WO2016122070A1 - 통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극 및 표면개질된 탄소재 전극을 포함한 전기화학 커패시터 - Google Patents

통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극 및 표면개질된 탄소재 전극을 포함한 전기화학 커패시터 Download PDF

Info

Publication number
WO2016122070A1
WO2016122070A1 PCT/KR2015/007806 KR2015007806W WO2016122070A1 WO 2016122070 A1 WO2016122070 A1 WO 2016122070A1 KR 2015007806 W KR2015007806 W KR 2015007806W WO 2016122070 A1 WO2016122070 A1 WO 2016122070A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
carbon material
carbon
carbonaceous
current
Prior art date
Application number
PCT/KR2015/007806
Other languages
English (en)
French (fr)
Inventor
김익준
양선혜
박준우
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2016122070A1 publication Critical patent/WO2016122070A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrochemical capacitor including a carbon electrode electrode surface modification method, a surface-modified carbon electrode and a carbon electrode by electricity, and more particularly, directly to the carbon electrode manufactured by using a carbon material Method of surface modification of carbonaceous electrode, surface modified carbonaceous electrode and carbonaceous electrode by applying electricity to Joule's heat to remove functional group or adsorbed water present in carbonaceous pores of carbonaceous electrode within a short time Relates to a chemical capacitor.
  • electrochemical capacitors the electric double layer capacitor (EDLC) and the hybrid capacitor
  • EDLC electric double layer capacitor
  • hybrid capacitor has the advantages of high power density, semi-permanent cycle characteristics, a wide range of temperatures, and does not include heavy metals. It is eco-friendly. Due to these advantages, it is a technology that is widely used as a power source for home appliances, mobile communication devices, automobiles, and ESS (Energy Storage System).
  • electrochemical capacitors consist of a mechanism for storing charge in an ion layer called an electric double layer formed at the interface between an electrode and an electrolyte.
  • the output capacitance of an electrochemical capacitor is determined by the specific surface area of the electrodes, the spacing between the electrodes, the pore distribution of the electrodes, the electrical conductivity of the electrodes, and the like. That is, it is preferable to use an electrode material having such characteristics since the specific surface area of the electrode is large, the electrode gap is narrow, the pore distribution of the electrode is uniform, and the higher the electrical conductivity of the electrode, the larger the output capacity is. . Therefore, many carbon materials such as active carbon and graphene, which are being actively researched, have been widely used as electrode materials. .
  • the output capacity of the electrochemical capacitors is most affected by the specific surface area of these carbon materials, but the long-term reliability characteristics of the electrochemical capacitors such as charge and discharge life, leakage current, self discharge, etc. affect the functionalities of the interface and the adsorption water present in the pores. Receive.
  • the acidic functional group present on the surface of the carbon material reacts with the electrolyte as the applied voltage is higher to generate propylene, hydrogen gas, carbon dioxide gas, and the like. They adversely affect the physical adsorption and desorption behavior of electrolyte ions on the surface of the carbonaceous material, which reduces the output capacity and long-term reliability of the electrochemical capacitor.
  • a surface modification technique is required to minimize functional groups or adsorbed water present on the surface of the carbonaceous material.
  • an object of the present invention is to burn electricity by directly applying electricity to a carbon material electrode including carbon material and removing the functional groups or the adsorbed water present in the carbon material pores of the carbon material electrode within a short time by Joule's heat.
  • the present invention provides an electrochemical capacitor including a method of modifying a material electrode surface, a surface-modified carbonaceous electrode, and a carbonaceous electrode.
  • the above object is to prepare a carbonaceous electrode; Binding a conductive terminal to the carbon material electrode; The surface of the carbonaceous electrode by energization, comprising the step of applying Joule's heat by applying a current to the conduction terminal to remove the acidic functional group (Acidic functional group) or the adsorbed water present in the carbonaceous electrode Achieved by the reforming method.
  • the carbon material electrode is a sheet shape obtained by kneading and rolling a carbon material, a conductive material and a binder, and is laminated to a current collector using a conductive adhesive, or a carbon material mixed with a carbon material, a conductive material and a binder. It is preferable that the slurry is formed by coating a current collector on a slurry.
  • the step of generating joule heat by applying a current to the current-carrying terminal is preferably carried out in a gas atmosphere containing a nitrogen element, and further comprising the step of obtaining the carbon material electrode surface-modified the carbon material.
  • the above object is a surface-modified carbon material electrode comprising a carbon material, a conductive material and a binder, wherein the carbon material is present in the pores of the carbon material by using Joule's heat generated by an applied current. It is also achieved by a surface-modified carbonaceous electrode, characterized in that the acidic functional group (Acidic functional group) or adsorbed water is removed.
  • the above object is also an electrochemical capacitor comprising a cathode, an anode, and an electrolyte, wherein at least one of the cathode and the anode consists of a carbonaceous electrode, and the carbonaceous electrode is generated by an applied current. It is also achieved by an electrochemical capacitor characterized in that it comprises an carbonic material from which an acidic functional group or an adsorbed water present in the pores is removed using Joule's heat.
  • FIG. 2 is a plan view of a state in which a conductive terminal is bound to a carbon material electrode according to Embodiments 1 to 3;
  • 3A and 3B are front views of a state in which a conductive terminal is attached to the carbonaceous electrode according to the second embodiment 4 and 5;
  • a carbon material electrode is prepared as shown in FIG. 1 (S1).
  • the carbon material electrode refers to an electrode containing a carbon material powder, and is composed of a carbon material, a conductive material, and a binder.
  • the electrode may be manufactured after energizing only the carbon material powder, but in order to minimize the water and acidic functionalities present in the carbon material pores and to simplify the process, it is effective to conduct the electricity in the carbon material electrode state.
  • Carbon materials include Active carbon, Carbon black, Graphite, Graphene, Hard carbon, Carbon nano fiber, Carbon nano tube And a mixture thereof, and activated carbon is most preferred.
  • Activated carbon is prepared from phenol, petroleum pitch, coke and wood based carbon materials by steam or alkali activation method.
  • acidic functional groups such as carbonyl, carboxyl and ketone are introduced to the surface together with metal impurities, and these functional groups are introduced.
  • Moisture is adsorbed by and remains in the pores of the activated carbon.
  • the acidic functional groups remaining in the pores help to improve the pore wettability of the electrolytes, most of the functional groups and the adsorbed water are likely to generate gas due to electrochemical irreversible reactions or polymer deposits in the electrolytes and pores. And adsorbed water should be minimized.
  • the carbon material used in the present invention uses a specific surface area in the range of 10 to 5000 m 2 / g. If the surface area is too small, such as less than 10m2 / g, it is difficult to generate Joule's heat through electricity. If the specific surface area is more than 5000m2 / g, the Joule's heat is too high to change the pore structure. May occur. Therefore, in order to minimize the change in the pore structure of the carbon material and remove the acidic functional groups, the specific surface area should be used in the range of 10 to 5000 m 2 / g, more preferably 10 to 2500 m 2 / g.
  • conductive material carbon black, graphite, graphene, hard carbon, carbon nano fiber, carbon nano tube, metal powder and its One selected from the group consisting of mixtures is selected and used, and the diameter is preferably 0.01 to 10 mu m. If the diameter of the conductive material is less than 0.01 ⁇ m may decrease the conductivity, if it exceeds 10 ⁇ m it will not be evenly mixed with the carbon material.
  • the binder is most preferably polytetrafluoroethylene (PTFE, Polytetrafluoroethylene).
  • PTFE can be used with a diameter of 0.1 to 0.5 ⁇ m, solid state alone or solid content of water (H 2 O), xylene (Xylene), methanol (Methanol), ethanol (Ethanol), isopropanol (Isopropanol), toluene ( Toluene), butyl acetate (Butyl acetate) and the like dispersed in an emulsion (Emulsion) can be used. Since PTFE has excellent chemical resistance, heat resistance, and mechanical strength, the network structure of PTFE develops as rolling is repeated to form an electrode. When the network structure is developed, the carbon material and the conductive material are fixed inside, thereby increasing the filling density and reducing the contact resistance between the carbon material and the conductive material, thereby improving the electrical characteristics of the electrode.
  • the carbon material, the conductive material and the binder are mixed to form a mixture, and then kneaded and rolled to form a sheet-shaped carbon material electrode.
  • the mixture may be kneaded using a ball mill or impeller while maintaining a constant viscosity, and the mixture may be further mixed with a dispersion solvent if necessary.
  • a method of manufacturing a carbonaceous electrode in a sheet form by rolling a mixture it is formed by repeatedly repeating rolling a sheet thinly using a roll press, and then rolling again. This is because in the initial rolling, the binder resin, especially the fiber resin of PTFE, increases to form a network structure, and as the rolling progresses repeatedly, the dense network structure developed by the fiber resin of PTFE improves, thereby improving the electrical and mechanical properties of the electrode. It is preferable to repeat rolling about 10 to 50 times, and the method of adjusting thickness by using a roll of the same radius up and down independently, or a plurality of rolls rolling a sheet continuously is possible.
  • the composition of the carbon material electrode is composed of 3 to 20 parts by weight of the conductive material and 2 to 10 parts by weight of the binder with respect to 100 parts by weight of the carbon material.
  • the carbonaceous electrode preferably has an electrode density of 0.1 to 0.7 g / ml and a thickness of 30 to 250 ⁇ m. If the conductive material is less than 3 parts by weight, the conductivity of the electrode is not good, and if the conductive material exceeds 20 parts by weight, the ratio of the other components is relatively low. In addition, when the binder is less than 2 parts by weight, it is impossible to properly maintain the shape of the sheet. When the binder is more than 10 parts by weight, the content of the carbon material and the conductive material is small, thereby reducing the conductivity. When the electrode density of the carbonaceous electrode is less than 0.1g / ml, the conductivity is not good because the density is low, and when the electrode density exceeds 0.7g / ml, the carbonaceous sheet may not be properly formed.
  • the manufactured carbon material electrode is combined with the current collector (S1 ′).
  • the sheet-shaped carbon material electrode manufactured in step S1 may be laminated on the current collector.
  • the carbonaceous slurry may be formed on the current collector by coating the carbonaceous slurry, not the sheet-shaped carbonaceous electrode.
  • the current collector is most preferably aluminum foil (Al foil), but is not limited thereto.
  • a sheet-shaped carbon material electrode is manufactured, and then laminated with a current collector using a conductive adhesive, and bonded to the current collector through this method.
  • the conductive adhesive can be composed of a conductive material and a binder.
  • the conductive material is selected from the group consisting of carbon black, hard carbon, graphite, graphene, carbon nanofibers, carbon nanotubes, Al powder, Pt powder, Ni powder, Cu powder, Au powder, stainless steel powder, and mixtures thereof.
  • the average particle of the powder having an aspect ratio of 0.5 or more is preferably 0.1 to 1 ⁇ m, the average particle of the powder having a shape factor of less than 0.5 may be used having a long axis of 1 to 20 ⁇ m.
  • the binder is carboxymethyl cellulose (CMC, Carboxymethylcellulose), polyvinyl alcohol (PVA, Polyvinylalcohol), polyvinylpyrrolidone (PVP, Polyvinylpyrrolidone), polyvinylene fluoride (PVDF, Polyvinylidene fluoride), methyl cellulose (MC, Methyl cellulose ), Polyacrylic acid (PAA), latex-based ethylene-vinyl chloride polymer (vinyllidene chloride polymer), vinylidene chloride latex (chlorinated polymer), vinyl acetate (polyvinyl acetate) acetate, polyvinyl butyral, polyvinyl acetal, biphenol epoxy resin and styrene butadiene rubber butadiene rubber (SBR) Isoprene rubber, Nitrile butadiene rubber, Urethane rubber, Silicone rubber, Acrylic rubber And a mixture thereof.
  • CMC carboxymethyl cellulose
  • PVA Poly
  • the composition of the conductive adhesive may be composed of 5 to 50 parts by weight with respect to 100 parts by weight of the conductive material on a solids basis.
  • the binder is less than 5 parts by weight, the binder content is small, so that the adhesive does not perform properly.
  • the binder exceeds 50 parts by weight the content of the conductive material may be low, resulting in low conductivity.
  • the conductive adhesive is mainly applied to the current collector made of aluminum foil, and the coating thickness can be adjusted within the range of 1 to 10 mu m.
  • a carbon material electrode in addition to the method of manufacturing a sheet-shaped carbon material electrode and laminating with an electrical power collector, can also be manufactured using the method of coating a carbon material slurry directly on an electrical power collector. At this time, it is preferable to use a current collector etched (Etching) so that the carbon material slurry can be easily coated.
  • the carbonaceous slurry uses a conductive material and a binder used when producing the carbonaceous electrode, and adds a dilution solvent to have a lower viscosity than when producing the carbonaceous sheet.
  • the prepared liquid mixture is coated on the current collector several times to have a desired thickness, thereby preparing an electrode including a carbon material.
  • the conductive terminal is bound to the carbonaceous electrode (S2).
  • a current-carrying terminal may be applied to the carbonaceous electrode by binding a conduction terminal to both ends of the carbonaceous electrode alone or to both ends of the carbonaceous electrode bonded to the current collector.
  • the method of binding the conductive terminal to the carbonaceous electrode may be performed as shown in FIGS. 2 and 3.
  • Joule heat is generated by applying a current to the conducting terminal (S3).
  • Surface modification is performed by applying an electric current to the carbonaceous electrode through the conductive terminal bound to the carbonaceous electrode.
  • the current flows through the carbon material electrode, resistance is generated by the contact resistance between the carbon material powder and the carbon material pore structure, and Joule's heat is generated in the carbon material.
  • the conduction terminals When conducting electricity, the conduction terminals may be respectively attached to the upper and lower portions of the carbonaceous electrode, or the conduction terminals may be respectively attached to the left and right directions, and the positions of the conduction terminals may be any current if the current can flow to the carbonaceous electrode. Do.
  • FIG. 2 illustrates a plan view of the carbon material electrode 110 according to the first to third embodiments below, and the conductive terminal 130 is attached to both left and right ends of the carbon material electrode 110.
  • the conductive terminal 130 is coupled to both left and right ends, current flows from one end of the (+) terminal 131 to the other (-) terminal 133 and thus the acidic functional group present in the carbon material electrode 110. Adsorbed water is removed.
  • FIG. 3A illustrates a front view of the conductive terminal 230 attached to the upper and lower portions of the carbonaceous electrode 210 according to the fourth and fifth embodiments below.
  • the carbonaceous electrode 210 and the current collector ( A current flows from the (+) terminal 231 installed at the top of the carbonaceous electrode 210 including the 250 to the (-) terminal 233 installed at the bottom. It is also possible to stack a plurality of carbon material electrode 210 as shown in Figure 3b to flow a current therein to simultaneously modify the surface of the carbon material.
  • the current applied to the carbonaceous electrodes 110 and 210 may be any one of direct current and alternating current. Joule heat may be generated at the carbonaceous electrodes 110 and 210 even when a direct current is applied in the form of a pulse. .
  • the power density of the current supplied here is preferably 1 to 100W / cm 3, wherein the joule heat is generated at a temperature of 30 to 300 ° C. If the power density is less than 1W / cm 3, it is difficult to generate as much Joule heat as desired. If the power density exceeds 100W / cm 3, the temperature may be excessively increased to change the shape of the carbon material pores in the carbon material electrode.
  • the method may further include injecting gas into the carbonaceous electrodes 110 and 210 in the step of generating Joule heat by applying current to the carbonaceous electrodes 110 and 210 (S2 ′).
  • Gas (Gas) containing nitrogen (N), hydrogen (H) and fluorine (F) elements is injected into the carbon material electrodes 110 and 210, or nitrogen, hydrogen, fluorine, etc. It is possible to adsorb a heteroatom of.
  • the acidic functional groups are removed by Joule heat, and when a gas is injected therein, a carbon structure including hetero elements is formed in the pores of the carbon material.
  • a carbon structure such as pyridone, pyrrolic, pyridinic, quaternary, or the like is formed on the surface of the carbon material. Is formed.
  • the carbon structure containing these nitrogen elements is adsorbed into the pores to suppress the reforming of the acidic functional groups, increase the polarization and charge density of the carbon material to suppress deterioration with the electrolyte ions, and increase the electric double layer capacity.
  • the nitrogen-containing gas may include nitrogen gas (N 2 ), nitrogen monoxide (NO), nitrogen dioxide (NO 2 ), ammonia (NH 3 ), and the like.
  • the gas may be obtained by heating a polymer containing nitrogen. .
  • melamine C 3 N 6 H 6
  • C 3 N 4 carbon nitride
  • -CN x carbon nitride
  • a gas containing nitrogen may be directly injected into the carbonaceous electrodes 110 and 210 that are energized at a predetermined flow rate, and may be injected by mixing with a hydrogen gas (H 2 ) or an argon gas (Ar). When such a gas mixed with nitrogen is injected into the carbon material electrode, it is possible to bind nitrogen to the surface of the carbon material.
  • a hydrogen gas H 2
  • an argon gas Ar
  • nitrogen per weight of the carbon material generally binds to the carbon material within the range of 0.1 to 5%.
  • This weight part may vary depending on the raw material of the carbon material and the functional group contained in the activation process of the carbon material. In other words, the smaller the graphitization degree of the carbonaceous raw material or the greater the degree of activation, the higher the possibility that the edge surface of the carbonaceous unit structure is replaced by nitrogen. It is preferable to include nitrogen within the range of 0.1-4 weight part in the case of digraphitization property, and 0.1-5 weight part in case of non-graphitization property.
  • the carbon material electrodes 110 and 210 having the surface-modified carbon material are finally obtained (S4).
  • the carbon material surface-modified in the carbon material electrodes 110 and 210 includes 10 to 100 ppm / g of adsorbed water, and an acidic functional group is finally formed to include 0.01 to 0.4 meq / g. If the adsorption water is less than 10 ppm / g and the acidic functional group is less than 0.01 meq / g, the wettability of the carbon material pores is not good. Due to the large amount present, the specific surface area of the carbonaceous material cannot be increased.
  • Density of the carbon material electrode (110, 210) for the electrochemical capacitor according to the present invention according to the above configuration and method has a density of 0.1 to 0.7g / ml, the capacitance per electrode volume of the two electrodes reference 1 to 25F / The ml may be excellently used for the electrodes of electrochemical capacitors, in particular of electro-double layer capacitors and hybrid capacitors.
  • An electrochemical capacitor consists of an electrode and an electrolyte consisting of a cathode and an anode.
  • the electrode refers to the carbonaceous electrodes 110 and 210 having a modified surface.
  • the type of electrolyte for the electrochemical capacitor is not specifically defined, but is generally selected in consideration of solubility, dissociation degree, viscosity of liquid, and the like, and an electrolyte having high conductivity and high potential difference is preferable.
  • the electrolyte solution is preferably selected from the group consisting of quaternary ammonium salts, quaternary imidazorium salts, quaternary pyridinium salts, quaternary horsehonium salts and quaternary spiro salts and mixtures thereof.
  • a quaternary ammonium salt such as Et 4 NBF 4 (Tetraethylammoniumtetrafluoroborate) or Et 3 MeNBF 4 (Triethylmethylammoniumtetrafluoroborate) is dissolved in an organic solvent such as PC (Propylene carbonate) and AcN (Acetonitrile).
  • an organic solvent such as PC (Propylene carbonate) and AcN (Acetonitrile).
  • PC Propylene carbonate
  • AcN AcN
  • Sheet consists of activated carbon (2,000m2 / g, Kuraray Co.), carbon black and PTFE in a weight ratio of 85:10:10, mixed and kneaded, and then roll-pressed to 180 ⁇ m Prepared to a thickness of.
  • Sheet-laminating electrode is a conductive adhesive (Acheson, Hitachi Chemical Co.) is applied to the etching aluminum foil (20 ⁇ m, Korea JCC Co.) 5 ⁇ m or less on one side or both sides and then the sheet It was adhered to one or both sides and roll-rolled at a roll surface of 80 ° C. to prepare 180 ⁇ m.
  • the sheet was energized in the structure as shown in FIG. In FIG. 2, the conductive terminals 130 were brought into contact with both ends of the sheet 110 having a size of 2.5 ⁇ 2.5 cm 2 and then energized under the conditions of DC 50V and 2A in the horizontal direction of the electrode surface. At energization, the atmosphere was once replaced with nitrogen and then maintained at 1 atm (760 mHg) or higher vacuum. Separation of the electrode was performed after replacing nitrogen at room temperature.
  • the sheet-laminating electrode was energized in the structure as shown in FIG.
  • An electrode having a sheet (2.5 ⁇ 2.5 cm 2) attached to one or both sides of the current collector 250 formed of an etched aluminum foil has the conductive terminals 230 in contact with the upper and lower portions as shown in FIG. 3A, and then the upper and lower portions of the electrode surface.
  • Direction was energized on condition of DC 10V and 60A.
  • the electrode with a sheet of 20 layers contacted the electricity supply terminal 230 up and down as shown in FIG. 3B, and it energized on condition of DC 10V and 60A in the up-down direction of the electrode surface.
  • the atmosphere was once replaced with nitrogen, and then maintained at a vacuum of 1 atmosphere or more. Separation of the electrode was performed after replacing nitrogen at room temperature.
  • the slurry coating electrode (Slurry-coating electorde) was energized in a structure as shown in FIG.
  • the slurry coated (2.5 ⁇ 2.5 cm 2) electrode coated on one or both surfaces of the current collector 250 formed of an etched aluminum foil is in contact with the conducting terminal 230 in the up and down direction as shown in FIG. , 60 A was supplied with electricity.
  • the slurry coating electrode of the 20 layer was energized under the condition of DC 10V, 60A in the vertical direction of the electrode surface after contacting the conducting terminal 230 up and down as shown in Figure 3b.
  • the atmosphere was once replaced with nitrogen, and then maintained at a vacuum of 1 atmosphere or more. Separation of the electrode was performed after replacing nitrogen at room temperature.
  • the sheet was attached to an etched aluminum foil as a current collector through a conductive adhesive (Acheson, Hitachi Chemical Co.), and the binding force was improved through a roll press maintaining a surface temperature of 150 ° C.
  • the sheet attachment electrode and the slurry coating electrode were cut into 2.5 ⁇ 2.5 cm 2, and one end surface of the current collector to which the electrode was not attached was cut long in the longitudinal direction and used as a terminal.
  • slurry coating electrodes, separators (Seperator, TF4035, Japan High Purity Industries, Ltd.), and laminated polymer pouches with three sides sealed, they are stacked in the order of 'cross-section carbon electrode / insulating film / section carbon electrode'.
  • the polymer bag has a space for separating and removing a gas that may be generated at an applied voltage of overvoltage.
  • the surface temperature of the electrode surface at the time of energization was measured by a thermocouple in contact with the electrode surface.
  • the capacitance of the electric double layer capacitor cell was charged and discharged by a constant current method in a charge / discharge tester (MACCOR, model name MC-4).
  • the charge and discharge of the electric double layer capacitor cell in the temperature chamber maintained at 25 °C was charged from 0 to 2.7V at a current density of 2mA / cm2 and then discharged to 0V under the same conditions.
  • the capacitance of the electric double layer capacitor cell was calculated by the following equation in the time-voltage curve at the tenth constant current discharge.
  • the capacitance per weight of activated carbon (F / g) was expressed as a value obtained by dividing the capacitance calculated in the above formula (1) by the weight of activated carbon based on one electrode.
  • the internal resistance (ESR) of the electric double layer capacitor cell was measured using an impedance analyzer (Zahner IM6) after 10 charges and discharges.
  • the internal resistance behavior was investigated in the frequency range of 100 kHz to 2.5 mHz, and the internal resistance (ESR) specified in the present invention showed an AC resistance value at 1 kHz.
  • the 3.5V capacity retention rate of the electric double layer capacitor cell was measured by a constant current method in a charge / discharge tester (MACCOR, model name MC-4).
  • the electric double layer capacitor cell was charged and discharged once from 0 to 3.5V at a current density of 2 mA / cm 2 in a temperature chamber maintaining 40 ° C, and then charged to 3.5V at the same current density and maintained for 100 hours. After 100 hours in a 3.5V state of charge, the electric double layer capacitor cell was discharged at the same current density, and the capacity retention rate (%) was calculated by the following equation.
  • Capacity retention rate (%) (1st discharge capacity-discharge capacity after 100h) / 1st discharge capacity ⁇ 100 ... (2)
  • a sheet having a size of 2.5 ⁇ 2.5 cm 2 was energized for 2 minutes at DC 50V and 2A in the direction horizontal to the electrode surface.
  • the energized electrode was attached to the etched aluminum cross section using a conductive adhesive, and the cell was composed of a 'electric sheet attachment electrode / separator / electric sheet attachment electrode' and then 1.2M of Et 4 NBF 4 was dissolved in AcN. .
  • the surface temperature was 120 ° C.
  • the specific capacitance at 2.7V and 1kHz resistance at AC were 121F / g and 86m ⁇ , respectively.
  • the capacity retention obtained in the 3.5V Aging test of the cell was 67%.
  • a sheet having a size of 2.5 ⁇ 2.5 cm 2 was energized for 4 minutes at DC 50V and 2A in the direction horizontal to the electrode surface.
  • the energized electrode was attached to the etched aluminum cross section using a conductive adhesive, and the cell was composed of a 'electric sheet attachment electrode / separator / electric sheet attachment electrode' and then 1.2M of Et 4 NBF 4 was dissolved in AcN. .
  • the surface temperature was 150 ° C.
  • the specific capacitance at 2.7V and 1kHz resistance at AC were 121F / g and 85m ⁇ , respectively.
  • the capacity retention obtained from the 3.5V Aging test of the cell showed 75%.
  • a sheet having a size of 2.5 ⁇ 2.5 cm 2 was energized for 5 minutes at DC 50V and 2A in the direction horizontal to the electrode surface.
  • the energized electrode was attached to the etched aluminum cross section using a conductive adhesive, and the cell was composed of a 'electric sheet attachment electrode / separator / electric sheet attachment electrode' and then 1.2M of Et 4 NBF 4 was dissolved in AcN. .
  • the surface temperature was 180 ° C.
  • the specific capacitance at 2.7V and 1kHz resistance at AC were 121F / g and 79m ⁇ , respectively.
  • the capacity retention obtained from the 3.5V Aging test of the cell was 85%.
  • the cell was composed of 'electric sheet attachment electrode / separation membrane / electric sheet attachment electrode' using only one layer of anode and one layer of anode, and then 1.2M of Et 4 NBF 4 was dissolved in AcN.
  • the surface temperature was 150 ° C when the sheet electrode was energized, and the specific capacitance at 2.7V and 1kHz resistance at AC were 125F / g and 72mPa, respectively.
  • the capacity retention obtained from the 3.5V Aging test of the cell was 80%.
  • the sheet-attached electrode in which a sheet having a size of 2.5 ⁇ 2.5 cm 2, was attached to the cross section of the etched aluminum foil with a conductive adhesive, constituted a cell as a 'sheet attaching electrode / separator / sheet attaching electrode' together with a separator.
  • These combinations were vacuum dried for 12 hours in a vacuum desiccator maintained at 150 ° C. Thereafter, 1.2 M of Et 4 NBF 4 was dissolved in AcN to prepare an electric double layer capacitor cell.
  • the specific capacitance at 2.7V and the 1kHz resistance at AC represent 121F / g and 92m ⁇ , respectively.
  • the capacity retention obtained from the 3.5V Aging test of the cell was 45%.
  • the slurry cross-coated electrode of 2.5 ⁇ 2.5 cm 2 was composed of a cell as 'slurry coating electrode / separation membrane / slurry coating electrode' together with the separator. These combinations were vacuum dried for 12 hours in a vacuum desiccator maintained at 150 ° C. Thereafter, 1.2 M of Et 4 NBF 4 was dissolved in AcN to prepare an electric double layer capacitor cell.
  • the specific capacitance at 2.7V and the 1kHz resistance at AC represent 121F / g and 92m ⁇ , respectively.
  • the capacity retention obtained from the 3.5V Aging test of the cell showed 35%.
  • Table 1 shows the experimental results according to the examples and the comparative examples.
  • the 2.7V test is discharged at 2mA / cm2 current density at 2.7V
  • 3.5V test is discharged at a current density of 2mA / cm2 after maintaining 100h at 40 °C and indicates the capacity retention ratio compared to the initial 3.V discharge capacity. .
  • Example 1 In Examples 1 to 3 in which the sheet was energized horizontally, the electrode surface temperature was increased as the energization time increased.
  • Example 3 the electrode surface temperature was increased up to 180 ° C, and as the electrode surface temperature was increased, the cell internal resistance was decreased, and the capacity retention rate was increased to 85% in the 3.5V Aging test.
  • the cell internal resistances of the electrode with the sheet of Example 4 and the slurry-coated electrode of Example 5, where the electrode surface temperature reached 150 ° C. by energizing up and down the electrode surface were 72 m ⁇ and 75 m ⁇ , respectively. Retention rates were 80% and 75%, respectively.
  • the surface of the carbon material since the surface of the carbon material is modified in a short time due to Joule's heat generation, the surface of the carbon material may be modified by applying Joule heat.
  • acidic functional groups can be removed efficiently in a short time, and the electrochemical capacitor using the same is a useful method of improving capacity retention while minimizing the sacrifice of capacity. Therefore, the carbon material electrodes 110 and 210 and the capacitors manufactured through the above method exhibit higher output characteristics than the conventional electrodes and capacitors.
  • the present invention relates to an electrochemical capacitor including a carbon electrode electrode surface modification method, a surface-modified carbon electrode and a carbon electrode by electricity, and more particularly, directly to the carbon electrode manufactured by using a carbon material Method of surface modification of carbonaceous electrode, surface modified carbonaceous electrode and carbonaceous electrode by applying electricity to Joule's heat to remove functional group or adsorbed water present in carbonaceous pores of carbonaceous electrode within a short time Available in the field of chemical capacitors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

본 발명은, 탄소재 전극을 준비하는 단계와; 상기 탄소재 전극에 통전단자를 결착시키는 단계와; 상기 탄소재 전극에 존재하는 산성 관능기(Acidic functional group) 또는 흡착수가 제거되도록 상기 통전단자에 전류를 인가하여 줄열(Joule's heat)을 발생시키는 단계를 포함하는 것을 기술적 요지로 한다. 이에 의해, 탄소재를 포함하여 제조된 탄소재 전극에 직접 전기를 가하여 줄열(Joule's heat)에 의해 단시간 내에 탄소재 전극의 탄소재 기공에 존재하는 관능기 또는 흡착수를 제거가능한 효과를 제공한다.

Description

통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극 및 표면개질된 탄소재 전극을 포함한 전기화학 커패시터
본 발명은 통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극 및 탄소재 전극을 포함한 전기화학 커패시터에 관한 것으로, 더욱 상세하게는, 탄소재를 포함하여 제조된 탄소재 전극에 직접 전기를 가하여 줄열(Joule's heat)에 의해 단시간 내에 탄소재 전극의 탄소재 기공에 존재하는 관능기 또는 흡착수를 제거가능한 통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극 및 탄소재 전극을 포함한 전기화학 커패시터에 관한 것이다.
전기화학 커패시터 중 하나인 전기이중층 커패시터(Electric double layer capacitor, EDLC)와 하이브리드 커패시터(Hybrid capacitor) 등은 높은 출력밀도, 반영구적인 사이클 특성, 넓은 범위의 온도에서 사용가능하다는 장점과, 중금속을 포함하지 않아 친환경적이라는 장점이 있다. 이러한 장점에 의해 최근에 가전, 휴대통신기기, 자동차 및 ESS(Energy Storage System) 분야의 파워 전원으로 널리 사용되고 있는 기술이다. 전기화학 커패시터는 화학반응을 이용하는 일반적인 배터리와는 달리 전극과 전해질의 계면에 형성되는 전기이중층이라 불리는 이온층에 전하를 저장하는 메커니즘으로 이루어져 있다.
일반적으로 전기화학 커패시터의 출력 용량은 전극의 비표면적, 전극 간의 간격, 전극의 세공분포, 전극의 전기전도성 등에 의해 결정된다. 즉, 전극의 비표면적이 크고, 전극의 간격이 좁으며, 전극의 세공분포가 균일하고, 전극의 전기전도성이 높을수록 더 큰 출력용량을 갖게 되므로 이러한 특징을 갖는 전극재료를 사용하는 것이 바람직하다. 따라서 이러한 특성을 가지면서 전기전도성이 높고 전기화학적으로 안정적이며 가격이 저렴한 활성탄(Active carbon)과, 최근에 활발히 연구가 진행되고 있는 그래핀(Graphene)과 같은 탄소재를 전극재료로 많이 사용하고 있다.
전기화학 커패시터의 출력용량은 이들 탄소재의 비표면적에 가장 큰 영향을 받지만, 충방전 수명, 누설전류, 자가방전 등과 같은 전기화학 커패시터의 장기적인 신뢰성 특성은 계면의 관능기와 기공에 존재하는 흡착수에 영향을 받는다. 예를 들어, 탄소재의 표면에 존재하는 산성 관능기(Acidic functional group)는 인가전압이 높을수록 전해액과 반응하여 프로필렌, 수소가스, 이산화탄소가스 등을 생성하게 된다. 이들은 탄소재 표면에서의 전해질 이온들의 물리적 흡착과 탈착 거동에 악영향을 주어 전기화학 커패시터의 출력용량 및 장기적인 신뢰성을 떨어뜨린다. 이러한 문제를 해소하여 전기화학 커패시터의 출력용량과 장기적인 신뢰성을 개선하기 위해서는 탄소재 표면에 존재하는 관능기 또는 흡착수를 최소화하는 표면 개질 기술이 필요하다.
탄소재의 표면 개질 기술로는 종래기술 '대한민국특허청 등록특허 제10-1321523호 NaOH의 화학적 활성화에 의한 커패시터 전극용 탄소재 및 이를 이용한 커패시터'와 같이 활성탄을 고온에서 열처리하여 활성탄의 표면에 존재하는 산성 관능기를 제거하여 흡착수를 용이하게 제거하거나 비활성 관능기로 치환하는 기술이 알려져 있다. 이는 열처리가 고온에서 장기간으로 이루어짐에 따라 미세기공이 폐쇄되는 등의 활성탄 기공구조를 변화시켜 전체 비표면적을 감소시킨다는 문제점이 있다.
또한 다른 종래기술 '대한민국특허청 공개특허 제10-2003-0010834호 플라즈마 표면 처리장치 및 이를 이용한 플라즈마 표면처리방법' 및 '대한민국특허청 공개특허 제10-2005-0106258호 플라즈마를 이용한 탄소재 표면 처리 방법 및 장치'와 같이 플라즈마 처리방법 등을 제시하고 있으나, 이 역시 최소한의 샘플에 의한 처리 방법으로 대량 처리기술에 적용하기 어려워 상업적으로 용이하게 이용할 수 없다는 문제점이 있다.
이와 같이 탄소재를 표면개질 하기 위한 종래기술들은 상기와 같이 여럿 알려져 있지만 탄소재를 통해 제조된 상태의 전극을 표면개질하기 위한 기술은 연구 및 개발이 더 필요한 상황이다.
따라서 본 발명의 목적은 탄소재를 포함하여 제조된 탄소재 전극에 직접 전기를 가하여 줄열(Joule's heat)에 의해 단시간 내에 탄소재 전극의 탄소재 기공에 존재하는 관능기 또는 흡착수를 제거가능한 통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극 및 탄소재 전극을 포함한 전기화학 커패시터를 제공하는 것이다.
상기한 목적은, 탄소재 전극을 준비하는 단계와; 상기 탄소재 전극에 통전단자를 결착시키는 단계와; 상기 탄소재 전극에 존재하는 산성 관능기(Acidic functional group) 또는 흡착수가 제거되도록 상기 통전단자에 전류를 인가하여 줄열(Joule's heat)을 발생시키는 단계를 포함하는 것을 특징으로 하는 통전에 의한 탄소재 전극 표면 개질방법에 의해 달성된다.
여기서, 상기 탄소재 전극은, 탄소재, 도전재 및 바인더를 반죽 및 압연한 시트형상이며, 도전성 접착제를 이용하여 집전체에 라미네이팅(Laminating)되거나, 탄소재, 도전재 및 바인더를 혼합한 탄소재 슬러리(Slurry)를 집전체에 코팅(Coating)하여 형성되는 것이 바람직하다.
또한, 상기 통전단자에 전류를 인가하여 줄열 발생시키는 단계는, 질소 원소를 포함하는 가스 분위기 하에서 이루어지며, 상기 탄소재가 표면개질된 상기 탄소재 전극을 획득하는 단계를 더 포함하는 것이 바람직하다.
상기한 목적은, 탄소재, 도전재 및 바인더를 포함하는 표면개질된 탄소재 전극에 있어서, 상기 탄소재는, 인가된 전류에 의해 생성되는 줄열(Joule's heat)을 이용하여 상기 탄소재의 기공에 존재하는 산성 관능기(Acidic functional group) 또는 흡착수가 제거된 것을 특징으로 하는 표면개질된 탄소재 전극에 의해서도 달성된다.
상기한 목적은 또한, 음극, 양극 및 전해액을 포함하는 전기화학 커패시터에 있어서, 상기 음극 및 상기 양극 중 적어도 어느 하나는 탄소재 전극으로 이루어지며, 상기 탄소재 전극은, 인가된 전류에 의해 생성되는 줄열(Joule's heat)을 이용하여 기공에 존재하는 산성 관능기(Acidic functional group) 또는 흡착수가 제거된 탄소재를 포함하는 것을 특징으로 하는 전기화학 커패시터에 의해서도 달성된다.
상술한 본 발명의 구성에 따르면, 탄소재를 포함하여 제조된 탄소재 전극에 직접 전기를 가하여 줄열(Joule's heat)에 의해 단시간 내에 탄소재 전극의 탄소재 기공에 존재하는 관능기 또는 흡착수를 제거가능한 효과를 제공한다.
도 1은 본 발명의 실시예에 따른 탄소재 전극 표면 개질방법의 순서도이고,
도 2는 제1실시예 1 내지 3에 따른 탄소재 전극에 통전단자를 결착한 상태의 평면도이고,
도 3a 및 도 3b는 제2실시예 4 및 5에 따른 탄소재 전극에 통전단자를 결착한 상태의 정면도이다.
이하 도면을 참조하여 본 발명에 따른 통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극 및 탄소재 전극을 포함한 전기화학 커패시터를 상세히 설명한다.
먼저, 도 1에 도시된 바와 같이 탄소재 전극을 준비한다(S1).
탄소재 전극은 탄소재 분말을 포함하는 전극을 말하며, 탄소재, 도전재 및 바인더로 구성된다. 탄소재 분말만을 통전한 후 전극을 제조하여도 무방하지만, 탄소재 기공에 존재하는 수분과 산성 관능기를 최소화하고, 공정을 단순화하기 위해서는 탄소재 전극 상태에서 통전을 실시하는 것이 효율적이다.
탄소재는 활성탄(Active carbon), 카본블랙(Carbon black), 흑연(Graphite), 그래핀(Graphene), 하드카본(Hard carbon), 카본나노섬유(Carbon nano fiber), 카본나노튜브(Carbon nano tube) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하며, 그 중 활성탄이 가장 바람직하다.
활성탄은 페놀, 석유계 피치, 코크스 및 목질계 탄소소재로부터 수증기 또는 알칼리 활성화 방법에 의해 제조된 것을 사용한다. 활성탄 제조방법 중 활성탄의 활성화 및 세정 공정에서 일반적으로 금속불순물과 함께 표면에 카르보닐(Carbonyl), 카르복실(Carboxyl) 및 케톤(Ketone) 등과 같은 산성 관능기(Acidic functional group)가 도입되고, 이들 관능기에 의해 수분이 흡착되어 활성탄의 기공에 잔존한다. 기공에 잔존하는 산성 관능기는 전해액들의 기공 젖음성 향상에 일부 도움이 되기는 하지만, 대부분 관능기와 흡착수는 전해액들과 기공에서 전기화학적 비가역 반응에 의한 가스가 발생되거나 폴리머 퇴적물이 생성될 가능성이 높기 때문에 산성 관능기와 흡착수를 최소화하여야 한다.
본 발명에서 사용되는 탄소재는 10 내지 5000㎡/g 범위의 비표면적을 가지는 것을 사용한다. 비표면적인 10㎡/g 미만과 같이 너무 작을 경우 전기를 통할 때 저항이 적어 줄열(Joule's heat) 발생이 어렵고, 비표면적이 5000㎡/g을 초과하여 너무 크면 높은 줄열이 발생하여 기공구조의 변화가 발생할 수 있다. 따라서 탄소재의 기공구조 변화를 최소화하고 산성 관능기를 제거하기 위해서 비표면적은 10 내지 5000㎡/g, 더욱 바람직하게는 10 내지 2500㎡/g 범위인 것을 사용하여야 한다.
도전재의 경우 카본블랙(Carbon black), 흑연(Graphite), 그래핀(Graphene), 하드카본(Hard carbon), 카본나노섬유(Carbon nano fiber), 카본나노튜브(Carbon nano tube), 금속분말 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 선택하여 사용하며, 0.01 내지 10㎛의 직경인 것이 바람직하다. 도전재의 직경이 0.01㎛ 미만일 경우 도전성이 저하될 수 있으며, 10㎛를 초과할 경우 탄소재와 고르게 혼합되지 못하게 된다.
여기서 바인더는 폴리테트라플루오로에틸렌(PTFE, Polytetrafluoroethylene)이 가장 바람직하다. PTFE는 0.1 내지 0.5㎛의 직경을 가진 것을 사용할 수 있으며, 고형분 상태 단독 또는 고형분이 물(H2O), 크실렌(Xylene), 메탄올(Methanol), 에탄올(Ethanol), 이소프로판올(Isopropanol), 톨루엔(Toluene), 부틸 아세테이트(Butyl acetate) 등에 분산된 에멀젼(Emulsion) 상태로 사용할 수 있다. PTFE는 우수한 내화학성, 내열성 및 기계적 강도가 우수하기 때문에 전극을 구성하기 위해 압연을 반복할수록 PTFE의 네트워크 구조가 발달하게 된다. 네트워크 구조가 발달하면 내부에 탄소재 및 도전재를 고착시키므로 충진밀도를 높임과 동시에 탄소재 및 도전재들 간의 접촉저항을 감소시켜 전극의 전기적 특성을 개선시킨다.
탄소재, 도전재 및 바인더를 혼합하여 혼합물을 형성하고, 이를 반죽 및 압연하여 시트 형상의 탄소재 전극을 형성한다. 혼합물은 일정한 점도를 유지하면서 볼밀(Ball mill) 또는 임펠라(Impeller)를 이용하여 반죽할 수 있으며, 혼합물에는 필요시 분산용매를 추가로 혼합할 수 있다.
혼합물을 압연하여 시트 형상으로 탄소재 전극을 제조하는 방법으로는, 롤 프레스를 이용하여 시트를 얇게 압연한 후 시트를 접고 다시 압연하는 것을 다수 반복하여 형성된다. 이는 초기 압연에는 바인더 특히 PTFE의 섬유 수지가 늘어나 네트워크 구조를 형성하고 반복적으로 압연이 진행될수록 PTFE의 섬유 수지에 의한 치밀한 네트워크 구조가 발달하여 전극의 전기적, 기계적 특성이 개선되기 때문이다. 압연은 10 내지 50회 정도로 반복하는 것이 바람직하며, 상하 동일 반경의 롤을 단독으로 사용하거나 복수의 롤이 연속적으로 시트를 압연하여 두께를 조절하는 방식을 사용 가능하다.
탄소재 전극의 조성은 탄소재 100중량부에 대해 도전재 3 내지 20중량부, 바인더 2 내지 10중량부로 구성된다. 또한 탄소재 전극은 전극밀도가 0.1 내지 0.7g/ml이며, 두께는 30 내지 250㎛인 것이 바람직하다. 도전재가 3중량부 미만일 경우 전극의 도전성이 양호하지 못하며, 도전재가 20중량부를 초과할 경우 상대적으로 다른 성분들의 비율이 낮아지게 된다. 또한 바인더가 2중량부 미만일 경우 시트의 형상을 제대로 유지할 수 없으며, 10중량부를 초과할 경우 탄소재 및 도전재의 함유량이 적어 도전성이 감소하게 된다. 탄소재 전극의 전극밀도가 0.1g/ml 미만일 경우 밀도가 낮아 도전성이 양호하지 못하며, 0.7g/ml를 초과할 경우 밀도가 높아 탄소재 시트 형상을 제대로 이루지 못할 수 있다.
경우에 따라서, 제조된 탄소재 전극을 집전체와 결합한다(S1').
S1 단계에서 제조된 시트 형상의 탄소재 전극을 집전체에 라미네이팅(Laminating) 할 수 있다. 또한 시트 형상의 탄소재 전극이 아닌 탄소재 슬러리(Slurry)를 코팅(Coating)하여 집전체에 직접 탄소재 전극을 형성할 수도 있다. 여기서 집전체는 알루미늄 호일(Al foil)이 가장 바람직하나 이에 한정되지는 않는다.
탄소재 시트를 라미네이팅하는 방법으로는, 먼저 시트 형상의 탄소재 전극을 제조한 후 이를 도전성 접착제를 이용하여 집전체와 라미네이팅하는 것으로, 이러한 방법을 통해 집전체에 결합한다.
도전성 접착제는 도전재 및 바인더로 구성할 수 있다. 그 중 도전재는 카본블랙, 하드카본, 흑연, 그래핀, 카본나노섬유, 카본나노튜브, Al 분말, Pt 분말, Ni 분말, Cu 분말, Au 분말, 스테인레스스틸 분말 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 사용할 수 있으며, 형상 인자(Aspect ration)가 0.5 이상인 분말의 평균 입자는 0.1 내지 1㎛가 바람직하며, 형상 인자가 0.5 미만인 분말의 평균 입자는 장축이 1 내지 20㎛인 것을 사용할 수 있다.
바인더는 카복시메틸셀룰로오스(CMC, Carboxymethylcellulose), 폴리비닐알콜(PVA, Polyvinylalcohol), 폴리비닐피롤리돈(PVP, Polyvinylpyrrolidone), 폴리비닐렌플로라이드(PVDF, Polyvinylidene fluoride), 메틸셀룰로오스(MC, Methyl cellulose), 폴리아크릴산(PAA, Polyacrylic acid), 라텍스 계열인 에틸렌-염화비닐 공중합수지(Ethylene-vinyl chloride polymer), 염화비닐리덴 라텍스(Vinylidene chloride latex), 염소화 수지(Chlorinated polymer), 초산 비닐 수지(Polyvinyl acetate), 폴리비닐 부티랄(Polyvinyl butyral), 폴리비닐 포름알(Polyvinyl acetal), 비스페놀계 에폭시 수지(Biphenol epoxy resin) 및 스티렌 부타디엔 고무(SBR, Styrene butadiene rubber) 계열인 부타디엔 고무(Butadiene rubber), 이소프렌 고무(Isoprene rubber), 니트릴 부타디엔 고무(Nitrile butadiene rubber), 우레탄 고무(Urethan rubber), 실리콘 고무(Silicon rubber), 아크릴 고무(Acrylic rubber) 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.
도전성 접착제의 조성은 고형분 기준으로 도전재 100중량부에 대해 바인더는 5 내지 50중량부로 구성할 수 있다. 바인더가 5중량부 미만일 경우 바인더의 함유량이 적어 접착 역할을 제대로 수행하지 못하며, 바인더가 50중량부를 초과할 경우 도전재의 함유량이 적어 도전성이 낮아질 수 있다. 도전성 접착제는 주로 알루미늄 호일로 된 집전체에 도포되며, 도포 두께는 1 내지 10㎛의 범위 내에서 조절이 가능하다.
이와 같이 시트 형상의 탄소재 전극을 제조하여 집전체와 라미네이팅하는 방법 이외에도, 탄소재 슬러리를 집전체에 직접 코팅하는 방법을 사용하여 탄소재 전극을 제조할 수도 있다. 이때 탄소재 슬러리가 용이하게 코팅될 수 있도록 에칭(Etching)한 집전체를 사용하는 것이 바람직하다.
탄소재 슬러리는 탄소재 전극을 제조할 때 사용한 도전재 및 바인더를 사용하며, 탄소재 시트를 제조할 때보다 낮은 점도를 갖도록 희석 용매를 추가한다. 이를 통해 제조된 혼합액을 원하는 두께가 되도록 집전체에 여러 번 코팅하여 탄소재를 포함하는 전극을 제조한다.
탄소재 전극에 통전단자를 결착시킨다(S2).
탄소재 전극 단독 또는 집전체에 결합된 탄소재 전극의 양단부에 통전단자를 결착시켜 탄소재 전극에 전류를 가할 수 있도록 한다. 탄소재 전극에 통전단자를 결착시키는 방법은 도 2 및 도 3과 같이 이루어질 수 있다.
통전단자에 전류를 가하여 줄열을 발생시킨다(S3).
탄소재 전극에 결착된 통전단자를 통해 탄소재 전극에 전류를 가하여 표면개질을 실시한다. 탄소재 전극에 전류를 흘리게 되면 탄소재 분말 간의 접촉저항 및 탄소재 기공구조에 의해 저항이 발생하게 되고, 이들 탄소재에 줄열(Joule's heat)이 발생하게 된다.
탄소재 전극에 순간적인 전력 공급에 의해 줄열이 발생하게 되면 이로 인해 급격한 온도 변화가 일어나게 되면서 짧은 시간에 산성 관능기 또는 흡착수를 용이하게 제거할 수 있다. 즉 줄열이 발생하면 탄소재 기공에 존재하는 카르보닐기(Carbonyl), 카르복실기(Carboxyl) 또는 케톤기(Ketone)와 같은 산성 관능기 또는 기공에 흡착된 수분이 일산화탄소(CO), 이산화탄소(CO2) 또는 수소(H2) 등으로 가스화되어 외부로 배출된다.
통전을 실시할 때 탄소재 전극의 상부 및 하부에 각각 통전단자를 결착하거나 좌우 방향에 각각 통전단자를 결착할 수 있으며, 이러한 통전단자의 위치는 어느 방향이든 탄소재 전극에 전류를 흘릴 수 있다면 무방하다.
이를 상세히 설명하면 도 2는 하기의 제 1 내지 3실시예에 따른 탄소재 전극(110)의 평면도를 나타낸 것으로 탄소재 전극(110)의 좌우 양단에 통전단자(130)를 결착한다. 좌우 양단에 통전단자(130)를 결착하게 되면 일단의 (+) 단자(131)에서 타단의 (-) 단자(133)로 전류가 흐르게 되고 이를 통해 탄소재 전극(110)에 존재하는 산성 관능기 또는 흡착수가 제거된다.
도 3a는 하기의 제4 및 5실시예에 따른 탄소재 전극(210)의 상부 및 하부에 통전단자(230)가 결착된 정면도를 나타낸 것으로, 도면에 따르면 탄소재 전극(210) 및 집전체(250)를 포함하는 탄소재 전극(210)의 상단에 설치된 (+) 단자(231)에서 하단에 설치된 (-) 단자(233)로 전류가 흐르게 된다. 이는 도 3b와 같이 복수의 탄소재 전극(210)을 적층시켜 여기에 한꺼번에 전류를 흘려 탄소재를 표면개질하는 것도 가능하다.
이와 같이 탄소재 전극(110, 210)에 인가되는 전류의 형태는 직류 또는 교류 중 어느 하나를 사용해도 무방하며, 직류를 펄스 형태로 인가하여도 탄소재 전극(110, 210)에 줄열이 발생한다. 여기서 공급되는 전류의 전력밀도는 1 내지 100W/㎤인 것이 바람직하며, 이때 줄열은 30 내지 300℃의 온도가 발생하게 된다. 전력밀도가 1W/㎤ 미만일 경우 원하는 만큼의 줄열이 발생하기 어려우며, 100W/㎤를 초과할 경우 과도하게 온도가 상승하여 탄소재 전극 내의 탄소재 기공의 형상이 변화할 수 있다.
탄소재 전극(110, 210)에 전류를 가하여 줄열을 발생시키는 단계에서 탄소재 전극(110, 210)에 가스를 주입시키는 단계를 더 포함할 수 있다(S2').
질소(N), 수소(H) 및 불소(F) 원소 등이 포함된 가스(Gas)를 탄소재 전극(110, 210)에 주입시키거나, 가스 분위기 하에서 탄소재 표면에 질소, 수소 및 불소 등의 이종원소(Heteroatom)를 흡착시키는 것이 가능하다. 탄소재 전극(110, 210)에 통전하는 단계에서 줄열에 의해 산성 관능기는 제거되고, 여기에 가스를 주입할 경우 이종원소를 포함하는 탄소구조가 탄소재의 기공에 형성된다.
예를 들면, 질소(N) 원소를 포함하는 가스를 통과시키는 것에 의해 탄소재 표면에 피리돈(Pyrydone), 피로릭(Pyrrolic), 피리디닉(Pyrydinic) 및 쿼터너리(Quaternary) 등과 같은 탄소구조가 형성된다. 이들 질소 원소를 포함하는 탄소구조는 기공에 흡착되어 산성 관능기의 재형성을 억제하고, 탄소재의 분극 및 전하밀도를 높여 전해질 이온과의 열화를 억제하고, 전기이중층 용량을 증대시키는 효과를 가져온다.
여기서 질소 원소를 포함하는 가스로는 질소기체(N2), 일산화질소(NO), 이산화질소(NO2), 암모니아(NH3) 등이 있으며, 이러한 가스는 질소를 포함하는 폴리머를 가열하여 얻을 수 있다. 예를 들어, 멜라민(Melamine, C3N6H6)을 350℃ 이상에서 가열하면 카본 나이트라이드(Carbon nitride, C3N4)와, -CNx로 분해되고, 800℃ 이상에서부터 질소분자로 분해가 진행되어 질소분자가 결착된다.
질소를 포함하는 가스를 일정 유량으로 통전 중인 탄소재 전극(110, 210)에 직접 주입할 수 있으며, 수소기체(H2) 또는 아르곤기체(Ar) 등과 혼합하여 주입할 수 있다. 이러한 질소 및 질소가 혼합된 가스를 탄소재 전극에 주입하게 되면 탄소재의 표면에 질소를 결착시키는 것이 가능하다.
질소를 포함하는 가스를 탄소재 전극(110, 210)에 통과시키면 탄소재의 중량당 질소는 일반적으로 0.1 내지 5%의 범위 내에서 탄소재과 결착한다. 이러한 중량부는 탄소재의 원료와 탄소재의 활성화 처리과정에서 함유 관능기에 따라 달라질 수 있다. 즉 탄소재 원료의 흑연화도가 적을수록 혹은 활성화의 정도가 심할수록 탄소재의 단위구조에서 가지는 엣지(Edge)면이 질소로 대체할 가능성이 높다. 탄소재의 원료가 이흑연화성의 경우 0.1 내지 4중량부, 난흑연화성의 경우 0.1 내지 5중량부의 범위 내에서 질소를 포함시키는 것이 바람직하다.
이와 같이 탄소재 전극(110, 210)에 산성 관능기 또는 흡착수를 제거한 후에 최종적으로 탄소재가 표면개질된 탄소재 전극(110, 210)을 획득한다(S4).
탄소재 전극(110, 210)에서 표면개질된 탄소재는 흡착수를 10 내지 100ppm/g 포함하며, 산성 관능기는 0.01 내지 0.4meq/g 포함하도록 최종적으로 형성된다. 흡착수가 10ppm/g 미만이고 산성 관능기가 0.01meq/g 미만일 경우 탄소재 기공의 젖음성이 양호하지 못하며, 흡착수가 100ppm/g를 초과하고 산성 관능기가 0.4meq/g를 초과할 경우 흡착수 또는 산성 관능기가 존재하는 양이 많아 탄소재의 비표면적을 증가시킬 수 없다.
상기의 단계(S1 ~ S4)들을 통해 탄소재 전극 내의 탄소재를 표면개질하게 되면, 통전에 의한 줄열을 이용하여 단시간 내에 표면 개질을 행함으로써 탄소재의 기공 구조 변화를 최소화할 수 있다. 이로 인해 기공 내부에 포함된 산성 관능기 또는 흡착수 등과 같은 불순물을 제거시켜 탄소재의 비표면적이 크도록 하며, 열을 단시간에 가하기 때문에 기공의 분포가 변하지 않고 균일하다는 장점이 있다. 이와 같이 표면개질된 탄소재 전극(110, 210)을 포함하는 전기화학 커패시터는 출력특성이 향상되며, 장기적인 신뢰성이 증가하게 된다.
상기와 같은 구성 및 방법에 의한 본 발명에 따른 전기화학 커패시터용 탄소재 전극(110, 210)의 밀도는 0.1 내지 0.7g/ml을 가지며, 2전극 기준의 전극 체적 당 정전용량이 1 내지 25F/ml일 경우 전기화학 커패시터 특히, 전기이중층 커패시터 및 하이브리드 커패시터의 전극에 우수하게 사용될 수 있다.
전기화학 커패시터는 음극 및 양극으로 이루어진 전극과 전해액으로 이루어진다. 여기서 전극은 표면이 개질된 탄소재 전극(110, 210)을 말한다.
전기화학 커패시터의 전해액 종류는 특별히 규정하지는 않지만 일반적으로 용질의 용해도, 해리도, 액의 점성 등을 고려하여 선택하며, 높은 전도율 및 높은 전위차를 가지는 전해액이 바람직하다. 전해액에는 4급 암모늄 염, 4급 이미다죠리움염, 4급 피리지니움염, 4급 호스호니움염 및 4급 스파이로염 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다. 대표적인 예로서 Et4NBF4(Tetraethylammoniumtetrafluoroborate) 또는 Et3MeNBF4(Triethylmethylammoniumtetrafluoroborate)와 같은 4급 암모늄염을 PC(Propylene carbonate) 및 AcN(Acetonitrile) 등과 같은 유기용매에 용해한 것을 사용한다. 단 수계 전해액은 전기화학적 분해전압이 낮아 전기화학 커패시터의 사용전압이 제한되므로 유기용매 전해액을 사용하는 것이 바람직하다.
이하에서는 본 발명의 구체적인 실험 실시예 및 비교예를 설명한다. 그러나 하기의 실시예에서는 본 발명을 보다 구체적으로 설명하기 위해 제공하는 것일 뿐, 본 발명의 기술적 범위를 한정하는 것은 아니다.
<제조 및 통전방법>
(a) 활성탄 전극의 제조방법
1) 시트(Sheet)는 활성탄(2,000㎡/g, Kuraray Co.), 카본블랙 및 PTFE를 85 : 10 : 5의 중량비로 구성하여 혼합 및 반죽을 행한 후 롤프레싱(roll-pressing)하여 180㎛의 두께로 제조하였다.
2) 시트 부착 전극(Sheet-laminating electrode)은 도전성 접착제(Acheson, Hitachi Chemical Co.)를 에칭 알루미늄 호일(20㎛, 한국 JCC Co.)에 5㎛ 이하로 단면 혹은 양면에 도포한 후 상기 시트를 단면 혹은 양면에 부착시키고 롤(roll) 표면이 80℃인 상태에서 롤프레싱하여 180㎛로 제조하였다.
3) 슬러리 코팅 전극(Slurry-coating electorde)은 활성탄(2,000㎡/g, Kuraray Co.), 카본블랙 및 혼합 바인더(CMC : SBR = 40 : 60중량비)를 85 : 8 : 7중량비로 구성된 수계 슬러리를 제조한 후 에칭 알루미늄 호일(20㎛, 한국 JCC Co.)의 단면 혹은 양면에 코팅하였다. 도포된 전극은 80℃에서 건조한 후 롤 표면이 80℃인 상태에서 롤프레싱하여 180㎛ 두께의 슬러리 코팅 전극을 제조하였다.
(b) 활성탄 전극의 통전방법
1) 시트는 도 2에 도시된 바와 같은 구조로 통전하였다. 도 2에서 2.5×2.5㎠ 크기의 시트(110)의 양단에 통전단자(130)를 접촉시킨 후 전극면의 수평방향으로 DC 50V, 2A의 조건으로 통전하였다. 통전 시 분위기는 질소로 한번 치환한 후 1기압(760mHg) 이상의 진공을 유지하였으며, 전극의 분리는 상온에서 질소를 치환한 후 행하였다.
2) 시트 부착 전극(Sheet-laminating electrode)은 도 3에 도시된 바와 같은 구조로 통전하였다. 에칭 알루미늄 호일로 형성된 집전체(250)의 단면 또는 양면에 시트(2.5×2.5㎠)가 부착된 전극은 도 3a와 같이 상부 및 하부에 통전단자(230)를 접촉시킨 후 전극면의 상부 및 하부방향으로 DC 10V, 60A의 조건으로 통전하였다. 또한 20층의 시트 부착 전극은 도 3b와 같이 상하에 통전단자(230)를 접촉시킨 후 전극면의 상하방향으로 DC 10V, 60A의 조건으로 통전하였다. 통전 시 분위기는 질소로 한번 치환한 후 1기압 이상의 진공을 유지하였으며, 전극의 분리는 상온에서 질소를 치환한 후 행하였다.
3) 슬러리 코팅 전극(Slurry-coating electorde)은 도 3에 도시된 바와 같은 구조로 통전하였다. 에칭 알루미늄 호일로 형성된 집전체(250)의 단면 혹은 양면에 코팅된 슬러리 코팅(2.5×2.5㎠) 전극은 도 3a와 같이 상하에 통전단자(230)를 접촉시킨 후 전극면의 상하방향으로 DC 10V, 60A의 조건으로 통전하였다. 또한 20층의 슬러리 코팅 전극은 도 3b와 같이 상하에 통전단자(230)을 접촉시킨 후 전극면의 상하방향으로 DC 10V, 60A의 조건으로 통전하였다. 통전 시 분위기는 질소로 한번 치환한 후 1기압 이상의 진공을 유지하였으며, 전극의 분리는 상온에서 질소를 치환한 후 행하였다.
(c) 전기이중층 커패시터 셀 제조
시트는 집전체인 에칭 알루미늄 호일에 도전성 접착제(Acheson, Hitachi Chemical Co.)를 통해 부착하고, 150℃의 표면온도를 유지하는 롤프레스를 통해 결착력을 향상시켰다.
시트 부착 전극 및 슬러리 코팅 전극은 2.5×2.5㎠으로 재단하고 전극이 부착되지 않는 집전체의 한쪽 끝 면은 길이 방향으로 길게 재단하여 단자로써 활용하였다. 시트 부착 전극 및 슬러리 코팅 전극, 격리막(Seperator, TF4035, 일본 고순도 공업(주)) 및 3면이 밀폐된 라미네이트 폴리머 파우치를 이용하여 '단면탄소전극/격리막/단면탄소전극'의 순으로 적층한 후 폴리머 봉지에 삽입한다. 그 후 진공 감가압이 가능한 전해액 주입기에서 아세토니트릴(Acetonitrile, AcN)에 1.2M의 Et4NBF4이 용해된 전해액을 함침하고 진공 팩하였다. 폴리마 봉지는 과전압의 인가전압에서 발생할 수 있는 가스를 따로 분리 및 제거할 수 있는 공간이 미리 확보되어 있다.
<측정방법>
(a) 통전 시 전극 표면온도 측정
통전 시 전극 면의 표면 온도는 전극 면에 접촉시킨 열전대(Thermal couple)로 측정하였다.
(b) 2.7V 정전용량 측정
전기이중층 커패시터 셀의 정전용량은 충방전 시험기(MACCOR, 모델명 MC-4)에서 정전류법으로 충전과 방전을 행하였다. 25℃를 유지하는 온도 챔버 내부에서 전기이중층 커패시터 셀의 충전과 방전은 2mA/㎠의 전류밀도로 0에서 2.7V까지 충전한 후 동일한 조건으로 0V까지 방전하였다. 전기이중층 커패시터 셀의 정전용량은 10번째의 정전류 방전에서의 시간-전압의 곡선에서 아래의 식에 의해 계산하였다.
C(정전용량, F) = dt·i/dV ... (1)
활성탄 중량당 정전용량(F/g)은 상기 (1)식에서 계산한 정전용량을 한쪽 전극 기준의 활성탄 중량으로 나눈 값으로 표현하였다.
(c) AC 저항 측정
전기이중층 커패시터 셀의 내부저항(ESR)은 10번의 충전과 방전을 행한 후 임피던스 분석기(Zahner IM6)를 이용하여 측정하였다. 내부저항 거동은 100kHz 내지 2.5mHz 주파수 범위에서 조사하였고, 본 발명에서 명시한 내부저항(ESR)은 1kHz에서의 AC 저항 값을 나타내었다.
(d) 3.5V에서의 용량 유지율 측정
전기이중층 커패시터 셀의 3.5V 용량 유지율은 충방전 시험기(MACCOR, 모델명 MC-4)에서 정전류법으로 측정하였다. 40℃를 유지하는 온도 챔버 내부에서 전기이중층 커패시터 셀을 2mA/㎠의 전류밀도로 0에서 3.5V까지 1회 충전 및 방전한 후 동일한 전류밀도로 3.5V까지 충전하고 100시간 유지하였다. 3.5V 충전 상태에서 100시간이 경과한 전기이중층 커패시터 셀은 동일 전류밀도로 방전하였으며, 이때 용량유지율(%)은 아래의 식에 의해 계산하였다.
용량 유지율(%) = (1st 방전용량 - 100h 경과한 후 방전용량)/1st 방전용량 × 100 ... (2)
<실시예 1>
2.5×2.5㎠ 크기의 시트를 전극면에 수평한 방향으로 DC 50V, 2A로 2분간 통전하였다. 통전된 전극은 에칭 알루미늄 단면에 도전성 접착제를 사용하여 부착하였으며, '통전시트부착전극/분리막/통전시트부착전극'으로 셀을 구성한 후 AcN에 1.2M의 Et4NBF4이 용해된 전해액을 함침하였다. 시트의 통전 시 표면온도는 120℃였으며, 셀의 2.7V에서 비용량과 AC에서 1kHz 저항은 각각 121F/g과 86mΩ을 나타내었다. 또한 셀의 3.5V 노화 시험(Aging test)에서 구한 용량 유지율은 67%를 나타내었다.
<실시예 2>
2.5×2.5㎠ 크기의 시트를 전극면에 수평한 방향으로 DC 50V, 2A로 4분간 통전하였다. 통전된 전극은 에칭 알루미늄 단면에 도전성 접착제를 사용하여 부착하였으며, '통전시트부착전극/분리막/통전시트부착전극'으로 셀을 구성한 후 AcN에 1.2M의 Et4NBF4이 용해된 전해액을 함침하였다. 시트의 통전 시 표면온도는 150℃였으며, 셀의 2.7V에서 비용량과 AC에서 1kHz 저항은 각각 121F/g과 85mΩ을 나타내었다. 또한 셀의 3.5V Aging test에서 구한 용량 유지율은 75%를 나타내었다.
<실시예 3>
2.5×2.5㎠ 크기의 시트를 전극면에 수평한 방향으로 DC 50V, 2A로 5분간 통전하였다. 통전된 전극은 에칭 알루미늄 단면에 도전성 접착제를 사용하여 부착하였으며, '통전시트부착전극/분리막/통전시트부착전극'으로 셀을 구성한 후 AcN에 1.2M의 Et4NBF4이 용해된 전해액을 함침하였다. 시트의 통전 시 표면온도는 180℃였으며, 셀의 2.7V에서 비용량과 AC에서 1kHz 저항은 각각 121F/g과 79mΩ을 나타내었다. 또한 셀의 3.5V Aging test에서 구한 용량 유지율은 85%를 나타내었다.
<실시예 4>
2.5×2.5㎠ 크기의 시트를 에칭 알루미늄 호일의 단면에 부착한 시트 부착 전극을 20층 적층한 후 전극면 상하 방향으로 DC 10V, 60A로 5분간 통전하였다. 셀은 1층의 양극과 1층의 음극만을 이용하여 '통전시트부착전극/분리막/통전시트부착전극'으로 구성한 후 AcN에 1.2M의 Et4NBF4이 용해된 전해액을 함침하였다. 시트의 부착 전극 통전 시 표면온도는 150℃였으며, 셀의 2.7V에서 비용량과 AC에서 1kHz 저항은 각각 125F/g과 72mΩ을 나타내었다. 또한 셀의 3.5V Aging test에서 구한 용량 유지율은 80%를 나타내었다.
<실시예 5>
2.5×2.5㎠ 크기의 시트를 20층 적층한 후 전극면 상하 방향으로 DC 10V, 60A로 6분간 통전하였다. 셀은 1층의 양극과 1층의 음극만을 이용하여 '통전시트부착전극/분리막/통전시트부착전극'으로 구성한 후 AcN에 1.2M의 Et4NBF4이 용해된 전해액을 함침하였다. 시트의 부착 전극 통전 시 표면온도는 150℃였으며, 셀의 2.7V에서 비용량과 AC에서 1kHz 저항은 각각 115F/g과 75mΩ을 나타내었다. 또한 셀의 3.5V Aging test에서 구한 용량 유지율은 75%를 나타내었다.
<비교예 1>
2.5×2.5㎠ 크기의 시트를 에칭 알루미늄 호일의 단면에 도전성 접착제로 부착시킨 시트 부착 전극은 분리막(Seperator)과 함께 '시트부착전극/분리막/시트부착전극'으로 셀을 구성하였다. 이들 조합은 150℃로 유지된 진공 데시게이터(Desiccator)에서 12시간 진공 건조를 행하였다. 이후 AcN에 1.2M의 Et4NBF4이 용해된 전해액을 함침하여 전기이중층 커패시터 셀을 제조하였다. 셀의 2.7V에서 비용량과 AC에서 1kHz 저항은 각각 121F/g과 92mΩ을 나타내었다. 또한 셀의 3.5V Aging test에서 구한 용량 유지율은 45%를 나타내었다.
<비교예 2>
2.5×2.5㎠ 크기의 슬러리 단면 코팅 전극은 분리막과 함께 '슬러리코팅전극/분리막/슬러리코팅전극'으로 셀을 구성하였다. 이들 조합은 150℃로 유지된 진공 데시게이터(Desiccator)에서 12시간 진공 건조를 행하였다. 이후 AcN에 1.2M의 Et4NBF4이 용해된 전해액을 함침하여 전기이중층 커패시터 셀을 제조하였다. 셀의 2.7V에서 비용량과 AC에서 1kHz 저항은 각각 121F/g과 92mΩ을 나타내었다. 또한 셀의 3.5V Aging test에서 구한 용량 유지율은 35%를 나타내었다.
상기 실시예 및 비교예에 의한 실험결과를 표1에 나타내었다.
표 1
전극상태 통전방향 전극 표면온도(℃) 2.7V test 3.5V test
비용량(F/g) 저항(mΩ) 용량 유지율 (%)
실시예 1 시트 전극면수평 120 121 86 67
실시예 2 시트 전극면수평 150 121 85 75
실시예 3 시트 전극면수평 180 121 79 85
실시예 4 시트 부착 전극 전극면수평 150 125 72 80
실시예 5 슬러리 코팅 전극 전극면수평 150 115 75 75
비교예 1 시트 부착 전극 전극면수평 - 121 92 45
비교예 2 슬러리 코팅 전극 전극면수평 - 115 95 35
여기서, 2.7V test는 2.7V에서 2mA/㎠ 전류밀도로 방전시킨 경우, 3.5V test는 40℃에서 100h 유지 후 2mA/㎠ 전류밀도로 방전하고 초기 3.V 방전 용량 대비 용량 유지율을 표기한 것이다.
시트를 전극면 수평으로 통전한 실시예 1 내지 3에서 통전시간이 증가할수록 전극 표면온도는 상승하는 것을 알 수 있다. 실시예 3에서 전극 표면온도는 180℃까지 상승하였으며, 전극 표면온도가 상승할수록 셀 내부저항은 감소하였으며 3.5V Aging test에서 용량 유지율은 85%까지 상승하는 것을 알 수 있었다. 한편 전극면 상하로 통전하여 전극 표면온도가 150℃에 도달한 실시예 4의 시트 부착 전극과 실시예 5의 슬러리 코팅 전극의 셀 내부저항은 각각 72mΩ과 75mΩ을 나타내었으며, 3.5V Aging test에서 용량 유지율은 각각 80%와 75%를 나타내었다. 이러한 수치들은 진공 오븐에서 일반적으로 건조되어 조립되는 비교예 1의 시트 부착 전극과 비교예 2의 슬러리 코팅 전극과 비교하여 우수한 전기화학적 특성을 나타내는 것을 확인할 수 있다.
이들 결과로부터 전극면의 수평 혹은 상하 방향으로 탄소 전극에 통전을 하면 일반적인 진공 건조 조건으로 제조한 탄소 전극에 비교해서 비용량(F/g)의 증가, 셀 내부저항의 감소, 고전압에서의 용량 유지율이 증가하는 특성 변화를 가저오는 것을 알 수 있다.
이는 통전을 통해 탄소 전극의 활물질인 활성탄 기공에 존재하는 산성 관능기와 흡착수의 제거가 용이하다는 것을 의미하며, 통전에 의해 활성탄과 전해액의 부반응을 억제하여 전기이중층 커패시터의 전기화학적 특성을 향상시키는 것을 의미한다.
이와 같은 본 발명은 탄소재 전극(110, 210)을 제조한 후 통전처리를 한 탄소재 전극 표면 개질방법은 줄열 발생에 의해 빠른 시간 내에 탄소재의 표면이 개질되기 때문에, 기존의 열처리에 의한 표면 개질방법에 비교해서 단시간에 효율적으로 산성 관능기를 제거할 수 있고, 이를 이용한 전기화학 커패시터는 용량의 희생을 최소화하면서 용량유지율을 개선시킬 수 있는 유용한 방법이다. 따라서 이러한 방법을 통해 제조되는 탄소재 전극(110, 210) 및 커패시터는 종래의 전극 및 커패시터보다 높은 출력특성을 보인다.
본 발명은 통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극 및 탄소재 전극을 포함한 전기화학 커패시터에 관한 것으로, 더욱 상세하게는, 탄소재를 포함하여 제조된 탄소재 전극에 직접 전기를 가하여 줄열(Joule's heat)에 의해 단시간 내에 탄소재 전극의 탄소재 기공에 존재하는 관능기 또는 흡착수를 제거가능한 통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극 및 탄소재 전극을 포함한 전기화학 커패시터 분야에 이용가능하다.

Claims (14)

  1. 통전을 이용한 탄소재 전극 표면 개질방법에 있어서,
    탄소재 전극을 준비하는 단계와;
    상기 탄소재 전극에 통전단자를 결착시키는 단계와;
    상기 탄소재 전극에 존재하는 산성 관능기(Acidic functional group) 또는 흡착수가 제거되도록 상기 통전단자에 전류를 인가하여 줄열(Joule's heat)을 발생시키는 단계를 포함하는 것을 특징으로 하는 통전에 의한 탄소재 전극 표면 개질방법.
  2. 제 1항에 있어서,
    상기 탄소재 전극은,
    탄소재, 도전재 및 바인더를 반죽 및 압연한 시트형상인 것을 특징으로 하는 통전에 의한 탄소재 전극 표면 개질방법.
  3. 제 2항에 있어서,
    시트형상의 상기 탄소재 전극은,
    도전성 접착제를 이용하여 집전체에 라미네이팅(Laminating)되는 것을 특징으로 하는 통전에 의한 탄소재 전극 표면 개질방법.
  4. 제 2항에 있어서,
    상기 탄소재 전극의 전극밀도는 0.1 내지 0.7g/ml이며,
    상기 탄소재 전극의 두께는 30 내지 250㎛인 것을 특징으로 하는 통전에 의한 탄소재 전극 표면 개질방법.
  5. 제 1항에 있어서,
    상기 탄소재 전극은,
    탄소재, 도전재 및 바인더를 혼합한 탄소재 슬러리(Slurry)를 집전체에 코팅(Coating)하여 형성되는 것을 특징으로 하는 통전에 의한 탄소재 전극 표면 개질방법.
  6. 제 1항에 있어서,
    상기 통전단자에 전류를 인가하여 줄열 발생시키는 단계는,
    질소 원소를 포함하는 가스 분위기 하에서 이루어지는 것을 특징으로 하는 통전에 의한 탄소재 전극 표면 개질방법.
  7. 제 6항에 있어서,
    상기 질소 원소를 포함하는 가스는,
    질소(N2), 일산화질소(NO), 이산화질소(NO2), 암모니아(NH3), 질소 원소를 포함하는 폴리머를 가열하여 얻어지는 가스 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 특징으로 하는 통전에 의한 탄소재 전극 표면 개질방법.
  8. 제 1항에 있어서,
    상기 통전단자에 전류를 인가하여 줄열 발생시키는 단계 이후에,
    상기 탄소재가 표면개질된 상기 탄소재 전극을 획득하는 단계를 더 포함하며,
    표면개질된 상기 탄소재는 흡착수를 10 내지 100ppm/g, 관능기를 0.01 내지 0.4meq/g로 포함하는 것을 특징으로 하는 통전에 의한 탄소재 전극 표면 개질방법.
  9. 제 1항에 있어서,
    50 내지 300℃의 상기 줄열이 발생하도록 상기 전류의 전력밀도는 1 내지 100W/㎤인 것을 특징으로 하는 통전에 의한 탄소재 전극 표면 개질방법.
  10. 제 9항에 있어서,
    상기 전류는 직류 또는 교류 중 어느 하나인 것을 특징으로 하는 통전에 의한 탄소재 전극 표면 개질방법.
  11. 제 1항에 있어서,
    상기 탄소재의 비표면적은 10 내지 5000㎡/g인 것을 특징으로 하는 통전에 의한 탄소재 전극 표면 개질방법.
  12. 제 1항에 있어서,
    상기 탄소재는,
    활성탄(Active carbon), 카본블랙(Carbon black), 흑연(Graphite), 그래핀(Graphene), 하드카본(Hard carbon), 카본나노섬유(Carbon nano fiber), 카본나노튜브(Carbon nano tube), 금속분말 및 이의 혼합으로 이루어진 군으로 부터 선택된 것을 특징으로 하는 통전에 의한 탄소재 전극 표면 개질방법.
  13. 탄소재, 도전재 및 바인더를 포함하는 표면개질된 탄소재 전극에 있어서,
    상기 탄소재는, 인가된 전류에 의해 생성되는 줄열(Joule's heat)을 이용하여 상기 탄소재의 기공에 존재하는 산성 관능기(Acidic functional group) 또는 흡착수가 제거된 것을 특징으로 하는 표면개질된 탄소재 전극.
  14. 음극, 양극 및 전해액을 포함하는 전기화학 커패시터에 있어서,
    상기 음극 및 상기 양극 중 적어도 어느 하나는 탄소재 전극으로 이루어지며,
    상기 탄소재 전극은, 인가된 전류에 의해 생성되는 줄열(Joule's heat)을 이용하여 기공에 존재하는 산성 관능기(Acidic functional group) 또는 흡착수가 제거된 탄소재를 포함하는 것을 특징으로 하는 전기화학 커패시터.
PCT/KR2015/007806 2015-01-29 2015-07-28 통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극 및 표면개질된 탄소재 전극을 포함한 전기화학 커패시터 WO2016122070A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150013972A KR102297370B1 (ko) 2015-01-29 2015-01-29 통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극 및 표면개질된 탄소재 전극을 포함한 전기화학 커패시터
KR10-2015-0013972 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016122070A1 true WO2016122070A1 (ko) 2016-08-04

Family

ID=56543652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007806 WO2016122070A1 (ko) 2015-01-29 2015-07-28 통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극 및 표면개질된 탄소재 전극을 포함한 전기화학 커패시터

Country Status (2)

Country Link
KR (1) KR102297370B1 (ko)
WO (1) WO2016122070A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113353986A (zh) * 2021-07-08 2021-09-07 天津大学 一种锰酸锂正极材料的快速制备方法及应用
CN113540696A (zh) * 2021-07-15 2021-10-22 珠海冠宇电池股份有限公司 一种隔膜及电池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102611344B1 (ko) * 2022-01-27 2023-12-06 고려대학교 산학협력단 결함이 유도된 탄소체와 금속 산화물이 결합된 복합체, 결함이 유도된 탄소체와 금속 산화물이 결합된 복합체의 제조방법 및 결함이 유도된 탄소체와 금속 산화물이 결합된 복합체 전극을 포함하는 에너지 저장 소자
KR102471969B1 (ko) 2022-03-24 2022-11-29 주식회사 블루텍 전극제조방법, 전극제조장치 및 이를 이용해 제조된 전극
KR102456434B1 (ko) 2022-06-29 2022-10-19 주식회사 블루텍 암모니아를 원료로 활용하는 연소 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343263A (ja) * 1992-06-08 1993-12-24 Nec Corp 電気二重層コンデンサの製造方法
JPH0982582A (ja) * 1995-09-18 1997-03-28 Nec Corp 電気二重層コンデンサの製造方法
KR20070069280A (ko) * 2005-12-28 2007-07-03 한국전기연구원 전극 활물질, 이를 구비한 전극 및 이의 제조방법
JP2010105885A (ja) * 2008-10-31 2010-05-13 Kansai Coke & Chem Co Ltd 活性炭の改質方法、電気二重層キャパシタ用電極材料、電気二重層キャパシタ用電極、および電気二重層キャパシタ
KR101137719B1 (ko) * 2010-12-07 2012-04-24 한국세라믹기술원 슈퍼커패시터용 활성탄 전극의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030010834A (ko) 2001-07-27 2003-02-06 주식회사 선익시스템 플라즈마 표면 처리장치 및 이를 이용한 플라즈마 표면처리방법
KR20050106258A (ko) 2004-05-04 2005-11-09 삼성전자주식회사 물품 결합장치
KR101321523B1 (ko) 2011-08-12 2013-11-21 충북대학교 산학협력단 NaOH의 화학적 활성화에 의한 커패시터 전극용 활성탄 및 이를 이용한 커패시터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343263A (ja) * 1992-06-08 1993-12-24 Nec Corp 電気二重層コンデンサの製造方法
JPH0982582A (ja) * 1995-09-18 1997-03-28 Nec Corp 電気二重層コンデンサの製造方法
KR20070069280A (ko) * 2005-12-28 2007-07-03 한국전기연구원 전극 활물질, 이를 구비한 전극 및 이의 제조방법
JP2010105885A (ja) * 2008-10-31 2010-05-13 Kansai Coke & Chem Co Ltd 活性炭の改質方法、電気二重層キャパシタ用電極材料、電気二重層キャパシタ用電極、および電気二重層キャパシタ
KR101137719B1 (ko) * 2010-12-07 2012-04-24 한국세라믹기술원 슈퍼커패시터용 활성탄 전극의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113353986A (zh) * 2021-07-08 2021-09-07 天津大学 一种锰酸锂正极材料的快速制备方法及应用
CN113540696A (zh) * 2021-07-15 2021-10-22 珠海冠宇电池股份有限公司 一种隔膜及电池

Also Published As

Publication number Publication date
KR20160093230A (ko) 2016-08-08
KR102297370B1 (ko) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2016122070A1 (ko) 통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극 및 표면개질된 탄소재 전극을 포함한 전기화학 커패시터
KR100880552B1 (ko) 고용량 전극 활물질, 그 제조방법, 이를 구비한 전극 및에너지 저장 장치
KR101289521B1 (ko) 전기 이중층 캐패시터의 제조 방법
US9478364B2 (en) Carbon-based electrodes containing molecular sieve
US10211001B2 (en) Ultracapacitor with improved aging performance
KR20160048925A (ko) 고-정전용량 활성탄 및 탄소-계 전극
KR102563547B1 (ko) 부식 억제 첨가제를 포함하는 전도층을 포함하는 전극, 이의 제조방법 및 이를 이용하는 슈퍼커패시터
KR20170101409A (ko) 울트라커패시터용 전극활물질의 제조방법, 상기 울트라커패시터용 전극활물질을 이용한 울트라커패시터 전극의 제조방법 및 울트라커패시터
KR101530989B1 (ko) 질소가 도핑된 활성탄 전극재의 제조방법 그리고 이를 이용한 전극 및 전기 이중층 커패시터
KR101166696B1 (ko) 슈퍼커패시터 및 그 제조방법
JP5246697B2 (ja) 電気二重層キャパシタ用電極の製造方法
KR100911891B1 (ko) 전기이중층 커패시터용 활성탄소물의 제조방법 및 이에의한 전기이중층 커패시터 전극과 이를 이용한 전기이중층커패시터
KR102364514B1 (ko) 통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극 및 표면개질된 탄소재 전극을 포함한 전기화학 커패시터
KR100792853B1 (ko) 고용량 산화탄소 복합체, 그 제조방법, 이를 구비한 전극및 에너지 저장 장치
WO2022075822A1 (ko) 자가방전이 억제되는 전기이중층 커패시터 및 그 제조방법
WO2011132952A2 (ko) 전기화학소자 전극, 이의 제조 방법 및 전기화학소자
KR102172610B1 (ko) 슈퍼커패시터용 전극활물질의 제조방법, 상기 전극활물질을 이용한 고출력 슈퍼커패시터용 전극의 제조방법 및 고출력 슈퍼커패시터
KR20160006365A (ko) 통전에 의한 활성탄 표면 개질방법, 이를 포함한 전기화학 커패시터용 전극 및 이를 이용한 전기화학 커패시터
KR102422011B1 (ko) 그래핀 셀 및 제조방법
WO2016068480A1 (ko) 메틸 아이오다이드를 이용한 사차 암모늄염의 제조방법 및 이에 의해 제조된 사차 암모늄염을 이용한 전기이중층 커패시터
KR102116279B1 (ko) 울트라커패시터용 전극활물질의 제조방법, 이를 이용한 울트라커패시터 전극의 제조방법 및 울트라커패시터의 제조방법
KR20220100289A (ko) 슈퍼커패시터 전극 및 그것을 구비한 슈퍼커패시터
KR100772442B1 (ko) 전기 이중층 캐패시터, 전기 이중층 캐패시터용 분극전극및 이들의 제조방법
KR20080047083A (ko) 전기이중층 커패시터
KR20110060492A (ko) 도전성 피복층이 형성된 열분해 탄소물의 제조방법 및 이를 이용한 하이브리드 커패시터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880250

Country of ref document: EP

Kind code of ref document: A1