WO2016119533A1 - 一种热活化敏化磷光有机电致发光器件 - Google Patents

一种热活化敏化磷光有机电致发光器件 Download PDF

Info

Publication number
WO2016119533A1
WO2016119533A1 PCT/CN2015/097529 CN2015097529W WO2016119533A1 WO 2016119533 A1 WO2016119533 A1 WO 2016119533A1 CN 2015097529 W CN2015097529 W CN 2015097529W WO 2016119533 A1 WO2016119533 A1 WO 2016119533A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thermally activated
substituted
groups
phenyl
Prior art date
Application number
PCT/CN2015/097529
Other languages
English (en)
French (fr)
Inventor
段炼
谢静
刘嵩
张东东
赵菲
Original Assignee
北京维信诺科技有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56542357&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016119533(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 北京维信诺科技有限公司, 清华大学 filed Critical 北京维信诺科技有限公司
Priority to JP2017553295A priority Critical patent/JP6503088B2/ja
Priority to US15/544,859 priority patent/US20180013073A1/en
Priority to KR1020177018924A priority patent/KR101930187B1/ko
Priority to EP15879731.6A priority patent/EP3226318B1/en
Publication of WO2016119533A1 publication Critical patent/WO2016119533A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H10K50/121OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings

Definitions

  • the invention belongs to the field of organic electroluminescent devices, and in particular relates to a heat activated sensitized phosphorescent organic electroluminescent device.
  • the light-emitting layer of the organic electroluminescent device is generally composed of a host material doped dye
  • the conventional dual-body light-emitting layer is composed of: a double host doped dye (fluorescent or phosphorescent), and the double-body light emitting layer
  • the host material does not have a thermally delayed fluorescence effect and the dye has no thermal delayed fluorescence characteristics.
  • organic electroluminescent devices Under electro-excitation conditions, organic electroluminescent devices produce 25% singlet and 75% triplet.
  • Conventional fluorescent materials can only utilize 25% of singlet excitons due to spin-forbidden, so the external quantum efficiency is limited to only 5%. Almost all triplet excitons can only be lost by heat. In order to improve the efficiency of the organic electroluminescent device, it is necessary to make full use of triplet excitons.
  • TADF thermally activated delayed fluorescence
  • the singlet-triplet energy gap ( ⁇ E ST ) of this type of material is small, and the non-luminous triplet excitons can be upconverted into illuminable singlet excitons under the action of ambient heat.
  • this kind of material directly acts as a light-emitting layer, the device is far away from the practical level, the efficiency is not high enough, the life is also short, and the roll-off is more serious.
  • the thermal activation sensitization luminescence mechanism utilizes a thermally activated delayed fluorescent material as a main body, and a phosphorescent dye is used to realize a device with high efficiency, low voltage, and long life.
  • a thermally activated delayed fluorescent material as a main body
  • a phosphorescent dye is used to realize a device with high efficiency, low voltage, and long life.
  • the reason is that the traditional thermal delayed fluorescence, the energy conversion and the luminescence are the same material, and the heat-activated sensitizer, the energy conversion and the luminescence are not the same material, can ensure the full utilization of the triplet energy, improve the efficiency, and reduce The problem of roll-off at high brightness extends device life.
  • the prior art organic electroluminescent device is composed of a host material doped with a dye, which has high cost and causes device efficiency degradation. Less.
  • the thermally activated sensitized phosphorescent organic electroluminescent device of the present invention comprises a light-emitting layer, and the host material of the light-emitting layer is composed of two materials, one of which is a hole transport type material, and the other is An electron transporting type material, wherein at least one of the two materials is a thermally activated delayed fluorescent material; the host material is doped with a phosphorescent dye, and the proportion of the phosphorescent dye in the light emitting layer is ⁇ 15% by weight,
  • the thermally activated delayed fluorescent material has a triplet energy level higher than a triplet state of the n- ⁇ excited state and a phase difference of 0 to 0.3 eV; or the thermally activated delayed fluorescent material
  • the triplet energy level of the CT excited state is higher than the triplet energy level of the n- ⁇ excited state, and the difference is 1.0 eV or more, and the second triplet energy level and the CT excited state of the n- ⁇ excited state are The difference between the first singlet state levels is -0.1 to 0.1 eV.
  • the proportion of the phosphorescent dye in the light-emitting layer is from 2% by weight to 10% by weight, more preferably from 2% by weight to 3% by weight.
  • the thermally activated delayed fluorescent material is a material having a charge transfer transition
  • the heat activated delayed fluorescent material has both a donor group unit and a acceptor group unit.
  • the donor group unit is a group consisting of one donor group or two or more donor groups
  • the acceptor group unit is a group consisting of one acceptor group or two or more acceptor groups
  • the donor group is selected from the group consisting of an indolocarbazolyl, oxazolyl, dioxazolyl, triphenylamine, phenoxazinyl, C1-6 alkyl, methoxy, ethoxy or benzene
  • An indolozolyl group substituted with one or more groups in the group a carbazolyl group substituted with one or more groups of a C 1-6 alkyl group, a methoxy group, an ethoxy group or a phenyl group, C 1 -6 alkyl, methoxy, ethoxy or phenyl substituted with one or more groups biphenyl carbazolyl group, C 1-6 alkyl group, a methoxy group, an ethoxy group or a phenyl a group of substituted triphenylamine groups, or a C 1-6 alkyl, methoxy, ethoxy or phenyl group substituted with one or more groups;
  • the acceptor group is selected from the group consisting of naphthyl, anthracenyl, phenanthryl, anthracenyl, triazinyl, benzimidazolyl, cyano, pyridyl, sulfone, phenamimidazolyl, naphthylthiazolyl, benzo a thiazolyl group, an oxadiazolyl group, a C 1-6 alkyl group, a methoxy group, an ethoxy group, a phenyl group or a pyridyl group substituted with one or more groups of a naphthyl group, a C 1-6 alkyl group, A a mercapto group substituted with one or more groups of an oxy group, an ethoxy group, a phenyl group or a pyridyl group, one or more of a C 1-6 alkyl group, a methoxy group, an ethoxy group, a phen
  • a substituted phenanthryl group a C 1-6 alkyl group, a methoxy group, an ethoxy group, a phenyl group or a pyridyl group substituted with one or more groups, a C 1-6 alkyl group, a methoxy group a triazinyl group substituted with one or more groups of a group, an ethoxy group, a phenyl group or a pyridyl group, one or more of a C 1-6 alkyl group, a methoxy group, an ethoxy group, a phenyl group or a pyridyl group.
  • a substituted benzimidazolyl group a pyridyl group substituted with one or more groups of a C 1-6 alkyl group, a methoxy group, an ethoxy group, a phenyl group or a pyridyl group, a C 1-6 alkyl group, Substituting one or more groups of methoxy, ethoxy, phenyl or pyridyl groups a sulfonyl group, a phenymidazolidine group substituted with one or more groups of a C 1-6 alkyl group, a methoxy group, an ethoxy group, a phenyl group or a pyridyl group; a C 1-6 alkyl group, a methoxy group a naphthothiazolyl group substituted with one or more groups of an ethoxy group, a phenyl group or a pyridyl group, one or more of a C 1-6 alky
  • one or more of the donor group units are directly attached to one or more of the acceptor group units to form a thermally activated delayed fluorescent material; or one or more of the donor group units And the one or more of the acceptor group units are respectively attached to a linking group to form a thermally activated delayed fluorescent material, the linking group being a sterically hindered group.
  • one or two donor group units and one or two acceptor group units are each attached to a linking group to form a thermal activation
  • the delayed fluorescent material, or one or both acceptor group units, is directly attached to one or both of the donor group units to form a thermally activated delayed fluorescent material.
  • the linking group is selected from the group consisting of spiro fluorenyl, phenyl, biphenyl, C 1-6 alkyl or phenyl wherein at least one substituted spiro group, C 1-6 alkyl or a biphenyl group in which at least one of a phenyl group, a C 1-6 alkyl group or a phenyl group substituted with at least one of a phenyl group is substituted.
  • the donor group is selected from the group consisting of:
  • the acceptor group is selected from the group consisting of:
  • the thermally activated delayed fluorescent material is a compound having the structure:
  • the two materials constituting the host material are all thermally activated delayed fluorescent materials.
  • two materials constituting the host material one is a thermally activated delayed fluorescent material, and the other is a adjusting host material, the triplet energy level of the thermally activated delayed fluorescent material in the host material and the trilinear energy of the host material are adjusted.
  • the levels are equal.
  • one of the host materials of the light-emitting layer is a hole transport type material, and the other is an electron transport type material, and at least one of the two materials is a heat-activated retardation fluorescent material.
  • the triplet excitons are converted into singlet states, mainly based on long-range Forster energy transfer, reducing the doping ratio ( ⁇ 3%) to save costs, effectively suppressing attenuation, and prolonging life.
  • the energy conversion and illumination are not in the same material, and the performance of the device is better.
  • FIG. 1 is a schematic diagram of energy transfer of a conventional OLED light-emitting layer phosphorescent system.
  • FIG. 2 is a schematic view showing the structure of an organic electroluminescent device of the present invention.
  • FIG. 3 is a schematic diagram of energy transfer of a thermally activated sensitized phosphorescent system of an OLED light-emitting layer of the present invention.
  • FIG. 4 is a schematic diagram of energy transfer of an OLED light-emitting layer in which the host material is two TADF materials in the present invention.
  • Figure 5 is a TADF material of the host material in the present invention, and the other is an energy of the OLED light-emitting layer for adjusting the host material.
  • the organic electroluminescent device of the present invention comprises an anode 02, a hole transport layer 05, a light-emitting layer 06, an electron transport layer 07, and a cathode 03 which are laminated on each other on a substrate 01 in this order.
  • the thermally activated sensitized organic electroluminescent device of the present invention comprises a light-emitting layer, the host material of which is a mixture of two materials, one of which is a hole transport type material, and the other An electron transporting type material, and at least one of the two materials is a thermally activated delayed fluorescent material; the host material is doped with a phosphorescent dye, and the doping concentration of the phosphorescent dye in the host material is ⁇ 15% by weight It is preferably 2% by weight to 10% by weight, and more preferably 2% by weight to 3% by weight.
  • the triplet energy level of the CT excited state of the thermally activated delayed fluorescent material is higher than the triplet energy level of the n- ⁇ excited state, and the phase difference is between 0 and 0.3 eV; or the CT of the thermally activated delayed fluorescent material
  • the triplet energy level of the excited state is higher than the triplet energy level of the n- ⁇ excited state, the difference is 1.0 eV or more, and the second triplet state of the n- ⁇ excited state of the thermally activated delayed fluorescent material
  • the difference between the first singlet state of the energy level and the CT excited state is -0.1 to 0.1 eV.
  • one of the host materials of the light-emitting layer is a hole transport type material, and the other is an electron transport type material, and at least one of the two materials is
  • the triplet exciton energy of the host material is excited to the singlet state through the anti-system, and then the long-range Forster energy is transmitted to the triplet state of the phosphorescent material, thereby improving the energy transfer between the host and the guest illuminant.
  • Relationship which can reduce the doping ratio ( ⁇ 15%) cost saving, effectively suppress the attenuation and prolong the life.
  • the energy conversion and illumination are not in the same material, and the performance of the device is better.
  • the thermally activated delayed fluorescent material is a material in which a triplet energy level of a CT excited state is higher than a triplet energy level of an n- ⁇ excited state, and a phase difference is between 0 and 0.3 eV; or
  • the thermally activated delayed fluorescent material is a triplet energy level of a CT excited state higher than an n- ⁇ excited state, the difference being 1.0 eV or more, and the second triplet energy of the n- ⁇ excited state
  • the difference between the first singlet state of the level and the CT excited state is -0.1 to 0.1 eV.
  • the thermally activated delayed fluorescent material in the present invention is a material having a small difference (0 to 0.3 eV) between the triplet state of the CT excited state and the triplet state of the n- ⁇ excited state, and the difference between the two is large ( ⁇ 1.0 eV).
  • the second triplet state of the n- ⁇ excited state is slightly smaller or slightly higher than the material of the first singlet state of the CT excited state (the difference between the two is 0 to 0.1 eV).
  • the materials selected in the present invention have spatially separated donor groups and acceptor groups, resulting in spatial separation of HOMO and LUMO energy levels, reducing overlap integrals, and thus the singlet state of the CT state of the material. The difference between the energy levels of the triplet and the triplet is small.
  • the singlet and triplet energy levels of the selected phenamimidazolyl, naphthylthiazolyl, benzothiazolyl or fluorenyl groups are above 1.0 eV, which can also meet the requirements of the second type of materials.
  • the thermally activated delayed fluorescent material described in the present invention is a material having a charge transfer transition in which both a donor group unit and a acceptor group unit are present in the thermally activated delayed fluorescent material.
  • the donor group unit is a group consisting of one donor group or two or more donor groups; the acceptor group unit is an acceptor group or two or more acceptor groups are linked to form
  • the specific structure of the host material may be a donor-connection-acceptor or a donor-acceptor-donor structure.
  • the donor group is selected from the group consisting of indolocarbazolyl, oxazolyl, bisoxazolyl, triphenylamine, phenoxazinyl, C1-6 alkyl, methoxy, ethoxy or phenyl
  • the acceptor group is selected from the group consisting of naphthyl, anthracenyl, phenanthryl, anthryl, triazinyl, benzimidazolyl, cyano, pyridyl, sulfone, phenamimidazolyl, naphthylthiazolyl, benzothiazolyl a oxadiazolyl group, a naphthyl group substituted with one or more groups of a C 1-6 alkyl group, a methoxy group, an ethoxy group, a phenyl group or a pyridyl group, a C 1-6 alkyl group, a methoxy group a mercapto group substituted with one or more groups of an ethoxy group, a phenyl group or a pyridyl group, or a group of at least one of a C1-6 alkyl group, a methoxy group, an ethoxy group, a phenyl group
  • a substituted phenanthryl group a fluorenyl group substituted with one or more groups of a C 1-6 alkyl group, a methoxy group, an ethoxy group, a phenyl group or a pyridyl group, a C 1-6 alkyl group, a methoxy group, a triazinyl group substituted with one or more groups of an ethoxy group, a phenyl group or a pyridyl group, or a group of at least one of a C 1-6 alkyl group, a methoxy group, an ethoxy group, a phenyl group or a pyridyl group.
  • a substituted benzimidazolyl group a pyridyl group substituted with one or more groups of a C 1-6 alkyl group, a methoxy group, an ethoxy group, a phenyl group or a pyridyl group, a C 1-6 alkyl group, a methoxy group a sulfone substituted with one or more groups of a ethoxy group, an phenyl group or a pyridyl group Group, C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridinyl group substituted with one or more groups of phenanthroimidazolyl; C 1-6 alkyl, methoxy, ethoxy, a naphthothiazole group substituted with one or more groups of an oxy group, a phenyl group or a pyridyl group, or a group of at least one of a C 1-6 alkyl group, a meth
  • a substituted oxadiazolyl group substituted with one or more groups of a benzothiazolyl group or a C 1-6 alkyl group, a methoxy group, an ethoxy group, a phenyl group or a pyridyl group.
  • one or more of the donor group units are directly attached to one or more of the acceptor group units to form a thermally activated delayed fluorescent material; or one or more of the donor group units And the one or more of the acceptor group units are respectively attached to a linking group to form a thermally activated delayed fluorescent material, the linking group being a sterically hindered group.
  • the above linking group is preferably selected from the group consisting of a spirofluorenyl group, a phenyl group, a biphenyl group, a C 1-6 alkyl group or a phenyl group in which at least one substituted spiro group, a C 1-6 alkyl group or a phenyl group is used. a biphenyl group in which at least one of a substituted phenyl group, a C 1-6 alkyl group or a phenyl group is substituted.
  • the donor group is preferably selected from the following structures:
  • the acceptor group is preferably selected from the following structures:
  • thermally activated delayed fluorescent material is selected from the group consisting of compounds having the following structure:
  • the two materials constituting the host material in the present invention may all be thermally activated delayed fluorescent materials, and the energy transfer process is as shown in FIG. 4: the first TADF body and the second TADF body respectively transfer the triplet energy through the anti-system to the singlet state. Then, through Forster, the energy is transferred to the triplet state of the phosphorescent dye, thereby reducing the distance between the host and the object, thereby achieving efficient use of the energy of the subject. Reducing the amount of phosphorescent material used also effectively solves the problem of roll-off, which further improves the stability of the device.
  • thermally activated delayed fluorescent material TADF body
  • the other is a host material (conditioning body).
  • One of them is an electron transport type material
  • the other is a hole transport type material.
  • the energy transfer principle is shown in Fig. 5.
  • the triplet energy common to the TADF main body and the regulating body is transferred to the singlet state through the anti-system, and then passed through the Forster.
  • the energy is transferred to the triplet state of the phosphorescent dye, thereby reducing the distance between the host and the guest, thereby efficiently utilizing the energy of the main body, reducing the amount of the phosphorescent material used, and effectively solving the roll-off problem.
  • the stability of the device is further improved.
  • the anode may be an inorganic material or an organic conductive polymer.
  • the inorganic material is generally a metal oxide such as indium tin oxide (ITO), zinc oxide (ZnO) or indium zinc oxide (IZO) or a metal having a higher work function such as gold, copper or silver, preferably ITO;
  • the organic conductive polymer is preferably One of polythiophene/sodium polyvinylbenzenesulfonate (hereinafter referred to as PEDOT/PSS) and polyaniline (hereinafter referred to as PANI).
  • the cathode generally uses a metal having a lower work function such as lithium, magnesium, calcium, barium, aluminum or indium or an alloy thereof with copper, gold or silver, or an electrode layer in which metal and metal fluoride are alternately formed.
  • the cathode is preferably a laminated LiF layer and an Al layer (the LiF layer is on the outer side).
  • the material of the hole transport layer may be selected from the group consisting of aromatic amines and dendrite low molecular materials, preferably NPB.
  • the material of the electron transport layer may be an organometallic complex (such as Alq 3 , Gaq 3 , BAlq or Ga (Saph-q)) or other materials commonly used for electron transport layers, such as aromatic fused rings (such as pentacene, hydrazine) or Phenanthroline (such as Bphen, BCP) compounds.
  • organometallic complex such as Alq 3 , Gaq 3 , BAlq or Ga (Saph-q)
  • other materials commonly used for electron transport layers such as aromatic fused rings (such as pentacene, hydrazine) or Phenanthroline (such as Bphen, BCP) compounds.
  • the organic electroluminescent device of the present invention may further have a hole injecting layer 04 between the anode and the hole transporting layer (this layer may also be omitted), and the material of the hole injecting layer may be, for example, 4, 4', 4"- Tris(3-methylphenylaniline)triphenylamine is doped with F4TCNQ, or copper phthalocyanine (CuPc), or may be a metal oxide such as molybdenum oxide or cerium oxide.
  • a hole injecting layer 04 between the anode and the hole transporting layer (this layer may also be omitted)
  • the material of the hole injecting layer may be, for example, 4, 4', 4"- Tris(3-methylphenylaniline)triphenylamine is doped with F4TCNQ, or copper phthalocyanine (CuPc), or may be a metal oxide such as molybdenum oxide or cerium oxide.
  • each of the above layers may be conventionally used in the thickness of these layers in the art.
  • the present invention also provides a method of preparing the organic electroluminescent device, comprising sequentially depositing an anode 02, a hole transport layer 05, a light-emitting layer 06, an electron transport layer 07, and a cathode 03 stacked on each other on a substrate 01, and then packaging.
  • the substrate may be a glass or a flexible substrate, and the flexible substrate may be a polyester-based, polyimide-based compound material or a thin metal sheet.
  • the lamination and encapsulation can take any suitable method known to those skilled in the art.
  • thermoly activated delayed fluorescent material doping concentrations were prepared, and these devices have a structure as shown in FIG.
  • the host material of the luminescent layer thermally activated delayed fluorescent material Host1 (1-9), thermally activated delayed fluorescent material Host2 (2-4), phosphorescent dye (Ir(ppy) 3 ) doped in the host material.
  • Thermally activated delayed fluorescence The material Host2 (2-4) is an electron transport type material, and the heat activated delayed fluorescent material Host1 (1-9) is a hole transport type material):
  • ITO 150 nm
  • NPB 40 nm
  • host material (2%, 3%, 10%, 14%)
  • phosphorescent dye (30 nm) / Alq 3 (20 nm) / LiF (0.5 nm) / Al (150 nm)
  • the doping concentration is % by weight.
  • the specific preparation method of the organic electroluminescent device is as follows:
  • the glass substrate is washed with detergent and deionized water, and placed under an infrared lamp to dry, and a layer of anode material is sputtered on the glass, the film thickness is 150 nm;
  • the above-mentioned glass substrate with an anode was placed in a vacuum chamber, evacuated to 1 ⁇ 10 -4 Pa, and NPB was continuously evaporated on the anode layer film as a hole transport layer at a film formation rate of 0.1 nm/ s, the vapor deposition film thickness was 40 nm.
  • the light-emitting layer is vapor-deposited on the hole transport layer, and is carried out by a dual-source co-evaporation method, and the film formation rate is controlled by a film thickness monitor according to the mass percentage of the host material and the phosphorescent dye.
  • the thickness of the deposited film was 30 nm.
  • a layer of Alq 3 material is continuously evaporated as an electron transport layer, the evaporation rate is 0.1 nm/s, and the total vapor deposition thickness is 20 nm;
  • a LiF layer and an Al layer are sequentially deposited on the above-mentioned light-emitting layer as a cathode layer of the device, wherein the LiF layer has an evaporation rate of 0.01 to 0.02 nm/s, a thickness of 0.5 nm, and an Al layer vapor deposition rate of 1.0. Nm/s, thickness 150 nm.
  • An organic electroluminescent device was prepared in the same manner as in the above Example 1, and the device was structured as follows:
  • ITO 150 nm
  • NPB 40 nm
  • host material 15%) phosphorescent dye (30 nm) / Alq 3 (20 nm) / LiF (0.5 nm) / Al (150 nm)
  • the host material of the light-emitting layer is CBP:BAlq, and the phosphorescent dye is the same as in the first embodiment.
  • An organic electroluminescent device was prepared in the same manner as in the above Example 1, and the device was structured as follows:
  • ITO 150 nm
  • NPB 40 nm
  • host material (15%, 20%) phosphorescent dye (30 nm) / Alq 3 (20 nm) / LiF (0.5 nm) / Al (150 nm)
  • the host material of the light-emitting layer (thermally activated delayed fluorescent material Host1 (1-9), thermally activated delayed fluorescent material Host 2 (2-4), phosphorescent dye as in Example 1
  • the doping concentration of the phosphorescent dye is in the range of less than 15%, the luminous efficiency and the like are higher than the doping concentration of >15%, the lifetime is also increased, and the use of the high-priced phosphorescent dye is saved.
  • thermoly activated delayed fluorescent material Host 3 (1-4), conditioned host material (CBP), doped phosphorescent dye Ir(piq) 3 in the host material.
  • Thermally activated delayed fluorescent material Host 3 (1- 10) is an electron transport type material, and the host material CBP is a hole transport type material, and the triplet energy levels of the two are the same):
  • the device structure of this embodiment is as follows:
  • ITO 150 nm
  • NPB 40 nm
  • host material (2%, 3%, 10%, 14%)
  • phosphorescent dye (30 nm) / Alq 3 (20 nm) / LiF (0.5 nm) / Al (150 nm)
  • the percentages in parentheses before phosphorescence indicate different doping concentrations, and in this embodiment and below, the doping concentration is It is % by weight.
  • An organic electroluminescent device was prepared in the same manner as in the above Example 1, and the device was structured as follows:
  • ITO 150 nm
  • NPB 40 nm
  • host material (15%, 20%) phosphorescent dye (30 nm) / Alq 3 (20 nm) / LiF (0.5 nm) / Al (150 nm)
  • the host material of the light-emitting layer (thermally activated delayed fluorescent material Host 3 (1-10), adjusted host material CBP, phosphorescent dye as in Example 2
  • an organic electroluminescent device is prepared in the same manner as in the above-mentioned Embodiment 1, and the structure of the light-emitting device is as follows:
  • ITO 150 nm
  • NPB 40 nm
  • host material mass ratio of two host materials: 1:1
  • 3% phosphorescent dye (Ir (ppy) 3 ) (30 nm) / Bphen (20 nm) / LiF (0.5 nm) /Al (150 nm).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种热活化敏化磷光有机电致发光器件,包括发光层(06),发光层(06)的主体材料由两种材料构成,该两种材料的其中一种为空穴传输型材料,另一种为电子传输型材料,该两种材料中的至少一种为热活化延迟荧光材料;主体材料中掺杂磷光染料,磷光染料在发光层中所占比例<15重量%;热活化延迟荧光材料的CT激发态的三线态能级高于n-π激发态的三线态能级,并且相差为0~0.3eV之间;或者,热活化延迟荧光材料的CT激发态的三线态能级高于n-π激发态的三线态能级,其差值为1.0eV以上,并且,其n-π激发态的第二三线态能级和CT激发态的第一单线态能级的差值为-0.1~0.1eV。

Description

一种热活化敏化磷光有机电致发光器件 技术领域
本发明属于有机电致发光器件领域,具体涉及一种热活化敏化磷光有机电致发光器件。
背景技术
目前,现有技术中,有机电致发光器件的发光层一般由主体材料掺杂染料构成,传统的双主体发光层由:双主体掺杂染料(荧光或磷光),这种双主体发光层的主体材料不具备热延迟荧光效应,染料也没有热延迟荧光特性。
在电致激发的条件下,有机电致发光器件会产生25%的单线态和75%的三线态。传统的荧光材料由于自旋禁阻的原因只能利用25%的单线态激子,从而外量子效率仅仅限定在5%以内。几乎所有的三线态激子只能通过热的形式损失掉。为了提高有机电致发光器件的效率,必须充分利用三线态激子。
为了利用三线态激子,研究者提出了许多方法。最为显著的是磷光材料的利用。磷光材料由于引入了重原子,存在旋轨耦合效应,因此可以充分利用75%的三线态,从而实现100%的内量子效率。然而磷光材料由于使用了稀有的重金属,使得材料昂贵,不利于降低产品的成本。如果荧光器件能够很好的利用三线态激子则能很好地解决这个问题。研究者提出了在荧光器件中利用三线态淬灭产生单线态来提高荧光器件的效率,但是这种方法理论能达到的最大外量子效率仅仅有62.5%,远低于磷光材料。因此寻找新的技术充分利用荧光材料的三线态能级提高发光效率是非常必要的。
日本九州大学Adachi等人提出了实现高效率荧光OLED的新途径:热活化延迟荧光(TADF)材料。该类材料的单线态-三线态能隙(ΔEST)很小,不发光的三线态激子可在环境热量的作用下上转换为可发光的单线态激子。但是该类材料直接作为发光层,器件距离实用化水平较远,效率不够高,寿命也较短,且衰减(roll-off)较为严重。
热活化敏化发光机理,利用热活化延迟荧光材料作为主体,磷光做染料,可实现高效率、低电压、长寿命的器件。原因在于,传统的热延迟荧光,其能量转换和发光都是同一个材料,而热活化敏化器件,能量转换和发光不是同一个材料,可保证三线态能量的充分利用,提升效率,同时减少高亮度下roll-off的问题,延长器件寿命。
如图1所示,当电子、空穴在有机分子中经过郎吉万复合后,会因电子自旋对称方式的不同,产生两种激发态形式为单重激发态和三重激发态。在磷光器件的主客发光体系统中,有两种发光机制分别为能量转移和陷阱辅助方式。能量转移包含长距离的Forster转移和短距离Dexter转移方式。陷阱辅助方式是通过电子和空穴直接在客发光体上再结合形成激子进而激发客发光体发光。常规的磷光掺杂体系,主体三线态到客体三线态能量的传递只能通过短程的Dexter能量传递,为减小主客体之间距离,促进能量完全传递,要求磷光的掺杂浓度较高(15-20重量%)。这会导致成本较高,同时会引起器件效率的衰减。
技术问题
现有技术的有机电致发光器件由主体材料掺杂染料构成,成本较高,同时会引起器件效率的衰 减。
技术解决方案
本发明的热活化敏化磷光有机电致发光器件,包括发光层,所述发光层的主体材料由两种材料构成,该两种材料的其中一种为空穴传输型材料,另一种为电子传输型材料,且该两种材料中的至少一种为热活化延迟荧光材料;所述主体材料中掺杂磷光染料,磷光染料在发光层中所占比例<15重量%,
所述热活化延迟荧光材料的CT激发态的三线态能级高于n-π激发态的三线态能级,并且相差为0~0.3eV之间的材料;或者,所述热活化延迟荧光材料的CT激发态的三线态能级高于n-π激发态的三线态能级,其差值为1.0eV以上,并且,其n-π激发态的第二三线态能级和CT激发态的第一单线态能级的差值为-0.1~0.1e V。
优选地,磷光染料在发光层中所占比例为2重量%~10重量%,更优选为2重量%~3重量%。
优选地,所述热活化延迟荧光材料为存在电荷转移跃迁的材料,热活化延迟荧光材料中同时存在给体基团单元和受体基团单元,
所述给体基团单元为一个给体基团或两个以上的给体基团连接构成的基团;
所述受体基团单元为一个受体基团或两个以上的受体基团连接构成的基团;
所述给体基团选自吲哚并咔唑基,咔唑基,联咔唑基,三苯胺基,吩噁嗪基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的吲哚并咔唑基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的咔唑基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的联咔唑基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的三苯胺基,或者C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的吩噁嗪基;
所述受体基团选自萘基,蒽基,菲基,芘基,三嗪基,苯并咪唑基,氰基、吡啶基,砜基,菲并咪唑基,萘并噻唑基,苯并噻唑基,噁二唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的萘基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的蒽基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的菲基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的芘基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的三嗪基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的苯并咪唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的吡啶基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的砜基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的菲并咪唑基;C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的萘并噻唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的苯并噻唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的噁二唑基;
其中,一种或多种所述给体基团单元与一种或多种所述受体基团单元直接连接形成热活化延迟荧光材料;或者,一种或多种所述给体基团单元和一种或多种所述受体基团单元分别与连接基团连接形成热活化延迟荧光材料,所述连接基团为具有空间位阻的基团。
优选地,一种或两种给体基团单元和一种或两种受体基团单元分别与连接基团连接形成热活化 延迟荧光材料,或者一种或两种受体基团单元与一种或两种给体基团单元直接连接形成热活化延迟荧光材料。
优选地,所述连接基团选自螺芴基、苯基、联苯基、C1-6的烷基或苯基的其中至少一种取代的螺芴基、C1-6的烷基或苯基的其中至少一种取代的苯基、C1-6的烷基或苯基的其中至少一种取代的联苯基。
优选地,所述给体基团选自以下基团:
Figure PCTCN2015097529-appb-000001
优选地,所述受体基团选自以下基团:
Figure PCTCN2015097529-appb-000002
优选地,所述热活化延迟荧光材料为具有如下结构的化合物:
Figure PCTCN2015097529-appb-000003
Figure PCTCN2015097529-appb-000004
Figure PCTCN2015097529-appb-000005
Figure PCTCN2015097529-appb-000006
Figure PCTCN2015097529-appb-000007
Figure PCTCN2015097529-appb-000008
Figure PCTCN2015097529-appb-000009
Figure PCTCN2015097529-appb-000010
Figure PCTCN2015097529-appb-000011
Figure PCTCN2015097529-appb-000012
Figure PCTCN2015097529-appb-000013
Figure PCTCN2015097529-appb-000014
Figure PCTCN2015097529-appb-000015
作为其中一实施方案,所述构成主体材料的两种材料均为热活化延迟荧光材料。
优选地,构成主体材料的两种材料,一种为热活化延迟荧光材料,另一种为调节主体材料,主体材料中的热活化延迟荧光材料的三线态能级与调节主体材料的三线态能级相等。
有益效果
本发明的优点在于:
本发明热活化敏化磷光器件,发光层的主体材料中的一种为空穴传输型材料,另一种为电子传输型材料,且该两种材料的至少其中一种为热活化延迟荧光材料,如此将三线态激子转换为单线态,以长程的Forster能量传递为主,降低掺杂比例(<3%)节省成本,有效抑制衰减,延长寿命。同时能量的转换和发光不在同一个材料,器件的性能更优。
附图说明
图1是传统的OLED发光层磷光体系能量传递示意图。
图2是本发明的有机电致发光器件的结构示意图。
图3是本发明的OLED发光层热活化敏化磷光体系能量传递示意图。
图4是本发明中主体材料为两种TADF材料的OLED发光层的能量传递示意图。
图5是本发明中主体材料的一种为TADF材料,另一种为调节主体材料的OLED发光层的能 量传递示意图。
本发明的实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
如图2所示,本发明的有机电致发光器件包括在基板01上依次沉积彼此层叠的阳极02、空穴传输层05、发光层06、电子传输层07及阴极03。
本发明的热活化敏化有机电致发光器件,包括发光层,所述发光层的主体材料是为两种材料的混合物,该两种材料的其中一种为空穴传输型材料,另一种为电子传输型材料,且该两种材料的至少其中一种为热活化延迟荧光材料;所述主体材料中掺杂磷光染料,磷光染料在所述主体材料中的掺杂浓度为<15重量%,优选为2重量%~10重量%,更优选为2重量%~3重量%。
所述热活化延迟荧光材料的CT激发态的三线态能级高于n-π激发态的三线态能级,并且相差为0~0.3eV之间;或者,所述热活化延迟荧光材料的CT激发态的三线态能级高于n-π激发态的三线态能级,其差值为1.0eV以上的材料,并且,所述热活化延迟荧光材料的n-π激发态的第二三线态能级和CT激发态的第一单线态能级的差值为-0.1~0.1eV。
如图3所示,本发明热活化敏化磷光器件,发光层的主体材料中的一种为空穴传输型材料,另一种为电子传输型材料,且该两种材料的至少其中一种为热活化延迟荧光材料,如此将主体材料的三线态激子能量通过反系间窜跃到单线态,然后通过长程的Forster能量传递到磷光材料的三线态,改善了主客发光体间的能量转移关系,这样可降低掺杂比例(<15%)节省成本,有效抑制衰减,延长寿命。同时能量的转换和发光不在同一个材料,器件的性能更优。
本发明中,优选地,所述热活化延迟荧光材料为CT激发态的三线态能级高于n-π激发态的三线态能级,并且相差为0~0.3eV之间的材料;或者,所述热活化延迟荧光材料为CT激发态的三线态能级高于n-π激发态的三线态能级,其差值为1.0eV以上,并且,n-π激发态的第二三线态能级和CT激发态的第一单线态能级的差值为-0.1~0.1e V的材料。
本发明中的热活化延迟荧光材料为CT激发态的三线态与n-π激发态的三线态能级相差很小(0~0.3eV)的材料以及两者相差很大(≥1.0eV)但是n-π激发态的第二三线态要稍小或稍高于CT激发态的第一单线态的材料(二者相差0~0.1eV)。本发明所选的材料在空间上都存在相互分离的给体基团和受体基团,从而导致了HOMO与LUMO能级的空间分离,减小了重叠积分,因此材料的CT态的单线态和三线态的能级差相差很小。同时,所选用的菲并咪唑基、萘并噻唑基、苯并噻唑基或者蒽基的单线态和三线态能级差在1.0eV以上,也可以达到第二类材料的要求。
本发明中所述的热活化延迟荧光材料为存在电荷转移跃迁的材料,热活化延迟荧光材料中同时存在给体基团单元和受体基团单元。其中,给体基团单元为一个给体基团或两个以上的给体基团连接构成的基团;受体基团单元为一个受体基团或两个以上的受体基团连接构成的基团;具体的,主体材料的结构可为donor-connection-acceptor或者为donor-acceptor-donor的结构等。
给体基团选自吲哚并咔唑基,咔唑基,二连咔唑基,三苯胺基,吩噁嗪基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的吲哚并咔唑基,C1-6的烷基、甲氧基、乙氧基或苯基中 一种以上的基团取代的咔唑基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的二苯并呋喃基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的三苯胺基,或者C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的吩噁嗪基。
受体基团选自萘基,蒽基,菲基,芘基,三嗪基,苯并咪唑基,氰基、吡啶基,砜基,菲并咪唑基,萘并噻唑基,苯并噻唑基,噁二唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的萘基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的蒽基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的菲基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的芘基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的三嗪基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的苯并咪唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的吡啶基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的砜基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的菲并咪唑基;C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的萘并噻唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的苯并噻唑基或C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的噁二唑基。
其中,一种或多种所述给体基团单元与一种或多种所述受体基团单元直接连接形成热活化延迟荧光材料;或者,一种或多种所述给体基团单元和一种或多种所述受体基团单元分别与连接基团连接形成热活化延迟荧光材料,所述连接基团为具有空间位阻的基团。
上述连接基团优选选自螺芴基、苯基、联苯基、C1-6的烷基或苯基的其中至少一种取代的螺芴基、C1-6的烷基或苯基的其中至少一种取代的苯基、C1-6的烷基或苯基的其中至少一种取代的联苯基。
给体基团优选选自以下结构:
Figure PCTCN2015097529-appb-000016
Figure PCTCN2015097529-appb-000017
受体基团优选选自以下结构:
Figure PCTCN2015097529-appb-000018
具体地,热活化延迟荧光材料选自具有以下结构的化合物:
Figure PCTCN2015097529-appb-000019
1-1(Chem.Commun.,2012,48,9580-9582)
Figure PCTCN2015097529-appb-000020
1-2(Angew.Chem.Int.Ed.,2012,51,11311-11315)
Figure PCTCN2015097529-appb-000021
1-3(Chem.Commun.2012,48,11392-11394)
Figure PCTCN2015097529-appb-000022
1-4(J.Mater.Chem.C,2013,1,4599-4604)
Figure PCTCN2015097529-appb-000023
1-5(J.Mater.Chem.C,2013,1,4599-4604)
Figure PCTCN2015097529-appb-000024
1-6(Phys.Chem.Chem.Phys.,2013,15,15850)
Figure PCTCN2015097529-appb-000025
1-7(ΔEST=0.11,利用Gaussian 03/TD-DFT计算)
Figure PCTCN2015097529-appb-000026
1-8(ΔEST=0.14,利用Gaussian 03/TD-DFT计算)
Figure PCTCN2015097529-appb-000027
1-9(Nature,2012,492,234)
Figure PCTCN2015097529-appb-000028
1-10(Nature,2012,492,234)
Figure PCTCN2015097529-appb-000029
1-11(Nature,2012,492,234)
Figure PCTCN2015097529-appb-000030
1-12(Nature,2012,492,234)
Figure PCTCN2015097529-appb-000031
1-13(Nature,2012,492,234)
Figure PCTCN2015097529-appb-000032
1-14(Nature,2012,492,234)
Figure PCTCN2015097529-appb-000033
1-15(ΔEST=0.21,利用Gaussian 03/TD-DFT计算)
Figure PCTCN2015097529-appb-000034
2-1(ΔEST=0.15,利用Gaussian 03/TD-DFT计算)
Figure PCTCN2015097529-appb-000035
2-2(ΔEST=0.04,利用Gaussian 03/TD-DFT计算)
Figure PCTCN2015097529-appb-000036
2-3
Figure PCTCN2015097529-appb-000037
2-4(J.AM.Chem.Soc.2012,134,14706-14709)
Figure PCTCN2015097529-appb-000038
2-5(J.AM.Chem.Soc.2012,134,14706-14709)
Figure PCTCN2015097529-appb-000039
2-6(Chem.Mater.,2013,25(18),pp 3766–3771)
Figure PCTCN2015097529-appb-000040
2-7(ΔEST=0.07,利用Gaussian 03/TD-DFT计算)
Figure PCTCN2015097529-appb-000041
2-8(ΔEST=0.16,利用Gaussian 03/TD-DFT计算)
Figure PCTCN2015097529-appb-000042
2-9(ΔEST=0.09,利用Gaussian 03/TD-DFT计算)
Figure PCTCN2015097529-appb-000043
2-10(PRL,2013,110,247401)
Figure PCTCN2015097529-appb-000044
2-11(ΔEST=0.06,利用Gaussian 03/TD-DFT计算)
Figure PCTCN2015097529-appb-000045
2-12(Appl.Phys.Lett.,2012,101,093306)
Figure PCTCN2015097529-appb-000046
2-13(Phys.Chem.Chem.Phys.2013,15,15850)
Figure PCTCN2015097529-appb-000047
2-14((J.Mater.Chem.C,2013,1,4599-4604)
Figure PCTCN2015097529-appb-000048
2-15(J.Mater.Chem.C,2013,1,4599-4604)
Figure PCTCN2015097529-appb-000049
3-1(CC,DOI:10.1039/c3cc47130f)
Figure PCTCN2015097529-appb-000050
3-2(CC,DOI:10.1039/c3cc47130f)
Figure PCTCN2015097529-appb-000051
3-3(CT态的ΔEST=0.03,同时局域态单线态与三线态能级差在1.1eV,利用Gaussian 03/TD-DFT计算)
Figure PCTCN2015097529-appb-000052
3-4(CT态的ΔEST=0.05,同时局域态单线态与三线态能级差在1.2eV,利用Gaussian 03/TD-DFT计算)
Figure PCTCN2015097529-appb-000053
3-5(CT态的ΔEST=0.01,同时局域态单线态与三线态能级差在1.4eV利用Gaussian 03/TD-DFT计算)
Figure PCTCN2015097529-appb-000054
3-6(AFM,DOI:10.1002/adfm.201301750)
Figure PCTCN2015097529-appb-000055
3-7
Figure PCTCN2015097529-appb-000056
3-8
Figure PCTCN2015097529-appb-000057
3-9
Figure PCTCN2015097529-appb-000058
3-10
Figure PCTCN2015097529-appb-000059
3-11
Figure PCTCN2015097529-appb-000060
3-12。
本申请中相关化合物的合成:
1、化合物1-7的合成
Figure PCTCN2015097529-appb-000061
合成1-7a,
3.34g咔唑,3.22g 3,6-二溴咔唑,0.5g CuI,0.5g菲啰啉以及5.2g碳酸钾加入到100ml圆底烧瓶中,加入60mlDMF,在氮气氛围下加热回流反应48小时,随后将反应液倒入水中,减压抽滤得到固体。固体用色谱柱分离得到1-7a,产率为30%。
质谱数据:ESI-MS m/z:498[M+H]+,元素分析:C36H23N3:C:86.90,H:4.66,N:8.44。
合成1-7b,
3.11g三溴苯,2.48g对甲基苯硫酚,6g碳酸钾,1g碘化亚铜加入到100ml圆底烧瓶中,加入50ml的DMF,在氮气氛围下,100℃加热24小时。随后将反应液倒入水中,减压抽滤得到固体。固体用色谱柱分离得到1-7b,产率为60%。
质谱数据:ESI-MS m/z:401[M+H]+,元素分析:C20H17BrS,C:59.85,H:4.27。
合成1-7c,
在冰水浴下,将溶于30ml的1-7b缓慢滴加到1g mCPBA的二氯甲烷溶液中,保持在冰水浴中加完,随后反应12h。固体用色谱柱分离得到1-7c,产率为99%。
质谱数据:ESI-MS m/z:465[M+H]+,元素分析:C20H17BrO4S2,C:86.90,H:4.66,N:8.44。
合成1-7,
4.97g 1-7a,4.63g 1-7b,0.5g CuI,0.5g菲啰啉以及5.2g碳酸钾加入到100ml圆底烧瓶中,加入60ml DMF,在氮气氛围下加热回流反应48小时,随后将反应液倒入水中,减压抽滤得到固体。固体用色谱柱分离得到1-7,产率为60%。
质谱数据:ESI-MS m/z:882[M+H]+,元素分析:C56H39N3O4S2,C76.25,H4.46,N4.76.
2、化合物1-4的合成
1-4的合成参照1-7,物质检测数据:质谱数据:ESI-MS m/z:717[M+H]+,元素分析C44H32N2O4S2,C:73.72,H:4.50,N:3.91。
3、化合物1-8的合成
Figure PCTCN2015097529-appb-000062
4.52g 1-8a,3g 1-8b和0.05g四三苯基膦钯催化剂,以及5.4g碳酸钾,加入到圆底烧瓶中,再加入30ml甲苯和20ml水以及5ml乙醇,在85℃下反应48h。反应结束用二氯甲烷萃取,得到有机层,然后用色谱柱分离,得到1-8,产率为65%。
质谱数据:ESI-MS m/z:640[M+H]+,元素分析:C45H29N5,C:84.48,H:4.57,N:10.95。
4、化合物2-1的合成
Figure PCTCN2015097529-appb-000063
2.43g 2-1a加入到0.24g NaH的超干DMF溶液中(30ml),室温搅拌30min,然后将2.54g 2-1b的DMF溶液滴加到上述溶液中,加热100度搅拌1小时,冷却后倒入水中,过滤固体,用色谱柱分离。得到2-1。
质谱数据:ESI-MS m/z:701[M+H]+,元素分析:C48H32N2O2S,C:82.26,H:4.60,N:4.0。
5、化合物2-2的合成
化合物2-2的合成参见2-1,方法与化合物2-1基本相同,区别在于将2-1a换成二联咔唑。
质谱数据:ESI-MS m/z:879[M+H]+,元素分析:C60H38N4O2S,C:81.98,H:4.36,N:6.37。
6、化合物2-7的合成
Figure PCTCN2015097529-appb-000064
合成2-7a,
2.25g 2,4-二氯-6-苯三嗪,2g间溴苯硼酸,0.05g四三苯基膦钯催化剂,以及5.4g碳酸钾,加入 到圆底烧瓶中,再加入30ml甲苯和20ml水以及5ml乙醇,在85℃下反应48h。反应结束用二氯甲烷萃取,得到有机层,然后用色谱柱分离,得到2-7a,产率为58%。
质谱数据:ESI-MS m/z:466[M+H]+,元素分析:C21H13Br2N3,C:53.99,H:2.80,N:8.99。
合成2-7,
4.65g 2-7a,3.66g吩噁嗪,0.5g CuI,0.5g菲啰啉以及5.2g碳酸钾加入到100ml圆底烧瓶中,加入60ml DMF,在氮气氛围下加热回流反应48小时,随后将反应液倒入水中,减压抽滤得到固体,固体用色谱柱分离得到2-7,产率为48%。
质谱数据:ESI-MS m/z:672[M+H]+.元素分析:C45H29N5O2,C:80.46,H:4.35,N:4.76。
7、化合物2-8的合成
合成2-8a,
2.25g 2,4-二氯-6-苯三嗪,2g对溴苯硼酸,0.05g四三苯基膦钯催化剂,以及5.4g碳酸钾,加入到圆底烧瓶中,再加入30ml甲苯和20ml水以及5ml乙醇,在85℃下反应48h。反应结束用二氯甲烷萃取,得到有机层,然后用色谱柱分离,得到2-8a,产率为55%。
质谱数据:ESI-MS m/z:466[M+H]+,元素分析:C21H13Br2N3,C:53.99,H:2.80,N:8.99。
合成2-8,
4.65g 2-8a,3.66g吩噁嗪,0.5g CuI,0.5g菲啰啉以及5.2g碳酸钾加入到100ml圆底烧瓶中,加入60ml DMF,在氮气氛围下加热回流反应48小时,随后将反应液倒入水中,减压抽滤得到固体,固体用色谱柱分离得到2-8,产率为56%。
质谱数据:ESI-MS m/z:640[M+H]+,元素分析:C45H29N5,C:84.48,H:4.57,N:10.95。
8、化合物2-9的合成
2-9的合成参见2-7,区别在于换用不同的给体基团.,选用的咔唑替换吩噁嗪。4.65g 2-8a,3.0g咔唑,0.5g CuI,0.5g菲啰啉以及5.2g碳酸钾加入到100ml圆底烧瓶中,加入60ml DMF,在氮气氛围下加热回流反应48小时,随后将反应液倒入水中,减压抽滤得到固体,固体用色谱柱分离得到2-9,产率为50%。
质谱数据:ESI-MS m/z:640[M+H]+,元素分析:C45H29N5,C:84.48,H:4.57,N:10.95。
9、化合物2-11的合成
Figure PCTCN2015097529-appb-000065
合成2-11,
3.32g苯基吲哚咔唑,2.67g 2-氯-4,6-二苯三嗪,0.5g CuI,0.5g菲啰啉以及5.2g碳酸钾加入到100ml圆底烧瓶中,加入60ml DMF,在氮气氛围下加热回流反应48小时,随后将反应液倒入水中,减压抽滤得到固体。固体用色谱柱分离得到2-7,产率为48%。
质谱数据:ESI-MS m/z:564[M+H]+,元素分析:C39H25N5,C:83.10,H:4.47,N:12.43。
10、化合物3-3的合成
Figure PCTCN2015097529-appb-000066
合成3-3a,
3ml吡啶加入到邻苯二胺(0.6g)和氯化亚砜(5ml)的混合溶液中,在60度温度下搅拌10小时,用二氯甲烷萃取,然后用大量的水清洗,得到固体。
质谱数据:ESI-MS m/z:205。
合成3-3b,
2.25g 3-3a,2g苯硼酸,0.05g四三苯基膦钯催化剂,以及5.4g碳酸钾,加入到圆底烧瓶中,再加入30ml甲苯和20ml水以及5ml乙醇,在85℃下反应48h。反应结束用二氯甲烷萃取,得到有机层,然后用色谱柱分离,得到3-3a,产率为58%。
质谱数据:ESI-MS m/z:246[M+H]+
合成3-3,
2.46g 3-3b,2.39g 4-硼酸三苯胺,0.05g四三苯基膦钯催化剂,以及5.4g碳酸钾,加入到圆底烧瓶中,再加入30ml甲苯和20ml水以及5ml乙醇,在85℃下反应48h,反应结束用二氯甲烷萃取,得到有机层,然后用色谱柱分离,得到3-3,产率为58%。
质谱数据:ESI-MS m/z:456[M+H]+,元素分析:C30H21N3S,C:79.09,H:4.65,N:9.22。
11、化合物3-4的合成
化合物3-4的合成参见化合物3-3,步骤基本相同,区别在于受体基团采用的是噻吩取代的苯并噻唑。
质谱数据:ESI-MS m/z:462[M+H]+,元素分析:C28H19N3S2:C:72.86,H:4.15,N:9.10。
12、化合物3-5的合成
化合物3-5的合成参见化合物3-3,步骤基本相同,区别在于:受体基团采用的是噻吩取代的萘并噻唑。
质谱数据:ESI-MS m/z:512[M+H]+,元素分析:C32H21N3S2:C:75.12,H:4.15,N:8.21。
本发明中构成主体材料的两种材料可均为热活化延迟荧光材料,能量传递过程如图4:第一TADF主体和第二TADF主体分别将三线态能量通过反系间窜跃转移给单线态,然后通过Forster将能量都转移给磷光染料的三线态,从而通过减小主客体之间的距离,达到高效利用主体的能量, 降低磷光材料的使用量,还有效的解决了衰减(roll-off)的问题,使得器件的稳定性进一步提高。
也可,一种为热活化延迟荧光材料(TADF主体),另一种调节主体材料(调节主体)。二者一个为电子传输型材料,另一为空穴传输型材料,其能量传递原理如图5:TADF主体和调节主体共同的三线态能量通过反系间窜跃转移给单线态,然后通过Forster将能量都转移给磷光染料的三线态,从而通过减小主客体之间的距离,达到高效利用主体的能量,降低磷光材料的使用量,还有效的解决了衰减(roll-off)问题,使得器件的稳定性进一步提高。
本发明的有机发光显示器件实施例:阳极可以采用无机材料或有机导电聚合物。无机材料一般为氧化铟锡(ITO)、氧化锌(ZnO)、氧化铟锌(IZO)等金属氧化物或金、铜、银等功函数较高的金属,优选ITO;有机导电聚合物优选为聚噻吩/聚乙烯基苯磺酸钠(以下简称PEDOT/PSS)、聚苯胺(以下简称PANI)中的一种。
阴极一般采用锂、镁、钙、锶、铝、铟等功函数较低的金属或它们与铜、金、银的合金,或金属与金属氟化物交替形成的电极层。本发明中阴极优选为层叠的LiF层和Al层(LiF层在外侧)。
空穴传输层的材料可以选自芳胺类和枝聚物类低分子材料,优选NPB。
电子传输层的材料可采用有机金属配合物(如Alq3、Gaq3、BAlq或Ga(Saph-q))或其他常用于电子传输层的材料,如芳香稠环类(如pentacene、苝)或邻菲咯啉类(如Bphen、BCP)化合物。
本发明的有机电致发光器件还可在阳极和空穴传输层之间具有空穴注入层04(该层也可省略),空穴注入层的材料例如可采用4,4',4”-三(3-甲基苯基苯胺)三苯胺掺杂F4TCNQ,或者采用铜酞菁(CuPc),或可为金属氧化物类,如氧化钼,氧化铼。
上述各层的厚度可采用本领域中这些层常规的厚度。
本发明还提供所述有机电致发光器件的制备方法,包括在基板01上依次沉积彼此层叠的阳极02、空穴传输层05、发光层06、电子传输层07及阴极03,然后封装。
基板可以是玻璃或是柔性基片,所述柔性基片可采用聚酯类、聚酰亚胺类化合物材料或者薄金属片。所述层叠及封装可采用本领域技术人员已知的任意合适方法。
为方便起见,把本说明书中涉及的一些有机材料的缩写及全称列示如下:
Figure PCTCN2015097529-appb-000067
Figure PCTCN2015097529-appb-000068
Figure PCTCN2015097529-appb-000069
Figure PCTCN2015097529-appb-000070
Figure PCTCN2015097529-appb-000071
下文通过实施例进一步说明本发明。
实施例1
本实施例中制备了具有不同热活化延迟荧光材料掺杂浓度的发光器件,这些器件具有如图3所示的结构。发光层的主体材料(热活化延迟荧光材料Host1(1-9),热活化延迟荧光材料Host2(2-4),主体材料中掺杂的磷光染料(Ir(ppy)3)。热活化延迟荧光材料Host2(2-4)为电子传输型材料,热活化延迟荧光材料Host1(1-9)为空穴传输型材料):
本实施例的器件结构如下:
ITO(150nm)/NPB(40nm)/主体材料:(2%、3%、10%、14%)磷光染料(30nm)/Alq3(20nm)/LiF(0.5nm)/Al(150nm)
其中,磷光之前的括号中的百分比表示不同的掺杂浓度,在本实施例以及下文中,掺杂浓度均为重量%。
所述有机电致发光器件的具体制备方法如下:
首先,利用洗涤剂和去离子水对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃上溅射一层阳极材料,膜厚为150nm;
然后,把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-4Pa,在上述阳极层膜上继续蒸镀NPB作为空穴传输层,成膜速率为0.1nm/s,蒸镀膜厚为40nm。
在空穴传输层上蒸镀发光层,采用双源共蒸的方法进行,按照主体材料与磷光染料的质量百分比通过膜厚监控仪,调整成膜速率进行控制。蒸镀膜厚为30nm。
在发光层之上,继续蒸镀一层Alq3材料作为电子传输层,其蒸镀速率为0.1nm/s,蒸镀总膜厚为20nm;
最后,在上述发光层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为1.0nm/s,厚度为150nm。
对比例1
以与上述实施例1相同的方法制备有机电致发光器件,该器件结构如下:
ITO(150nm)/NPB(40nm)/主体材料:(15%)磷光染料(30nm)/Alq3(20nm)/LiF(0.5nm)/Al(150nm)
发光层的主体材料为CBP:BAlq,磷光染料同实施例1
对比例2
以与上述实施例1相同的方法制备有机电致发光器件,该器件结构如下:
ITO(150nm)/NPB(40nm)/主体材料:(15%,20%)磷光染料(30nm)/Alq3(20nm)/LiF(0.5nm)/Al(150nm)
发光层的主体材料(热活化延迟荧光材料Host1(1-9),热活化延迟荧光材料Host2(2-4),磷光染料同实施例1
将上面实施例1和对比例1的有机电致发光器件的性能表示在下表1中,下表中发光层组成的百分比表示各材料在发光层中所占的质量百分比:
表1
Figure PCTCN2015097529-appb-000072
由表1可以看出,当主体材料中采用了电子传输型材料和空穴传输型材料的混合物,且二者均选择TADF材料后,其双热活化延迟荧光主体材料的发光效率比单主体材料的效率明显增加,且寿命也明显比传统双主体器件的寿命有所增加。
并且,当磷光染料的掺杂浓度在小于15%的范围时,其发光效率等均比掺杂浓度>15%时的效率高,寿命也有所增加,且节省了高价磷光染料的大量使用。
实施例2
本实施例中制备了具有不同热活化延迟荧光材料掺杂浓度的发光器件,这些器件具有如图3所示的结构。发光层的主体材料(热活化延迟荧光材料Host 3(1-4),调节主体材料(CBP),主体材料中掺杂的磷光染料Ir(piq)3。热活化延迟荧光材料Host 3(1-10)为电子传输型材料,调节主体材料CBP为空穴传输型材料,二者的三线态能级相同):本实施例的器件结构如下:
ITO(150nm)/NPB(40nm)/主体材料:(2%、3%、10%、14%)磷光染料(30nm)/Alq3(20nm)/LiF(0.5nm)/Al(150nm)
其中,磷光之前的括号中的百分比表示不同的掺杂浓度,在本实施例以及下文中,掺杂浓度均 为重量%。
对比例3
以与上述实施例1相同的方法制备有机电致发光器件,该器件结构如下:
ITO(150nm)/NPB(40nm)/主体材料:(15%,20%)磷光染料(30nm)/Alq3(20nm)/LiF(0.5nm)/Al(150nm)
发光层的主体材料(热活化延迟荧光材料Host 3(1-10),调节主体材料CBP,磷光染料同实施例2
实施例2和对比例3的有机电致发光器件的性能如下表2所示:
表2
Figure PCTCN2015097529-appb-000073
由表2可以看出,当磷光染料的掺杂浓度在小于15%的范围时,其发光效率等均比掺杂浓度>15%时的效率高,寿命也有所增加,且节省了高价磷光染料的大量使用。
实施例3
为测试本发明的主体材料对有机电致发光器件性能的影响,本实施例以与上述实施例1相同的方法制备有机电致发光器件,该发光器件的结构如下:
ITO(150nm)/NPB(40nm)/主体材料(两种主体材料的质量比1:1):3%磷光染料(Ir(ppy)3)(30nm)/Bphen(20nm)/LiF(0.5nm)/Al(150nm)。
有机电致发光器件的性能表示在下表3中:
表3
Figure PCTCN2015097529-appb-000074
Figure PCTCN2015097529-appb-000075
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (11)

  1. 一种热活化敏化磷光有机电致发光器件,包括发光层,其特征在于,所述发光层的主体材料由两种材料构成,该两种材料的其中一种为空穴传输型材料,另一种为电子传输型材料,且该两种材料中的至少一种为热活化延迟荧光材料;所述主体材料中掺杂磷光染料,所述磷光染料在所述发光层中所占比例<15重量%,
    所述热活化延迟荧光材料的CT激发态的三线态能级高于n-π激发态的三线态能级,并且相差为0~0.3eV之间;或者,所述热活化延迟荧光材料的CT激发态的三线态能级高于n-π激发态的三线态能级,其差值为1.0eV以上,并且,其n-π激发态的第二三线态能级和CT激发态的第一单线态能级的差值为-0.1~0.1eV。
  2. 根据权利要求1所述的热活化敏化磷光有机电致发光器件,其特征在于,所述磷光染料在所述发光层中所占比例为2重量%~10重量%。
  3. 根据权利要求1所述的热活化敏化磷光有机电致发光器件,其特征在于,所述磷光染料在所述发光层中所占比例为2重量%~3重量%。
  4. 根据权利要求1所述的热活化敏化磷光有机电致发光器件,其特征在于,所述热活化延迟荧光材料为存在电荷转移跃迁的材料,热活化延迟荧光材料中同时存在给体基团单元和受体基团单元,
    所述给体基团单元为一个给体基团或两个以上的给体基团连接构成的基团;
    所述受体基团单元为一个受体基团或两个以上的受体基团连接构成的基团;
    所述给体基团选自吲哚并咔唑基,咔唑基,联咔唑基,三苯胺基,吩噁嗪基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的吲哚并咔唑基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的咔唑基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的联咔唑基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的三苯胺基,或者C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的吩噁嗪基;
    所述受体基团选自萘基,蒽基,菲基,芘基,三嗪基,苯并咪唑基,氰基、吡啶基,砜基,菲并咪唑基,萘并噻唑基,苯并噻唑基,噁二唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的萘基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的蒽基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的菲基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的芘基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的三嗪基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的苯并咪唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的吡啶基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的砜基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的菲并咪唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的萘并噻唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的苯并噻唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的噁二唑基;
    其中,一种或多种所述给体基团单元与一种或多种所述受体基团单元直接连接形成热活化延迟荧光材料;或者,一种或多种所述给体基团单元和一种或多种所述受体基团单元分别与连接基团连接形成热活化延迟荧光材料,所述连接基团为具有空间位阻的基团。
  5. 根据权利要求4所述的热活化敏化磷光有机电致发光器件,其特征在于,一种或两种给体基团单元和一种或两种受体基团单元分别与连接基团连接形成热活化延迟荧光材料,或者一种或两种受体基团单元与一种或两种给体基团单元直接连接形成热活化延迟荧光材料。
  6. 根据权利要求4所述的热活化敏化磷光有机电致发光器件,其特征在于,所述连接基团选自螺芴基,苯基,联苯基,C1-6的烷基或苯基的其中至少一种取代的螺芴基,C1-6的烷基或苯基的其中至少一种取代的苯基,C1-6的烷基或苯基的其中至少一种取代的联苯基。
  7. 根据权利要求4所述的热活化敏化磷光有机电致发光器件,其特征在于,所述给体基团选自以下基团:
    Figure PCTCN2015097529-appb-100001
  8. 根据权利要求4所述的热活化敏化磷光有机电致发光器件,其特征在于,所述受体基团选自以下基团:
    Figure PCTCN2015097529-appb-100002
  9. 根据权利要求4所述的热活化敏化磷光有机电致发光器件,其特征在于,所述热活化延迟 荧光材料为具有如下结构的化合物:
    Figure PCTCN2015097529-appb-100003
    Figure PCTCN2015097529-appb-100004
    Figure PCTCN2015097529-appb-100005
    Figure PCTCN2015097529-appb-100006
    Figure PCTCN2015097529-appb-100007
    Figure PCTCN2015097529-appb-100008
    Figure PCTCN2015097529-appb-100009
    Figure PCTCN2015097529-appb-100010
    Figure PCTCN2015097529-appb-100011
    Figure PCTCN2015097529-appb-100012
    Figure PCTCN2015097529-appb-100013
    Figure PCTCN2015097529-appb-100014
    Figure PCTCN2015097529-appb-100015
  10. 根据权利要求1~9任一项所述的热活化敏化磷光有机电致发光器件,其特征在于,构成主体材料的两种材料均为热活化延迟荧光材料。
  11. 根据权利要求1~9任一项所述的热活化敏化磷光有机电致发光器件,其特征在于,构成主体材料的两种材料,一种为热活化延迟荧光材料,另一种为调节主体材料,该主体材料中的热活化延迟荧光材料的三线态能级与调节主体材料的三线态能级相等。
PCT/CN2015/097529 2015-01-26 2015-12-16 一种热活化敏化磷光有机电致发光器件 WO2016119533A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017553295A JP6503088B2 (ja) 2015-01-26 2015-12-16 熱活性化増感燐光有機電界発光素子
US15/544,859 US20180013073A1 (en) 2015-01-26 2015-12-16 Thermally-activated sensitized phosphorescent organic electroluminescent device
KR1020177018924A KR101930187B1 (ko) 2015-01-26 2015-12-16 열활성화 감광성 인광 유기전계발광소자
EP15879731.6A EP3226318B1 (en) 2015-01-26 2015-12-16 Thermally-activated sensitized phosphorescent organic electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510037898.4A CN105895810B (zh) 2015-01-26 2015-01-26 一种热活化敏化磷光有机电致发光器件
CN201510037898.4 2015-01-26

Publications (1)

Publication Number Publication Date
WO2016119533A1 true WO2016119533A1 (zh) 2016-08-04

Family

ID=56542357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097529 WO2016119533A1 (zh) 2015-01-26 2015-12-16 一种热活化敏化磷光有机电致发光器件

Country Status (7)

Country Link
US (1) US20180013073A1 (zh)
EP (1) EP3226318B1 (zh)
JP (1) JP6503088B2 (zh)
KR (1) KR101930187B1 (zh)
CN (1) CN105895810B (zh)
TW (1) TWI650403B (zh)
WO (1) WO2016119533A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017108100A (ja) * 2015-08-07 2017-06-15 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
WO2018123783A1 (ja) * 2016-12-27 2018-07-05 新日鉄住金化学株式会社 有機電界発光素子用材料及び有機電界発光素子

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101803537B1 (ko) * 2012-02-09 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
US10700288B2 (en) * 2015-07-24 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, lighting device, and lighting system
CN107785492B (zh) * 2016-08-29 2020-01-10 昆山工研院新型平板显示技术中心有限公司 有机发光显示器件及显示装置
CN108011047B (zh) * 2016-10-27 2020-03-10 昆山工研院新型平板显示技术中心有限公司 一种红光有机电致发光器件
CN106410053B (zh) * 2016-10-31 2019-01-18 昆山工研院新型平板显示技术中心有限公司 一种白光有机电致发光器件
CN108011040B (zh) * 2016-10-31 2020-07-17 昆山工研院新型平板显示技术中心有限公司 一种绿光有机电致发光器件
CN108264478B (zh) * 2016-12-30 2020-09-22 昆山国显光电有限公司 载流子传输材料及载流子传输层及有机发光器件
CN108264479B (zh) * 2016-12-30 2023-10-27 昆山国显光电有限公司 一种有机电致发光器件
CN106816541A (zh) * 2017-01-11 2017-06-09 瑞声科技(南京)有限公司 磷光蓝有机发光二极管装置
CN109422735A (zh) * 2017-08-21 2019-03-05 邱天隆 咔唑衍生物材料以及使用其的有机发光二极管元件
CN109671850A (zh) * 2017-10-16 2019-04-23 北京鼎材科技有限公司 一种有机电致发光器件
CN109935723A (zh) * 2017-12-18 2019-06-25 北京鼎材科技有限公司 一种有机电致发光器件
WO2019120085A1 (zh) * 2017-12-21 2019-06-27 广州华睿光电材料有限公司 包含有热激发延迟荧光材料的印刷油墨及其应用
CN110034234B (zh) * 2018-01-11 2023-09-05 北京鼎材科技有限公司 一种白光有机电致发光器件
JP2021120964A (ja) * 2018-03-19 2021-08-19 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器
KR102637792B1 (ko) * 2018-03-22 2024-02-19 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함한 전자 장치
TW201942327A (zh) * 2018-03-29 2019-11-01 國立大學法人九州大學 蓄光體及蓄光元件
EP3565018B1 (en) * 2018-05-04 2024-05-08 Samsung Display Co., Ltd. Organic electroluminescent device emitting blue light
WO2020022378A1 (ja) 2018-07-27 2020-01-30 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
CN109088008B (zh) * 2018-08-23 2021-01-26 京东方科技集团股份有限公司 一种有机发光器件及显示面板
CN110335954B (zh) * 2019-07-15 2020-10-27 吉林大学 一种高效稳定的白光有机电致发光器件及其制备方法
CN110190200B (zh) * 2019-07-15 2020-07-14 吉林大学 一种高效高显色指数的纯白光有机电致发光器件及其制备方法
US11683983B2 (en) * 2019-10-18 2023-06-20 Lg Display Co., Ltd. Organic light emitting diode and organic light emitting device including the same
KR20220034512A (ko) * 2020-09-11 2022-03-18 엘지디스플레이 주식회사 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
CN112054129B (zh) * 2020-09-15 2024-04-09 京东方科技集团股份有限公司 一种发光器件、显示装置
EP4214767A1 (en) * 2020-09-18 2023-07-26 Samsung Display Co., Ltd. Organic electroluminescent device
CN113321677B (zh) * 2021-06-30 2023-05-05 京东方科技集团股份有限公司 一种热活化延迟荧光材料、有机发光器件及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130207088A1 (en) * 2012-02-09 2013-08-15 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element
WO2014002629A1 (ja) * 2012-06-28 2014-01-03 新日鉄住金化学株式会社 有機電界発光素子用材料及び有機電界発光素子
WO2014166585A1 (de) * 2013-04-08 2014-10-16 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2014194971A1 (de) * 2013-06-06 2014-12-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10186665B2 (en) * 2012-12-28 2019-01-22 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
KR20150122754A (ko) * 2013-03-29 2015-11-02 코니카 미놀타 가부시키가이샤 유기 일렉트로루미네센스 소자, 조명 장치, 표시 장치, 유기 루미네센스 소자용 발광성 박막과 조성물 및 발광 방법
KR20150126381A (ko) * 2013-04-05 2015-11-11 코니카 미놀타 가부시키가이샤 발광층 형성용 도포액, 유기 일렉트로루미네센스 소자와 그 제조 방법 및 조명·표시 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130207088A1 (en) * 2012-02-09 2013-08-15 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element
WO2014002629A1 (ja) * 2012-06-28 2014-01-03 新日鉄住金化学株式会社 有機電界発光素子用材料及び有機電界発光素子
WO2014166585A1 (de) * 2013-04-08 2014-10-16 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2014194971A1 (de) * 2013-06-06 2014-12-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3226318A4 *
ZHANG, DONGDONG ET AL.: "Extremely low driving voltage electrophosphorescent green organic light-emitting diodes based on a host material with small singlet-triplet exchange energy without p- or n-doping layer", ORGANIC ELECTRONICS, vol. 14, no. 1, 31 January 2013 (2013-01-31), pages 260 - 266, XP055392019, ISSN: 1566-1199 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017108100A (ja) * 2015-08-07 2017-06-15 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
US11145827B2 (en) 2015-08-07 2021-10-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11770969B2 (en) 2015-08-07 2023-09-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
WO2018123783A1 (ja) * 2016-12-27 2018-07-05 新日鉄住金化学株式会社 有機電界発光素子用材料及び有機電界発光素子

Also Published As

Publication number Publication date
TW201627471A (zh) 2016-08-01
EP3226318A1 (en) 2017-10-04
CN105895810B (zh) 2018-11-30
KR101930187B1 (ko) 2019-03-14
US20180013073A1 (en) 2018-01-11
KR20170094332A (ko) 2017-08-17
EP3226318B1 (en) 2019-04-17
TWI650403B (zh) 2019-02-11
CN105895810A (zh) 2016-08-24
JP6503088B2 (ja) 2019-04-17
JP2018501668A (ja) 2018-01-18
EP3226318A4 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
TWI650403B (zh) 一種熱活化敏化磷光有機電致發光器件
TWI553938B (zh) 一種有機電致發光元件及其製備方法
KR102114077B1 (ko) 인광 유기 전계 발광 소자
EP3226320B1 (en) Organic electroluminescent device
WO2017101675A1 (zh) 热活化延迟荧光材料及其在有机电致发光器件中的应用
KR20140009919A (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
CN105895811A (zh) 一种热活化敏化荧光有机电致发光器件
CN115073305B (zh) 一种有机电致发光化合物及其制备方法与应用
CN106206997A (zh) 一种有机电致发光器件
TW201332972A (zh) 發光元件材料及發光元件
CN112321646A (zh) 一种有机化合物、电致发光材料及其应用
TW201837156A (zh) 有機電致發光裝置之發光材料
CN106898709B (zh) 一种红色磷光有机电致发光器件
TW201410650A (zh) 有機電致發光元件
WO2018166096A1 (zh) 一种有机发光器件及其制备方法
US8941099B2 (en) Organic light emitting device and materials for use in same
CN113735848A (zh) 一种电致发光化合物及其制备方法和应用
CN115286601A (zh) 一种含杂环的三芳胺类有机化合物及其有机发光器件
CN115043739A (zh) 一种有机电致发光化合物及其制备方法和有机电致发光器件
CN109671850A (zh) 一种有机电致发光器件
WO2020211128A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211123A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN115093335B (zh) 一种发光辅助材料及其制备方法和应用
CN117050102A (zh) 一种含芴的芳胺衍生物及其有机电致发光器件
CN115160241A (zh) 一种三嗪类电子传输材料及其制备方法与应用、包含其的有机电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879731

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015879731

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017553295

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177018924

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15544859

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE