WO2016113794A1 - 油井用継目無ステンレス鋼管およびその製造方法 - Google Patents

油井用継目無ステンレス鋼管およびその製造方法 Download PDF

Info

Publication number
WO2016113794A1
WO2016113794A1 PCT/JP2015/006001 JP2015006001W WO2016113794A1 WO 2016113794 A1 WO2016113794 A1 WO 2016113794A1 JP 2015006001 W JP2015006001 W JP 2015006001W WO 2016113794 A1 WO2016113794 A1 WO 2016113794A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
less
stainless steel
seamless
seamless stainless
Prior art date
Application number
PCT/JP2015/006001
Other languages
English (en)
French (fr)
Inventor
和樹 藤村
石黒 康英
城吾 後藤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to BR112017014690-8A priority Critical patent/BR112017014690B1/pt
Priority to EP15877751.6A priority patent/EP3246418B1/en
Priority to MX2017009205A priority patent/MX2017009205A/es
Priority to JP2016524542A priority patent/JP6229794B2/ja
Priority to US15/543,813 priority patent/US11193179B2/en
Publication of WO2016113794A1 publication Critical patent/WO2016113794A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a seamless stainless steel pipe suitable as an oil well pipe, and more particularly to a seamless stainless steel pipe excellent in corrosion resistance and having high strength and high toughness, and a production method capable of stably obtaining the same. It is.
  • oil resources that is, crude oil and natural gas
  • oil fields are being developed in areas where extraction is difficult.
  • oil wells that is, crude oil and natural gas
  • CO 2 and Cl - in the oil field for mine oil resources containing such because it is easy corrosion proceeds, OCTG corrosion resistance is required.
  • duplex stainless steel As a well pipe that can be used in a hot corrosive environment, a duplex stainless steel pipe has been developed.
  • duplex stainless steel adds a large amount of alloying elements, which not only increases the raw material cost, but also deteriorates the hot workability in the manufacturing process of the seamless steel pipe, resulting in decreased productivity.
  • the manufacturing cost of the seamless steel pipe increases.
  • Patent Document 1 a billet having a predetermined component is used to make a seamless steel pipe by hot working, and further, by quenching and tempering, it is excellent in corrosion resistance and has both high strength and high toughness.
  • a technique for obtaining a stainless steel pipe is disclosed. However, this technique does not take into account the holding time in tempering, and the strength and toughness of the seamless stainless steel pipe vary depending on the holding time, so there is room for improvement from the viewpoint of stably obtaining the desired strength. ing.
  • Patent Document 2 a billet having a predetermined component is used to perform a hot working of a predetermined reduction amount to make a seamless steel pipe, and further, quenching and tempering are performed to provide excellent corrosion resistance, and high strength and high toughness.
  • a technique for obtaining a seamless stainless steel pipe having both of the above is disclosed. However, this technique does not take into account the cooling stop temperature in quenching, and the strength of the seamless stainless steel pipe varies depending on the cooling stop temperature, so there is room for improvement from the viewpoint of stably obtaining the desired strength. ing.
  • a seamless stainless steel pipe for oil wells having high toughness and excellent corrosion resistance, and a method for producing a seamless stainless steel pipe for oil wells excellent in hot workability, and the oil well seamless obtained by the production method The object is to provide a stainless steel pipe.
  • the good corrosion resistance, CO 2 and Cl - even in corrosive environments containing means to indicate the corrosion resistance at a high temperature of at least 230 ° C..
  • the present inventor examined the influence of quenching and tempering on the toughness of seamless stainless steel pipes. I understood. Then, when the structure of the seamless stainless steel pipe having a large Mo content and toughness deteriorated by tempering for a long time was investigated, it was found that a large amount of intermetallic compounds were precipitated in the martensite phase. This phenomenon means that after a martensite phase is generated by quenching, an intermetallic compound is precipitated by tempering.
  • the intermetallic compound precipitated in the martensite phase was investigated in detail.
  • the intermetallic compound has a high concentration of Mo
  • the particle size of the intermetallic compound greatly affects the toughness of the seamless stainless steel pipe.
  • density The number of intermetallic compounds per unit area (mm 2 ) (hereinafter referred to as density) is desirably small, and this density is the Mo content [% Mo] (mass%) of the seamless stainless steel pipe.
  • density The number of intermetallic compounds per unit area (mm 2 ) (hereinafter referred to as density) is desirably small, and this density is the Mo content [% Mo] (mass%) of the seamless stainless steel pipe.
  • P (Mo, t) [% Mo] ⁇ (t + 550) calculated (see FIG. 1).
  • an intermetallic compound having a particle size of 0.5 ⁇ m or more present in the martensite phase is added 2 ⁇ 10 6. It is necessary to suppress the density to 4 pieces / mm 2 or less, and in order to obtain the structure, a parameter calculated using the Mo content [% Mo] of the oil well seamless stainless steel pipe and the tempering holding time t. It is necessary to adjust the Mo content [% Mo] and the tempering holding time t of the oil well seamless stainless steel pipe so that P (Mo, t) is 2100 or less. And in order to manufacture the oil well seamless stainless steel pipe stably, it is necessary to perform component design for improving hot workability.
  • the present invention has been made based on such knowledge.
  • the method for producing a seamless stainless steel pipe for oil wells of the present invention is, in mass%, C: 0.005 to 0.06%, Si: 0.05 to 0.5%, Mn: 0.2 to 1.8%, P: 0.03% or less, S: 0.005 %, Cr: 15.5 to 18.0%, Mo: 1.0 to 3.5%, Ni: 1.5 to 5.0%, V: 0.02 to 0.2%, Al: 0.002 to 0.05%, N: 0.01 to 0.15%, O: 0.006% or less And further containing one or two selected from W: 0.5-3.0%, Cu: 0.5-3.5%, and the C, Si, Mn, Cr, Mo, Ni, N, W
  • the content of Cu satisfies the following formulas (1) and (2), the billet having the composition consisting of Fe and inevitable impurities is heated, and further subjected to hot working to obtain a seamless steel pipe, After the seamless steel pipe is cooled to room temperature at a cooling rate of air cooling or higher, the seamless steel pipe is heated to 850 ° C.
  • billet in addition to the above composition, in mass%, Nb: 0.2% or less, Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% It is preferable to contain one or more selected from the following, and it is preferable to contain Ca: 0.01% or less.
  • the seamless stainless steel pipe for oil wells of the present invention is in mass%, C: 0.005-0.06%, Si: 0.05-0.5%, Mn: 0.2-1.8%, P: 0.03% or less, S: 0.005% or less, Contains Cr: 15.5 to 18.0%, Mo: 1.0 to 3.5%, Ni: 1.5 to 5.0%, V: 0.02 to 0.2%, Al: 0.002 to 0.05%, N: 0.01 to 0.15%, O: 0.006% or less Further, it contains one or two selected from W: 0.5 to 3.0%, Cu: 0.5 to 3.5%, and the above-mentioned C, Si, Mn, Cr, Mo, Ni, N, W, Cu The content satisfies the following formulas (1) and (2), the balance is composed of Fe and inevitable impurities, and 10 to 60% by volume of ferrite phase and 0 to 20% by volume of austenite phase , And the balance is a martensite phase, and the density of the intermetallic compound having a particle size of 0.5 ⁇ m or more
  • Nb 0.2% or less
  • Ti 0.3% or less
  • Zr 0.2% or less
  • B 0.01% or less are selected in mass%. It is preferable to contain 1 type (s) or 2 or more types, and also it is preferable to contain Ca: 0.01% or less.
  • the composition of the seamless stainless steel pipe for oil wells of the present invention will be described. Since the seamless steel pipe is generally manufactured by hot working a billet, the composition of the oil well seamless stainless steel pipe of the present invention is the same as the composition of the billet as the material. Hereinafter, “mass%” in the composition is simply expressed as “%”.
  • C 0.005-0.06%
  • C is an element having an action of increasing the strength of seamless stainless steel pipes for oil wells, and the effect cannot be obtained when the C content is less than 0.005%.
  • the C content exceeds 0.06%, the corrosion resistance is significantly reduced. Therefore, the C content is 0.005 to 0.06%.
  • the C content is 0.01 to 0.04%.
  • Si 0.05-0.5%
  • Si is an element that functions as a deoxidizer in the process of producing molten steel, which is a raw material of seamless stainless steel pipes for oil wells. If the Si content is less than 0.05%, the effect cannot be obtained. On the other hand, when the Si content exceeds 0.5%, not only corrosion due to CO 2 is likely to proceed, but also the hot workability in the production process of seamless stainless steel pipes for oil wells decreases. Therefore, the Si content is 0.05 to 0.5%. Preferably, the Si content is 0.1 to 0.4%.
  • Mn 0.2-1.8% Mn is an element having an effect of increasing the strength of a seamless stainless steel pipe for oil wells, and a desired strength cannot be obtained when the Mn content is less than 0.2%. On the other hand, if the Mn content exceeds 1.8%, the toughness decreases. Therefore, the Mn content is 0.2 to 1.8%. Preferably, the Mn content is 0.2 to 0.8%. More preferably, the Mn content is 0.2 to 0.40%.
  • P 0.03% or less
  • P is an element that lowers the corrosion resistance of seamless stainless steel pipes for oil wells. If the P content exceeds 0.03%, the corrosion resistance decreases significantly. Therefore, the P content is 0.03% or less. However, in order to reduce the P content to less than 0.005%, it takes a long time for the de-P treatment in the process of melting molten steel, leading to an increase in the production cost of seamless stainless steel pipes for oil wells. Therefore, the P content is preferably 0.005% or more.
  • S 0.005% or less
  • S is an element that decreases the hot workability in the production process of oil well seamless stainless steel pipes. If the S content exceeds 0.005%, it will hinder the production of seamless stainless steel pipes for oil wells. Come. Therefore, the S content is 0.005% or less. However, in order to reduce the S content to less than 0.0005%, it takes a long time for the de-S treatment in the process of melting the molten steel, leading to an increase in the manufacturing cost of seamless stainless steel pipes for oil wells. Therefore, the S content is preferably 0.0005% or more.
  • Cr 15.5-18.0% Cr is an element having an action of improving the corrosion resistance of seamless stainless steel pipes for oil wells, and contributes to prevention of corrosion caused by CO 2 in a high temperature environment. If the Cr content is less than 15.5%, the effect cannot be obtained. On the other hand, when the Cr content exceeds 18.0%, the hot workability in the production process of seamless stainless steel pipes for oil wells decreases. On the other hand, if the Cr content exceeds 18.0%, the strength of seamless stainless steel pipes for oil wells decreases. Therefore, the Cr content is 15.5 to 18.0%. Preferably, the Cr content is 16.0 to 17.5%, more preferably the Cr content is 16.5 to 17.0%.
  • Mo 1.0-3.5%
  • Mo is an element having an effect of improving the corrosion resistance of the oil well seamless stainless steel pipe, especially Cl - contributing to due to the prevention of pitting. If the Mo content is less than 1.0%, the effect cannot be obtained. On the other hand, when the Mo content exceeds 3.5%, the strength decreases. On the other hand, if the Mo content exceeds 3.5%, the toughness decreases. Furthermore, if the Mo content exceeds 3.5%, the production cost of seamless stainless steel pipes for oil wells will increase. Therefore, the Mo content is 1.0 to 3.5%. Preferably, the Mo content is 1.5 to 3.0%. More preferably, the Mo content is 2.0 to 3.0%.
  • Ni 1.5-5.0%
  • Ni is an element that has the effect of improving the corrosion resistance and increasing the strength of seamless stainless steel pipes for oil wells. If the Ni content is less than 1.5%, the effect cannot be obtained. On the other hand, when the Ni content exceeds 5.0%, a martensite phase is hardly generated, and the strength of the seamless stainless steel pipe for oil wells is lowered. Therefore, the Ni content is 1.5 to 5.0%. Preferably, the Ni content is 3.0 to 4.5%. More preferably, the Ni content is 3.0 to 4.0%.
  • V 0.02 to 0.2%
  • V is an element that has the effect of improving the corrosion resistance and increasing the strength of seamless stainless steel pipes for oil wells. If the V content is less than 0.02% by mass, the effect cannot be obtained. On the other hand, if the V content exceeds 0.2% by mass, the toughness decreases. Therefore, the V content is 0.02 to 0.2%. Preferably, the V content is 0.03-0.08%.
  • Al 0.002 to 0.05%
  • Al is an element that functions as a deoxidizer in the process of melting molten steel, which is a raw material for seamless stainless steel pipes for oil wells. If the Al content is less than 0.002%, the effect cannot be obtained. On the other hand, when the Al content exceeds 0.05%, alumina inclusions are likely to precipitate, and the hot workability in the production process of a seamless stainless steel pipe for oil wells is lowered. Moreover, when Al content exceeds 0.05%, toughness will fall. Therefore, the Al content is 0.002 to 0.05%. Preferably, the Al content is 0.01 to 0.04%.
  • N 0.01-0.15%
  • N is an element having an action of improving the corrosion resistance of seamless stainless steel pipes for oil wells, and the effect cannot be obtained when the N content is less than 0.01%.
  • the N content exceeds 0.15%, it binds to various elements and precipitates nitride, so that the toughness of the oil well seamless stainless steel pipe is lowered. Therefore, the N content is set to 0.01 to 0.15%.
  • O 0.006% or less
  • O oxygen
  • the O content is 0.006% or less.
  • the O content is 0.005% or less.
  • W 0.5 to 3.0%
  • Cu 1 or 2 types selected from 0.5 to 3.5% W, like Mo
  • W is an element that has the effect of improving the corrosion resistance of seamless stainless steel pipes for oil wells. in particular Cl - contributes to the prevention of pitting corrosion caused by.
  • W content exceeds 3.0%, the toughness of seamless stainless steel pipes for oil wells decreases. Therefore, when it contains W, W content shall be 3.0% or less.
  • W content is 0.5 to 3.0%, preferably 0.5 to 2.5%. More preferably, the W content is 0.5 to 1.0%.
  • Cu is an element that has an action of suppressing the penetration of hydrogen into a seamless stainless steel pipe for oil wells, and contributes to an improvement in corrosion resistance.
  • the Cu content exceeds 3.5%, the hot workability in the production process of seamless stainless steel pipes for oil wells decreases. Therefore, when Cu is contained, the Cu content is 3.5% or less.
  • the Cu content is 0.5 to 3.5%, preferably 0.5 to 2.5%. More preferably, the Cu content is 0.5 to 1.0%.
  • the content of each element is in the above range so that the contents of C, Si, Mn, Cr, Mo, Ni, N, W, Cu satisfy the following formulas (1) and (2): Adjust within.
  • [% C], [% Si], [% Mn], [% Cr], [% Mo], [% Ni], [% N], [% [W] and [% Cu] are the contents (% by mass) of the respective elements, and zero when not contained.
  • the value on the left side of the formula (2) is 11.5 or more
  • seamless stainless steel for oil wells Sufficient hot workability can be obtained in the manufacturing process of the steel pipe.
  • the value on the left side of the above formula (2) is preferably 12.5 or more.
  • the balance other than the above components is Fe and inevitable impurities.
  • Nb 0.2% or less
  • Ti 0.3% or less
  • Zr 0.2% or less
  • B 0.01% or less
  • Nb, Ti, Zr, and B are all elements that have the effect of increasing the strength of seamless stainless steel pipes for oil wells, and may be added as necessary.
  • Nb 0.2% or less
  • Ti 0.3% or less
  • Zr 0.2% or less
  • B 0.01% or less are preferable.
  • Nb 0.02% or more
  • Ti 0.04% or more
  • Zr 0.02% or more
  • B 0.001% or more are more preferable.
  • Ca 0.01% by mass or less Ca is an element having an action of spheroidizing sulfide inclusions. By spheroidizing sulfide inclusions, the lattice strain around them is reduced, so that trapping of H is suppressed, contributing to improvement of the corrosion resistance of seamless wells for oil wells.
  • the Ca content exceeds 0.01%, oxide inclusions increase and the corrosion resistance decreases. Therefore, the Ca content is preferably 0.01% or less. On the other hand, if the Ca content is less than 0.0005%, the effect of improving the corrosion resistance cannot be obtained, so 0.0005 to 0.01% is more preferable.
  • the means for melting the molten steel which is the raw material of the oil well seamless stainless steel pipe, is not particularly limited, and ordinary techniques (for example, a converter, an electric furnace, etc.) are used. Furthermore, you may perform a degassing process as needed.
  • the steel ingot or slab cast by a normal technique is rolled into a billet.
  • the billet is the material of the oil well seamless stainless steel pipe.
  • the process of producing a seamless stainless steel pipe for oil wells from a billet is performed after performing conventionally known hot working (eg, Mannesmann-plug mill hot rolling, Mannesmann-mandrel mill hot rolling, etc.)
  • An oil well seamless stainless steel pipe is obtained by cooling to room temperature at a cooling rate higher than air cooling.
  • cooling at a cooling rate equal to or higher than air cooling means forced cooling (for example, immersion, jetting, etc.) using a refrigerant (for example, cooling water) or air cooling.
  • the cooling rate over air cooling refers to a cooling rate of 0.1 ° C./s or more.
  • the room temperature means 0 to 40 ° C.
  • the heating temperature of the billet prior to hot working is too low, the deformation resistance of the billet increases, so an excessive load is applied to the piercing mill (for example, a piercer mill), which may cause equipment failure.
  • the heating temperature is too high, the billet crystal grains become coarse, so that the oil well seamless stainless steel pipe obtained through the subsequent steps also becomes coarse and the toughness deteriorates.
  • the scale loss increases, resulting in a decrease in yield.
  • the heating temperature of the billet is preferably 1100 to 1300 ° C. More preferably, it is 1200 to 1280 ° C.
  • the billet thus heated is subjected to hot working including piercing and rolling.
  • hot working Mannesmann-plug mill type hot rolling to obtain seamless stainless steel pipe for oil well through piercer mill, elongator mill, plug mill, reeler mill and sizing mill, or oil well seam from piercer mill through mandrel mill and reducer mill
  • the present invention can be applied to Mannesmann-mandrel mill type hot rolling or the like to obtain a stainless steel pipe.
  • the seamless stainless steel pipe for oil well obtained by hot working is immediately cooled to room temperature at a cooling rate higher than air cooling.
  • a martensite phase is formed in the seamless stainless steel pipe for oil wells.
  • the cooling rate over air cooling refers to a cooling rate of 0.1 ° C./s or more.
  • the room temperature means 0 to 40 ° C.
  • the quenching temperature is 850 ° C. or higher.
  • the quenching temperature is preferably 850 to 1000 ° C. More preferably, the quenching temperature is 920 to 980 ° C.
  • this holding time is preferably 10 to 120 minutes.
  • quenching is performed by cooling the oil well seamless stainless steel pipe heated to a predetermined quenching temperature to 100 ° C. or less at a cooling rate higher than air cooling.
  • the cooling rate over air cooling refers to a cooling rate of 0.1 ° C./s or more.
  • tempering temperature the heating temperature in tempering (hereinafter referred to as tempering temperature) is too high, an intermetallic compound is likely to precipitate in the martensite phase, so that the toughness of the seamless stainless steel pipe for oil wells is lowered. Accordingly, the tempering temperature is 700 ° C. or lower. On the other hand, if the tempering temperature is too low, the toughness reduced by quenching cannot be sufficiently recovered. Accordingly, the tempering temperature is preferably 400 to 700 ° C.
  • the holding time for maintaining the oil well seamless stainless steel pipe at a predetermined tempering temperature during tempering needs to be set so as to satisfy the following expression (3). If the expression (3) is not satisfied, the toughness of the oil well seamless stainless steel pipe is lowered. [% Mo] ⁇ (t + 550) ⁇ 2100 (3) [% Mo]: Mo content (% by mass). t: Tempering retention time (minutes)
  • the oil well seamless stainless steel pipe When the predetermined holding time has elapsed, it is preferable to cool the oil well seamless stainless steel pipe to room temperature.
  • the cooling is preferably air cooling. Or you may forcibly cool (for example, immersion, injection, etc.) using a refrigerant
  • coolant for example, cooling water etc.
  • room temperature refers to 0 to 40 ° C.
  • the oil well seamless stainless steel pipe produced in this way has the above-described component composition, and has a structure comprising 10-60% by volume of ferrite phase, 0-20% by volume of austenite phase, and the balance consisting of martensite phase. Have. If the ferrite phase is less than 10% by volume, the hot workability of the oil well seamless stainless steel pipe is lowered, and if it exceeds 60% by volume, the strength and toughness are lowered. If the austenite phase exceeds 20% by volume, an oil well seamless stainless steel pipe having a desired strength cannot be obtained.
  • a specimen for structure observation was collected from the thickness central portion of the steel pipe, and after polishing the cross section in the thickness direction, The sample is corroded with 2 g, 10 ml and 100 ml of a mixture of picric acid, hydrochloric acid and ethanol, respectively, and a tissue photograph is taken using an optical microscope (100 to 1000 times).
  • the martensite phase (M phase), ferrite phase ( ⁇ phase), and austenite phase ( ⁇ phase) are determined from the structure photograph, and the fraction (volume fraction) of the ⁇ phase is calculated by image analysis.
  • an intermetallic compound having a particle size of 0.5 ⁇ m or more is precipitated and present in the martensite phase at a density of 2 ⁇ 10 4 pieces / mm 2 or less.
  • a structure photograph of a test piece corroded with Virella etching solution is taken with an optical microscope (2000 times). And from the structure
  • Table 2 shows the relationship between the components of steel (steel symbols B to I) shown in Table 1 and the following formulas (1) and (2).
  • Table 3 shows the conditions of quenching heating temperature, holding time, cooling means and cooling stop temperature, tempering heating temperature and holding time, and the calculated value on the left side of the following equation (3) for tempering. Street.
  • [% Mo] ⁇ (t + 550) ⁇ 2100
  • the density of intermetallic compounds having a particle size of 0.5 ⁇ m or more deposited in the martensite phase is 2 ⁇ 10 4 pieces / mm 2 or less. Having an absorption energy vE -10 of 40 J or more.
  • Corrosion resistance Corrosion test pieces (thickness 3 mm, width 25 mm, length 50 mm) were sampled from the center of the thickness of the seamless steel pipe that had been quenched and tempered, and the weight was measured. Further, the test piece was immersed in a 20 mass% NaCl aqueous solution (liquid temperature 230 ° C., saturated with 3.0 MPa CO 2 gas) held in an autoclave for 14 days for a corrosion test. After the corrosion test was completed, the weight of the corrosion test piece was measured, and the weight loss before and after the corrosion test was converted to a thickness to obtain the corrosion rate (mm / year). The results are shown in Table 4. A corrosion rate of 0.127 mm / year or less was accepted, and a corrosion rate exceeding 0.127 mm / year was rejected.
  • steel pipe Nos. 8, 11, 14, 18, 20, and 22 in the comparative examples do not satisfy the above formula (3) in tempering, and vE- 10 is less than 40J. That is, the toughness is inferior to that of the inventive examples.
  • Steel pipe No. 15 did not satisfy the above formula (1), YS was lower than 758 MPa, corrosion rate exceeded 0.127 mm / year, and pitting corrosion occurred. That is, the strength and corrosion resistance are inferior to those of the inventive examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 降伏強度が110ksi(=758MPa)以上の高強度、試験温度が-10℃のシャルピー衝撃試験にて吸収エネルギーvE-10が40J以上の高靭性、および優れた耐食性を有する油井用継目無ステンレス鋼管を得ることができ、熱間加工性に優れた油井用継目無ステンレス鋼管の製造方法およびその製造方法で得られる油井用継目無ステンレス鋼管を提供する。 所定の成分を有し、かつC、Si、Mn、Cr、Mo、Ni、N、W、Cuの含有量が所定の関係を満足する組成を有するビレットを加熱し、さらに熱間加工を施して継目無鋼管とし、継目無鋼管を空冷以上の冷却速度で室温まで冷却した後に、継目無鋼管を850℃以上に加熱し、引き続き100℃以下まで空冷以上の冷却速度で冷却して焼入れを行ない、次いで700℃以下かつ所定の保持時間で焼戻しを行なう。

Description

油井用継目無ステンレス鋼管およびその製造方法
 本発明は、油井管として好適な継目無ステンレス鋼管に関し、詳しくは、耐食性に優れ、しかも高強度と高靭性を兼ね備えた継目無ステンレス鋼管、およびそれを安定して得ることができる製造方法に関するものである。
 近年、容易に採掘できる地域の石油資源(すなわち原油や天然ガス)は枯渇しつつあり、採掘が困難な地域における油田の開発が進められている。たとえば、深層の石油資源を採掘するための油田においては、井戸(いわゆる油井)を極めて深くまで掘削する必要があり、しかもその石油資源が高温であるから、高強度かつ高靭性の油井管が求められる。また、CO2やCl-等を含有する石油資源を採掘するための油田においては、腐食が進行し易いので、耐食性の油井管が求められる。
 そのような厳しい環境で使用する油井管として、13質量%程度のCrを含有するマルテンサイト系ステンレス鋼(いわゆる13Cr鋼)の継目無鋼管が実用化されている。しかし、Cl-を多量に含有し、しかも100℃を超える高温の石油資源の採掘においては、13Cr鋼の継目無鋼管を用いても十分な強度と耐食性が得られないという問題がある。
 高温の腐食環境で使用できる油井管としては、2相ステンレス鋼の継目無鋼管が開発されている。しかし、2相ステンレス鋼は、合金元素を多量に添加するので、原料コストが増大するばかりでなく、継目無鋼管の製造工程における熱間加工性が劣ることから、生産性が低下し、その結果、継目無鋼管の製造コストが上昇するという問題がある。
 そこで、継目無鋼管の一般的な製造技術である傾斜圧延方式の穿孔圧延機から一連の工程を経て容易に安定して製造でき、かつ高温でも耐食性に優れ、しかも高強度と高靭性を兼ね備えた継目無ステンレス鋼管を得るための技術が検討されている。
 たとえば特許文献1には、所定の成分を有するビレットを用いて、熱間加工で継目無鋼管とし、さらに焼入れ、焼戻しを施すことによって、耐食性に優れ、しかも高強度と高靭性を兼ね備えた継目無ステンレス鋼管を得る技術が開示されている。しかしこの技術は、焼戻しにおける保持時間が考慮されておらず、保持時間に応じて継目無ステンレス鋼管の強度や靭性が変動するので、所望の強度を安定して得る観点から改善の余地が残されている。
 特許文献2には、所定の成分を有するビレットを用いて、所定の圧下量の熱間加工を施して継目無鋼管とし、さらに焼入れ、焼戻しを行なって、耐食性に優れ、しかも高強度と高靭性を兼ね備えた継目無ステンレス鋼管を得る技術が開示されている。しかしこの技術は、焼入れにおける冷却停止温度が考慮されておらず、冷却停止温度に応じて継目無ステンレス鋼管の強度が変動するので、所望の強度を安定して得る観点から改善の余地が残されている。
特開2005-336595号公報 特開2013-249516号公報
 本発明は、従来の技術の問題点を解消し、降伏強度が110ksi(=758MPa)以上の高強度、および、試験温度が-10℃のシャルピー衝撃試験にて吸収エネルギーvE-10が40J以上の高靭性を兼ね備え、しかも優れた耐食性を有する油井用継目無ステンレス鋼管を得ることができ、熱間加工性に優れた油井用継目無ステンレス鋼管の製造方法およびその製造方法で得られる油井用継目無ステンレス鋼管を提供することを目的とする。ここで、優れた耐食性は、CO2とCl-を含有する腐食環境においても、230℃以上の高温で耐食性を示すことを意味する。
 本発明者は、焼入れ、焼戻しが継目無ステンレス鋼管の靭性に及ぼす影響について検討し、その結果、Moを多量に含有し、かつ焼戻しにおける保持時間が長すぎる場合に、靭性の劣化が生じ易いことが分かった。そこで、Mo含有量が大きく、長時間の焼戻しによって靭性が劣化した継目無ステンレス鋼管の組織を調査したところ、マルテンサイト相に金属間化合物が多量に析出しているのを見出した。この現象は、焼入れによってマルテンサイト相が生成した後、焼戻しによって金属間化合物が析出したことを意味する。
 次に、マルテンサイト相に析出した金属間化合物を詳細に調査した。その結果、金属間化合物について、
(a)金属間化合物には高濃度のMoが存在している、
(b)金属間化合物の粒径が継目無ステンレス鋼管の靭性に多大な影響を及ぼす、
(c)単位面積(mm2)あたりの金属間化合物の個数(以下、密度という)は、少ないことが望ましく、この密度は、継目無ステンレス鋼管のMoの含有量[%Mo](質量%)と焼戻しの保持時間t(分)とを用いて算出されるパラメーターP(Mo,t)=[%Mo]×(t+550)に依存して変化するという知見を得た(図1参照)。
 つまり本発明の課題を解決して、所望の強度、靭性、耐食性を有する油井用継目無ステンレス鋼管を得るためには、マルテンサイト相に存在する粒径0.5μm以上の金属間化合物を2×104個/mm2以下の密度に抑制する必要があり、その組織を得るためには、油井用継目無ステンレス鋼管のMo含有量[%Mo]と焼戻しの保持時間tを用いて算出されるパラメーターP(Mo,t)が2100以下となるように、油井用継目無ステンレス鋼管のMo含有量[%Mo]と焼戻しの保持時間tとを調整する必要がある。そして、その油井用継目無ステンレス鋼管を安定して製造するためには、熱間加工性を改善するための成分設計を行なう必要がある。
 本発明は、このような知見に基づいてなされたものである。
 すなわち、本発明の油井用継目無ステンレス鋼管の製造方法は、質量%で、C:0.005~0.06%、Si:0.05~0.5%、Mn:0.2~1.8%、P:0.03%以下、S:0.005%以下、Cr:15.5~18.0%、Mo:1.0~3.5%、Ni:1.5~5.0%、V:0.02~0.2%、Al:0.002~0.05%、N:0.01~0.15%、O:0.006%以下を含有し、さらにW:0.5~3.0%、Cu:0.5~3.5%の中から選ばれた1種または2種を含有し、かつ前記C、Si、Mn、Cr、Mo、Ni、N、W、Cuの含有量が下記の(1)式および(2)式を満足し、残部がFeおよび不可避的不純物からなる組成を有するビレットを加熱し、さらに熱間加工を施して継目無鋼管とし、該継目無鋼管を空冷以上の冷却速度で室温まで冷却した後に、前記継目無鋼管を850℃以上に加熱し、引き続き100℃以下まで空冷以上の冷却速度で冷却して焼入れを行ない、次いで700℃以下かつ下記の(3)式を満足する保持時間で焼戻しを行なう油井用継目無ステンレス鋼管の製造方法である。
[%Cr]+0.65[%Ni]+0.6[%Mo]+0.3[%W]+0.55[%Cu]-20[%C]≧19.5・・・(1)
[%Cr]+[%Mo]+0.5[%W]+0.3[%Si]-43.5[%C]-0.4[%Mn]-[%Ni]
  -0.3[%Cu]-9[%N]≧11.5・・・(2)
[%Mo]×(t+550)≦2100・・・(3)
[%C]、[%Si]、[%Mn]、[%Cr]、[%Mo]、[%Ni]、[%N]、[%W]、[%Cu]:それぞれの元素の含有量(質量%)であり、含有しない場合はゼロとする。
t:焼戻しの保持時間(分)
 本発明の油井用継目無ステンレス鋼管の製造方法においては、ビレットが、前記組成に加えて、質量%で、Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下の中から選ばれた1種または2種以上を含有することが好ましく、さらにCa:0.01%以下を含有することが好ましい。
 また、本発明の油井用継目無ステンレス鋼管は、質量%で、C:0.005~0.06%、Si:0.05~0.5%、Mn:0.2~1.8%、P:0.03%以下、S:0.005%以下、Cr:15.5~18.0%、Mo:1.0~3.5%、Ni:1.5~5.0%、V:0.02~0.2%、Al:0.002~0.05%、N:0.01~0.15%、O:0.006%以下を含有し、さらにW:0.5~3.0%、Cu:0.5~3.5%の中から選ばれた1種または2種を含有し、かつ前記C、Si、Mn、Cr、Mo、Ni、N、W、Cuの含有量が下記の(1)式および(2)式を満足し、残部がFeおよび不可避的不純物からなる組成を有し、かつ10~60体積%のフェライト相、0~20体積%のオーステナイト相、および残部がマルテンサイト相からなり、前記マルテンサイト相に存在する粒径が0.5μm以上の金属間化合物の密度が2×104個/mm2以下である組織を有する油井用継目無ステンレス鋼管である。
[%Cr]+0.65[%Ni]+0.6[%Mo]+0.3[%W]+0.55[%Cu]-20[%C]≧19.5・・・(1)
[%Cr]+[%Mo]+0.5[%W]+0.3[%Si]-43.5[%C]-0.4[%Mn]-[%Ni]
  -0.3[%Cu]-9[%N]≧11.5・・・(2)
[%C]、[%Si]、[%Mn]、[%Cr]、[%Mo]、[%Ni]、[%N]、[%W]、[%Cu]:それぞれの元素の含有量(質量%)であり、含有しない場合はゼロとする。
 本発明の油井用継目無ステンレス鋼管においては、前記した組成に加えて、質量%で、Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下の中から選ばれた1種または2種以上を含有することが好ましく、さらにCa:0.01%以下を含有することが好ましい。
 本発明によれば、高強度と高靭性を兼ね備え、しかも優れた耐食性を有する油井用継目無ステンレス鋼管を、熱間加工性に優れた製造方法で安定して得ることができ、産業上格段の効果を奏する。
P(Mo,t)(=[%Mo]×(t+550))と金属間化合物の密度との関係を示すグラフである。
 まず、本発明の油井用継目無ステンレス鋼管の組成について説明する。一般に継目無鋼管はビレットを熱間加工して製造するものであるから、本発明の油井用継目無ステンレス鋼管の組成は、その素材となるビレットの組成と同じである。なお、以下、組成における「質量%」は、単に「%」で記す。
 C:0.005~0.06%
 Cは、油井用継目無ステンレス鋼管の強度を高める作用を有する元素であり、C含有量が0.005%未満ではその効果が得られない。一方、C含有量が0.06%を超えると、耐食性が著しく低下する。したがって、C含有量は0.005~0.06%とする。好ましくは、C含有量は0.01~0.04%である。
 Si:0.05~0.5%
 Siは、油井用継目無ステンレス鋼管の原材料の溶鋼を溶製する過程で脱酸剤として機能する元素であり、Si含有量が0.05%未満ではその効果が得られない。一方、Si含有量が0.5%を超えると、CO2に起因する腐食が進行し易くなるばかりでなく、油井用継目無ステンレス鋼管の製造過程における熱間加工性が低下する。したがって、Si含有量は0.05~0.5%とする。好ましくは、Si含有量は0.1~0.4%である。
 Mn:0.2~1.8%
 Mnは、油井用継目無ステンレス鋼管の強度を高める作用を有する元素であり、Mn含有量が0.2%未満では所望の強度が得られない。一方、Mn含有量が1.8%を超えると、靭性が低下する。したがって、Mn含有量は0.2~1.8%とする。好ましくは、Mn含有量は0.2~0.8%である。より好ましくは、Mn含有量は0.2~0.40%である。
 P:0.03%以下
 Pは、油井用継目無ステンレス鋼管の耐食性を低下させる元素であり、P含有量が0.03%を超えると、耐食性が著しく低下する。したがって、P含有量は0.03%以下とする。ただし、P含有量を0.005%未満に低減するためには、溶鋼を溶製する過程で脱P処理に長時間を要し、油井用継目無ステンレス鋼管の製造コストの上昇を招く。したがって、P含有量は0.005%以上が好ましい。
 S:0.005%以下
 Sは、油井用継目無ステンレス鋼管の製造過程における熱間加工性を低下させる元素であり、S含有量が0.005%を超えると、油井用継目無ステンレス鋼管の製造に支障を来す。したがって、S含有量は0.005%以下とする。ただし、S含有量を0.0005%未満に低減するためには、溶鋼を溶製する過程で脱S処理に長時間を要し、油井用継目無ステンレス鋼管の製造コストの上昇を招く。したがって、S含有量は0.0005%以上が好ましい。
 Cr:15.5~18.0%
 Crは、油井用継目無ステンレス鋼管の耐食性を向上させる作用を有する元素であり、特に高温環境におけるCO2に起因する腐食の防止に寄与する。Cr含有量が15.5%未満では、その効果が得られない。一方、Cr含有量が18.0%を超えると、油井用継目無ステンレス鋼管の製造過程における熱間加工性が低下する。また、Cr含有量が18.0%を超えると、油井用継目無ステンレス鋼管の強度が低下する。したがって、Cr含有量は15.5~18.0%とする。好ましくは、Cr含有量は16.0~17.5%であり、より好ましくは、Cr含有量は16.5~17.0%である。
 Mo:1.0~3.5%
 Moは、油井用継目無ステンレス鋼管の耐食性を向上させる作用を有する元素であり、特にCl-に起因する孔食の防止に寄与する。Mo含有量が1.0%未満では、その効果が得られない。一方、Mo含有量が3.5%を超えると、強度が低下する。また、Mo含有量が3.5%を超えると、靭性が低下する。さらに、Mo含有量が3.5%を超えると、油井用継目無ステンレス鋼管の製造コストの上昇を招く。したがって、Mo含有量は1.0~3.5%とする。好ましくは、Mo含有量は1.5~3.0%である。より好ましくは、Mo含有量は2.0~3.0%である。
 Mo含有量が上記の範囲内であっても、焼戻しにおける保持時間が長い場合は、金属間化合物がマルテンサイト相に析出して、油井用継目無ステンレス鋼管の靭性が低下する。そこで、パラメーターP(Mo,t)=[%Mo]×(t+550)が下記の(3)式を満たすように、油井用継目無ステンレス鋼管のMo含有量[%Mo]と焼戻しの保持時間tとを調整する。
[%Mo]×(t+550)≦2100・・・(3) 
[%Mo]:Moの含有量(質量%)である。
t:焼戻しの保持時間(分)
 Ni:1.5~5.0%
 Niは、油井用継目無ステンレス鋼管の耐食性を向上させ、かつ強度を高める作用を有する元素である。Ni含有量が1.5%未満では、その効果が得られない。一方、Ni含有量が5.0%を超えると、マルテンサイト相が生成され難くなり、油井用継目無ステンレス鋼管の強度が低下する。したがって、Ni含有量は1.5~5.0%とする。好ましくは、Ni含有量は3.0~4.5%である。より好ましくは、Ni含有量は3.0~4.0%である。
 V:0.02~0.2%
 Vは、油井用継目無ステンレス鋼管の耐食性を向上させ、かつ強度を高める作用を有する元素である。V含有量が0.02質量%未満では、その効果が得られない。一方、V含有量が0.2質量%を超えると、靭性が低下する。したがって、V含有量は0.02~0.2%とする。好ましくは、V含有量は0.03~0.08%である。
 Al:0.002~0.05%
 Alは、油井用継目無ステンレス鋼管の原材料の溶鋼を溶製する過程で脱酸剤として機能する元素であり、Al含有量が0.002%未満ではその効果が得られない。一方、Al含有量が0.05%を超えると、アルミナ系介在物が析出し易くなり、油井用継目無ステンレス鋼管の製造過程における熱間加工性が低下する。また、Al含有量が0.05%を超えると、靭性が低下する。したがって、Al含有量は0.002~0.05%とする。好ましくは、Al含有量は0.01~0.04%である。
 N:0.01~0.15%
 Nは、油井用継目無ステンレス鋼管の耐食性を向上させる作用を有する元素であり、N含有量が0.01%未満ではその効果が得られない。一方、N含有量が0.15%を超えると、種々の元素と結合して窒化物を析出するので、油井用継目無ステンレス鋼管の靭性が低下する。したがって、N含有量は0.01~0.15%とする。
 O:0.006%以下
 O(酸素)は、油井用継目無ステンレス鋼管中に酸化物として存在し、熱間加工性のみならず靭性、耐食性に悪影響を及ぼす元素であり、O含有量が0.006%を超えると、熱間加工性の低下、靭性の劣化、耐食性の低下を引き起こす。したがって、O含有量は0.006%以下とする。好ましくは、O含有量は0.005%以下である。
 W:0.5~3.0%、Cu:0.5~3.5%の中から選ばれた1種または2種
 Wは、Moと同様に、油井用継目無ステンレス鋼管の耐食性を向上させる作用を有する元素であり、特にCl-に起因する孔食の防止に寄与する。しかし、W含有量が3.0%を超えると、油井用継目無ステンレス鋼管の靭性が低下する。したがって、Wを含有する場合は、W含有量は3.0%以下とする。一方、Wを含有する場合に、W含有量が0.5%未満では、耐食性を向上させる効果が得られないので、0.5%以上とする。したがって、W含有量は0.5~3.0%とし、0.5~2.5%が好ましい。より好ましくは、W含有量は0.5~1.0%である。
 Cuは、油井用継目無ステンレス鋼管中に水素が侵入するのを抑制する作用を有する元素であり、耐食性の向上に寄与する。しかし、Cu含有量が3.5%を超えると、油井用継目無ステンレス鋼管の製造過程における熱間加工性が低下する。したがって、Cuを含有する場合は、Cu含有量は3.5%以下とする。一方、Cuを含有する場合に、Cu含有量が0.5%未満では、耐食性を向上させる効果が得られないので、0.5%以上とする。したがって、Cu含有量は0.5~3.5%とし、0.5~2.5%が好ましい。より好ましくは、Cu含有量は0.5~1.0%である。
 そして、C、Si、Mn、Cr、Mo、Ni、N、W、Cuの含有量が下記の(1)式および(2)式を満足するように、それぞれの元素の含有量を上記した範囲内で調整する。なお、(1)式および(2)式において、[%C]、[%Si]、[%Mn]、[%Cr]、[%Mo]、[%Ni]、[%N]、[%W]、[%Cu]は、それぞれの元素の含有量(質量%)であり、含有しない場合はゼロとする。
[%Cr]+0.65[%Ni]+0.6[%Mo]+0.3[%W]+0.55[%Cu]-20[%C]≧19.5・・・(1)
[%Cr]+[%Mo]+0.5[%W]+0.3[%Si]-43.5[%C]-0.4[%Mn]-[%Ni]
  -0.3[%Cu]-9[%N]≧11.5・・・(2)
 Cr、Ni、Mo、W、Cu、Cの含有量が(1)式を満足((1)式の左辺の値が19.5以上)すれば、CO2とCl-を含有する腐食環境において、しかも高温(ただし230℃まで)であっても、十分な耐食性を有する油井用継目無ステンレス鋼管を得ることができる。なお、耐食性のさらなる向上を図る観点から、上記の(1)式の左辺の値は、20.0以上であることが好ましい。
 また、Cr、Mo、W、Si、C、Mn、Ni、Cu、Nの含有量が(2)式を満足((2)式の左辺の値が11.5以上)すれば、油井用継目無ステンレス鋼管の製造過程において、十分な熱間加工性を得ることができる。なお、熱間加工性のさらなる向上を図る観点から、上記の(2)式の左辺の値は、12.5以上であることが好ましい。
 上記した成分以外の残部は、Feおよび不可避的不純物である。
 これらの元素に加えて、Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下の中から選ばれた1種または2種以上を含有しても良い。
 Nb、Ti、Zr、Bは、いずれも油井用継目無ステンレス鋼管の強度を高める作用を有する元素であり、必要に応じて添加しても良い。しかし、含有量が多過ぎると、油井用継目無ステンレス鋼管の靭性が低下する。したがって、Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下が好ましい。一方、含有量が少な過ぎると、強度を高める効果が得られない。したがって、Nb:0.02%以上、Ti:0.04%以上、Zr:0.02%以上、B:0.001%以上がより好ましい。
 Ca:0.01質量%以下
 Caは、硫化物系介在物を球状化する作用を有する元素である。硫化物系介在物を球状化することによって、その周辺の格子歪が小さくなるので、Hのトラップを抑制し、油井用継目無ステンレス鋼管の耐食性の向上に寄与する。しかし、Ca含有量が0.01%を超えると、酸化物系介在物が増加し、耐食性が低下する。したがって、Ca含有量は0.01%以下が好ましい。一方、Ca含有量が0.0005%未満では、耐食性を向上する効果が得られないので、0.0005~0.01%がより好ましい。
 次に、油井用継目無ステンレス鋼管を製造する手順について説明する。
 油井用継目無ステンレス鋼管の原材料である溶鋼を溶製する手段は、特に限定せず、通常の技術(たとえば転炉、電気炉等)を使用する。さらに、必要に応じて脱ガス処理を施しても良い。
 そして、既に説明した成分を有する溶鋼を溶製した後、通常の技術(たとえば連続鋳造、造塊等)で鋳込んだ鋼塊やスラブに圧延を施してビレットとする。そのビレットが油井用継目無ステンレス鋼管の素材となる。
 ビレットから油井用継目無ステンレス鋼管を製造する工程は、従来から知られている熱間加工(たとえばマンネスマン-プラグミル方式の熱間圧延、マンネスマン-マンドレルミル方式の熱間圧延等)を施した後に、空冷以上の冷却速度で室温まで冷却することによって、油井用継目無ステンレス鋼管を得る。なお、空冷以上の冷却速度の冷却は、冷媒(たとえば冷却水等)を用いた強制的な冷却(たとえば浸漬、噴射等)、または空冷を意味する。ここで、空冷以上の冷却速度とは、0.1℃/s以上の冷却速度のことを指す。また、室温とは、0~40℃のことを指す。
 熱間加工に先立つビレットの加熱温度が低すぎると、ビレットの変形抵抗が大きくなるので、穿孔圧延機(たとえばピアサーミル等)に過大な負荷が加わり、設備故障の原因となる場合がある。一方、加熱温度が高すぎると、ビレットの結晶粒が粗大化するので、その後の工程を経て得られた油井用継目無ステンレス鋼管も結晶粒が粗大化し、靭性が劣化する。しかも、スケールロスが増加するので、歩留りの低下を招く。したがって、ビレットの加熱温度は1100~1300℃が好ましい。より好ましくは1200~1280℃である。
 こうして加熱されたビレットは、穿孔圧延を含む熱間加工を施される。熱間加工としては、ピアサーミルからエロンゲーターミル、プラグミル、リーラーミルおよびサイジングミルを経て油井用継目無ステンレス鋼管を得るマンネスマン-プラグミル方式の熱間圧延、あるいはピアサーミルからマンドレルミルおよびレデューサーミルを経て油井用継目無ステンレス鋼管を得るマンネスマン-マンドレルミル方式の熱間圧延等に本発明を適用できる。
 熱間加工によって得られた油井用継目無ステンレス鋼管は、直ちに空冷以上の冷却速度で室温まで冷却される。その結果、油井用継目無ステンレス鋼管にマルテンサイト相が生成する。ここで、空冷以上の冷却速度とは、0.1℃/s以上の冷却速度のことを指す。また、室温とは、0~40℃のことを指す。
 室温まで冷却された油井用継目無ステンレス鋼管は、焼入れを施され、マルテンサイト相がさらに増加する。
 焼入れに先立つ加熱温度(以下、焼入れ温度という)が低すぎると、マルテンサイト相が十分に生成しないので、所望の強度を有する油井用継目無ステンレス鋼管が得られない。したがって、焼入れ温度は850℃以上とする。一方、焼入れ温度が高すぎると、マルテンサイト相が過剰に生成し、所望の靭性を有する油井用継目無ステンレス鋼管が得られない場合がある。したがって、焼入れ温度は850~1000℃が好ましい。より好ましくは、焼入れ温度は920~980℃である。また、この焼入れ温度での保持時間は、短すぎると相分率が平衡に達しないので、均一な組織が得られない場合がある。一方、この保持時間が長すぎると、組織の粗大化を招き、靭性が低下する場合がある。したがって、この保持時間は10~120分とすることが好ましい。
 そして、所定の焼入れ温度に加熱された油井用継目無ステンレス鋼管を、空冷以上の冷却速度で100℃以下まで冷却することによって、焼入れを行なう。焼入れを停止する温度が100℃を超えると、オーステナイト相が十分にマルテンサイト相に変態せず、所望の強度が得られないので、好ましくない。ここで、空冷以上の冷却速度とは、0.1℃/s以上の冷却速度のことを指す。
 焼入れの後、油井用継目無ステンレス鋼管に焼戻しを施す。焼戻しにおける加熱温度(以下、焼戻し温度という)が高すぎると、マルテンサイト相に金属間化合物が析出し易くなるので、油井用継目無ステンレス鋼管の靭性が低下する。したがって、焼戻し温度は700℃以下とする。一方、焼戻し温度が低すぎると、焼入れによって低下した靭性が十分に回復しない。したがって、焼戻し温度は400~700℃が好ましい。
 焼戻しにおいて油井用継目無ステンレス鋼管を所定の焼戻し温度に保つ保持時間は、下記の(3)式を満足するように設定する必要がある。(3)式を満足しなければ、油井用継目無ステンレス鋼管の靭性が低下する。
 [%Mo]×(t+550)≦2100・・・(3) 
[%Mo]:Moの含有量(質量%)である。
t:焼戻しの保持時間(分)
 所定の保持時間が経過すると、油井用継目無ステンレス鋼管を室温まで冷却することが好ましい。その冷却は空冷が好ましい。あるいは、冷媒(たとえば冷却水等)を用いて強制的に冷却(たとえば浸漬、噴射等)しても良い。ここで、室温とは、0~40℃のことを指す。
 このようにして製造した油井用継目無ステンレス鋼管は、前述した成分組成を有すると共に、10~60体積%のフェライト相、0~20体積%のオーステナイト相、および残部がマルテンサイト相からなる組織を有する。フェライト相が、10体積%未満では油井用継目無ステンレス鋼管の熱間加工性が低下し、60体積%を超えると強度の低下および靭性の低下を招く。オーステナイト相が20体積%を超えると、所望の強度を有する油井用継目無ステンレス鋼管が得られない。
 なお、本発明の油井用継目無ステンレス鋼管の組織の判定方法としては、まず鋼管の肉厚中央部から組織観察用試験片を採取し、肉厚方向断面を研磨した後に、ビレラエッチング液(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合した試薬)で腐食して、光学顕微鏡(100~1000倍)を用いて組織写真を撮影する。その組織写真からマルテンサイト相(M相)、フェライト相(α相)、オーステナイト相(γ相)を判定し、α相の分率(体積率)を画像解析で算出する。
 また、γ相の分率(体積率)は、X線回析法を用いて、γ相の(220)面とα相の(211)面の回析X線積分強度を測定し、下記の式で算出する。
γ相の体積率(%)=100/<1+{(Iα×Rγ)/(Iγ×Rα)}>
Iα:α相の積分強度
Iγ:γ相の積分強度
Rα:α相の結晶学的理論計算値
Rγ:γ相の結晶学的理論計算値
 また、M相の分率(体積率)は、α相とγ相以外の残部として算出する。
 また、本発明において、マルテンサイト相には、粒径が0.5μm以上の金属間化合物が2×104個/mm2以下の密度で析出し、存在する。このように金属間化合物の析出を抑制することによって、所望の強度、靭性、耐食性を有する油井用継目無ステンレス鋼管を得ることができる。しかも、素材となるビレットは熱間加工性を改善するために設計された組成を有するので、油井用継目無ステンレス鋼管を安定して得ることができる。
 なお、金属化合物の個数の測定方法としては、まずビレラエッチング液で腐食した試験片の組織写真を、光学顕微鏡(2000倍)で撮影する。そして、その組織写真から、マルテンサイト相中に析出した金属間化合物の円相当直径を粒径として計算し、粒径0.5μm以上の金属間化合物の個数を計測する。
 表1に示す組成を有する溶鋼を溶製し、さらに脱ガス処理を施し、引き続き造塊法でビレット(100kg鋼塊)を製造して、室温(25℃)まで空冷した。次に、ビレットを加熱炉で1230℃で加熱した後、ピアサーの実験機で穿孔圧延し、さらに水槽に浸漬して水冷して継目無鋼管(外径83.8mm=3.3インチ、肉厚12.7mm=0.5インチ)とした。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示す鋼(鋼記号B~I)の成分と、以下の(1)式、(2)式との関係は表2に示す通りである。
[%Cr]+0.65[%Ni]+0.6[%Mo]+0.3[%W]+0.55[%Cu]-20[%C]≧19.5・・・(1)
[%Cr]+[%Mo]+0.5[%W]+0.3[%Si]-43.5[%C]-0.4[%Mn]-[%Ni]
  -0.3[%Cu]-9[%N]≧11.5・・・(2)
Figure JPOXMLDOC01-appb-T000002
 
 得られた継目無鋼管の内面および外面を目視で観察し、熱間加工性を評価した。その結果を表4に示す。表4では、継目無鋼管の長さ5mm以上の割れが認められたものを「有」とし、それ以外のものを「無」として示す。
 また、得られた継目無鋼管に焼入れおよび焼戻しを施した後に、試験片を採取して、組織、引張特性、靭性、耐食性を調査した。その調査方法は以下の通りである。なお、焼入れの加熱温度、保持時間、冷却手段および冷却停止温度の条件と、焼戻しの加熱温度および保持時間の条件と、焼戻しの以下の(3)式の左辺の計算値とは表3に示す通りである。
Figure JPOXMLDOC01-appb-T000003
 
 (A)組織
 焼入れおよび焼戻しを施した継目無鋼管の肉厚中央部から組織観察用試験片を採取し、肉厚方向断面を研磨した後に、ビレラエッチング液で腐食して、光学顕微鏡(100~1000倍)を用いて組織写真を撮影した。その組織写真からマルテンサイト相(以下、M相と記す)、フェライト相(以下、α相と記す)、オーステナイト相(以下、γ相と記す)を判定し、α相の分率(体積率)を画像解析で算出した。それらの結果を表4に示す。
 γ相の分率(体積率)は、X線回析法を用いて、γ相の(220)面とα相の(211)面の回析X線積分強度を測定し、下記の式で算出した。その結果を表4に示す。
γ相の体積率(%)=100/<1+{(Iα×Rγ)/(Iγ×Rα)}>
Iα:α相の積分強度
Iγ:γ相の積分強度
Rα:α相の結晶学的理論計算値
Rγ:γ相の結晶学的理論計算値
 M相の分率(体積率)は、α相とγ相以外の残部として表4に示す。
 次に、ビレラエッチング液(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合した試薬)で腐食した試験片の組織写真を、光学顕微鏡(2000倍)で撮影した。その組織写真から、M相中に析出した粒径(円相当直径)0.5μm以上の金属間化合物の個数を計測した。その結果を、単位面積(mm2)あたりの個数として表4に示す。
 (B)引張特性
 焼入れおよび焼戻しを施した継目無鋼管の肉厚中央部から、API規格に準拠して引張方向が管軸方向となるようにAPI弧状引張試験片を採取し、さらにAPI規格に準拠して引張試験を行なって、引張特性として降伏強さYS(MPa)、引張強さTS(MPa)を測定した。その結果を表4に示す。降伏強さYSが758MPa以上のものを合格とし、758MPa未満のものを不合格とした。
 (C)靭性
 焼入れおよび焼戻しを施した継目無鋼管の肉厚中央部から、ISO規格に準拠して、円周方向が試験片長さとなるようにVノッチ試験片(厚さ10mm)を採取し、さらに試験温度を-10℃としてシャルピー衝撃試験を行なって、吸収エネルギーvE-10(J)を測定した。その結果を表4に示す。なお、試験片は、それぞれ3本とし、それらの算術平均値を表4に示す。吸収エネルギーvE-10が40J以上を合格とし、40J未満を不合格とした。
 表4に示した各発明例、比較例のパラメーターP(Mo,t)=[%Mo]×(t+550)と金属間化合物の密度の関係を図1に示す。図1に示すように、[%Mo]×(t+550)≦2100であり、マルテンサイト相に析出した粒径0.5μm以上の金属間化合物の密度が2×104個/mm2以下である組織を有するものは、吸収エネルギーvE-10が40J以上であった。
 (D)耐食性
 焼入れおよび焼戻しを施した継目無鋼管の肉厚中央部から腐食試験片(厚さ3mm、幅25mm、長さ50mm)を採取し、その重量を測定した。さらに、その試験片をオートクレーブ中に保持された20質量%NaCl水溶液(液温230℃、3.0MPaのCO2ガスで飽和)中に14日間浸漬して腐食試験を行なった。腐食試験が終了した後、腐食試験片の重量を測定して、腐食試験の前後の重量減少量を厚さに換算して、腐食速度(mm/年)を求めた。その結果を表4に示す。腐食速度が0.127mm/年以下のものを合格とし、0.127mm/年超えのものを不合格とした。
 次に、腐食試験が終了した腐食試験片の表面をルーペ(50倍)で観察して、孔食の有無を調査した。その結果を表4に示す。表4では、継目無鋼管の表面に直径0.5mm以上の孔食が認められたものを「有」とし、それ以外のものを「無」として示す。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、発明例は、いずれも厚肉の継目無鋼管であるにも関わらず、YSが758MPa(=110ksi)以上の高強度と、vE-10が40J以上の高靭性とを有しており、しかも高温のCO2およびCl-を含有する厳しい環境においても、腐食速度が0.127mm/年以下で、孔食もない優れた耐食性を有している。しかも、表面に割れは発生しておらず、優れた熱間加工性も有していることが分かる。
 これに対して比較例のうちの鋼管No.8、11、14、18、20、22は、焼戻しにおいて上記(3)式を満たさず、vE-10が40Jを下回っている。つまり靭性が、発明例よりも劣っている。
 鋼管No.15は、成分組成が上記(1)式を満たさず、YSが758MPaを下回っており、しかも腐食速度が0.127mm/年を超えて、孔食が発生した。つまり強度と耐食性が、発明例よりも劣っている。
 鋼管No.16は、成分組成が上記(2)式を満たさず、表面に割れが発生した。つまり熱間加工性が、発明例よりも劣っている。
 鋼管No.23は、成分組成が上記(1)式を満たさず、腐食速度が0.127mm/年を超えて、孔食が発生した。つまり耐食性が、発明例よりも劣っている。
 鋼管No.24は、成分組成が上記(2)式を満たさず、表面に割れが発生した。つまり熱間加工性が、発明例よりも劣っている。
 

Claims (6)

  1.  質量%で、C:0.005~0.06%、Si:0.05~0.5%、Mn:0.2~1.8%、P:0.03%以下、S:0.005%以下、Cr:15.5~18.0%、Mo:1.0~3.5%、Ni:1.5~5.0%、V:0.02~0.2%、Al:0.002~0.05%、N:0.01~0.15%、O:0.006%以下を含有し、さらにW:0.5~3.0%、Cu:0.5~3.5%の中から選ばれた1種または2種を含有し、かつ前記C、Si、Mn、Cr、Mo、Ni、N、W、Cuの含有量が下記の(1)式および(2)式を満足し、残部がFeおよび不可避的不純物からなる組成を有するビレットを加熱し、さらに熱間加工を施して継目無鋼管とし、該継目無鋼管を空冷以上の冷却速度で室温まで冷却した後に、前記継目無鋼管を850℃以上に加熱し、引き続き100℃以下まで空冷以上の冷却速度で冷却して焼入れを行ない、次いで700℃以下かつ下記の(3)式を満足する保持時間で焼戻しを行なう油井用継目無ステンレス鋼管の製造方法。
    [%Cr]+0.65[%Ni]+0.6[%Mo]+0.3[%W]+0.55[%Cu]-20[%C]≧19.5 ・・・(1)
    [%Cr]+[%Mo]+0.5[%W]+0.3[%Si]-43.5[%C]-0.4[%Mn]-[%Ni]
      -0.3[%Cu]-9[%N]≧11.5・・・(2)
    [%Mo]×(t+550)≦2100・・・(3)
    [%C]、[%Si]、[%Mn]、[%Cr]、[%Mo]、[%Ni]、[%N]、[%W]、[%Cu]:それぞれの元素の含有量(質量%)であり、含有しない場合はゼロとする。
    t:焼戻しの保持時間(分)
  2.  前記ビレットが、前記組成に加えて、質量%で、Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下の中から選ばれた1種または2種以上を含有する請求項1に記載の油井用継目無ステンレス鋼管の製造方法。
  3.  前記ビレットが、前記組成に加えて、質量%で、Ca:0.01%以下を含有する請求項1または2に記載の油井用継目無ステンレス鋼管の製造方法。
  4.  質量%で、C:0.005~0.06%、Si:0.05~0.5%、Mn:0.2~1.8%、P:0.03%以下、S:0.005%以下、Cr:15.5~18.0%、Mo:1.0~3.5%、Ni:1.5~5.0%、V:0.02~0.2%、Al:0.002~0.05%、N:0.01~0.15%、O:0.006%以下を含有し、さらにW:0.5~3.0%、Cu:0.5~3.5%の中から選ばれた1種または2種を含有し、かつ前記C、Si、Mn、Cr、Mo、Ni、N、W、Cuの含有量が下記の(1)式および(2)式を満足し、残部がFeおよび不可避的不純物からなる組成を有し、かつ10~60体積%のフェライト相、0~20体積%のオーステナイト相、および残部がマルテンサイト相からなり、前記マルテンサイト相に存在する粒径が0.5μm以上の金属間化合物の密度が2×104個/mm2以下である組織を有する油井用継目無ステンレス鋼管。
    [%Cr]+0.65[%Ni]+0.6[%Mo]+0.3[%W]+0.55[%Cu]-20[%C]≧19.5 ・・・(1)
    [%Cr]+[%Mo]+0.5[%W]+0.3[%Si]-43.5[%C]-0.4[%Mn]-[%Ni]
      -0.3[%Cu]-9[%N]≧11.5・・・(2)
    [%C]、[%Si]、[%Mn]、[%Cr]、[%Mo]、[%Ni]、[%N]、[%W]、[%Cu]:それぞれの元素の含有量(質量%)であり、含有しない場合はゼロとする。
  5.  前記組成に加えて、質量%で、Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下の中から選ばれた1種または2種以上を含有する請求項4に記載の油井用継目無ステンレス鋼管。
  6.  前記組成に加えて、質量%で、Ca:0.01%以下を含有する請求項4または5に記載の油井用継目無ステンレス鋼管。
PCT/JP2015/006001 2015-01-15 2015-12-03 油井用継目無ステンレス鋼管およびその製造方法 WO2016113794A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112017014690-8A BR112017014690B1 (pt) 2015-01-15 2015-12-03 Tubo de aço inoxidável sem costura para produtos tubulares e acessórios para a indústria petrolífera e método para fabricar o mesmo
EP15877751.6A EP3246418B1 (en) 2015-01-15 2015-12-03 Seamless stainless steel pipe for oil well, and method for manufacturing same
MX2017009205A MX2017009205A (es) 2015-01-15 2015-12-03 Tuberia de acero inoxidable sin costura para productos tubulares de region petrolifera y metodo de fabricacion de la misma.
JP2016524542A JP6229794B2 (ja) 2015-01-15 2015-12-03 油井用継目無ステンレス鋼管およびその製造方法
US15/543,813 US11193179B2 (en) 2015-01-15 2015-12-03 Seamless stainless steel pipe for oil country tubular goods and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-005631 2015-01-15
JP2015005631 2015-01-15

Publications (1)

Publication Number Publication Date
WO2016113794A1 true WO2016113794A1 (ja) 2016-07-21

Family

ID=56405364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006001 WO2016113794A1 (ja) 2015-01-15 2015-12-03 油井用継目無ステンレス鋼管およびその製造方法

Country Status (7)

Country Link
US (1) US11193179B2 (ja)
EP (1) EP3246418B1 (ja)
JP (1) JP6229794B2 (ja)
AR (1) AR103405A1 (ja)
BR (1) BR112017014690B1 (ja)
MX (1) MX2017009205A (ja)
WO (1) WO2016113794A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020886A1 (ja) * 2016-07-27 2018-02-01 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
JPWO2017168874A1 (ja) * 2016-03-29 2018-04-05 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6432683B2 (ja) 2015-08-04 2018-12-05 新日鐵住金株式会社 ステンレス鋼及び油井用ステンレス鋼材
JP6409827B2 (ja) * 2015-08-18 2018-10-24 Jfeスチール株式会社 油井用継目無ステンレス鋼管の製造方法
EP3822381A4 (en) * 2018-07-09 2022-01-26 Nippon Steel Corporation SEAMLESS STEEL TUBE AND METHOD OF MANUFACTURE THEREOF
MX2021005256A (es) * 2018-11-05 2021-06-18 Jfe Steel Corp Tubos de acero inoxidable martensitico sin costuras para productos tubulares para petroliferos y metodo para fabricar los mismos.

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336595A (ja) * 2003-08-19 2005-12-08 Jfe Steel Kk 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法
JP2008081793A (ja) * 2006-09-28 2008-04-10 Jfe Steel Kk 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管
JP2010209402A (ja) * 2009-03-10 2010-09-24 Jfe Steel Corp 高靱性でかつ耐食性に優れた油井用高強度ステンレス鋼管
WO2011136175A1 (ja) * 2010-04-28 2011-11-03 住友金属工業株式会社 高強度油井用ステンレス鋼及び高強度油井用ステンレス鋼管
JP2012149317A (ja) * 2011-01-20 2012-08-09 Jfe Steel Corp 油井用高強度マルテンサイト系ステンレス継目無鋼管
WO2013146046A1 (ja) * 2012-03-26 2013-10-03 新日鐵住金株式会社 油井用ステンレス鋼及び油井用ステンレス鋼管
JP2013249516A (ja) * 2012-05-31 2013-12-12 Jfe Steel Corp 油井管用高強度ステンレス鋼継目無管およびその製造方法
JP2014114500A (ja) * 2012-12-12 2014-06-26 Jfe Steel Corp 継目無鋼管の熱処理設備列および高強度ステンレス鋼管の製造方法
JP2015110822A (ja) * 2012-12-21 2015-06-18 Jfeスチール株式会社 耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179380B1 (en) 1999-08-06 2009-10-14 Sumitomo Metal Industries, Ltd. Martensite stainless steel welded steel pipe
JP4867088B2 (ja) 2001-06-21 2012-02-01 住友金属工業株式会社 高Cr系継目無鋼管の製造方法
WO2005042793A1 (ja) 2003-10-31 2005-05-12 Jfe Steel Corporation 耐食性に優れたラインパイプ用高強度ステンレス鋼管およびその製造方法
JP4462005B2 (ja) * 2003-10-31 2010-05-12 Jfeスチール株式会社 耐食性に優れたラインパイプ用高強度ステンレス鋼管およびその製造方法
JP4792778B2 (ja) 2005-03-29 2011-10-12 住友金属工業株式会社 ラインパイプ用厚肉継目無鋼管の製造方法
JP4577457B2 (ja) * 2008-03-28 2010-11-10 住友金属工業株式会社 油井管に用いられるステンレス鋼
AR073884A1 (es) * 2008-10-30 2010-12-09 Sumitomo Metal Ind Tubo de acero inoxidable de alta resistencia excelente en resistencia a la fisuracion bajo tension por sulfuros y a la corrosion de gas de acido carbonico en alta temperatura.
AR076669A1 (es) * 2009-05-18 2011-06-29 Sumitomo Metal Ind Acero inoxidable para pozos de petroleo, tubo de acero inoxidable para pozos de petroleo, y metodo de fabricacion de acero inoxidable para pozos de petroleo
JP4748283B2 (ja) 2009-08-21 2011-08-17 住友金属工業株式会社 厚肉継目無鋼管の製造方法
WO2011132765A1 (ja) * 2010-04-19 2011-10-27 Jfeスチール株式会社 溶接熱影響部の耐粒界応力腐食割れ性に優れたラインパイプ用Cr含有鋼管
JP5505100B2 (ja) 2010-06-04 2014-05-28 Jfeスチール株式会社 炭酸ガスインジェクション用部材向けCr含有鋼管
JP5924256B2 (ja) * 2012-06-21 2016-05-25 Jfeスチール株式会社 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法
JP5907083B2 (ja) * 2013-01-31 2016-04-20 Jfeスチール株式会社 靭性に優れた継目無鋼管の製造方法及び製造設備

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336595A (ja) * 2003-08-19 2005-12-08 Jfe Steel Kk 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法
JP2008081793A (ja) * 2006-09-28 2008-04-10 Jfe Steel Kk 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管
JP2010209402A (ja) * 2009-03-10 2010-09-24 Jfe Steel Corp 高靱性でかつ耐食性に優れた油井用高強度ステンレス鋼管
WO2011136175A1 (ja) * 2010-04-28 2011-11-03 住友金属工業株式会社 高強度油井用ステンレス鋼及び高強度油井用ステンレス鋼管
JP2012149317A (ja) * 2011-01-20 2012-08-09 Jfe Steel Corp 油井用高強度マルテンサイト系ステンレス継目無鋼管
WO2013146046A1 (ja) * 2012-03-26 2013-10-03 新日鐵住金株式会社 油井用ステンレス鋼及び油井用ステンレス鋼管
JP2013249516A (ja) * 2012-05-31 2013-12-12 Jfe Steel Corp 油井管用高強度ステンレス鋼継目無管およびその製造方法
JP2014114500A (ja) * 2012-12-12 2014-06-26 Jfe Steel Corp 継目無鋼管の熱処理設備列および高強度ステンレス鋼管の製造方法
JP2015110822A (ja) * 2012-12-21 2015-06-18 Jfeスチール株式会社 耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017168874A1 (ja) * 2016-03-29 2018-04-05 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管
WO2018020886A1 (ja) * 2016-07-27 2018-02-01 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
JP6304460B1 (ja) * 2016-07-27 2018-04-04 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
US11072835B2 (en) 2016-07-27 2021-07-27 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods, and method for producing the same

Also Published As

Publication number Publication date
BR112017014690B1 (pt) 2021-09-21
AR103405A1 (es) 2017-05-10
US20170369963A1 (en) 2017-12-28
JPWO2016113794A1 (ja) 2017-04-27
EP3246418A1 (en) 2017-11-22
US11193179B2 (en) 2021-12-07
EP3246418A4 (en) 2017-11-22
JP6229794B2 (ja) 2017-11-15
BR112017014690A2 (ja) 2018-02-06
MX2017009205A (es) 2017-11-17
EP3246418B1 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
JP6399259B1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
US10876183B2 (en) High-strength seamless stainless steel pipe and method of manufacturing high-strength seamless stainless steel pipe
JP6358411B1 (ja) 二相ステンレス鋼およびその製造方法
JP6227664B2 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
RU2584100C1 (ru) Высокопрочная бесшовная труба из нержавеющей стали нефтепромыслового сортамента и способ её изготовления
JP6229794B2 (ja) 油井用継目無ステンレス鋼管およびその製造方法
JP6369662B1 (ja) 二相ステンレス鋼およびその製造方法
JP6409827B2 (ja) 油井用継目無ステンレス鋼管の製造方法
WO2017138050A1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP5765036B2 (ja) 溶接熱影響部の耐粒界応力腐食割れ性に優れたラインパイプ用Cr含有鋼管
JP6156609B1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2020067247A1 (ja) マルテンサイトステンレス鋼材
WO2011136175A1 (ja) 高強度油井用ステンレス鋼及び高強度油井用ステンレス鋼管
WO2014112353A1 (ja) 油井用ステンレス継目無鋼管およびその製造方法
JP6237873B2 (ja) 油井用高強度ステンレス継目無鋼管
JP7201094B2 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2015033518A1 (ja) 高強度ステンレス鋼管の製造方法および高強度ステンレス鋼管
EP2684974B1 (en) Duplex stainless steel
JP6672620B2 (ja) 油井用ステンレス鋼及び油井用ステンレス鋼管
JP5640777B2 (ja) 溶接熱影響部の耐粒界応力腐食割れ性に優れたラインパイプ用Cr含有鋼管
WO2016079922A1 (ja) 油井用高強度ステンレス継目無鋼管の製造方法
JP7279863B2 (ja) ステンレス鋼管およびその製造方法
WO2023145346A1 (ja) 油井用高強度ステンレス継目無鋼管

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016524542

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877751

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015877751

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/009205

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15543813

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017014690

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017014690

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170707