WO2016113802A1 - フロキサン化合物及びその製造方法 - Google Patents

フロキサン化合物及びその製造方法 Download PDF

Info

Publication number
WO2016113802A1
WO2016113802A1 PCT/JP2015/006260 JP2015006260W WO2016113802A1 WO 2016113802 A1 WO2016113802 A1 WO 2016113802A1 JP 2015006260 W JP2015006260 W JP 2015006260W WO 2016113802 A1 WO2016113802 A1 WO 2016113802A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
fluorofuroxane
general formula
Prior art date
Application number
PCT/JP2015/006260
Other languages
English (en)
French (fr)
Inventor
亮介 松原
祥大 安藤
林 昌彦
Original Assignee
国立大学法人神戸大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学 filed Critical 国立大学法人神戸大学
Priority to CN201580073114.1A priority Critical patent/CN107108533B/zh
Priority to EP15877758.1A priority patent/EP3246322B1/en
Priority to US15/543,547 priority patent/US10053435B2/en
Priority to JP2016569130A priority patent/JP6773948B2/ja
Publication of WO2016113802A1 publication Critical patent/WO2016113802A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D271/00Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
    • C07D271/02Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D271/081,2,5-Oxadiazoles; Hydrogenated 1,2,5-oxadiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4245Oxadiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to a novel furoxan compound and a production method thereof.
  • Nitric oxide is one of the neurotransmitters and is known to have a vasodilating action and a memory enhancing action. For this reason, nitric oxide is being studied for application as a therapeutic drug for epilepsy and Alzheimer's dementia. It is also a substance.
  • furoxane (1,2,5-oxadiazole-2-oxide) has attracted attention as a compound that releases nitric oxide under physiological conditions, and is expected as a novel pharmaceutical lead compound (for example, Non-patent document 1 and Non-patent document 2).
  • An object of the present invention is to provide a furoxane compound having a fluorine atom as a substituent on the ring structure, and a novel nitric oxide donor using the compound.
  • the present inventors have studied to synthesize a furoxane compound having a fluorine atom.
  • an easily prepared furoxane compound is used to synthesize a furoxane compound having a fluorine atom at the 4-position of the furoxane ring in one step. succeeded in.
  • a froxan compound having a fluorine atom at the 3-position was also successfully synthesized.
  • the nitric oxide releasing ability of the synthesized furoxan compound was evaluated, it was found that both compounds can be used as a nitric oxide donor, and the present invention has been achieved.
  • the present invention is a fluorofuroxane compound represented by the following general formula (1) or (2).
  • R 1 is hydrogen, halogen, hydroxyl group, alkyl group having 1 to 30 carbon atoms, alkenyl group having 2 to 30 carbon atoms, alkynyl group having 2 to 30 carbon atoms, or aryl group having 4 to 30 carbon atoms.
  • Ruamino group monoarylamino group having 4 to 30 carbon atoms, diarylamino group having 8 to 30 carbon atoms, carbonylamino group, sulfonylamino group, cyano group, nitro group, alkylsulfinyl group having 1 to 30 carbon atoms, carbon number
  • An arylsulfinyl group having 4 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, an arylthio group having 4 to 30 carbon atoms, a phosphoryl group, a dialkylaminocarbonyl group having 2 to 30 carbon atoms, or a monoalkyl having 1 to 30 carbon atoms Represents an aminocarbonyl group.
  • the present invention is also a nitric oxide donor comprising the fluorofuroxane compound.
  • this invention is represented by General formula (1) including the process of making a nitrofuroxane compound represented by the following general formula (3) react with a fluoride salt, and substituting a nitro group with a fluoro group. It is also a method for producing a fluorofuroxane compound.
  • the present invention provides a fluorofuroxane compound represented by the general formula (2) comprising a step of irradiating the fluorofuroxane compound represented by the general formula (1) with light to isomerize the compound. It is also a manufacturing method.
  • R 1 is the same as R 1 described above.
  • a furoxane compound having a fluorine atom at the 4-position can be synthesized in one step using an easily available furoxane compound as a starting material. Further, a furoxane compound having a fluorine atom at the 3-position can be easily synthesized by irradiating the furoxane compound having a fluorine atom at the 4-position with light.
  • furoxan compounds having a fluorine atom can be suitably used as a nitric oxide donor capable of releasing nitric oxide under physiological conditions, for example.
  • a furoxane compound having a fluorine atom can be easily converted into a furoxane compound having a carbon-based substituent, it can be used as a starting material when synthesizing a furoxane compound having various substituents.
  • the fluorofuroxane compound of the present invention is a compound represented by the following general formula (1) or general formula (2).
  • the fluorofuroxane compound of the general formula (1) has a fluorine atom at the 4-position of the furoxane ring
  • the fluorofuroxane compound of the general formula (2) has a fluorine atom at the 3-position of the furoxane ring.
  • R 1 is not particularly limited. Specifically, hydrogen, halogen, hydroxyl group, alkyl group having 1 to 30 carbon atoms, alkenyl group having 2 to 30 carbon atoms, carbon number An alkynyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, an alkenyloxy group having 2 to 30 carbon atoms, an alkynyloxy group having 2 to 30 carbon atoms, and 6 to 30 carbon atoms Aryloxy groups, alkylsulfonyl groups having 1 to 30 carbon atoms, alkenylsulfonyl groups having 2 to 30 carbon atoms, alkynylsulfonyl groups having 2 to 30 carbon atoms, arylsulfonyl groups having 6 to 30 carbon atoms, and 1 to 30 carbon atoms An acyl group having 1 to 30 carbon atoms, an aryloxy
  • the upper limit of carbon number mentioned above is all set to 30 or less, each is preferably 20 or less, more preferably 10 or less.
  • alkyl in the alkyl group, alkyloxy group, alkylsulfonyl group and the like examples include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl and the like.
  • alkenyl includes ethenyl, propenyl, butenyl and the like
  • alkynyl includes ethynyl, propynyl, butynyl and the like
  • aryl includes phenyl, benzyl, tolyl, xylyl and the like.
  • all of alkyl, alkenyl, and alkynyl may be linear, branched, or cyclic.
  • the 4-nitrofuroxane compound of the general formula (3) which is a starting compound is a furoxane compound having a nitro group at the 4-position of the furoxane ring, and the same substituent R 1 as that of the general formula (1) is present at the 3-position.
  • the 4-nitrofuroxane compound is a known compound, and its synthesis method is already known. For example, for the synthesis of 3-aryl-4-nitrofuroxane, Kunai, A .; Doi, T .; Nagaoka, T .; Yagi, H .; Sasaki, K. Bull. Chem. Soc. Jpn.
  • the 4-fluorofuroxane compound of the general formula (1) is synthesized by substituting the nitro group at the 4-position of the 4-nitrofuroxane compound of the general formula (3) with a fluoro group.
  • a fluoride salt is used as a reaction reagent.
  • the fluoride salt is not particularly limited as long as the nitro group of the nitrofuroxane compound of the general formula (3) can be substituted with a fluoro group.
  • tetraalkylammonium fluoride such as tetrabutylammonium fluoride
  • alkali metal fluorides such as potassium fluoride and cesium fluoride.
  • the amount of the fluoride salt used is not particularly limited, and it may be used in an amount equal to or more than the number of moles of the 4-nitrofuroxane compound of the general formula (3).
  • alkali metal fluoride When an alkali metal fluoride is used as the fluoride salt, it is preferable to use tetraalkylammonium fluoride or tetraalkylphosphonium fluoride as the catalyst. Since these catalysts have high fat solubility and dissolve in organic solvents, the reactivity of alkali metal fluorides with 4-fluorofuroxane compounds can be increased.
  • the solvent used in this substitution reaction is not particularly limited.
  • Common solvents such as ether, tertiary butyl methyl ether, acetic acid, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, dimethyl sulfoxide, 1,4-dioxane can be used.
  • reaction temperature and reaction time in the substitution reaction may be appropriately determined in consideration of the type and reactivity of the 4-nitrofuroxane compound or fluoride salt, for example, ⁇ 78 ° C. to 100 ° C., preferably The reaction can proceed over a period of about 10 minutes to 24 hours at a relatively mild temperature such as ⁇ 20 ° C. to 80 ° C.
  • the 4-fluorofuroxane compound represented by the general formula (1) can be synthesized with a high yield (for example, with a yield of 80 to 100%).
  • the present inventors used a chloride salt such as tetraalkylammonium chloride or alkali metal chloride or a cyanide salt such as tetraalkylammonium cyanide or alkali metal cyanide in the general formula (
  • a chloride salt such as tetraalkylammonium chloride or alkali metal chloride
  • a cyanide salt such as tetraalkylammonium cyanide or alkali metal cyanide
  • the nitro group of the 4-nitrofuroxane compound is converted to a chloro group or a cyano group, and a furoxane compound having a chloro group or a cyano group at the 4-position is synthesized. It is also found that. Specific examples of these reactions are shown in Reference Examples 1 and 2 described later.
  • the wavelength and irradiation time of the light to be used are not particularly limited, and the wavelength and time necessary for isomerization may be set as appropriate. Specific examples include a wavelength of 260 to 600 nm and a time of 1 hour to 24 hours.
  • the temperature conditions for the isomerization are not particularly limited, but examples include about ⁇ 78 to 80 ° C.
  • the 3-fluorofuroxane compound of the general formula (2) can be synthesized with high yield by isomerization using this light irradiation.
  • the fluorofuroxane compound of the present invention represented by the general formula (1) or (2) can be used as an extremely excellent nitric oxide donor.
  • the 3-fluorofuroxane compound of the general formula (2) itself has a very high nitric oxide releasing ability, and thus can be a strong nitric oxide donor.
  • the 4-fluorofuroxan compound of the general formula (1) itself shows almost no nitric oxide releasing ability, but, as described above, it emits extremely high nitric oxide when irradiated with light. Since it is isomerized to a 3-fluorofuroxane compound of the general formula (2) having the ability, the 4-fluorofuroxane compound of the general formula (1) acquires nitric oxide releasing ability when irradiated with light. It can be used as a nitric oxide donor that responds to photostimulation.
  • the fluorofuroxane compound represented by the general formula (1) or the general formula (2) of the present invention is a very useful compound since it can be used as a starting compound to synthesize a furoxane compound having various substituents. That is, by converting the fluorine atom of the fluorofuroxane compound represented by the general formula (1) or the general formula (2) into various substituents, the furoxane compounds having various substituents can be easily synthesized. .
  • the fluorine atom on the furoxane ring is identified by reacting the fluorofuroxane compound of the general formula (1) or the general formula (2) with a silicon compound having a specific substituent R 2. by substituted in the substituent R 2, it can be obtained furoxans compound having a specific substituent R 2.
  • Examples of the specific substituent R 2 include a perfluoroalkyl group such as a cyano group, an alkylethynyl group, an arylethynyl group, and a trifluoromethyl group, a perfluoroaryl group, an allyl group, and a triarylmethyl group.
  • a perfluoroalkyl group such as a cyano group, an alkylethynyl group, an arylethynyl group, and a trifluoromethyl group, a perfluoroaryl group, an allyl group, and a triarylmethyl group.
  • the silicon compound having a specific substituent R 2 for example, silane having a specific substituent R 2 and the trialkyl group.
  • the amount of the silicon compound having the specific substituent R 2 is not particularly limited, and may be used in an amount equal to or more than the number of moles of the fluorofuroxane compound used.
  • the solvent used in this substitution reaction is not particularly limited.
  • Common solvents such as ether, tertiary butyl methyl ether, acetic acid, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, dimethyl sulfoxide, 1,4-dioxane can be used.
  • the reaction temperature and reaction time in the substitution reaction may be appropriately determined in consideration of the type and reactivity of the fluorofuroxane compound or silicon compound, for example, ⁇ 78 ° C. to 100 ° C., preferably ⁇ 20
  • the reaction may be allowed to proceed at a relatively mild temperature such as from 1 to 80 ° C., taking about 1 to 24 hours. Specific examples of these reactions are shown in Reference Examples 3 to 5 described later.
  • Tetrabutylammonium cyanide (105 mg) was added with tetrahydrofuran (0.75 mL), and 3- (4-methylphenyl) -4-nitrofuroxane (66 mg) was added at room temperature. After stirring for 30 minutes, the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel chromatography to obtain 54 mg (yield 89%) of 4-cyano-3- (4-methylphenyl) furoxane.
  • Table 1 shows the nitric oxide release yield of each furoxan compound when it is considered that one molecule of furoxan compound releases one molecule of nitric oxide.
  • the nitric oxide release yield of the 3-fluorofuroxane compound reaches 14.7 times that of the 4-fluorofuroxane compound, and twice that of the 3-chlorofuroxane compound. It has reached the above. This indicates that the 3-fluorofuroxane compound exhibits an extremely high nitric oxide releasing ability. That is, it was found that the 3-fluorofuroxane compound can be used as an extremely strong nitric oxide donor.
  • the 4-fluorofuroxan compound itself exhibits little nitric oxide releasing ability.
  • the 4-fluorofuroxane compound isomerizes to the 3-fluorofuroxane compound when irradiated with light.
  • the 3-fluorofuroxane compound produced by irradiating the 4-fluorofuroxane compound with light exhibits a nitric oxide releasing ability which is 10 times higher than that of the 4-fluorofuroxane compound.
  • the 4-fluorofuroxan compound can be used as a photostimulation-responsive nitric oxide donor that acquires the ability to release nitric oxide only when irradiated with light.
  • Photo-stimulated nitric oxide donors release nitric oxide only when and where they are exposed to light, so they can be used as tools for physiological experiments (eg, nitric oxide is released only in specific parts of cells) And observation of the physiological response), or application as a site-specific cancer therapeutic agent utilizing the cytotoxic action of nitric oxide.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Epidemiology (AREA)
  • Urology & Nephrology (AREA)
  • Hospice & Palliative Care (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Psychiatry (AREA)
  • Pain & Pain Management (AREA)
  • Vascular Medicine (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

本発明により、環構造上の置換基としてフッ素原子を有するフロキサン化合物、及び、同化合物を用いた新規の一酸化窒素ドナーが提供される。本発明は、一般式(1)または(2)で表されるフルオロフロキサン化合物である。式(1)の化合物は、ニトロフロキサン化合物にフッ化物塩を反応させて、ニトロ基をフルオロ基に置換することで製造できる。式(2)の化合物は、式(1)の化合物に光を照射して異性化することで製造できる。

Description

フロキサン化合物及びその製造方法
 本発明は、新規のフロキサン化合物、及び、その製造方法に関する。
 一酸化窒素は、神経伝達物質の1つであり、血管拡張作用や記憶増強作用を有することが知られている。このため、一酸化窒素は、てんかんやアルツハイマー型認知症の治療薬に応用することが検討されており、また、狭心症薬であるニトログリセリンや、勃起不全薬のバイアグラの作用機序の中心物質ともなっている。
 近年、生理的条件下で一酸化窒素を放出する化合物として、フロキサン(1,2,5-オキサジアゾール-2-オキシド)が注目されており、新規の医薬品リード化合物として期待されている(例えば、非特許文献1および非特許文献2を参照)。
 しかし、フロキサン化合物が示す一酸化窒素放出能は、その環構造上に有する置換基の位置及び性質に大きく依存しているにも関わらず、フロキサン化合物の合成法としては限られたものしか知られていない(例えば、特許文献1を参照)ため、従来知られているフロキサン化合物が有する置換基の種類は限定的なものであった。
特開平11-240874号公報
R.A.M. Serafim et al., Current Medicinal Chemistry, 2012, 19, pp. 386-405 Weibin Tang et al., J.Med. Chem., 2014, 57, pp. 7600-7612
 環構造上の置換基としてフッ素原子を有するフロキサン化合物はこれまで報告されていない。
 本発明は、環構造上の置換基としてフッ素原子を有するフロキサン化合物、及び、同化合物を用いた新規の一酸化窒素ドナーを提供することを目的とする。
 本発明者らは、フッ素原子を有するフロキサン化合物を合成すべく検討したところ、入手容易なフロキサン化合物を出発原料として、一段階で、フロキサン環の4位にフッ素原子を有するフロキサン化合物を合成することに成功した。また、合成されたフロキサン化合物を異性化させることで、3位にフッ素原子を有するフロキサン化合物も合成することに成功した。さらに、合成されたフロキサン化合物の一酸化窒素放出能を評価したところ、両化合物は一酸化窒素ドナーとして使用できることを見出し、本発明に至った。
 すなわち本発明は、以下の一般式(1)または(2)で表されるフルオロフロキサン化合物である。
Figure JPOXMLDOC01-appb-C000001
 
(各式中、Rは、水素、ハロゲン、水酸基、炭素数1~30のアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数4~30のアリール基、炭素数1~30のアルコキシ基、炭素数2~30のアルケニルオキシ基、炭素数2~30のアルキニルオキシ基、炭素数4~30のアリールオキシ基、炭素数1~30のアルキルスルホニル基、炭素数2~30のアルケニルスルホニル基、炭素数2~30のアルキニルスルホニル基、炭素数4~30のアリールスルホニル基、炭素数1~30のアシル基、炭素数1~30のアルコキシカルボニル基、炭素数4~30のアリールオキシカルボニル基、チオカルボニル基、カルボキシル基、アミノ基、炭素数1~30のモノアルキルアミノ基、炭素数2~30のジアルキルアミノ基、炭素数4~30のモノアリールアミノ基、炭素数8~30のジアリールアミノ基、カルボニルアミノ基、スルホニルアミノ基、シアノ基、ニトロ基、炭素数1~30のアルキルスルフィニル基、炭素数4~30のアリールスルフィニル基、炭素数1~30のアルキルチオ基、炭素数4~30のアリールチオ基、ホスホリル基、炭素数2~30のジアルキルアミノカルボニル基、または、炭素数1~30のモノアルキルアミノカルボニル基を表す。)
 また、本発明は、前記フルオロフロキサン化合物からなる一酸化窒素ドナーでもある。
 さらに本発明は、以下の一般式(3)で表されるニトロフロキサン化合物にフッ化物塩を反応させて、ニトロ基をフルオロ基に置換する工程を含む、一般式(1)で表されるフルオロフロキサン化合物を製造する方法でもある。
Figure JPOXMLDOC01-appb-C000002
 
(式中、Rは、前述のRと同じである。)
 さらにまた、本発明は、一般式(1)で表されるフルオロフロキサン化合物に光を照射して前記化合物を異性化する工程を含む、一般式(2)で表されるフルオロフロキサン化合物を製造する方法でもある。
Figure JPOXMLDOC01-appb-C000003
 
(式中、Rは、前述のRと同じである。)
 本発明によれば、フロキサン環の3位または4位にフッ素原子が導入された新規のフロキサン化合物を提供することができる。
 4位にフッ素原子を有するフロキサン化合物は、入手容易なフロキサン化合物を出発原料として、一段階で合成することが可能である。また、3位にフッ素原子を有するフロキサン化合物は、4位にフッ素原子を有するフロキサン化合物に光を照射することで容易に合成することができる。
 これらフッ素原子を有するフロキサン化合物は、例えば生理的条件下で、一酸化窒素を放出し得る一酸化窒素ドナーとして好適に利用することができる。
 また、フッ素原子を有するフロキサン化合物は、炭素系置換基を有するフロキサン化合物に容易に変換できるため、様々な置換基を有するフロキサン化合物を合成する際の出発原料となり得る。
 以下に本発明を詳細に説明する。
 (フルオロフロキサン化合物)
 本発明のフルオロフロキサン化合物は、次の一般式(1)または一般式(2)で表される化合物である。一般式(1)のフルオロフロキサン化合物は、フロキサン環の4位にフッ素原子を有し、一般式(2)のフルオロフロキサン化合物は、フロキサン環の3位にフッ素原子を有する。
Figure JPOXMLDOC01-appb-C000004
 
 一般式(1)および(2)において、Rは特に限定されないが、具体的には、水素、ハロゲン、水酸基、炭素数1~30のアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数6~30のアリール基、炭素数1~30のアルコキシ基、炭素数2~30のアルケニルオキシ基、炭素数2~30のアルキニルオキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のアルキルスルホニル基、炭素数2~30のアルケニルスルホニル基、炭素数2~30のアルキニルスルホニル基、炭素数6~30のアリールスルホニル基、炭素数1~30のアシル基、炭素数1~30のアルコキシカルボニル基、炭素数4~30のアリールオキシカルボニル基、チオカルボニル基、カルボキシル基、アミノ基、炭素数1~30のモノアルキルアミノ基、炭素数2~30のジアルキルアミノ基、炭素数4~30のモノアリールアミノ基、炭素数8~30のジアリールアミノ基、カルボニルアミノ基、スルホニルアミノ基、シアノ基、ニトロ基、炭素数1~30のアルキルスルフィニル基、炭素数4~30のアリールスルフィニル基、炭素数1~30のアルキルチオ基、炭素数4~30のアリールチオ基、ホスホリル基、炭素数2~30のジアルキルアミノカルボニル基、または、炭素数1~30のモノアルキルアミノカルボニル基が挙げられる。
 なお、前述した炭素数の上限値はいずれも30以下に設定しているが、各々、好ましくは20以下であり、より好ましくは10以下である。
 アルキル基、アルキルオキシ基、およびアルキルスルホニル基等におけるアルキルとしては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル等が挙げられる。同様に、アルケニルとしては、エテニル、プロペニル、ブテニル等が挙げられ、アルキニルとしては、エチニル、プロピニル、ブチニル等が挙げられ、アリールとしては、フェニル、ベンジル、トリル、キシリル等が挙げられる。また、アルキル、アルケニル、及びアルキニルは、いずれも、直鎖状、分岐状、環状のいずれであってもよい。
 (4-フルオロフロキサン化合物の合成方法)
 一般式(1)で表される4-フルオロフロキサン化合物は、次の反応式で示すように、一般式(3)で表される4-ニトロフロキサン化合物にフッ化物塩を反応させて、ニトロ基をフルオロ基に置換することにより合成できる。
Figure JPOXMLDOC01-appb-C000005
 
 出発化合物である一般式(3)の4-ニトロフロキサン化合物は、フロキサン環の4位にニトロ基を有するフロキサン化合物であり、3位には、一般式(1)と同じ置換基Rを有する。4-ニトロフロキサン化合物は公知の化合物であり、その合成法はすでに知られている。例えば、3-アリールー4-ニトロフロキサンの合成に関しては、
Kunai, A.; Doi, T.; Nagaoka,T.; Yagi, H.; Sasaki, K. Bull. Chem. Soc. Jpn. 1990, 63, 1843-1844に開示されており、
3-アルキルー4-ニトロフロキサンの合成に関しては、
Feng, C.; Loh, T. -P. Angew. Chem. Int. Ed. 2013, 52, 12414-12417、及び、
Fershtat, L. L.; Struchkova, M. I.; Goloveshkin, A. S.; Bushmarinov, I.
S.; Makhova, N. N. Heteroatom Chem. 2014, 25, 226-237に開示されている。
 一般式(3)の4-ニトロフロキサン化合物の4位にあるニトロ基を、フルオロ基に置換することで、一般式(1)の4-フルオロフロキサン化合物が合成される。この置換反応では、反応試薬として、フッ化物塩を使用する。
 フッ化物塩としては、一般式(3)のニトロフロキサン化合物のニトロ基をフルオロ基に置換できる限り特に限定されないが、具体的には、フッ化テトラブチルアンモニウム等のフッ化テトラアルキルアンモニウムや、フッ化カリウム、フッ化セシウム等のアルカリ金属フルオライド等が挙げられる。フッ化物塩の使用量としては特に限定されず、一般式(3)の4-ニトロフロキサン化合物の使用モル数と等モル以上を使用すればよい。
 フッ化物塩としてアルカリ金属フルオライドを使用する場合には、触媒として、フッ化テトラアルキルアンモニウムやフッ化テトラアルキルホスホニウムを使用することが好ましい。これらの触媒は脂溶性が高く、有機溶媒に溶解するため、アルカリ金属フルオライドの4-フルオロフロキサン化合物に対する反応性を高めることができる。
 この置換反応で使用する溶媒としては特に限定されず、例えば、テトラヒドロフラン、ジメチルホルムアミド、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、ペンタン、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、アセトニトリル、ジエチルエーテル、シクロペンチルメチルエーテル、ターシャリーブチルメチルエーテル、酢酸、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、ジメチルスルホキシド、1,4-ジオキサン等、一般的な溶媒を使用することができる。
 また、前記置換反応における反応温度および反応時間は、4-ニトロフロキサン化合物またはフッ化物塩の種類及び反応性等を考慮して適宜決定すればよいが、例えば、-78℃~100℃、好ましくは-20℃~80℃といった比較的穏和な温度で、10分間~24時間程度の時間をかけて反応を進行させることができる。
 この置換反応によって、一般式(1)で表される4-フルオロフロキサン化合物を高収率で(例えば80~100%収率で)合成することができる。
 なお、本発明者らは、フッ化物塩の代りに、塩化テトラアルキルアンモニウムやアルカリ金属クロライド等の塩化物塩、又は、シアン化テトラアルキルアンモニウムやアルカリ金属シアニド等のシアン化物塩を、一般式(3)で表される4-ニトロフロキサン化合物に反応させると、4-ニトロフロキサン化合物のニトロ基がクロロ基又はシアノ基に変換され、4位にクロロ基又はシアノ基を有するフロキサン化合物が合成されることも見出している。これらの反応の具体例は、後述する参考例1及び参考例2で示した。
Figure JPOXMLDOC01-appb-C000006
 
 (3-フルオロフロキサン化合物の合成方法)
 以上で説明した一般式(1)の4-フルオロフロキサン化合物に対し光を照射すると、当該化合物は異性化し、一般式(2)で表される3-フルオロフロキサン化合物を与えることができる。
Figure JPOXMLDOC01-appb-C000007
 
 使用する光の波長及び照射時間は特に限定されず、異性化に必要な波長及び時間を適宜設定すればよい。具体例として、波長は260~600nm、時間は1時間~24時間を挙げることができる。
 異性化の際には、一般式(1)の4-フルオロフロキサン化合物を、適宜、溶媒に溶解した状態で、光を照射することが好ましい。異性化の際の温度条件は特に限定されないが、例えば、-78~80℃程度が挙げられる。
 この光照射を利用した異性化によって、高収率で、一般式(2)の3-フルオロフロキサン化合物を合成することができる。
 (一酸化窒素ドナー)
 一般式(1)または(2)で表される本発明のフルオロフロキサン化合物は、極めて優れた一酸化窒素ドナーとして利用できる。
 詳細に説明すると、一般式(2)の3-フルオロフロキサン化合物は、これ自体が、極めて高い一酸化窒素放出能を有するので、強力な一酸化窒素ドナーとなり得る。一方、一般式(1)の4-フルオロフロキサン化合物は、これ自体は、一酸化窒素放出能をほとんど示さないが、上述したように、光が照射されることで、極めて高い一酸化窒素放出能を有する一般式(2)の3-フルオロフロキサン化合物に異性化されるので、一般式(1)の4-フルオロフロキサン化合物は、光が照射されることで一酸化窒素放出能を獲得する、光刺激応答型の一酸化窒素ドナーとして利用できる。
 (本発明のフルオロフロキサン化合物を利用した反応例)
 本発明の一般式(1)または一般式(2)で表されるフルオロフロキサン化合物は、これを出発化合物として、種々の置換基を有するフロキサン化合物を合成できるため極めて有用な化合物である。すなわち、一般式(1)または一般式(2)で表されるフルオロフロキサン化合物が有するフッ素原子を、種々の置換基に変換することで、種々の置換基を有するフロキサン化合物を容易に合成できる。
 具体例の1つとして、一般式(1)または一般式(2)のフルオロフロキサン化合物に対して、特定置換基Rを有するケイ素化合物を反応させることで、フロキサン環上のフッ素原子が特定置換基Rに置換されることで、特定置換基Rを有するフロキサン化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000008
 
 特定置換基Rとしては、例えば、シアノ基、アルキルエチニル基、アリールエチニル基、トリフルオロメチル基等のパーフルオロアルキル基、パーフルオロアリール基、アリル基、トリアリールメチル基等が挙げられる。また、特定置換基Rを有するケイ素化合物としては、例えば、特定置換基Rとトリアルキル基を有するシラン等が挙げられる。特定置換基Rを有するケイ素化合物の使用量としては特に限定されず、フルオロフロキサン化合物の使用モル数と等モル以上を使用すればよい。
 また、この反応の際には、触媒として、上述したフッ化テトラアルキルアンモニウムやフッ化テトラアルキルホスホニウムを使用することが好ましい。
 この置換反応で使用する溶媒としては特に限定されず、例えば、テトラヒドロフラン、ジメチルホルムアミド、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、ペンタン、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、アセトニトリル、ジエチルエーテル、シクロペンチルメチルエーテル、ターシャリーブチルメチルエーテル、酢酸、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、ジメチルスルホキシド、1,4-ジオキサン等、一般的な溶媒を使用することができる。
 また、前記置換反応における反応温度および反応時間は、フルオロフロキサン化合物またはケイ素化合物の種類及び反応性等を考慮して適宜決定すればよいが、例えば、-78℃~100℃、好ましくは-20℃~80℃といった比較的穏和な温度で、1時間~24時間程度の時間をかけて反応を進行させればよい。これらの反応の具体例は後述する参考例3~5で示した。
 このように、本発明のフルオロフロキサン化合物を出発化合物として、多種多様な炭素系置換基を有するフロキサン化合物を合成することが可能となる。これにより、てんかん、アルツハイマー型認知症、心臓病など、一酸化窒素が関わる病態に対する医薬品開発を迅速に進めることが可能になると期待される。
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 (実施例1)4-フルオロフロキサン化合物の合成
Figure JPOXMLDOC01-appb-C000009
 
 3-(4-メチルフェニル)-4-ニトロフロキサン(500mg)をテトラヒドロフラン(4.6mL)に溶解し、0℃に冷却した。フッ化テトラブチルアンモニウムのテトラヒドロフラン溶液(1M,2.9mL)をゆっくり滴下した。0℃で1時間撹拌後、塩化アンモニウム飽和水溶液を加え、塩化メチレンで抽出した。無水硫酸ナトリウムにより乾燥、固体をろ過にて除去した後、溶媒を減圧留去した。得られた残渣をシリカゲルクロマトグラフィーにて精製し、4-フルオロ-3-(4-メチルフェニル)フロキサンを404mg(収率92%)得た。
 (実施例2)4-フルオロフロキサン化合物の合成
Figure JPOXMLDOC01-appb-C000010
 
 4-ニトロ-3-ペンチルフロキサン(40.2mg)をテトラヒドロフラン(0.5mL)に溶解し、0℃に冷却した。フッ化テトラブチルアンモニウムのテトラヒドロフラン溶液(1M,0.26mL)をゆっくり滴下した。0℃で1時間撹拌後、塩化アンモニウム飽和水溶液を加え、塩化メチレンで抽出した。無水硫酸ナトリウムにより乾燥、固体をろ過にて除去した後、溶媒を減圧留去した。得られた残渣をシリカゲルクロマトグラフィーにて精製し、4-フルオロ-3-ペンチルフロキサンを31.3mg(収率90%)得た。
 (参考例1)4-クロロフロキサン化合物および3-クロロフロキサン化合物の合成
Figure JPOXMLDOC01-appb-C000011
 
 フラスコに塩化テトラブチルアンモニウム(111.2mg,0.4mmol)と3-(4-メチルフェニル)-4-ニトロフロキサン(44.2mg,0.2mmol)を量りとり、ジメチルホルムアミド(0.5mL)を加えた。反応溶液を密閉し、80℃で14時間撹拌した。室温に冷却し、水(2mL)とジエチルエーテル(2mL)を加えた。分液した後、水層をさらにジエチルエーテルで3回抽出し、合わせた有機層を無水硫酸ナトリウムを加えて乾燥した。ろ過した後、溶媒を減圧留去し、得られた残渣をシリカゲルクロマトグラフィーにて精製したところ、4-クロロー3-(4-メチルフェニル)フロキサンを20.2mg(48%収率)で得た。同時に3-クロロー4-(4-メチルフェニル)フロキサンを1.7mg(4%収率)で得た。
 (参考例2)4-シアノフロキサン化合物の合成
Figure JPOXMLDOC01-appb-C000012
 
 テトラブチルアンモニウムシアニド(105mg)にテトラヒドロフラン(0.75mL)を加え、室温にて3-(4-メチルフェニル)-4-ニトロフロキサン(66mg)を加えた。30分間撹拌後、溶媒を減圧留去した。得られた残渣をシリカゲルクロマトグラフィーにて精製し、4-シアノ-3-(4-メチルフェニル)フロキサンを54mg(収率89%)得た。
 (実施例3)3-フルオロフロキサン化合物の合成
Figure JPOXMLDOC01-appb-C000013
 
 パイレックス(登録商標)ガラス製フラスコに4-フルオロ-3-(4-メチルフェニル)フロキサン(51.7mg,0.23mmol)を入れ、ベンゼン8mLを加えた。50mmHgに減圧しながら1分間超音波により脱気した。アルゴン雰囲気下、光を6時間照射した。光は300~400nmの波長のものを用いた。減圧下溶媒を留去し、得られた残渣をシリカゲルクロマトグラフィーにて精製し、3-フルオロー4-(4-メチルフェニル)フロキサン(37.6mg,73%収率)を得た。
 (参考例3)4-フルオロフロキサン化合物を出発化合物とする4-シアノフロキサン化合物の合成
Figure JPOXMLDOC01-appb-C000014
 
 4-フルオロ-3-(4-メチルフェニル)フロキサン(38.8mg)とトリメチルシリルシアニド(0.0325mL)をテトラヒドロフラン(0.45mL)に溶解させ、室温にてフッ化テトラブチルアンモニウムのテトラヒドロフラン溶液(1M,0.04mL)をゆっくり滴下した。1時間撹拌後、溶媒を減圧留去した。得られた残渣をシリカゲルクロマトグラフィーにて精製し、4-シアノ-3-(4-メチルフェニル)フロキサンを28.2mg(収率70%)得た。
 (参考例4)4-フルオロフロキサン化合物を出発化合物とする4-トリフルオロメチルフロキサン化合物の合成
Figure JPOXMLDOC01-appb-C000015
 
 4-フルオロ-3-(4-メチルフェニル)フロキサン(38.8mg)とトリメチルシリルトリフルオロメタン(0.089mL)をテトラヒドロフラン(0.45mL)に溶解させ、室温にてフッ化テトラブチルアンモニウムのテトラヒドロフラン溶液(1M,0.01mL)をゆっくり滴下した。1時間撹拌後、溶媒を減圧留去した。得られた残渣をシリカゲルクロマトグラフィーにて精製し、4-トリフルオロメチル-3-(4-メチルフェニル)フロキサンを11.9mg(収率16%)得た。
 (参考例5)4-フルオロフロキサン化合物を出発化合物とする4-(2-フェニルエチニル)フロキサン化合物の合成
Figure JPOXMLDOC01-appb-C000016
 
 4-フルオロ-3-(4-メチルフェニル)フロキサン(19.4mg,0.1mmol)にテトラヒドロフラン0.25mLを加えた。その溶液に、1-フェニルー2-トリメチルシリルアセチレン(25.6μL,0.13mmol)を加え、フッ化テトラブチルアンモニウムの1Mテトラヒドロフラン溶液(20μL,0.02mmol)を加えた。室温にて90分間撹拌した後、溶媒を減圧留去した。得られた残渣をシリカゲルクロマトグラフィーにて精製し、3-(4-メチルフェニル)-4-(2-フェニルエチニル)フロキサン(17.3mg,63%収率)を得た。
 (評価例)
 4-フルオロ-3-(4-メチルフェニル)フロキサン、3-フルオロ-4-(4-メチルフェニル)フロキサン、4-クロロ-3-(4-メチルフェニル)フロキサン、および、3-クロロ-4-(4-メチルフェニル)フロキサンの一酸化窒素放出能を以下の手法により評価した。
 (実験手法)
 50mMリン酸緩衝液(pH7.4)に、各フロキサン化合物とL-システインをそれぞれ0.1mM、5mMとなるように溶解させ、全体で6mLの溶液を調製した。その溶液を37℃で1時間撹拌した後、3mLの溶液を吸光セルに加えGriess試薬を250μL加えた。室温で10分放置した後、吸光度を測定した。一酸化窒素放出収率は、あらかじめ亜硝酸ナトリウムの溶液を用いて作成した検量線から求めた。
 (実験結果)
 一分子のフロキサン化合物が一分子の一酸化窒素を放出すると考えた時の各フロキサン化合物の一酸化窒素放出収率を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 
 表1より、3-フルオロフロキサン化合物の一酸化窒素放出収率は、4-フルオロフロキサン化合物のそれに対して14.7倍に達し、3-クロロフロキサン化合物のそれと比較しても2倍以上に達している。このことから、3-フルオロフロキサン化合物は、極めて高い一酸化窒素放出能を示すことが分かる。すなわち、3-フルオロフロキサン化合物は、極めて強力な一酸化窒素ドナーとして利用できることが分かった。
 これに対し、4-フルオロフロキサン化合物は、これ自体では、一酸化窒素放出能をほとんど示さないことが分かる。しかし、実施例3で示したように、4-フルオロフロキサン化合物は、光が照射されることで、3-フルオロフロキサン化合物に異性化する。4-フルオロフロキサン化合物に光を照射することで生成した3-フルオロフロキサン化合物は、4-フルオロフロキサン化合物より10倍以上も高い一酸化窒素放出能を示すので、この性質を利用して、4-フルオロフロキサン化合物は、光が照射されて初めて一酸化窒素放出能を獲得する、光刺激応答型の一酸化窒素ドナーとして利用できる。
 このようなフロキサン骨格を有する光刺激応答型の一酸化窒素ドナーはこれまで報告されておらず、本発明者らが今回はじめて創製したものである。
 光刺激応答型の一酸化窒素ドナーは、光を照射した時および場所でのみ一酸化窒素を放出するので、生理学実験のツールとしての利用(例えば、細胞の特定の部分でのみ一酸化窒素を放出させ、その生理反応を観察するなど)、または、一酸化窒素の細胞毒性作用を利用した部位特異的がん治療薬としての応用が期待できる。

Claims (4)

  1.  以下の一般式(1)または(2)で表されるフルオロフロキサン化合物。
    Figure JPOXMLDOC01-appb-C000017
     
    (各式中、Rは、水素、ハロゲン、水酸基、炭素数1~30のアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数4~30のアリール基、炭素数1~30のアルコキシ基、炭素数2~30のアルケニルオキシ基、炭素数2~30のアルキニルオキシ基、炭素数4~30のアリールオキシ基、炭素数1~30のアルキルスルホニル基、炭素数2~30のアルケニルスルホニル基、炭素数2~30のアルキニルスルホニル基、炭素数4~30のアリールスルホニル基、炭素数1~30のアシル基、炭素数1~30のアルコキシカルボニル基、炭素数4~30のアリールオキシカルボニル基、チオカルボニル基、カルボキシル基、アミノ基、炭素数1~30のモノアルキルアミノ基、炭素数2~30のジアルキルアミノ基、炭素数4~30のモノアリールアミノ基、炭素数8~30のジアリールアミノ基、カルボニルアミノ基、スルホニルアミノ基、シアノ基、ニトロ基、炭素数1~30のアルキルスルフィニル基、炭素数4~30のアリールスルフィニル基、炭素数1~30のアルキルチオ基、炭素数4~30のアリールチオ基、ホスホリル基、炭素数2~30のジアルキルアミノカルボニル基、または、炭素数1~30のモノアルキルアミノカルボニル基を表す。)
  2.  請求項1に記載のフルオロフロキサン化合物からなる一酸化窒素ドナー。
  3.  以下の一般式(3)で表されるニトロフロキサン化合物にフッ化物塩を反応させて、ニトロ基をフルオロ基に置換する工程を含む、請求項1に記載の一般式(1)で表されるフルオロフロキサン化合物を製造する方法。
    Figure JPOXMLDOC01-appb-C000018
     
    (式中、Rは、請求項1に規定のRと同じである。)
  4.  請求項1に記載の一般式(1)で表されるフルオロフロキサン化合物に光を照射して前記化合物を異性化する工程を含む、請求項1に記載の一般式(2)で表されるフルオロフロキサン化合物を製造する方法。
    Figure JPOXMLDOC01-appb-C000019
     
    (式中、Rは、請求項1に規定のRと同じである。)
PCT/JP2015/006260 2015-01-14 2015-12-15 フロキサン化合物及びその製造方法 WO2016113802A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580073114.1A CN107108533B (zh) 2015-01-14 2015-12-15 氧化呋咱化合物及其制造方法
EP15877758.1A EP3246322B1 (en) 2015-01-14 2015-12-15 Furoxan compound, and manufacturing method for same
US15/543,547 US10053435B2 (en) 2015-01-14 2015-12-15 Furoxan compound, and manufacturing method for same
JP2016569130A JP6773948B2 (ja) 2015-01-14 2015-12-15 フロキサン化合物及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015004700 2015-01-14
JP2015-004700 2015-01-14

Publications (1)

Publication Number Publication Date
WO2016113802A1 true WO2016113802A1 (ja) 2016-07-21

Family

ID=56405371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006260 WO2016113802A1 (ja) 2015-01-14 2015-12-15 フロキサン化合物及びその製造方法

Country Status (5)

Country Link
US (1) US10053435B2 (ja)
EP (1) EP3246322B1 (ja)
JP (1) JP6773948B2 (ja)
CN (1) CN107108533B (ja)
WO (1) WO2016113802A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001422A1 (en) * 1992-07-03 1994-01-20 Chiesi Farmaceutici S.P.A. Pharmaceutical compositions having antiaggregant and vasodilating activities
CN101812015A (zh) * 2010-04-20 2010-08-25 江苏工业学院 一种对氟吡啶的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4220264A1 (de) * 1992-06-20 1993-12-23 Cassella Ag Phenyl-1,2,5-oxadiazol-carbonamid-2-oxide
JPH11240874A (ja) 1998-02-24 1999-09-07 Ube Ind Ltd ジカルボニルフロキサン化合物及びそれを有効成分とする農園芸用の殺菌剤

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001422A1 (en) * 1992-07-03 1994-01-20 Chiesi Farmaceutici S.P.A. Pharmaceutical compositions having antiaggregant and vasodilating activities
CN101812015A (zh) * 2010-04-20 2010-08-25 江苏工业学院 一种对氟吡啶的制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Tetrabutylammonium salt induced denitration of nitropyridines: synthesis of fluoro-, hydroxy-, and methoxypyridines", ORGANIC LETTERS, vol. 7, no. 4, 2005, pages 577 - 579, XP055462591 *
ANDRIANOV, V. G. ET AL.: "Influence of substituents on the relative stability of furoxan isomers", KHIMIA GETEROCIKICHESKIH SOEDINENII, vol. 2, 1986, pages 264 - 266, XP009504421 *
CALVINO, ROSELLA ET AL.: "Syntheses, structures and antimicrobial properties of some halofuroxans and related furazans", ARCHIV DER PHARMAZIE, vol. 317, no. 8, 1984, Weinheim, Germany, pages 695 - 701, XP009504420 *
CENA, CLARA ET AL.: "Use of the furoxan (1,2,5- oxadiazole 2-oxide) system in the design of new NO -donor antioxidant hybrids", ARKIVOC, 2006, pages 301 - 309, XP008141654 *
CLARK, JAMES H. ET AL.: "Fluorodenitrations using tetrabutylammonium fluoride", TETRAHEDRON LETTERS, vol. 26, no. 18, 1985, pages 2233 - 2236, XP002011362, DOI: doi:10.1016/S0040-4039(00)98970-6 *
FERIOLI, R. ET AL.: "A new class of furoxan derivatives as NO donors: mechanism of action and biological activity", BRITISH JOURNAL OF PHARMACOLOGY, vol. 114, no. 4, 1995, pages 816 - 820, XP009077133 *
PASINSZKI, TIBOR ET AL.: "Dimerisation of nitrile oxides: a quantum-chemical study", PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 11, no. 26, 2009, pages 5263 - 5272, XP055462583 *

Also Published As

Publication number Publication date
EP3246322A4 (en) 2018-07-25
US20180009771A1 (en) 2018-01-11
EP3246322A1 (en) 2017-11-22
JP6773948B2 (ja) 2020-10-21
EP3246322B1 (en) 2021-01-27
JPWO2016113802A1 (ja) 2017-10-26
CN107108533B (zh) 2020-09-18
US10053435B2 (en) 2018-08-21
CN107108533A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
EP3305769B1 (en) Method for preparation of (7-phenoxy-4-hydroxy-1-methyl-isoquinoline-3-carbonyl)-glycine (roxedustat) and its intermediates based on simultaneous opening of oxazolic ring, fission of ether and creation of imine
JP6987064B2 (ja) 1−[2−(2,4−ジメチル−フェニルスルファニル)−フェニル]ピペラジンの合成
JP6225358B2 (ja) 2−アミノ置換ベンズアルデヒド化合物を製造する方法
JP6773948B2 (ja) フロキサン化合物及びその製造方法
BR112014018985B1 (pt) método para preparar um composto
JP6027910B2 (ja) 触媒の製造方法、及び光学活性アンチ−1,2−ニトロアルカノール化合物の製造方法
CN102144046A (zh) 2-苯甲基-4-(3,4-二氯苯基)-5-甲基咪唑化合物
JPS5949221B2 (ja) 3−アシルアミノ−4−ホモイソツイスタンの製造法
JPH061776A (ja) 置換ピラジンカルボニトリルの製造方法
RU2624729C1 (ru) Способ получения 4,4'-(пропандиамидо)дибензоата натрия
JP4899385B2 (ja) 3−アミノメチルオキセタン化合物の製法
JP7185624B2 (ja) 光学活性体の製造方法、光学活性体、キラル分子の製造方法およびキラル分子
JPS5936633B2 (ja) ベンゾクマリン誘導体の製造法
JP3495774B2 (ja) 1−ヒドロキシインドール類の製法
JP2016074605A (ja) アミノ酸の製造方法およびアミノ酸合成キット
JP2015136665A (ja) 新規ビスイミダゾリン触媒およびこれを用いる水中での光学活性プロパルギルアミンの製造方法
SU1616918A1 (ru) Способ получени 5-амино-4-циано-2-алкил(арил)-2,3-дигидрофуранов
JPS59181251A (ja) ベンゾフエノン−2−カルバメ−ト誘導体
JP2019135224A (ja) ヨードシクロプロパン化合物およびその製造法
JPS5858335B2 (ja) アルフア − チカンアセトンノセイゾウホウ
WO2011065351A1 (ja) シクロヘキサン誘導体の製造方法
JPS6159309B2 (ja)
JP2011020944A (ja) ポジトロン放出源化合物の製造方法
JPS61100546A (ja) α−芳香族基置換アルカン酸類の製法
JP2016074729A (ja) イミダゾリウム塩及びそれを用いた不斉合成触媒並びにイミダゾリウム塩の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569130

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15543547

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015877758

Country of ref document: EP