is the main component of the adhesive resin layer 15, the transparency of the adhesive resin layer 15 is increased, and at the time of molding.
  • the whitening phenomenon accompanying stress can be alleviated.
  • molding whitening is also improved and the insulation (bending resistance) accompanying the bending stress of the exterior material 10 can be improved.
  • the flexibility can be imparted while maintaining the crystallinity of the modified polyolefin resin component (a) in the adhesive resin layer 15, it is possible to suppress a decrease in laminating strength when the exterior material 10 is swollen with the electrolyte solution. It becomes.
  • the crystallinity of the modified polyolefin resin component (a) in the adhesive resin layer 15 is obtained by adding the component (c) as an additive component to the adhesive resin composition that is the main component of the adhesive resin layer 15. Since the flexibility can be imparted while maintaining the strength, it is possible to suppress the decrease in the laminate strength when the electrolyte solution swells the exterior material 10, and the generation of void-craze due to the stress during cold forming is suppressed. Therefore, the insulation after molding can be further improved.
  • the lower limit of the proportion of the component (c) in the adhesive resin layer 15 is preferably 2.5% by mass, and more preferably 5% by mass or more.
  • the upper limit is preferably 60% by mass.
  • the proportion of the component (c) in the adhesive resin layer 15 is less than 2.5% by mass, the effect of adding the component (c) as described above tends not to be sufficiently obtained. is there.
  • it exceeds 60% by mass that is, when the ratio of the adhesive resin composition is less than 40% by mass
  • the adhesive resin layer 15 adheres to other layers such as the sealant layer 16 and the corrosion prevention treatment layer 14. There is a tendency that the nature is likely to decrease.
  • the adhesive resin layer 15 further includes, as an additive component, a propylene- ⁇ -olefin copolymer having an isotactic structure (hereinafter simply referred to as “component (d)”) in addition to the component (c) described above. It is preferable.
  • the component (d) acts as a compatible rubber component in the case where the modified polyolefin resin (a) is a polypropylene-based adhesive resin in the adhesive resin component that is the main component of the adhesive resin layer 15, Suppresses crystallization of the modified polyolefin resin (a).
  • the component (d) as an additive component by adding the component (d) as an additive component to the adhesive resin component that is the main component of the adhesive resin layer 15, flexibility to relieve stress can be imparted. It is possible to improve the heat seal strength (especially anti-electrolytic solution) and the degassing seal strength while suppressing the decrease of the above. Further, by combining the component (c) and the component (d) as the additive component, it is possible to further improve the whitening phenomenon and the bending resistance.
  • component (d) as an additive component to the adhesive resin component that is the main component of the adhesive resin layer 15
  • flexibility to relieve stress can be imparted. Since the generation of void-craze due to stress can be suppressed, the insulation after molding can be further improved.
  • the ratio of the additive component (that is, the total amount of the component (c) and the component (d)) in the adhesive resin layer 15 is preferably 5 to 60% by mass.
  • the ratio of the additive component in the adhesive resin layer 15 is less than 5 mass% (that is, when the ratio of the adhesive resin composition exceeds 95 mass%), the additive as described above is added. There exists a tendency for the effect by adding not to fully be acquired.
  • the adhesive resin layer 15 adheres to other layers such as the sealant layer 16 and the corrosion prevention treatment layer 14. There is a tendency that the nature is likely to decrease.
  • component (c) which is an additive component in the adhesive resin layer 15 it is possible to quantify by, for example, stereoregularity evaluation by nuclear magnetic resonance spectroscopy (NMR).
  • NMR nuclear magnetic resonance spectroscopy
  • the component (d) is analyzed by using Fourier transform infrared spectroscopy (FT-IR), an absorber belonging to the branch of ⁇ -olefin, and a characteristic absorber of the modified polyolefin resin (a).
  • FT-IR Fourier transform infrared spectroscopy
  • the formulation ratio can be confirmed by creating a calibration curve with the absorber belonging to the above.
  • the adhesive resin layer 15 includes an adhesive resin composition (that is, a modified polyolefin resin (a) component and a macrophase-separated thermoplastic elastomer (b) component) and an additive component (that is, component (c) and component (d)). ), Various additives such as flame retardants, slip agents, anti-blocking agents, antioxidants, light stabilizers, tackifiers and the like may be contained as necessary.
  • the thickness of the adhesive resin layer 15 is not particularly limited, but is preferably equal to or less than the thickness of the sealant layer 16 from the viewpoint of stress relaxation and moisture / electrolyte permeation. That is, from the above viewpoint, the thickness of the adhesive resin layer 15 is preferably in the range of 5 to 100 ⁇ m, more preferably in the range of 10 to 60 ⁇ m, and within these ranges, the thickness of the sealant layer 16 is within the range. The thickness is preferably equal to or less than the thickness.
  • the sealant layer 16 is a layer that imparts sealing properties to the exterior material 10 by heat sealing.
  • the sealant layer 16 may be a single layer or multiple layers.
  • the sealant layer 16 in the first invention comprises (A) 60 to 95% by mass of a propylene-ethylene random copolymer and (B) 5 to 40 of a polyolefin elastomer having a melting point of 150 ° C. or less using 1-butene as a comonomer. And a layer formed of a resin composition containing:
  • the sealant layer 16 comprises (A) 60 to 95% by mass of a propylene-ethylene random copolymer, and (B) 5 to 40% by mass of a polyolefin-based elastomer having a melting point of 150 ° C. or less using 1-butene as a comonomer.
  • the layer formed of the resin composition to contain may be sufficient.
  • each component will be described.
  • A) The propylene-ethylene random copolymer is superior in heat sealability at a low temperature as compared with the propylene-ethylene block copolymer and the propylene homopolymer, and improves the sealing characteristics involving the electrolytic solution.
  • the ethylene content is preferably 0.1 to 10% by mass, more preferably 1 to 7% by mass, and more preferably 2 to 5% by mass. Further preferred.
  • the ethylene content is 0.1% by mass or more, the effect of lowering the melting point by copolymerizing ethylene is sufficiently obtained, and the sealing characteristics involving the electrolytic solution tend to be further improved.
  • the ethylene content is 10% by mass or less, it is possible to suppress the melting point from being lowered excessively, and it is possible to more sufficiently suppress the occurrence of an excessive seal portion.
  • the ethylene content can be calculated from the mixing ratio of monomers during polymerization.
  • the ethylene content can be measured by an infrared absorption spectrum method (IR method), a nuclear magnetic resonance absorption method (13C-NMR method, 1H-NMR method) or the like.
  • the melting point of the propylene-ethylene random copolymer is preferably 120 to 145 ° C., more preferably 125 to 140 ° C. There exists a tendency which can fully suppress generation
  • the weight average molecular weight of the (A) propylene-ethylene random copolymer is preferably adjusted as appropriate so that the melting point is within the above range, but is preferably 10,000 to 10,000,000, more preferably. 100,000 to 1,000,000.
  • the propylene-ethylene random copolymer may be an acid-modified one, for example, an acid-modified propylene-ethylene random copolymer obtained by graft-modifying maleic anhydride.
  • an acid-modified propylene-ethylene random copolymer obtained by graft-modifying maleic anhydride.
  • the propylene-ethylene random copolymer can be used alone or in combination of two or more.
  • the content of the component (A) is 60 to 95% by mass, preferably 60 to 90% by mass, based on the total solid content of the resin composition. More preferably, it is 85 mass%.
  • the content of the component (A) is 60% by mass or more, the sealing characteristics involving the electrolytic solution can be improved due to the effect of using the component (A).
  • content of (A) component shall be 60 mass% or more, since it can prevent that (B) component exists excessively, it can suppress the heat resistant fall of the sealant layer 16, and it is an excess seal part. Can be suppressed.
  • the component (B) can be contained in an amount of 5% by mass or more, so the effect of improving the degassing heat seal strength by the component (B) You can get enough.
  • (B) A polyolefin-based elastomer having a melting point of 150 ° C. or less using 1-butene as a comonomer contributes to the improvement of sealing properties involving an electrolyte solution including degassing heat seal strength and to the suppression of occurrence of molding whitening. To do.
  • the (B) polyolefin-based elastomer may be compatible with the component (A) or may not have compatibility, but the compatible (B-1) compatible system. It is preferable to include both a polyolefin-based elastomer and an incompatible (B-2) incompatible polyolefin-based elastomer.
  • having compatibility with the component (A) (compatible system) means dispersing in the propylene-ethylene random copolymer resin constituting the component (A) with a dispersed phase size of 1 nm or more and less than 500 nm. means.
  • the term “not compatible” (incompatible system) means that the dispersion phase size is 500 nm or more and less than 20 ⁇ m in the propylene-ethylene random copolymer resin constituting the component (A).
  • Examples of the (B-1) compatible polyolefin-based elastomer include propylene-1-butene random copolymer.
  • Examples of incompatible polyolefin elastomers include ethylene-1-butene random copolymers.
  • the melting point of the polyolefin-based elastomer is required to be 150 ° C. or lower, but from the viewpoint of suppression of excessive sealing portion, suppression of molding whitening, and improvement of sealing properties involving the electrolyte, 60 to 120 ° C. It is preferable that the temperature is 65 to 90 ° C.
  • the melting point is 150 ° C. or lower, the sealing characteristics involving the electrolyte, particularly the degassing heat seal strength, can be improved.
  • fusing point is 60 degreeC or more.
  • the polyolefin elastomer can be used alone or in combination of two or more.
  • the content of the component (B) is 5 to 40% by mass, preferably 10 to 40% by mass, based on the total solid content of the resin composition, preferably 15 to More preferably, it is 40 mass%.
  • the content of the component (B) is 5% by mass or more, it is possible to sufficiently obtain the effect of improving the sealing characteristics involving the electrolyte, particularly the degassing heat seal strength.
  • the content of the component (B) is set to 40% by mass or less, it is possible to suppress a decrease in heat resistance of the sealant layer 16, and it is possible to suppress the occurrence of an excessive seal portion.
  • the content ratio of both ((B-1) the compatible polyolefin elastomer / ( B-2) Incompatible polyolefin-based elastomer) is preferably in a mass ratio of 0.5 to 3, more preferably 1 to 2.
  • the resin composition for forming the sealant layer may further contain components other than the components (A) and (B) described above.
  • components other than the component (A) and the component (B) for example, other resins such as LDPE (low density polyethylene) may be added in order to improve takeability and workability.
  • the content of the other resin component to be added is preferably 10% by mass or less based on the total solid content of the resin composition.
  • a slip agent, an antiblocking agent, antioxidant, a light stabilizer, a flame retardant etc. are mentioned, for example.
  • the content of components other than these resins is preferably 5% by mass or less based on the total solid content of the resin composition.
  • the thickness of the sealant layer 16 is not particularly limited, but specifically, for example, it is preferably in the range of 5 to 100 ⁇ m, and more preferably in the range of 10 to 60 ⁇ m.
  • the presence of 1-butene in the sealant layer 16 can be confirmed by attribution by FT-IR (Fourier transform infrared spectrophotometer). Further, the content of 1-butene is adjusted to the transmittance or absorbance of the characteristic absorption bands of the component (A) and the component (B) using a resin composition containing a known amount of an elastomer containing a known amount of 1-butene. This can be confirmed by creating a calibration curve. Furthermore, the 1-butene content of each of the (B-1) compatible polyolefin-based elastomer and (B-2) incompatible polyolefin-based elastomer is similarly imaged in the characteristic absorption band of FT-IR.
  • FT-IR Fastier transform infrared spectrophotometer
  • the sealant layer 16 in the second invention comprises (A) a propylene-ethylene random copolymer of 60 to 95% by mass, and (A) a phase (B ′) having compatibility with the propylene-ethylene random copolymer.
  • a resin composition containing a total of 5 to 40% by mass of a soluble elastomer and / or (A) an incompatible elastomer that is not compatible with (A) a propylene-ethylene random copolymer.
  • the mass ratio of the content of the (C) incompatible elastomer to the content of the (B ′) compatible elastomer is 0 to 1.
  • (B ′) the compatible elastomer and (C) the incompatible elastomer have a common comonomer component.
  • each component will be described.
  • (A) Propylene-ethylene random copolymer) (A) The propylene-ethylene random copolymer is superior in heat sealability at a low temperature as compared with the propylene-ethylene block copolymer and the propylene homopolymer, and improves the sealing properties involving the electrolyte. Can do.
  • the (A) propylene-ethylene random copolymer has low crystallinity, volume change due to heat shrinkage can be suppressed, generation of cracks can be suppressed, and insulation after molding can be improved.
  • the ethylene content is preferably 0.1 to 10% by mass, more preferably 1 to 7% by mass, and more preferably 2 to 5% by mass. Further preferred.
  • the ethylene content is 0.1% by mass or more, the effect of lowering the melting point by copolymerizing ethylene is sufficiently obtained, and the sealing characteristics involving the electrolytic solution tend to be further improved.
  • the ethylene content is 10% by mass or less, it is possible to suppress the melting point from being lowered excessively and to more sufficiently suppress the occurrence of heat fusion (excess seal portion) other than the seal portion.
  • the ethylene content can be measured by an infrared absorption spectrum method (IR method), a nuclear magnetic resonance absorption method ( 13 C-NMR method, 1 H-NMR method) or the like.
  • the melting point of the propylene-ethylene random copolymer is preferably 120 to 145 ° C., more preferably 125 to 140 ° C. There exists a tendency which can fully suppress generation
  • the weight average molecular weight of the (A) propylene-ethylene random copolymer is preferably adjusted as appropriate so that the melting point is within the above range, but is preferably 10,000 to 10,000,000, more preferably. 100,000 to 1,000,000.
  • the propylene-ethylene random copolymer may be an acid-modified one, for example, an acid-modified propylene-ethylene random copolymer obtained by graft-modifying maleic anhydride.
  • an acid-modified propylene-ethylene random copolymer obtained by graft-modifying maleic anhydride.
  • the propylene-ethylene random copolymer can be used alone or in combination of two or more.
  • the content of the component (A) is 60 to 95% by mass, preferably 70 to 90% by mass, based on the total solid content of the resin composition, preferably 70 to 90%. More preferably, it is 85 mass%.
  • the content of the component (A) is 60% by mass or more, the sealing characteristics involving the electrolyte can be improved by the effects (melting point, crystallinity) of using the component (A) itself.
  • content of (A) component 60 mass% or more, since it can prevent that (B ') component and / or (C) component exist excessively, the fall of the heat resistance of a sealant layer is suppressed. And swelling of the electrolyte can be suppressed.
  • the component (A) is 95% by mass or less
  • the component (B ′) and / or the component (C) can be contained in a total of 5% by mass or more. And / or the improvement effect of the degassing heat seal intensity
  • the (B ′) compatible elastomer contributes to improvement of insulation after molding by suppressing the generation of cracks.
  • compatible elastomer is an elastomer having compatibility with the component (A).
  • having compatibility with the component (A) means dispersing in the propylene-ethylene random copolymer resin constituting the component (A) with a dispersed phase size of 1 nm or more and less than 500 nm. means.
  • the term “not compatible” (incompatible system) means that the dispersion phase size is 500 nm or more and less than 20 ⁇ m in the propylene-ethylene random copolymer resin constituting the component (A).
  • Examples of (B ′) compatible elastomers include propylene elastomers, hydrogenated styrene elastomers, ethylene- ⁇ olefin elastomers (those with a high carbon content of ⁇ -olefins and high ⁇ -olefin content), and the like. Can be mentioned.
  • the carbon number of the ⁇ -olefin is, for example, 4 or more, and the content of the ⁇ -olefin is, for example, 35 mol% or more.
  • a propylene-based elastomer and a hydrogenated styrene-based elastomer are preferable from the viewpoint of excellent affinity with the component (A).
  • the propylene-based elastomer include propylene-1-butene random copolymer toughmer (manufactured by Mitsui Chemicals), nanocrystal structure control type elastomer Notio (manufactured by Mitsui Chemicals), and the like.
  • Examples of the hydrogenated styrene-based elastomer include Tuftec (manufactured by Asahi Kasei Co., Ltd.).
  • a compatible elastomer can be used individually by 1 type or in combination of 2 or more types.
  • the melting point of the (B ′) compatible elastomer is preferably 130 ° C. or less, more preferably 60 to 120 ° C., and preferably 65 to 90 ° C. from the viewpoint of improving the insulation after molding. Further preferred.
  • the melting point is 130 ° C. or less, the sealing characteristics involving the electrolytic solution, in particular, the degassing heat sealing characteristics can be further improved.
  • the melting point is 60 ° C. or more, it is advantageous from the viewpoint of suppressing the generation of cracks and further improving the insulation after molding.
  • (C) Incompatible elastomer (C) The incompatible elastomer contributes to the improvement of the sealing characteristics involving the electrolytic solution including the degassing heat seal strength.
  • Incompatible elastomer is an elastomer that is not compatible with the component (A).
  • incompatible with (A) component (incompatible system) means that the dispersion phase size is 500 nm or more and less than 20 ⁇ m in the propylene-ethylene random copolymer resin constituting component (A). It means to do.
  • incompatible elastomers examples include styrene elastomers, ethylene elastomers, vinyl chloride elastomers, urethane elastomers, amide elastomers, and the like. Of these, ethylene-1-butene random copolymers and styrene elastomers are preferred from the viewpoint of excellent affinity with the component (B ′). In addition, an ethylene-1-butene random copolymer (for example, exelene (manufactured by Sumitomo Chemical Co., Ltd.)) is preferable because of less swelling due to the electrolyte.
  • An incompatible elastomer can be used individually by 1 type or in combination of 2 or more types.
  • the melting point of the incompatible elastomer is preferably 130 ° C. or less, more preferably 60 to 120 ° C., from the viewpoint of improvement of the insulating properties after molding and the sealing properties involving the electrolytic solution, More preferably, the temperature is 65 to 90 ° C.
  • the melting point is 130 ° C. or lower, the sealing characteristics involving the electrolytic solution, particularly the degassing heat seal strength, can be further improved.
  • the melting point is 60 ° C. or more, it is advantageous from the viewpoint of suppressing the generation of cracks and further improving the insulation after molding.
  • the total content of (B ′) compatible elastomer and / or (C) incompatible elastomer is 5 to 40% by mass based on the total solid content of the resin composition. Yes, it is preferably 10 to 40% by mass, more preferably 15 to 40% by mass.
  • the total content of the component (B ′) and / or the component (C) is 5% by mass or more, the generation of cracks can be suppressed and the insulation after molding can be improved.
  • the mass ratio of the content of (C) incompatible elastomer to (B ′) compatible elastomer is 0 to 1, 0.3 to 1 is preferable, and 0.5 to 1 is more preferable.
  • the compatible elastomer and (C) the incompatible elastomer have a common comonomer component.
  • the compatible elastomer (B ′) is propylene.
  • the incompatible elastomer (C) is an ethylene-1-butene random copolymer.
  • the common comonomer component is 1-butene.
  • the compatible elastomer is a hydrogenated styrene elastomer
  • the incompatible elastomer is a styrene elastomer. It is preferable.
  • the common comonomer component is styrene.
  • the presence of comonomer components such as 1-butene and styrene in the sealant layer 16 can be confirmed by attribution by FT-IR (Fourier transform infrared spectrophotometer).
  • the comonomer component content is determined by the transmittance or absorbance of the characteristic absorption band of the component (A) and the component (B ′) using a resin composition containing a known amount of an elastomer containing a known amount of the comonomer component. This can be confirmed by creating a calibration curve.
  • the contents of the comonomer components of (B ′) compatible elastomer and (C) incompatible elastomer were similarly imaged in the characteristic absorption band of FT-IR, and microscopic FT-IR ( This can be confirmed by mapping the absorption band due to the comonomer component in the transmission method.
  • FT-IR it is also possible to confirm the presence and content of the comonomer component by dissolving the sealant layer 16 with a solvent and measuring by NMR.
  • the resin composition for forming the sealant layer may further contain components other than the components (A), (B ′) and (C) described above.
  • components other than the component (A), the component (B ′) and the component (C) for example, other resins such as LDPE (low density polyethylene) may be added in order to improve takeability and processability. Good.
  • the content of the other resin component to be added is preferably 10% by mass or less based on the total solid content of the resin composition.
  • a slip agent, an antiblocking agent, antioxidant, a light stabilizer, a flame retardant etc. are mentioned, for example.
  • the content of components other than these resins is preferably 5% by mass or less based on the total solid content of the resin composition.
  • the thickness of the sealant layer 16 is not particularly limited, but specifically, for example, it is preferably in the range of 5 to 100 ⁇ m, and more preferably in the range of 10 to 60 ⁇ m.
  • FIG. 1 shows the case where the corrosion prevention treatment layer 14 is formed on the surface of the metal foil layer 13 on the adhesive resin layer 15 side, but the corrosion prevention treatment layer 14 is the first of the metal foil layer 13. It may be formed on the surface on the adhesive layer 12 side, or may be formed on both surfaces of the metal foil layer 13.
  • the corrosion prevention treatment layer 14 is formed on both surfaces of the metal foil layer 13
  • the structure of the corrosion prevention treatment layer 14 formed on the first adhesive layer 12 side of the metal foil layer 13 and the metal foil layer 13
  • the configuration of the corrosion prevention treatment layer 14 formed on the adhesive resin layer 15 side may be the same or different.
  • FIG. 1 shows the case where the metal foil layer 13 and the sealant layer 16 are laminated using the adhesive resin layer 15.
  • the metal foil layer 13 and the sealant layer 16 may be laminated using the adhesive layer 17.
  • the second adhesive layer 17 will be described.
  • the second adhesive layer 17 is a layer that bonds the metal foil layer 13 on which the corrosion prevention treatment layer 14 is formed and the sealant layer 16.
  • a general adhesive for bonding the metal foil layer and the sealant layer can be used.
  • the corrosion prevention treatment layer 14 has a layer containing at least one polymer selected from the group consisting of the above-described cationic polymer and anionic polymer
  • the second adhesive layer 17 is included in the corrosion prevention treatment layer 14.
  • a layer containing a compound reactive with the polymer hereinafter also referred to as “reactive compound”.
  • the second adhesive layer 17 when the corrosion prevention treatment layer 14 includes a cationic polymer, the second adhesive layer 17 includes a compound having reactivity with the cationic polymer.
  • the second adhesive layer 17 when the corrosion prevention treatment layer 14 includes an anionic polymer, the second adhesive layer 17 includes a compound having reactivity with the anionic polymer.
  • the corrosion prevention treatment layer 14 includes a cationic polymer and an anionic polymer the second adhesive layer 17 includes a compound having reactivity with the cationic polymer and a compound having reactivity with the anionic polymer.
  • the second adhesive layer 17 does not necessarily need to contain the above two types of compounds, and may contain a compound having reactivity with both the cationic polymer and the anionic polymer.
  • “having reactivity” means forming a covalent bond with a cationic polymer or an anionic polymer.
  • the second adhesive layer 17 may further contain an acid-modified polyolefin resin.
  • Examples of the compound having reactivity with the cationic polymer include at least one compound selected from the group consisting of a polyfunctional isocyanate compound, a glycidyl compound, a compound having a carboxy group, and a compound having an oxazoline group.
  • polyfunctional isocyanate compounds glycidyl compounds, compounds having a carboxy group, and compounds having an oxazoline group
  • a polyfunctional isocyanate compound is preferable because it is highly reactive with a cationic polymer and easily forms a crosslinked structure.
  • Examples of the compound having reactivity with the anionic polymer include at least one compound selected from the group consisting of a glycidyl compound and a compound having an oxazoline group.
  • Examples of the glycidyl compound and the compound having an oxazoline group include the glycidyl compound and the compound having an oxazoline group exemplified above as a crosslinking agent for making a cationic polymer into a crosslinked structure.
  • a glycidyl compound is preferable in terms of high reactivity with an anionic polymer.
  • the reactive compound is also reactive with an acidic group in the acid-modified polyolefin resin (that is, forms a covalent bond with the acidic group).
  • the acid-modified polyolefin resin has a crosslinked structure, and the solvent resistance of the exterior material 20 is further improved.
  • the content of the reactive compound is preferably from 10 to 10 times the equivalent of the acidic group in the acid-modified polyolefin resin.
  • the amount is equal to or greater than the amount, the reactive compound sufficiently reacts with the acidic group in the acid-modified polyolefin resin.
  • it exceeds 10 times equivalent since it has reached saturation enough as a crosslinking reaction with acid-modified polyolefin resin, there exists an unreacted substance, and there is a concern about deterioration of various performances.
  • the acid-modified polyolefin resin is obtained by introducing an acidic group into the polyolefin resin.
  • the acidic group include a carboxy group and a sulfonic acid group, and a carboxy group is particularly preferable.
  • acid-modified polyolefin resin the thing similar to what was illustrated as modified polyolefin resin (a) used for the adhesive resin layer 15 can be used.
  • the second adhesive layer 17 may contain various additives such as a flame retardant, slip agent, anti-blocking agent, antioxidant, light stabilizer, and tackifier.
  • the silane coupling agent may be contained in the common adhesive agent used in order to adhere
  • an adhesive containing a silane coupling agent depending on the type of functional group contained in the silane coupling agent, components other than the silane coupling agent contained in the adhesive layer and the silane coupling agent may be added. This may cause a reaction and cause a harmful effect on the original intended crosslinking reaction. Therefore, it is preferable that the adhesive used for bonding the metal foil layer and the sealant layer does not contain a silane coupling agent.
  • the second adhesive layer 17 includes the reactive compound described above, a covalent bond is formed with the polymer in the corrosion prevention treatment layer 14, and the adhesion strength between the corrosion prevention treatment layer 14 and the second adhesive layer 17. Will improve. Therefore, it is not necessary to add a silane coupling agent to the second adhesive layer 17 for the purpose of promoting adhesion, and the second adhesive layer 17 preferably does not contain a silane coupling agent.
  • the thickness of the second adhesive layer 17 is not particularly limited, but is preferably 1 to 10 ⁇ m and more preferably 3 to 7 ⁇ m from the viewpoint of obtaining desired adhesive strength, workability, and the like.
  • the configuration of the power storage device exterior material 20 is the same as that of the power storage device exterior material 10.
  • the thickness of the sealant layer 16 in the power storage device exterior material 20 is adjusted according to the thickness of the second adhesive layer 17.
  • the thickness of the sealant layer 16 in the power storage device exterior material 20 is not particularly limited, but is preferably in the range of 5 to 100 ⁇ m, more preferably in the range of 10 to 80 ⁇ m, and 20 More preferably, it is in the range of ⁇ 80 ⁇ m.
  • sealant layer 16 may be formed of a multilayer of two or more layers.
  • the configuration of each of the multiple layers forming the sealant layer 16 may be the same or different.
  • the surface of the sealant layer that is opposite to the second adhesive layer or adhesive resin layer of the multiple layers forming the sealant layer is the main surface.
  • Layer (the innermost layer of the sealant layer), in other words, among the multilayers forming the sealant layer, the layer disposed at the position farthest from the second adhesive layer or the adhesive resin layer is (A) propylene-ethylene A resin composition containing a random copolymer and not containing (B ′) a compatible elastomer and (C) an incompatible elastomer, or (A) a propylene-ethylene random copolymer and a (B ′) phase.
  • a layer formed of a resin composition containing a soluble elastomer and not containing (C) an incompatible elastomer is preferable.
  • the occurrence of cracks during cold forming is further suppressed, so that the penetration of the electrolyte into the metal foil layer side is further suppressed, and the insulation after forming is further improved. be able to.
  • (A) propylene-ethylene random copolymer, (B ′) compatible elastomer and (C) incompatible elastomer are the same as those described above. Things can be used.
  • the sealant layer 16 When the sealant layer 16 is formed of two layers, the sealant layer 16 includes the first sealant layer 16a on the metal foil layer 13 side and the sealant layer 16 as in the case of the power storage device exterior material 30 illustrated in FIG. A second sealant layer 16b which is the innermost layer is included.
  • the first sealant layer 16a includes the first sealant layer 16a from the viewpoint of further improving the heat seal characteristics involving the electrolyte including the insulation after molding and the degassing heat seal strength.
  • the content of (C) incompatible elastomer relative to the content of (B ′) compatible elastomer in the resin composition used for the first sealant layer 16a, the content of (C) incompatible elastomer relative to the content of (B ′) compatible elastomer.
  • the mass ratio of the content is more preferably 0.3 to 1, and further preferably 0.5 to 1.
  • the first sealant layer 16a is composed of (A) 60-95% by mass of a propylene-ethylene random copolymer and (B) 5% of a polyolefin-based elastomer having a melting point of 150 ° C. or less using 1-butene as a comonomer.
  • a layer formed of a resin composition containing ⁇ 40% by mass is preferable.
  • the configuration of the power storage device exterior material 30 is the same as that of the power storage device exterior material 10.
  • the thickness of the first sealant layer 16a and the second sealant layer 16b in the power storage device exterior material 30 is not particularly limited, but from the viewpoint of improving insulation, the thickness of the second sealant layer 16b is The thickness of the sealant layer 16a is preferably equal to or greater than that.
  • the base material layer 11 may be directly formed on the metal foil layer 13 by a coating method without using a film.
  • the base material layer directly formed on the metal foil layer 13 by the coating method in this way is referred to as a coating layer.
  • a corrosion prevention treatment layer 14 may be formed on the surface of the metal foil layer 13 on the coating layer side.
  • the coating layer will be described.
  • the coating layer plays a role of imparting heat resistance in a sealing process when manufacturing the power storage device and suppressing generation of pinholes that may occur during processing and distribution.
  • the coating layer is formed of a resin, and is formed directly on one surface of the metal foil layer 13 without using an adhesive or the like.
  • a coating layer can be formed by applying or coating a resin material to be the coating layer on the metal foil layer 13.
  • polyester, fluorine resin, acrylic resin or the like can be used, and urethane acrylate is particularly preferable. This is because a coating film made of urethane acrylate has suitable spreadability.
  • a coating solution containing these resin materials a two-component curable coating solution may be used.
  • the thickness of the coating layer is preferably 3 ⁇ m to 30 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m. Since the coating layer is directly formed on the metal foil layer 13, by setting the thickness of the coating layer to 20 ⁇ m or less, it is easy to make the structure thinner than the conventional exterior material.
  • the manufacturing method of the exterior material 10 of the present embodiment includes a step of laminating the corrosion prevention treatment layer 14 on the metal foil layer 13, a step of bonding the base material layer 11 and the metal foil layer 13, an adhesive resin layer 15 and It is schematically configured including a step of further laminating the sealant layer 16 to produce a laminated body and a step of heat-treating the obtained laminated body as necessary.
  • This step is a step of forming the corrosion prevention treatment layer 14 on the metal foil layer 13.
  • the method include, as described above, a method in which the metal foil layer 13 is subjected to a degreasing treatment, a hydrothermal alteration treatment, an anodizing treatment, a chemical conversion treatment, or a coating agent having a corrosion prevention performance. It is done.
  • the corrosion prevention treatment layer 14 is a multilayer, for example, a coating liquid (coating agent) constituting the corrosion prevention treatment layer on the lower layer side (metal foil layer 13 side) is applied to the metal foil layer 13 and baked. After forming the first layer, the coating liquid (coating agent) constituting the upper layer corrosion prevention treatment layer is applied to the first layer and baked to form the second layer.
  • the second layer can also be formed in the laminating step of the adhesive resin layer 15 and the sealant layer 16 described later.
  • a spray method or a dipping method is used for the degreasing treatment.
  • a dipping method is used for the hydrothermal conversion treatment or anodizing treatment.
  • a dipping method is used for the chemical conversion treatment.
  • a spray method, a coating method, etc. are appropriately selected according to the type of the chemical conversion treatment. You can do it.
  • coating method of the coating agent having corrosion prevention performance various methods such as gravure coating, reverse coating, roll coating, and bar coating can be used.
  • the various treatments may be performed on both sides or one side of the metal foil, but in the case of one-side treatment, the treatment surface is preferably applied to the side on which the adhesive resin layer 15 is laminated. In addition, you may perform the said process also on the surface of the base material layer 11 according to a request
  • neither the coating amount of the coating agent for forming the first layer and the second layer is preferably 0.005 ⁇ 0.200g / m 2, more preferably 0.010 ⁇ 0.100g / m 2.
  • the base material temperature can be in the range of 60 to 300 ° C. according to the drying conditions of the corrosion prevention treatment layer 14 to be used.
  • This step is a step of bonding the metal foil layer 13 provided with the corrosion prevention treatment layer 14 and the base material layer 11 through the first adhesive layer 12.
  • a method of bonding methods such as dry lamination, non-solvent lamination, wet lamination, and the like are used, and both are bonded with the material constituting the first adhesive layer 12 described above.
  • the first adhesive layer 12 is provided in a dry coating amount in the range of 1 to 10 g / m 2 , more preferably in the range of 3 to 7 g / m 2 .
  • This step is a step of forming the adhesive resin layer 15 and the sealant layer 16 on the corrosion prevention treatment layer 14 formed by the previous step.
  • the method there is a method of sand laminating the adhesive resin layer 15 together with the sealant layer 16 using an extrusion laminator.
  • lamination can also be performed by a tandem lamination method or a coextrusion method in which the adhesive resin layer 15 and the sealant layer 16 are extruded.
  • the layers are laminated in the order of base material layer 11 / first adhesive layer 12 / metal foil layer 13 / corrosion prevention treatment layer 14 / adhesive resin layer 15 / sealant layer 16. A laminated body is obtained.
  • the adhesive resin layer 15 may be formed by directly laminating the dry blended material by an extrusion laminating machine so as to have the above-described material blending composition, or in advance, a single screw extruder, a twin screw extruder,
  • the granulated adhesive resin layer 15 after melt blending using a melt kneader such as a Brabender mixer may be laminated using an extrusion laminator.
  • the multilayer corrosion prevention treatment layer 14 is formed, if the extrusion laminator is equipped with a unit capable of applying an anchor coat layer, the second layer of the corrosion prevention treatment layer 14 is formed in the unit. You may apply.
  • This step is a step of heat-treating the laminate.
  • the laminate is heat-treated to improve the adhesion between the metal foil layer 13 / corrosion prevention treatment layer 14 / adhesive resin layer 15 / sealant layer 16, thereby improving the electrolyte resistance and resistance.
  • Hydrofluoric acid can be imparted, and crystallization of the adhesive resin layer 15 and the sealant layer 16 can be controlled to improve the insulation after molding. Therefore, in this step, it is preferable to perform heat treatment suitable for crystallization of the adhesive resin layer 15 and the sealant layer 16 while improving the adhesion between the layers described above.
  • the exterior material 10 of the present embodiment as shown in FIG. 1 can be manufactured.
  • the manufacturing method of the exterior material 20 is not limited to the following method.
  • the manufacturing method of the exterior material 20 of the present embodiment includes a step of laminating the corrosion prevention treatment layer 14 on the metal foil layer 13, a step of bonding the base material layer 11 and the metal foil layer 13, and a second adhesive layer. 17, the sealant layer 16 is further laminated through 17 to produce a laminate, and if necessary, the obtained laminate is subjected to an aging treatment. In addition, it can carry out similarly to the manufacturing method of the exterior
  • This step is a step of bonding the sealant layer 16 to the corrosion prevention treatment layer 14 side of the metal foil layer 13 via the second adhesive layer 17.
  • Examples of the bonding method include a wet process and dry lamination.
  • a solution or dispersion of an adhesive constituting the second adhesive layer 17 is applied onto the corrosion prevention treatment layer 14, and a predetermined temperature (when the adhesive contains an acid-modified polyolefin resin). Bake off the solvent at a temperature equal to or higher than its melting point). Thereafter, the sealant layer 16 is laminated to manufacture the exterior material 20.
  • the coating method include the various coating methods exemplified above.
  • This step is a step of aging (curing) the laminate.
  • aging Curing
  • the aging treatment can be performed in the range of room temperature to 100 ° C.
  • the aging time is, for example, 1 to 10 days.
  • the exterior material 20 of the present embodiment as shown in FIG. 2 can be manufactured.
  • the manufacturing method of the exterior material 30 is not limited to the following method.
  • the manufacturing method of the packaging material 30 of the present embodiment includes a step of laminating the corrosion prevention treatment layer 14 on the metal foil layer 13, a step of bonding the base material layer 11 and the metal foil layer 13, an adhesive resin layer 15, The first sealant layer 16a and the second sealant layer 16b are further laminated to produce a laminate, and the obtained laminate is heat-treated as necessary.
  • This step is a step of forming the adhesive resin layer 15, the first sealant layer 16a, and the second sealant layer 16b on the corrosion prevention treatment layer.
  • Examples of the method include a tandem laminating method and a coextrusion method in which the adhesive resin layer 15, the first sealant layer 16a, and the second sealant layer 16b are extruded using an extrusion laminator.
  • the exterior material 30 of the present embodiment as shown in FIG. 3 can be manufactured.
  • the preferred embodiments of the exterior material for a power storage device and the manufacturing method thereof according to the present invention have been described in detail.
  • the present invention is not limited to such specific embodiments, and is described in the claims.
  • Various modifications and changes can be made within the scope of the present invention.
  • the resin material used as a coating layer on the metal foil layer 13 A coating layer can be formed by coating or coating.
  • the packaging material for a power storage device of the present invention is suitable as a packaging material for a power storage device such as a secondary battery such as a lithium ion battery, a nickel metal hydride battery, and a lead storage battery, and an electrochemical capacitor such as an electric double layer capacitor. Can be used.
  • the exterior material for electrical storage devices of this invention is suitable as an exterior material for lithium ion batteries.
  • Second adhesive layer (thickness 4 ⁇ m)> A polyurethane adhesive (manufactured by Toyo Ink Co., Ltd.) in which an adduct system curing agent of tolylene diisocyanate was blended with the polyester polyol main agent.
  • AR-1 An acid-modified polypropylene resin composition (manufactured by Mitsui Chemicals) based on random polypropylene (PP) blended with ethylene-propylene rubber as an incompatible rubber was used.
  • AR-2) A propylene- ⁇ olefin copolymer having an atactic structure (“Tufselen H” manufactured by Sumitomo Chemical Co., Ltd.) was used.
  • AR-3) An isotactic propylene- ⁇ -olefin copolymer (“Tafmer XM” manufactured by Mitsui Chemicals, Inc.) was used.
  • SL-1-1 to SL-1-12 Resin compositions (SL-1-1 to SL-1-12) in which the respective components shown in Table 1 below were mixed in the blending amounts (unit: parts by mass) shown in the same table were used. Details of each component are shown below.
  • Component (A) Random PP: A propylene-ethylene random copolymer having a melting point of 140 ° C. (manufactured by Prime Polymer, “Prime Polypro”).
  • Component (B-2) (Ethylene-1-butene): An ethylene-1-butene random copolymer elastomer having a melting point of 75 ° C. that is not compatible with the component (A) (“Excellen” manufactured by Sumitomo Chemical Co., Ltd.) ").
  • Hydrogenated styrene-based rubber Hydrogenated styrene-based thermoplastic elastomer having compatibility with the component (A) (“Tuftec” manufactured by Asahi Kasei Corporation).
  • Ethylene-propylene an ethylene-propylene copolymer elastomer that is not compatible with the component (A) (“Tuffmer A” manufactured by Mitsui Chemicals).
  • the first corrosion prevention treatment layer was provided on the metal foil layer by the following procedure. That is, (CL-1-1) was applied to one surface of the metal foil layer by microgravure coating so that the dry coating amount was 70 mg / m 2 and baked at 200 ° C. in a drying unit. . Next, (CL-1-2) and (CL-) are coated on the obtained layer by microgravure coating so that the dry coating amount is 20 mg / m 2. A composite layer consisting of 1-2) was formed as a first corrosion prevention treatment layer. This composite layer expresses corrosion prevention performance by combining two types of (CL-1-1) and (CL-1-2).
  • (CL-1-1) was applied to the other surface of the metal foil layer by microgravure coating so that the dry coating amount was 70 mg / m 2, and baked at 200 ° C. in the drying unit. did.
  • (CL-1-3) and (CL-) are coated on the obtained layer by microgravure coating so that the dry coating amount is 20 mg / m 2.
  • a composite layer composed of 1-3) was formed as a second corrosion prevention treatment layer. This composite layer expresses corrosion prevention performance by combining two types of (CL-1-1) and (CL-1-3).
  • the first corrosion prevention treatment layer side of the metal foil layer provided with the first and second corrosion prevention treatment layers is formed using a polyurethane adhesive (first adhesive layer) by a dry lamination technique. Affixed to the material layer. This is set in the unwinding part of an extrusion laminating machine, and coextruded on the second corrosion prevention treatment layer at 290 ° C. under a processing condition of 100 m / min, whereby an adhesive resin layer (thickness 15 ⁇ m), a sealant layer ( The layers were stacked in the order of 30 ⁇ m thickness).
  • the adhesive resin layer and the sealant layer were prepared in advance using a twin-screw extruder and used for the extrusion lamination after the water cooling and pelletizing processes.
  • a resin composition (SL-1-1) was used for forming the sealant layer.
  • the laminated body thus obtained was subjected to heat treatment by thermal lamination so that the maximum temperature of the laminated body was 190 ° C., and the exterior material (base material layer / first layer of Example 1-1) was applied.
  • Adhesive layer / first corrosion prevention treatment layer / metal foil layer / second corrosion prevention treatment layer / adhesive resin layer / sealant layer laminate) were produced.
  • Examples 1-2 to 1-7 Except that the resin composition used for forming the sealant layer was changed to (SL-1-2) to (SL-1-7) (all 30 ⁇ m in thickness), respectively, in the same manner as in Example 1-1, The packaging materials of Examples 1-2 to 1-7 were manufactured.
  • Example 1-8 In the same manner as in Example 1-1, a laminate of a base material layer / first adhesive layer / first corrosion prevention treatment layer / metal foil layer / second corrosion prevention treatment layer was produced. Next, an adhesive (second adhesive layer) is applied on the second anticorrosion treatment layer by a dry laminating method by a dry laminating method at a dry coating amount of 4 to 5 g / m 2 , and dried and manufactured. After film formation, a sealant layer was attached. As the sealant layer, an unstretched cast film was used in which the resin composition (SL-1-1) was used to form a film having a thickness of 45 ⁇ m and the adhesive bonding surface was subjected to corona treatment.
  • the resin composition (SL-1-1) was used to form a film having a thickness of 45 ⁇ m and the adhesive bonding surface was subjected to corona treatment.
  • Example 1-8 base material layer / first adhesive layer / first corrosion prevention treatment layer / metal foil layer / second corrosion prevention treatment
  • Layer / second adhesive layer / sealant layer laminate Layer / second adhesive layer / sealant layer laminate
  • Comparative Examples 1-1 to 1-5 Except that the resin composition used for forming the sealant layer was changed to (SL-1-8) to (SL-1-12) (all 30 ⁇ m in thickness), respectively, in the same manner as in Example 1-1, The exterior materials of Comparative Examples 1-1 to 1-5 were manufactured.
  • Laminate strength is more than 12N / 15mm
  • Seal strength is 100 N / 15 mm or more, burst width is over 10 mm
  • B Seal strength is 100 N / 15 mm or more, burst width is 5 to 10 mm
  • C Seal strength is 80 N / 15 mm or more and less than 100 N / 15 mm
  • D Seal strength is less than 80 N / 15 mm
  • the central portion of the pouch was heat-sealed at 190 ° C., 0.3 MPa, and 2 sec in a state containing the electrolytic solution (degassing seal portion S2, FIG. 5B). See).
  • the area including the degassing seal part S2 is cut to a width of 15 mm (see FIG. 5C), and heat seal strength (T-peeling strength) was measured using a testing machine (manufactured by INSTRON). The test was performed in accordance with JIS K6854 at 23 ° C. and 50% RH atmosphere at a peeling rate of 50 mm / min. Based on the results, evaluation was made according to the following criteria.
  • Table 2 shows the results of the above evaluations. In the following Table 2, it can be said that those having no D evaluation in each evaluation result are excellent in overall quality.
  • Second adhesive layer (thickness 4 ⁇ m)> A polyurethane adhesive (manufactured by Toyo Ink Co., Ltd.) in which an adduct system curing agent of tolylene diisocyanate was blended with the polyester polyol main agent.
  • AR-1 An acid-modified polypropylene resin composition (manufactured by Mitsui Chemicals) based on random polypropylene (PP) blended with ethylene-propylene rubber as an incompatible rubber was used.
  • AR-2) A propylene- ⁇ olefin copolymer having an atactic structure (“Tufselen H” manufactured by Sumitomo Chemical Co., Ltd.) was used.
  • AR-3) An isotactic propylene- ⁇ -olefin copolymer (“Tafmer XM” manufactured by Mitsui Chemicals, Inc.) was used.
  • ⁇ Sealant layer> Resin compositions (SL-2-1 to SL-2-12) in which the respective components shown in Table 3 below were mixed in the blending amounts (unit: parts by mass) shown in the same table were used. Details of each component are shown below.
  • Component (A) Random PP: A propylene-ethylene random copolymer having a melting point of 140 ° C. (manufactured by Prime Polymer, “Prime Polypro”).
  • component (A) “Tuffmer XM” manufactured by Mitsui Chemicals, Inc.) ).
  • (Hydrogenated styrene-based elastomer) Hydrogenated styrene-based thermoplastic elastomer having compatibility with the component (A) (“Tuftec” manufactured by Asahi Kasei Corporation).
  • Component (C) (ethylene-1-butene): an ethylene-1-butene random copolymer elastomer having a melting point of 70 ° C. that is not compatible with component (A) (“Excellen” manufactured by Sumitomo Chemical Co., Ltd.) ).
  • (Styrene Elastomer) A styrene-butadiene copolymer elastomer (“Asaflex” manufactured by Asahi Kasei Co., Ltd.) that is not compatible with the component (A).
  • the 1st and 2nd corrosion prevention process layer was provided in the following procedures on the metal foil layer. That is, (CL-2-1) was applied to both surfaces of the metal foil layer by microgravure coating so that the dry coating amount was 70 mg / m 2, and baked at 200 ° C. in a drying unit. . Next, (CL-2-2) and (CL-) are coated on the obtained layer by microgravure coating so that the dry coating amount is 20 mg / m 2. The composite layer consisting of 2-2) was formed as the first and second corrosion prevention treatment layers. This composite layer expresses corrosion prevention performance by combining two types of (CL-2-1) and (CL-2-2).
  • the first corrosion prevention treatment layer side of the metal foil layer provided with the first and second corrosion prevention treatment layers is formed using a polyurethane adhesive (first adhesive layer) by a dry lamination technique. Affixed to the material layer. This is set in the unwinding part of an extrusion laminating machine, and co-extruded on the second corrosion prevention treatment layer at 290 ° C. under processing conditions of 100 m / min, whereby an adhesive resin layer (thickness 12 ⁇ m), sealant layer ( The layers were laminated in the order of thickness 23 ⁇ m).
  • the adhesive resin layer and the sealant layer were prepared in advance using a twin-screw extruder and used for the extrusion lamination after the water cooling and pelletizing processes.
  • a resin composition (SL-2-1) was used for forming the sealant layer.
  • the laminated body thus obtained was subjected to heat treatment by thermal lamination so that the maximum temperature of the laminated body was 190 ° C., and the exterior material (base material layer / first layer of Example 2-1) was applied.
  • Adhesive layer / first corrosion prevention treatment layer / metal foil layer / second corrosion prevention treatment layer / adhesive resin layer / sealant layer laminate) were produced.
  • Example 2-2 to 2-7 Except for changing the resin composition used for forming the sealant layer to (SL-2-2) to (SL-2-7) (all having a thickness of 23 ⁇ m), the same as in Example 2-1, The packaging materials of Examples 2-2 to 2-7 were manufactured.
  • Example 2-8 In the same manner as in Example 2-1, a laminate of a base material layer / first adhesive layer / first corrosion prevention treatment layer / metal foil layer / second corrosion prevention treatment layer was produced. This is set in the unwinding part of the extrusion laminating machine, and co-extruded on the second corrosion prevention treatment layer at 290 ° C. under processing conditions of 100 m / min, whereby the adhesive resin layer (thickness 10 ⁇ m), A sealant layer (metal foil layer side, thickness 10 ⁇ m) and a second sealant layer (innermost layer, thickness 15 ⁇ m) were laminated.
  • the adhesive resin layer, the first sealant layer, and the second sealant layer are prepared in advance by using a twin-screw extruder to prepare a compound of various materials, followed by a water cooling / pelletizing process, and the extrusion laminate. Used for.
  • a resin composition (SL-2-5) was used for forming the first sealant layer, and a resin composition (SL-2-2) was used for forming the second sealant layer.
  • Example 2-9 The exterior material of Example 2-9 was obtained in the same manner as Example 2-8, except that the resin composition used for forming the first sealant layer was changed to (SL-2-7) (thickness 10 ⁇ m). Manufactured.
  • Example 2-10 An exterior material of Example 2-10 was manufactured in the same manner as Example 2-2 except that the thickness of the adhesive resin layer was changed to 10 ⁇ m and the thickness of the sealant layer was changed to 20 ⁇ m.
  • Example 2-11 In the same manner as in Example 2-1, a laminate of a base material layer / first adhesive layer / first corrosion prevention treatment layer / metal foil layer / second corrosion prevention treatment layer was produced. Next, an adhesive (second adhesive layer) is applied on the second corrosion prevention treatment layer by a dry laminating method at a dry coating amount of 4 to 5 g / m 2 , and after drying and film formation, a sealant is applied. The layer was pasted. As the sealant layer, an unstretched cast film was used in which the resin composition (SL-2-2) was used to form a film having a thickness of 30 ⁇ m and the adhesive bonding surface was subjected to corona treatment. Thereafter, aging was performed at 40 ° C. for 5 days, and the exterior material of Example 2-11 (base material layer / first adhesive layer / first corrosion prevention treatment layer / metal foil layer / second corrosion prevention treatment) Layer / second adhesive layer / sealant layer laminate).
  • Example 2-12 An exterior material of Example 2-12 was produced in the same manner as Example 2-2, except that the first and second corrosion prevention treatment layers were provided in the following procedure.
  • (CL-2-3) was applied to both sides of the metal foil layer by microgravure coating so that the dry coating amount was 30 mg / m 2, and was dried at 200 ° C. in a drying unit. The baking process was performed.
  • (CL-2-3) and (CL-) are coated on the obtained layer by microgravure coating so that the dry coating amount is 20 mg / m 2.
  • the composite layer consisting of 2-2) was formed as the first and second corrosion prevention treatment layers. This composite layer expresses corrosion prevention performance by combining two types of (CL-2-3) and (CL-2-2).
  • Example 2-13 An exterior material of Example 2-13 was produced in the same manner as Example 2-11 except that the first and second corrosion prevention treatment layers were provided by the following procedure.
  • (CL-2-3) was applied to both sides of the metal foil layer by microgravure coating so that the dry coating amount was 30 mg / m 2, and was dried at 200 ° C. in a drying unit. The baking process was performed.
  • (CL-2-3) and (CL-) are coated on the obtained layer by microgravure coating so that the dry coating amount is 20 mg / m 2.
  • the composite layer consisting of 2-2) was formed as the first and second corrosion prevention treatment layers. This composite layer expresses corrosion prevention performance by combining two types of (CL-2-3) and (CL-2-2).
  • Example 2-14 An exterior material of Example 2-14 was produced in the same manner as Example 2-2, except that the thickness of the adhesive resin layer was changed to 13 ⁇ m and the thickness of the sealant layer was changed to 27 ⁇ m.
  • Example 2-15 An exterior material of Example 2-15 was produced in the same manner as Example 2-5 except that the thickness of the adhesive resin layer was changed to 13 ⁇ m and the thickness of the sealant layer was changed to 27 ⁇ m.
  • Example 2-16 An exterior material of Example 2-16 was produced in the same manner as Example 2-2 except that the thickness of the adhesive resin layer was changed to 15 ⁇ m and the thickness of the sealant layer was changed to 30 ⁇ m.
  • Example 2-17 An exterior material of Example 2-17 was produced in the same manner as Example 2-5 except that the thickness of the adhesive resin layer was changed to 15 ⁇ m and the thickness of the sealant layer was changed to 30 ⁇ m.
  • Example 2-18 An exterior material of Example 2-18 was produced in the same manner as Example 2-2, except that the thickness of the adhesive resin layer was changed to 27 ⁇ m and the thickness of the sealant layer was changed to 53 ⁇ m.
  • Example 2-19 An exterior material of Example 2-19 was produced in the same manner as Example 2-5 except that the thickness of the adhesive resin layer was changed to 27 ⁇ m and the thickness of the sealant layer was changed to 53 ⁇ m.
  • Comparative Examples 2-1 to 2-5 Except for changing the resin composition used for forming the sealant layer to (SL-2-8) to (SL-2-12) (all having a thickness of 23 ⁇ m), the same as in Example 2-1, The exterior materials of Comparative Examples 2-1 to 2-5 were manufactured.
  • Laminate strength is over 9N / 15mm
  • seal strength is 80 N / 15 mm or more, burst width exceeds 5 mm
  • B Seal strength is 80 N / 15 mm or more, burst width is 3 to 5 mm
  • C Seal strength is 60 N / 15 mm or more and less than 80 N / 15 mm
  • D Seal strength is less than 60 N / 15 mm
  • the central portion of the pouch was heat-sealed at 190 ° C., 0.3 MPa, and 2 sec in a state containing the electrolytic solution (degassing seal portion S2, FIG. 5B). See).
  • the area including the degassing seal part S2 is cut to a width of 15 mm (see FIG. 5C), and heat seal strength (T-peeling strength) was measured using a testing machine (manufactured by INSTRON). The test was performed in accordance with JIS K6854 at 23 ° C. and 50% RH atmosphere at a peeling rate of 50 mm / min. Based on the results, evaluation was made according to the following criteria.
  • Sample 40 with the exterior material cut to 120 mm x 200 mm is set in a cold mold so that the sealant layer is in contact with the convex part of the molding machine, and deep drawing is performed at 2.5 mm at a molding speed of 15 mm / sec. After forming the deeply drawn portion 41, it was folded into 120 mm ⁇ 100 mm (see FIG. 6A). Next, after heat-sealing the upper side portion 44 of 100 mm with the tab 42 and the tab sealant 43 sandwiched therebetween (see FIG. 6B), the side side portion 45 of 120 mm was heat-sealed to make a bag. (See FIG. 6 (c)).
  • the electrodes 48a and 48b are connected to the exposed portion 46 of the tab 42 and the metal foil layer, respectively, and 25V is applied using a withstand voltage / insulation resistance tester (manufactured by KIKUSUI, “TOS9201”), and the resistance value at that time was measured (see FIG. 6F).
  • B Resistance value is 100 M ⁇ or more and 200 M ⁇ or less
  • C Resistance value is 30 M ⁇ or more and less than 100 M ⁇
  • D Resistance value is less than 30 M ⁇
  • Table 4 shows the results of the above evaluations. In Table 4 below, it can be said that those having no D evaluation in each evaluation result are excellent in overall quality.
  • SYMBOLS 10,20,30 Exterior material for electrical storage devices, 11 ... Base material layer, 12 ... First adhesive layer, 13 ... Metal foil layer, 14 ... Corrosion prevention treatment layer, 15 ... Adhesive resin layer, 16 ... Sealant 16a ... first sealant layer, 16b ... second sealant layer, 17 ... second adhesive layer, 40 ... sample, 41 ... deep drawing part, 42 ... tab, 43 ... tab sealant, 44 ... upper side , 45 ... side edge part, 46 ... exposed part of the metal foil layer, 47 ... lower side part, 48a, 48b ... electrode, S1 ... seal part, S2 ... degassing seal part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Laminated Bodies (AREA)

Abstract

 少なくとも基材層、第一の接着剤層、一方又は両方の面に腐食防止処理層が設けられた金属箔層、第二の接着剤層又は接着性樹脂層、及び、シーラント層がこの順で積層された構造を有する蓄電装置用外装材であって、シーラント層が、(A)プロピレン-エチレンランダム共重合体を60~95質量%と、(B)1-ブテンをコモノマーとする融点150℃以下のポリオレフィン系エラストマーを5~40質量%と、を含有する樹脂組成物により形成された層を含む、蓄電装置用外装材。

Description

蓄電装置用外装材
 本発明は、蓄電装置用外装材に関する。
 蓄電装置としては、例えば、リチウムイオン電池、ニッケル水素電池、及び鉛蓄電池等の二次電池、並びに電気二重層キャパシタ等の電気化学キャパシタが知られている。携帯機器の小型化又は設置スペースの制限等により蓄電装置のさらなる小型化が求められており、エネルギー密度が高いリチウムイオン電池が注目されている。リチウムイオン電池に用いられる外装材としては、従来は金属製の缶が用いられていたが、軽量で、放熱性が高く、低コストで作製できる多層フィルム(例えば、基材層/金属箔層/シーラント層のような構成のフィルム)が用いられるようになっている。
 上記多層フィルムを外装材に用いるリチウムイオン電池では、内部への水分の浸入を防止するため、金属箔層としてアルミニウム箔層を含む外装材により電池内容物を覆う構成が採用されている。このような構成を採用したリチウムイオン電池は、アルミラミネートタイプのリチウムイオン電池と呼ばれている。リチウムイオン電池の電池内容物には、正極、負極及びセパレータとともに、炭酸プロピレン、炭酸エチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルなどの浸透力を有する非プロトン性の溶媒に、電解質としてリチウム塩を溶解した電解液、もしくはその電解液を含浸させたポリマーゲルからなる電解質層が含まれる。
 アルミラミネートタイプのリチウムイオン電池は、例えば、外装材の一部に冷間成型によって凹部を形成し、該凹部内に電池内容物を収容し、外装材の残りの部分を折り返して縁部分をヒートシールで封止したエンボスタイプのリチウムイオン電池が知られている。このようなリチウムイオン電池を構成する外装材には、ヒートシールによって安定した密封性を示すとともに、電池内容物の電解液によりアルミニウム箔層とシーラント層間のラミネート強度の低下が生じにくいことが求められている。
 そこで、例えば、特許文献1には、接着性ポリメチルペンテン層を含むヒートシール層(シーラント層)を備える外装材が提案されている。
 また、リチウムイオン電池のエネルギー密度は、冷間成型によって形成される凹部を深くするほど高くすることができる。しかし、凹部を深くするほど、冷間成型時に発生する歪みにより微細なクラックがシーラント層中に発生しやすく、特に成型側面部や角部といった絞り部分においてシーラント層の白化現象が生じやすい。冷間成型における白化現象は、絶縁低下をもたらし、電池性能の劣化を促進させるため、クラックによる白化現象の抑制はもちろんのこと、屈曲による白化も抑制することが求められる。
 そこで、例えば、特許文献2には、安定した密封性、耐熱性、絶縁性及び成形性を示す外装材として、融点150℃以上の高融点ポリプロピレン層とプロピレン-エチレンランダムコポリマ層とからなるヒートシール層(シーラント層)を備えた外装材が提案されている。
特開2002-245983号公報 特開2007-273398号公報
 しかしながら、上記特許文献2に記載されたような従来の外装材では、密封性の改善や絶縁性の向上、シール部の耐熱性に関する検討はなされているものの、蓄電装置の製造工程において最も過酷なデガッシングシール(電解液をかみ込んだ状態で行うシール)に対する改善についての検討がなされていない。デガッシングシールでは、上述した電解液をかみ込みながらヒートシールするため、シール時の熱量が電解液により奪われ、シール不良が発生しやすい。その一方で、蓄電装置製造のタクトタイムの向上という要求がある中、シール熱量が最も必要とされるデガッシングシール工程での安定したシール性(デガッシングヒートシール強度)が求められている。また、デガッシングシール工程でのシール性を向上するために低温でのヒートシール性を高め過ぎると、シール部以外での熱融着(過剰シール部分)や、シール痩せ(シール部の厚みが薄くなる現象)、蓄電装置の内容積減少が生じるという問題がある。
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、過剰シール部分の発生及び成型白化の発生を抑制しつつ、デガッシングヒートシール強度を含む電解液が関与するシール特性を向上させることができる蓄電装置用外装材を提供することを第一の目的とする。
 また、上記特許文献1に記載されたような従来の外装材では、ヒートシールの熱と圧力による絶縁性の低下の抑制や密封性の改善に関する検討はなされているものの、蓄電装置の製造工程において最も過酷なデガッシングシール(電解液をかみ込んだ状態で行うシール)に対する改善についての検討がなされていない。デガッシングシールでは、上述した電解液をかみ込みながらヒートシールするため、シール時の熱量が電解液により奪われ、シール不良が発生しやすい。その一方で、蓄電装置製造のタクトタイムの向上という要求がある中、シール熱量が最も必要とされるデガッシングシール工程での安定したシール性(デガッシングヒートシール強度)が求められている。
 また、近年、スマートフォン、タブレットPCなどの電子機器の薄型化及び大型化に伴い、電子機器に搭載される電池には、薄型化及び大容量化が求められている。その中で、電池容量の増加及びコスト削減の観点から、電池用外装材には薄型化が要求され、絶縁体である内層の薄膜化も求められている。しかし、従来の外装材では、内層を薄膜化すると、冷間成型時の応力などによって微細なクラックがシーラント層中に発生しやすく、電解液がクラックに浸透して、成型後に絶縁性の低下を生じやすいという問題がある。
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、成型後の絶縁性、及び、デガッシングヒートシール強度を含む電解液が関与するシール特性に優れる蓄電装置用外装材を提供することを第二の目的とする。
(第一の発明)
 上記第一の目的を達成するために、本発明の第一の発明は、少なくとも基材層、第一の接着剤層、一方又は両方の面に腐食防止処理層が設けられた金属箔層、第二の接着剤層又は接着性樹脂層、及び、シーラント層がこの順で積層された構造を有する蓄電装置用外装材であって、上記シーラント層が、(A)プロピレン-エチレンランダム共重合体を60~95質量%と、(B)1-ブテンをコモノマーとする融点150℃以下のポリオレフィン系エラストマーを5~40質量%と、を含有する樹脂組成物により形成された層を含む、蓄電装置用外装材を提供する。
 かかる蓄電装置用外装材によれば、上記構成のシーラント層を備えることにより、過剰シール部分の発生及び成型白化の発生を抑制しつつ、デガッシングヒートシール強度を含む電解液が関与するシール特性を向上させることができる。すなわち、上記(A)プロピレン-エチレンランダム共重合体(以下、「(A)成分」とも言う)は結晶性が低く、ヒートシール性が良好であるが、更に(B)1-ブテンをコモノマーとする融点150℃以下のポリオレフィン系エラストマー(以下、「(B)成分」とも言う)を配合することにより、低熱量でのシール性を適度に高めることができ、電解液が関与するシール特性、特にデガッシングヒートシール強度を向上させることができる。このとき、(B)成分の含有量が5質量%未満であると、特にデガッシングヒートシール強度の改善が不十分となり、40質量%を超えると、エラストマー成分が過多となり、シーラント層としての耐熱性の低下を招くとともに、低温でのヒートシール性が高くなり過ぎることによって過剰シール部分が増大し、更に加工時には加工性の低下を伴うこととなる。そのため、(A)成分及び(B)成分の含有量を上記範囲とすることにより、過剰シール部分の発生を抑制しつつ、デガッシングヒートシール強度を含む電解液が関与するシール特性を向上させることができる。加えて、(B)成分が1-ブテンをコモノマーとすることにより、(A)成分との良好な親和性が得られ、1-ブテンを含まないエラストマーを用いた場合と比較して、冷間成型時のクラックの発生が抑制されて白化現象が低減される。
 また、上記本発明の蓄電装置用外装材は、デガッシングヒートシール強度を安定化させることができることにより、シール時の熱量の影響を抑えることが可能となり、蓄電装置製造のタクトタイムを短くすることが可能となる。
 上記蓄電装置用外装材において、上記(B)ポリオレフィン系エラストマーが、上記(A)プロピレン-エチレンランダム共重合体に対して相溶性を有する(B-1)相溶系ポリオレフィン系エラストマーと、上記(A)プロピレン-エチレンランダム共重合体に対して相溶性を有さない(B-2)非相溶系ポリオレフィン系エラストマーとを含むことが好ましい。
 (B-1)相溶系ポリオレフィン系エラストマーは、更なる低温シール性、及び、耐成型白化性を付与することができるとともに、デガッシングヒートシール強度などの電解液が関与するシール特性をより向上させることができる。一方、(B-2)非相溶系ポリオレフィン系エラストマーは、応力緩和の効果により、デガッシングヒートシール強度などの電解液が関与するシール特性をより向上させることができる。これら相溶系及び非相溶系の2種類のポリオレフィン系エラストマーを併用することにより、耐成型白化性及び電解液が関与するシール特性をバランス良く向上させることができる。
 ここで、上記(B-1)相溶系ポリオレフィン系エラストマーが、プロピレン-1-ブテンランダム共重合体であり、上記(B-2)非相溶系ポリオレフィン系エラストマーが、エチレン-1-ブテンランダム共重合体であることが好ましい。(A)成分とプロピレン-1-ブテンランダム共重合体とエチレン-1-ブテンランダム共重合体とは親和性が良好であるため、上述した耐成型白化性及び電解液が関与するシール特性をよりバランス良く向上させることができる。また、例えばエチレン-プロピレンエラストマー(ポリエチレン(70~80質量%)中に、オレフィン系ゴムを微分散させたもの等)のような1-ブテンを含まない非相溶系エラストマーを用いた場合、シーラント層内で明瞭な海島構造を形成し、成型時の応力でこの海島構造の界面にてクラック(ボイド-クレーズ)が発生しやすく、白化を伴う傾向がある。これに対し、エチレン-1-ブテンランダム共重合体のような1-ブテンを含む非相溶系エラストマーを用いた場合は、海島構造における界面密着性を向上することができ、成型などの応力が加わっても白化の発生が低減される。
 上記蓄電装置用外装材は、上記接着性樹脂層を介して上記金属箔層と上記シーラント層とが積層されており、上記接着性樹脂層が、接着性樹脂組成物として変性ポリプロピレンを含むことが好ましい。接着性樹脂を形成する変性ポリオレフィン樹脂が変性ポリプロピレンを含むことにより、1-ブテンをコモノマーとする(B)ポリオレフィン系エラストマーは、接着性樹脂を形成する変性ポリプロピレンと親和性が得られ、その結果、接着性樹脂層とシーラント層間のクラックの発生がより抑制されてシール強度の低下や白化の発生に対するより高い抑制効果を得ることができる。
 また、上記蓄電装置用外装材は、上記接着性樹脂層を介して上記金属箔層と上記シーラント層とが積層されており、上記接着性樹脂層が、接着性樹脂組成物と、アタクチック構造のポリプロピレン及び/又はアタクチック構造のプロピレン-αオレフィン共重合体とを含むものであってもよい。この場合、成型による白化を緩和することができる。
 ここで、上記接着性樹脂層は、アイソタクチック構造のプロピレン-αオレフィン共重合体を更に含むことが好ましい。この場合、接着性樹脂層に応力を緩和するための柔軟性が付与できるため、電解液ラミネート強度の低下を抑制しつつ、ヒートシール強度(特に耐電解液)の改善、デガッシングシール強度の改善が可能となる。また、上述したアタクチック構造のポリプロピレン及び/又はアタクチック構造のプロピレン-αオレフィン共重合体と組み合わせることで、白化現象や耐屈曲絶縁性をより改善することができる。
 上記蓄電装置用外装材においては、上記腐食防止処理層が、少なくとも上記金属箔層の上記シーラント層側に設けられており、当該腐食防止処理層がカチオン性ポリマー及びアニオン性ポリマーからなる群より選択される少なくとも1種のポリマーを含み、上記第二の接着剤層を介して上記金属箔層と上記シーラント層とが積層されており、上記第二の接着剤層が、当該第二の接着剤層に接する上記腐食防止処理層に含まれる上記ポリマーと反応性を有する化合物を含んでいてもよい。この場合、腐食防止処理層中の上記ポリマーと第二の接着剤層中の上記化合物とが強固に結合することで腐食防止処理層と第二の接着剤層との密着性が向上し、ラミネート強度が向上する。
 上記蓄電装置用外装材において、腐食防止処理層が上記ポリマーを含み、且つ、第二の接着剤層が上記ポリマーと反応性を有する化合物を含む場合、上記第二の接着剤層は、酸変性ポリオレフィン樹脂を含んでいてもよい。この場合、第二の接着剤層と腐食防止処理層との接着性がより高まるとともに、第二の接着剤層の耐溶剤性がより向上する。
 また、上記蓄電装置用外装材においては、上記腐食防止処理層が、希土類元素酸化物と、該希土類元素酸化物100質量部に対して1~100質量部のリン酸又はリン酸塩とを含んでいてもよい。
(第二の発明)
 上記第二の目的を達成するために、本発明の第二の発明は、少なくとも基材層、第一の接着剤層、一方又は両方の面に腐食防止処理層が設けられた金属箔層、第二の接着剤層又は接着性樹脂層、及び、シーラント層がこの順で積層された構造を有する蓄電装置用外装材であって、上記シーラント層が、(A)プロピレン-エチレンランダム共重合体を60~95質量%と、上記(A)プロピレン-エチレンランダム共重合体に対して相溶性を有する(B’)相溶系エラストマー及び/又は上記(A)プロピレン-エチレンランダム共重合体に対して相溶性を有さない(C)非相溶系エラストマーを合計で5~40質量%と、を含有する樹脂組成物により形成された層を含み、上記樹脂組成物において、上記(B’)相溶系エラストマーの含有量に対する上記(C)非相溶系エラストマーの含有量の質量比が0~1であり、上記(B’)相溶系エラストマーと上記(C)非相溶系エラストマーとが共通のコモノマー成分を有する、蓄電装置用外装材を提供する。
 かかる蓄電装置用外装材は、上記構成のシーラント層を備えることにより、成型後の絶縁性及びデガッシングヒートシール強度を含む電解液が関与するシール特性に優れる。シーラント層は電池の安全性の面からポリプロピレンであることが好ましく、中でも上記(A)プロピレン-エチレンランダム共重合体(以下、「(A)成分」とも言う)は結晶性が低いため、衝撃強度が高く成型延伸によるクラックが抑制されるとともに、ヒートシール性が良好である。更に(B’)相溶系エラストマー(以下、「(B’)成分」とも言う)を配合することにより、シーラント層の結晶性がより低下し、熱収縮による体積変化が抑制され、冷間成型時のクラックの発生が抑制される。その結果、成型後の絶縁性に優れる。また、更に(C)非相溶系エラストマー「(C)成分」とも言う)を配合する場合は、デガッシングヒートシールを始めとする電解液が関与するシール特性を更に向上させることができる。このとき、(A)成分の含有量が60質量%未満であると、(B’)成分及び(C)成分であるエラストマー成分が過多となり、電解液によるエラストマー成分の膨潤の影響が大きくなり過ぎることで、成型後の絶縁性が低下する。また、(A)成分の含有量が95質量%を超えると、電解液が関与するシール特性の改善が不十分となる。そのため、(A)成分、(B’)成分及び(C)成分の含有量を上記範囲とすることにより、成型後の絶縁性及びデガッシングヒートシール強度を含む電解液が関与するシール特性に優れる。加えて、(C)成分は、(A)成分と海島構造を形成するため、海島構造の界面にてクラック(ボイド-クレーズ)を発生させる要因となり得るが、(B’)成分の含有量に対する(C)成分の含有量の質量比が0~1であることで、クラックの発生が十分に抑制される。また、(B’)成分と(C)成分とが共通のコモノマー成分を有することにより、(B’)成分及び(C)成分と(A)成分との良好な親和性が得られ、(A)成分との海島構造の界面密着性を高めることができ、クラックの発生が十分に抑制される。
 また、上記本発明の蓄電装置用外装材は、デガッシングヒートシール強度を安定化させることができることにより、シール時の熱量の影響を抑えることが可能となり、蓄電装置製造のタクトタイムを短くすることが可能となる。
 上記蓄電装置用外装材において、上記(B’)相溶系エラストマーが、プロピレン-1-ブテンランダム共重合体であり、上記(C)非相溶系エラストマーが、エチレン-1-ブテンランダム共重合体であることが好ましい。(A)成分とプロピレン-1-ブテンランダム共重合体との親和性が良好であるとともに、プロピレン-1-ブテンランダム共重合体とエチレン-1-ブテンランダム共重合体との親和性が良好であるため、海島構造の界面における親和性をより向上させることができ、冷間成型時のクラックの発生がより抑制されて、成型後の絶縁性をより向上させることができる。例えば、エチレン-プロピレンエラストマー(ポリエチレン(70~80質量%)中に、オレフィン系ゴムを微分散させたもの等)のような1-ブテンを含まない非相溶系エラストマーを用いた場合、シーラント層内で明瞭な海島構造を形成し、成型時の応力でこの海島構造の界面にてクラックが発生しやすくなる。これに対し、エチレン-1-ブテンランダム共重合体のような1-ブテンを含む非相溶系エラストマーを用いた場合は、海島構造における界面密着性を向上させることができ、クラックの発生がより抑制され、電解液がクラックに浸透して発生する絶縁性の低下がより抑制される。
 上記蓄電装置用外装材において、上記(B’)相溶系エラストマーが、水添スチレン系エラストマーであり、上記(C)非相溶系エラストマーが、スチレン系エラストマーであることが好ましい。(A)成分と水添スチレン系エラストマーとの親和性が良好であるとともに、水添スチレン系エラストマーとスチレン系エラストマーとの親和性が良好であるため、海島構造の界面における親和性をより向上させることができ、冷間成型時のクラックの発生がより抑制されて、成型後の絶縁性をより向上させることができる。また、スチレン系エラストマーは、柔軟性及び弾力性に優れており、成型などの応力を緩和することができるため、冷間成型時などの応力によるクラックの発生がより抑制されることによっても、成型後の絶縁性をより向上させることができる。
 上記蓄電装置用外装材において、上記シーラント層が多層から形成されており、上記シーラント層を形成する多層のうち、上記シーラント層の上記第二の接着剤層又は上記接着性樹脂層とは反対側の面を主面として有する層(以下、「シーラント層の最内層」とも言う)が、上記(A)プロピレン-エチレンランダム共重合体を含有し、且つ、上記(B’)相溶系エラストマー及び上記(C)非相溶系エラストマーを含有しない樹脂組成物、又は、上記(A)プロピレン-エチレンランダム共重合体及び上記(B’)相溶系エラストマーを含有し、且つ、上記(C)非相溶系エラストマーを含有しない樹脂組成物により形成された層であることが好ましい。この場合、シーラント層の最内層において、冷間成型時のクラックの発生がより抑制され、成型後の絶縁性をより向上させることができる。
 上記蓄電装置用外装材において、上記接着性樹脂層を介して上記金属箔層と上記シーラント層とが積層されており、上記接着性樹脂層が、接着性樹脂組成物と、アタクチック構造のポリプロピレン及び/又はプロピレン-αオレフィン共重合体とを含んでいてもよい。この場合、接着性樹脂層において、冷間成型時などの応力によるクラックの発生がより抑制され、成型後の絶縁性をより向上させることができる。
 上記蓄電装置用外装材において、上記第二の接着剤層を介して上記金属箔層と上記シーラント層とが積層されており、上記第二の接着剤層が、酸変性ポリオレフィン樹脂と、多官能イソシアネート化合物、グリシジル化合物、カルボキシ基を有する化合物及びオキサゾリン基を有する化合物からなる群より選択される少なくとも1種の化合物とを含んでいてもよい。この場合、第二の接着剤層とシーラント層との間の密着性が向上し、冷間成型時などの応力による層間剥離やそれによるクラックの発生が抑制され、成型後の絶縁性の低下を防ぐことができる。
 上記蓄電装置用外装材において、上記腐食防止処理層が、酸化セリウムと、該酸化セリウム100質量部に対して1~100質量部のリン酸又はリン酸塩と、カチオン性ポリマーとを含んでいてもよい。この場合、金属層と、接着性樹脂層又は第二の接着剤層との間の密着性が向上し、冷間成型時などの応力による層間剥離やそれによるクラックの発生が抑制され、成型後の絶縁性の低下を防ぐことができる。
 上記蓄電装置用外装材において、上記腐食防止処理層が、上記金属箔層に化成処理を施して形成されており、カチオン性ポリマーを含んでいてもよい。この場合、金属層と、接着性樹脂層又は第二の接着剤層との間の密着性が向上し、冷間成型時などの応力による層間剥離やそれによるクラックの発生が抑制され、成型後の絶縁性の低下を防ぐことができる。
 本発明の第一の発明によれば、過剰シール部分の発生及び成型白化の発生を抑制しつつ、デガッシングヒートシール強度を含む電解液が関与するシール特性を向上させることができる蓄電装置用外装材を提供することができる。
 また、本発明の第二の発明によれば、成型後の絶縁性、及び、デガッシングヒートシール強度を含む電解液が関与するシール特性に優れる蓄電装置用外装材を提供することができる。
本発明の一実施形態に係る蓄電装置用外装材の概略断面図である。 本発明の一実施形態に係る蓄電装置用外装材の概略断面図である。 本発明の一実施形態に係る蓄電装置用外装材の概略断面図である。 実施例における評価サンプルの作製方法を説明する模式図である。 実施例における評価サンプルの作製方法を説明する模式図である。 実施例における評価サンプルの作製方法を説明する模式図である。
 以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。
[蓄電装置用外装材]
 図1は、本発明(第一及び第二の発明)の蓄電装置用外装材の一実施形態を模式的に表す断面図である。図1に示すように、本実施形態の外装材(蓄電装置用外装材)10は、基材層11と、該基材層11の一方の面上に形成された第一の接着剤層12と、該第一の接着剤層12の基材層11とは反対の面上に形成された金属箔層13と、該金属箔層13の第一の接着剤層12とは反対の面上に形成された腐食防止処理層14と、該腐食防止処理層14の金属箔層13とは反対の面上に形成された接着性樹脂層15と、該接着性樹脂層15の腐食防止処理層14とは反対の面上に形成されたシーラント層16と、が順次積層された積層体である。外装材10は、基材層11が最外層、シーラント層16が最内層である。すなわち、外装材10は、基材層11を蓄電装置の外部側、シーラント層16を蓄電装置の内部側に向けて使用される。以下、各層について説明する。
<基材層11>
 基材層11は、蓄電装置製造時のシール工程における耐熱性付与、加工や流通の際に起こりうるピンホール対策という目的で設けるものであり、絶縁性を有する樹脂層を用いるのが好ましい。そのような樹脂層としては、例えば、ポリエステルフィルム、ポリアミドフィルム、ポリプロピレンフィルム等の延伸または未延伸フィルムを、単層または2層以上積層した多層フィルムとして使用することができる。より具体的には、ポリエチレンテレフタレート(PET)フィルムとナイロン(Ny)フィルムとを接着性樹脂を用いて共押出後に、延伸処理を施した共押し出し多層延伸フィルムを用いることが可能である。
 基材層11の厚さは、6~40μmが好ましく、10~25μmがより好ましい。基材層11の厚さが6μm以上であることにより、蓄電装置用外装材10の耐ピンホール性及び絶縁性を向上できる傾向がある。一方、基材層11の厚さが40μm以下であることにより、蓄電装置用外装材10の深絞り成型性をより向上できる傾向がある。
<第一の接着剤層12>
 第一の接着剤層12は、基材層11と金属箔層13とを接着する層である。第一の接着剤層12を構成する材料としては、具体的には、例えば、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール、カーボネートポリオールなどの主剤に対し、2官能以上のイソシアネート化合物を作用させたポリウレタン樹脂等が挙げられる。
 ポリエステルポリオールは、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ブラシル酸などの脂肪族系;イソフタル酸、テレフタル酸、ナフタレンジカルボン酸などの芳香族系の二塩基酸の一種以上と、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、メチルペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、ドデカンジオールなど脂肪族系;シクロヘキサンジオール、水添キシリレングリーコルなどの脂環式系;キシリレングリーコルなどの芳香族系のジオールの一種以上と、を用いて得られる。
 また、ポリエステルポリオールとしては、上述した二塩基酸とジオールとを用いて得られるポリエステルポリオールの両末端の水酸基を、例えば、2,4-もしくは2,6-トリレンジイソシアネート、キシリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、メチレンジイソシアネート、イソプロピレンジイソシアネート、リジンジイソシアネート、2,2,4-もしくは2,4,4-トリメチルヘキサメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、イソプロピリデンジシクロヘキシル-4,4’-ジイソシアネートなどから選ばれるイソシアネート化合物の単体、あるいは、それらから選択される少なくとも一種のイソシアネート化合物からなるアダクト体、ビューレット体、イソシアヌレート体、を用いて鎖伸長したポリエステルウレタンポリオールなどが挙げられる。
 ポリエーテルポリオールとしては、ポリエチレングリコール、ポリプロピレングリコールなどのエーテル系のポリオールや、鎖長伸長剤として上述したイソシアネート化合物を作用させたポリエーテルウレタンポリオールを用いることが可能である。
 アクリルポリオールとしては、上述したアクリル系モノマーを用いて重合したアクリル樹脂を用いることが可能である。
 カーボネートポリオールとしては、カーボネート化合物とジオールとを反応させて得ることができる。カーボネート化合物としては、ジメチルカーボネート、ジフェニルカーボネート、エチレンカーボネートなどを用いることができる。一方、ジオールとしては、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、メチルペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、ドデカンジオールなどの脂肪族ジオール;シクロヘキサンジオール、水添キシリレングリールなどの脂環式ジオール;キシリレングリールなどの芳香族ジオールなどを用いることができる。カーボネートポリオールとしては、上述したカーボネート化合物の1種又は2種以上の混合物と、上述したジオールの1種又は2種以上の混合物とを用いたカーボネートポリオール、あるいは上述したイソシアネート化合物により鎖伸長を施したポリカーボネートウレタンポリオールが挙げられる。
 上述した各種ポリオールは、外装材に求められる機能や性能に応じて、単独または2種以上を併用して用いることができる。また、これらの主剤に、上述したイソシアネート系化合物を硬化剤として用いることでポリウレタン系接着剤として用いることも可能である。
 さらに、接着促進を目的として、上述したポリウレタン樹脂に、カルボジイミド化合物、オキサゾリン化合物、エポキシ化合物、リン化合物、シランカップリング剤などを配合してもよい。
 カルボジイミド化合物としては、例えば、N,N’-ジ-o-トルイルカルボジイミド、N,N’-ジフェニルカルボジイミド、N,N’-ジ-2,6-ジメチルフェニルカルボジイミド、N,N’-ビス(2,6-ジイソプロピルフェニル)カルボジイミド、N,N’-ジオクチルデシルカルボジイミド、N-トリイル-N’-シクロヘキシルカルボジイミド、N,N’-ジ-2,2-ジ-t-ブチルフェニルカルボジイミド、N-トリイル-N’-フェニルカルボジイミド、N,N’-ジ-p-ニトロフェニルカルボジイミド、N,N’-ジ-p-アミノフェニルカルボジイミド、N,N’-ジ-p-ヒドロキシフェニルカルボジイミド、N,N’-ジ-シクロヘキシルカルボジイミド、N,N’-ジ-p-トルイルカルボジイミドなどが挙げられる。
 オキサゾリン化合物としては、例えば、2-オキサゾリン、2-メチル-2-オキサゾリン、2-フェニル-2-オキサゾリン、2,5-ジメチル-2-オキサゾリン、2,4-ジフェニル-2-オキサゾリンなどのモノオキサゾリン化合物、2,2’-(1,3-フェニレン)-ビス(2-オキサゾリン)、2,2’-(1,2-エチレン)-ビス(2-オキサゾリン)、2,2’-(1,4-ブチレン)-ビス(2-オキサゾリン)、2,2’-(1,4-フェニレン)-ビス(2-オキサゾリン)などのジオキサゾリン化合物が挙げられる。
 エポキシ化合物としては、例えば、1,6-ヘキサンジオール、ネオペンチルグリコール、ポリアルキレングリコールのような脂肪族のジオールのジグリシジルエーテル、ソルビトール、ソルビタン、ポリグリセロール、ペンタエリスリトール、ジグリセロール、グリセロール、トリメチロールプロパンなどの脂肪族ポリオールのポリグリシジルエーテル、シクロヘキサンジメタノールなどの脂環式ポリオールのポリグリシジルエーテル、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、トリメリット酸、アジピン酸、セバシン酸などの脂肪族、芳香族の多価カルボン酸のジグリシジルエステルまたはポリグリシジルエステル、レゾルシノール、ビス-(p-ヒドロキシフェニル)メタン、2,2-ビス-(p-ヒドロキシフェニル)プロパン、トリス-(p-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(p-ヒドロキシフェニル)エタンなどの多価フェノールのジグリシジルエーテルまたはポリグリシジルエーテル、N,N’-ジグリシジルアニリン、N,N,N-ジグリシジルトルイジン、N,N,N’,N’-テトラグリシジル-ビス-(p-アミノフェニル)メタンのようなアミンのN-グリシジル誘導体、アミノフェールのトリグリシジル誘導体、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート、トリグリシジルイソシアヌレート、オルソクレゾール型エポキシ、フェノールノボラック型エポキシが挙げられる。
 リン化合物としては、例えば、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4’-ビフェニレンホスフォナイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトール-ジ-ホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシル)ホスファイト、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-t-ブチル-フェニル)ブタン、トリス(ミックスドモノおよびジ-ノニルフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、4,4’-イソプロピリデンビス(フェニル-ジアルキルホスファイト)などが挙げられる。
 シランカップリング剤としては、例えば、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-クロロプロピルメトキシシラン、ビニルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシランなど各種シランカップリング剤を使用することが可能である。
 また、接着剤に求められる性能に応じて、上述したポリウレタン樹脂に、その他の各種添加剤や安定剤を配合してもよい。
 第一の接着剤層12の厚さは、特に限定されるものではないが、所望の接着強度、追随性、及び加工性等を得る観点から、例えば、1~10μmが好ましく、3~7μmがより好ましい。
<金属箔層13>
 金属箔層13は、水分が蓄電装置の内部に浸入することを防止する水蒸気バリア性を有する。また、金属箔層13は、深絞り成形をするために延展性を有する。金属箔層13としては、アルミニウム、ステンレス鋼等の各種金属箔を使用することができ、質量(比重)、防湿性、加工性及びコストの面から、アルミニウム箔が好ましい。
 アルミニウム箔としては、一般の軟質アルミニウム箔を用いることができるが、さらなる耐ピンホール性、及び成形時の延展性を付与させる目的で、鉄を含むアルミニウム箔を用いるのが好ましい。アルミニウム箔中の鉄の含有量は、アルミニウム箔100質量%中、0.1~9.0質量%が好ましく、0.5~2.0質量%がより好ましい。鉄の含有量が0.1質量%以上であることにより、より優れた耐ピンホール性及び延展性を有する外装材10を得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた外装材10を得ることができる。
 また、アルミニウム箔としては、所望の成型時の延展性を付与できる点から、焼鈍処理を施した軟質アルミニウム箔(例えば、JIS規格でいう8021材、8079材よりなるアルミニウム箔)がさらに好ましい。
 金属箔層13の厚さは、特に限定されるものではないが、バリア性、耐ピンホール性、加工性を考慮して9~200μmとすることが好ましく、15~100μmとすることがより好ましい。
 金属箔層13にアルミニウム箔を用いる場合、アルミニウム箔としては、未処理のアルミニウム箔を用いてもよいが、耐電解液性を付与する点で脱脂処理を施したアルミニウム箔を用いるのが好ましい。脱脂処理としては、大きく区分するとウェットタイプとドライタイプが挙げられる。
 ウェットタイプとしては、酸脱脂やアルカリ脱脂などが挙げられる。酸脱脂に使用する酸としては、例えば、硫酸、硝酸、塩酸、フッ酸などの無機酸が挙げられ、これら無機酸は、1種単独で用いてもよく、2種以上を併用してもよい。また、アルミニウム箔のエッチング効果を向上させるという観点から、必要に応じてFeイオンやCeイオンなどの供給源となる各種金属塩を配合しても構わない。アルカリ脱脂に使用するアルカリとしては、例えば水酸化ナトリウムなどの強エッチングタイプが挙げられる。また、弱アルカリ系や界面活性剤を配合したものを用いてもよい。これらの脱脂は浸漬法やスプレー法で行われる。
 ドライタイプとしては、アルミニウムを焼鈍処理する工程で、脱脂処理を行う方法が挙げられる。また、脱脂処理の他にも、フレーム処理やコロナ処理などを行ってもよい。さらには特定波長の紫外線を照射して発生する活性酸素により、汚染物質を酸化分解・除去するような脱脂処理も挙げられる。
 なお、アルミニウム箔に脱脂処理する場合は、アルミニウム箔の片面のみに脱脂処理を施してもよく、両面に脱脂処理を施してもよい。
<腐食防止処理層14>
 腐食防止処理層14は、電解液、又は、電解液と水分の反応により発生するフッ酸による金属箔層13の腐食を防止するために設けられる層である。腐食防止処理層14としては、例えば、脱脂処理、熱水変成処理、陽極酸化処理、化成処理、あるいはこれらの処理の組み合わせにより形成される。
 脱脂処理としては、酸脱脂あるいはアルカリ脱脂が挙げられる。酸脱脂としては、硫酸、硝酸、塩酸、フッ酸などの無機酸の単独、またはこれらの混合液を使用する方法などが挙げられる。また、酸脱脂として、一ナトリウム二フッ化アンモニウムなどのフッ素含有化合物を上記無機酸で溶解させた酸脱脂剤を用いることで、特に金属箔層13にアルミニウム箔を用いた場合に、アルミニウムの脱脂効果が得られるだけでなく、不動態であるアルミニウムのフッ化物を形成させることができ、耐フッ酸性という点で有効である。アルカリ脱脂としては、水酸化ナトリウムなどを使用する方法が挙げられる。
 熱水変成処理としては、例えば、トリエタノールアミンを添加した沸騰水中にアルミニウム箔を浸漬処理するベーマイト処理が挙げられる。
 陽極酸化処理としては、例えば、アルマイト処理が挙げられる。
 化成処理としては、浸漬型、塗工型が挙げられる。浸漬型の化成処理としては、例えばクロメート処理、ジルコニウム処理、チタニウム処理、バナジウム処理、モリブデン処理、リン酸カルシウム処理、水酸化ストロンチウム処理、セリウム処理、ルテニウム処理、あるいはこれらの混合相からなる各種化成処理が挙げられる。一方、塗工型の化成処理としては、腐食防止性能を有するコーティング剤を金属箔層13上に塗工する方法が挙げられる。
 これら腐食防止処理のうち、熱水変成処理、陽極酸化処理、化成処理のいずれかで腐食防止処理層の少なくとも一部を形成する場合は、事前に上述した脱脂処理を行うことが好ましい。なお、金属箔層13として脱脂処理済みの金属箔を用いる場合は、腐食防止処理層14の形成において改めて脱脂処理する必要なはい。
 塗工型の化成処理に用いられるコーティング剤は、好ましくは3価クロムを含有する。また、コーティング剤には、後述するカチオン性ポリマーおよびアニオン性ポリマーからなる群より選択される少なくとも1種のポリマーが含まれていてもよい。
 また、上記処理のうち、特に熱水変成処理、陽極酸化処理は、処理剤によってアルミニウム箔表面を溶解させ、耐腐食性に優れるアルミニウム化合物(ベーマイト、アルマイト)を形成させる。そのため、アルミニウム箔を用いた金属箔層13から腐食防止処理層14まで共連続構造を形成した形態になるので、化成処理の定義に包含される。また、後述するように化成処理の定義に含まれない、純粋なコーティング手法のみで腐食防止処理層14を形成することも可能である。この方法としては、例えば、アルミニウムの腐食防止効果(インヒビター効果)を有し、かつ、環境側面的にも好適な材料として、平均粒径100nm以下の酸化セリウムのような希土類元素酸化物のゾルを用いる方法が挙げられる。この方法を用いることで、一般的なコーティング方法でも、アルミニウム箔などの金属箔に腐食防止効果を付与することが可能となる。
 上記希土類元素酸化物のゾルとしては、例えば、水系、アルコール系、炭化水素系、ケトン系、エステル系、エーテル系などの各種溶媒を用いたゾルが挙げられる。なかでも、水系のゾルが好ましい。
 上記希土類元素酸化物のゾルには、通常その分散を安定化させるために、硝酸、塩酸、リン酸などの無機酸またはその塩、酢酸、りんご酸、アスコルビン酸、乳酸などの有機酸が分散安定化剤として用いられる。これらの分散安定化剤のうち、特にリン酸は、外装材10において、(1)ゾルの分散安定化、(2)リン酸のアルミキレート能力を利用した金属箔層13との密着性の向上、(3)フッ酸の影響で溶出したアルミニウムイオンを捕獲(不動態形成)することよる電解液耐性の付与、(4)低温でもリン酸の脱水縮合を起こしやすいことによる腐食防止処理層14(酸化物層)の凝集力の向上、などが期待される。
 上記リン酸またはその塩としては、オルトリン酸、ピロリン酸、メタリン酸、またはこれらのアルカリ金属塩やアンモニウム塩が挙げられる。なかでも、外装材10における機能発現には、トリメタリン酸、テトラメタリン酸、ヘキサメタリン酸、ウルトラメタリン酸などの縮合リン酸、またはこれらのアルカリ金属塩やアンモニウム塩が好ましい。また、上記希土類元素酸化物のゾルを用いて、各種コーティング法により希土類元素酸化物からなる腐食防止処理層14を形成させる時の乾燥造膜性(乾燥能力、熱量)を考慮すると、低温での脱水縮合性に優れる点から、ナトリウム塩がより好ましい。リン酸塩としては、水溶性の塩が好ましい。
 希土類元素酸化物に対するリン酸(あるいはその塩)の配合比は、希土類元素酸化物100質量部に対して、1~100質量部が好ましい。上記配合比が希土類元素酸化物100質量部に対して1質量部以上であれば、希土類元素酸化物ゾルがより安定になり、外装材10の機能がより良好になる。上記配合比は、希土類元素酸化物100質量部に対して5質量部以上がより好ましい。また、上記配合比が希土類元素酸化物100質量部に対して100質量部以下であれば、希土類元素酸化物ゾルの機能が高まり、電解液の浸食を防止する性能に優れる。上記配合比は、希土類元素酸化物100質量部に対して、50質量部以下がより好ましく、20質量部以下がさらに好ましい。
 上記希土類元素酸化物ゾルにより形成される腐食防止処理層14は、無機粒子の集合体であるため、乾燥キュアの工程を経ても層自身の凝集力が低くなるおそれがある。そこで、この場合の腐食防止処理層14は、凝集力を補うために、下記アニオン性ポリマー、またはカチオン性ポリマーにより複合化されていることが好ましい。
 アニオン性ポリマーとしては、カルボキシ基を有するポリマーが挙げられ、例えば、ポリ(メタ)アクリル酸(あるいはその塩)、あるいはポリ(メタ)アクリル酸を主成分として共重合した共重合体が挙げられる。この共重合体の共重合成分としては、アルキル(メタ)アクリレート系モノマー(アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基など。);(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド(アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基など。)、N-アルコキシ(メタ)アクリルアミド、N,N-ジアルコキシ(メタ)アクリルアミド、(アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、イソブトキシ基など。)、N-メチロール(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミドなどのアミド基含有モノマー;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートなどの水酸基含有モノマー;グリシジル(メタ)アクリレート、アリルグリシジルエーテルなどのグリシジル基含有モノマー;(メタ)アクリロキシプロピルトリメトキシシラン、(メタ)アクリロキシプロピルトリエトキシランなどのシラン含有モノマー;(メタ)アクリロキシプロピルイソシアネートなどのイソシアネート基含有モノマーなどが挙げられる。
 これらアニオン性ポリマーは、希土類元素酸化物ゾルを用いて得られた腐食防止処理層14(酸化物層)の安定性を向上させる役割を果たす。これは、硬くて脆い酸化物層をアクリル系樹脂成分で保護する効果、および、希土類元素酸化物ゾルに含まれるリン酸塩由来のイオンコンタミ(特にナトリウムイオン)を捕捉する(カチオンキャッチャー)効果によって達成される。つまり、希土類元素酸化物ゾルを用いて得られた腐食防止処理層14中に、特にナトリウムなどのアルカリ金属イオンやアルカリ土類金属イオンが含まれると、このイオンを含む場所を起点にして腐食防止処理層14が劣化しやすくなる。そのため、アニオン性ポリマーによって希土類元素酸化物ゾルに含まれるナトリウムイオンなどを固定化することで、腐食防止処理層14の耐性が向上する。
 アニオン性ポリマーと希土類元素酸化物ゾルを組み合わせた腐食防止処理層14は、アルミニウム箔にクロメート処理を施して形成した腐食防止処理層14と同等の腐食防止性能を有する。アニオン性ポリマーは、本質的に水溶性であるポリアニオン性ポリマーが架橋された構造であることが好ましい。この構造の形成に用いる架橋剤としては、例えば、イソシアネート基、グリシジル基、カルボキシ基、オキサゾリン基を有する化合物が挙げられる。
 イソシアネート基を有する化合物としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネートあるいはその水素添加物、ヘキサメチレンジイソシアネート、4,4’ジフェニルメタンジイソシアネートあるいはその水素添加物、イソホロンジイソシアネートなどのジイソシアネート類;あるいはこれらのイソシアネート類を、トリメチロールプロパンなどの多価アルコールと反応させたアダクト体、水と反応させることで得られたビューレット体、あるいは三量体であるイソシアヌレート体などのポリイソシアネート類;あるいはこれらのポリイソシアネート類をアルコール類、ラクタム類、オキシム類などでブロック化したブロックポリイソシアネートなどが挙げられる。
 グリシジル基を有する化合物としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコールなどのグリコール類と、エピクロルヒドリンとを作用させたエポキシ化合物;グリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトールなどの多価アルコール類と、エピクロルヒドリンとを作用させたエポキシ化合物;フタル酸、テレフタル酸、シュウ酸、アジピン酸などのジカルボン酸と、エピクロルヒドリンとを作用させたエポキシ化合物などが挙げられる。
 カルボキシ基を有する化合物としては、例えば、各種脂肪族あるいは芳香族ジカルボン酸などが挙げられる。また、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸のアルカリ(土類)金属塩を用いてもよい。
 オキサゾリン基を有する化合物としては、例えば、オキサゾリンユニットを2つ以上有する低分子化合物、あるいはイソプロペニルオキサゾリンのような重合性モノマーを用いる場合には、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ヒドロキシアルキルなどのアクリル系モノマーを共重合させたものが挙げられる。
 また、アニオン性ポリマーには、シランカップリング剤のように、アミンと官能基を選択的に反応させ、架橋点をシロキサン結合にさせてもよい。この場合、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-クロロプロピルメトキシシラン、ビニルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-イソシアナートプロピルトリエトキシシランなどが使用できる。なかでも、特にアニオン性ポリマーあるいはその共重合物との反応性を考慮すると、エポキシシラン、アミノシラン、イソシアネートシランが好ましい。
 アニオン性ポリマーに対するこれらの架橋剤の比率は、アニオン性ポリマー100質量部に対して、1~50質量部が好ましく、10~20質量部がより好ましい。架橋剤の比率がアニオン性ポリマー100質量部に対して1質量部以上であれば、架橋構造が十分に形成されやすい。架橋剤の比率がアニオン性ポリマー100質量部に対して50質量部以下であれば、塗液のポットライフが向上する。
 アニオン性ポリマーを架橋する方法は、上記架橋剤に限らず、チタニウム、ジルコニウム化合物を用いてイオン架橋を形成する方法などであってもよい。
 カチオン性ポリマーとしては、アミンを有するポリマーが挙げられ、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフトさせた1級アミングラフトアクリル樹脂、ポリアリルアミンあるいはこれらの誘導体、アミノフェノールなどのカチオン性のポリマーが挙げられる。
 カチオン性ポリマーは、カルボキシ基やグリシジル基などのアミン/イミンと反応が可能な官能基を有する架橋剤と併用することが好ましい。カチオン性ポリマーと併用する架橋剤としては、ポリエチレンイミンとイオン高分子錯体を形成するカルボン酸を有するポリマーも使用でき、例えば、ポリアクリル酸あるいはそのイオン塩などのポリカルボン酸(塩)、あるいはこれにコモノマーを導入した共重合体、カルボキシメチルセルロースあるいはそのイオン塩などのカルボキシ基を有する多糖類などが挙げられる。ポリアリルアミンとしては、例えば、アリルアミン、アリルアミンアミド硫酸塩、ジアリルアミン、ジメチルアリルアミンなどの単独重合体あるいは共重合体などが挙げられる。これらのアミンは、フリーのアミンであってもよく、酢酸あるいは塩酸による安定化物であってもよい。また、共重合体成分として、マレイン酸、二酸化硫黄などを使用してもよい。さらに、1級アミンを部分メトキシ化させることで熱架橋性を付与したタイプも使用でき、また、アミノフェノールも使用できる。特に、アリルアミンあるいはその誘導体が好ましい。
 本実施形態では、カチオン性ポリマーも腐食防止処理層14を構成する一構成要素として記載している。その理由は、蓄電装置用外装材で要求される電解液耐性、フッ酸耐性を付与するべく様々な化合物を用い鋭意検討を行った結果、カチオン性ポリマー自体も、電解液耐性、耐フッ酸性を付与することが可能な化合物であることが判明したためである。この要因は、フッ素イオンをカチオン性基で補足する(アニオンキャッチャー)ことで、アルミニウム箔が損傷することを抑制しているためであると推測される。
 カチオン性ポリマーは、接着性の向上という点でより好ましい材料である。また、カチオン性ポリマーも、上記アニオン性ポリマーと同様に、水溶性であることから、架橋構造を形成させて耐水性を付与することがより好ましい。カチオン性ポリマーに架橋構造を形成する際の架橋剤は、アニオン性ポリマーの項で説明した架橋剤を使用できる。腐食防止処理層14として希土類元素酸化物ゾルを用いた場合、その保護層として上記アニオン性ポリマーを用いる代わりに、カチオン性ポリマーを用いてもよい。
 クロメート処理に代表される化成処理による腐食防止処理層は、アルミニウム箔との傾斜構造を形成させるため、特にフッ酸、塩酸、硝酸、硫酸あるいはこれらの塩を配合した化成処理剤を用いてアルミニウム箔に処理を施し、次いでクロムやノンクロム系の化合物を作用させて化成処理層をアルミニウム箔に形成させるものである。しかしながら、上記化成処理は、化成処理剤に酸を用いていることから、作業環境の悪化やコーティング装置の腐食を伴う。一方、前述したコーティングタイプの腐食防止処理層14は、クロメート処理に代表される化成処理とは異なり、アルミニウム箔を用いた金属箔層13に対して傾斜構造を形成させる必要がない。そのため、コーティング剤の性状は、酸性、アルカリ性、中性などの制約を受けることがなく、良好な作業環境を実現できる。加えて、クロム化合物を用いるクロメート処理は、環境衛生上、代替案が求められている点からも、コーティングタイプの腐食防止処理層14が好ましい。
 以上の内容から、上述したコーティングタイプの腐食防止処理の組み合わせの事例として、(1)希土類元素酸化物ゾルのみ、(2)アニオン性ポリマーのみ、(3)カチオン性ポリマーのみ、(4)希土類元素酸化物ゾル+アニオン性ポリマー(積層複合化)、(5)希土類元素酸化物ゾル+カチオン性ポリマー(積層複合化)、(6)(希土類元素酸化物ゾル+アニオン性ポリマー:積層複合化)/カチオン性ポリマー(多層化)、(7)(希土類元素酸化物ゾル+カチオン性ポリマー:積層複合化)/アニオン性ポリマー(多層化)、等が挙げられる。中でも(1)及び(4)~(7)が好ましく、(4)~(7)が特に好ましい。ただし、本実施形態は、上記組み合せに限られるわけではない。たとえば腐食防止処理の選択の事例として、カチオン性ポリマーは、後述するシーラント接着層(接着性樹脂層又は第二の接着剤層)の説明で挙げる変性ポリオレフィン樹脂との接着性が良好であるという点でも非常に好ましい材料であることから、シーラント接着層が変性ポリオレフィン樹脂で構成される場合においては、シーラント接着層に接する面にカチオン性ポリマーを設ける(例えば、構成(5)及び(6)などの構成)といった設計が可能である。
 また、腐食防止処理層14は、前述した層には限定されない。例えば、公知技術である塗布型クロメートのように、樹脂バインダー(アミノフェノールなど)にリン酸とクロム化合物を配合した処理剤を用いて形成してもよい。この処理剤を用いれば、腐食防止機能と密着性の両方を兼ね備えた層とすることができる。また、塗液の安定性を考慮する必要があるものの、希土類元素酸化物ゾルとポリカチオン性ポリマーあるいはポリアニオン性ポリマーとを事前に一液化したコーティング剤を使用して腐食防止機能と密着性の両方を兼ね備えた層とすることができる。
 腐食防止処理層14の単位面積当たりの質量は、多層構造、単層構造いずれであっても、0.005~0.200g/mが好ましく、0.010~0.100g/mがより好ましい。上記単位面積当たりの質量が0.005g/m以上であれば、金属箔層13に腐食防止機能を付与しやすい。また、上記単位面積当たりの質量が0.200g/mを超えても、腐食防止機能はあまり変らない。一方、希土類元素酸化物ゾルを用いた場合には、塗膜が厚いと乾燥時の熱によるキュアが不十分となり、凝集力の低下を伴うおそれがある。なお、腐食防止処理層14の厚みについては、その比重から換算できる。
<接着性樹脂層15>
 接着性樹脂層15は、主成分となる接着性樹脂組成物と必要に応じて添加剤成分とを含んで概略構成されている。接着性樹脂組成物は、特に制限されないが、変性ポリオレフィン樹脂(a)成分と、マクロ相分離熱可塑性エラストマー(b)成分とを含有することが好ましい。また、添加剤成分は、アタクチック構造のポリプロピレン及び/又はプロピレン-αオレフィン共重合体を含むことが好ましい。中でも、添加剤成分は、アタクチック構造のポリプロピレン及び/又はアタクチック構造のプロピレン-αオレフィン共重合体(c)を含むことがより好ましい。以下、各成分について説明する。
(変性ポリオレフィン樹脂(a))
 変性ポリオレフィン樹脂(a)は、不飽和カルボン酸、不飽和カルボン酸の酸無水物、不飽和カルボン酸のエステルのいずれかから導かれる不飽和カルボン酸誘導体成分が、ポリオレフィン樹脂にグラフト変性された樹脂であることが好ましい。
 ポリオレフィン樹脂としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン-αオレフィン共重合体、ホモ、ブロック、あるいはランダムポリプロピレン、プロピレン-αオレフィン共重合体などのポリオレフィン樹脂などが挙げられるが、シーラント層16との接着性の観点からポリプロピレン系樹脂であることが好ましい。
 これらのポリオレフィン樹脂をグラフト変性する際に用いる化合物としては、不飽和カルボン酸、不飽和カルボン酸の酸無水物、不飽和カルボン酸のエステルのいずれかから導かれる不飽和カルボン酸誘導体成分が挙げられる。
 具体的には、不飽和カルボン酸として、例えばアクリル酸、メタクリル酸、マレイン酸、フマール酸、イタコン酸、シトラコン酸、テトラヒドロフタル酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸などが挙げられる。
 不飽和カルボン酸の酸無水物としては、例えば無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸無水物などの不飽和カルボン酸の酸無水物などが挙げられる。
 不飽和カルボン酸のエステルとしては、例えばアクリル酸メチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、マレイン酸ジメチル、マレイン酸モノメチル、フマール酸ジエチル、イタコン酸ジメチル、シトラコン酸ジエチル、テトラヒドロ無水フタル酸ジメチル、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸ジメチルなどの不飽和カルボン酸のエステルなどが挙げられる。
 変性ポリオレフィン樹脂(a)は、ベースとなるポリオレフィン樹脂100質量部に対し、上述した不飽和カルボン酸誘導体成分0.2~100質量部をラジカル開始剤の存在下、グラフト重合(グラフト変性)することで製造することができる。グラフト変性の反応温度は、50~250℃が好ましく、60~200℃がより好ましい。また、反応時間は、製造方法に応じて適宜設定されるが、例えば二軸押出機による溶融グラフト重合の場合、押出機の滞留時間内、具体的には2~30分が好ましく、5~10分がより好ましい。なお、グラフト変性は、常圧、加圧のいずれの条件下においても実施できる。
 グラフト変性に用いられるラジカル開始剤としては、アルキルパーオキサイド、アリールパーオキサイド、アシルパーオキサイド、ケトンパーオキサイド、パーオキシケタール、パーオキシカーボネート、パーオキシエステル、ハイドロパーオキサイドなどの有機過酸化物が挙げられる。
 これらの有機過酸化物は、上述した反応温度や反応時間の条件によって適宜選択して用いることができる。例えば、二軸押出機による溶融グラフト重合の場合、アルキルパーオキサイド、パーオキシケタール、パーオキシエステルが好ましく、具体的にはジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ-t-ブチルペルオキシ-ヘキシン-3、ジクミルペルオキシドなどが好ましい。
 変性ポリオレフィン樹脂(a)としては、無水マレイン酸により変性されたポリオレフィン樹脂が好ましく、例えば、三井化学社製の「アドマー」、三菱化学社製の「モディック」などが適している。このような変性ポリオレフィン樹脂(a)成分は、各種金属や各種官能基を有するポリマーとの反応性に優れるため、該反応性を利用して接着性樹脂層15に密着性を付与することができ、耐電解液性を向上することができる。
(マクロ相分離熱可塑性エラストマー(b))
 マクロ相分離熱可塑性エラストマー(b)は、変性ポリオレフィン樹脂(a)に対し、分散相サイズが200nmを超え、50μm以下の範囲でマクロ相分離構造を形成するものである。
 接着性樹脂組成物が、マクロ相分離熱可塑性エラストマー(b)成分を含有することにより、接着性樹脂層15を構成する主成分となる変性ポリオレフィン樹脂(a)成分等をラミネートする際に発生する残留応力を開放することができ、熱弾性的な接着性を接着性樹脂層15に付与することができる。従って、接着性樹脂層15の密着性がより向上して、耐電解液性により優れた外装材10が得られる。
 マクロ相分離熱可塑性エラストマー(b)は、変性ポリオレフィン樹脂(a)上で海島状に存在するが、分散相サイズが200nm以下であると、粘弾性的な接着性の改善を付与させることが困難になる。一方、分散相サイズが50μmを超えると、変性ポリオレフィン樹脂(a)とマクロ相分離熱可塑性エラストマー(b)とは本質的に非相溶性であるため、ラミネート適正(加工性)が著しく低下すると共に、接着性樹脂層15の物理的強度が低下しやすくなる。以上より、分散相サイズは、500nm~10μmであることが好ましい。
 このようなマクロ相分離熱可塑性エラストマー(b)としては、例えば、エチレンおよび/またはプロピレンに、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテンから選ばれるα-オレフィンを共重合させたポリオレフィン系の熱可塑性エラストマーが挙げられる。
 また、マクロ相分離熱可塑性エラストマー(b)成分としては、市販品を使用することができ、例えば、三井化学社製の「タフマー」、三菱化学社製の「ゼラス」、モンテル社製の「キャタロイ」などが適している。
 接着性樹脂層15において、接着性樹脂組成物中の変性ポリオレフィン樹脂(a)成分に対するマクロ相分離熱可塑性エラストマー(b)成分の含有量は、変性ポリオレフィン樹脂(a)成分100質量部に対して、1~40質量部であることが好ましく、5~30質量部であることがより好ましい。ここで、マクロ相分離熱可塑性エラストマー(b)成分の含有量が1質量部未満であると、接着性樹脂層の密着性の向上が期待できない。一方、マクロ相分離熱可塑性エラストマー(b)成分の含有量が40質量部を越えると、本来、変性ポリオレフィン樹脂(a)成分とマクロ相分離熱可塑性エラストマー(b)成分とは相溶性が低いために加工性が著しく低下しやすくなる。また、マクロ相分離熱可塑性エラストマー(b)成分は接着性を示す樹脂ではないため、シーラント層16や腐食防止処理層14などの他の層に対する接着性樹脂層15の密着性が低下しやすくなる。
(アタクチック構造のポリプロピレン及び/又はアタクチック構造のプロピレン-αオレフィン共重合体(c))
 接着性樹脂層15は、添加剤成分として、アタクチック構造のポリプロピレン及び/又はアタクチック構造のプロピレン-αオレフィン共重合体(以下、単に、「成分(c)」と称する)を含むことが好ましい。ここで、成分(c)は、完全非晶性の樹脂成分である。
 アタクチック構造のポリプロピレン及び/又はアタクチック構造のプロピレン-αオレフィン共重合体とは、プロピレン及びα-オレフィンの少なくとも一方の側鎖の配列がアタクチック構造であることを示す。言い換えると、このような構造としては、次の4つの場合が挙げられる。
(1)ポリプロピレンのプロピレン連鎖の側鎖の配向がアタクチック構造である場合。
(2)プロピレン-αオレフィン共重合体中のプロピレン連鎖の側鎖の配向がアタクチック構造である場合。
(3)プロピレン-αオレフィン共重合体中のα-オレフィンの連鎖の側鎖の配向がアタクチック構造である場合。
(4)プロピレン-αオレフィン共重合体中のプロピレン/α-オレフィン複合連鎖の側鎖の配向がアタクチック構造である場合。
 本実施形態に係るポリプロピレン又はプロピレン-αオレフィン共重合体のアタクチック構造は、例えば、次の方法によって確認することができる。まず、本実施形態に係るポリプロピレン又はプロピレン-αオレフィン共重合体の重合に用いた遷移金属錯体を用いてホモポリプロピレンを重合する。次いで、13C-NMRスペクトルにより、プロピレンメチル炭素のmm、mr、及びrrに帰属される各シグナルの強度をそれぞれ[mm]、[mr]、及び[rr]で表したとき、下記式で定義されるF(1)が得られる。この式で得られるF(1)の値が、40以上60以下である場合、上述の重合によって得られたホモポリプロピレンがアタクチック構造を有すると判定することができる。F(1)の値は、43以上57以下であることが好ましく、45以上55以下であることが更に好ましい。F(1)の値が上記範囲内であると、接着性樹脂層において、冷間成型時などの応力によるクラックの発生がより抑制され、成型後の絶縁性をより向上させることができる。
F(1)=100×[mr]/([mm]+[mr]+[rr])
 以下、接着性樹脂層15において、主成分となる接着性樹脂組成物に添加剤成分(c)を添加する効果について説明する。
 成分(c)は、接着性樹脂層15が溶融状態においては接着性樹脂組成物中の変性ポリオレフィン樹脂(a)成分と相溶であるが、冷却に伴う結晶化の際に結晶外へ排出され、相分離する。これにより、成分(c)は、主成分である接着性樹脂組成物中の変性ポリオレフィン樹脂(a)成分の結晶化度を阻害しない。また、接着性樹脂層15中に成分(c)を添加することで、変性ポリオレフィン樹脂(a)成分の濃度が成分(c)によって希釈されて結晶成長が抑制されるため、ベース樹脂の接着成分(すなわち、変性ポリオレフィン樹脂(a)成分)の結晶サイズ(球晶サイズ)を小さくすることが可能となる。また、結晶外に排出された成分(c)は、変性ポリオレフィン樹脂(a)成分の微小球晶の周辺に、均一に分散する。
 ところで、従来から、外装材を冷間成型する際に「白化現象」が発生することが知られている。ここで、白化現象の機構について、変性ポリオレフィン樹脂(a)にマクロ相分離熱可塑性エラストマー(b)を配合した接着性樹脂層15を例にして、説明する。
(1)熱ラミネート時の熱処理により、接着性樹脂層15中の変性ポリオレフィン樹脂(a)が結晶化する。
(2)変性ポリオレフィン樹脂(a)と、マクロ相分離熱可塑性エラストマー(b)は非相溶性であるため、(1)の結晶化の挙動により、両者の界面で歪が生じる。
(3)成形時に応力が加わることで、両者の界面に亀裂が生じ、ボイド-クレーズが形成される。
(4)ボイド-クレーズにより光が散乱し、光学的な光の乱反射による白化現象が起こる。
 すなわち、白化現象を抑制するためには、「熱ラミネート時の熱量で変性ポリオレフィン樹脂(a)の結晶化が進行しない(すなわち、結晶化しにくくさせる)こと」と、「変性ポリオレフィン樹脂(a)とマクロ相分離熱可塑性エラストマー(b)との密着性を改善すること」が、重要となることが知られている。
 これに対して、接着性樹脂層15の主成分となる接着性樹脂組成物に添加剤成分として成分(c)を添加することにより、変性ポリオレフィン樹脂(a)成分の結晶サイズ(球晶サイズ)を小さくすることができるため、柔軟でかつ粘り強い膜特性を得られる。また、成分(c)が変性ポリオレフィン樹脂(a)の周辺に均一に分散することで、均一に応力緩和が可能となり、ボイド-クレーズの発生が抑制できるため、成形時の応力に伴う外装材10の「白化現象」を緩和することが可能となると考えられる。
 以上のように、接着性樹脂層15の主成分となる接着性樹脂組成物に添加剤成分として成分(c)を添加することにより、接着性樹脂層15の透明性を上げると共に、成形時の応力に伴う白化現象を緩和することができる。これにより、成形白化も改善され、外装材10の屈曲応力に伴う絶縁性(耐屈曲性)の改善が可能となる。また、接着性樹脂層15中の変性ポリオレフィン樹脂成分(a)の結晶化度が保持されつつ、柔軟性を付与できるため、外装材10の電解液膨潤時のラミ強度低下を抑制することが可能となる。
 また、接着性樹脂層15の主成分となる接着性樹脂組成物に添加剤成分として成分(c)を添加することにより、接着性樹脂層15中の変性ポリオレフィン樹脂成分(a)の結晶化度を保持しつつ、柔軟性を付与できるため、外装材10の電解液膨潤時のラミネート強度の低下を抑制することが可能となるとともに、冷間成型時の応力に伴うボイド-クレーズの発生が抑制できるため、成型後の絶縁性をより向上させることができる。
 接着性樹脂層15中の、成分(c)の割合は、下限値が2.5質量%であることが好ましく、5質量%以上であることがより好ましい。一方、上限値は、60質量%であることが好ましい。ここで、接着性樹脂層15中の、成分(c)の割合が2.5質量%未満であると、上述したような成分(c)を添加することによる効果が十分に得られない傾向がある。一方、60質量%を超えると(すなわち、接着性樹脂組成物の割合が40質量%未満であると)、シーラント層16や腐食防止処理層14などの他の層に対する接着性樹脂層15の密着性が低下しやすくなる傾向がある。
(アイソタクチック構造のプロピレン-αオレフィン共重合体(d))
 接着性樹脂層15は、添加剤成分として、上述した成分(c)に加えて、アイソタクチック構造のプロピレン-αオレフィン共重合体(以下、単に「成分(d)」と称する)をさらに含むことが好ましい。
 ここで、成分(d)は、接着性樹脂層15の主成分である接着性樹脂成分において、変性ポリオレフィン樹脂(a)が特にポリプロピレン系の接着性樹脂の場合に相溶ゴム成分として作用し、当該変性ポリオレフィン樹脂(a)の結晶化を抑制する。
 すなわち、接着性樹脂層15の主成分である接着性樹脂成分に、添加剤成分としてさらに成分(d)を添加することにより、応力を緩和するための柔軟性が付与できるため、電解液ラミネート強度の低下を抑制しつつ、ヒートシール強度(特に耐電解液)の改善、デガッシングシール強度の改善が可能となる。また、添加剤成分として、成分(c)と成分(d)とを組み合わせることで、白化現象や耐屈曲絶縁性をより改善することができる。
 また、接着性樹脂層15の主成分である接着性樹脂成分に、添加剤成分としてさらに成分(d)を添加することにより、応力を緩和するための柔軟性が付与でき、冷間成型時の応力に伴うボイド-クレーズの発生が抑制できるため、成型後の絶縁性をより向上させることができる。
 接着性樹脂層15中の、添加剤成分(すなわち、成分(c)と成分(d)との総量)の割合は、5~60質量%であることが好ましい。ここで、接着性樹脂層15中の、添加剤成分の割合が5質量%未満であると(すなわち、接着性樹脂組成物の割合が95質量%を超えると)、上述したような添加剤を添加することによる効果が十分に得られない傾向がある。一方、60質量%を超えると(すなわち、接着性樹脂組成物の割合が40質量%未満であると)、シーラント層16や腐食防止処理層14などの他の層に対する接着性樹脂層15の密着性が低下しやすくなる傾向がある。
 なお、接着性樹脂層15中の、添加剤成分である成分(c)の分析方法としては、例えば、核磁気共鳴分光法(NMR)による立体規則性評価によって定量することが可能である。
 一方、成分(d)の分析としては、フーリエ変換型赤外分光法(FT-IR)を用いて、α-オレフィンの分岐に帰属される吸収体と、変性ポリオレフィン樹脂(a)の特性吸収体に帰属される吸収体とで検量線を作成することで、配合比を確認することができる。
 接着性樹脂層15は、接着性樹脂組成物(すなわち、変性ポリオレフィン樹脂(a)成分ならびにマクロ相分離熱可塑性エラストマー(b)成分)および添加剤成分(すなわち、成分(c)ならびに成分(d))の他に、必要に応じて各種添加剤、例えば難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤などを含有してもよい。
 接着性樹脂層15の厚さは、特に限定されるものではないが、応力緩和や水分・電解液透過の観点から、シーラント層16の厚さと同じもしくはそれ以下であることが好ましい。すなわち、接着性樹脂層15の厚さは、上記観点から、例えば、5~100μmの範囲であることが好ましく、10~60μmの範囲であることがより好ましく、それらの範囲内でシーラント層16の厚さ以下であることが好ましい。
<シーラント層16>
 シーラント層16は、外装材10にヒートシールによる封止性を付与する層である。シーラント層16は、単層であっても多層であってもよい。
(第一の発明におけるシーラント層)
 第一の発明におけるシーラント層16は、(A)プロピレン-エチレンランダム共重合体を60~95質量%と、(B)1-ブテンをコモノマーとする融点150℃以下のポリオレフィン系エラストマーを5~40質量%と、を含有する樹脂組成物により形成された層を含む。シーラント層16は、(A)プロピレン-エチレンランダム共重合体を60~95質量%と、(B)1-ブテンをコモノマーとする融点150℃以下のポリオレフィン系エラストマーを5~40質量%と、を含有する樹脂組成物により形成された層であってもよい。以下、各成分について説明する。
((A)プロピレン-エチレンランダム共重合体)
 (A)プロピレン-エチレンランダム共重合体は、プロピレン-エチレンブロック共重合体及びプロピレン単独重合体と比較して低温でのヒートシール性に優れており、電解液が関与するシール特性を向上させることができるとともに、(B)ポリオレフィン系エラストマーの影響により過剰シール部分が発生することを抑制することができる。
 (A)プロピレン-エチレンランダム共重合体において、エチレン含有量は0.1~10質量%であることが好ましく、1~7質量%であることがより好ましく、2~5質量%であることが更に好ましい。エチレン含有量が0.1質量%以上であると、エチレンを共重合させることによる融点低下効果が十分に得られ、電解液が関与するシール特性をより一層向上できる傾向がある。エチレン含有量が10質量%以下であると、融点が下がりすぎることを抑制でき、過剰シール部分の発生をより十分に抑制できる傾向がある。なお、エチレン含有量は、重合時のモノマーの混合比率から算出することができる。また、エチレン含有量は、赤外線吸収スペクトル法(IR法)、核磁気共鳴吸収法(13C-NMR法、1H-NMR法)などで測定することができる。
 (A)プロピレン-エチレンランダム共重合体の融点は、120~145℃であることが好ましく、125~140℃であることがより好ましい。融点が120℃以上であると、過剰シール部分の発生をより十分に抑制できる傾向がある。融点が145℃以下であると、電解液が関与するシール特性をより一層向上できる傾向がある。
 (A)プロピレン-エチレンランダム共重合体の重量平均分子量は、融点が上記範囲内となるように適宜調整することが好ましいが、好ましくは10,000~10,000,000であり、より好ましくは100,000~1,000,000である。
 (A)プロピレン-エチレンランダム共重合体は、酸変性されたものであってもよく、例えば、無水マレイン酸をグラフト変性させた酸変性プロピレン-エチレンランダム共重合体であってもよい。酸変性プロピレン-エチレンランダム共重合体を用いることにより、タブシーラントがなくてもタブリードとの密着性を保つことができる。
 (A)プロピレン-エチレンランダム共重合体は、1種を単独で又は2種以上を組み合わせて用いることができる。
 シーラント層形成用の樹脂組成物において、(A)成分の含有量は、樹脂組成物の固形分全量を基準として60~95質量%であり、60~90質量%であることが好ましく、60~85質量%であることがより好ましい。(A)成分の含有量が60質量%以上であることにより、(A)成分を用いること自体の効果により、電解液が関与するシール特性を向上させることができる。また、(A)成分の含有量を60質量%以上とすることにより、(B)成分が過剰に存在することを防げるため、シーラント層16の耐熱性の低下を抑制でき、且つ、過剰シール部分の発生を抑制することができる。一方、(A)成分の含有量を95質量%以下とすることにより、(B)成分を5質量%以上含有させることができるため、(B)成分によるデガッシングヒートシール強度の改善効果を十分に得ることができる。
((B)1-ブテンをコモノマーとする融点150℃以下のポリオレフィン系エラストマー)
 (B)1-ブテンをコモノマーとする融点150℃以下のポリオレフィン系エラストマーは、デガッシングヒートシール強度を含む電解液が関与するシール特性の向上に寄与するとともに、成型白化の発生の抑制に寄与する。
 (B)ポリオレフィン系エラストマーは、(A)成分に対して相溶性を有するものであっても、相溶性を有さないものであってもよいが、相溶性を有する(B-1)相溶系ポリオレフィン系エラストマーと、相溶性を有さない(B-2)非相溶系ポリオレフィン系エラストマーの両方を含むことが好ましい。ここで、(A)成分に対して相溶性を有する(相溶系)とは、(A)成分を構成するプロピレン-エチレンランダム共重合体樹脂中に分散相サイズ1nm以上500nm未満で分散することを意味する。相溶性を有さない(非相溶系)とは、(A)成分を構成するプロピレン-エチレンランダム共重合体樹脂中に分散相サイズ500nm以上20μm未満で分散することを意味する。
 (B-1)相溶系ポリオレフィン系エラストマーとしては、例えば、プロピレン-1-ブテンランダム共重合体が挙げられる。
 (B-2)非相溶系ポリオレフィン系エラストマーとしては、例えば、エチレン-1-ブテンランダム共重合体が挙げられる。
 (B)ポリオレフィン系エラストマーの融点は、150℃以下であることが必要であるが、過剰シール部分の抑制、成型白化の抑制及び電解液が関与するシール特性の向上の観点から、60~120℃であることが好ましく、65~90℃であることがより好ましい。融点が150℃以下であることにより、電解液が関与するシール特性、特にデガッシングヒートシール強度を改善することができる。また、融点が60℃以上であると、過剰シール部分の発生を抑制する観点で有利である。
 (B)ポリオレフィン系エラストマーは、1種を単独で又は2種以上を組み合わせて用いることができる。
 シーラント層形成用の樹脂組成物において、(B)成分の含有量は、樹脂組成物の固形分全量を基準として5~40質量%であり、10~40質量%であることが好ましく、15~40質量%であることがより好ましい。(B)成分の含有量が5質量%以上であることにより、電解液が関与するシール特性、特にデガッシングヒートシール強度の改善効果を十分に得ることができる。一方、(B)成分の含有量を40質量%以下とすることにより、シーラント層16の耐熱性の低下を抑制でき、且つ、過剰シール部分の発生を抑制することができる。
 (B)成分が(B-1)相溶系ポリオレフィン系エラストマーと(B-2)非相溶系ポリオレフィン系エラストマーとを含む場合、両者の含有量比((B-1)相溶系ポリオレフィン系エラストマー/(B-2)非相溶系ポリオレフィン系エラストマー)は、質量比で0.5~3であることが好ましく、1~2であることがより好ましい。含有量比を上記範囲とすることにより、耐成型白化性及び電解液が関与するシール特性をバランスよく向上させることができる。
(添加成分)
 シーラント層形成用の樹脂組成物は、上述した(A)成分及び(B)成分以外の他の成分を更に含んでいてもよい。(A)成分及び(B)成分以外の他の成分としては、例えば引取性、加工性を向上させるためにLDPE(低密度ポリエチレン)などの他の樹脂を添加してもよい。添加する他の樹脂成分の含有量は、樹脂組成物の固形分全量を基準として10質量%以下であることが好ましい。また、樹脂以外の成分として、例えば、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、難燃剤等が挙げられる。これら樹脂以外の他の成分の含有量は、樹脂組成物の固形分全量を基準として5質量%以下であることが好ましい。
 シーラント層16の厚さは、特に限定されるものではないが、具体的には、例えば、5~100μmの範囲であることが好ましく、10~60μmの範囲であることがより好ましい。
 シーラント層16において、1-ブテンの存在は、FT-IR(フーリエ変換赤外分光光度計)により帰属することで確認可能である。また、1-ブテンの含有量は、既知量の1-ブテンを含むエラストマーを既知量配合した樹脂組成物を用いて、(A)成分と(B)成分の特性吸収帯の透過度あるいは吸光度にて検量線を作成することで確認することが可能である。更に、(B-1)相溶系ポリオレフィン系エラストマー、及び、(B-2)非相溶系ポリオレフィン系エラストマーのそれぞれの1-ブテン含有量についても、同様にFT-IRの特性吸収帯にてイメージングを行い、顕微FT-IR(透過法)で1-ブテン起因の吸収帯でマッピングすることにより確認可能である。なお、FT-IR以外にも、シーラント層16を溶媒で溶解させてNMRで測定することで1-ブテンの存在及び含有量を確認することも可能である。
(第二の発明におけるシーラント層)
 第二の発明におけるシーラント層16は、(A)プロピレン-エチレンランダム共重合体を60~95質量%と、(A)プロピレン-エチレンランダム共重合体に対して相溶性を有する(B’)相溶系エラストマー及び/又は(A)プロピレン-エチレンランダム共重合体に対して相溶性を有さない(C)非相溶系エラストマーを合計で5~40質量%と、を含有する樹脂組成物により形成された層を含む。上記樹脂組成物において、(B’)相溶系エラストマーの含有量に対する(C)非相溶系エラストマーの含有量の質量比は0~1である。また、(B’)相溶系エラストマーと(C)非相溶系エラストマーとは共通のコモノマー成分を有する。以下、各成分について説明する。
((A)プロピレン-エチレンランダム共重合体)
 (A)プロピレン-エチレンランダム共重合体は、プロピレン-エチレンブロック共重合体及びプロピレン単独重合体と比較して低温でのヒートシール性に優れており、電解液が関与するシール特性を向上することができる。また、(A)プロピレン-エチレンランダム共重合体は、結晶性が低いため、熱収縮による体積変化を抑制して、クラックの発生を抑制し、成型後の絶縁性を向上することができる。
 (A)プロピレン-エチレンランダム共重合体において、エチレン含有量は0.1~10質量%であることが好ましく、1~7質量%であることがより好ましく、2~5質量%であることが更に好ましい。エチレン含有量が0.1質量%以上であると、エチレンを共重合させることによる融点低下効果が十分に得られ、電解液が関与するシール特性をより一層向上できる傾向がある。エチレン含有量が10質量%以下であると、融点が下がりすぎることを抑制でき、シール部以外での熱融着(過剰シール部分)の発生をより十分に抑制できる傾向がある。なお、エチレン含有量は、赤外線吸収スペクトル法(IR法)、核磁気共鳴吸収法(13C-NMR法、H-NMR法)などで測定することができる。
 (A)プロピレン-エチレンランダム共重合体の融点は、120~145℃であることが好ましく、125~140℃であることがより好ましい。融点が120℃以上であると、過剰シール部分の発生をより十分に抑制できる傾向がある。融点が145℃以下であると、電解液が関与するシール特性をより一層向上できる傾向がある。
 (A)プロピレン-エチレンランダム共重合体の重量平均分子量は、融点が上記範囲内となるように適宜調整することが好ましいが、好ましくは10,000~10,000,000であり、より好ましくは100,000~1,000,000である。
 (A)プロピレン-エチレンランダム共重合体は、酸変性されたものであってもよく、例えば、無水マレイン酸をグラフト変性させた酸変性プロピレン-エチレンランダム共重合体であってもよい。酸変性プロピレン-エチレンランダム共重合体を用いることにより、タブシーラントがなくてもタブリードとの密着性を保つことができる。
 (A)プロピレン-エチレンランダム共重合体は、1種を単独で又は2種以上を組み合わせて用いることができる。
 シーラント層形成用の樹脂組成物において、(A)成分の含有量は、樹脂組成物の固形分全量を基準として60~95質量%であり、70~90質量%であることが好ましく、70~85質量%であることがより好ましい。(A)成分の含有量が60質量%以上であることにより、(A)成分を用いること自体の効果(融点、結晶化度)により、電解液が関与するシール特性を向上することができる。また、(A)成分の含有量を60質量%以上とすることにより、(B’)成分及び/又は(C)成分が過剰に存在することを防げるため、シーラント層の耐熱性の低下を抑制でき、且つ、電解液膨潤を抑制できる。一方、(A)成分の含有量を95質量%以下とすることにより、(B’)成分及び/又は(C)成分を合計で5質量%以上含有させることができるため、(B’)成分及び/又は(C)成分によるデガッシングヒートシール強度の改善効果を得ることができる。
((B’)相溶系エラストマー)
 (B’)相溶系エラストマーは、クラックの発生を抑制して成型後の絶縁性の向上に寄与する。
 (B’)相溶系エラストマーは、(A)成分に対して相溶性を有するエラストマーである。ここで、(A)成分に対して相溶性を有する(相溶系)とは、(A)成分を構成するプロピレン-エチレンランダム共重合体樹脂中に分散相サイズ1nm以上500nm未満で分散することを意味する。相溶性を有さない(非相溶系)とは、(A)成分を構成するプロピレン-エチレンランダム共重合体樹脂中に分散相サイズ500nm以上20μm未満で分散することを意味する。
 (B’)相溶系エラストマーとしては、例えば、プロピレン系エラストマー、水添スチレン系エラストマー、エチレン-αオレフィン系(α-オレフィンの炭素数が多く、α-オレフィンの含有率が高いもの)エラストマー等が挙げられる。エチレン-αオレフィン系エラストマーにおいて、α-オレフィンの炭素数は、例えば、4以上であり、α-オレフィンの含有率は、例えば、35mol%以上である。中でも、(A)成分との親和性に優れる観点から、プロピレン系エラストマー及び水添スチレン系エラストマーが好ましい。プロピレン系エラストマーとしては、例えばプロピレン-1-ブテンランダム共重合体のタフマー(三井化学社製)、ナノ結晶構造制御型エラストマーのノティオ(三井化学社製)等が挙げられる。また、水添スチレン系エラストマーとしては、例えば、タフテック(旭化成社製)等が挙げられる。(B’)相溶系エラストマーは、1種を単独で又は2種以上を組み合わせて用いることができる。
 (B’)相溶系エラストマーの融点は、成型後の絶縁性の向上の観点から、130℃以下であることが好ましく、60~120℃であることがより好ましく、65~90℃であることがさらに好ましい。融点が130℃以下であることにより、電解液が関与するシール特性、特にデガッシングヒートシール特性をより向上することができる。また、融点が60℃以上であると、クラックの発生を抑制し、成型後の絶縁性をより向上する観点で有利である。
((C)非相溶系エラストマー)
 (C)非相溶系エラストマーは、デガッシングヒートシール強度を含む電解液が関与するシール特性の向上に寄与する。
 (C)非相溶系エラストマーは、(A)成分に対して相溶性を有さないエラストマーである。ここで、(A)成分に対して相溶性を有さない(非相溶系)とは、(A)成分を構成するプロピレン-エチレンランダム共重合体樹脂中に分散相サイズ500nm以上20μm未満で分散することを意味する。
 (C)非相溶系エラストマーとしては、例えば、スチレン系エラストマー、エチレン系エラストマー、塩化ビニル系エラストマー、ウレタン系エラストマー、アミド系エストマー等が挙げられる。中でも、(B’)成分との親和性に優れる観点から、エチレン-1-ブテンランダム共重合体及びスチレン系エラストマーが好ましい。また、電解液による膨潤が少ないことから、エチレン-1-ブテンランダム共重合体(例えば、エクセレン(住友化学社製))が好ましい。(C)非相溶系エラストマーは、1種を単独で又は2種以上を組み合わせて用いることができる。
 (C)非相溶系エラストマーの融点は、成型後の絶縁性及び電解液が関与するシール特性の向上の観点から、130℃以下であることが好ましく、60~120℃であることがより好ましく、65~90℃であることがさらに好ましい。融点が130℃以下であることにより、電解液が関与するシール特性、特にデガッシングヒートシール強度をより向上することができる。また、融点が60℃以上であると、クラックの発生を抑制し、成型後の絶縁性をより向上する観点で有利である。
 シーラント層形成用の樹脂組成物において、(B’)相溶系エラストマー及び/又は(C)非相溶系エラストマーの含有量の合計は、樹脂組成物の固形分全量を基準として5~40質量%であり、10~40質量%であることが好ましく、15~40質量%であることがより好ましい。(B’)成分及び/又は(C)成分の含有量の合計が5質量%以上であることにより、クラックの発生を抑制して成型後の絶縁性を向上することができる。一方、(B’)成分及び/又は(C)成分の含有量の合計を40質量%以下とすることにより、シーラント層16の耐熱性の低下を抑制でき、且つ、電解液膨潤によるシール強度や、デガッシングヒートシール強度の低下を抑制することができる。
 (B’)相溶系エラストマーに対する(C)非相溶系エラストマーの含有量の質量比((C)非相溶系エラストマー/(B’)相溶系エラストマー)は、0~1であり、0.3~1であることが好ましく、0.5~1であることがより好ましい。含有量の質量比を上記範囲とすることにより、クラックの発生を抑制することができ、成型後の絶縁性を向上し、且つ、デガッシングヒートシール強度をより向上することができる。
 シーラント層形成用の樹脂組成物において、(B’)相溶系エラストマー及び(C)非相溶系エラストマーは、共通のコモノマー成分を有する。(B’)成分及び(C)成分の組合せとしては、(A)成分との親和性に優れ、海島構造の界面における親和性をより向上する観点から、(B’)相溶系エラストマーが、プロピレン-1-ブテンランダム共重合体であり、(C)非相溶系エラストマーが、エチレン-1-ブテンランダム共重合体であることが好ましい。この場合、共通のコモノマー成分は、1-ブテンである。また、同様の観点、及び、成型などの応力を緩和する観点からは、(B’)相溶系エラストマーが、水添スチレン系エラストマーであり、(C)非相溶系エラストマーが、スチレン系エラストマーであることが好ましい。この場合、共通のコモノマー成分は、スチレンである。
 シーラント層16において、1-ブテン、スチレン等のコモノマー成分の存在は、FT-IR(フーリエ変換赤外分光光度計)により帰属することで確認可能である。また、コモノマー成分の含有量は、既知量のコモノマー成分を含むエラストマーを既知量配合した樹脂組成物を用いて、(A)成分と(B’)成分の特性吸収帯の透過度あるいは吸光度にて検量線を作成することで確認することが可能である。更に、(B’)相溶系エラストマー、及び、(C)非相溶系エラストマーのそれぞれのコモノマー成分の含有量についても、同様にFT-IRの特性吸収帯にてイメージングを行い、顕微FT-IR(透過法)でコモノマー成分起因の吸収帯でマッピングすることにより確認可能である。なお、FT-IR以外にも、シーラント層16を溶媒で溶解させてNMRで測定することでコモノマー成分の存在及び含有量を確認することも可能である。
(添加成分)
 シーラント層形成用の樹脂組成物は、上述した(A)成分、(B’)成分及び(C)成分以外の他の成分を更に含んでいてもよい。(A)成分、(B’)成分及び(C)成分以外の他の成分としては、例えば引取性、加工性を向上させるためにLDPE(低密度ポリエチレン)などの他の樹脂を添加してもよい。添加する他の樹脂成分の含有量は、樹脂組成物の固形分全量を基準として10質量%以下であることが好ましい。また、樹脂以外の成分として、例えば、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、難燃剤等が挙げられる。これら樹脂以外の他の成分の含有量は、樹脂組成物の固形分全量を基準として5質量%以下であることが好ましい。
 シーラント層16の厚さは、特に限定されるものではないが、具体的には、例えば、5~100μmの範囲であることが好ましく、10~60μmの範囲であることがより好ましい。
 以上、本発明の蓄電装置用外装材の好ましい実施の形態について詳述したが、本発明はかかる特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 例えば、図1では、腐食防止処理層14が金属箔層13の接着性樹脂層15側の面に形成されている場合を示したが、腐食防止処理層14は金属箔層13の第一の接着剤層12側の面に形成されていてもよく、金属箔層13の両面に形成されていてもよい。金属箔層13の両面に腐食防止処理層14が形成されている場合、金属箔層13の第一の接着剤層12側に形成される腐食防止処理層14の構成と、金属箔層13の接着性樹脂層15側に形成される腐食防止処理層14の構成とは、同一であっても異なっていてもよい。
 また、図1では、接着性樹脂層15を用いて金属箔層13とシーラント層16とが積層されている場合を示したが、図2に示す蓄電装置用外装材20のように、第二の接着剤層17を用いて金属箔層13とシーラント層16とが積層されていてもよい。以下、第二の接着剤層17について説明する。
<第二の接着剤層17>
 第二の接着剤層17は、腐食防止処理層14が形成された金属箔層13とシーラント層16とを接着する層である。第二の接着剤層17には、金属箔層とシーラント層とを接着するための一般的な接着剤を用いることができる。
 腐食防止処理層14が上述したカチオン性ポリマー及びアニオン性ポリマーからなる群より選択される少なくとも1種のポリマーを含む層を有する場合、第二の接着剤層17は、腐食防止処理層14に含まれる上記ポリマーと反応性を有する化合物(以下、「反応性化合物」とも言う)を含む層であることが好ましい。
 例えば、腐食防止処理層14がカチオン性ポリマーを含む場合、第二の接着剤層17はカチオン性ポリマーと反応性を有する化合物を含む。腐食防止処理層14がアニオン性ポリマーを含む場合、第二の接着剤層17はアニオン性ポリマーと反応性を有する化合物を含む。また、腐食防止処理層14がカチオン性ポリマーおよびアニオン性ポリマーを含む場合、第二の接着剤層17はカチオン性ポリマーと反応性を有する化合物と、アニオン性ポリマーと反応性を有する化合物とを含む。ただし、第二の接着剤層17は必ずしも上記2種類の化合物を含む必要はなく、カチオン性ポリマーおよびアニオン性ポリマーの両方と反応性を有する化合物を含んでいてもよい。ここで、「反応性を有する」とは、カチオン性ポリマーまたはアニオン性ポリマーと共有結合を形成することを意味する。また、第二の接着剤層17は、酸変性ポリオレフィン樹脂をさらに含んでいてもよい。
 カチオン性ポリマーと反応性を有する化合物としては、多官能イソシアネート化合物、グリシジル化合物、カルボキシ基を有する化合物、オキサゾリン基を有する化合物からなる群より選択される少なくとも1種の化合物が挙げられる。
 これら多官能イソシアネート化合物、グリシジル化合物、カルボキシ基を有する化合物、オキサゾリン基を有する化合物としては、カチオン性ポリマーを架橋構造にするための架橋剤として先に例示した多官能イソシアネート化合物、グリシジル化合物、カルボキシ基を有する化合物、オキサゾリン基を有する化合物などが挙げられる。これらの中でも、カチオン性ポリマーとの反応性が高く、架橋構造を形成しやすい点で、多官能イソシアネート化合物が好ましい。
 アニオン性ポリマーと反応性を有する化合物としては、グリシジル化合物、オキサゾリン基を有する化合物からなる群より選択される少なくとも1種の化合物が挙げられる。これらグリシジル化合物、オキサゾリン基を有する化合物としては、カチオン性ポリマーを架橋構造にするための架橋剤として先に例示したグリシジル化合物、オキサゾリン基を有する化合物などが挙げられる。これらの中でも、アニオン性ポリマーとの反応性が高い点で、グリシジル化合物が好ましい。
 第二の接着剤層17が酸変性ポリオレフィン樹脂を含む場合、反応性化合物は、酸変性ポリオレフィン樹脂中の酸性基とも反応性を有する(すなわち、酸性基と共有結合を形成する)ことが好ましい。これにより、腐食防止処理層14との接着性がより高まる。加えて、酸変性ポリオレフィン樹脂が架橋構造となり、外装材20の耐溶剤性がより向上する。
 反応性化合物の含有量は、酸変性ポリオレフィン樹脂中の酸性基に対し、等量から10倍等量であることが好ましい。等量以上であれば、反応性化合物が酸変性ポリオレフィン樹脂中の酸性基と十分に反応する。一方、10倍等量を超えると、酸変性ポリオレフィン樹脂との架橋反応としては十分飽和に達しているため、未反応物が存在し、各種性能の低下が懸念される。
 酸変性ポリオレフィン樹脂は、酸性基をポリオレフィン樹脂に導入したものである。酸性基としては、カルボキシ基、スルホン酸基などが挙げられ、カルボキシ基が特に好ましい。酸変性ポリオレフィン樹脂としては、接着性樹脂層15に用いる変性ポリオレフィン樹脂(a)として例示したものと同様のものを用いることができる。
 第二の接着剤層17には、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤等の各種添加剤を配合してもよい。
 なお、金属箔層とシーラント層とを接着させるために用いる一般的な接着剤には、シランカップリング剤が含まれている場合がある。これは、シランカップリング剤を配合することで接着を促進し、接着強度を高めるためである。しかし、シランカップリング剤を配合する接着剤を用いると、シランカップリング剤に含まれる官能基の種類によっては、接着剤層に含まれるシランカップリング剤以外の成分とシランカップリング剤とが副反応を起こし、本来の目的の架橋反応に弊害が生じるおそれがある。そのため、金属箔層とシーラント層とを接着させるために用いる接着剤には、シランカップリング剤が含まれていないことが好ましい。
 第二の接着剤層17が上述した反応性化合物を含むことにより、腐食防止処理層14中のポリマーと共有結合を形成し、腐食防止処理層14と第二の接着剤層17との接着強度が向上する。よって、第二の接着剤層17には接着を促進する目的でシランカップリング剤を配合する必要がなく、第二の接着剤層17はシランカップリング剤を含まないことが好ましい。
 また、第二の接着剤層17の厚さは、特に限定されるものではないが、所望の接着強度、及び加工性等を得る観点から、1~10μmが好ましく、3~7μmがより好ましい。
 第二の接着剤層17以外の蓄電装置用外装材20の構成は、蓄電装置用外装材10と同様である。なお、蓄電装置用外装材20におけるシーラント層16の厚さは、第二の接着剤層17の厚さに応じて調整する。蓄電装置用外装材20におけるシーラント層16の厚さは、特に限定されるものではないが、例えば、5~100μmの範囲であることが好ましく、10~80μmの範囲であることがより好ましく、20~80μmの範囲であることが更に好ましい。
 また、図1及び図2では、シーラント層16が単層から形成されている場合を示したが、シーラント層16は2層以上の多層から形成されていてもよい。シーラント層16を形成する多層のそれぞれの層の構成は、同一であっても異なっていてもよい。
 第二の発明においてシーラント層が多層から形成されている場合、シーラント層を形成する多層のうち、シーラント層の第二の接着剤層又は接着性樹脂層とは反対側の面を主面として有する層(シーラント層の最内層)、換言すると、シーラント層を形成する多層のうち、第二の接着剤層又は接着性樹脂層から最も離れた場所に配置される層が、(A)プロピレン-エチレンランダム共重合体を含有し、且つ、(B’)相溶系エラストマー及び(C)非相溶系エラストマーを含有しない樹脂組成物、又は、(A)プロピレン-エチレンランダム共重合体及び(B’)相溶系エラストマーを含有し、且つ、(C)非相溶系エラストマーを含有しない樹脂組成物により形成された層であることが好ましい。この場合、シーラント層の最内層において、冷間成型時のクラックの発生がより抑制されることにより、電解液の金属箔層側への浸透がより抑制され、成型後の絶縁性をより向上することができる。多層構造のシーラント層の最内層に用いる樹脂組成物において、(A)プロピレン-エチレンランダム共重合体、(B’)相溶系エラストマー及び(C)非相溶系エラストマーとしては、上述したものと同一のものを用いることができる。
 シーラント層16が2層から形成される場合、図3に示す蓄電装置用外装材30のように、シーラント層16は、金属箔層13側の第一のシーラント層16a、及び、シーラント層16の最内層である第二のシーラント層16bを含む。
 第二の発明に係る蓄電装置用外装材30において、成型後の絶縁性及びデガッシングヒートシール強度を含む電解液が関与するヒートシール特性をより向上する観点から、第一のシーラント層16aが、(A)プロピレン-エチレンランダム共重合体を60~95質量%と、(B’)相溶系エラストマー及び/又は(C)非相溶系エラストマーを合計で5~40質量%と、を含有する樹脂組成物により形成された層であり、該樹脂組成物において、(B’)相溶系エラストマーの含有量に対する(C)非相溶系エラストマーの含有量の質量比が0~1であり、(B’)相溶系エラストマーと(C)非相溶系エラストマーとが共通のコモノマー成分を有することが好ましい。この場合、電解液が関与するヒートシール特性をより向上する観点から、第一のシーラント層16aに用いる樹脂組成物において、(B’)相溶系エラストマーの含有量に対する(C)非相溶系エラストマーの含有量の質量比は、0.3~1であることがより好ましく、0.5~1であることが更に好ましい。
 また、第一の発明に係る蓄電装置用外装材30においては、過剰シール部分の発生及び成型白化の発生を抑制しつつ、デガッシングヒートシール強度を含む電解液が関与するシール特性をより向上させる観点から、第一のシーラント層16aが、(A)プロピレン-エチレンランダム共重合体を60~95質量%と、(B)1-ブテンをコモノマーとする融点150℃以下のポリオレフィン系エラストマーを5~40質量%と、を含有する樹脂組成物により形成された層であることが好ましい。
 第一のシーラント層16a及び第二のシーラント層16b以外の蓄電装置用外装材30の構成は、蓄電装置用外装材10と同様である。蓄電装置用外装材30における第一のシーラント層16a及び第二のシーラント層16bの厚さは、特に限定されないが、絶縁性向上の観点から、第二のシーラント層16bの厚さは、第一のシーラント層16aの厚さ以上であることが好ましい。
 また、図1、図2及び図3では、第一の接着剤層12を介して基材層11と金属箔層13とが接着されている場合を示したが、第一の接着剤層12を介さずに、コーティング法により金属箔層13上に基材層11が直接形成されていてもよい。本明細書中、このようにコーティング法により金属箔層13上に直接形成された基材層を被覆層と言う。なお、金属箔層13の被覆層側の面には、腐食防止処理層14が形成されていてもよい。以下、被覆層について説明する。
<被覆層>
 被覆層は、蓄電装置を製造する際のシール工程における耐熱性を付与し、加工や流通の際に起こり得るピンホールの発生を抑制する役割を果たす。
 被覆層は樹脂で形成され、金属箔層13の一方の面に、接着剤等を介さずに直接形成されている。このような被覆層の形成は、被覆層となる樹脂材料を金属箔層13上に塗布または塗工することにより形成することができる。
 被覆層を形成する樹脂材料としては、ポリエステル、フッ素系樹脂、アクリル系樹脂などを用いることができ、中でもウレタンアクリレートが好ましい。これは、ウレタンアクリレートからなる塗膜が好適な延展性を有するからである。これらの樹脂材料を含む塗工液として、2液硬化型の塗工液が用いられてもよい。
 被覆層の厚さは、3μm~30μmが好ましく、5μm~20μmがより好ましい。被覆層は、金属箔層13上に直接形成されるため、被覆層の厚さを20μm以下とすることで、従来の外装材よりも薄い構成とすることも容易である。
[外装材の製造方法]
 次に、図1に示す外装材10の製造方法の一例について説明する。なお、外装材10の製造方法は以下の方法に限定されない。
 本実施形態の外装材10の製造方法は、金属箔層13に腐食防止処理層14を積層する工程と、基材層11と金属箔層13とを貼り合わせる工程と、接着性樹脂層15およびシーラント層16をさらに積層して積層体を作製する工程と、必要に応じて、得られた積層体を熱処理する工程とを含んで概略構成されている。
(金属箔層13への腐食防止処理層14の積層工程)
 本工程は、金属箔層13に対して、腐食防止処理層14を形成する工程である。その方法としては、上述したように、金属箔層13に脱脂処理、熱水変成処理、陽極酸化処理、化成処理を施したり、腐食防止性能を有するコーティング剤を塗工したりする方法などが挙げられる。
 また、腐食防止処理層14が多層の場合は、例えば、下層側(金属箔層13側)の腐食防止処理層を構成する塗工液(コーティング剤)を金属箔層13に塗工し、焼き付けて第一層を形成した後、上層側の腐食防止処理層を構成する塗工液(コーティング剤)を第一層に塗工し、焼き付けて第二層を形成すればよい。また、第二層は、後述する接着性樹脂層15およびシーラント層16の積層工程において形成することもできる。
 脱脂処理についてはスプレー法または浸漬法にて、熱水変成処理や陽極酸化処理については浸漬法にて、化成処理については化成処理のタイプに応じ、浸漬法、スプレー法、コート法などを適宜選択して行えばよい。
 腐食防止性能を有するコーティング剤のコート法については、グラビアコート、リバースコート、ロールコート、バーコートなど各種方法を用いることが可能である。
 上述したように、各種処理は金属箔の両面または片面のどちらでも構わないが、片面処理の場合、その処理面は接着性樹脂層15が積層する側に施すことが好ましい。なお、要求に応じて、基材層11の表面にも上記処理を施してもよい。
 また、第一層及び第二層を形成するためのコーティング剤の塗布量はいずれも、0.005~0.200g/mが好ましく、0.010~0.100g/mがより好ましい。
 また、乾燥キュアが必要な場合は、用いる腐食防止処理層14の乾燥条件に応じて、母材温度として60~300℃の範囲で行うことができる。
(基材層11と金属箔層13との貼り合わせ工程)
 本工程は、腐食防止処理層14を設けた金属箔層13と、基材層11とを、第一の接着剤層12を介して貼り合わせる工程である。貼り合わせの方法としては、ドライラミネーション、ノンソルベントラミネーション、ウエットラミネーションなどの手法を用い、上述した第一の接着剤層12を構成する材料にて両者を貼り合わせる。第一の接着剤層12は、ドライ塗布量として1~10g/mの範囲、より好ましくは3~7g/mの範囲で設ける。
(接着性樹脂層15およびシーラント層16の積層工程)
 本工程は、先の工程により形成された腐食防止処理層14上に、接着性樹脂層15およびシーラント層16を形成する工程である。その方法としては、押出ラミネート機を用いて接着性樹脂層15をシーラント層16と共にサンドラミネーションする方法が挙げられる。さらには、接着性樹脂層15とシーラント層16とを押出すタンデムラミネート法、共押出法でも積層可能である。
 本工程により、図1に示すような、基材層11/第一の接着剤層12/金属箔層13/腐食防止処理層14/接着性樹脂層15/シーラント層16の順で各層が積層された積層体が得られる。
 なお、接着性樹脂層15は、上述した材料配合組成になるように、ドライブレンドした材料を直接、押出ラミネート機により積層させてもよいし、あるいは事前に単軸押出機、二軸押出機、ブラベンダーミキサーなどの溶融混練装置を用いてメルトブレンドを施した後の造粒した接着性樹脂層15を押出ラミネート機を用いて積層させてもよい。
 また、多層の腐食防止処理層14を形成する場合、押出ラミネート機にアンカーコート層を塗工することが可能なユニットを備えていれば、該ユニットにて腐食防止処理層14の第二層を塗工してもよい。
(熱処理工程)
 本工程は、積層体を熱処理する工程である。熱処理工程では、積層体を熱処理することで、金属箔層13/腐食防止処理層14/接着性樹脂層15/シーラント層16間での密着性を向上させ、より優れた耐電解液性や耐フッ酸性を付与することができ、また、接着性樹脂層15及びシーラント層16の結晶化を制御し、成型後の絶縁性を向上する効果も得られる。従って本工程では、上述した各層間での密着性を向上させるとともに、接着性樹脂層15及びシーラント層16の結晶化に適した熱処理を行うのが好ましい。
 このようにして、図1に示すような、本実施形態の外装材10を製造することができる。
 次に、図2に示す外装材20の製造方法の一例について説明する。なお、外装材20の製造方法は以下の方法に限定されない。
 本実施形態の外装材20の製造方法は、金属箔層13に腐食防止処理層14を積層する工程と、基材層11と金属箔層13とを貼り合わせる工程と、第二の接着剤層17を介してシーラント層16をさらに積層して積層体を作製する工程と、必要に応じて、得られた積層体をエージング処理する工程とを含んで概略構成されている。なお、基材層11と金属箔層13とを貼り合わせる工程までは、上述した外装材10の製造方法と同様に行うことができる。
(第二の接着剤層17およびシーラント層16の積層工程)
 本工程は、金属箔層13の腐食防止処理層14側に、第二の接着剤層17を介してシーラント層16を貼り合わせる工程である。貼り合わせの方法としては、ウェットプロセス、ドライラミネーション等が挙げられる。
 ウェットプロセスの場合は、第二の接着剤層17を構成する接着剤の溶液又は分散液を、腐食防止処理層14上に塗工し、所定の温度(接着剤が酸変性ポリオレフィン樹脂を含む場合は、その融点以上の温度)で溶媒を飛ばし、焼き付けを行う。その後、シーラント層16を積層し、外装材20を製造する。塗工方法としては、先に例示した各種塗工方法が挙げられる。
(エージング処理工程)
 本工程は、積層体をエージング(養生)処理する工程である。積層体をエージング処理することで、金属箔層13/腐食防止処理層14/第二の接着剤層17/シーラント層16間の接着を促進させることができる。エージング処理は、室温~100℃の範囲で行うことができる。エージング時間は、例えば、1~10日である。
 このようにして、図2に示すような、本実施形態の外装材20を製造することができる。
 次に、図3に示す外装材30の製造方法の一例について説明する。なお、外装材30の製造方法は以下の方法に限定されない。
 本実施形態の外装材30の製造方法は、金属箔層13に腐食防止処理層14を積層する工程と、基材層11と金属箔層13とを貼り合わせる工程と、接着性樹脂層15、第一のシーラント層16aおよび第二のシーラント層16bをさらに積層して積層体を作製する工程と、必要に応じて、得られた積層体を熱処理する工程とを含んで概略構成されている。
(接着性樹脂層15、第一のシーラント層16aおよび第二のシーラント層16bの積層工程)
 本工程は、腐食防止処理層14上に、接着性樹脂層15、第一のシーラント層16aおよび第二のシーラント層16bを形成する工程である。その方法としては、押出ラミネート機を用いて接着性樹脂層15と第一のシーラント層16aおよび第二のシーラント層16bとを押出すタンデムラミネート法、共押出法が挙げられる。
 このようにして、図3に示すような、本実施形態の外装材30を製造することができる。
 以上、本発明の蓄電装置用外装材及びその製造方法の好ましい実施の形態について詳述したが、本発明はかかる特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。なお、基材層11及び第一の接着剤層12の代わりに被覆層を備える蓄電装置用外装材を製造する場合は、上述のように、被覆層となる樹脂材料を金属箔層13上に塗布または塗工することにより被覆層を形成することができる。
 本発明の蓄電装置用外装材は、例えば、リチウムイオン電池、ニッケル水素電池、及び鉛蓄電池等の二次電池、並びに電気二重層キャパシタ等の電気化学キャパシタなどの蓄電装置用の外装材として好適に用いることができる。中でも、本発明の蓄電装置用外装材は、リチウムイオン電池用の外装材として好適である。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 まず、第一の発明に係る実施例及び比較例を示す。
[使用材料]
 実施例1-1~1-8及び比較例1-1~1-5で使用した材料を以下に示す。
<基材層(厚さ25μm)>
 ポリエチレンテレフタレート(PET)フィルムとナイロン(Ny)フィルムとの共押し出し多層延伸フィルム(グンゼ社製)を用いた。
<第一の接着剤層(厚さ4μm)>
 ポリエステルポリオール系主剤に対して、トリレンジイソシアネートのアダクト体系硬化剤を配合したポリウレタン系接着剤(東洋インキ社製)を用いた。
<第一の腐食防止処理層(基材層側)>
(CL-1-1):溶媒として蒸留水を用い、固形分濃度10質量%に調整した「ポリリン酸ナトリウム安定化酸化セリウムゾル」を用いた。なお、ポリリン酸ナトリウム安定化酸化セリウムゾルは、酸化セリウム100質量部に対して、リン酸のNa塩を10質量部配合して得た。
(CL-1-2):溶媒として蒸留水を用い、固形分濃度5質量%に調整した「ポリアクリル酸アンモニウム塩(東亞合成社製)」90質量%と、「アクリル-イソプロペニルオキサゾリン共重合体(日本触媒社製)」10質量%からなる組成物を用いた。
<金属箔層(厚さ40μm)>
 焼鈍脱脂処理した軟質アルミニウム箔(東洋アルミニウム社製、「8079材」)を用いた。
<第二の腐食防止処理層(シーラント層側)>
(CL-1-1):溶媒として蒸留水を用い、固形分濃度10質量%に調整した「ポリリン酸ナトリウム安定化酸化セリウムゾル」を用いた。なお、ポリリン酸ナトリウム安定化酸化セリウムゾルは、酸化セリウム100質量部に対して、リン酸のNa塩を10質量部配合して得た。
(CL-1-3):溶媒として蒸留水を用い固形分濃度5質量%に調整した「ポリアリルアミン(日東紡社製)」90質量%と、「ポリグリセロールポリグリシジルエーテル(ナガセケムテックス社製)」10質量%からなる組成物を用いた。
<接着性樹脂層(厚さ15μm)>
 以下の材料の混合物を質量比でAR-1:AR-2:AR-3=3:1:1となるように混合して用いた。
(AR-1):非相容系ゴムとしてエチレン-プロピレンゴムを配合したランダムポリプロピレン(PP)ベースの酸変性ポリプロピレン樹脂組成物(三井化学社製)を用いた。
(AR-2):アタクチック構造のプロピレン-αオレフィン共重合体(住友化学社製、「タフセレンH」)を用いた。
(AR-3):アイソタクチック構造のプロピレン-αオレフィン共重合体(三井化学社製、「タフマーXM」)を用いた。
<第二の接着剤層(厚さ5μm)>
 トルエンに溶解させた無水マレイン酸変性ポリオレフィン樹脂100質量部に対し、イソシアヌレート構造のポリイソシアネート化合物を10質量部(固形分比)で配合した接着剤を用いた。
<シーラント層>
 下記表1に示す各成分を同表に示す配合量(単位:質量部)で混合した樹脂組成物(SL-1-1~SL-1-12)を用いた。なお、各成分の詳細を以下に示す。
(A)成分(ランダムPP):融点140℃のプロピレン-エチレンランダム共重合体(プライムポリマー社製、「プライムポリプロ」)。
(B-1)成分(プロピレン-1-ブテン):(A)成分に対して相溶性を有する、融点85℃のプロピレン-1-ブテンランダム共重合体エラストマー(三井化学社製、「タフマーXM」)。
(B-2)成分(エチレン-1-ブテン):(A)成分に対して相溶性を有さない、融点75℃のエチレン-1-ブテンランダム共重合体エラストマー(住友化学社製、「エクセレン」)。
水添スチレン系ゴム:(A)成分に対して相溶性を有する、水添スチレン系熱可塑性エラストマー(旭化成社製、「タフテック」)。
エチレン-プロピレン:(A)成分に対して相溶性を有さない、エチレン-プロピレン共重合体エラストマー(三井化学社製、「タフマーA」)。
Figure JPOXMLDOC01-appb-T000001
[実施例1-1]
 まず、金属箔層に、第一の腐食防止処理層を以下の手順で設けた。すなわち、金属箔層の一方の面に(CL-1-1)を、ドライ塗布量として70mg/mとなるようにマイクログラビアコートにより塗工し、乾燥ユニットにおいて200℃で焼き付け処理を施した。次いで、得られた層上に(CL-1-2)を、ドライ塗布量として20mg/mとなるようにマイクログラビアコートにより塗工することで、(CL-1-1)と(CL-1-2)からなる複合層を第一の腐食防止処理層として形成した。この複合層は、(CL-1-1)と(CL-1-2)の2種を複合化させることで腐食防止性能を発現させたものである。
 次に、金属箔層の他方の面に(CL-1-1)を、ドライ塗布量として70mg/mとなるようにマイクログラビアコートにより塗工し、乾燥ユニットにおいて200℃で焼き付け処理を施した。次いで、得られた層上に(CL-1-3)を、ドライ塗布量として20mg/mとなるようにマイクログラビアコートにより塗工することで、(CL-1-1)と(CL-1-3)からなる複合層を第二の腐食防止処理層として形成した。この複合層は、(CL-1-1)と(CL-1-3)の2種を複合化させることで腐食防止性能を発現させたものである。
 次に、第一及び第二の腐食防止処理層を設けた金属箔層の第一の腐食防止処理層側をドライラミネート手法により、ポリウレタン系接着剤(第一の接着剤層)を用いて基材層に貼りつけた。これを押出ラミネート機の巻出部にセットし、第二の腐食防止処理層上に290℃、100m/分の加工条件で共押出しすることで接着性樹脂層(厚さ15μm)、シーラント層(厚さ30μm)の順で積層した。なお、接着性樹脂層及びシーラント層は、事前に二軸押出機を用いて各種材料のコンパウンドを作製しておき、水冷・ペレタイズの工程を経て、上記押出ラミネートに使用した。シーラント層の形成には、樹脂組成物(SL-1-1)を用いた。
 このようにして得られた積層体を、該積層体の最高到達温度が190℃になるように、熱ラミネーションにより熱処理を施して、実施例1-1の外装材(基材層/第一の接着剤層/第一の腐食防止処理層/金属箔層/第二の腐食防止処理層/接着性樹脂層/シーラント層の積層体)を製造した。
[実施例1-2~1-7]
 シーラント層の形成に用いた樹脂組成物を、(SL-1-2)~(SL-1-7)(いずれも厚さ30μm)にそれぞれ変更した以外は実施例1-1と同様にして、実施例1-2~1-7の外装材を製造した。
[実施例1-8]
 実施例1-1と同様にして、基材層/第一の接着剤層/第一の腐食防止処理層/金属箔層/第二の腐食防止処理層の積層体を作製した。次に、ドライラミネート手法により第二の腐食防止処理層上にドライラミネート法により、ドライ塗工量4~5g/mで接着剤(第二の接着剤層)を塗工し、乾燥及び造膜後、シーラント層を貼り付けた。シーラント層としては、樹脂組成物(SL-1-1)を用いて厚さ45μmに製膜し、接着剤貼り合わせ面にコロナ処理を施した、未延伸キャストフィルムを用いた。その後、40℃で5日間のエージングを行い、実施例1-8の外装材(基材層/第一の接着剤層/第一の腐食防止処理層/金属箔層/第二の腐食防止処理層/第二の接着剤層/シーラント層の積層体)を製造した。
[比較例1-1~1-5]
 シーラント層の形成に用いた樹脂組成物を、(SL-1-8)~(SL-1-12)(いずれも厚さ30μm)にそれぞれ変更した以外は実施例1-1と同様にして、比較例1-1~1-5の外装材を製造した。
<評価>
 実施例1-1~1-8及び比較例1-1~1-5で得られた外装材に対し、以下の評価試験を行った。
(電解液ラミネート強度)
 エチレンカーボネート/ジエチルカーボネート/ジメチルカーボネート=1/1/1(質量比)の混合溶液にLiPFを1Mになるように加えた電解液をテフロン(登録商標)容器に充填した。その中に、外装材を15mm×100mmにカットしたサンプルを入れ、密栓後85℃、24時間で保管した。その後、共洗し、金属箔層/接着性樹脂層間又は金属箔層/第二の接着剤層間のラミネート強度(T形はく離強さ)を、試験機(INSTRON社製)を用いて測定した。試験は、JIS K6854に準じて、23℃、50%RH雰囲気下、剥離速度50mm/minで行った。その結果に基づき、以下の基準で評価した。
A:ラミネート強度が12N/15mm超
B:ラミネート強度が10N/15mm以上、12N/15mm以下
C:ラミネート強度が6N/15mm以上、10N/15mm未満
D:ラミネート強度が6N/15mm未満
(電解液ヒートシール強度)
 外装材を60mm×120mmにカットしたサンプルを2つに折り畳み、1辺を10mm幅のシールバーで190℃、0.5MPa、3secで熱封緘した。その後、残りの2辺も熱封緘し袋状になった外装材に、エチレンカーボネート/ジエチルカーボネート/ジメチルカーボネート=1/1/1(質量比)の混合溶液にLiPFを1Mになるように加えた電解液を1ml注入した。得られたパウチを60℃で24時間保管後、熱封緘1辺目を15mm幅にカットし(図4を参照)、シール強度(T形はく離強さ)を、試験機(INSTRON社製)を用いて測定した。試験は、JIS K6854に準じ、23℃、50%RH雰囲気下、剥離速度50mm/minで行った。その結果に基づき、以下の基準で評価した。
A:シール強度が100N/15mm以上、バースト幅が10mm超
B:シール強度が100N/15mm以上、バースト幅が5~10mm
C:シール強度が80N/15mm以上、100N/15mm未満
D:シール強度が80N/15mm未満
(シール外観)
 上記電解液ヒートシール強度の評価において、190℃、0.5MPa、3sec熱封緘した後のシール部分(図4の強度測定部)において、シールバーが接している部分以外に内層シーラント側の過剰シール部分がないかの確認を行った。その結果に基づき、以下の基準で評価した。過剰シール部分は、シール痩せを伴う可能性や、セル本体の内容積を少なくさせる可能性があり、電池性能や絶縁性に影響を与える可能性が高い。そのため、過剰シール部分がないことが好ましい。
A:過剰シール部分がなく、均一なシール部分であった
D:過剰シール部分が存在した
(デガッシングヒートシール強度)
 外装材を75mm×150mmにカットしたサンプルを37.5mm×150mmに2つ折りにした後(図5(a)を参照)、150mm辺と37.5mm辺の一方をヒートシールし、製袋した。その後、パウチ内に、エチレンカーボネート/ジエチルカーボネート/ジメチルカーボネート=1/1/1(質量比)の混合溶液にLiPFを1Mになるように加えた電解液を5ml注液し、37.5mm辺の他方をヒートシールして、シール部S1により密封されたパウチを得た。次いで、このパウチを60℃で24時間保管した後、電解液を含んだ状態でパウチ中央部を190℃、0.3MPa、2secでヒートシールした(デガッシングシール部S2、図5(b)を参照)。シール部を安定化させるため、常温で24時間保管後、デガッシングシール部S2を含む領域を15mm幅にカットし(図5(c)を参照)、ヒートシール強度(T形はく離強さ)を、試験機(INSTRON社製)を用いて測定した。試験は、JIS K6854に準じて、23℃、50%RH雰囲気下、剥離速度50mm/minで行った。その結果に基づき、以下の基準で評価した。
A:シール強度が80N/15mm以上
B:シール強度が60N/15mm以上、80N/15mm未満
C:シール強度が40N/15mm以上、60N/15mm未満
D:シール強度が40N/15mm未満
(成型白化)
 外装材の常態のサンプル及び60℃で1週間保管したサンプルを、120mm×200mmにカットし、シーラント層が成型機の凸部に接するように冷間成型用金型にセットし、成型速度10mm/secで5mmの深絞りを行った。その後、最も延伸が厳しいフィルム押さえ部側の辺の白化を観察した。金型には、成型エリアが80mm×70mm(角筒型)、パンチコーナーラジアス(RCP)が1.0mmのものを用いた。その結果に基づき、以下の基準で評価した。なお、評価がC以上であれば実用上問題ないと言える。
A:常態のサンプル及び60℃1週間保管のサンプル共に白化なし
B:常態のサンプルで白化なし、60℃1週間保管のサンプルで薄く白化
C:常態のサンプルで薄く白化、60℃1週間保管のサンプルで白化
D:常態のサンプルで白化
(総合品質)
 上記各評価の結果を表2に示す。下記表2において、各評価結果にD評価がないものは、総合的な品質が優れていると言える。
Figure JPOXMLDOC01-appb-T000002
 表2に示した結果から明らかなように、シーラント層を形成する樹脂組成物として(SL-1-1)~(SL-1-7)を用いた実施例1-1~1-8の外装材は、成形白化及びシール外観が良好でありながら、電解液が関与するラミネート強度及びシール強度(電解液ラミネート強度、電解液ヒートシール強度及びデガッシングヒートシール強度)が向上していることが確認された。一方、比較例1-1、1-4及び1-5の外装材は、成形白化及びシール外観は良好であるものの、電解液が関与するラミネート強度及びシール強度に劣ることが確認された。また、比較例1-2及び1-3の外装材は、電解液が関与するラミネート強度及びシール強度は良好であるものの、成形白化又はシール外観に劣ることが確認された。
 次に、第二の発明に係る実施例及び比較例を示す。
[使用材料]
 実施例2-1~2-19及び比較例2-1~2-5で使用した材料を以下に示す。
<基材層(厚さ25μm)>
 ポリエチレンテレフタレート(PET)フィルムとナイロン(Ny)フィルムとの共押し出し多層延伸フィルム(グンゼ社製)を用いた。
<第一の接着剤層(厚さ4μm)>
 ポリエステルポリオール系主剤に対して、トリレンジイソシアネートのアダクト体系硬化剤を配合したポリウレタン系接着剤(東洋インキ社製)を用いた。
<第一の腐食防止処理層(基材層側)>
 後述するシーラント層側の第二の腐食防止処理層と同一とした。
<金属箔層(厚さ40μm)>
 焼鈍脱脂処理した軟質アルミニウム箔(東洋アルミニウム社製、「8079材」)を用いた。
<第二の腐食防止処理層(シーラント層側)>
(CL-2-1):溶媒として蒸留水を用い、固形分濃度10質量%に調整した「ポリリン酸ナトリウム安定化酸化セリウムゾル」を用いた。なお、ポリリン酸ナトリウム安定化酸化セリウムゾルは、酸化セリウム100質量部に対して、リン酸のNa塩を10質量部配合して得た。
(CL-2-2):溶媒として蒸留水を用い固形分濃度5質量%に調整した「ポリアリルアミン(日東紡社製)」90質量%と、「ポリグリセロールポリグリシジルエーテル(ナガセケムテックス社製)」10質量%からなる組成物を用いた。
(CL-2-3):溶媒として1質量%濃度のリン酸水溶液を用い、固形分濃度1質量%に調整した水溶性フェノール樹脂(住友ベークライト社製)に対し、フッ化クロム(CrF)を最終乾燥皮膜中に存在するCr量として10mg/mとなるように濃度を調整した化成処理剤を用いた。
<接着性樹脂層>
 以下の材料の混合物を質量比でAR-1:AR-2:AR-3=3:1:1となるように混合して用いた。
(AR-1):非相容系ゴムとしてエチレン-プロピレンゴムを配合したランダムポリプロピレン(PP)ベースの酸変性ポリプロピレン樹脂組成物(三井化学社製)を用いた。
(AR-2):アタクチック構造のプロピレン-αオレフィン共重合体(住友化学社製、「タフセレンH」)を用いた。
(AR-3):アイソタクチック構造のプロピレン-αオレフィン共重合体(三井化学社製、「タフマーXM」)を用いた。
<第二の接着剤層(厚さ3μm)>
 トルエンに溶解させた無水マレイン酸変性ポリオレフィン樹脂100質量部に対し、イソシアヌレート構造のポリイソシアネート化合物を10質量部(固形分比)で配合した接着剤を用いた。
<シーラント層>
 下記表3に示す各成分を同表に示す配合量(単位:質量部)で混合した樹脂組成物(SL-2-1~SL-2-12)を用いた。なお、各成分の詳細を以下に示す。
・(A)成分
(ランダムPP):融点140℃のプロピレン-エチレンランダム共重合体(プライムポリマー社製、「プライムポリプロ」)。
・(B’)成分
(プロピレン-1-ブテン):(A)成分に対して相溶性を有する、融点75℃のプロピレン-1-ブテンランダム共重合体エラストマー(三井化学社製、「タフマーXM」)。
(水添スチレン系エラストマー):(A)成分に対して相溶性を有する、水添スチレン系熱可塑性エラストマー(旭化成社製、「タフテック」)。
・(C)成分
(エチレン-1-ブテン):(A)成分に対して相溶性を有さない、融点70℃のエチレン-1-ブテンランダム共重合体エラストマー(住友化学社製、「エクセレン」)。
(スチレン系エラストマー):(A)成分に対して相溶性を有さない、スチレン-ブタジエン共重合体エラストマー(旭化成社製、「アサフレックス」)。
Figure JPOXMLDOC01-appb-T000003
[実施例2-1]
 まず、金属箔層に、第一及び第二の腐食防止処理層を以下の手順で設けた。すなわち、金属箔層の両方の面に(CL-2-1)を、ドライ塗布量として70mg/mとなるようにマイクログラビアコートにより塗工し、乾燥ユニットにおいて200℃で焼き付け処理を施した。次いで、得られた層上に(CL-2-2)を、ドライ塗布量として20mg/mとなるようにマイクログラビアコートにより塗工することで、(CL-2-1)と(CL-2-2)からなる複合層を第一及び第二の腐食防止処理層として形成した。この複合層は、(CL-2-1)と(CL-2-2)の2種を複合化させることで腐食防止性能を発現させたものである。
 次に、第一及び第二の腐食防止処理層を設けた金属箔層の第一の腐食防止処理層側をドライラミネート手法により、ポリウレタン系接着剤(第一の接着剤層)を用いて基材層に貼りつけた。これを押出ラミネート機の巻出部にセットし、第二の腐食防止処理層上に290℃、100m/分の加工条件で共押出しすることで接着性樹脂層(厚さ12μm)、シーラント層(厚さ23μm)の順で積層した。なお、接着性樹脂層及びシーラント層は、事前に二軸押出機を用いて各種材料のコンパウンドを作製しておき、水冷・ペレタイズの工程を経て、上記押出ラミネートに使用した。シーラント層の形成には、樹脂組成物(SL-2-1)を用いた。
 このようにして得られた積層体を、該積層体の最高到達温度が190℃になるように、熱ラミネーションにより熱処理を施して、実施例2-1の外装材(基材層/第一の接着剤層/第一の腐食防止処理層/金属箔層/第二の腐食防止処理層/接着性樹脂層/シーラント層の積層体)を製造した。
[実施例2-2~2-7]
 シーラント層の形成に用いた樹脂組成物を、(SL-2-2)~(SL-2-7)(いずれも厚さ23μm)にそれぞれ変更した以外は実施例2-1と同様にして、実施例2-2~2-7の外装材を製造した。
[実施例2-8]
 実施例2-1と同様にして、基材層/第一の接着剤層/第一の腐食防止処理層/金属箔層/第二の腐食防止処理層の積層体を作製した。これを押出ラミネート機の巻出部にセットし、第二の腐食防止処理層上に290℃、100m/分の加工条件で共押出しすることで接着性樹脂層(厚さ10μm)、第一のシーラント層(金属箔層側、厚さ10μm)、第二のシーラント層(最内層、厚さ15μm)を積層した。なお、接着性樹脂層、第一のシーラント層及び第二のシーラント層は、事前に二軸押出機を用いて各種材料のコンパウンドを作製しておき、水冷・ペレタイズの工程を経て、上記押出ラミネートに使用した。第一のシーラント層の形成には、樹脂組成物(SL-2-5)を用い、第二のシーラント層の形成には、樹脂組成物(SL-2-2)を用いた。
[実施例2-9]
 第一のシーラント層の形成に用いた樹脂組成物を(SL-2-7)(厚さ10μm)に変更したこと以外は実施例2-8と同様にして、実施例2-9の外装材を製造した。
[実施例2-10]
 接着性樹脂層の厚さを10μm、シーラント層の厚さを20μmに変更した以外は実施例2-2と同様にして、実施例2-10の外装材を製造した。
[実施例2-11]
 実施例2-1と同様にして、基材層/第一の接着剤層/第一の腐食防止処理層/金属箔層/第二の腐食防止処理層の積層体を作製した。次に、第二の腐食防止処理層上にドライラミネート手法により、ドライ塗工量4~5g/mで接着剤(第二の接着剤層)を塗工し、乾燥及び造膜後、シーラント層を貼り付けた。シーラント層としては、樹脂組成物(SL-2-2)を用いて厚さ30μmに製膜し、接着剤貼り合わせ面にコロナ処理を施した、未延伸キャストフィルムを用いた。その後、40℃で5日間のエージングを行い、実施例2-11の外装材(基材層/第一の接着剤層/第一の腐食防止処理層/金属箔層/第二の腐食防止処理層/第二の接着剤層/シーラント層の積層体)を製造した。
[実施例2-12]
 第一及び第二の腐食防止処理層を以下の手順で設けたこと以外は実施例2-2と同様にして、実施例2-12の外装材を製造した。実施例2-12では、金属箔層の両方の面に(CL-2-3)を、ドライ塗布量として30mg/mとなるようにマイクログラビアコートにより塗工し、乾燥ユニットにおいて200℃で焼き付け処理を施した。次いで、得られた層上に(CL-2-2)を、ドライ塗布量として20mg/mとなるようにマイクログラビアコートにより塗工することで、(CL-2-3)と(CL-2-2)からなる複合層を第一及び第二の腐食防止処理層として形成した。この複合層は、(CL-2-3)と(CL-2-2)の2種を複合化させることで腐食防止性能を発現させたものである。
[実施例2-13]
 第一及び第二の腐食防止処理層を以下の手順で設けたこと以外は実施例2-11と同様にして、実施例2-13の外装材を製造した。実施例2-13では、金属箔層の両方の面に(CL-2-3)を、ドライ塗布量として30mg/mとなるようにマイクログラビアコートにより塗工し、乾燥ユニットにおいて200℃で焼き付け処理を施した。次いで、得られた層上に(CL-2-2)を、ドライ塗布量として20mg/mとなるようにマイクログラビアコートにより塗工することで、(CL-2-3)と(CL-2-2)からなる複合層を第一及び第二の腐食防止処理層として形成した。この複合層は、(CL-2-3)と(CL-2-2)の2種を複合化させることで腐食防止性能を発現させたものである。
[実施例2-14]
 接着性樹脂層の厚さを13μm、シーラント層の厚さを27μmに変更した以外は実施例2-2と同様にして、実施例2-14の外装材を製造した。
[実施例2-15]
 接着性樹脂層の厚さを13μm、シーラント層の厚さを27μmに変更した以外は実施例2-5と同様にして、実施例2-15の外装材を製造した。
[実施例2-16]
 接着性樹脂層の厚さを15μm、シーラント層の厚さ30μmに変更した以外は実施例2-2と同様にして、実施例2-16の外装材を製造した。
[実施例2-17]
 接着性樹脂層の厚さを15μm、シーラント層の厚さ30μmに変更した以外は実施例2-5と同様にして、実施例2-17の外装材を製造した。
[実施例2-18]
 接着性樹脂層の厚さを27μmに変更し、シーラント層の厚さを53μmに変更した以外は実施例2-2と同様にして、実施例2-18の外装材を製造した。
[実施例2-19]
 接着性樹脂層の厚さを27μmに変更し、シーラント層の厚さを53μmに変更した以外は実施例2-5と同様にして、実施例2-19の外装材を製造した。
[比較例2-1~2-5]
 シーラント層の形成に用いた樹脂組成物を、(SL-2-8)~(SL-2-12)(いずれも厚さ23μm)にそれぞれ変更した以外は実施例2-1と同様にして、比較例2-1~2-5の外装材を製造した。
<評価>
 実施例2-1~2-19及び比較例2-1~2-5で得られた外装材に対し、以下の評価試験を行った。
(電解液ラミネート強度)
 エチレンカーボネート/ジエチルカーボネート/ジメチルカーボネート=1/1/1(質量比)の混合溶液にLiPFを1Mになるように加えた電解液をテフロン(登録商標)容器に充填した。その中に、外装材を15mm×100mmにカットしたサンプルを入れ、密栓後85℃、24時間で保管した。その後、共洗し、金属箔層/接着性樹脂層間又は金属箔層/第二の接着剤層間のラミネート強度(T形はく離強さ)を、試験機(INSTRON社製)を用いて測定した。試験は、JIS K6854に準じて、23℃、50%RH雰囲気下、剥離速度50mm/minで行った。その結果に基づき、以下の基準で評価した。
A:ラミネート強度が9N/15mm超
B:ラミネート強度が7N/15mm以上、9N/15mm以下
C:ラミネート強度が5N/15mm以上、7N/15mm未満
D:ラミネート強度が5N/15mm未満
(電解液ヒートシール強度)
 外装材を60mm×120mmにカットしたサンプルを2つに折り畳み、1辺を10mm幅のシールバーで190℃、0.5MPa、3secで熱封緘した。その後、残りの2辺も熱封緘し袋状になった外装材に、エチレンカーボネート/ジエチルカーボネート/ジメチルカーボネート=1/1/1(質量比)の混合溶液にLiPFを1Mになるように加えた電解液を2ml注入した。得られたパウチを60℃で24時間保管後、熱封緘1辺目を15mm幅にカットし(図4を参照)、シール強度(T形はく離強さ)を、試験機(INSTRON社製)を用いて測定した。試験は、JIS K6854に準じ、23℃、50%RH雰囲気下、剥離速度50mm/minで行った。その結果に基づき、以下の基準で評価した。
A:シール強度が80N/15mm以上、バースト幅が5mm超
B:シール強度が80N/15mm以上、バースト幅が3~5mm
C:シール強度が60N/15mm以上、80N/15mm未満
D:シール強度が60N/15mm未満
(デガッシングヒートシール強度)
 外装材を75mm×150mmにカットしたサンプルを37.5mm×150mmに2つ折りにした後(図5(a)を参照)、150mm辺と37.5mm辺の一方をヒートシールし、製袋した。その後、パウチ内に、エチレンカーボネート/ジエチルカーボネート/ジメチルカーボネート=1/1/1(質量比)の混合溶液にLiPFを1Mになるように加えた電解液を5ml注液し、37.5mm辺の他方をヒートシールして、シール部S1により密封されたパウチを得た。次いで、このパウチを60℃で24時間保管した後、電解液を含んだ状態でパウチ中央部を190℃、0.3MPa、2secでヒートシールした(デガッシングシール部S2、図5(b)を参照)。シール部を安定化させるため、常温で24時間保管後、デガッシングシール部S2を含む領域を15mm幅にカットし(図5(c)を参照)、ヒートシール強度(T形はく離強さ)を、試験機(INSTRON社製)を用いて測定した。試験は、JIS K6854に準じて、23℃、50%RH雰囲気下、剥離速度50mm/minで行った。その結果に基づき、以下の基準で評価した。
A:シール強度が60N/15mm以上
B:シール強度が40N/15mm以上、60N/15mm未満
C:シール強度が30N/15mm以上、40N/15mm未満
D:シール強度が30N/15mm未満
(成型後の絶縁性)
 外装材を120mm×200mmにカットしたサンプル40を、シーラント層が成型機の凸部に接するように冷間成型用金型にセットし、成型速度15mm/secで2.5mmの深絞りを行って深絞り部41を形成した後、120mm×100mmに2つ折りにした(図6(a)を参照)。次いで、タブ42とタブシーラント43とを間に挟んだ状態で100mmの上辺部44をヒートシールした後(図6(b)を参照)、120mmの側辺部45をヒートシールして製袋した(図6(c)を参照)。その後、電極を接触させるために、サンプル40の外層の一部を削って金属箔層の露出部46を形成した(図6(d)を参照)。次いで、パウチ内に、エチレンカーボネート/ジエチルカーボネート/ジメチルカーボネート=1/1/1(質量比)の混合溶液にLiPFを1Mになるように加えた電解液を5ml注液し、100mmの下辺部47をヒートシールにて封止した(図6(e)を参照)。その後、タブ42と金属箔層の露出部46に電極48a,48bをそれぞれ接続し、耐電圧・絶縁抵抗試験器(KIKUSUI製、「TOS9201」)を用いて25Vを印加し、そのときの抵抗値を測定した(図6(f)を参照)。金型には、成型エリアが80mm×70mm(角筒型)、パンチコーナーラジアス(RCP)が1.0mmのものを用いた。その結果に基づき、以下の基準で評価した。
A:抵抗値が200MΩ超
B:抵抗値が100MΩ以上200MΩ以下
C:抵抗値が30MΩ以上100MΩ未満
D:抵抗値が30MΩ未満
(総合品質)
 上記各評価の結果を表4に示す。下記表4において、各評価結果にD評価がないものは、総合的な品質が優れていると言える。
Figure JPOXMLDOC01-appb-T000004
 表4に示した結果から明らかなように、シーラント層を形成する樹脂組成物として(SL-2-1)~(SL-2-7)を用いた実施例2-1~2-19の外装材は、成型後の絶縁性及び電解液が関与するラミネート強度及びシール強度(電解液ラミネート強度、電解液ヒートシール強度及びデガッシングヒートシール強度)に優れることが確認された。一方、比較例2-1、2-2、2-4及び2-5の外装材は、電解液が関与するラミネート強度及びシール強度は良好であるものの、成型後の絶縁性に劣ることが確認された。また、比較例2-3の外装材は、成型後の絶縁性は良好であるものの、デガッシングヒートシール強度に劣ることが確認された。
 10,20,30…蓄電装置用外装材、11…基材層、12…第一の接着剤層、13…金属箔層、14…腐食防止処理層、15…接着性樹脂層、16…シーラント層、16a…第一のシーラント層、16b…第二のシーラント層、17…第二の接着剤層、40…サンプル、41…深絞り部、42…タブ、43…タブシーラント、44…上辺部、45…側辺部、46…金属箔層の露出部、47…下辺部、48a,48b…電極、S1…シール部、S2…デガッシングシール部。

Claims (17)

  1.  少なくとも基材層、第一の接着剤層、一方又は両方の面に腐食防止処理層が設けられた金属箔層、第二の接着剤層又は接着性樹脂層、及び、シーラント層がこの順で積層された構造を有する蓄電装置用外装材であって、
     前記シーラント層が、(A)プロピレン-エチレンランダム共重合体を60~95質量%と、(B)1-ブテンをコモノマーとする融点150℃以下のポリオレフィン系エラストマーを5~40質量%と、を含有する樹脂組成物により形成された層を含む、蓄電装置用外装材。
  2.  前記(B)ポリオレフィン系エラストマーが、前記(A)プロピレン-エチレンランダム共重合体に対して相溶性を有する(B-1)相溶系ポリオレフィン系エラストマーと、前記(A)プロピレン-エチレンランダム共重合体に対して相溶性を有さない(B-2)非相溶系ポリオレフィン系エラストマーとを含む、請求項1に記載の蓄電装置用外装材。
  3.  前記(B-1)相溶系ポリオレフィン系エラストマーが、プロピレン-1-ブテンランダム共重合体であり、前記(B-2)非相溶系ポリオレフィン系エラストマーが、エチレン-1-ブテンランダム共重合体である、請求項2に記載の蓄電装置用外装材。
  4.  前記接着性樹脂層を介して前記金属箔層と前記シーラント層とが積層されており、
     前記接着性樹脂層が、接着性樹脂組成物として変性ポリプロピレンを含む、請求項1~3のいずれか一項に記載の蓄電装置用外装材。
  5.  前記接着性樹脂層を介して前記金属箔層と前記シーラント層とが積層されており、
     前記接着性樹脂層が、接着性樹脂組成物と、アタクチック構造のポリプロピレン及び/又はアタクチック構造のプロピレン-αオレフィン共重合体とを含む、請求項1~4のいずれか一項に記載の蓄電装置用外装材。
  6.  前記接着性樹脂層が、アイソタクチック構造のプロピレン-αオレフィン共重合体を更に含む、請求項5に記載の蓄電装置用外装材。
  7.  前記腐食防止処理層が、少なくとも前記金属箔層の前記シーラント層側に設けられており、当該腐食防止処理層がカチオン性ポリマー及びアニオン性ポリマーからなる群より選択される少なくとも1種のポリマーを含み、
     前記第二の接着剤層を介して前記金属箔層と前記シーラント層とが積層されており、
     前記第二の接着剤層が、当該第二の接着剤層に接する前記腐食防止処理層に含まれる前記ポリマーと反応性を有する化合物を含む、請求項1~3のいずれか一項に記載の蓄電装置用外装材。
  8.  前記第二の接着剤層が、酸変性ポリオレフィン樹脂を含む、請求項7に記載の蓄電装置用外装材。
  9.  前記腐食防止処理層が、希土類元素酸化物と、該希土類元素酸化物100質量部に対して1~100質量部のリン酸又はリン酸塩とを含む、請求項1~8のいずれか一項に記載の蓄電装置用外装材。
  10.  少なくとも基材層、第一の接着剤層、一方又は両方の面に腐食防止処理層が設けられた金属箔層、第二の接着剤層又は接着性樹脂層、及び、シーラント層がこの順で積層された構造を有する蓄電装置用外装材であって、
     前記シーラント層が、(A)プロピレン-エチレンランダム共重合体を60~95質量%と、前記(A)プロピレン-エチレンランダム共重合体に対して相溶性を有する(B’)相溶系エラストマー及び/又は前記(A)プロピレン-エチレンランダム共重合体に対して相溶性を有さない(C)非相溶系エラストマーを合計で5~40質量%と、を含有する樹脂組成物により形成された層を含み、
     前記樹脂組成物において、前記(B’)相溶系エラストマーの含有量に対する前記(C)非相溶系エラストマーの含有量の質量比が0~1であり、
     前記(B’)相溶系エラストマーと前記(C)非相溶系エラストマーとが共通のコモノマー成分を有する、蓄電装置用外装材。
  11.  前記(B’)相溶系エラストマーが、プロピレン-1-ブテンランダム共重合体であり、前記(C)非相溶系エラストマーが、エチレン-1-ブテンランダム共重合体である、請求項10に記載の蓄電装置用外装材。
  12.  前記(B’)相溶系エラストマーが、水添スチレン系エラストマーであり、前記(C)非相溶系エラストマーが、スチレン系エラストマーである、請求項10に記載の蓄電装置用外装材。
  13.  前記シーラント層が多層から形成されており、
     前記シーラント層を形成する多層のうち、前記シーラント層の前記第二の接着剤層又は前記接着性樹脂層とは反対側の面を主面として有する層が、前記(A)プロピレン-エチレンランダム共重合体を含有し、且つ、前記(B’)相溶系エラストマー及び前記(C)非相溶系エラストマーを含有しない樹脂組成物、又は、前記(A)プロピレン-エチレンランダム共重合体及び前記(B’)相溶系エラストマーを含有し、且つ、前記(C)非相溶系エラストマーを含有しない樹脂組成物により形成された層である、請求項10~12のいずれか一項に記載の蓄電装置用外装材。
  14.  前記接着性樹脂層を介して前記金属箔層と前記シーラント層とが積層されており、
     前記接着性樹脂層が、接着性樹脂組成物と、アタクチック構造のポリプロピレン及び/又はプロピレン-αオレフィン共重合体とを含む、請求項10~13のいずれか一項に記載の蓄電装置用外装材。
  15.  前記第二の接着剤層を介して前記金属箔層と前記シーラント層とが積層されており、
     前記第二の接着剤層が、酸変性ポリオレフィン樹脂と、多官能イソシアネート化合物、グリシジル化合物、カルボキシ基を有する化合物及びオキサゾリン基を有する化合物からなる群より選択される少なくとも1種の化合物とを含む、請求項10~13のいずれか一項に記載の蓄電装置用外装材。
  16.  前記腐食防止処理層が、酸化セリウムと、該酸化セリウム100質量部に対して1~100質量部のリン酸又はリン酸塩と、カチオン性ポリマーとを含む、請求項10~15のいずれか一項に記載の蓄電装置用外装材。
  17.  前記腐食防止処理層が、前記金属箔層に化成処理を施して形成されており、カチオン性ポリマーを含む、請求項10~15のいずれか一項に記載の蓄電装置用外装材。
PCT/JP2016/052521 2015-02-04 2016-01-28 蓄電装置用外装材 WO2016125684A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16746515.2A EP3255695A4 (en) 2015-02-04 2016-01-28 Electrical storage device outer-package material
CN201680008591.4A CN107210391B (zh) 2015-02-04 2016-01-28 蓄电装置用封装材料
KR1020177024332A KR20170110118A (ko) 2015-02-04 2016-01-28 축전 장치용 외장재
US15/666,127 US10305069B2 (en) 2015-02-04 2017-08-01 Packaging material for power storage device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015020328A JP6519209B2 (ja) 2015-02-04 2015-02-04 蓄電装置用外装材
JP2015-020328 2015-02-04
JP2015-090263 2015-04-27
JP2015090263A JP6572609B2 (ja) 2015-04-27 2015-04-27 蓄電装置用外装材

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/666,127 Continuation US10305069B2 (en) 2015-02-04 2017-08-01 Packaging material for power storage device

Publications (1)

Publication Number Publication Date
WO2016125684A1 true WO2016125684A1 (ja) 2016-08-11

Family

ID=56564031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052521 WO2016125684A1 (ja) 2015-02-04 2016-01-28 蓄電装置用外装材

Country Status (6)

Country Link
US (1) US10305069B2 (ja)
EP (1) EP3255695A4 (ja)
KR (1) KR20170110118A (ja)
CN (1) CN107210391B (ja)
TW (1) TWI684301B (ja)
WO (1) WO2016125684A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3128568A4 (en) * 2014-04-03 2017-09-13 Toppan Printing Co., Ltd. Outer casing material for lithium batteries
WO2017217229A1 (ja) * 2016-06-15 2017-12-21 凸版印刷株式会社 蓄電装置用外装材
KR20180020082A (ko) * 2016-08-17 2018-02-27 쇼와 덴코 패키징 가부시키가이샤 축전 디바이스용 외장재 및 축전 디바이스
CN107749449A (zh) * 2016-10-19 2018-03-02 万向二三股份公司 一种锂离子电池隔膜的制备方法
JP2018060753A (ja) * 2016-10-07 2018-04-12 凸版印刷株式会社 蓄電装置用外装材
WO2018147116A1 (ja) 2017-02-08 2018-08-16 凸版印刷株式会社 蓄電装置用外装材
WO2018180165A1 (ja) * 2017-03-29 2018-10-04 三井化学株式会社 電池用積層体
JP2018167487A (ja) * 2017-03-30 2018-11-01 三井化学東セロ株式会社 食品用包装フィルムおよび食品用包装体
WO2018216634A1 (ja) * 2017-05-26 2018-11-29 凸版印刷株式会社 蓄電装置用外装材
JP2018200807A (ja) * 2017-05-26 2018-12-20 凸版印刷株式会社 蓄電装置用外装材
JP2019096469A (ja) * 2017-11-22 2019-06-20 凸版印刷株式会社 蓄電装置用外装材
WO2019225065A1 (ja) * 2018-05-22 2019-11-28 凸版印刷株式会社 蓄電装置用外装材
EP3582282A4 (en) * 2017-02-08 2020-12-02 Toppan Printing Co., Ltd. EXTERNAL COVER MATERIAL FOR POWER STORAGE DEVICES AND POWER STORAGE DEVICE
JPWO2019188284A1 (ja) * 2018-03-30 2021-04-08 東洋紡株式会社 ポリオレフィン系接着剤組成物
KR102669314B1 (ko) * 2016-08-17 2024-05-27 가부시키가이샤 레조낙·패키징 축전 디바이스용 외장재 및 축전 디바이스

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6708979B2 (ja) * 2015-03-30 2020-06-10 凸版印刷株式会社 蓄電デバイス用外装材
JP7167930B2 (ja) * 2017-10-18 2022-11-09 大日本印刷株式会社 電池用包装材料及び電池
CN109273628A (zh) * 2018-09-06 2019-01-25 苏州菲丽丝智能科技有限公司 一种用于锂电池的封装材料
JP6566376B1 (ja) * 2019-02-22 2019-08-28 三桜工業株式会社 管継手及び管継手付きチューブ並びに管継手の製造方法
JP6828858B1 (ja) * 2019-07-17 2021-02-10 大日本印刷株式会社 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
CN114311911A (zh) * 2020-09-29 2022-04-12 宁德新能源科技有限公司 一种包装膜,包含该包装膜的电化学装置及电子装置
US20220135834A1 (en) * 2020-10-29 2022-05-05 Chemical Dynamics, LLC Two-part hydrophobic polyurethane formulations forming corrosion resistant coating
CN112563632B (zh) * 2020-12-07 2021-08-10 江西睿捷新材料科技有限公司 一种金属复合膜,电化学装置
CN114474927B (zh) * 2022-01-11 2023-07-07 江苏睿捷新材料科技有限公司 一种包装材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263935A (ja) * 1993-03-11 1994-09-20 Mitsui Petrochem Ind Ltd ポリオレフィン組成物
JP2003272572A (ja) * 2002-03-20 2003-09-26 Dainippon Printing Co Ltd 電池用外装体と電池の包装方法
JP2003288866A (ja) * 2002-03-28 2003-10-10 Toyo Aluminium Kk 二次電池容器用積層材及び二次電池容器
JP2013025980A (ja) * 2011-07-20 2013-02-04 Toppan Printing Co Ltd 電池用容器及びそれを具備したリチウムイオン電池
JP2014238978A (ja) * 2013-06-07 2014-12-18 大日本印刷株式会社 電池用包装材料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW548184B (en) * 2000-03-08 2003-08-21 Dainippon Printing Co Ltd Packaging material for polymer cell and process for producing the same
JP2002245983A (ja) 2001-02-19 2002-08-30 Dainippon Printing Co Ltd リチウムイオン電池用包装材料
JP2007273398A (ja) 2006-03-31 2007-10-18 Dainippon Printing Co Ltd 電池用包装材料
JP5500234B2 (ja) * 2006-03-31 2014-05-21 大日本印刷株式会社 電池用包装材料
TWI511351B (zh) * 2010-10-14 2015-12-01 Toppan Printing Co Ltd 鋰離子電池用外裝材料
KR20190047132A (ko) * 2011-03-29 2019-05-07 쇼와 덴코 패키징 가부시키가이샤 성형용 포장재 및 전지용 케이스
JP6127394B2 (ja) * 2012-06-27 2017-05-17 大日本印刷株式会社 電気化学セル用包装材料
JP2014204090A (ja) * 2013-04-09 2014-10-27 三菱樹脂株式会社 太陽電池封止材及びそれを用いて作製された太陽電池モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263935A (ja) * 1993-03-11 1994-09-20 Mitsui Petrochem Ind Ltd ポリオレフィン組成物
JP2003272572A (ja) * 2002-03-20 2003-09-26 Dainippon Printing Co Ltd 電池用外装体と電池の包装方法
JP2003288866A (ja) * 2002-03-28 2003-10-10 Toyo Aluminium Kk 二次電池容器用積層材及び二次電池容器
JP2013025980A (ja) * 2011-07-20 2013-02-04 Toppan Printing Co Ltd 電池用容器及びそれを具備したリチウムイオン電池
JP2014238978A (ja) * 2013-06-07 2014-12-18 大日本印刷株式会社 電池用包装材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3255695A4 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3128568A4 (en) * 2014-04-03 2017-09-13 Toppan Printing Co., Ltd. Outer casing material for lithium batteries
US10468639B2 (en) 2014-04-03 2019-11-05 Toppan Printing Co., Ltd. Lithium battery packaging material
US10573855B2 (en) 2016-06-15 2020-02-25 Toppan Printing Co., Ltd. Power storage device packaging material
WO2017217229A1 (ja) * 2016-06-15 2017-12-21 凸版印刷株式会社 蓄電装置用外装材
JP2021192377A (ja) * 2016-08-17 2021-12-16 昭和電工パッケージング株式会社 蓄電デバイス用外装材及び蓄電デバイス
KR102399127B1 (ko) * 2016-08-17 2022-05-18 쇼와 덴코 패키징 가부시키가이샤 축전 디바이스용 외장재 및 축전 디바이스
KR20180020082A (ko) * 2016-08-17 2018-02-27 쇼와 덴코 패키징 가부시키가이샤 축전 디바이스용 외장재 및 축전 디바이스
KR102669314B1 (ko) * 2016-08-17 2024-05-27 가부시키가이샤 레조낙·패키징 축전 디바이스용 외장재 및 축전 디바이스
JP7381528B2 (ja) 2016-08-17 2023-11-15 株式会社レゾナック・パッケージング 蓄電デバイス用外装材及び蓄電デバイス
KR20210100582A (ko) * 2016-08-17 2021-08-17 쇼와 덴코 패키징 가부시키가이샤 축전 디바이스용 외장재 및 축전 디바이스
KR102411295B1 (ko) 2016-08-17 2022-06-22 쇼와 덴코 패키징 가부시키가이샤 축전 디바이스용 외장재 및 축전 디바이스
CN107768553A (zh) * 2016-08-17 2018-03-06 昭和电工包装株式会社 蓄电装置用外包装材料及蓄电装置
JP2018032616A (ja) * 2016-08-17 2018-03-01 昭和電工パッケージング株式会社 蓄電デバイス用外装材及び蓄電デバイス
CN107768553B (zh) * 2016-08-17 2021-11-16 昭和电工包装株式会社 蓄电装置用外包装材料及蓄电装置
CN113629326A (zh) * 2016-08-17 2021-11-09 昭和电工包装株式会社 蓄电装置用外包装材料及蓄电装置
JP7102683B2 (ja) 2016-10-07 2022-07-20 凸版印刷株式会社 蓄電装置用外装材
JP2018060753A (ja) * 2016-10-07 2018-04-12 凸版印刷株式会社 蓄電装置用外装材
CN107749449A (zh) * 2016-10-19 2018-03-02 万向二三股份公司 一种锂离子电池隔膜的制备方法
EP3582282A4 (en) * 2017-02-08 2020-12-02 Toppan Printing Co., Ltd. EXTERNAL COVER MATERIAL FOR POWER STORAGE DEVICES AND POWER STORAGE DEVICE
WO2018147116A1 (ja) 2017-02-08 2018-08-16 凸版印刷株式会社 蓄電装置用外装材
US10944085B2 (en) 2017-02-08 2021-03-09 Toppan Printing Co., Ltd. Outer covering material for electricity storage devices, and electricity storage device
US11390055B2 (en) 2017-02-08 2022-07-19 Toppan Printing Co., Ltd. Housing material for electricity storage device
JPWO2018180165A1 (ja) * 2017-03-29 2020-05-14 三井化学株式会社 電池用積層体
CN110300783B (zh) * 2017-03-29 2021-01-12 三井化学株式会社 电池用叠层体
WO2018180165A1 (ja) * 2017-03-29 2018-10-04 三井化学株式会社 電池用積層体
US11685843B2 (en) 2017-03-29 2023-06-27 Mitsui Chemicals, Inc. Laminate for battery
CN110300783A (zh) * 2017-03-29 2019-10-01 三井化学株式会社 电池用叠层体
JP7112835B2 (ja) 2017-03-30 2022-08-04 三井化学東セロ株式会社 食品用包装フィルムおよび食品用包装体
JP2018167487A (ja) * 2017-03-30 2018-11-01 三井化学東セロ株式会社 食品用包装フィルムおよび食品用包装体
JP2018200807A (ja) * 2017-05-26 2018-12-20 凸版印刷株式会社 蓄電装置用外装材
WO2018216634A1 (ja) * 2017-05-26 2018-11-29 凸版印刷株式会社 蓄電装置用外装材
CN109643770A (zh) * 2017-05-26 2019-04-16 凸版印刷株式会社 蓄电装置用外包装材料
US11532848B2 (en) 2017-05-26 2022-12-20 Toppan Printing Co., Ltd. Exterior material for electricity storage device
EP3633755A4 (en) * 2017-05-26 2021-03-03 Toppan Printing Co., Ltd. EXTERNAL MATERIAL FOR POWER STORAGE DEVICE
JP7403208B2 (ja) 2017-05-26 2023-12-22 Toppanホールディングス株式会社 蓄電装置用外装材
JP2019096469A (ja) * 2017-11-22 2019-06-20 凸版印刷株式会社 蓄電装置用外装材
JP7106844B2 (ja) 2017-11-22 2022-07-27 凸版印刷株式会社 蓄電装置用外装材
JPWO2019188284A1 (ja) * 2018-03-30 2021-04-08 東洋紡株式会社 ポリオレフィン系接着剤組成物
JP7484707B2 (ja) 2018-03-30 2024-05-16 東洋紡エムシー株式会社 ポリオレフィン系接着剤組成物
WO2019225065A1 (ja) * 2018-05-22 2019-11-28 凸版印刷株式会社 蓄電装置用外装材
JP7172132B2 (ja) 2018-05-22 2022-11-16 凸版印刷株式会社 蓄電装置用外装材
JP2019204626A (ja) * 2018-05-22 2019-11-28 凸版印刷株式会社 蓄電装置用外装材

Also Published As

Publication number Publication date
US10305069B2 (en) 2019-05-28
EP3255695A4 (en) 2018-10-24
TWI684301B (zh) 2020-02-01
TW201640713A (zh) 2016-11-16
EP3255695A1 (en) 2017-12-13
US20180076421A1 (en) 2018-03-15
CN107210391A (zh) 2017-09-26
CN107210391B (zh) 2021-11-23
KR20170110118A (ko) 2017-10-10

Similar Documents

Publication Publication Date Title
WO2016125684A1 (ja) 蓄電装置用外装材
US10468639B2 (en) Lithium battery packaging material
JP6519209B2 (ja) 蓄電装置用外装材
JP7377416B2 (ja) 蓄電装置用外装材
WO2017047717A1 (ja) リチウムイオン電池用外装材
WO2017217229A1 (ja) 蓄電装置用外装材
JP7172132B2 (ja) 蓄電装置用外装材
JP6859651B2 (ja) 蓄電装置用外装材
JP7102683B2 (ja) 蓄電装置用外装材
JP2017201580A (ja) 蓄電装置用外装材及びその製造方法
JP6572609B2 (ja) 蓄電装置用外装材
WO2018147116A1 (ja) 蓄電装置用外装材
WO2018147117A1 (ja) 蓄電装置用外装材及び蓄電装置
JPWO2020158873A1 (ja) 全固体電池用外装材及びこれを用いた全固体電池
JP7403208B2 (ja) 蓄電装置用外装材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016746515

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177024332

Country of ref document: KR

Kind code of ref document: A