WO2016117003A1 - かご形誘導電動機及びかご形誘導電動機の製造方法 - Google Patents

かご形誘導電動機及びかご形誘導電動機の製造方法 Download PDF

Info

Publication number
WO2016117003A1
WO2016117003A1 PCT/JP2015/051220 JP2015051220W WO2016117003A1 WO 2016117003 A1 WO2016117003 A1 WO 2016117003A1 JP 2015051220 W JP2015051220 W JP 2015051220W WO 2016117003 A1 WO2016117003 A1 WO 2016117003A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
groove
core
induction motor
iron core
Prior art date
Application number
PCT/JP2015/051220
Other languages
English (en)
French (fr)
Inventor
英男 寺澤
中川 健一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP15878699.6A priority Critical patent/EP3249790B1/en
Priority to US15/543,255 priority patent/US10756605B2/en
Priority to PCT/JP2015/051220 priority patent/WO2016117003A1/ja
Priority to JP2016570222A priority patent/JP6305571B2/ja
Priority to CN201580073213.XA priority patent/CN107112870B/zh
Publication of WO2016117003A1 publication Critical patent/WO2016117003A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/165Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors characterised by the squirrel-cage or other short-circuited windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/26Rotor cores with slots for windings
    • H02K1/265Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0012Manufacturing cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0025Shaping or compacting conductors or winding heads after the installation of the winding in the core or machine ; Applying fastening means on winding heads
    • H02K15/0031Shaping or compacting conductors in slots or around salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/20Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having deep-bar rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • H02K15/028Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots for fastening to casing or support, respectively to shaft or hub
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/46Motors having additional short-circuited winding for starting as an asynchronous motor

Definitions

  • the present invention relates to a cage induction motor and a method for manufacturing a cage induction motor.
  • a plurality of grooves are provided on the outer peripheral side of the rotor core of the cage induction motor, and a rod-shaped rotor conductor is inserted into each groove.
  • a ring-shaped conductor called a short-circuited ring is joined to both ends of the rotor conductor inserted into each groove to form a cage-shaped rotor conductor (cage-shaped rotor).
  • the rotor conductor is deformed by a sudden change in current induced by the rotating magnetic field, and the rotor conductor expands and contracts by a temperature change caused by the induced current.
  • the rotor conductor is subjected to centrifugal force due to rotation and external vibration. Due to the deformation, expansion / contraction, centrifugal force, vibration, etc. of the rotor conductor, relative movement of the rotor conductor with respect to the rotor core occurs.
  • a caulking operation called a sedge is performed to fix the rotor conductor to the groove of the rotor core.
  • a driving groove is provided by a chisel at the center portion in the width direction of the outer peripheral surface of the rotor conductor inserted into the rotor core groove.
  • the swollen overhanging part is stretched between the wall surfaces on both sides of the rotor core groove, and the rotor conductor is fixed to the rotor core groove by the tension force between the rotor conductor and the inner wall surface of the rotor core groove. Is done.
  • Patent Document 1 discloses a squirrel-cage induction motor that is fixed by forming a driving groove in a rotor conductor inserted into a rotor core groove (particularly, FIGS. 1 and 2). reference).
  • a driving groove for firmly fixing the rotor conductor to the rotor core groove in the vicinity of the axial center of the outer peripheral surface of the rotor conductor over a predetermined length.
  • a first driving groove which is a deep groove is provided.
  • a second driving groove shallower than the first driving groove is provided except in the vicinity of the central portion in the axial direction of the outer peripheral surface of the rotor conductor.
  • the rotor conductor swelled in the width direction when the first and second driving grooves are formed is fixed in a state of being stretched on both side walls of the rotor core groove.
  • the portion for fixing the rotor conductor is also called a fixing portion.
  • the rotor conductor expands and contracts due to repeated temperature rise and fall during operation. Furthermore, centrifugal force acts on the rotor conductor during rotation. Since the rotor core is composed of a laminated body having the same groove width, there is a relative small movement between the rotor core groove wall surface and the rotor conductor due to expansion and contraction of the rotor conductor and centrifugal force. It occurs and minute deformation and wear of the fixed part of the rotor conductor occur over time. As a result, the tension force between the rotor conductor and the inner wall surface of the rotor core groove is reduced, and the rotor conductor may move in the axial direction of the rotor in the rotor core groove.
  • An object of the present invention is to provide a squirrel-cage induction motor and a method for manufacturing the squirrel-cage induction motor that can prevent movement in the direction.
  • a squirrel-cage induction motor has the following configuration.
  • the rotor core is provided with a plurality of axially extending grooves on the outer peripheral side.
  • the rotor conductor is a rod-shaped conductor that is inserted into each groove, and has a protruding portion formed on the outer peripheral side that extends in the groove width direction after being inserted into each groove, and is formed between the protruding portion and both side walls of each groove. It is fixed to each groove by a tension force generated between them. Concavities and convexities are provided along the axial direction on the inner wall on the outer peripheral side of each groove in contact with the overhanging portion.
  • the inner wall on the outer peripheral side of the groove of the rotor core is provided with irregularities along the axial direction. For this reason, when the overhanging portion that protrudes in the groove width direction to fix the rotor conductor inserted in the groove of the rotor core is formed on the outer peripheral side of the rotor core, the portion that abuts the recess and the protrusion Therefore, the bulges in the width direction of the rotor conductor in the projecting part differ from each other, and the projecting part is also provided with irregularities along the axial direction.
  • FIG. 2 is an enlarged view of a crushed portion of FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line A-A ′ of FIG. 2.
  • FIG. 3 is a sectional view taken along line B-B ′ of FIG. 2.
  • It is a longitudinal cross-sectional view of a rotor core.
  • It is a top view of the rotor conductor overhang
  • FIG. 7 is a sectional view taken along line C-C ′ of FIG. 6.
  • Embodiment 1 FIG. First, a first embodiment of the present invention will be described.
  • FIG. 1 shows the overall configuration of a rotor core of a squirrel-cage induction motor.
  • the rotor core 100 is a cylindrical iron core having the rotor shaft 8 as a central axis.
  • a plurality of series of core grooves 2, 52 extending in the direction of the rotor shaft 8 is provided on the outer peripheral side of the rotor core 100.
  • the rotor core 100 is partially broken so that a part of the core grooves 2 and 52 can be visually recognized.
  • a wide portion 10 (concave portion) having a groove width wider than other portions is provided on the outer peripheral side.
  • the wide portion 10 is provided at a portion that contacts an overhang portion provided at the center in the axial direction on the outer peripheral side of the rotor conductor inserted into the core grooves 2 and 52.
  • FIG. 2 shows an enlarged cross section of the crushed portion of FIG.
  • a rod-like rotor conductor 5 is inserted in the iron core groove 2.
  • the rotor core 100 is composed of two types of iron cores 1 and 51.
  • the iron core 1 is disposed at the center with respect to the direction of the rotor shaft 8.
  • the iron core 1 is formed by laminating 10 to 20 core plates. For example, when the thickness of the core plate is 0.5 mm, the thickness of the entire iron core 1 is 5 mm to 10 mm.
  • the iron core 51 is disposed on both sides in the direction of the rotor shaft 8 with the iron core 1 interposed therebetween.
  • the iron core 51 is also formed by stacking a plurality of core plates. Most of the rotor core 100 is formed of an iron core 51.
  • the iron core groove 2 is formed by the iron core 1, and the iron core groove 52 is formed by the iron core 51.
  • the core groove 2 and the iron core groove 52 have different cross-sectional shapes.
  • FIG. 3 shows a cross section taken along line A-A ′ of FIG.
  • a semi-opening portion 3 whose opening size is limited to about half is provided at the outer peripheral end of the core groove 2 of the iron core 1.
  • the width L1 on the outer peripheral side of the core groove 2 provided in the iron core 1 is wider than the width L2 on the inner peripheral side.
  • FIG. 4 shows a cross section taken along line B-B ′ of FIG.
  • a half opening 53 whose opening size is limited to about half is provided at the outer peripheral end of the core groove 52 of the iron core 51.
  • the width of the core groove 52 provided in the iron core 51 is uniform.
  • the width of the iron core groove 52 is the same as the width L2 on the inner peripheral side.
  • the width of the iron core grooves 2 and 52 is increased only on the outer peripheral side of the iron core groove 2.
  • the wide portion 10 is formed, and irregularities are formed along the direction of the rotor shaft 8 on the outer peripheral side of the inner walls of the iron core grooves 2 and 52.
  • FIG. 5 shows a longitudinal section of the rotor core 100 (a section along the rotor shaft 8).
  • the rotor conductor 5 is inserted into the rotor core grooves 2 and 52 as shown in FIGS.
  • the outer periphery of the rotor conductor 5 is pressed with a pressing force that presses the chisel 9 against the outer peripheral surface of the rotor conductor 5 from the half openings 3 and 53 at the outer peripheral ends of the iron core grooves 2 and 52 of the iron cores 1 and 51.
  • a sedge that dents the axial center of the surface is performed. With this sled, as shown in FIGS.
  • a sled groove 6 (length W) is formed at the center in the width direction of the outer peripheral portion of the rotor conductor 5.
  • the outer peripheral portion of the rotor conductor 5 swells in the groove width direction, and the overhang portions 4 and 54 are formed.
  • the swollen outer peripheral portion, that is, the overhanging portions 4 and 54 are pressed between the both side wall surfaces of the iron core grooves 2 and 52, and a tensile force is generated between this portion and both side wall surfaces.
  • the rotor conductor 5 is fixed to the iron core grooves 2 and 52.
  • the overhanging portion 4 is formed in a portion that contacts the wide portion 10 (the portion of the core groove 2), and the overhanging portion 54 is formed in a portion that contacts the core groove 52.
  • the cores 1 and 51 are laminated to form the rotor core 100. Since the core groove 2 of the iron core 1 and the iron core groove 52 of the iron core 51 have different cross-sectional shapes, irregularities are formed along the direction of the rotor shaft 8 on the inner wall on the outer peripheral side of the rotor core grooves 2, 52. Will come to be. Subsequently, the rotor conductor 5 is inserted into the core grooves 2 and 52. Then, a sedge that dents the central portion in the width direction of the outer peripheral surface of the rotor conductor 5 is performed by a pressing force that is pressurized using the chisel 9 through the half openings 3 and 53. As a result, as shown in FIGS.
  • the outer peripheral portion of the rotor conductor 5 swells in the groove width direction of the iron core grooves 2, 52 to form the overhang portions 4, 54, and the rotor conductor 5 It will be in the state pressed against the both-sides wall surface of the inserted iron core groove
  • the outer peripheral side width L1 of the iron core groove 2 provided in the iron core 1 is configured wider than the outer peripheral side width L2 of the iron core groove 52 provided in the iron core 51. ing.
  • a step is provided between the outer peripheral portion of the rotor conductor 5 and the protruding portion 54 in the groove width direction.
  • the rotor conductor 5 is deformed by a rapid change in current induced by the rotating magnetic field, and the rotor conductor 5 expands and contracts by a temperature change due to the induced current.
  • the rotor conductor 5 is subjected to centrifugal force due to rotation and external vibration.
  • the step between the projecting portion 4 and the projecting portion 54 can prevent relative movement of the rotor conductor 5 in the direction of the rotor shaft 8 with respect to the rotor core 100.
  • the rotor core is formed by one type of core 61.
  • the widths of the iron core grooves 62 provided in the iron core 61 are all the same L2. For this reason, the width
  • the inner wall on the outer peripheral side of the rotor core grooves 2 and 52 that are in contact with the projecting portions 4 and 54 is provided with irregularities along the direction of the rotor shaft 8. It has been. For this reason, when the overhang portions 4 and 54 are formed, there is a difference in the size of the bulge in the width direction of the rotor conductor 5 in the overhang portion between the portion in contact with the recess (wide portion 10) and the other portion. Thus, the protrusions 4 and 54 are also provided with irregularities along the direction of the rotor shaft 8.
  • Embodiment 2 FIG. Next, a second embodiment of the present invention will be described.
  • the configuration of the rotor of the squirrel-cage induction motor according to the second embodiment has an iron core groove 12 shown in FIG. 8 instead of the iron core 1 as the iron core in the center of the rotor iron core 100 in the direction of the rotor shaft 8.
  • the iron core 11 having the same structure as the rotor of the cage induction motor according to the first embodiment.
  • the core groove 12 of the iron core 11 has a wide portion 20 on the outer peripheral side of the rotor core 100.
  • the wide portion 20 has an inner wall that is concave in a mountain shape along the radial direction of the rotor core 100 when viewed from the direction of the rotor shaft 8.
  • the widest groove width is L1.
  • the groove width other than the wide portion 20 is L2 shorter than L1.
  • the overhang portion 4 on the outer peripheral portion of the rotor conductor 5 is formed.
  • the width is wider than the width of the protruding portion 54 on the outer peripheral portion of the rotor conductor 5 other than the central portion in the axial direction of the rotor core 100 (see FIG. 2).
  • step difference which comes in contact with the level
  • the overhanging portion 4 of the rotor conductor 5 meshes with both side wall surfaces of the core groove 12 in a mountain shape along the radial direction of the rotor core 100.
  • the overhanging portion 4 can prevent relative movement of the rotor core 100 in the groove width direction and the direction of the rotor shaft 8, and also prevents relative movement of the rotor core 100 in the radial direction. can do.
  • Embodiment 3 FIG. Next, a third embodiment of the present invention will be described.
  • the configuration of the rotor of the squirrel-cage induction motor according to the third embodiment includes an iron core groove 22 shown in FIG. 9 instead of the iron core 1 as the iron core at the center of the rotor iron core 100 in the direction of the rotor shaft 8.
  • the iron core 21 having the same structure as the rotor of the squirrel-cage induction motor according to the first embodiment.
  • a wide portion 30 is formed on the outer peripheral side.
  • the maximum groove width of the wide portion 30 is L1.
  • the groove width of the portion other than the wide portion 30 is L2.
  • the width of the overhanging portion 4 formed so as to contact the wide portion 30 with the sedge through the half opening 23 is set so that the overhanging of the rotor conductor 5 other than the central portion in the axial direction of the rotor core 100 is performed. It becomes more than the width
  • a step corresponding to the step of the iron core grooves 22 and 52 is provided between the projecting portion 4 and the projecting portion 54. For this reason, the movement of the rotor conductor 5 in the direction of the rotor shaft 8 can be prevented.
  • the inner wall is a circular concave shape along the radial direction of the rotor core 100 when viewed from the direction of the rotor shaft 8. For this reason, the relative movement with the rotor core 100 in the groove width direction and the direction of the rotor shaft 8 can be prevented, and the relative movement in the radial direction of the rotor core 100 can be prevented. .
  • the number of corners on the inner wall of the iron core groove 22 is smaller than that in the first embodiment. For this reason, the punching life of the punching die of the iron core 21 constituting the rotor iron core 100 can be extended as compared with the first and second embodiments.
  • Embodiment 4 FIG. Next, a fourth embodiment of the present invention will be described.
  • an iron core groove 32 shown in FIG. 10 is used instead of the iron core 1 as the iron core at the center of the rotor iron core 100 in the direction of the rotor shaft 8.
  • an iron core 31 having the same structure as the rotor of the cage induction motor according to the first embodiment.
  • the cross-sectional shape of the core groove 32 of the iron core 31 is a tapered shape having a wide width on the outer peripheral side of the rotor core 100 and a narrow bottom. That is, in this embodiment, the wide portion 40 is provided from the outer peripheral side to the bottom of the rotor core 100.
  • the maximum groove width of the wide portion 40 is L1
  • the minimum groove width is L2.
  • the width of the overhanging portion 4 formed in the central portion in the axial direction of the rotor core 100 by the sedge through the half opening 33 is such that the rotor conductors other than the central portion in the axial direction of the rotor core 100 are used.
  • 5 is wider than the width of the protruding portion 54 (see FIG. 2).
  • a step corresponding to the step between the iron core grooves 32 and 52 is provided between the projecting portion 4 and the projecting portion 54. For this reason, relative movement of the rotor conductor 5 in the direction of the rotor shaft 8 can be prevented.
  • the punching life of the punching die of the core groove 32 can be extended as compared with the iron core 1 according to the first embodiment. it can.
  • Embodiment 5 FIG. Next, a fifth embodiment of the present invention will be described.
  • the configuration of the rotor of the squirrel-cage induction motor according to the fifth embodiment has an iron core groove 42 shown in FIG. 11 instead of the iron core 1 as the iron core in the center of the rotor iron core 100 in the direction of the rotor shaft 8.
  • the iron core 41 having the same structure as the rotor of the squirrel-cage induction motor according to the first embodiment.
  • the cross-sectional shape of the iron core groove 42 of the iron core 41 is a rectangle wider than the width of the iron core groove 52 other than the central portion in the axial direction of the rotor iron core 100. That is, in this embodiment, the wide part 50 is provided from the outer peripheral side of the rotor core 100 to the bottom part, and the cross section is a rectangle.
  • the groove width of the wide portion 50 is L1. In this way, the width of the overhanging portion 4 due to the sedge through the half opening 43 is wider than the width of the overhanging portion 54 (see FIG. 2). For this reason, a step corresponding to the step between the iron core grooves 42 and 52 is provided between the projecting portion 4 and the projecting portion 54. As a result, similar to the first embodiment, the movement of the rotor conductor 5 in the direction of the rotor shaft 8 can be prevented.
  • the number of corners on the inner wall of the iron core groove 42 is made smaller than that in the first embodiment. For this reason, it is possible to extend the punching life of the punching die constituting the core groove 42 in the rotor core 100 as compared with the iron core 1 according to the first embodiment.
  • Embodiment 6 FIG. Next, a sixth embodiment of the present invention will be described.
  • the configuration of the rotor of the squirrel-cage induction motor according to the sixth embodiment is that the iron cores 1 and 51 are provided as the iron core of the rotor core 100 as shown in FIG.
  • the configuration of the rotor of the squirrel-cage induction motor is the same.
  • the iron core 1 is arranged at a plurality of locations, and the iron core 51 is arranged between the iron cores 1.
  • a plurality of wide portions can be provided in the direction of the rotor shaft 8, and the number of steps in the direction of the rotor shaft 8 can be increased.
  • the relative movement of the rotor conductor 5 in the direction of the rotor shaft 8 can be more securely prevented.
  • the relative direction of the rotor conductor 5 in the direction of the rotor shaft 8 is the same as described above. Movement can be prevented more firmly.
  • Embodiment 7 FIG. Next, a seventh embodiment of the present invention will be described.
  • the configuration of the rotor of the squirrel-cage induction motor according to the seventh embodiment has an iron core groove 72 shown in FIG. 13 instead of the iron core 1 as the iron core in the center of the rotor iron core 100 in the direction of the rotor shaft 8.
  • the point in which the iron core 71 is used is different from the configuration of the rotor of the squirrel-cage induction motor according to the first embodiment.
  • the core groove 72 of the iron core 71 has a groove width on the inner wall of the wide portion 70 corresponding to the projecting portion formed at the center in the direction of the rotor shaft 8 by the sedge. It becomes a concave groove which changes along.
  • the wide portion 70 having such an inner wall is formed by laminating core plates having slightly different groove widths in order of increasing or decreasing groove width.
  • the maximum groove width of the wide portion 70 is L1.
  • the inner wall of the iron core groove 72 is concave in the direction of the rotor shaft 8, whereas the shape of the projecting portion of the rotor conductor 5 is convex along the concave shape. For this reason, relative movement of the rotor conductor 5 in the direction of the rotor shaft 8 with respect to the rotor core 100 can be prevented.
  • Embodiment 8 FIG. Next, an eighth embodiment of the present invention will be described.
  • the configuration of the rotor of the squirrel-cage induction motor according to the eighth embodiment has an iron core groove 82 shown in FIG. 14 instead of the iron core 1 as the iron core in the center of the rotor iron core 100 in the direction of the rotor shaft 8.
  • the iron core 81 having the same structure as that of the rotor of the cage induction motor according to the first embodiment.
  • the shape of the inner wall of the wide portion 80 corresponding to the projecting portion formed in the center portion in the direction of the rotor shaft 8 by the sedge through the half opening 83 is formed.
  • the two chevron shapes are continuous along the radial direction of the rotor core 100.
  • the maximum groove width of the wide portion 80 is L1
  • the groove width of the other portions is L2.
  • Embodiment 9 FIG. Next, a ninth embodiment of the present invention will be described.
  • the configuration of the rotor of the squirrel-cage induction motor according to the ninth embodiment includes an iron core groove 92 shown in FIG. 15 instead of the iron core 1 as the iron core in the center of the rotor iron core 100 in the direction of the rotor shaft 8.
  • an iron core groove 92 shown in FIG. 15 instead of the iron core 1 as the iron core in the center of the rotor iron core 100 in the direction of the rotor shaft 8.
  • the inner wall of the wide portion 90 corresponding to the protruding portion formed in the center portion in the direction of the rotor shaft 8 by the sedge through the half opening 93 is formed on the outer periphery.
  • the taper is tapered from the side toward the bottom.
  • the maximum groove width of the wide portion 90 is L1. Even in this case, the relative movement of the rotor conductor 5 in the radial direction with respect to the rotor core 100 can be prevented.
  • the inner wall of the groove of the rotor core 100 is provided with irregularities along the direction of the rotor shaft 8. For this reason, when the overhang
  • the shape of the inner wall of the wide portion is not limited to those of the above embodiments.
  • the shape of the inner wall may be a trapezoid.
  • channel in each said embodiment may make it the reverse of a convex part. That is, the unevenness may be reversed.
  • the unevenness formed along the direction of the rotor shaft 8 of the rotor core groove may be provided only on one side of the inner wall of the rotor core groove.
  • the overhang portion is formed by the sedge, but the overhang portion may be formed by a method other than the sedge.
  • This invention is suitable for use as a rotor structure of a cage induction motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Induction Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

 回転子鉄心(1、51)は、回転子軸(8)の方向に延びる鉄心溝(2、52)が外周側に複数設けられている。回転子導体(5)は、各溝(2、52)に挿入される棒状の導体であって、各溝(2、52)に挿入された後に溝幅方向に張り出す張り出し部(4)が外周側に形成され、張り出し部(4)と各溝(2、52)の両側壁面との間に生じる突っ張り力により各溝(2、52)に固定される。張り出し部(4)に当接する各溝(2、52)の外周側の内壁には、回転子軸(8)の方向に沿って凹凸が設けられている。

Description

かご形誘導電動機及びかご形誘導電動機の製造方法
 この発明は、かご形誘導電動機及びかご形誘導電動機の製造方法に関する。
 かご形誘導電動機の回転子鉄心の外周側には、複数の溝が設けられており、各溝には棒状の回転子導体が挿入される。各溝に挿入された回転子導体の両端は、短絡環と呼ばれるリング状の導体が接合され、かご形状の回転子導体(かご形回転子)が形成される。固定子コイルによって発生する回転磁界と、回転子鉄心溝内の回転子導体が差交することにより、回転子導体に誘導起電圧が発生する。発生した誘導起電圧により閉回路を構成する回転子導体に誘導電流が流れ、回転子鉄心に磁極が発生する。この回転子鉄心の磁極と回転磁界の磁極との相互作用によって回転子に周方向の力が発生する。この力が誘導電動機の回転子軸の出力トルクとなる。
 回転子導体は、回転磁界により誘導された電流の急激な変化により変形し、誘導電流による温度変化により回転子導体が伸縮する。また、回転子導体には回転による遠心力、及び外部からの振動が作用する。これら回転子導体の変形、伸縮、遠心力、振動等により、回転子鉄心に対して回転子導体の相対的な移動が発生する。
 回転子導体と回転子鉄心との間の相対的な移動を防止するために、回転子導体を回転子鉄心の溝に固定するスエッジと呼ばれるカシメ作業が行なわれる。この作業では、回転子鉄心溝に挿入された回転子導体の外周側の面の幅方向中央部にタガネにより打込溝が設けられる。これにより、回転子導体の外周側が溝の幅方向に膨らんで張り出し部が形成される。膨らんだ張り出し部は、回転子鉄心溝の両側の壁面間で突っ張った状態となり、回転子導体と回転子鉄心溝の内壁面との間の突っ張り力により、回転子導体が回転子鉄心溝に固定される。
 例えば、特許文献1には、回転子鉄心溝に挿入された回転子導体に、打込溝が形成されることにより固定されるかご形誘導電動機が開示されている(特に、図1、図2参照)。このかご形誘導電動機では、回転子導体を回転子鉄心溝に強固に固定するための打込溝として、回転子導体の外周側の面の軸方向の中央部近傍に、所定長さに渡って深溝である第1の打込溝が設けられている。さらに、回転子導体の外周側の面の軸方向の中央部近傍以外には第1の打込溝よりも浅い第2の打込溝が設けられている。第1、第2の打込溝が形成される際に幅方向に膨らんだ回転子導体は、回転子鉄心溝の両側壁面に突っ張った状態で固定される。この回転子導体を固定する部分は、固定部とも呼ばれている。
実開平03-045071号公報
 上述のように、運転中の温度上昇・下降の繰返しによって回転子導体が伸縮する。さらに、回転時には、回転子導体に遠心力が作用する。回転子鉄心は溝幅が同一な積層体で構成されているので、回転子導体の伸縮及び遠心力等のため、回転子鉄心溝の壁面と回転子導体の間に相対的な微小な移動が発生し、回転子導体の固定部の微小変形及び摩滅が経年的に発生する。これにより、回転子導体と回転子鉄心溝の内壁面との間の突っ張り力が減少し、回転子導体が回転子鉄心溝内で、回転子の軸方向に移動するおそれが出てくる。
 この発明は、上記実情に鑑みてなされたもので、経年的な微小変形や摩滅のために回転子導体と回転子鉄心溝の両側壁面との突っ張り力が減少しても、回転子導体の軸方向の移動を防止することができるかご形誘導電動機及びかご形誘導電動機の製造方法を提供することを目的とする。
 上記目的を達成するため、この発明に係るかご形誘導電動機は、以下の構成を有する。回転子鉄心は、軸方向に延びる溝が外周側に複数設けられている。回転子導体は、各溝に挿入される棒状の導体であって、各溝に挿入された後に溝幅方向に張り出す張り出し部が外周側に形成され、張り出し部と各溝の両側壁面との間に生じる突っ張り力により各溝に固定される。張り出し部に当接する各溝の外周側の内壁には、軸方向に沿って凹凸が設けられている。
 この発明のかご形誘導電動機では、回転子鉄心の溝の外周側の内壁には、軸方向に沿って凹凸が設けられている。このため、回転子鉄心の溝に挿入される回転子導体を固定するために溝幅方向に張り出す張り出し部が、回転子鉄心の外周側に形成されるときに、凹部に当接する部分と凸部とで張り出し部における回転子導体の幅方向の膨らみの大きさに違いがでて、張り出し部にも軸方向に沿って凹凸が設けられるようになる。これにより、経年的な微小変形や摩滅のために回転子導体と回転子鉄心溝の両側壁面との突っ張り力が減少したとしても、回転子鉄心に対する回転子導体の軸方向の相対的な移動を防止することができる。
この発明の実施の形態1に係るかご形誘導電動機の回転子鉄心の全体構成を示す斜視図である。 図1の破砕された部分の拡大図である。 図2のA-A’線断面図である。 図2のB-B’線断面図である。 回転子鉄心の縦断面図である。 従来のかご形誘導電動機の回転子導体張り出し部の上面図である。 図6のC-C’線断面図である。 この発明の実施の形態2に係るかご形誘導電動機の回転子鉄心の溝部分の断面図である。 この発明の実施の形態3に係るかご形誘導電動機の回転子鉄心の溝部分の断面図である。 この発明の実施の形態4に係るかご形誘導電動機の回転子鉄心の溝部分の断面図である。 この発明の実施の形態5に係るかご形誘導電動機の回転子鉄心の溝部分の断面図である。 この発明の実施の形態6に係るかご形誘導電動機の回転子鉄心の溝内の回転子導体張り出し部の上面図である。 この発明の実施の形態7に係るかご形誘導電動機の回転子鉄心の溝内の回転子導体張り出し部の上面図である。 この発明の実施の形態8に係るかご形誘導電動機の回転子鉄心の溝部分の断面図である。 この発明の実施の形態9に係るかご形誘導電動機の回転子鉄心の溝部分の断面図である。
 以下、この発明の実施の形態について図面を参照して詳細に説明する。
実施の形態1.
 まず、この発明の実施の形態1について説明する。
 この実施の形態1に係るかご形誘導電動機は、回転子鉄心溝の内壁の外周側に軸方向に沿って凹凸を設けることにより、回転子導体の張り出し部と回転子鉄心溝の内壁との間に段差を設け、回転子鉄心に対する回転子導体の軸方向の相対的な移動を防止する。図1には、かご形誘導電動機の回転子鉄心の全体構成が示されている。図1に示すように、回転子鉄心100は、回転子軸8を中心軸とする円柱状の鉄心である。回転子鉄心100の外周側には、回転子軸8の方向に延びる一連の鉄心溝2、52が複数設けられている。図1において、鉄心溝2、52の一部を視認できるように、回転子鉄心100が一部破砕して示されている。図1に示すように、回転子鉄心100の複数の鉄心溝2、52には、溝幅が他の部分よりも広い幅広部10(凹部)が外周側に設けられている。この幅広部10は、後述するように、鉄心溝2、52に挿入される回転子導体の外周側の軸方向中央に設けられる張り出し部に当接する部分に設けられている。
 図2には、図1の破砕された部分の断面が拡大して示されている。図2では、鉄心溝2に棒状の回転子導体5が挿入されている。
 回転子鉄心100は、2種類の鉄心1、51で構成されている。鉄心1は、回転子軸8の方向に関する中心部に配置されている。鉄心1は、コア板が10枚から20枚積層されることによって形成されている。例えばコア板の厚さが0.5mmの場合、鉄心1全体の厚さは、5mmから10mmとなる。鉄心51は、鉄心1を挟んで回転子軸8の方向の両側に配置されている。鉄心51も、コア板が複数積層されることによって形成されている。回転子鉄心100の大半は、鉄心51で形成されている。
 鉄心溝2は、鉄心1によって形成され、鉄心溝52は、鉄心51によって形成されている。鉄心溝2と鉄心溝52とは、断面形状が異なっている。
 図3では、図2のA-A’線断面が示されている。図3に示すように、鉄心1の鉄心溝2の外周端には、その開口の大きさが約半分に制限された半開口部3が設けられている。鉄心1に設けられた鉄心溝2の外周側の幅L1は、内周側の幅L2に比べて広くなっている。
 図4では、図2のB-B’線断面が示されている。図4に示すように、鉄心51の鉄心溝52の外周端には、その開口の大きさが約半分に制限された半開口部53が設けられている。鉄心51に設けられた鉄心溝52の幅は、均一となっている。鉄心溝52の幅は、内周側の幅L2と同じである。
 このように、鉄心溝2、52では、鉄心溝2の外周側だけ幅が広くなっている。これにより、幅広部10が形成され、鉄心溝2、52の内壁の外周側に、回転子軸8の方向に沿って凹凸が形成されている。
 図5には、回転子鉄心100の縦断面(回転子軸8に沿った断面)が示されている。図3、図4及び図5に示すように、回転子導体5を回転子鉄心溝2、52に挿入する。そして、鉄心1、51の鉄心溝2、52の外周端の半開口部3、53からタガネ9を回転子導体5の外周面に押付けて加圧される押圧力で、回転子導体5の外周面の軸方向中央部を凹ませるスエッジが行われる。このスエッジにより、図2、図3及び図4に示すように、回転子導体5の外周部の幅方向中央部にスエッジ溝6(長さW)が形成される。これにより、回転子導体5の外周側の部分が溝幅方向に膨れ、張り出し部4、54が形成される。この膨れた外周側の部分、すなわち張り出し部4、54は、鉄心溝2、52の両側壁面間で押し付けられた状態となり、この部分と両側壁面との間に突っ張り力が発生する。この結果、回転子導体5が鉄心溝2、52に固定される。
 このかご形誘導電動機では、前述のように、鉄心溝2の外周側の内壁に、幅広部10等による凹凸が形成されている。この幅広部10に当接する部分(鉄心溝2の部分)に、張り出し部4が形成され、鉄心溝52に当接する部分に張り出し部54が形成される。この凹凸のため、回転子導体5の外周側の面にタガネ9が打ち込まれたときに幅広部10とその他の部分とで回転子軸8の方向に関する中心部における回転子導体5の幅方向の膨らみの大きさに違いがでて、張り出し部4は、回転子軸8の方向に関する中心部を挟む両側の張り出し部54よりも大きくなる。この結果、張り出し部4と張り出し部54との間に、幅広部10と他の部分との段差に対応する段差が設けられるようになる。
 次に、かご形誘導電動機の製造方法について説明する。
 まず、鉄心1、51を積層して回転子鉄心100を形成する。鉄心1の鉄心溝2と鉄心51の鉄心溝52とでは、断面形状が異なっているため、回転子鉄心溝2、52の外周側の内壁に、回転子軸8の方向に沿って凹凸が形成されるようになる。続いて、回転子導体5を、鉄心溝2、52に挿入する。そして、半開口部3、53を介してタガネ9を用いて加圧される押圧力で回転子導体5の外周面の幅方向中央部を凹ませるスエッジを行う。その結果、図2、図3及び図4に示すように、回転子導体5の外周部が鉄心溝2、52の溝幅方向に膨れて張り出し部4、54が形成され、回転子導体5が挿入された鉄心溝2、52の両側壁面に押し付けられた状態となる。この状態で、壁面への押し付け力に接触面の静摩擦係数を掛けた静摩擦力よりも小さい力が回転子導体5に作用しても回転子導体5と鉄心溝2、52との相対的移動は発生せず、回転子導体5が鉄心溝2、52に固定されたままとなる。
 この実施の形態1に係るかご形誘導電動機では、鉄心1に設けられた鉄心溝2の外周側の幅L1は、鉄心51に設けられた鉄心溝52の外周側の幅L2よりも広く構成されている。これにより、図2に示すように、鉄心1に設けられた鉄心溝2の部分の回転子導体5の外周部の溝幅方向の張り出し部4と、鉄心51に設けられた鉄心溝52の部分の回転子導体5の外周部の溝幅方向の張り出し部54との間に、段差が設けられた状態となる。
 回転子導体5は、前述のように、回転磁界により誘導された電流の急激な変化により変形し、誘導電流による温度変化により回転子導体5が伸縮する。また、回転子導体5には回転による遠心力、及び外部からの振動が作用する。しかしながら、張り出し部4と張り出し部54との段差により、回転子鉄心100に対する回転子導体5の回転子軸8の方向の相対的な移動を防止することができる。
 これに対して、従来のかご形誘導電動機では、図6及び図7に示すように、1種類の鉄心61で回転子鉄心が形成されている。鉄心61に設けられた鉄心溝62の幅は全て同一のL2である。このため、半開口部63を介したスエッジにより設けられた回転子導体5の張り出し部64の幅は均一になる。したがって、回転子導体5の鉄心溝62への固定は、鉄心溝62の両側壁面への突っ張り力のみによって実現されている。
 以上述べたように、この実施の形態1によれば、張り出し部4、54に当接する回転子鉄心溝2、52の外周側の内壁には、回転子軸8の方向に沿って凹凸が設けられている。このため、張り出し部4、54が形成されるときに、凹部(幅広部10)に当接する部分とそれ以外の部分とで張り出し部における回転子導体5の幅方向の膨らみの大きさに違いがでて、張り出し部4、54にも回転子軸8の方向に沿って凹凸が設けられるようになる。この凹凸による段差により、経年的な微小変形や摩滅のために回転子導体5と鉄心溝2、52の両側壁面との突っ張り力が減少したとしても、回転子鉄心100に対する回転子導体5の回転子軸8の方向の移動を防止することができる。
実施の形態2.
 次に、この発明の実施の形態2について説明する。
 この実施の形態2に係るかご形誘導電動機の回転子の構成は、回転子鉄心100の回転子軸8の方向の中央部の鉄心として、鉄心1の代わりに、図8に示す鉄心溝12を有する鉄心11を用いる他は、上記実施の形態1に係るかご形誘導電動機の回転子の構成と同じである。
 図8に示すように、鉄心11の鉄心溝12は、回転子鉄心100の外周側に幅広部20を有している。幅広部20は、回転子軸8の方向から見て内壁が回転子鉄心100の半径方向に沿って山形に凹状となっている。幅広部20では、最も広い溝幅がL1となっている。幅広部20以外の溝幅はL1より短いL2である。
 この実施の形態2では、上記実施の形態1と同様に、半開口部13、53を介したスエッジにより形成される張り出し部4、54のうち、回転子導体5の外周部の張り出し部4の幅が、回転子鉄心100の軸方向中央部以外の回転子導体5の外周部の張り出し部54の幅よりも広くなっている(図2参照)。このため、張り出し部4と張り出し部54との間に鉄心溝12、52の段差に接する段差が設けられるようになる。このため、回転子鉄心100に対する回転子導体5の回転子軸8の方向の相対的な移動を防止することができる。
 また、この実施の形態2では、回転子導体5の張り出し部4は、鉄心溝12の両側壁面と、回転子鉄心100の半径方向に沿って山形状に噛み合っている。この張り出し部4により、溝幅方向及び回転子軸8の方向の回転子鉄心100との相対的な移動を防止することができるうえ、回転子鉄心100の半径方向の相対的な移動をも防止することができる。
実施の形態3.
 次に、この発明の実施の形態3について説明する。
 この実施の形態3に係るかご形誘導電動機の回転子の構成は、回転子鉄心100の回転子軸8の方向の中央部の鉄心として、鉄心1の代わりに、図9に示す鉄心溝22を有する鉄心21を用いる他は、上記実施の形態1に係るかご形誘導電動機の回転子の構成と同じである。
 鉄心21の鉄心溝22では、外周側において幅広部30が形成されている。幅広部30の最大の溝幅がL1である。幅広部30以外の部分の溝幅はL2である。このようにすれば、半開口部23を介したスエッジで幅広部30に当接するように形成される張り出し部4の幅は、回転子鉄心100の軸方向中央部以外の回転子導体5の張り出し部54の幅以上となる(図2参照)。このため、上記実施の形態1と同様に、張り出し部4と張り出し部54との間に鉄心溝22、52の段差に対応する段差が設けられるようになる。このため、回転子導体5の回転子軸8の方向の移動を防止することができる。
 また、幅広部30では、回転子軸8の方向から見て内壁が回転子鉄心100の半径方向に沿って丸形の凹状となっている。このため、溝幅方向及び回転子軸8の方向の回転子鉄心100との相対的な移動を防止することができるうえ、回転子鉄心100の半径方向の相対的な移動を防止することができる。
 さらに、この実施の形態3では、鉄心溝22の内壁における角部の数が、実施の形態1よりも少なくなっている。このため、回転子鉄心100を構成する鉄心21の打ち抜き型の打ち抜き寿命を、上記実施の形態1、2よりも延ばすことができる。
実施の形態4.
 次に、この発明の実施の形態4について説明する。
 この実施の形態4に係るかご形誘導電動機の回転子の構成は、回転子鉄心100の回転子軸8の方向の中央部の鉄心として、鉄心1の代わりに、図10に示す鉄心溝32を有する鉄心31を用いる他は、上記実施の形態1に係るかご形誘導電動機の回転子の構成と同じである。
 図10に示すように、鉄心31の鉄心溝32の断面形状は、回転子鉄心100の外周側の幅が広く底部が狭いテーパ状となっている。すなわち、この実施の形態では、幅広部40が、回転子鉄心100の外周側から底部まで設けられている。幅広部40の最大の溝幅はL1である、最小の溝幅はL2である。このようにすれば、半開口部33を介したスエッジにより、回転子鉄心100の軸方向中央部に形成される張り出し部4の幅が、回転子鉄心100の軸方向中央部以外の回転子導体5の張り出し部54の幅よりも広くなる(図2参照)。このため、上記実施の形態1と同様に、張り出し部4と張り出し部54との間に鉄心溝32、52間の段差に対応する段差が設けられるようになる。このため、回転子導体5の回転子軸8の方向の相対的な移動を防止することができる。
 また、鉄心溝32の内壁における角部の箇所を、上記実施の形態1よりも少なくしているため、鉄心溝32の打ち抜き型の打ち抜き寿命を実施の形態1に係る鉄心1よりも延ばすことができる。
実施の形態5.
 次に、この発明の実施の形態5について説明する。
 この実施の形態5に係るかご形誘導電動機の回転子の構成は、回転子鉄心100の回転子軸8の方向の中央部の鉄心として、鉄心1の代わりに、図11に示す鉄心溝42を有する鉄心41を用いる他は、上記実施の形態1に係るかご形誘導電動機の回転子の構成と同じである。
 図11に示すように、鉄心41の鉄心溝42の断面形状は、回転子鉄心100の軸方向中央部以外の鉄心溝52の幅よりも広い長方形となっている。すなわち、この実施の形態では、幅広部50が、回転子鉄心100の外周側から底部まで設けられており、その断面は、長方形である。幅広部50の溝幅はL1である。このようにすれば、半開口部43を介したスエッジによる張り出し部4の幅は張り出し部54の幅よりも広くなる(図2参照)。このため、張り出し部4と張り出し部54との間に鉄心溝42、52間の段差に対応する段差が設けられるようになる。この結果、上記実施の形態1と同様に、回転子導体5の回転子軸8の方向の移動を防止することができる。
 また、鉄心溝42の内壁における角部の数を上記実施の形態1よりも少なくしている。このため、回転子鉄心100に鉄心溝42を構成する打ち抜き型の打ち抜き寿命を、上記実施の形態1に係る鉄心1よりも延ばすことができる。
実施の形態6.
 次に、この発明の実施の形態6について説明する。
 この実施の形態6に係るかご形誘導電動機の回転子の構成は、図12に示すように、回転子鉄心100の鉄心として、鉄心1、51が設けられる点は、上記実施の形態1に係るかご形誘導電動機の回転子の構成と同じである。
 この実施の形態では、図12に示すように、鉄心1が複数箇所に配置され、鉄心1の間に鉄心51が配置されている。このようにすれば、幅広部を回転子軸8の方向に複数設けることができるようになり、回転子軸8の方向の段差の数を増やすことができる。このため、回転子導体5の回転子軸8の方向の相対的な移動をより強固に防止することができる。さらに、回転子鉄心100の鉄心として、鉄心1の代わりに鉄心11、鉄心21、鉄心31、あるいは鉄心41を用いたとしても、上記同様回転子導体5の回転子軸8の方向の相対的な移動をより強固に防止することができる。
実施の形態7.
 次に、この発明の実施の形態7について説明する。
 この実施の形態7に係るかご形誘導電動機の回転子の構成は、回転子鉄心100の回転子軸8の方向の中央部の鉄心として、鉄心1の代わりに、図13に示す鉄心溝72を有する鉄心71が用いられる点が、上記実施の形態1に係るかご形誘導電動機の回転子の構成と異なる。
 図13に示すように、鉄心71の鉄心溝72は、スエッジにより回転子軸8の方向の中央部に形成される張り出し部に対応する幅広部70の内壁の溝幅が回転子軸8の方向に沿って変化する凹状の溝となっている。このような内壁を有する幅広部70は、溝幅が少しずつ異なるコア板を溝幅が小さい順又は大きい順に並べて積層することで形成される。幅広部70の最大の溝幅はL1である。このようにしても、鉄心溝72の内壁が回転子軸8の方向に凹状であるのに対して、回転子導体5の張り出し部の形状がその凹状に沿った凸状となる。このため、回転子鉄心100に対する回転子導体5の回転子軸8の方向の相対移動を防止することができる。
実施の形態8.
 次に、この発明の実施の形態8について説明する。
 この実施の形態8に係るかご形誘導電動機の回転子の構成は、回転子鉄心100の回転子軸8の方向の中央部の鉄心として、鉄心1の代わりに、図14に示す鉄心溝82を有する鉄心81を用いる他は、上記実施の形態1に係るかご形誘導電動機の回転子の構成と同じである。
 図14に示すように、鉄心81の鉄心溝82では、半開口部83を介したスエッジにより回転子軸8の方向の中央部に形成される張り出し部に対応する幅広部80の内壁の形状が、回転子軸8の方向から見た場合に、回転子鉄心100の半径方向に沿って連続する2つの山形形状となっている。幅広部80の最大の溝幅はL1であり、その他の部分の溝幅はL2である。このようにしても、回転子鉄心100に対する回転子導体5の半径方向の相対移動を防止することができる。また、回転子鉄心100の半径方向に沿った段差の数を増やすことができる。このため、回転子導体5の回転子軸8の方向の相対的な移動をより強固に防止することができる。
実施の形態9.
 次に、この発明の実施の形態9について説明する。
 この実施の形態9に係るかご形誘導電動機の回転子の構成は、回転子鉄心100の回転子軸8の方向の中央部の鉄心として、鉄心1の代わりに、図15に示す鉄心溝92を有する鉄心91を用いる他は、上記実施の形態1に係るかご形誘導電動機の回転子の構成と同じである。
 図15に示すように、鉄心91の鉄心溝92では、半開口部93を介したスエッジにより回転子軸8の方向の中央部に形成される張り出し部に対応する幅広部90の内壁が、外周側から底部側に向かって先細りとなるテーパ状となっている。幅広部90の最大の溝幅はL1である。このようにしても、回転子鉄心100に対する回転子導体5の半径方向の相対移動を防止することができる。
 以上詳細に説明したように、上記各実施の形態によれば、回転子鉄心100の溝の内壁には、回転子軸8の方向に沿って凹凸が設けられている。このため、回転子鉄心100の溝に挿入される回転子導体5を固定するために行われるスエッジにより、溝幅方向に張り出す張り出し部が、回転子鉄心100の外周側に形成されるときに、回転子鉄心100の溝の内壁の凹凸に沿って回転子導体5の幅方向の膨らみの大きさに違いがでて、張り出し部にも回転子軸8の方向に沿って凹凸が設けられるようになる。これにより、経年的な微小変形や摩滅のために回転子導体5と回転子鉄心溝の両側壁面との突っ張り力が減少したとしても、回転子鉄心100に対する回転子導体5の回転子軸8の方向の相対的な移動を防止することができる。
 なお、幅広部の内壁の形状は、上記各実施の形態のものに限られない。例えば、内壁の形状は台形であってもよい。
 なお、上記各実施の形態における回転子鉄心溝の内壁に形成された凹凸は、その凹部を凸部とを逆にするようにしてもよい。すなわち、凹凸は逆であってもよい。また、回転子鉄心溝の回転子軸8の方向に沿って形成される凹凸は、回転子鉄心溝の内壁の片側だけに設けられるようにしてもよい。
 なお、上記各実施の形態では、スエッジにより張り出し部を形成したが、スエッジ以外の方法で、張り出し部を形成するようにしてもよい。
 この発明は、この発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、この発明の範囲を限定するものではない。すなわち、この発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
 この発明は、かご型誘導電動機の回転子の構造として採用するのに好適である。
 1 鉄心、2 鉄心溝、3 半開口部、4 張り出し部、5 回転子導体、6 スエッジ溝、8 回転子軸、9 タガネ、10 幅広部、11 鉄心、12 鉄心溝、13 半開口部、20 幅広部、21 鉄心、22 鉄心溝、23 半開口部、30 幅広部、31 鉄心、32 鉄心溝、33 半開口部、40 幅広部、41 鉄心、42 鉄心溝、43 半開口部、50 幅広部、51 鉄心、52 鉄心溝、53 半開口部、54 張り出し部、61 鉄心、62 鉄心溝、63 半開口部、64 張り出し部、70 幅広部、71 鉄心、72 鉄心溝、80 幅広部、81 鉄心、82 鉄心溝、83 半開口部、90 幅広部、91 鉄心、92 鉄心溝、93 半開口部、100 回転子鉄心。

Claims (8)

  1.  軸方向に延びる溝が外周側に複数設けられた回転子鉄心と、
     前記各溝に挿入される棒状の導体であって、前記各溝に挿入された後に溝幅方向に張り出す張り出し部が外周側に形成され、前記張り出し部と前記各溝の両側壁面との間に生じる突っ張り力により前記各溝に固定される回転子導体と、を備え、
     前記張り出し部に当接する前記各溝の外周側の内壁には、前記軸方向に沿って凹凸が設けられている、かご形誘導電動機。
  2.  前記各溝の内壁には、前記軸方向に沿って段差が設けられている、
     請求項1に記載のかご形誘導電動機。
  3.  前記凹凸における凹部の内壁は、
     前記回転子鉄心の半径方向に沿って凹状となっている、
     請求項2に記載のかご形誘導電動機。
  4.  前記凹部の内壁が、
     前記半径方向に沿って山形又は丸形となっている、
     請求項3に記載のかご形誘導電動機。
  5.  前記凹凸における凹部が、前記各溝の外周から底部まで設けられている、
     請求項1に記載のかご形誘導電動機。
  6.  前記凹部は、
     外周の幅が広く底部が狭いテーパ状となっている、
     請求項5に記載のかご形誘導電動機。
  7.  前記張り出し部は、
     前記各溝の半開口を介して加圧される押圧力で前記回転子導体の外周面中央部を凹ませることにより溝幅方向に膨らんで形成される、
     請求項1に記載のかご形誘導電動機。
  8.  回転子鉄心の外周側に複数設けられた軸方向に延びる溝の外周側の内壁に、前記軸方向に沿って凹凸を形成し、
     前記各溝に棒状の導体である回転子導体を挿入し、
     前記各溝に前記回転子導体を挿入した後に、溝幅方向に張り出す張り出し部を、前記回転子導体における前記凹凸に当接する部分に形成する、
     かご形誘導電動機の製造方法。
PCT/JP2015/051220 2015-01-19 2015-01-19 かご形誘導電動機及びかご形誘導電動機の製造方法 WO2016117003A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15878699.6A EP3249790B1 (en) 2015-01-19 2015-01-19 Squirrel-cage induction motor, and method for manufacturing squirrel-cage induction motor
US15/543,255 US10756605B2 (en) 2015-01-19 2015-01-19 Squirrel-cage induction motor, and method for manufacturing squirrel-cage induction motor
PCT/JP2015/051220 WO2016117003A1 (ja) 2015-01-19 2015-01-19 かご形誘導電動機及びかご形誘導電動機の製造方法
JP2016570222A JP6305571B2 (ja) 2015-01-19 2015-01-19 かご形誘導電動機及びかご形誘導電動機の製造方法
CN201580073213.XA CN107112870B (zh) 2015-01-19 2015-01-19 笼型感应电动机及笼型感应电动机的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/051220 WO2016117003A1 (ja) 2015-01-19 2015-01-19 かご形誘導電動機及びかご形誘導電動機の製造方法

Publications (1)

Publication Number Publication Date
WO2016117003A1 true WO2016117003A1 (ja) 2016-07-28

Family

ID=56416571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051220 WO2016117003A1 (ja) 2015-01-19 2015-01-19 かご形誘導電動機及びかご形誘導電動機の製造方法

Country Status (5)

Country Link
US (1) US10756605B2 (ja)
EP (1) EP3249790B1 (ja)
JP (1) JP6305571B2 (ja)
CN (1) CN107112870B (ja)
WO (1) WO2016117003A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11888366B2 (en) * 2018-06-29 2024-01-30 Abb Schweiz Ag Electric induction machine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3069726B1 (fr) * 2017-07-31 2020-12-11 Leroy Somer Moteurs Rotor a cage injectee
FR3069725B1 (fr) 2017-07-31 2021-01-29 Leroy Somer Moteurs Rotor a cage injectee
JP6958312B2 (ja) * 2017-12-12 2021-11-02 トヨタ自動車株式会社 ロータ製造方法
CN110138117B (zh) * 2019-06-19 2023-12-08 珠海格力电器股份有限公司 直接起动同步磁阻电机转子结构、电机及转子结构制造的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284608A (ja) * 1993-03-29 1994-10-07 Mitsubishi Electric Corp 交流回転機
JPH10150736A (ja) * 1996-11-19 1998-06-02 Mitsubishi Electric Corp 誘導電動機の回転子
JPH10322990A (ja) * 1997-05-22 1998-12-04 Hitachi Ltd かご型回転電機の回転子
JP2007252073A (ja) * 2006-03-15 2007-09-27 Jatco Ltd 誘導電動機の籠形回転子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2292167A (en) * 1940-07-20 1942-08-04 Allis Louis Co Induction motor
US3832583A (en) * 1973-03-08 1974-08-27 Westinghouse Electric Corp Squirrel cage motor with improved rotor bar securing arrangement
JPS56136465U (ja) * 1980-03-17 1981-10-16
JPS58121150U (ja) * 1982-02-12 1983-08-18 株式会社東芝 かご形回転子
JPH0345071U (ja) 1989-09-06 1991-04-25
US6092277A (en) * 1999-04-28 2000-07-25 General Electric Company Rotor bar swaging process
CN201204526Y (zh) * 2008-05-30 2009-03-04 李小琳 高速电机鼠笼结构
US8575813B2 (en) * 2010-12-17 2013-11-05 GM Global Technology Operations LLC Induction rotor having improved conductor bar profiles and method for forming the same
US8631559B2 (en) * 2012-05-01 2014-01-21 Remy Technologies, Llc Method of assembling induction rotors
JP5902639B2 (ja) * 2013-03-06 2016-04-13 株式会社日立製作所 誘導機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284608A (ja) * 1993-03-29 1994-10-07 Mitsubishi Electric Corp 交流回転機
JPH10150736A (ja) * 1996-11-19 1998-06-02 Mitsubishi Electric Corp 誘導電動機の回転子
JPH10322990A (ja) * 1997-05-22 1998-12-04 Hitachi Ltd かご型回転電機の回転子
JP2007252073A (ja) * 2006-03-15 2007-09-27 Jatco Ltd 誘導電動機の籠形回転子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11888366B2 (en) * 2018-06-29 2024-01-30 Abb Schweiz Ag Electric induction machine

Also Published As

Publication number Publication date
JPWO2016117003A1 (ja) 2017-09-21
US20180006537A1 (en) 2018-01-04
CN107112870B (zh) 2019-07-26
JP6305571B2 (ja) 2018-04-04
EP3249790A1 (en) 2017-11-29
EP3249790A4 (en) 2018-09-12
CN107112870A (zh) 2017-08-29
US10756605B2 (en) 2020-08-25
EP3249790B1 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
JP6305571B2 (ja) かご形誘導電動機及びかご形誘導電動機の製造方法
US7019433B2 (en) Armature of rotating electric machine
EP3018802B1 (en) Method for producing a rotor
JP6444497B2 (ja) 回転電機およびその製造方法
EP2458711A2 (en) Magnet embedded rotor, electric motor, and assembly method of electric motor
KR20160094329A (ko) 전기 모터
JP5040988B2 (ja) ステータおよびこのステータを備えるモータ
JP5955451B2 (ja) 埋込磁石型回転子、埋込磁石型回転電機、及び埋込磁石型回転子の製造方法
JP6169505B2 (ja) 回転子積層鉄心の製造方法
US8058761B2 (en) Rotating electrical machine
JP2016220490A (ja) 回転電機の固定子及び、回転電機の固定子の製造方法
JP5441360B2 (ja) 電動機の固定子
US20130076199A1 (en) Rotor for rotary electric machine, and rotary electric machine that uses the rotor
JP6232641B2 (ja) 固定子鉄心の製造方法
JP6776808B2 (ja) ロータ及びモータ
JP2010074881A (ja) 積層コアおよびその製造方法
KR100669025B1 (ko) 세탁기용 모터의 코어 및 그 제조방법
JP2017042014A (ja) 回転電機のロータ
CN112640258A (zh) 旋转电机
JP6727458B2 (ja) 固定子鉄心及びその固定子鉄心を備えた電動機
JP5146077B2 (ja) モータ及びその製造方法
JP2015109743A (ja) 誘導電動機の回転子
JP6099582B2 (ja) 回転電機の積層鉄心、ステータ、回転電機
JP2011072058A (ja) 回転電機
KR100531903B1 (ko) 외치형 고정자 코어

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570222

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15543255

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015878699

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE