WO2016114265A1 - 透光性ジルコニア焼結体及びその製造方法並びにその用途 - Google Patents

透光性ジルコニア焼結体及びその製造方法並びにその用途 Download PDF

Info

Publication number
WO2016114265A1
WO2016114265A1 PCT/JP2016/050717 JP2016050717W WO2016114265A1 WO 2016114265 A1 WO2016114265 A1 WO 2016114265A1 JP 2016050717 W JP2016050717 W JP 2016050717W WO 2016114265 A1 WO2016114265 A1 WO 2016114265A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
zirconia
powder
sintering
zirconia sintered
Prior art date
Application number
PCT/JP2016/050717
Other languages
English (en)
French (fr)
Inventor
山下勲
町田裕弥
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to US15/540,683 priority Critical patent/US10273191B2/en
Priority to EP16737336.4A priority patent/EP3252023B1/en
Priority to CN201680004982.9A priority patent/CN107108374B/zh
Publication of WO2016114265A1 publication Critical patent/WO2016114265A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/083Porcelain or ceramic teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/70Tooth crowns; Making thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/12Brackets; Arch wires; Combinations thereof; Accessories therefor
    • A61C7/14Brackets; Fixing brackets to teeth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Definitions

  • the present invention relates to a zirconia sintered body having high translucency and strength and a method for producing the same.
  • a sintered body containing zirconia as a main component and having translucency (hereinafter also referred to as “translucent zirconia sintered body”) is superior in mechanical properties to glass and alumina. Therefore, the translucent zirconia sintered body has been studied as a material intended for applications that require not only optical properties but also mechanical properties.
  • Patent Document 1 discloses a translucent zirconia sintered body as a material suitable for a dental material, an exterior member, or the like.
  • the translucent zirconia sintered body was a zirconia sintered body containing 3 mol% yttria.
  • Patent Document 2 discloses a translucent zirconia sintered body as a material suitable for dental materials, particularly orthodontic brackets.
  • the translucent zirconia sintered body was a zirconia sintered body containing 8 mol% yttria.
  • Patent Document 3 discloses a zirconia sintered body as a material suitable for a dental material, in particular, a denture and a mill blank for obtaining a denture.
  • the zirconia sintered body was a zirconia sintered body containing yttria and titania.
  • Conventional zirconia sintered bodies have increased translucency and reduced strength due to an increase in the content of stabilizer in zirconia.
  • the conventional zirconia sintered body when the content of the stabilizer is low, the conventional zirconia sintered body has low translucency and high strength. As described above, the conventional zirconia sintered body has only high translucency or strength.
  • the object of the present invention is to solve these problems and to provide a zirconia sintered body having both high translucency and high strength.
  • the gist of the present invention is the following [1] to [10].
  • [1] A zirconia sintered body comprising crystal grains having a cubic domain and a tetragonal domain, wherein a stabilizer and lanthanum are solid-solved.
  • the sintering step includes primary sintering for obtaining a primary sintered body by firing at 1000 ° C. or higher and lower than 1650 ° C., and secondary sintering for sintering the primary sintered body at 1650 ° C. or higher.
  • the zirconia sintered body of the present invention is a lanthanum solid solution zirconia sintered body in which lanthanum is solid-solved in zirconia, not simply containing lanthanum (La) in the sintered body.
  • lanthanum When lanthanum is dissolved, the structure of crystal grains of the sintered body becomes fine.
  • the fact that lanthanum is dissolved in zirconia is a powder X-ray diffraction (hereinafter referred to as “XRD”) pattern. Can be confirmed.
  • the lattice constant thereof is larger than that of a zirconia sintered body containing only the same amount of yttria.
  • the large lattice constant can be confirmed from the fact that the main peak shifts to the low angle side in the XRD pattern.
  • the sintered body of the present invention does not substantially contain a composite oxide or lanthanum oxide (hereinafter also referred to as “lanthanum oxide”) composed of lanthanum and zirconium.
  • lanthanum oxide a composite oxide or lanthanum oxide
  • the sintered body of the present invention becomes a sintered body with higher translucency.
  • the absence of lanthanum oxide or the like can be confirmed from the fact that the XRD pattern of the sintered body of the present invention does not have an XRD peak corresponding to other than the XRD peak of zirconia.
  • the lanthanum oxide include La 2 Zr 2 O 7 and La 2 O 3 .
  • the lanthanum content of the sintered body of the present invention is preferably 1 mol% or more. By containing 2 mol% or more of lanthanum, the domains in the crystal particles tend to be fine.
  • the lanthanum content (mol%) is the molar ratio of lanthanum in terms of oxide to the total of zirconia, stabilizer and oxide in terms of lanthanum (La 2 O 3 ) in the sintered body.
  • the lanthanum content of the sintered body of the present invention is preferably 10 mol% or less.
  • the preferred lanthanum content is 1 mol% or more and 10 mol% or less, further 1 mol% or more and 7 mol% or less, further 2 mol% or more and 10 mol% or less, further 2 mol% or more, 7 mol% or less, or further 2 mol. % Or more and 6.5 mol% or less, or 3 mol% or more and 6.5 mol% or less.
  • Lanthanum is a lanthanoid element, but the sintered body of the present invention preferably contains no lanthanoid element other than lanthanum.
  • lanthanoid elements other than lanthanum include, for example, europium (Eu), gadolinium (Gd), terbium (Tb), dysprodim (Dy), holonium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), or lutetium. (Lu).
  • Eu europium
  • Gd gadolinium
  • Tb terbium
  • Dy dysprodim
  • Ho holonium
  • Er erbium
  • Tm thulium
  • Yb ytterbium
  • Lu lutetium.
  • the content of the lanthanoid element other than lanthanum in the sintered body of the present invention is 0.6 mol% or less in consideration of measurement errors in composition analysis. It can be exemplified.
  • the sintered body of the present invention contains a stabilizer.
  • the stabilizer dissolves in zirconia. Since the lanthanum and the stabilizer are dissolved in zirconia, the crystal grains (Crystal Grain) of the sintered body of the present invention includes a cubic domain and a tetragonal domain even in a low temperature environment such as room temperature.
  • the stabilizer is preferably at least one member of the group consisting of yttria (Y 2 O 3 ), scandia (Sc 2 O 3 ), calcia (CaO), magnesia (MgO), and ceria (CeO 2 ). Since it is easy to use industrially, the stabilizer is preferably at least one of the group consisting of calcia, magnesia and yttria, and more preferably yttria.
  • the stabilizer included in the sintered body of the present invention is 2 mol% or more and 7 mol% or less, further 2 mol% or more and 5 mol% or less, or even 2.1 mol% or more and 4.9 mol% or less, or even 2 mol. % Or more and 4 mol% or less.
  • a stabilizer content (mol%) is zirconia in the sintered body, to the sum of the stabilizers and as oxide and lanthanum (La 2 O 3), the molar ratio of the stabilizing agent.
  • the sintered body of the present invention is a zirconia sintered body, which is a sintered body mainly composed of zirconia. Therefore, the total content of the stabilizer and lanthanum contained in the sintered body of the present invention may be less than 50 mol%.
  • the zirconia content of the sintered body of the present invention may be more than 50 mol%, more preferably 60 mol% or more, further 80 mol% or more, further more than 83 mol%, or more preferably 90 mol% or more. .
  • the sintered body of the present invention may contain alumina (Al 2 O 3 ).
  • alumina Al 2 O 3
  • the alumina content is preferably 100 ppm to 2000 ppm by weight, more preferably 200 ppm to 1000 ppm by weight.
  • the content (weight ppm) of alumina is the weight of aluminum (Al 2 O 3 ) converted to oxide with respect to the total weight of zirconia, stabilizer, and lanthanum (La 2 O 3 ) converted to oxide in the sintered body. It is a ratio.
  • the sintered body of the present invention has the above composition, but may contain inevitable impurities.
  • Inevitable impurities include rare earth elements (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) other than hafnium (Hf) and lanthanum.
  • the following molar composition can be given as a preferred composition of the sintered body of the present invention.
  • the sintered body of the present invention is particularly preferable.
  • the following molar composition can be mentioned as a composition.
  • the stabilizer in the above composition is yttria. Is preferred.
  • the sintered body of the present invention has cubic domains and tetragonal domains in crystal grains.
  • a domain is at least one of a crystallite in a crystal grain or an aggregate of crystallites, and is a portion where the same crystal structure is continuous.
  • the cubic domain is a domain whose crystal structure is a cubic fluorite structure
  • the tetragonal domain is a domain whose crystal structure is a tetragonal fluorite structure.
  • the sintered body of the present invention has a cubic domain and a tetragonal domain in its crystal particles. That is, it can be confirmed from the Rietveld analysis of the XRD pattern that the sintered body of the present invention contains cubic crystals and tetragonal crystals. In addition, since the crystallite diameters of the cubic and tetragonal crystals calculated by Rietveld analysis are smaller than the crystal particle diameter, it is possible to confirm that the crystal grains include cubic domains and tetragonal domains. it can.
  • the sintered body of the present invention includes crystal particles having a cubic domain and a tetragonal domain, and is preferably composed of crystal grains having a cubic domain and a tetragonal domain.
  • the crystal structure includes a cubic fluorite structure and a tetragonal fluorite structure. Furthermore, it is preferable that the sintered body of the present invention does not substantially contain a monoclinic crystal.
  • substantially free of monoclinic crystals means that no monoclinic XRD peaks are confirmed in the XRD pattern.
  • the lanthanum concentration of the cubic domain and the tetragonal domain may be the same, but in the sintered body of the present invention, the lanthanum concentrations of the cubic domain and the tetragonal domain in the crystal grains may be different, Furthermore, the lanthanum concentration in the cubic domain may be higher than the lanthanum concentration in the tetragonal domain.
  • the lanthanum concentration in each domain can be observed by composition analysis in observation with a transmission electron microscope (hereinafter referred to as “TEM”).
  • the sintered body of the present invention has an average crystallite size (Average Crystal Size; hereinafter, also simply referred to as “average crystallite size”) calculated from the half width of the main peak (hereinafter referred to as “FWHM”). It is preferable that it is 255 nm or less. When the average crystallite diameter is 250 nm or less, further 200 nm or less, further 150 nm or less, and further 130 nm or less, the translucency tends to be high. Furthermore, when the average crystallite diameter is 100 nm or less, further 60 nm or less, further 50 nm or less, and further 30 nm or less, light scattering is further suppressed. Thereby, the translucency of the sintered compact of this invention becomes higher.
  • Average Crystallite size Average Crystal Size
  • the average crystallite diameter is preferably small, in the sintered body of the present invention, it is usually 2 nm or more, further 5 nm or more, further 10 nm or more, and further 15 nm or more.
  • the sintered body of the present invention preferably has a FWHM of 0.1536 ° or more.
  • FWHM is 0.154 ° or more when the average crystallite diameter is 250 nm or less, 0.1635 ° or more when it is 200 nm or less, 0.178 ° or more when 150 nm or less, and 0.
  • the temperature is 0.25 ° C. or more.
  • the FWHM is preferably 0.3 ° or more, and more preferably 0.4 ° or more.
  • the FWHM of the main peak of the sintered body of the present invention is 1 ° or less, and further 0.7 ° or less.
  • the crystallite diameters of the cubic and tetragonal crystals contained in the crystal particles of the present invention can be determined by Rietveld analysis of the XRD pattern of the sintered body of the present invention. That is, the XRD pattern of the sintered body of the present invention is separated into an XRD peak attributed to a cubic crystal and an XRD peak attributed to a tetragonal crystal by the Rietveld method. The full width at half maximum of the XRD peak of each crystal structure after separation may be obtained, and the crystallite diameter may be obtained from the obtained half width by the following Scherrer equation.
  • D K ⁇ ⁇ / (( ⁇ B) ⁇ cos ⁇ )
  • K is the Scherrer constant (1.0)
  • is the wavelength of CuK ⁇ (0.15418 nm)
  • is the full width at half maximum (°)
  • B is the device constant ( 0.1177 °)
  • is the diffraction angle (°) of the XRD peak.
  • the average crystal particle size (Average Crystal Grain Size) of the sintered body of the present invention is 20 ⁇ m or more and 100 ⁇ m or less, and further 30 ⁇ m or more and 90 ⁇ m or less. When the average crystal particle diameter is within this range, a sintered body having high translucency is obtained. In the present invention, the average crystal particle diameter can be measured by a planimetric method.
  • the sintered body of the present invention preferably has a high density. Depending on the amount of stabilizer and lanthanum, the density varies.
  • the density of the sintered body of the present invention is 6.0 g / cm 3 or more 6.2 g / cm 3 or less, more can be exemplified 6.0 g / cm 3 or more 6.12 g / cm 3 or less.
  • the sintered body of the present invention has high translucency. Therefore, the sintered body of the present invention has a sample thickness of 1 mm and a total light transmittance (hereinafter, also simply referred to as “total light transmittance”) using D65 light as a radiation source is 45% or more. The higher the translucency, the better.
  • the total light transmittance is preferably 50% or more, and more preferably 55% or more. As the average crystallite diameter increases, the total light transmittance tends to increase. For example, when the lanthanum content is 2.5 mol% or more, the total light transmittance is 65% or more because the average crystallite diameter is 25 nm or more.
  • the light transmitting property of the sintered body of the present invention may satisfy the above-mentioned total light transmittance.
  • the sample thickness is 1 mm
  • the linear transmittance using the D65 ray as a radiation source (hereinafter also simply referred to as “linear transmittance”). )) Of 1% or more, further 3% or more, or even 10% or more, or even 20% or more, or even 30% or more, so that a sintered body with higher transparency can be obtained. Therefore, it is preferable.
  • the upper limit of the linear transmittance of the sintered body of the present invention is 70% or less, and further 66% or less.
  • the diffused transmittance (hereinafter, also simply referred to as “diffused transmittance”) using a D65 light beam as a radiation source with a sample thickness of 1 mm of the sintered body of the present invention is 10% or more, further 15% or more. Further, it is preferably 20% or more. More preferable diffuse transmittance is 30% or more and 65% or less.
  • the sintered body of the present invention has high strength.
  • the bending strength of the sintered body of the present invention is 500 MPa or more, and further 600 MPa or more. Since the applicable applications spread, the strength of the sintered body of the present invention is preferably 800 MPa or more, and more preferably 1000 MPa or more.
  • the strength in the present invention is 500 MPa or more and 1600 MPa or less, and further 600 MPa or more and 1500 MPa or less as a biaxial bending strength measured according to ISO / DIS6872.
  • the strength in the present invention includes a three-point bending strength measured according to JIS R1601 of 500 MPa to 1500 MPa, and further 600 MPa to 1200 MPa.
  • the sintered body of the present invention preferably has a fracture toughness equal to or higher than a translucent zirconia sintered body made of cubic zirconia such as an 8 mol% yttria-containing zirconia sintered body.
  • the sintered compact of this invention can be used as a member in which the conventional translucent zirconia sintered compact is used.
  • the fracture toughness of the sintered body of the present invention is 1.7 MP ⁇ m 0.5 or more, more preferably 1.8 MPa ⁇ m 0.5 or more, further 2 MPa ⁇ m 0.5 or more, and even 2.2 MPa ⁇ m.
  • m is 0.5 or more.
  • fracture toughness can be measured by either IF method or SEPB method according to JIS R1607.
  • the zirconia sintered body of the present invention is a mixing step in which a zirconia raw material, a stabilizer raw material and a lanthanum raw material are mixed to obtain a mixed powder, a molding step in which the obtained mixed powder is molded to obtain a molded body, and the obtained molding
  • mixed powder is obtained by mixing zirconia raw material, stabilizer raw material and lanthanum raw material.
  • the mixing method may be either wet mixing or dry mixing. Since a more uniform mixed powder can be obtained, the mixing method is preferably wet mixing, and more preferably wet mixing using at least one of a wet ball mill or a wet stirring mill.
  • zirconia raw material examples include zirconia or a precursor thereof and zirconia powder having a BET specific surface area of 4 to 20 m 2 / g.
  • the stabilizer raw material examples include at least one powder (stabilizer) of yttria, scandia, calcia, magnesia, and ceria (stabilizer), or a precursor thereof, and further yttria powder or a precursor thereof.
  • the zirconia raw material is preferably zirconia powder containing a stabilizer.
  • Such zirconia powder becomes a zirconia raw material and a stabilizer raw material.
  • the stabilizer contained in the zirconia powder is preferably at least one of the group consisting of yttria, scandia, calcia, magnesia, and ceria, and more preferably yttria.
  • a stabilizer-containing zirconia powder a zirconia powder containing 2 to 7 mol% of a stabilizer, and a zirconia having a BET specific surface area of 4 to 20 m 2 / g and containing a stabilizer of 2 to 7 mol% A powder is preferred.
  • the amount of stabilizer contained in the stabilizer-containing zirconia powder is preferably 2 mol% to 5 mol%, more preferably 2 mol% to 4 mol%.
  • the lanthanum raw material can include a compound containing lanthanum, and includes at least one selected from the group consisting of lanthanum oxide, lanthanum hydroxide, lanthanum nitrate, lanthanum sulfate, lanthanum chloride, lanthanum carbonate, and pyrochlore-type La 2 Zr 2 O 7.
  • it is at least one of lanthanum oxide and La 2 Zr 2 O 7 .
  • the mixed powder may contain an alumina raw material.
  • the alumina raw material include compounds containing aluminum, and examples thereof include at least one selected from the group consisting of alumina, aluminum hydroxide, aluminum carbonate, and spinel, and further alumina.
  • Preferred alumina includes at least one of ⁇ -type alumina and ⁇ -type alumina, and further ⁇ -type alumina.
  • the composition of the mixed powder may be a desired ratio, but in terms of oxide, zirconia is more than 83 mol% and 97 mol% or less, the stabilizer is 2 mol% or more and 7 mol% or less, and lanthanum is 1 mol% or more and 10 mol% or less. Can be mentioned.
  • the following molar composition can be given as a preferred mixed powder composition.
  • the stabilizer in the above composition is yttria. Is preferred.
  • the mixed powder is molded to obtain a molded body.
  • the molding method is arbitrary as long as a molded body having a desired shape is obtained.
  • Examples of the molding method include at least one selected from the group consisting of press molding, injection molding, sheet molding, extrusion molding, and cast molding, and is preferably at least one of press molding and injection molding.
  • the shape of the obtained molded body is arbitrary, but examples thereof include a disk shape, a columnar shape, a polyhedral shape, an orthodontic bracket, a semiconductor manufacturing jig, and other complex shapes. it can.
  • the compact is sintered to obtain a sintered body having a high-temperature crystal structure such as a cubic crystal structure. Therefore, in the sintering step, the obtained molded body is sintered at a sintering temperature of 1650 ° C. or higher. By sintering at 1650 ° C. or higher, it is considered that the crystal structure of the sintered body becomes a high-temperature type crystal structure.
  • a sintered body having a high-temperature type crystal structure undergoes a temperature lowering process, whereby a crystal domain in the crystal grain is formed into a cubic domain and a tetragonal domain, and the sintered body including the crystal structure of the sintered body of the present invention is sintered. You can get a body.
  • the sintering temperature is preferably 1700 ° C. or higher, more preferably 1725 ° C. or higher, and further preferably 1750 ° C. or higher.
  • the sintering temperature is 2000 ° C. or lower, further 1900 ° C. or lower, and further 1800 ° C. or lower.
  • the sintering method is arbitrary.
  • the sintering method include at least one selected from the group consisting of atmospheric pressure sintering, pressure sintering, and vacuum sintering, and atmospheric pressure sintering and pressure sintering are preferable.
  • a sintering method performed only by atmospheric pressure sintering (hereinafter also referred to as “one-step sintering method”), or a molded body is fired at 1000 ° C. or more and less than 1650 ° C.
  • a sintering step including primary sintering for obtaining a primary sintered body and secondary sintering for sintering the primary sintered body at 1650 ° C. or higher (hereinafter also referred to as “two-stage sintering method”). be able to.
  • the sintered body of the present invention may be obtained by subjecting the sintering process to pressure sintering.
  • Normal pressure sintering is a method of sintering by simply heating without applying an external force to the compact during sintering.
  • the molded body obtained in the molding process may be sintered under normal pressure to form a sintered body.
  • the sintering temperature should just be 1600 degreeC or more, and it is preferable that they are 1700 degreeC or more and 1900 degrees C or less.
  • the sintering atmosphere may be either an oxidizing atmosphere or a reducing atmosphere. An air atmosphere is preferable because it is simple.
  • a primary sintered body is formed by primary sintering of the formed body, and the primary sintered body is secondarily sintered.
  • the molded body is preferably sintered at 1000 ° C. or higher and lower than 1650 ° C.
  • the primary sintering atmosphere is preferably at least one of an oxidizing atmosphere and a reducing atmosphere, and is preferably an air atmosphere.
  • Preferable primary sintering includes atmospheric pressure sintering at 1000 ° C. or higher and lower than 1650, further 1400 ° C. or higher and 1520 ° C. or lower. Thereby, the structure of the obtained primary sintered body becomes fine. In addition, pores are less likely to be generated in the crystal particles of the primary sintered body.
  • the primary sintered body is sintered at 1650 ° C. or higher, further 1700 ° C. or higher, further 1725 ° C. or higher, and further 1750 ° C. or higher.
  • the secondary sintering temperature is preferably 2000 ° C. or lower, more preferably 1900 ° C. or lower, and further preferably 1800 ° C. or lower.
  • the secondary firing is preferably a hot isostatic pressing (hereinafter referred to as “HIP”) treatment.
  • HIP hot isostatic pressing
  • the HIP processing time (hereinafter referred to as “HIP time”) is preferably at least 10 minutes. If the HIP time is at least 10 minutes, the pores of the sintered body are sufficiently removed during the HIP process.
  • the pressure medium for HIP treatment (hereinafter also simply referred to as “pressure medium”) can be exemplified by argon gas, nitrogen gas, oxygen, etc., but general argon gas is convenient.
  • the pressure of the HIP treatment (hereinafter also referred to as “HIP pressure”) is preferably 5 MPa or more, more preferably 50 MPa or more. When the HIP pressure is 5 MPa or more, removal of pores in the sintered body is further promoted.
  • the upper limit of the pressure is not particularly specified, but when a normal HIP apparatus is used, the HIP pressure is 200 MPa or less.
  • a molded body or a primary sintered body in a container made of a non-reducing material.
  • the non-reducing material include at least one selected from the group consisting of alumina, zirconia, mullite, yttria, spinel, magnesia, silicon nitride, and boron nitride, and at least one of alumina and zirconia.
  • the temperature is decreased from the sintering temperature to 1000 ° C. at a temperature lowering rate exceeding 1 ° C./min.
  • a sintered body with high translucency can be obtained by setting the temperature lowering rate to more than 1 ° C./min, further 5 ° C./min or more, and further 8 ° C./min or more.
  • the temperature lowering rate is 1 ° C./min or less, precipitates and monoclinic crystals are generated, and thus the obtained sintered body has low translucency. Thereby, the translucent property of the sintered body obtained is extremely low.
  • the temperature decrease from the firing temperature to 1000 ° C.
  • the manufacturing method of the present invention may include an annealing process for heat-treating the sintered body after the temperature lowering process.
  • an annealing process for heat-treating the sintered body after the temperature lowering process.
  • the annealing step includes treating the sintered body in an oxidizing atmosphere at 900 ° C. or more and 1200 ° C. or less, and further 980 ° C. or more and 1030 ° C. or less.
  • the sintered body of the present invention has higher translucency and mechanical strength than conventional translucent ceramics. Therefore, when used as a dental member such as an orthodontic bracket that requires aesthetics, its size can be reduced. Thereby, it can be used as a dental member with higher aesthetics.
  • the present invention will be specifically described with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.
  • Density measurement The actual density of the sintered body sample was determined by measuring the weight in water by the Archimedes method. (Measurement of average crystal grain size) After the sintered body sample was surface ground, it was mirror polished using diamond abrasive grains of 9 ⁇ m, 6 ⁇ m and 1 ⁇ m in order. The polished surface was held at 1400 ° C. for 1 hour and thermally etched, followed by SEM observation, and the average crystal grain size was determined by the planimetric method from the obtained SEM observation chart.
  • D K ⁇ ⁇ / (( ⁇ B) ⁇ cos ⁇ )
  • D is the average crystallite diameter (nm)
  • K is the Scherrer constant (1.0)
  • is the wavelength of CuK ⁇ (0.15418 nm)
  • is the half width (°)
  • B is the device constant (0. 1177 °) and ⁇ are diffraction angles (°) of the main peak.
  • a peak corresponding to the cubic (111) plane of zirconia and a peak overlapping with a peak corresponding to the tetragonal (111) plane were regarded as a single peak.
  • the half value width was calculated
  • Rietveld analysis By performing Rietveld analysis of the XRD pattern obtained by the same measurement method as the identification of the crystal structure, the ratio of each crystal structure of cubic and tetragonal crystals in the sintered body sample, the crystallite diameter, and the lattice constant are obtained. Asked. The Rietveld analysis used a general-purpose program (Rietan-2000).
  • the Y 2 O 3 concentration in tetragonal crystals was determined based on the following formula.
  • YO 1.5 is the yttria concentration
  • cf and af are the c-axis and a-axis lattice constants of the tetragonal fluorite structure determined by Rietveld analysis, respectively.
  • TT total light transmittance
  • DF diffuse transmittance
  • the rate (In-Line Transmission; hereinafter referred to as “PT”) was measured.
  • the light transmittance was measured by irradiating the measurement sample with the standard light D65 and detecting the light beam transmitted through the measurement sample with an integrating sphere.
  • a general haze meter (device name: Haze meter NDH2000, manufactured by NIPPON DENSOKU) was used for the measurement.
  • a disk-shaped molded body having a diameter of 16 mm and a thickness of 1.0 mm was used. Prior to the measurement, both surfaces of the measurement sample were polished, and the surface roughness Ra was mirror-polished to 0.02 ⁇ m or less.
  • S-TT spectral total light transmittance
  • S -PT spectral linear transmittance
  • UV-VIS measurement a general double beam spectrophotometer (device name: V-650, manufactured by JASCO Corporation) was used.
  • a disk-shaped molded body having a diameter of 16 mm and a thickness of 1.0 mm was used. Prior to the measurement, both surfaces of the measurement sample were polished, and the surface roughness Ra was mirror-polished to 0.02 ⁇ m or less. (Measurement of angular distribution of transmitted light) The angular distribution of transmitted light was measured using a goniophotometer (device name: GP-200, manufactured by Murakami Color Research Co., Ltd.). As a measurement sample, a disk-shaped molded body having a diameter of 16 mm and a thickness of 1.0 mm was used.
  • the thickness of the measurement sample was 1 mm, and the measurement was performed on a sample that was mirror-polished on both sides.
  • the three-point bending strength of the sample was measured by a method according to JIS R1601 “Bending strength test method for fine ceramics”.
  • the measurement sample used was a mirror-polished surface roughness Ra of 0.02 ⁇ m or less.
  • the strength of one sample was measured five times, and the average value was taken as the three-point bending strength.
  • the fracture toughness of the sample was measured by the IF method and SEPB method by a method according to JIS R1607.
  • a sample whose surface roughness Ra was mirror-polished to 0.02 ⁇ m or less was used for the sample.
  • One sample was measured five times, and the average value was taken as the fracture toughness value of the sample.
  • the measurement conditions in the IF method are as follows.
  • Push load 5kgf Elastic modulus of sintered body: 205 GPa
  • the fracture toughness value obtained by the IF method was K IC (IF)
  • the fracture toughness value obtained by the SEPB method was K IC (SEPB).
  • the sintered body sample was treated in a hot water atmosphere and evaluated for deterioration. Pure water and a sintered body sample were put in a stainless steel pressure vessel, and this was held at 140 ° C. for 24 hours to make a hydrothermal deterioration test. After the holding, the recovered sintered body sample was subjected to XRD measurement.
  • the ratio of the XRD peak corresponding to the monoclinic crystal included in the obtained XRD pattern is obtained from the following formula, and the volume fraction of the monoclinic crystal of the sintered body sample (hereinafter also referred to as “monoclinic crystal ratio”). Asked.
  • X (Im (111) + Im (11-1)) / (Im (111) + Im (11-1) + It (111) + Ic (111))
  • X is the monoclinic rate of the sample
  • Im (111) is the XRD peak intensity corresponding to the monoclinic (111) plane
  • Im (11-1) is equivalent to the monoclinic (11-1) plane
  • the XRD peak intensity It (111) is the XRD peak intensity corresponding to the tetragonal (111) plane
  • Ic (111) is the XRD peak intensity corresponding to the cubic (111) plane.
  • Thermal conductivity measurement The thermal conductivity of the sintered body sample was measured by a laser flash method. For the measurement, a laser flash method thermal constant measuring device (device name: TC-1200RH, manufactured by Advance Riko Co., Ltd.) was used.
  • La 2 Zr 2 O 7 powder was synthesized by a solid phase method. That is, zirconium oxide (trade name: TZ-0Y, manufactured by Tosoh Corporation) and lanthanum oxide (purity 99.99%, manufactured by Wako Pure Chemical Industries) were mixed to obtain a mixed powder. The mixing was performed by wet mixing with a ball mill using a 10 mm diameter ball made of zirconia in an ethanol solvent.
  • the mixed powder after mixing was dried and calcined to obtain a calcined powder.
  • the calcination conditions were heat treatment at 1100 ° C. for 10 hours in air.
  • the obtained calcined powder was wet-mixed under the same conditions as in the above mixing and dried.
  • the dried powder was fired at 1400 ° C. for 2 hours in the air to obtain a white powder, which was referred to as a La 2 Zr 2 O powder (hereinafter also referred to as “LZO powder”).
  • Example 1 LZO powder was added to zirconia powder so that the weight ratio of LZO powder to 3 mol% yttria-containing zirconia powder (trade name: TZ-3YS, manufactured by Tosoh) having a BET specific surface area of 7 m 2 / g was 20 wt%. This was mixed to obtain a mixed powder. Mixing was performed by wet mixing in an ethanol solvent for 120 hours by a ball mill using zirconia balls having a diameter of 10 mm. The obtained mixed powder was dried at 80 ° C. in the atmosphere to obtain a raw material powder.
  • TZ-3YS manufactured by Tosoh
  • the raw material powder was molded by uniaxial pressing with a mold press to obtain a preform.
  • the pressure of uniaxial pressurization was 50 MPa.
  • the obtained preform was subjected to cold isostatic pressing (hereinafter referred to as “CIP”) to obtain a cylindrical shaped body having a diameter of 20 mm and a thickness of about 3 mm.
  • the pressure for CIP treatment was 200 MPa.
  • the primary sintered body was obtained by primary sintering the molded body in the atmosphere at a temperature rising rate of 100 ° C./h, a sintering temperature of 1450 ° C., and a sintering time of 2 hours.
  • the obtained primary sintered body was placed in a zirconia container with a lid, and this was subjected to HIP treatment to obtain a HIP-treated body, which was used as the zirconia sintered body of this example.
  • the HIP treatment conditions were a 99.9% argon gas atmosphere as a pressure medium, a heating rate of 600 ° C./h, a HIP temperature of 1750 ° C., a HIP pressure of 150 MPa, and a holding time of 1 hour.
  • the temperature was lowered from the sintering temperature to room temperature to obtain a HIP-treated body.
  • the rate of temperature decrease from the HIP temperature to 1000 ° C. was 83 ° C./min.
  • the obtained HIP-treated body was heat-treated at 1000 ° C. for 1 hour in the atmosphere to obtain a colorless and translucent sintered body.
  • FIG. 1 shows a Rietveld analysis result of the zirconia sintered body of this example
  • FIG. 2 shows a TEM observation diagram
  • FIG. 3 shows an SEM observation diagram.
  • Table 1 shows the composition analysis results of the inside of the crystal grain and the grain boundary by SEM-EDS. The analysis by SEM-EDS was performed without subjecting the sintered body to thermal etching treatment. From Table 1, since the average composition in the crystal grains and in the vicinity of the crystal grain boundaries is approximately the same, the sintered body of this example does not differ in composition between the crystal grains and the crystal grain boundaries, and is homogeneous. It was confirmed to be a sintered body.
  • FIG. 2A a cubic domain and a tetragonal domain were confirmed. While the average crystal particle diameter was 88.3 ⁇ m, it was confirmed that the domain was about 50 nm, which was smaller than the crystal particle diameter. From this, it was confirmed that the zirconia sintered body of this example had tetragonal domains and cubic domains in the crystal particles.
  • FIG. 4 shows an overview of the zirconia sintered body of this example
  • FIG. 5 shows a declination luminous intensity spectrum
  • FIG. 6 shows a UV-VIS spectrum.
  • the back diagram can be confirmed through the zirconia sintered body of this example, and it can be confirmed that the zirconia sintered body of the present invention has translucency.
  • the diffuse transmittance (DF) of the zirconia sintered body of the present example is 24.28%, but from FIGS. 5 and 6, most of the diffuse transmittance is in the vicinity of the linear transmitted light and is in the linear direction. It was confirmed that the film had high transmittance and high translucency in the visible light wavelength range of 300 nm to 800 nm. From this, it was confirmed that the zirconia sintered body of the present invention has higher transparency.
  • Example 2 A zirconia sintered body of this example was obtained in the same manner as in Example 1 except that the HIP treatment temperature was 1700 ° C. Table 2 shows the evaluation results of the zirconia sintered body of this example.
  • Example 3 A zirconia sintered body of this example was obtained in the same manner as in Example 1 except that the HIP processing temperature was 1800 ° C. Table 2 shows the evaluation results of the zirconia sintered body of this example.
  • Example 4 A zirconia sintered body of this example was obtained in the same manner as in Example 1 except that the HIP treatment pressure was 54 MPa. Table 2 shows the evaluation results of the zirconia sintered body of this example.
  • Example 5 A zirconia sintered body of this example was obtained in the same manner as in Example 1 except that the HIP treatment time was 15 minutes.
  • Table 2 shows the evaluation results of the zirconia sintered body of this example.
  • Example 6 A zirconia sintered body of this example was obtained in the same manner as in Example 1 except that the primary sintering temperature was 1425 ° C. Table 2 shows the evaluation results of the zirconia sintered body of this example.
  • Example 7 A zirconia sintered body of this example was obtained in the same manner as in Example 1 except that the LZO powder was added to the zirconia powder so that the weight ratio of the LZO powder was 15% by weight.
  • the average crystal particle diameter of the zirconia sintered body of this example was 82.1 ⁇ m. The evaluation results are shown in Table 2.
  • Example 8 In the present example, the LZO powder was added to the zirconia powder so that the weight ratio of the LZO powder was 17.5% by weight, and the HIP treatment temperature was set to 1700 ° C. A zirconia sintered body was obtained. The average crystal particle diameter of the zirconia sintered body of this example was 48.2 ⁇ m. The evaluation results are shown in Table 2.
  • Example 9 Implemented except that the LZO powder was added to the zirconia powder, the primary sintering temperature was 1500 ° C., and the HIP treatment pressure was 15 MPa so that the weight ratio of the LZO powder was 17.5% by weight.
  • a zirconia sintered body of this example was obtained in the same manner as in Example 1. Table 2 shows the evaluation results of the zirconia sintered body of this example.
  • Example 10 The zirconia firing of this example was performed in the same manner as in Example 1 except that the LZO powder was added to the zirconia powder so that the weight ratio of the LZO powder was 25% by weight, and the HIP treatment temperature was 1700 ° C. A ligature was obtained. The average crystal particle diameter of the zirconia sintered body of this example was 45.6 ⁇ m. The evaluation results are shown in Table 2.
  • Example 11 The LZO powder was added to the zirconia powder so that the weight ratio of the LZO powder was 17.5% by weight, and the HIP treatment temperature was changed to 1725 ° C. A zirconia sintered body was obtained. The average crystal particle diameter of the zirconia sintered body of this example was 61.2 ⁇ m. The evaluation results are shown in Table 2.
  • the Raman analysis was performed using a general microscopic Raman apparatus (apparatus name: NRS-5100, Japan Spectroscopy) at a measurement laser wavelength of 532 nm.
  • the obtained Raman spectrum is shown in FIG.
  • the zirconia sintered body of this example was not confirmed except for peaks attributed to tetragonal crystals and cubic crystals.
  • the fracture surface besides peaks attributable to tetragonal and cubic, peak (550 cm -1 derived from monoclinic, 500cm -1, 470cm -1, 380cm -1, 190cm -1 and 180cm -1 ) was confirmed. From this, it was confirmed that the strength of the zirconia sintered body of this example was increased by the transition of the tetragonal crystal to the monoclinic crystal in the bending test.
  • Example 12 The zirconia firing of this example was performed in the same manner as in Example 1 except that the LZO powder was added to the zirconia powder so that the weight ratio of the LZO powder was 25% by weight, and the HIP treatment temperature was 1725 ° C. A ligature was obtained. The average crystal particle diameter of the zirconia sintered body of this example was 67.2 ⁇ m. The evaluation results are shown in Table 2.
  • Example 13 3 mol% yttria-containing zirconia powder (trade name: TZ-3Y, manufactured by Tosoh Corporation) having a specific surface area of 14 m 2 / g was used as the zirconia powder, and La 2 O 3 powder (purity 99.99%, Wako Pure Chemical Industries, Ltd.) and the same method as in Example 1 except that La 2 O 3 powder was added to zirconia powder so that the weight ratio of La 2 O 3 powder was 10% by weight.
  • a zirconia sintered body of this example was obtained.
  • the average crystal particle diameter of the zirconia sintered body of this example was 46.9 ⁇ m.
  • the evaluation results are shown in Table 2.
  • Example 14 La 2 O 3 powder (purity: 99.99%, manufactured by Wako Pure Chemical Industries, Ltd.) in place of LZO powder that was used, La 2 O 3 as the weight ratio of the powder is 10 wt%, the La 2 O 3 powder A zirconia sintered body of this example was obtained in the same manner as in Example 1 except that it was added to the zirconia powder and the HIP treatment time was 15 minutes. The average crystal particle size was 33.0 ⁇ m. The evaluation results are shown in Table 2.
  • Example 15 La 2 O 3 powder (purity 99.99%, manufactured by Wako Pure Chemical Industries, Ltd.) in place of LZO powder that was used, as the weight ratio of La 2 O 3 powder is 7.5 wt.%, La 2 O 3
  • a zirconia sintered body of this example was obtained in the same manner as in Example 1 except that the powder was added to the zirconia powder and the HIP treatment temperature was 1725 ° C.
  • the average crystal particle diameter of the zirconia sintered body of this example was 85.3 ⁇ m.
  • the evaluation results are shown in Table 2.
  • Example 16 La 2 O 3 powder (purity 99.99%, manufactured by Wako Pure Chemical Industries, Ltd.) in place of LZO powder that was used, as the weight ratio of La 2 O 3 powder is 7.5 wt.%, La 2 O 3
  • a zirconia sintered body of this example was obtained in the same manner as in Example 1 except that the powder was added to the zirconia powder and the HIP treatment temperature was 1700 ° C.
  • the average crystal particle diameter of the zirconia sintered body of this example was 61.3 ⁇ m.
  • the evaluation results are shown in Table 2.
  • Example 17 La 2 O 3 powder (purity: 99.99%, manufactured by Wako Pure Chemical Industries, Ltd.) in place of LZO powder that was used, La 2 O 3 as the weight ratio of the powder is 10 wt%, the La 2 O 3 powder
  • a zirconia sintered body of this example was obtained in the same manner as in Example 1 except that it was added to the zirconia powder and the rate of temperature decrease after the HIP treatment was 80 ° C./min.
  • the average crystal particle diameter of the zirconia sintered body of this example was 80.2 ⁇ m.
  • the evaluation results are shown in Table 2.
  • Example 18 La 2 O 3 powder (purity: 99.99%, manufactured by Wako Pure Chemical Industries, Ltd.) in place of LZO powder that was used, La 2 O 3 as the weight ratio of the powder is 10 wt%, the La 2 O 3 powder
  • a zirconia sintered body of this example was obtained in the same manner as in Example 1 except that it was added to the zirconia powder and the rate of temperature decrease after HIP treatment was 20 ° C./min.
  • the average crystal particle diameter of the zirconia sintered body of this example was 40.2 ⁇ m, and the three-point bending strength was 827 MPa.
  • the evaluation results are shown in Table 2.
  • Example 19 La 2 O 3 powder (purity: 99.99%, manufactured by Wako Pure Chemical Industries, Ltd.) in place of LZO powder that was used, La 2 O 3 as the weight ratio of the powder is 10 wt%, the La 2 O 3 powder
  • a zirconia sintered body of this example was obtained in the same manner as in Example 1 except that it was added to the zirconia powder and the rate of temperature decrease after HIP treatment was 10 ° C./min.
  • the average crystal particle size of the zirconia sintered body of this example was 88.5 ⁇ m.
  • the evaluation results are shown in Table 2.
  • Example 20 La 2 O 3 powder was adjusted so that the weight ratio of La 2 O 3 powder to 4 mol% yttria-containing zirconia powder (trade name: TZ-4YS, manufactured by Tosoh) having a BET specific surface area of 7 m 2 / g was 5% by weight. It was added to zirconia powder and mixed to obtain a mixed powder. Mixing was performed by wet mixing in an ethanol solvent for 120 hours by a ball mill using zirconia balls having a diameter of 10 mm. The obtained mixed powder was dried at 80 ° C. in the atmosphere to obtain a raw material powder.
  • TZ-4YS manufactured by Tosoh
  • the raw material powder was molded by uniaxial pressing with a mold press to obtain a preform.
  • the pressure for uniaxial pressing was 50 MPa.
  • the obtained preform was subjected to cold isostatic pressing (hereinafter referred to as “CIP”) to obtain a cylindrical shaped body having a diameter of 20 mm and a thickness of about 3 mm.
  • the pressure for CIP treatment was 200 MPa.
  • the primary sintered body was obtained by primary sintering the molded body in the atmosphere at a temperature rising rate of 100 ° C./h, a sintering temperature of 1450 ° C., and a sintering time of 2 hours.
  • the obtained primary sintered body was placed in a zirconia container with a lid, and this was subjected to HIP treatment to obtain a HIP-treated body, which was obtained as a zirconia sintered body of this example.
  • the HIP treatment conditions were a 99.9% argon gas atmosphere as a pressure medium, a heating rate of 600 ° C./h, a HIP temperature of 1650 ° C., a HIP pressure of 150 MPa, and a holding time of 1 hour.
  • the temperature was lowered from the sintering temperature to room temperature to obtain a HIP-treated body.
  • the rate of temperature decrease from the HIP temperature to 1000 ° C. was 83 ° C./min.
  • the obtained HIP-treated body was heat-treated at 1000 ° C. for 1 hour in the atmosphere to obtain a colorless and translucent sintered body.
  • the evaluation results of the zirconia sintered body of this example are shown in Table 3.
  • Example 21 The raw material zirconia powder was a 5 mol% yttria-containing zirconia powder (trade name: TZ-5YS, manufactured by Tosoh Corp.) having a BET specific surface area of 7 m 2 / g, and the weight ratio of La 2 O 3 powder was 10 wt%. And the zirconia sintered compact of the present Example was obtained by the same method as Example 20 except having made the HIP processing temperature into 1750 ° C. Table 3 shows the evaluation results of the zirconia sintered body of this example.
  • TZ-5YS manufactured by Tosoh Corp.
  • Example 22 BET specific surface area of 7m 2 / g 3mol% yttria-containing zirconia powder as zirconia powder of the raw material (trade name: TZ-3YS, manufactured by Tosoh Corporation) 4 mol% yttria-containing zirconia powder having a BET specific surface area and is 7m 2 / g (trade name : TZ-4YS, manufactured by Tosoh Corporation), and weighed both so that the amount of yttria with respect to zirconia was 3.3 mol%, and the weight ratio of La 2 O 3 powder was 10 wt%. La 2 O 3 powder was added to zirconia powder, and these were mixed to obtain a mixed powder.
  • a zirconia sintered body of this example was obtained in the same manner as in Example 20 except that the mixed powder was used and that the HIP treatment temperature was 1750 ° C. Table 3 shows the evaluation results of the zirconia sintered body of this example.
  • Example 23 As a raw material zirconia powder, a 3 mol% yttria-containing zirconia powder (trade name: TZ-3YS, manufactured by Tosoh Corporation) having a BET specific surface area of 7 m 2 / g was used, and the weight ratio of La 2 O 3 powder was 7.5%. the La 2 O 3 powder such that the weight% was added to the zirconia powder.
  • a zirconia sintered body of this example was obtained in the same manner as in Example 20 except that the mixed powder was used and that the HIP treatment temperature was 1750 ° C. Table 3 shows the evaluation results of the zirconia sintered body of this example.
  • Example 24 BET specific surface area of 7m 2 / g 3mol% yttria-containing zirconia powder as zirconia powder of the raw material (trade name: TZ-3YS, manufactured by Tosoh Corporation) and, 2 mol% yttria-containing zirconia powder having a BET specific surface area of 16m 2 / g (product Name: TZ-2Y, manufactured by Tosoh Corporation) to obtain 2.45 mol% yttria-containing zirconia powder.
  • the sintered body of the present example was prepared in the same manner as in Example 1 except that La 2 O 3 powder was added so that the weight ratio of La 2 O 3 powder to the powder was 10.5% by weight. Was made.
  • the average crystal particle size of the zirconia sintered body of this example was 36.9 ⁇ m.
  • the evaluation results are shown in Table 4.
  • Example 25 Zirconia powder was mixed in the same manner as in Example 24 to obtain 2.5 mol% yttria-containing zirconia powder.
  • a sintered body of this example was produced in the same manner as in Example 1 except that the obtained zirconia powder was used and the weight ratio of the La 2 O 3 powder was 10% by weight.
  • the average crystal particle diameter of the zirconia sintered body of this example was 54.4 ⁇ m. The evaluation results are shown in Table 4.
  • Example 26 Zirconia powder was mixed in the same manner as in Example 24 to obtain 2.6 mol% yttria-containing zirconia powder.
  • a sintered body of this example was produced in the same manner as in Example 1 except that the obtained zirconia powder was used and the weight ratio of the La 2 O 3 powder was 11% by weight.
  • the average crystal particle size of the zirconia sintered body of this example was 42.6 ⁇ m. The evaluation results are shown in Table 4.
  • Example 27 Zirconia powder was mixed in the same manner as in Example 24 to obtain 2.8 mol% yttria-containing zirconia powder.
  • a sintered body of this example was produced in the same manner as in Example 1 except that the obtained zirconia powder was used and the weight ratio of the La 2 O 3 powder was 10% by weight.
  • the average crystal particle size of the zirconia sintered body of this example was 46.3 ⁇ m. The evaluation results are shown in Table 4.
  • Example 28 Zirconia powder was mixed in the same manner as in Example 24 to obtain 2.8 mol% yttria-containing zirconia powder.
  • a sintered body of this example was produced in the same manner as in Example 1 except that the obtained zirconia powder was used and the weight ratio of the La 2 O 3 powder was 9.2% by weight.
  • the average crystal particle diameter of the zirconia sintered body of this example was 45.2 ⁇ m. The evaluation results are shown in Table 4.
  • Example 29 As a raw material zirconia powder, a 3 mol% yttria-containing zirconia powder (trade name: TZ-3YS, manufactured by Tosoh Corporation) having a BET specific surface area of 7 m 2 / g was used, and the weight ratio of La 2 O 3 powder was 10% by weight. La 2 O 3 powder was added to the zirconia powder so that A mixed powder was obtained by adding 500 ppm by weight of CaO powder (Wako Pure Chemicals, 99.9%) to the total weight of the zirconia powder and La 2 O 3 powder. A zirconia sintered body of this example was obtained in the same manner as in Example 20 except that the mixed powder was used and that the HIP treatment temperature was 1750 ° C.
  • TZ-3YS manufactured by Tosoh Corporation
  • the obtained sintered body was a colorless and translucent sintered body.
  • the composition of the sintered zirconia of this example was 92.88 mol% ZrO 2 , 2.88 mol% Y 2 O 3 , 0.12 mol% CaO and 4.13 mol% La 2 O 3 .
  • the average crystal particle diameter of the zirconia sintered body of this example was 21.3 ⁇ m. Table 5 shows the evaluation results of the zirconia sintered body of this example.
  • Example 30 A zirconia sintered body of this example was obtained in the same manner as in Example 29 except that MgO powder (trade name: 500A, manufactured by Ube Material Co., Ltd.) was used instead of CaO powder.
  • MgO powder trade name: 500A, manufactured by Ube Material Co., Ltd.
  • the obtained sintered body was a colorless and translucent sintered body.
  • Composition ZrO 2 is 92.83Mol% zirconia sintered body of the present embodiment, Y 2 O 3 is 2.88mol%, MgO is the 0.17 mol% and La 2 O 3 was 4.13mol%.
  • the average crystal particle diameter of the zirconia sintered body of this example was 24.7 ⁇ m.
  • the evaluation results are shown in Table 5.
  • Example 31 As a raw material zirconia powder, a 3 mol% yttria-containing zirconia powder (trade name: TZ-3YS, manufactured by Tosoh Corporation) having a BET specific surface area of 7 m 2 / g was used, and the weight ratio of La 2 O 3 powder was 10% by weight. La 2 O 3 powder was added to the zirconia powder so that A mixed powder is obtained by adding 1000 ppm by weight of ⁇ -alumina powder (trade name: TM-300D, manufactured by Daimei Chemical Industry) having a BET specific surface area of 200 m 2 / g with respect to the total weight of zirconia powder and La 2 O 3 powder. It was. A zirconia sintered body of this example was obtained in the same manner as in Example 1 except that the mixed powder was used. The obtained sintered body was a colorless and translucent sintered body.
  • ⁇ -alumina powder trade name: TM-300D, manufactured by Daimei Chemical Industry
  • the average crystal particle diameter of the zirconia sintered body of this example was 52.1 ⁇ m.
  • the three point bending strength was 856 MPa.
  • the evaluation results are shown in Table 5.
  • Example 32 This example was prepared in the same manner as in Example 31 except that ⁇ alumina powder (trade name: AKP-30, manufactured by Sumitomo Chemical Co., Ltd.) having a BET specific surface area of 6.7 m 2 / g was added as alumina powder. A zirconia sintered body was obtained. The obtained sintered body was a colorless and translucent sintered body. The average crystal particle diameter of the zirconia sintered body of this example was 78.5 ⁇ m. The three point bending strength was 842 MPa. The evaluation results are shown in Table 5.
  • ⁇ alumina powder trade name: AKP-30, manufactured by Sumitomo Chemical Co., Ltd.
  • Example 33 This example was prepared in the same manner as in Example 31 except that 500 wt ppm of ⁇ alumina powder (trade name: AKP-30, manufactured by Sumitomo Chemical Co., Ltd.) having a BET specific surface area of 6.7 m 2 / g was added as the alumina powder. A zirconia sintered body was obtained. The obtained sintered body was a colorless and translucent sintered body. The average crystal particle diameter of the zirconia sintered body of this example was 78.5 ⁇ m. The three point bending strength was 844 MPa. The evaluation results are shown in Table 5.
  • Example 34 As a raw material zirconia powder, a 3 mol% yttria-containing zirconia powder (trade name: TZ-3YS, manufactured by Tosoh Corporation) having a BET specific surface area of 7 m 2 / g was used, and the weight ratio of La 2 O 3 powder was 10% by weight. La 2 O 3 powder was added to the zirconia powder so that The raw material powder was molded by uniaxial pressing with a mold press to obtain a preform. The pressure of uniaxial pressurization was 50 MPa. The obtained preform was subjected to CIP treatment to obtain a cylindrical shaped body having a diameter of 20 mm and a thickness of about 3 mm. The pressure for CIP treatment was 200 MPa.
  • TZ-3YS manufactured by Tosoh Corporation
  • the zirconia sintered body of this example was obtained by subjecting the molded body to atmospheric pressure sintering in the atmosphere at a heating rate of 100 ° C./h, a sintering temperature of 1775 ° C., and a sintering time of 1 hour.
  • the average cooling rate from the sintering temperature to 1000 ° C. was 16.7 ° C./min.
  • the average crystal particle size of the zirconia sintered body of this example was 12.1 ⁇ m.
  • the evaluation results are shown in Table 6.
  • the sintered body of Example 34 had a biaxial bending strength of 1000 MPa or more and a total light transmittance of 50% or more. From this, it was confirmed that a sintered body having both translucency and strength was obtained by the one-step sintering method.
  • Example 35 La 2 O 3 powder (purity: 99.99%, manufactured by Wako Pure Chemical Industries, Ltd.) in place of LZO powder that was used, La 2 O 3 as the weight ratio of the powder is 10 wt%, the La 2 O 3 powder
  • a zirconia sintered body of this example was obtained in the same manner as in Example 1 except that it was added to the zirconia powder and the rate of temperature decrease after the HIP treatment was 80 ° C./min. The results are shown in Table 7.
  • FIG. 11 shows a Rietveld analysis result of the zirconia sintered body of this example
  • FIG. 12 shows a TEM observation diagram. From the XRD pattern of FIG. 11, it was confirmed that the zirconia sintered body of this example did not contain lanthanum oxide or the like.
  • FIG. 12A a cubic domain and a tetragonal domain of about 50 nm were confirmed. While the average crystal particle size was 55.8 ⁇ m, the domain was about 50 nm, which was confirmed to be smaller than the crystal particle size. From this, it was confirmed that the zirconia sintered body of this example had tetragonal domains and cubic domains in the crystal particles.
  • the crystallite diameter of cubic crystal 36 nm
  • the crystallite diameter of tetragonal crystal 32 nm. It was.
  • the tetragonal Y 2 O 3 concentration determined from the lattice constant was 1.27 mol%.
  • the three-point bending strength was 609 MPa
  • the fracture toughness K IC (SEPB) was 2.74 MPa ⁇ m 0.5
  • the thermal conductivity was 1.81 W / mK.
  • Example 36 A sintered body of this example was produced in the same manner as in Example 35 except that the temperature lowering rate from the HIP temperature to 1000 ° C. was 40 ° C./min. The three-point bending strength was 893 MPa, and the fracture toughness K IC (SEPB) was 2.74 MPa ⁇ m 0.5 .
  • Example 37 The sintered body of the present example was produced in the same manner as in Example 35 except that the rate of temperature decrease from the HIP temperature to 1000 ° C. was 30 ° C./min.
  • the three-point bending strength was 1016 MPa, and the fracture toughness K IC (SEPB) was 2.93 MPa ⁇ m 0.5 .
  • Example 38 The sintered body of the present example was produced in the same manner as in Example 35 except that the rate of temperature decrease from the HIP temperature to 1000 ° C. was 20 ° C./min.
  • the TEM observation figure of a present Example is shown in FIG. As a result of XRD measurement, it was found that the zirconia sintered body of this example did not contain lanthanum oxide or the like.
  • FIG. 13A a cubic domain and a tetragonal domain of about 50 nm were confirmed. While the average crystal particle size was 77.9 ⁇ m, it was confirmed that the domain was about 50 nm, which was smaller than the crystal particle size. From this, it was confirmed that the zirconia sintered body of this example had tetragonal domains and cubic domains in the crystal particles.
  • the tetragonal Y 2 O 3 concentration determined from the lattice constant was 1.46 mol%.
  • the three-point bending strength was 895 MPa, and the fracture toughness K IC (SEPB) was 3.32 MPa ⁇ m 0.5 .
  • Comparative Example 1 A 3 mol% yttria-containing zirconia powder (trade name: 3YS, manufactured by Tosoh Corporation) having a BET specific surface area of 7 m 2 / g was used as a raw material powder of this comparative example.
  • the raw material powder was molded by uniaxial pressing with a mold press to obtain a preform.
  • a cylindrical molded body having a diameter of 20 mm and a thickness of about 3 mm was obtained.
  • the pressure of CIP was 200 MPa.
  • the primary sintered body was obtained by primarily sintering the molded body in the atmosphere at a temperature rising rate of 100 ° C./hr, a sintering temperature of 1450 ° C., and a sintering time of 2 hours.
  • the obtained primary sintered body was placed in an alumina container with a lid and subjected to HIP treatment.
  • the HIP treatment conditions were a 99.9% argon gas atmosphere as a pressure medium, a heating rate of 600 ° C./hr, a HIP temperature of 1750 ° C., a HIP pressure of 150 MPa, and a holding time of 1 hour.
  • the temperature lowering rate from the HIP temperature to 1000 ° C. was set to 83 ° C./min and cooled.
  • the zirconia sintered body of this comparative example was obtained by heat-treating the obtained HIP-treated body at 1000 ° C. for 1 hour in the atmosphere.
  • the average crystal particle diameter of the obtained zirconia sintered body was 1.80 ⁇ m.
  • Table 8 shows the evaluation results of the obtained zirconia sintered body.
  • the biaxial bending strength of the zirconia sintered body of this comparative example showed a high strength exceeding 1 GPa, but the total light transmittance was 39.00%, and the translucency was extremely low.
  • Comparative Example 2 The zirconia of this comparative example was the same as the comparative example 1 except that 8 mol% yttria-containing zirconia powder (trade name: 8YS, manufactured by Tosoh) having a BET specific surface area of 7 m 2 / g was used as the raw material powder of this comparative example. A sintered body was obtained.
  • 8YS mol% yttria-containing zirconia powder having a BET specific surface area of 7 m 2 / g
  • the average crystal particle diameter of the obtained zirconia sintered body was 52.9 ⁇ m.
  • Table 8 shows the evaluation results of the obtained zirconia sintered body.
  • the total light transmittance of the zirconia sintered body of this comparative example is 62.00%, and has high translucency.
  • the biaxial bending strength was 253 MPa, and it was confirmed that the sintered body was very low in strength.
  • Comparative Example 3 Using a 3 mol% yttria-containing zirconia powder (trade name: TZ-3YS, manufactured by Tosoh Corporation) having a BET specific surface area of 7 m 2 / g, so that the weight ratio of the LZO powder to the yttria-containing zirconia powder is 20 wt%. A sintered body was produced under the same conditions as in Comparative Example 1 except that the LZO powder was added to the zirconia powder and the temperature lowering rate in the HIP treatment was 1 ° C./min.
  • TZ-3YS manufactured by Tosoh Corporation
  • the evaluation results of the zirconia sintered body of this comparative example are shown in Table 8, and the XRD pattern is shown in FIG. From FIG. 9, it was confirmed that the sintered body of this comparative example was a zirconia sintered body containing monoclinic crystals. Furthermore, the total light transmittance was 44% or less, and the translucency was extremely low.
  • Comparative Example 4 Use of zirconia powder (trade name: 0Y, manufactured by Tosoh Corporation) having a BET specific surface area of 14 m 2 / g, weight ratio of La 2 O 3 powder (purity 99.99%, manufactured by Wako Pure Chemical Industries) to yttria-containing zirconia powder
  • a zirconia sintered body of this comparative example was produced under the same conditions as in comparative example 1 except that La 2 O 3 powder was added to the zirconia powder so that the amount of the zirconia powder was 10 wt%.
  • the zirconia powder does not contain a stabilizer.
  • the evaluation results of the zirconia sintered body of this comparative example are shown in Table 8, and the XRD pattern is shown in FIG.
  • the obtained zirconia sintered body was a sintered body having no translucency. Further, from the XRD pattern, it was confirmed that the zirconia sintered body of this comparative example was a mixed phase of monoclinic crystal and La 2 Zr 2 O 7 . Furthermore, the zirconia sintered body of this comparative example did not have a main peak, and the average crystallite diameter could not be obtained.
  • Comparative Example 5 10% by weight of ytterbium oxide powder was used instead of 20% by weight of LZO powder, and 3 mol% yttria-containing zirconia powder (trade name: TZ-3YS, manufactured by Tosoh Corporation) having a BET specific surface area of 7 m 2 / g was used. Except for this, the zirconia sintered body of this comparative example was obtained in the same manner as in Example 1. The results are shown in Table 8. As a result of XRD measurement, it was confirmed that the zirconia sintered body of this comparative example had a peak of only zirconia cubic crystals. Accordingly, it was confirmed that the zirconia sintered body in which ytterbium, which is a lanthanoid element, was solid-solved, had no crystal particles having a cubic domain and a tetragonal domain.
  • Example 39 (Production of compound) La 2 O 3 powder is mixed with 3 mol% yttria-containing zirconia powder having a BET specific surface area of 7 m 2 / g (trade name: 3YS, manufactured by Tosoh Corporation) so that the weight ratio of La 2 O 3 powder is 10% by weight. After that, wet mixing was performed in the same manner as in Example 1 to obtain a mixed powder. The mixed powder was mixed with an organic binder containing a wax, a plasticizer, and a thermoplastic resin to obtain a zirconia compound.
  • the obtained zirconia compound was molded by injection molding to obtain a plate-shaped molded body having a length of 70 mm ⁇ width of 30 mm ⁇ thickness of 2 mm.
  • the molded body was heated at 450 ° C. in the air to remove the organic binder, and then fired at 1450 ° C. for 2 hours in the air to obtain a primary sintered body.
  • the obtained primary sintered body was placed in a zirconia container with a lid, and this was subjected to HIP treatment to obtain a HIP-treated body, which was used as the zirconia sintered body of this example.
  • the HIP treatment conditions were a 99.9% argon gas atmosphere as a pressure medium, a heating rate of 600 ° C./h, a HIP temperature of 1750 ° C., a HIP pressure of 150 MPa, and a holding time of 1 hour.
  • the temperature was lowered from the sintering temperature to room temperature to obtain a HIP-treated body.
  • the rate of temperature decrease from the HIP temperature to 1000 ° C. was 83 ° C./min.
  • the obtained HIP-treated body was heat-treated at 1000 ° C. for 1 hour in the atmosphere to obtain a colorless and translucent sintered body.
  • the obtained sintered body is a zirconia sintered body in which lanthanum and yttria are dissolved, and the composition thereof is 92.99 mol% for ZrO 2 , 2.88 mol% for Y 2 O 3 , and 4 for La 2 O 3.
  • the average crystal grain size was 54.5 ⁇ m.
  • Table 9 The results are shown in Table 9.
  • Example 40 A sintered body was obtained in the same manner as in Example 39 except that the primary sintering temperature was 1475 ° C.
  • the composition of the obtained sintered body was 92.99 mol% for ZrO 2 , 2.88 mol% for Y 2 O 3 , and 4.13 mol% for La 2 O 3 .
  • the results are shown in Table 9.
  • Example 41 A sintered body was obtained in the same manner as in Example 39, except that the primary sintering temperature was 1475 ° C. and the rate of temperature decrease from the HIP temperature to 1000 ° C. was 20 ° C./min.
  • the composition of the obtained sintered body was as follows: ZrO 2 was 92.99 mol%, Y 2 O 3 was 2.88 mol%, and La 2 O 3 was 4.13 mol%, and the average crystal grain size was 35.5 ⁇ m. there were. The results are shown in Table 9.
  • Example 42 An orthodontic bracket (length 3) formed of a lanthanum solid solution zirconia sintered body by molding, degreasing, firing, and HIP treatment in the same manner as in Example 39, except that the shape of the molded body is an orthodontic bracket shape. 6 mm ⁇ width 3.3 mm ⁇ height 2.5 mm).
  • Example 43 An orthodontic bracket made of a lanthanum solid solution zirconia sintered body was produced in the same manner as in Example 42 except that the temperature lowering rate from the HIP temperature to 1000 ° C. was 30 ° C./min.
  • Example 44 An orthodontic bracket made of a lanthanum solid solution zirconia sintered body was produced in the same manner as in Example 42 except that the temperature lowering rate from the HIP temperature to 1000 ° C. was 20 ° C./min.
  • Example 45 Teeth made of a lanthanum solid solution zirconia sintered body in the same manner as in Example 42 except that the primary sintering temperature was 1475 ° C. and the rate of temperature decrease from the HIP temperature to 1000 ° C. was 20 ° C./min. An orthodontic bracket was made.
  • Example 46 The same method as in Example 42, except that the primary sintering temperature was 1475 ° C, the primary sintered body was placed in an unused alumina container in the HIP treatment, and no heat treatment was performed after the HIP treatment. An orthodontic bracket made of a lanthanum solid solution zirconia sintered body was prepared. The obtained orthodontic bracket was translucent.
  • Measurement example 1 The torque strength of the orthodontic brackets obtained in Examples 42 to 46 was measured.
  • the orthodontic bracket was fixed to the pedestal as a sample, and a stainless steel wire (0.019 ⁇ 0.025 inch) was fixed to the sample slot.
  • the surface of the slot portion of the sample was in a state after the HIP treatment.
  • the pedestal was rotated to measure the torque strength when the bracket was broken, and this was measured as the torque strength of the sample.
  • the measurement was performed three times for each sample, and the average value was taken as the torque strength of the sample.
  • Table 10 shows the torque intensity of the measurement results.
  • Table 10 also shows the torque strength of orthodontic brackets (4.4 mm long ⁇ 3.7 mm wide ⁇ 3.0 mm high) made of translucent alumina used as orthodontic brackets. .
  • the torque strength of the zirconia sintered body of the present invention is equivalent to that of a commercially available orthodontic bracket made of translucent alumina.
  • the orthodontic bracket of the embodiment is smaller than the bracket made of translucent alumina, it has the same torque strength. That is, the zirconia sintered body of the present invention can be used as an orthodontic bracket having a smaller orthodontic bracket, less conspicuous than a conventional translucent orthodontic bracket, and having excellent aesthetics. It could be confirmed.
  • Measurement example 2 Torque strength test
  • Torque strength was measured in the same manner as in Measurement Example 1 except that the surface of the slot portion of the orthodontic bracket obtained in Examples 42 and 45 was mirror-polished. The results are shown in Table 11.
  • Measurement example 3 plasma etching test
  • DEM-451 reactive plasma etching apparatus
  • the plasma resistance characteristics of the samples were evaluated. That is, for each sample, the sample was irradiated with plasma under the following conditions, and the etching depth and the etching rate were measured.
  • Plasma output 300W Irradiation time: 4 hours
  • Reaction gas CF 4 25.2 sccm O 2 6.3 sccm
  • Ar 126sccm As a measurement sample, the zirconia sintered body of Example 1 and Example 13 was used. In addition, quartz glass used as a current semiconductor manufacturing facility was used as a comparative sample. Prior to measurement, the surface of each sample was mirror-polished until the surface roughness was 0.02 ⁇ m or less.
  • Ra is the degree of unevenness with respect to the average height of the etched surface after etching, and the larger the value, the more uneven the etched surface.
  • Ry indicates the difference between the most etched portion and the least etched portion on the etched surface after etching, and indicates that deeper etching occurs locally as Ry increases.
  • Rz represents the average depth of the unevenness on the etched surface. Therefore, the larger Rz, the deeper the unevenness of the entire etched surface.
  • the sintered body of the present invention has higher plasma resistance than quartz glass.
  • the zirconia sintered body of the present invention has both high translucency and high strength. Therefore, it can be used for dental members such as dental prosthetic materials and orthodontic members that require aesthetics. Furthermore, since the zirconia sintered body of the present invention has a high design property, it can be used as a decorative member for watches, jewelry, and the like, and further, can be used as a plasma-resistant member for members for semiconductor manufacturing equipment. .
  • Peak corresponding to monoclinic zirconia * XRD peak corresponding to La 2 Zr 2 O 7

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Dental Prosthetics (AREA)

Abstract

 高い透光性及び高い強度を兼備したジルコニア焼結体を提供する。立方晶ドメイン及び正方晶ドメインを含む結晶粒子を含み、安定化剤及びランタンを固溶することを特徴とするジルコニア焼結体。このような焼結体はジルコニア原料、安定化剤原料及びランタン原料を混合して混合粉末を得る混合工程、得られた混合粉末を成形して成形体を得る成形工程、得られた成形体を1650℃以上の焼結温度で焼結して焼結体を得る焼結工程、及び、焼結温度から1000℃までを1℃/min超の降温速度で降温する降温工程、を含むことを特徴とする製造方法により得ることができる。

Description

透光性ジルコニア焼結体及びその製造方法並びにその用途
 本発明は、高い透光性及び強度を有するジルコニア焼結体及びその製造方法に関する。
 ジルコニアを主成分とする焼結体であって透光性を有するもの(以下、「透光性ジルコニア焼結体」ともいう。)は、ガラスやアルミナよりも機械的特性に優れる。そのため、透光性ジルコニア焼結体は、光学特性のみならず機械的特性をも必要とする用途を目的とした素材として検討されている。
 例えば、特許文献1には歯科用材料や外装部材等に適した素材としての透光性ジルコニア焼結体が開示されている。当該透光性ジルコニア焼結体は、3mol%のイットリアを含有するジルコニア焼結体であった。
 特許文献2には、歯科用材料、特に歯列矯正ブラケットに適した素材としての透光性ジルコニア焼結体が開示されている。当該透光性ジルコニア焼結体は、8mol%のイットリアを含有するジルコニア焼結体であった。
 特許文献3には、歯科用材料、特に義歯及び義歯を得るためのミルブランクに適した素材としてのジルコニア焼結体が開示されている。当該ジルコニア焼結体は、イットリア及びチタニアを含有するジルコニア焼結体であった。
日本国特許公開2008-050247号公報 日本国特許公開2009-269812号公報 日本国特許公開2008-222450号公報
 従来のジルコニア焼結体は、ジルコニア中の安定化剤の含有量が高くなることにより、透光性が高くなるとともに強度が低下するものであった。他方、安定化剤の含有量が低くなることにより、従来のジルコニア焼結体は、透光性が低くなるとともに強度が高くなるものであった。このように、従来のジルコニア焼結体は、透光性又は強度のいずれかが高いものしかなかった。
 本発明は、これらの課題を解決し、高い透光性及び高い強度を兼備したジルコニア焼結体を提供することを目的とする。
 本研究者等は、透光性を有するジルコニア焼結体について検討した。その結果、結晶粒子内の組織構造を制御することで、強度及び透光性を兼備した焼結体となることを見出した。さらに、このような結晶粒子内の組織構造は、ランタンをジルコニアに固溶させることで制御できることを見出した。
 すなわち、本発明は以下の[1]乃至[10]を要旨とする。
[1] 立方晶ドメイン及び正方晶ドメインを有する結晶粒子を含み、安定化剤及びランタンを固溶することを特徴とするジルコニア焼結体。
[2] CuKαを線源とする粉末X線回折パターンにおける2θ=30±2°の半値幅から算出される平均結晶子径が255nm以下である上記[1]に記載のジルコニア焼結体。
[3] CuKαを線源とする粉末X線回折パターンにおける2θ=30±2°の半値幅から算出される平均結晶子径が100nm以下である上記[1]又は[2]に記載のジルコニア焼結体。
[4] ランタン含有量が1mol%以上、10mol%以下である上記[1]乃至[3]のいずれかに記載のジルコニア焼結体。
[5] 安定化剤が、イットリア、スカンジア、カルシア、マグネシア、及びセリアからなる群の少なくとも1種である上記[1]乃至[4]のいずれかに記載のジルコニア焼結体。
[6] 曲げ強度が500MPa以上である上記[1]乃至[5]のいずれかに記載のジルコニア焼結体。
[7] 試料厚さ1mmとし、D65光線を線源とする全光線透過率が45%以上である上記[1]乃至[6]のいずれかに記載のジルコニア焼結体。
[8] ジルコニア原料、安定化剤原料及びランタン原料を混合して混合粉末を得る混合工程、得られた混合粉末を成形して成形体を得る成形工程、得られた成形体を1650℃以上の焼結温度で焼結して焼結体を得る焼結工程、及び、焼結温度から1000℃までを1℃/min超の降温速度で降温する降温工程、を含むことを特徴とする上記[1]乃至[7]のいずれかに記載のジルコニア焼結体の製造方法。
[9] 前記焼結工程が、1000℃以上1650℃未満で焼成して一次焼結体を得る一次焼結、及び、該一次焼結体を1650℃以上で焼結する二次焼結を含む上記[8]に記載の製造方法。
[10] 上記[1]乃至[7]のいずれかに記載のジルコニア焼結体を含む歯科用部材。
 以下、本発明のジルコニア焼結体について説明する。
 本発明のジルコニア焼結体は焼結体中に単にランタン(La)を含むではなく、ジルコニアにランタンが固溶した、ランタン固溶ジルコニア焼結体である。ランタンが固溶することで、焼結体の結晶粒子の組織構造が微細になる。
 本発明のジルコニア焼結体(以下、「本発明の焼結体」ともいう。)において、ランタンがジルコニアに固溶していることは粉末X線回折(以下、「XRD」とする。)パターンから確認することができる。本発明の焼結体はCuKα線(λ=0.15418nm)を線源とするXRD測定において、2θ=30±2°のピーク(以下、「メインピーク」ともいう。)を有する。メインピークは正方晶ジルコニアのXRDピーク(2θ=30.0±2°)及び立方晶ジルコニアのXRDピーク(2θ=29.6±2°)が重複したピークであり、なおかつ、本発明の焼結体のXRDパターンにおける回折強度が最も強いXRDピークである。メインピークから求められる格子定数(Lattice Parameter)が、ランタンを固溶しないジルコニア焼結体よりも大きいことから、本発明の焼結体においてランタンがジルコニアに固溶していることが確認できる。例えば、本発明の焼結体がランタン及び3mol%のイットリアを含有する場合、その格子定数は、同量のイットリアのみを含有するジルコニア焼結体の格子定数よりも大きくなる。格子定数が大きいことは、XRDパターンにおいてメインピークが低角側へシフトすることから確認できる。
 さらに、本発明の焼結体は、ランタンとジルコニウムとからなる複合酸化物又はランタン酸化物(以下、「ランタン酸化物等」ともいう。)を実質的に含有しないことが好ましい。ランタン酸化物等を含まないことで、本発明の焼結体が、より透光性の高い焼結体となる。ランタン酸化物等を含まないことは、本発明の焼結体のXRDパターンにおいて、ジルコニアのXRDピーク以外に相当するXRDピークを有さないことから確認することができる。ランタン酸化物等としてはLaZr、及びLaを例示することができる。
 本発明の焼結体のランタン含有量は1mol%以上であることが好ましい。ランタンを2mol%以上含有することで、結晶粒子中のドメインが微細になりやすい。なお、ランタン含有量(mol%)は、焼結体中のジルコニア、安定化剤及び酸化物換算したランタン(La)の合計に対する、酸化物換算したランタンのモル割合である。ジルコニアに全てのランタンを固溶させるため、本発明の焼結体のランタンの含有量は10mol%以下であることが好ましい。ランタンの含有量を10mol%以下とすることで、ランタン酸化物等の析出がより抑制され、なおかつ、本発明の焼結体の強度が高くなりやすい。好ましいランタン含有量として、1mol%以上、10mol%以下、更には1mol%以上、7mol%以下、また更には2mol%以上、10mol%以下、また更には2mol%以上、7mol%以下、また更には2mol%以上、6.5mol%以下、また更には3mol%以上、6.5mol%以下を挙げることができる。
 ランタンはランタノイド元素であるが、本発明の焼結体はランタン以外のランタノイド元素を含まないことが好ましい。ランタン以外のランタノイド元素として、例えば、ユーロピウム(Eu)、ガドリウム(Gd)、テルビウム(Tb)、ジスプロジム(Dy)、ホロニウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)又はルテチウム(Lu)を挙げることができる。ランタン以外のランタノイド元素を含むと、立方晶ドメイン及び正方晶ドメインを含む結晶粒子が得られにくくなる。したがって、不可避不純物として含まれる量を超える、ランタン以外のランタノイド元素を含まないことが好ましい。本発明の焼結体のランタン以外のランタノイド元素を含まないことが好ましいが、組成分析の測定誤差を考慮すると本発明の焼結体におけるランタン以外のランタノイド元素の含有量は0.6mol%以下であることが例示できる。
 本発明の焼結体は、安定化剤を含む。安定化剤はジルコニア中に固溶する。ランタン及び安定化剤がジルコニアに固溶することで、室温等の低温環境下においても、本発明の焼結体の結晶粒子(Crystal Grain)が立方晶ドメイン及び正方晶ドメインを含んだ状態となる。安定化剤は、イットリア(Y)、スカンジア(Sc)、カルシア(CaO)、マグネシア(MgO)、及びセリア(CeO)からなる群の少なくとも1種であることが好ましい。工業的に利用しやすいため、安定化剤はカルシア、マグネシア及びイットリアからなる群の少なくともいずれか、更にはイットリアであることが好ましい。
 本発明の焼結体が含む安定化剤は、2mol%以上、7mol%以下、更には2mol%以上、5mol%以下、また更には2.1mol%以上、4.9mol%以下、また更には2mol%以上、4mol%以下であることが挙げられる。なお、安定化剤含有量(mol%)は、焼結体中のジルコニア、安定化剤及び酸化物換算したランタン(La)の合計に対する、安定化剤のモル割合である。
 本発明の焼結体はジルコニア焼結体であり、ジルコニアを主成分とする焼結体である。そのため、本発明の焼結体に含まれる安定化剤及びランタンの合計含有量が50mol%未満であればよい。本発明の焼結体のジルコニア含有量は50mol%超であればよく、更には60mol%以上、また更には80mol%以上、また更には83mol%超、また更には90mol%以上であることが好ましい。
 本発明の焼結体はアルミナ(Al)を含んでいてもよい。アルミナを含有することで、特に強度が高い焼結体における透光性が高くなりやすい。本発明の焼結体がアルミナを含む場合、アルミナ含有量は100重量ppm以上2000重量ppm以下、更には200重量ppm以上1000重量ppm以下であることが好ましい。アルミナの含有量(重量ppm)は、焼結体中のジルコニア、安定化剤及び酸化物換算したランタン(La)の合計重量に対する、酸化物換算したアルミニウム(Al)の重量割合である。
 本発明の焼結体は上記の組成を有するが、不可避不純物は含んでいてもよい。不可避不純物としては、ハフニウム(Hf)及びランタン以外の希土類元素(Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm、Yb,Lu)が挙げられる。
 本発明の焼結体の好ましい組成として以下のモル組成を挙げることができる。
    ジルコニア(ZrO) :90mol%以上、95mol%以下
    安定化剤        :2mol%以上、5mol%以下
    ランタン(La) :2mol%以上、6.5mol%以下
 本発明の焼結体の特に好ましい組成として以下のモル組成を挙げることができる。
    ジルコニア(ZrO) :92mol%以上、94mol%以下
    安定化剤        :2mol%以上、4mol%以下
    ランタン(La) :3mol%以上、5mol%以下
 上記組成における安定化剤はイットリアであることが好ましい。
 本発明の焼結体は、結晶粒子中に立方晶ドメイン及び正方晶ドメインを有する。結晶粒子中に立方晶ドメインと正方晶ドメインとが含まれることで、透光性が高いだけでなく、強度が高くなる。本発明において、ドメインとは、結晶粒子中の結晶子(Crystallite)又は結晶子の集合体の少なくともいずれかであって、同一の結晶構造が連続した部分である。また、立方晶ドメインとは結晶構造が立方晶蛍石型構造であるドメイン、及び、正方晶ドメインとは結晶構造が正方晶蛍石型構造であるドメインである。本発明の焼結体が、その結晶粒子中に立方晶ドメイン及び正方晶ドメインを有することは、XRDパターンのリートベルト解析により確認することができる。すなわち、XRDパターンのリートベルト解析により、本発明の焼結体が立方晶と正方晶とを含むことが確認できる。なおかつ、リートベルト解析により算出される立方晶と正方晶のそれぞれの結晶子径が、結晶粒子径よりも小さいことから、結晶粒子中に立方晶ドメインと正方晶ドメインを含むことを確認することができる。本発明の焼結体は、立方晶ドメイン及び正方晶ドメインを有する結晶粒子を含むが、立方晶ドメイン及び正方晶ドメインを有する結晶粒子からなることが好ましい。
 本発明の焼結体は上記のドメインを含むため、その結晶構造は立方晶蛍石型構造及び正方晶蛍石型構造を含む。さらに、本発明の焼結体は、単斜晶を実質的に含まないことが好ましい。ここで、単斜晶を実質的に含まないとは、XRDパターンにおいて単斜晶のXRDピークが確認されないことが挙げられる。
 立方晶ドメイン及び正方晶ドメインのランタン濃度は同じであってもよいが、本発明の焼結体において、結晶粒子中の立方晶ドメイン及び正方晶ドメインのそれぞれのランタン濃度が異なっていてもよく、さらには立方晶ドメインのランタン濃度が正方晶ドメインのランタン濃度よりも高くなっていてもよい。本発明において各ドメイン中のランタン濃度は透過型電子顕微鏡(以下、「TEM」とする。)観察における組成分析により観察することができる。
 本発明の焼結体は、メインピークの半値幅(以下、「FWHM」とする。)から算出される平均結晶子径(Average Crystallite Size;以下、単に「平均結晶子径」ともいう。)が255nm以下であることが好ましい。平均結晶子径が250nm以下、更には200nm以下、また更には150nm以下、また更には130nm以下であることで透光性が高くなりやすい。さらに、平均結晶子径が100nm以下、更には60nm以下、また更には50nm以下、また更には30nm以下であることで、光散乱がより抑制される。これにより本発明の焼結体の透光性がより高くなる。
 平均結晶子径は小さいことが好ましいが、本発明の焼結体においては、通常2nm以上、更には5nm以上、また更には10nm以上、また更には15nm以上であることが挙げられる。
 本発明の焼結体の平均結晶子径が255nm以下であることは、本発明の焼結体のXRDパターンにおいてFWHMが0.1536°以上であることをもって、確認することができる。そのため、本発明の焼結体はFWHMが0.1536°以上あることが好ましい。FWHMが大きくなるほど、平均結晶子径が小さくなる。例えば、FWHMは、平均結晶子径が250nm以下の場合は0.154°以上、200nm以下の場合は0.1635°以上、150nm以下の場合は0.178°以上、130nm以下の場合は0.187°以上、及び、100nm以下の場合は0.25℃以上となる。FWHMは0.3°以上、更には0.4°以上であることが好ましい。一方、結晶性が高くなるほどXRDピークのFWHMは小さくなるが、通常のXRD測定において測定できるFWHMは40°程度までである。本発明の焼結体のメインピークのFWHMとして1°以下、更には0.7°以下であることが挙げられる。
 なお、本発明の結晶粒子中に含まれる、立方晶及び正方晶それぞれの結晶子径は、本発明の焼結体のXRDパターンのリートベルト解析により求めることができる。すなわち、リートベルト法により、本発明の焼結体のXRDパターンを、立方晶に起因するXRDピーク及び正方晶に起因するXRDピークに分離する。分離後の各結晶構造のXRDピークの半値幅を求め、得られた半値幅から以下のシェラー式によって結晶子径を求めればよい。
        D=K×λ/((β-B)×cosθ)
 上記式において、Dは各結晶の結晶子径(nm)、Kはシェラー定数(1.0)、λはCuKαの波長(0.15418nm)、βは半値幅(°)、Bは装置定数(0.1177°)、及び、θはXRDピークの回折角(°)である。半値幅を求める際のXRDピークは、正方晶が2θ=30.0±2°のXRDピーク、及び、立方晶が2θ=29.6±2°のXRDピークである。
 本発明の焼結体の平均結晶粒子径(Average Cryatal Grain Size)は20μm以上、100μm以下、更には30μm以上、90μm以下であることが挙げられる。平均結晶粒子径がこの範囲であることで透光性が高い焼結体となる。本発明において、平均結晶粒子径はプラニメトリック法により測定することができる。
 本発明の焼結体は密度が高いことが好ましい。安定化剤及びランタンの量により、密度は異なる。本発明の焼結体の密度は6.0g/cm以上6.2g/cm以下、更には6.0g/cm以上6.12g/cm以下を例示することができる。
 本発明の焼結体は高い透光性(Translucency)を有する。そのため、本発明の焼結体は、試料厚さ1mmとし、D65光線を線源とする全光線透過率(以下、単に「全光線透過率」ともいう。)が45%以上である。透光性は高いほど好ましく、全光線透過率は50%以上、また更には55%以上であることが好ましい。平均結晶子径が大きくなるほど全光透過率が高くなる傾向にある。例えば、ランタン含有量が2.5mol%以上の場合、平均結晶子径が25nm以上であることで全光線透過率が65%以上となる。
 本発明の焼結体の透光性は上記の全光線透過率を満たせばよいが、試料厚さ1mmとし、D65光線を線源とする直線透過率(以下、単に「直線透過率」ともいう。)が1%以上、更には3%以上、また更には10%以上、また更には20%以上、また更には30%以上であることにより、より透明性(Transparency)が高い焼結体となるため好ましい。本発明の焼結体の直線透過率の上限は70%以下、更には66%以下であることが例示できる。一方、本発明の焼結体の試料厚さ1mmとし、D65光線を線源とする拡散透過率(以下、単に「拡散透過率」ともいう。)は10%以上、更には15%以上、また更には20%以上であることが好ましい。より好ましい拡散透過率として30%以上、65%以下を例示することができる。
 本発明の焼結体は高い強度を有する。本発明の焼結体の曲げ強度として500MPa以上、更には600MPa以上であることが挙げられる。適用できる用途が広がるため、本発明の焼結体の強度は800MPa以上、更には1000MPa以上であることが好ましい。本発明における強度は、ISO/DIS6872に準じて測定される二軸曲げ強度として500MPa以上、1600MPa以下、更には600MPa以上、1500MPa以下であることが挙げられる。また、本発明における強度は、JIS R1601に準じて測定される三点曲げ強度として500MPa以上、1500MPa以下、更には600MPa以上、1200MPa以下であることが挙げられる。
 本発明の焼結体は、8mol%イットリア含有ジルコニア焼結体などの立方晶ジルコニアからなる透光性ジルコニア焼結体と同等以上の破壊靱性を有することが好ましい。これにより、本発明の焼結体が、従来の透光性ジルコニア焼結体が使用されている部材として使用することができる。本発明の焼結体の破壊靱性として1.7MP・m0.5以上、更には1.8MPa・m0.5以上、また更には2MPa・m0.5以上、また更には2.2MPa・m0.5以上であることが挙げられる。
 本発明において、破壊靱性はJIS R1607に準じたIF法又はSEPB法のいずれかにより測定することができる。
 次に、本発明のジルコニア焼結体の製造方法について説明する。
 本発明のジルコニア焼結体は、ジルコニア原料、安定化剤原料及びランタン原料を混合して混合粉末を得る混合工程、得られた混合粉末を成形して成形体を得る成形工程、得られた成形体を1650℃以上の焼結温度で焼結して焼結体を得る焼結工程、及び、焼結温度から1000℃までを1℃/min超の降温速度で降温する降温工程、を含むことを特徴とする製造方法、により製造することができる。
 混合工程では、ジルコニア原料、安定化剤原料及びランタン原料を混合して混合粉末を得る。ジルコニア原料、安定化剤原料及びランタン原料が均一に混合されれば、混合方法は湿式混合又は乾式混合のいずれであってもよい。より均一な混合粉末が得られるため、混合方法は湿式混合であることが好ましく、湿式ボールミル又は湿式攪拌ミルの少なくともいずれかによる湿式混合であることがより好ましい。
 ジルコニア原料は、ジルコニア又はその前駆体であり、BET比表面積が4~20m/gであるジルコニア粉末を挙げることができる。
 安定化剤原料は、イットリア、スカンジア、カルシア、マグネシア、及びセリアからなる群の少なくとも1種(安定化剤)の粉末又はその前駆体、更にはイットリアの粉末又はその前駆体を挙げることができる。
 さらに、ジルコニア原料は安定化剤を含むジルコニア粉末であることが好ましい。このようなジルコニア粉末は、ジルコニア原料及び安定化剤原料となる。ジルコニア粉末が含有する安定化剤は、イットリア、スカンジア、カルシア、マグネシア、及びセリアからなる群の少なくとも1種であることが好ましく、イットリアであることがより好ましい。安定化剤含有ジルコニア粉末として、2mol%~7mol%の安定化剤を含有するジルコニア粉末、更にはBET比表面積が4~20m/gであり2mol%~7mol%の安定化剤を含有するジルコニア粉末であることが好ましい。安定化剤含有ジルコニア粉末が含有する安定化剤量は2mol%~5mol%、更には2mol%~4mol%であることが好ましい。
 ランタン原料は、ランタンを含む化合物を挙げることができ、酸化ランタン、水酸化ランタン、硝酸ランタン、硫酸ランタン、塩化ランタン、炭酸ランタン、及びパイロクロア型LaZrからなる群の少なくとも1種を挙げることができ、好ましくは酸化ランタン又はLaZrの少なくともいずれかである。
 混合粉末は、アルミナ原料を含んでいてもよい。アルミナ原料はアルミニウムを含む化合物を挙げることができ、アルミナ、水酸化アルミニウム、炭酸アルミニウム及びスピネルからなる群の少なくとも1種、更にはアルミナを挙げることができる。好ましいアルミナとしてα型アルミナ又はγ型アルミナの少なくともいずれか、更にはα型アルミナが挙げられる。
 混合粉末の組成は所望の割合であればよいが、酸化物換算でジルコニアが83mol%超97mol%以下、安定化剤が2mol%以上7mol%以下、ランタンが1mol%以上10mol%以下であることが挙げられる。
 好ましい混合粉末の組成として以下のモル組成を挙げることができる。
    ジルコニア(ZrO) :90mol%以上、95mol%以下
    安定化剤        :2mol%以上、5mol%以下
    ランタン(La) :2mol%以上、6.5mol%以下
 特に好ましい混合粉末の組成として以下のモル組成を挙げることができる。
    ジルコニア(ZrO) :92mol%以上、94mol%以下
    安定化剤        :2mol%以上、4mol%以下
    ランタン(La) :3mol%以上、5mol%以下
 上記組成における安定化剤はイットリアであることが好ましい。
 成形工程では、混合粉末を成形して成形体を得る。所望の形状の成形体が得られれば成形方法は任意である。成形方法として、プレス成形、射出成形、シート成形、押出成形、及び鋳込み成形からなる群の少なくとも1種を挙げることができ、プレス成形又は射出成型の少なくともいずれかであることが好ましい。
 また、得られる成形体の形状は任意であるが、例えば、円板状、円柱状、及び多面体状などの形状や、歯列矯正ブラケットや半導体製造治具、その他の複雑形状を例示することができる。
 焼結工程においては、成形体を焼結することにより、結晶構造が立方晶等の高温型の結晶構造である焼結体を得る。そのため、焼結工程において、得られた成形体を1650℃以上の焼結温度で焼結する。1650℃以上で焼結することで、焼結体の結晶構造が高温型の結晶構造になると考えられる。高温型の結晶構造を有する焼結体が降温工程を経ることにより、結晶粒子中の結晶構造が立方晶ドメインと正方晶ドメインとが生成し、本発明の焼結体の結晶構造を含む焼結体を得ることができる。焼結温度は1700℃以上であることが好ましく、更には1725℃以上、また更には1750℃以上であることが好ましい。汎用の焼成炉を使用する場合、焼結温度は2000℃以下、更には1900℃以下、また更には1800℃以下であることが挙げられる。
 上記の焼結温度で焼結すれば、焼結方法は任意である。焼結方法として、例えば、常圧焼結、加圧焼結及び真空焼結からなる群の少なくともいずれかを挙げることができ、常圧焼結及び加圧焼結であることが好ましい。
 本発明の製造方法における、好ましい焼結工程として、常圧焼結のみで行う焼結方法(以下、「一段焼結法」ともいう。)、又は、成形体を1000℃以上1650℃未満で焼成して一次焼結体を得る一次焼結及び該一次焼結体を1650℃以上で焼結する二次焼結を含む焼結工程(以下、「二段焼結法」ともいう。)を挙げることができる。
 一段焼結法は、焼結工程を常圧焼結(Pressureless Sintering)に供することで本発明の焼結体を得ればよい。常圧焼結とは、焼結時に成形体に対して外的な力を加えず単に加熱することにより焼結する方法である。常圧焼結においては成形工程で得られた成形体を常圧焼結し焼結体とすればよい。焼結温度は1600℃以上であればよく、1700℃以上1900℃以下であることが好ましい。焼結雰囲気は酸化雰囲気又は還元雰囲気の何れであってもよい。簡便であるため大気雰囲気であることが好ましい。
 二段焼結法は、成形体を一次焼結することにより一次焼結体とし、当該一次焼結体を二次焼結する。一次焼結は、成形体を1000℃以上1650℃未満で焼結することが好ましい。一次焼結の雰囲気は酸化雰囲気又は還元雰囲気の少なくともいずれかであることが好ましく、大気雰囲気であることが好ましい。好ましい一次焼結として、大気中1000℃以上1650未満、更には1400℃以上1520℃以下の常圧焼結を挙げることができる。これにより、得られる一次焼結体の組織が微細となる。これに加え、一次焼結体の結晶粒子内に気孔が生成しにくくなる。
 二次焼結は、一次焼結体を1650℃以上、更には1700℃以上、また更には1725℃以上、また更には1750℃以上で焼結する。高い強度を有する焼結体を得るため、二次焼結温度は2000℃以下、更には1900℃以下、また更には1800℃以下であることが好ましい。二次焼結温度を2000℃以下とすることで、粗大な結晶粒子が生成しにくくなる。
 より高密度な焼結体を得るために、二次焼成は熱間静水圧プレス(以下、「HIP」とする。)処理であることが好ましい。
 HIP処理の時間(以下、「HIP時間」とする。)は、少なくとも10分であることが好ましい。HIP時間が少なくとも10分であれば、HIP処理中に、焼結体の気孔が十分に除去される。
 HIP処理の圧力媒体(以下、単に「圧力媒体」ともいう。)は、アルゴンガス、窒素ガス、酸素などが例示できるが、一般的なアルゴンガスが簡便である。
 HIP処理の圧力(以下、「HIP圧力」ともいう。)は、5MPa以上、更には50MPa以上であることが好ましい。HIP圧力が5MPa以上であることで、焼結体中の気孔の除去がより促進される。圧力の上限に関しては特に指定はないが、通常のHIP装置を使用した場合、HIP圧力は200MPa以下である。
 HIP処理では、非還元性の材質からなる容器に成形体又は一次焼結体を配置することが好ましい。これにより、発熱体等のHIP装置の材質に由来する還元成分による焼結体の局所的な還元が抑制される。非還元性の材質としては、アルミナ、ジルコニア、ムライト、イットリア、スピネル、マグネシア、窒化ケイ素及び窒化ホウ素からなる群の少なくとも1種、更にはアルミナ又はジルコニアの少なくともいずれかが例示できる。
 降温工程では、焼結温度から1000℃までを1℃/min超の降温速度で降温する。降温速度を1℃/min超、更には5℃/min以上、また更には8℃/min以上とすることで、透光性の高い焼結体が得られる。降温速度が1℃/min以下の場合は、析出物や単斜晶が生成するため、得られる焼結体が透光性の低いものとなる。これにより得られる焼結体の透光性が著しく低いものとなる。より高い透光性を有するランタン固溶ジルコニア焼結体を得るため、焼成温度から1000℃への降温は、降温速度を10℃/min以上、更には15℃/min以上、また更に30℃/min以上、また更には50℃/min以上とすることが好ましい。
 本発明の製造方法では、降温工程後の焼結体を熱処理するアニール工程を有していてもよい。焼結体をアニール工程に供することで、焼結体の透光性をより高くすることができる。アニール工程は、酸化雰囲気中、900℃以上1200℃以下、更には980℃以上1030℃以下で焼結体を処理することが挙げられる。
 本発明により、高い透光性及び高い強度を兼備したジルコニア焼結体を提供することができる。本発明の焼結体は、従来の透光性セラミックスと比べ、透光性及び機械的強度が高い。そのため、歯列矯正ブラケットなどの審美性が要求される歯科用部材として使用した場合に、その大きさを小さくすることができる。これにより、より審美性が高い歯科用部材として使用することができる。
実施例1のジルコニア焼結体のXRDパターンのリートベルト解析結果 実施例1のジルコニア焼結体のTEM観察図(図中スケールは100nm)    ( A)明視野像、B)イットリウムの元素マッピング図、C)ジルコニニウムの元素マッピング図、D)ランタンの元素マッピング図) 実施例1のジルコニア焼結体のSEM観察図(図中スケールは50μm) 実施例1のジルコニア焼結体の外観 実施例1のジルコニア焼結体の変角光度スペクトル 実施例1のジルコニア焼結体のUV-VISスペクトル      ( a)全光線透過率、b)直線透過率) 実施例1のジルコニア焼結体の水熱劣化試験前後のXRDパターン      ( a)水熱劣化処理前、b)水熱劣化試験後) 実施例11のジルコニア焼結体のラマンスペクトル      ( a)破断面、b)表面) 比較例3のジルコニア焼結体のXRDパターン 比較例4のジルコニア焼結体のXRDパターン 実施例35のジルコニア焼結体のXRDパターンのリートベルト解析結果 実施例35のジルコニア焼結体のTEM観察図(図中スケールは100nm)   ( A)明視野像、B)イットリウムの元素マッピング図、C)ジルコニニウムの元素マッピング図、D)ランタンの元素マッピング図) 実施例38のジルコニア焼結体のTEM観察図(図中スケールは100nm)   ( A)明視野像、B)イットリウムの元素マッピング図、C)ジルコニニウムの元素マッピング図、D)ランタンの元素マッピング図)
 以下、実施例及び比較例により本発明を具体的に説明する。しかしながら、本発明は実施例に限定されるものではない。
(密度の測定)
 焼結体試料の実測密度はアルキメデス法による水中重量を測定することにより求めた。
(平均結晶粒径の測定)
 焼結体試料を平面研削した後、9μm、6μm及び1μmのダイアモンド砥粒を順に用いて鏡面研磨した。研磨面を1400℃で1時間保持し、熱エッチングした後、SEM観察し、得られたSEM観察図からプラニメトリック法により平均結晶粒径を求めた。
(結晶構造の同定)
 焼結体試料のXRD測定によって得られたXRDパターンを同定分析することで、各焼結体試料の結晶構造の同定、及び、不純物層の有無を確認した。XRD測定は、一般的な粉末X線回折装置(装置名:UltimaIII、リガク社製)を用い、鏡面研磨をした焼結体試料について行った。XRD測定の条件は以下のとおりである。
      線源    : CuKα線(λ=0.15418nm)
      測定モード : ステップスキャン
      スキャン条件: 毎秒0.04°
      発散スリット: 0.5deg
      散乱スリット: 0.5deg
      受光スリット: 0.3mm
      計測時間  : 1.0秒
      測定範囲  : 2θ=20°~80°
 XRDパターンの同定分析には、XRD解析ソフトウェア(商品名:JADE7、MID社製)を用いた。
(平均結晶子径の測定)
 結晶相の同定と同様な測定方法で得られたXRDパターンの2θ=27°~30°の範囲について、シェラー式を使用して焼結体試料の平均結晶子径を求めた。
        D=K×λ/((β-B)×cosθ)
 上記式において、Dは平均結晶子径(nm)、Kはシェラー定数(1.0)、λはCuKαの波長(0.15418nm)、βは半値幅(°)、Bは装置定数(0.1177°)、及びθはメインピークの回折角(°)である。
 なお、メインピークは、ジルコニアの立方晶(111)面に相当するピーク、及び、正方晶(111)面に相当するピークが重複するピークを単一ピークとみなした。
 また、半値幅は、Rigaku社製Integral Analysis for Windows(Version 6.0)を用いて求めた。
(リートベルト解析)
 結晶構造の同定と同様な測定方法で得られたXRDパターンをリートベルト解析することにより、焼結体試料中の立方晶及び正方晶の各結晶構造の割合、結晶子径、及び、格子定数を求めた。リートベルト解析は汎用のプログラム(Rietan-2000)を用いた。
 得られた格子定数から、以下の式に基づいて正方晶中のY濃度を求めた。
    YO1.5=(1.0223-cf/af)/0.001319
    Y=100×YO1.5/(200-YO1.5
 上記式において、YO1.5はイットリア濃度、cf及びafは、それぞれ、リートベルト解析で求めた正方晶蛍石型構造のc軸及びa軸の格子定数である。
(透過率の測定)
 JIS K321-1の方法に準じた方法によって、試料の全光線透過率(Total Transmittance;以下「TT」とする。)、拡散透過率(Defraction Transmittance;以下「DF」とする。)、及び直線透過率(In-Line Transmittance;以下「PT」とする。)を測定した。標準光D65を測定試料に照射し、当該測定試料を透過した光束を積分球によって検出することによって、光透過率を測定した。測定には一般的なヘーズメーター(装置名:ヘーズメーターNDH2000、NIPPON DENSOKU製)を用いた。
 測定試料には直径16mm、厚さ1.0mmの円板状成形体を用いた。測定に先立ち、測定試料の両面を研磨し、表面粗さRaを0.02μm以下に鏡面研磨した。
(透過率の波長依存性の測定)
 焼結体試料の透過率の波長依存性として、分光全光線透過率(Spectral Total Transmittance;以下、「S-TT」とする。)及び分光直線透過率(Spectral In-Line Transmittance;以下、「S-PT」とする。)をUV-VISにより測定した。測定条件は以下のとおりである。
   光源     :重水素ランプ、及び、ハロゲンランプ
   測定波長   :200~800nm
   測定ステップ :1nm
 UV-VIS測定には、一般的なダブルビーム方式の分光光度計(装置名:V-650型、日本分光社製)を使用した。
 測定試料には直径16mm、厚さ1.0mmの円板状成形体を用いた。測定に先立ち、測定試料の両面を研磨し、表面粗さRaを0.02μm以下に鏡面研磨した。
(透過光の角度分布の測定)
 透過光の角度分布は、変角光度計(装置名:GP-200、村上色彩技術研究社製)を用いて測定した。測定試料には直径16mm、厚さ1.0mmの円板状成形体を用いた。測定に先立ち、測定試料の両面を研磨し、表面粗さRaを0.02μm以下に鏡面研磨した。
(元素分布の観察)
 TEM観測により、結晶粒子中の元素分布を測定した。測定に先立ち、試料はFIB(集束イオンビーム)による薄片化加工した。加工後、イオンミリング仕上げ、及びカーボン蒸着をして測定試料とした。TEM観察は一般的なTEM(装置名:EM-2000FX、日本電子製)を用い、加速電圧200kVとして観測した。
(二軸曲げ強度の測定)
 ISO/DIS6872に準じた二軸曲げ強度測定によって、試料の二軸曲げ強度を測定した。測定試料の厚みは1mmとして、両面鏡面研磨した試料について測定した。
(三点曲げ強度の測定)
 JIS R1601「ファインセラミックスの曲げ強さ試験方法」準じた方法により、試料の3点曲げ強度を測定した。測定試料には表面粗さRaを0.02μm以下に鏡面研磨したもの使用した。また、1試料について5回強度を測定し、その平均値をもって三点曲げ強度とした。
(破壊靱性の測定)
 JIS R1607に準じた方法により、試料の破壊靱性をIF法及びSEPB法により測定した。測定試料としては、表面粗さRaを0.02μm以下に鏡面研磨したものを試料に用いた。ひとつの試料に対して測定を5回行い、その平均値を試料の破壊靱性値とした。IF法における測定条件は以下のとおりである。
         押し込み加重   :5kgf
           焼結体の弾性率  :205GPa
 IF法により得られた破壊靱性値をKIC(IF)とし、SEPB法により得られた破壊靱性値をKIC(SEPB)とした。
(水熱劣化試験)
 焼結体試料を熱水雰囲気下で処理し、劣化評価した。純水と焼結体試料をステンレス製の耐圧容器に入れ、これを140℃で24時間保持して水熱劣化試験とした。保持後、回収した焼結体試料をXRD測定した。得られたXRDパターンに含まれる単斜晶に相当するXRDピークの割合を以下式から求め、焼結体試料の単斜晶の体積分率(以下、「単斜晶率」ともいう。)を求めた。
 X=(Im(111)+Im(11-1))
     /(Im(111)+Im(11-1)+It(111)+Ic(111))
 ここで、Xは試料の単斜晶率、Im(111)は単斜晶(111)面に相当するXRDピーク強度、Im(11-1)は単斜晶(11-1)面に相当するXRDピーク強度、It(111)は正方晶(111)面に相当するXRDピーク強度、及び、Ic(111)は立方晶(111)面に相当するXRDピーク強度である。
(熱伝導率測定)
 焼結体試料の熱伝導率をレーザーフラッシュ法により測定した。測定には、レーザーフラッシュ法熱定数測定装置(装置名:TC-1200RH、アドバンス理工社製)を用いた。
 合成例(LaZr粉末の合成)
 固相法により、LaZr粉末を合成した。すなわち、酸化ジルコニウム(商品名:TZ-0Y、東ソー製)と酸化ランタン(純度99.99%、和光純薬製)とを混合して混合粉末を得た。混合は、エタノール溶媒中で、ジルコニア製の直径10mmボールを用いたボールミルによる湿式混合で行った。
 混合後の混合粉末は、乾燥、及び、か焼してか焼粉末を得た。か焼条件は、大気中、1100℃で10時間の熱処理とした。得られたか焼粉末を、上記の混合と同様な条件で湿式混合し、乾燥した。乾燥後の粉末を大気中、1400℃で2時間焼成することで、白色粉末を得、LaZrO粉末(以下、「LZO粉末」ともいう。)とした。
 XRD測定により、得られた白色粉末がLaZr単相であることを確認した。
 実施例1
 BET比表面積が7m/gの3mol%イットリア含有ジルコニア粉末(商品名:TZ-3YS、東ソー製)に対するLZO粉末の重量割合が20重量%となるように、LZO粉末をジルコニア粉末に添加し、これを混合して混合粉末を得た。混合は、直径10mmのジルコニアボールを用いたボールミルにより、エタノール溶媒中で120時間の湿式混合することで行った。得られた混合粉末を大気中、80℃で乾燥し、原料粉末とした。
 金型プレスによる一軸加圧で原料粉末を成形し、予備成形体を得た。一軸加圧の圧力は50MPaとした。得られた予備成形体を冷間静水圧プレス(以下、「CIP」とする。)処理することで、直径20mm、及び、厚さ約3mmの円柱状成形体を得た。CIP処理の圧力は200MPaとした。
 当該成形体を、大気中、昇温速度を100℃/h、焼結温度1450℃、及び焼結時間2時間で一次焼結することで一次焼結体を得た。
 得られた一次焼結体を蓋付きのジルコニア製の容器に配置し、これをHIP処理することでHIP処理体を得、これを本実施例のジルコニア焼結体とした。HIP処理条件は、圧力媒体として99.9%のアルゴンガス雰囲気中、昇温速度600℃/h、HIP温度1750℃、HIP圧力150MPa、及び保持時間1時間とした。
 HIP処理後、焼結温度から室温まで降温しHIP処理体を得た。なお、HIP温度から1000℃までの降温速度は83℃/minであった。
 得られたHIP処理体を、大気中、1000℃で1時間熱処理をすることで、無色かつ透光性を有する焼結体が得られた。
 本実施例のジルコニア焼結体のリートベルト解析結果を図1に、TEM観察図を図2、及びSEM観察図を図3に示す。図1のXRDパターンより、本実施例のジルコニア焼結体がランタン酸化物等を含有しないことが確認できる。また、表1にSEM-EDSによる、結晶粒子内部及び結晶粒界の組成分析結果を示した。なお、SEM-EDSによる分析は、焼結体に熱エッチング処理を施さずに行った。表1より、結晶粒子内と結晶粒界付近の平均組成が同程度であることから、本実施例の焼結体は結晶粒子内と結晶粒界とで組成が相違しておらず、均質な焼結体であることが確認できた。
Figure JPOXMLDOC01-appb-T000001
 さらに、図2(A)より、立方晶ドメインおよび正方晶ドメインが確認できた。平均結晶粒子径が88.3μmであるのに対し、当該ドメインは50nm程度であり、結晶粒子径よりも小さいことが確認できた。これより、本実施例のジルコニア焼結体が結晶粒子中に正方晶ドメイン及び立方晶ドメインを有することが確認できた。
 なお、リートベルト解析より、本実施例のジルコニア焼結体は立方晶が48.4重量%及び正方晶が51.6重量%であること、立方晶の格子定数がa=0.51872nmであること、正方晶の格子定数がaf=0.50975nm、及びcf=0.51917nmであること、立方晶の結晶子径が21nmであること、正方晶の結晶子径が32nmであることが確認できた。なお、当該リートベルト解析は、信頼度因子Rwp=20%及びS=1.28であった。格子定数から求めた正方晶のY濃度は1.48mol%であった。
 また、TEM観察による元素マッピングから、ランタンが存在する領域と、ランタンがほとんど存在しない領域が存在することが分かった(図2(D))。リートベルト解析結果及び当該元素マッピングより、ランタンが存在する領域はランタンが固溶した立方晶の領域であり、一方、ランタンが存在しない領域は正方晶の領域であると考えられる。これより、本実施例の焼結体では立方晶ドメインが正方晶ドメインよりもランタン濃度が高いことが確認できた。
 TEM観察により得られた立方晶ドメイン及び正方晶ドメインの大きさは、平均結晶子径、並びに、リートベルト解析により得られた正方晶及び立方晶の各結晶子径と一致した。これらの結果より、本実施例の焼結体において、立方晶ドメインは立方晶の結晶子、及び、正方晶ドメインは正方晶の結晶子であることが確認できた。
 次に、本実施例のジルコニア焼結体の概観を図4に、偏角光度スペクトルを図5に、及び、UV-VISスペクトルを図6に示した。図4より、本実施例のジルコニア焼結体を通して背面の線図が確認でき、本発明のジルコニア焼結体が透光性を有することが確認できる。さらに、本実施例のジルコニア焼結体の拡散透過率(DF)は24.28%であるが、図5及び6より、そのほとんどが直線透過光付近の角度の拡散透過率であり直線方向に高い透過率を有し、なおかつ、300nm~800nmの可視光の波長範囲において高い透光性を有することが確認できた。これより本発明のジルコニア焼結体は、より高い透明度を有することが確認できた。
 さらに、水熱劣化試験後の単斜晶率は0%であり、本実施例のジルコニア焼結体は劣化しにくいことが確認できた。水熱劣化試験後のXRDパターンを図7に示した。
 本実施例のジルコニア焼結体の評価結果を表2に示した。
 実施例2
 HIP処理温度を1700℃としたこと以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の評価結果を表2に示す。
 実施例3
 HIP処理温度を1800℃としたこと以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の評価結果を表2に示す。
 実施例4
 HIP処理圧力を54MPaとしたこと以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の評価結果を表2に示す。
 実施例5
 HIP処理時間を15分としたこと以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の評価結果を表2に示す。
 実施例6
 一次焼結の温度を1425℃としたこと以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の評価結果を表2に示す。
 実施例7
 LZO粉末の重量割合が15重量%となるように、LZO粉末をジルコニア粉末に添加したこと以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の平均結晶粒子径は82.1μmであった。評価結果を表2に示す。
 実施例8
 LZO粉末の重量割合が17.5重量%となるように、LZO粉末をジルコニア粉末に添加したこと、及び、HIP処理温度を1700℃とした以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の平均結晶粒子径は48.2μmであった。評価結果を表2に示す。
 実施例9
 LZO粉末の重量割合が17.5重量%となるように、LZO粉末をジルコニア粉末に添加したこと、一次焼結の温度を1500℃としたこと、及び、HIP処理圧力を15MPaとした以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の評価結果を表2に示す。
 実施例10
 LZO粉末の重量割合が25重量%となるように、LZO粉末をジルコニア粉末に添加したこと、及び、HIP処理温度を1700℃とした以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の平均結晶粒子径は45.6μmであった。評価結果を表2に示す。
 実施例11
 LZO粉末の重量割合が17.5重量%となるように、LZO粉末をジルコニア粉末に添加したこと、及び、HIP処理温度を1725℃とした以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の平均結晶粒子径は61.2μmであった。評価結果を表2に示す。
 さらに、二軸強度曲げ評価後の試験片の研磨表面及び破断面のラマン分析を行った。ラマン分析は、一般的な顕微ラマン装置(装置名:NRS-5100、日本分光性)を用い、測定レーザー波長を532nmとして行った。得られたラマンスペクトルを図8に示す。
 図8の研磨表面のラマンスペクトルより、本実施例のジルコニア焼結体は、正方晶及び立方晶に帰属するピーク以外は確認されなかった。一方、破断面には、正方晶及び立方晶に帰属するピーク以外に、単斜晶に由来するピーク(550cm-1、500cm-1、470cm-1、380cm-1、190cm-1及び180cm-1)が確認された。
これより、本実施例のジルコニア焼結体は、曲げ試験において正方晶が単斜晶に転移することにより、その強度が高くなっていることが確認できた。
 実施例12
 LZO粉末の重量割合が25重量%となるように、LZO粉末をジルコニア粉末に添加したこと、及び、HIP処理温度を1725℃とした以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の平均結晶粒子径は67.2μmであった。評価結果を表2に示す。
 実施例13
 ジルコニア粉末として比表面積が14m/gの3mol%イットリア含有ジルコニア粉末(商品名:TZ-3Y、東ソー製)を使用したこと、LZO粉末の代わりにLa粉末(純度99.99%、和光純薬製)を使用したこと、及び、La粉末の重量割合が10重量%となるように、La粉末をジルコニア粉末に添加したこと以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の平均結晶粒子径は46.9μmであった。評価結果を表2に示す。
 実施例14
 LZO粉末の代わりにLa粉末(純度99.99%、和光純薬製)を使用したこと、La粉末の重量割合が10重量%となるように、La粉末をジルコニア粉末に添加したこと、及びHIP処理時間を15分としたこと以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。平均結晶粒子径は33.0μmであった。評価結果を表2に示す。
 実施例15
 LZO粉末の代わりにLa粉末(純度99.99%、和光純薬製)を使用したこと、La粉末の重量割合が7.5重量%となるように、La粉末をジルコニア粉末に添加したこと、及び、HIP処理温度を1725℃としたこと以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の平均結晶粒子径は85.3μmであった。評価結果を表2に示す。
 実施例16
 LZO粉末の代わりにLa粉末(純度99.99%、和光純薬製)を使用したこと、La粉末の重量割合が7.5重量%となるように、La粉末をジルコニア粉末に添加したこと、及び、HIP処理温度を1700℃としたこと以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の平均結晶粒子径は61.3μmであった。評価結果を表2に示す。
 実施例17
 LZO粉末の代わりにLa粉末(純度99.99%、和光純薬製)を使用したこと、La粉末の重量割合が10重量%となるように、La粉末をジルコニア粉末に添加したこと、及び、HIP処理後の降温速度を80℃/minとしたこと以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の平均結晶粒子径は80.2μmであった。評価結果を表2に示す。
 実施例18
 LZO粉末の代わりにLa粉末(純度99.99%、和光純薬製)を使用したこと、La粉末の重量割合が10重量%となるように、La粉末をジルコニア粉末に添加したこと、及び、HIP処理後の降温速度を20℃/minとしたこと以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の平均結晶粒子径は40.2μmであり、三点曲げ強度は827MPaであった。評価結果を表2に示す
 実施例19
 LZO粉末の代わりにLa粉末(純度99.99%、和光純薬製)を使用したこと、La粉末の重量割合が10重量%となるように、La粉末をジルコニア粉末に添加したこと、及び、HIP処理後の降温速度を10℃/minとしたこと以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の平均結晶粒子径は88.5μmであった。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例20
 BET比表面積が7m/gの4mol%イットリア含有ジルコニア粉末(商品名:TZ-4YS、東ソー製)に対するLa粉末の重量割合が5重量%となるように、La粉末をジルコニア粉末に添加し、これを混合して混合粉末を得た。混合は、直径10mmのジルコニアボールを用いたボールミルにより、エタノール溶媒中で120時間の湿式混合することで行った。得られた混合粉末を大気中、80℃で乾燥し、原料粉末とした。
 金型プレスによる一軸加圧で原料粉末を成形し、予備成形体を得た。一軸加圧の圧力は50MPaとした。得られた予備成形体を冷間静水圧プレス(以下、「CIP」とする。)処理することで、直径20mm、及び、厚さ約3mmの円柱状成形体を得た。CIP処理の圧力は200MPaとした。
 当該成形体を、大気中、昇温速度を100℃/h、焼結温度1450℃、及び焼結時間2時間で一次焼結することで一次焼結体を得た。
 得られた一次焼結体を蓋付きのジルコニア製の容器に配置し、これをHIP処理することでHIP処理体を得、これを本実施例のジルコニア焼結体を得た。HIP処理条件は、圧力媒体として99.9%のアルゴンガス雰囲気中、昇温速度600℃/h、HIP温度1650℃、HIP圧力150MPa、及び保持時間1時間とした。
 HIP処理後、焼結温度から室温まで降温しHIP処理体を得た。なお、HIP温度から1000℃までの降温速度は83℃/minであった。
 得られたHIP処理体を、大気中、1000℃で1時間熱処理をすることで、無色かつ透光性を有する焼結体が得られた。本実施例のジルコニア焼結体の評価結果を表3に示した。
 実施例21
 原料のジルコニア粉末をBET比表面積が7m/gの5mol%イットリア含有ジルコニア粉末(商品名:TZ-5YS、東ソー製)としたこと、La粉末の重量割合を10重量%としたこと、及び、HIP処理温度を1750℃としたこと以外は実施例20と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の評価結果を表3に示す。
 実施例22
 原料のジルコニア粉末としてBET比表面積が7m/gの3mol%イットリア含有ジルコニア粉末(商品名:TZ-3YS、東ソー製)とBET比表面積が7m/gの4mol%イットリア含有ジルコニア粉末(商品名:TZ-4YS、東ソー製)を用い、ジルコニアに対するイットリア量として3.3mol%になるように両者を秤量し、これに対してLa粉末の重量割合が10重量%となるように、La粉末をジルコニア粉末に添加した、これらを混合して混合粉末を得た。当該混合粉末を使用したこと、及び、HIP処理温度を1750℃としたこと以外は実施例20と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の評価結果を表3に示す。
 実施例23
 原料のジルコニア粉末としてBET比表面積が7m/gの3mol%イットリア含有ジルコニア粉末(商品名:TZ-3YS、東ソー製)を用い、これに対してLa粉末の重量割合が7.5重量%となるようにLa粉末をジルコニア粉末に添加した。
当該混合粉末を使用したこと、及び、HIP処理温度を1750℃としたこと以外は実施例20と同様な方法で本実施例のジルコニア焼結体を得た。本実施例のジルコニア焼結体の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例24
 原料のジルコニア粉末としてBET比表面積が7m/gの3mol%イットリア含有ジルコニア粉末(商品名:TZ-3YS、東ソー製)と、BET比表面積が16m/gの2mol%イットリア含有ジルコニア粉末(商品名:TZ-2Y、東ソー製)とを混合して2.45mol%イットリア含有ジルコニア粉末とした。当該粉末に対してLa粉末の重量割合が10.5重量%となるように、La粉末を添加したこと以外は実施例1と同様な方法で本実施例の焼結体を作製した。本実施例のジルコニア焼結体の平均結晶粒子径は36.9μmであった。評価結果を表4に示す。
 実施例25
 実施例24と同様な方法でジルコニア粉末を混合し、2.5mol%イットリア含有ジルコニア粉末とした。得られたジルコニア粉末を使用したこと、及び、La粉末の重量割合を10重量%としたこと以外は実施例1と同様な方法で本実施例の焼結体を作製した。本実施例のジルコニア焼結体の平均結晶粒子径は54.4μmであった。評価結果を表4に示す。
 実施例26
 実施例24と同様な方法でジルコニア粉末を混合し、2.6mol%イットリア含有ジルコニア粉末とした。得られたジルコニア粉末を使用したこと、及び、La粉末の重量割合を11重量%としたこと以外は実施例1と同様な方法で本実施例の焼結体を作製した。本実施例のジルコニア焼結体の平均結晶粒子径は42.6μmであった。評価結果を表4に示す。
 実施例27
 実施例24と同様な方法でジルコニア粉末を混合し、2.8mol%イットリア含有ジルコニア粉末とした。得られたジルコニア粉末を使用したこと、及び、La粉末の重量割合を10重量%としたこと以外は実施例1と同様な方法で本実施例の焼結体を作製した。本実施例のジルコニア焼結体の平均結晶粒子径は46.3μmであった。評価結果を表4に示す。
 実施例28
 実施例24と同様な方法でジルコニア粉末を混合し、2.8mol%イットリア含有ジルコニア粉末とした。得られたジルコニア粉末を使用したこと、及び、La粉末の重量割合を9.2重量%としたこと以外は実施例1と同様な方法で本実施例の焼結体を作製した。本実施例のジルコニア焼結体の平均結晶粒子径は45.2μmであった。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例29
 原料のジルコニア粉末としてBET比表面積が7m/gの3mol%イットリア含有ジルコニア粉末(商品名:TZ-3YS、東ソー製)を用い、これに対してLa粉末の重量割合が10重量%となるようにLa粉末をジルコニア粉末に添加した。ジルコニア粉末とLa粉末の合計重量に対して500重量ppmのCaO粉末(和光純薬、99.9%)を添加して混合粉末を得た。当該混合粉末を使用したこと、及び、HIP処理温度を1750℃としたこと以外は実施例20と同様な方法で本実施例のジルコニア焼結体を得た。XRD測定の結果、焼結体の結晶相はジルコニアのピークのみであり、CaO等、ジルコニア以外の結晶相を含まないことが確認できた。これにより、CaOはYと同様に安定化剤として作用することが確認できた。得られた焼結体は無色で透光性を有する焼結体であった。本実施例のジルコニア焼結体の組成はZrOが92.88mol%、Yが2.88mol%、CaOが0.12mol%及びLaが4.13mol%であった。本実施例のジルコニア焼結体の平均結晶粒子径は21.3μmであった。本実施例のジルコニア焼結体の評価結果を表5に示す。
 実施例30
 CaO粉末の代わりにMgO粉末(商品名:500A、宇部マテリアル社製)使用したこと以外は実施例29と同様な方法で本実施例のジルコニア焼結体を得た。
 XRD測定の結果、焼結体の結晶相はジルコニアのピークのみであり、MgO等、ジルコニア以外の結晶相を含まないことが確認できた。これにより、MgOはYと同様に安定化剤として作用することが確認できた。得られた焼結体は無色で透光性を有する焼結体であった。本実施例のジルコニア焼結体の組成はZrOが92.83mol%、Yが2.88mol%、MgOが0.17mol%及びLaが4.13mol%であった。本実施例のジルコニア焼結体の平均結晶粒子径は24.7μmであった。評価結果を表5に示す。
 実施例31
 原料のジルコニア粉末としてBET比表面積が7m/gの3mol%イットリア含有ジルコニア粉末(商品名:TZ-3YS、東ソー製)を用い、これに対してLa粉末の重量割合が10重量%となるようにLa粉末をジルコニア粉末に添加した。ジルコニア粉末とLa粉末の合計重量に対してBET比表面積が200m/gのγアルミナ粉末(商品名:TM-300D、大明化学工業製)を1000重量ppm添加して混合粉末を得た。当該混合粉末を使用したこと以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。得られた焼結体は無色で透光性を有する焼結体であった。
 本実施例のジルコニア焼結体の平均結晶粒子径は52.1μmであった。三点曲げ強度は856MPaであった。評価結果を表5に示す。
 実施例32
 アルミナ粉末として、BET比表面積6.7m/gのαアルミナ粉末(商品名:AKP-30、住友化学社製)を250重量ppm添加したこと以外は実施例31と同様な方法で本実施例のジルコニア焼結体を得た。得られた焼結体は無色で透光性を有する焼結体であった。本実施例のジルコニア焼結体の平均結晶粒子径は78.5μmであった。三点曲げ強度は842MPaであった。評価結果を表5に示す。
 実施例33
 アルミナ粉末として、BET比表面積6.7m/gのαアルミナ粉末(商品名:AKP-30、住友化学社製)を500重量ppm添加したこと以外は実施例31と同様な方法で本実施例のジルコニア焼結体を得た。得られた焼結体は無色で透光性を有する焼結体であった。本実施例のジルコニア焼結体の平均結晶粒子径は78.5μmであった。三点曲げ強度は844MPaであった。評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5より、安定化剤としてCaO又はMgOを使用した場合であっても全光線透過率68%以上、かつ、二軸曲げ強度1200MPaである透光性及び強度を兼備する焼結体が得られることが確認できた。また、アルミナを含んだ場合であっても、透光性及び強度を兼備する焼結体となることが確認できた。
 実施例34
 原料のジルコニア粉末としてBET比表面積が7m/gの3mol%イットリア含有ジルコニア粉末(商品名:TZ-3YS、東ソー製)を用い、これに対してLa粉末の重量割合が10重量%となるようにLa粉末をジルコニア粉末に添加した。金型プレスによる一軸加圧で原料粉末を成形し、予備成形体を得た。一軸加圧の圧力は50MPaとした。得られた予備成形体をCIP処理することで、直径20mm、及び、厚さ約3mmの円柱状成形体を得た。CIP処理の圧力は200MPaとした。
 当該成形体を、大気中、昇温速度を100℃/h、焼結温度1775℃、及び焼結時間1時間で常圧焼結することで本実施例のジルコニア焼結体を得た。焼結温度から1000℃までの平均の降温速度は16.7℃/minとした。本実施例のジルコニア焼結体の平均結晶粒子径は12.1μmであった。評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6より、実施例34の焼結体は二軸曲げ強度が1000MPa以上であり、なおかつ、全光線透過率が50%以上であった。これより、一段焼結法により、透光性及び強度を兼備する焼結体が得られることが確認できた。
 実施例35
 LZO粉末の代わりにLa粉末(純度99.99%、和光純薬製)を使用したこと、La粉末の重量割合が10重量%となるように、La粉末をジルコニア粉末に添加したこと、及び、HIP処理後の降温速度を80℃/minとしたこと以外は実施例1と同様な方法で本実施例のジルコニア焼結体を得た。結果を表7に示す。
 本実施例のジルコニア焼結体のリートベルト解析結果を図11に、TEM観察図を図12に示す。図11のXRDパターンより、本実施例のジルコニア焼結体がランタン酸化物等を含有しないことが確認できた。
 さらに、図12(A)より、50nm程度の立方晶ドメインおよび正方晶ドメインが確認できた。平均結晶粒子径が55.8μmであるのに対し、当該ドメインは50nm程度であり、結晶粒子径よりも小さいことが確認できた。これより、本実施例のジルコニア焼結体が結晶粒子中に正方晶ドメイン及び立方晶ドメインを有することが確認できた。
 なお、リートベルト解析より、本実施例のジルコニア焼結体は立方晶が68.5重量%及び正方晶が31.5重量%であること、立方晶の格子定数がa=0.51836nmであること、正方晶の格子定数がaf=0.51096nm、及びcf=0.52067nmであること、立方晶の結晶子径が36nmであること、正方晶の結晶子径が32nmであることが確認できた。なお、当該リートベルト解析は、信頼度因子Rwp=18%及びS=1.49であった。格子定数から求めた正方晶のY濃度は1.27mol%であった。
 三点曲げ強度は609MPa、破壊靭性KIC(SEPB)は2.74MPa・m0.5及び熱伝導率は、1.81W/mKであった。
 実施例36
 HIP温度から1000℃までの降温速度を40℃/minとしたこと以外は実施例35と同様な方法で本実施例の焼結体を作製した。三点曲げ強度は893MPa、破壊靭性KIC(SEPB)は2.74MPa・m0.5であった。
 実施例37
 HIP温度から1000℃までの降温速度を30℃/minとしたこと以外は実施例35と同様な方法で本実施例の焼結体を作製した。三点曲げ強度は1016MPa、破壊靭性KIC(SEPB)は2.93MPa・m0.5であった。
 実施例38
 HIP温度から1000℃までの降温速度を20℃/minとしたこと以外は実施例35と同様な方法で本実施例の焼結体を作製した。本実施例のTEM観察図を図13に示す。XRD測定の結果、本実施例のジルコニア焼結体がランタン酸化物等を含有しないことがわかった。
 さらに、図13(A)より、50nm程度の立方晶ドメインおよび正方晶ドメインが確認できた。平均結晶粒子径が77.9μmであるのに対し、当該ドメインは50nm程度であり、結晶粒子径よりも小さいことが確認できた。これより、本実施例のジルコニア焼結体が結晶粒子中に正方晶ドメイン及び立方晶ドメインを有することが確認できた。
 なお、リートベルト解析より、本実施例のジルコニア焼結体は立方晶が58.0重量%及び正方晶が42.0重量%であること、立方晶の格子定数がa=0.51718nmであること、正方晶の格子定数がaf=0.51082nm、及びcf=0.52028nmであること、立方晶の結晶子径が28nmであること、正方晶の結晶子径が35nmであることが確認できた。なお、当該リートベルト解析は、信頼度因子Rwp=18%及びS=1.40であった。格子定数から求めた正方晶のY濃度は1.46mol%であった。三点曲げ強度は895MPa、破壊靭性KIC(SEPB)は3.32MPa・m0.5であった。
 実施例35及び38の結果を表7に示した。
Figure JPOXMLDOC01-appb-T000007
 表7より、降温速度が遅くなると、正方晶ドメインが増えることが確認できる。また、それに伴い、破壊靱性及び三点曲げ強度が高くなった。これにより降温速度を遅くすることで機械的強度が向上する傾向があることが確認できた。
 比較例1
 BET比表面積が7m/gの3mol%イットリア含有ジルコニア粉末(商品名:3YS、東ソー製)を、本比較例の原料粉末とした。
 金型プレスによる一軸加圧で原料粉末を成形し、予備成形体を得た。CIP処理することで、直径20mm、及び、厚さ約3mmの円柱状成形体を得た。CIPの圧力は200MPaとした。
 当該成形体を、大気中、昇温速度を100℃/hr、焼結温度1450℃、及び焼結時間2時間で一次焼結することで一次焼結体を得た。
 得られた一次焼結体を蓋付のアルミナ性容器に配置し、これをHIP処理した。HIP処理条件は、圧力媒体として99.9%のアルゴンガス雰囲気中、昇温速度600℃/hr、HIP温度1750℃、HIP圧力150MPa、及び保持時間1時間とした。
 HIP処理後、HIP温度から1000℃までの降温速度は83℃/minとして、これを冷却した。
 得られたHIP処理体を、大気中、1000℃で1時間熱処理をすることで、本比較例のジルコニア焼結体を得た。得られたジルコニア焼結体の平均結晶粒子径は1.80μmであった。得られたジルコニア焼結体の評価結果を表8に示す。本比較例のジルコニア焼結体の二軸曲げ強度は1GPaを超える高い強度を示したが、全光線透過率は39.00%であり、透光性が著しく低いものであった。
 比較例2
 BET比表面積が7m/gの8mol%イットリア含有ジルコニア粉末(商品名:8YS、東ソー製)を、本比較例の原料粉末としたこと以外は比較例1と同様な方法で本比較例のジルコニア焼結体を得た。
 得られたジルコニア焼結体の平均結晶粒子径は52.9μmであった。得られたジルコニア焼結体の評価結果を表8に示す。本比較例のジルコニア焼結体の全光線透過率は62.00%であり、高い透光性を有する。しかしながら、二軸曲げ強度は253MPaであり強度が非常に低い焼結体であることが確認できた。
 比較例3
 BET比表面積が7m/gの3mol%イットリア含有ジルコニア粉末(商品名:TZ-3YS、東ソー製)を使用したこと、イットリア含有ジルコニア粉末に対するLZO粉末の重量割合が20重量%となるように、LZO粉末をジルコニア粉末に添加したこと、及び、HIP処理における降温速度を1℃/minとしたこと以外は、比較例1と同様な条件で焼結体を作製した。
 本比較例のジルコニア焼結体の評価結果を表8に、XRDパターンを図9に示す。図9より、本比較例の焼結体は単斜晶を含むジルコニア焼結体であることが確認できた。さらに、全光線透過率は44%以下であり、透光性が著しく低いものであった。
 比較例4
 BET比表面積が14m/gのジルコニア粉末(商品名:0Y、東ソー製)を使用したこと、イットリア含有ジルコニア粉末に対するLa粉末(純度99.99%、和光純薬製)の重量割合が10重量%となるように、La粉末をジルコニア粉末に添加したこと以外は、比較例1と同様な条件で本比較例のジルコニア焼結体を作製した。なお、当該ジルコニア粉末は安定化剤を含まないものである。
 本比較例のジルコニア焼結体の評価結果を表8に、XRDパターンを図10に示す。得られたジルコニア焼結体は透光性を有さない焼結体であった。また、XRDパターンより、本比較例のジルコニア焼結体は、単斜晶とLaZrの混相であることが確認できた。さらに、本比較例のジルコニア焼結体はメインピークを有しておらず、その平均結晶子径を求めることができなかった。
 比較例5
 LZO粉末20重量%の代わりに酸化イッテルビウム粉末10重量%を使用したこと、及び、BET比表面積が7m/gの3mol%イットリア含有ジルコニア粉末(商品名:TZ-3YS、東ソー製)を使用したこと以外は実施例1と同様な方法で本比較例のジルコニア焼結体を得た。結果を表8に示す。XRD測定の結果、本比較例のジルコニア焼結体はジルコニア立方晶のみのピークが確認できた。これにより、ランタノイド元素であるイッテルビウムが固溶したジルコニア焼結体は、立方晶ドメイン及び正方晶ドメインを有する結晶粒子がないことが確認できた。
Figure JPOXMLDOC01-appb-T000008
 実施例39
(コンパウンドの作製)
 BET比表面積が7m/gの3mol%イットリア含有ジルコニア粉末(商品名:3YS、東ソー製)に、La粉末の重量割合が10重量%となるように、La粉末を混合した後、実施例1と同様の方法で湿式混合をし、混合粉末を得た。混合粉末と、ワックス、可塑剤及び熱可塑性樹脂を含む有機バインダーとを混合し、ジルコニアコンパウンドを得た。
(射出成形及び焼結体の作製)
 得られたジルコニアコンパウンドを射出成形により成形し、縦70mm×横30mm×厚み2mmの板状成形体とした。成形体を大気中、450℃で加熱して有機バインダーを除去した後、大気中にて1450℃で、2時間焼成して一次焼結体を得た。得られた一次焼結体を蓋付きのジルコニア製の容器に配置し、これをHIP処理することでHIP処理体を得、これを本実施例のジルコニア焼結体とした。HIP処理条件は、圧力媒体として99.9%のアルゴンガス雰囲気中、昇温速度600℃/h、HIP温度1750℃、HIP圧力150MPa、及び保持時間1時間とした。HIP処理後、焼結温度から室温まで降温しHIP処理体を得た。なお、HIP温度から1000℃までの降温速度は83℃/minであった。
 得られたHIP処理体を、大気中、1000℃で1時間熱処理をすることで、無色かつ透光性を有する焼結体が得られた。得られた焼結体はランタンとイットリアが固溶したジルコニア焼結体であり、その組成は、ZrOが92.99mol%、Yが2.88mol%、及びLaが4.13mol%であり、平均結晶粒径は54.5μmであった。結果を表9に示す。
 実施例40
 一次焼結温度を1475℃としたこと以外は実施例39と同様な方法で焼結体を得た。得られた焼結体の組成は、ZrOが92.99mol%、Yが2.88mol%、及びLaが4.13mol%であった。結果を表9に示す。
 実施例41
 一次焼結温度を1475℃としたこと、及び、HIP温度から1000℃までの降温速度を20℃/minとしたこと以外は実施例39と同様な方法で焼結体を得た。得られた焼結体の組成は、ZrOが92.99mol%、Yが2.88mol%、及びLaが4.13mol%であり、平均結晶粒径は35.5μmであった。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 これらの結果より、射出成形においてもプレス成形と同等なジルコニア焼結体が得られることが確認できた。
 実施例42
 成形体の形状を歯列矯正ブラケット形状としたこと以外は実施例39と同様な方法で成形、脱脂、焼成、及びHIP処理し、ランタン固溶ジルコニア焼結体からなる歯列矯正ブラケット(縦3.6mm×横3.3mm×高さ2.5mm)を作製した。
 実施例43
 HIP温度から1000℃までの降温速度を30℃/minとしたこと以外は実施例42と同様な方法でランタン固溶ジルコニア焼結体からなる歯列矯正ブラケットを作製した。
 実施例44
 HIP温度から1000℃までの降温速度を20℃/minとしたこと以外は実施例42と同様な方法でランタン固溶ジルコニア焼結体からなる歯列矯正ブラケットを作製した。
 実施例45
 一次焼結温度を1475℃としたこと、及び、HIP温度から1000℃までの降温速度を20℃/minとしたこと以外は実施例42と同様な方法でランタン固溶ジルコニア焼結体からなる歯列矯正ブラケットを作製した。
 実施例46
 一次焼結温度を1475℃としたこと、HIP処理において一次焼結体を未使用のアルミナ製容器に配置したこと、及び、HIP処理後に熱処理を行わなかったこと以外は実施例42と同様な方法でランタン固溶ジルコニア焼結体からなる歯列矯正ブラケットを作製した。得られた歯列矯正ブラケットは透光性を有していた。
 測定例1(トルク強度試験)
 実施例42乃至46で得られた歯列矯正ブラケットのトルク強度を測定した。歯列矯正ブラケットを試料として台座に固定し、試料のスロット部にステンレススチールワイヤー(0.019×0.025インチ)を通して固定した。試料のスロット部の表面はHIP処理後の状態とした。台座を回転し、ブラケットが破断される際のトルク強度を測定し、これを試料のトルク強度として測定した。測定は各試料三回行い、その平均値をもって試料のトルク強度とした。測定結果のトルク強度を表10に示す。また、歯列矯正ブラケットとして使用されている、透光性アルミナからなる歯列矯正ブラケット(縦4.4mm×横3.7mm×高さ3.0mm)のトルク強度も合わせて表10に示した。
Figure JPOXMLDOC01-appb-T000010
 本発明のジルコニア焼結体のトルク強度は、市販されている透光性アルミナ製の歯列矯正ブラケットと同等のトルク強度を有することが確認できた。歯列矯正ブラケットは大きいほどトルク強度は高くなる。これに対し、実施例の歯列矯正ブラケットは、透光性アルミナのブラケットよりも小さいにも関わらず、同程度のトルク強度を有する。すなわち、本発明のジルコニア焼結体は、歯列矯正ブラケットをより小さくでき、従来の透光性を有する歯列矯正ブラケットよりも目立たず、優れた審美性を有する歯列矯正ブラケットとして使用できることが確認できた。
 測定例2(トルク強度試験)
 実施例42及び45で得られた歯列矯正ブラケットのスロット部の表面を鏡面研磨したものを試料としたこと以外は測定例1と同様な方法でトルク強度を測定した。結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 上記の結果より、スロット部を研磨することでトルク強度が向上することが確認できた。実施例42の歯列矯正ブラケットは、表面研磨により透光性アルミナからなる歯列矯正ブラケットよりも高いトルク強度となり、実用的な強度を有することが確認できた。
 測定例3(プラズマエッチング試験)
 反応性プラズマエッチング装置(装置名:DEM-451、アネルバ社製)を用い、試料の耐プラズマ特性を評価した。すなわち、各試料に対し、以下の条件で試料にプラズマ照射し、エッチング深さ、及び、エッチングレートを測定した。
       プラズマ出力  :300W
       照射時間    :4時間
       反応ガス    :CF  25.2sccm
                O   6.3sccm
                Ar   126sccm
 測定試料は、実施例1及び実施例13のジルコニア焼結体を使用した。また、現行の半導体製造設備として使用されている石英ガラスを比較試料として使用した。測定に先立ち、各試料は表面粗さが0.02μm以下となるまで表面を鏡面研磨した。
 プラズマエッチング試験後、JIS B 0601-1994に準じた方法で、試料のエッチング面の中心線平均粗さ(Ra)、最大高さ(Ry)、及び、十点平均高さ(Rz)を測定した。測定にはレーザー顕微鏡(装置名:VK-9500/VK-9510、キーエンス社製)を用いた。結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
 Raは、エッチング後のエッチング面の平均の高さに対する凹凸度合いであり、大きいほどエッチング面に凹凸が多いことを示す。Ryは、エッチング後のエッチング面において、エッチングが最も進んだ部分とエッチングが最も進まなかった部分との差を示し、Ryが大きいほど局所的に深いエッチングが生じていることを示す。Rzはエッチング面の平均的な凹凸の深さを示す。したがって、Rzが大きいほど、エッチング面全体の凹凸が深いことを示す。
 これより、本発明の焼結体は石英ガラスと比べて高い耐プラズマ特性を有していることが確認できた。
 本発明のジルコニア焼結体は、高い透光性、及び、高い強度を兼備する。そのため、審美性が要求される歯科補綴材、歯科矯正用部材などの歯科用部材に使用することができる。さらに、本発明のジルコニア焼結体は高い意匠性を有するため、時計や宝飾品などの装飾部材として使用することができ、さらには、半導体製造装置用部材の耐プラズマ部材として使用することができる。
 なお、2015年1月15日に出願された日本特許出願2015-5981号、及び、2015年11月30日に出願された日本特許出願2015-233643号の明細書、特許請求の範囲、要約書及び図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 ◎ :単斜晶ジルコニアに相当するピーク
 ※ :LaZrに相当するXRDピーク

Claims (10)

  1.  立方晶ドメイン及び正方晶ドメインを有する結晶粒子を含み、安定化剤及びランタンを固溶することを特徴とするジルコニア焼結体。
  2.  CuKαを線源とする粉末X線回折パターンにおける2θ=30±2°の半値幅から算出される平均結晶子径が255nm以下である請求項1に記載のジルコニア焼結体。
  3.  CuKαを線源とする粉末X線回折パターンにおける2θ=30±2°の半値幅から算出される平均結晶子径が100nm以下である請求項1又は2に記載のジルコニア焼結体。
  4.  ランタン含有量が1mol%以上、10mol%以下である請求項1乃至3のいずれか一項に記載のジルコニア焼結体。
  5.  安定化剤が、イットリア、スカンジア、カルシア、マグネシア、及びセリアからなる群の少なくとも1種である請求項1乃至4のいずれか一項に記載のジルコニア焼結体。
  6.  曲げ強度が500MPa以上である請求項1乃至5のいずれか一項に記載のジルコニア焼結体。
  7.  試料厚さ1mmとし、D65光線を線源とする全光線透過率が45%以上である請求項1乃至6のいずれか一項に記載のジルコニア焼結体。
  8.  ジルコニア原料、安定化剤原料及びランタン原料を混合して混合粉末を得る混合工程、得られた混合粉末を成形して成形体を得る成形工程、得られた成形体を1650℃以上の焼結温度で焼結して焼結体を得る焼結工程、及び、焼結温度から1000℃までを1℃/min超の降温速度で降温する降温工程、を含むことを特徴とする請求項1乃至7のいずれか一項に記載のジルコニア焼結体の製造方法。
  9.  前記焼結工程が、1000℃以上1650℃未満で焼成して一次焼結体を得る一次焼結、及び、該一次焼結体を1650℃以上で焼結する二次焼結を含む請求項8に記載の製造方法。
  10.  請求項1乃至7のいずれか一項に記載のジルコニア焼結体を含む歯科用部材。
PCT/JP2016/050717 2015-01-15 2016-01-12 透光性ジルコニア焼結体及びその製造方法並びにその用途 WO2016114265A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/540,683 US10273191B2 (en) 2015-01-15 2016-01-12 Translucent zirconia sintered body, method for manufacturing same, and use thereof
EP16737336.4A EP3252023B1 (en) 2015-01-15 2016-01-12 Translucent zirconia sintered body, method for manufacturing same, and use thereof
CN201680004982.9A CN107108374B (zh) 2015-01-15 2016-01-12 透光性氧化锆烧结体和其制造方法以及其用途

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-005981 2015-01-15
JP2015005981 2015-01-15
JP2015233643 2015-11-30
JP2015-233643 2015-11-30

Publications (1)

Publication Number Publication Date
WO2016114265A1 true WO2016114265A1 (ja) 2016-07-21

Family

ID=56405809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050717 WO2016114265A1 (ja) 2015-01-15 2016-01-12 透光性ジルコニア焼結体及びその製造方法並びにその用途

Country Status (5)

Country Link
US (1) US10273191B2 (ja)
EP (1) EP3252023B1 (ja)
JP (1) JP6672806B2 (ja)
CN (1) CN107108374B (ja)
WO (1) WO2016114265A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100876A1 (ja) * 2019-11-22 2021-05-27 クラレノリタケデンタル株式会社 ジルコニア組成物、ジルコニア仮焼体及びジルコニア焼結体、並びにそれらの製造方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108164275B (zh) * 2018-01-14 2020-12-18 江苏嘉耐高温材料股份有限公司 一种耐侵蚀氧化锆水口砖及其制备方法
JP7309395B2 (ja) * 2018-03-30 2023-07-18 株式会社松風 ジルコニア用オペーク性付与液
JP7135501B2 (ja) * 2018-07-02 2022-09-13 東ソー株式会社 ジルコニア焼結体及びその製造方法
CN112424145A (zh) * 2018-08-02 2021-02-26 东曹株式会社 黑色烧结体及其制造方法
EP3842402A4 (en) * 2018-08-20 2022-05-18 Tosoh Corporation ZIRCONIA SINTERED BODY AND MANUFACTURING METHOD THEREOF
EP3659548A1 (de) 2018-11-29 2020-06-03 Ivoclar Vivadent AG Verfahren zur herstellung einer dentalen restauration
CN109608193B (zh) * 2018-12-10 2021-01-22 中钢集团洛阳耐火材料研究院有限公司 一种高纯氧化锆轻质耐火骨料及其制备方法
JP7293821B2 (ja) * 2019-04-05 2023-06-20 東ソー株式会社 仮焼体
CN110240491B (zh) * 2019-07-09 2021-11-23 成都贝施美生物科技有限公司 一种高韧性的氧化锆瓷块
WO2021020582A1 (ja) * 2019-08-01 2021-02-04 クラレノリタケデンタル株式会社 ジルコニア焼結体の製造方法
CN110386817A (zh) * 2019-08-21 2019-10-29 重庆臻宝实业有限公司 抗等离子体腐蚀陶瓷及制备方法
FR3103190B1 (fr) * 2019-11-14 2021-12-03 Saint Gobain Ct Recherches Article dentaire, poudre pour article dentaire et procede de fabrication d’un tel article
JPWO2021125351A1 (ja) * 2019-12-20 2021-06-24
JP7393212B2 (ja) 2020-01-10 2023-12-06 日本碍子株式会社 半導体製造装置部材
EP4039648A4 (en) * 2020-10-09 2023-11-15 Daiichi Kigenso Kagaku Kogyo Co., Ltd. ZIRCONIUM OXIDE POWDER, ZIRCONIUM OXIDE SINTERED BODY AND PRODUCTION METHOD FOR A ZIRCONIUM OXIDE SINTERED BODY
CN117377644A (zh) 2021-05-27 2024-01-09 东曹株式会社 烧结体及其制造方法、以及正畸托槽
JP7473094B2 (ja) 2022-01-18 2024-04-23 東ソー株式会社 焼結体及びその製造方法
CN114751772B (zh) * 2022-05-13 2023-10-27 无锡海飞凌科技有限公司 一种高温热场用陶瓷修复方法及其应用
JP2024052605A (ja) * 2022-09-30 2024-04-11 東ソー株式会社 焼結体
CN116477941B (zh) * 2023-04-19 2024-02-23 中物院成都科学技术发展中心 一种人工玉陶及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291467A (ja) * 1985-06-20 1987-04-25 東ソー株式会社 透光性ジルコニア焼結体の製造法
JPS62235255A (ja) * 1986-04-04 1987-10-15 東レ株式会社 ジルコニア焼結体
JP2000095564A (ja) * 1998-09-18 2000-04-04 Daiichi Kigensokagaku Kogyo Co Ltd ジルコニア質焼結体及びその製造方法ならびに粉砕部材用材料
JP2010285328A (ja) * 2009-06-15 2010-12-24 Sumitomo Osaka Cement Co Ltd 透光性セラミックス及びその製造方法
JP2013515671A (ja) * 2009-12-29 2013-05-09 スリーエム イノベイティブ プロパティズ カンパニー イットリウム及びランタンをドープしたジルコニア系材料

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB220611A (en) 1923-08-14 1925-04-09 Polygraphische Ges An improved returning mechanism for typewriting machines parts
GB1519314A (en) 1974-10-24 1978-07-26 Commw Scient Ind Res Org Partially stabilized zirconia
DE3683959D1 (de) 1985-06-20 1992-04-02 Tosoh Corp Zirkoniumdioxidsinterkoerper mit verbesserter lichtdurchlaessigkeit.
GB2206111B (en) * 1987-06-24 1991-08-14 Council Scient Ind Res Sintered ceramic product
JP5277541B2 (ja) 2006-07-25 2013-08-28 東ソー株式会社 高強度ジルコニア焼結体および製造方法
JP5396691B2 (ja) 2007-03-08 2014-01-22 東ソー株式会社 透光性イットリア含有ジルコニア焼結体及びその製造方法並びにその用途
EP2045222B1 (en) 2006-07-25 2015-09-23 Tosoh Corporation Sintered zirconia having high light transmission and high strength, use of the same and process for production thereof
JP2009269812A (ja) 2008-04-09 2009-11-19 Tosoh Corp 透光性ジルコニア焼結体及びその製造方法並びに用途
CN104016677A (zh) 2008-04-09 2014-09-03 东曹株式会社 透光性氧化锆烧结体、其生产方法及其用途
JP5814937B2 (ja) * 2009-12-29 2015-11-17 スリーエム イノベイティブ プロパティズ カンパニー ランタニド元素をドープしたジルコニア系粒子
JP6181655B2 (ja) * 2011-10-10 2017-08-16 スリーエム イノベイティブ プロパティズ カンパニー エアロゲル、焼成及び結晶質製品及びその製造法
EP2879614B1 (en) * 2012-08-03 2017-12-06 3M Innovative Properties Company Translucency enhancing solution for zirconia ceramics
EP2692311B1 (en) * 2012-08-03 2016-06-22 3M Innovative Properties Company Dental blank comprising a pre-sintered porous zirconia material , process of its production and dental article formed from said dental blank
US10028809B2 (en) * 2012-10-17 2018-07-24 3M Innovative Properties Company Multi sectional dental zirconia milling block, process of production and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291467A (ja) * 1985-06-20 1987-04-25 東ソー株式会社 透光性ジルコニア焼結体の製造法
JPS62235255A (ja) * 1986-04-04 1987-10-15 東レ株式会社 ジルコニア焼結体
JP2000095564A (ja) * 1998-09-18 2000-04-04 Daiichi Kigensokagaku Kogyo Co Ltd ジルコニア質焼結体及びその製造方法ならびに粉砕部材用材料
JP2010285328A (ja) * 2009-06-15 2010-12-24 Sumitomo Osaka Cement Co Ltd 透光性セラミックス及びその製造方法
JP2013515671A (ja) * 2009-12-29 2013-05-09 スリーエム イノベイティブ プロパティズ カンパニー イットリウム及びランタンをドープしたジルコニア系材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100876A1 (ja) * 2019-11-22 2021-05-27 クラレノリタケデンタル株式会社 ジルコニア組成物、ジルコニア仮焼体及びジルコニア焼結体、並びにそれらの製造方法
JP6920573B1 (ja) * 2019-11-22 2021-08-18 クラレノリタケデンタル株式会社 ジルコニア組成物、ジルコニア仮焼体及びジルコニア焼結体、並びにそれらの製造方法

Also Published As

Publication number Publication date
EP3252023A4 (en) 2018-02-21
CN107108374A (zh) 2017-08-29
CN107108374B (zh) 2021-02-02
EP3252023B1 (en) 2020-02-26
JP2017105689A (ja) 2017-06-15
JP6672806B2 (ja) 2020-03-25
EP3252023A1 (en) 2017-12-06
US10273191B2 (en) 2019-04-30
US20170349494A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
WO2016114265A1 (ja) 透光性ジルコニア焼結体及びその製造方法並びにその用途
US9902654B2 (en) ZrO2-Al2O3-based ceramic sintered compact and production method thereof
Liu et al. Solid-state reactive sintering of YAG transparent ceramics for optical applications
EP3345883B1 (en) Red zirconia sintered body and method for manufacturing the same
JP6911290B2 (ja) 着色透光性ジルコニア焼結体及びその製造方法並びにその用途
Yang et al. Optical, thermal, and mechanical properties of (Y1− x Sc x) 2O3 transparent ceramics
US11746055B2 (en) Zirconia sintered body and production method thereof
JP6747121B2 (ja) 透光性ジルコニア焼結体及びその製造方法並びにその用途
JP6772592B2 (ja) 透光性ジルコニア焼結体及びその製造方法並びにその用途
JP7135501B2 (ja) ジルコニア焼結体及びその製造方法
KR101575561B1 (ko) 투명도가 향상된 다결정 산질화알루미늄의 제조방법
EP4349800A1 (en) Sintered body and method for manufacturing same, and orthodontic bracket
JP6772591B2 (ja) 透光性ジルコニア焼結体及びその製造方法並びにその用途
WO2023140082A1 (ja) 焼結体及びその製造方法
WO2023042893A1 (ja) 粉末組成物、仮焼体、焼結体及びその製造方法
Changliang et al. Optical, thermal, and mechanical properties of (Y 1− x Sc x) 2 O 3 transparent ceramics
Xing et al. Effect of heat treatment on the optical properties of perovskite BaZr0. 5Ce0. 3Y0. 2O3− δ ceramic prepared by spark plasma sintering
TWI403488B (zh) 三氧化二釔燒結體、稀土類燒結體以及耐腐蝕性構件、其製造方法
Stevenson et al. Effect of SiO.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737336

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016737336

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15540683

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE