WO2016110945A1 - 多層回路基板 - Google Patents

多層回路基板 Download PDF

Info

Publication number
WO2016110945A1
WO2016110945A1 PCT/JP2015/050152 JP2015050152W WO2016110945A1 WO 2016110945 A1 WO2016110945 A1 WO 2016110945A1 JP 2015050152 W JP2015050152 W JP 2015050152W WO 2016110945 A1 WO2016110945 A1 WO 2016110945A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground
conductor
circuit board
multilayer circuit
layer
Prior art date
Application number
PCT/JP2015/050152
Other languages
English (en)
French (fr)
Inventor
聖児 小松
明道 廣田
田原 志浩
幸司 澁谷
慶洋 明星
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/050152 priority Critical patent/WO2016110945A1/ja
Priority to EP15876823.4A priority patent/EP3244480A4/en
Priority to US15/519,626 priority patent/US20170257942A1/en
Priority to JP2016549530A priority patent/JP6180648B2/ja
Publication of WO2016110945A1 publication Critical patent/WO2016110945A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • H05K1/0253Impedance adaptations of transmission lines by special lay-out of power planes, e.g. providing openings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/028Transitions between lines of the same kind and shape, but with different dimensions between strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0286Programmable, customizable or modifiable circuits
    • H05K1/0287Programmable, customizable or modifiable circuits having an universal lay-out, e.g. pad or land grid patterns or mesh patterns
    • H05K1/0289Programmable, customizable or modifiable circuits having an universal lay-out, e.g. pad or land grid patterns or mesh patterns having a matrix lay-out, i.e. having selectively interconnectable sets of X-conductors and Y-conductors in different planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09681Mesh conductors, e.g. as a ground plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a multilayer circuit board in which at least one signal layer and a ground layer are laminated with an insulator layer interposed therebetween.
  • Patent Document 1 a method of obtaining a desired characteristic impedance by deleting the pad ground is known (for example, Patent Document 1).
  • Patent Document 1 has a problem in that the reflection characteristic at the pad deteriorates because the characteristic impedance of the pad changes significantly from a desired value when a stacking error occurs during substrate manufacture. there were.
  • the present invention has been made to solve the above-described problems, and is a multilayer circuit board capable of suppressing deterioration of reflection characteristics without greatly deviating from a desired characteristic impedance even when a stacking error occurs.
  • the purpose is to provide.
  • the multilayer circuit board according to the present invention is a multilayer circuit board formed by laminating at least one signal layer and a ground layer with an insulator layer in between, a transmission line formed in the signal layer, and a signal layer A conductor pad that is formed and connected to the transmission line and is wider than the transmission line; a ground conductor that is formed in the ground layer and has a first ground removal portion from which the conductor is removed; and a first ground removal portion An auxiliary ground conductor provided inside and connected to the ground conductor, wherein the first ground removal section has a characteristic impedance determined by the first ground removal section and the conductor pad, the ground conductor and the transmission line; The size is higher than the characteristic impedance determined by (1).
  • the characteristic impedance determined by the first ground deletion portion and the conductor pad is determined by the ground conductor and the transmission line in the first ground deletion portion formed in the ground layer.
  • the size is higher than the characteristic impedance.
  • FIG. 2 is a cross-sectional view taken along line X 1 -X 2 in FIG. It is explanatory drawing at the time of raise
  • FIG. 4 is a cross-sectional view taken along line X 1 -X 2 in FIG. It is a block diagram which shows the conventional multilayer circuit board typically.
  • FIG. 6 is a cross-sectional view taken along line X 1 -X 2 in FIG. 5.
  • FIG. 8 is a sectional view taken along line X 1 -X 2 in FIG. It is explanatory drawing which shows the analysis result of the reflection characteristic by the multilayer circuit board which concerns on Embodiment 1 of this invention, and the conventional multilayer circuit board. It is a block diagram which shows typically the multilayer circuit board based on Embodiment 2 of this invention. It is explanatory drawing at the time of raise
  • FIG. 13 is a sectional view taken along line X 1 -X 2 in FIG.
  • FIG. 1 is a configuration diagram schematically showing a multilayer circuit board according to the present embodiment
  • FIG. 2 is a cross-sectional view taken along line X 1 -X 2 in FIG.
  • a case where a multilayer circuit board using microstrip lines is configured is shown.
  • the multilayer circuit board of the first embodiment has a signal layer (signal transmission conductor: component pad (conductor pad) 1a and transmission layer) on the upper and lower layers of a dielectric layer (insulator layer) 4.
  • the line 1b) and the ground layer are formed, and further, the ground deletion portion (the first ground deletion portion 3a and the second ground deletion portion 3b) is formed in the ground layer.
  • the signal transmission conductors are arranged so that one end sides of a pair of two component pads 1a are close to each other, and the other end sides of the component pads 1a are respectively connected to the transmission line 1b.
  • An auxiliary ground conductor 2b is disposed inside the first ground deletion portion 3a formed in the ground layer, and a second ground deletion portion 3b is disposed inside the auxiliary ground conductor 2b.
  • the auxiliary ground conductor 2b is electrically connected to the ground conductor 2a.
  • the first ground deletion unit 3a surrounded by the ground conductor 2a is provided in the ground layer, and the first ground deletion unit 3a includes the ground An auxiliary ground conductor 2b electrically connected to the conductor 2a is disposed, and a second ground removal portion 3b surrounded by the auxiliary ground conductor 2b is provided.
  • the characteristic impedance determined by the first ground deleting unit 3a and the component pad 1a is higher than the characteristic impedance determined by the ground conductor 2a and the transmission line 1b. It is formed in size. The relationship between these characteristic impedances will be described later.
  • the outer shape of the pair of component pads 1a is projected onto the ground layer, the center of the region sandwiched between the component pads 1a is arranged at the center of the first ground deletion portion 3a, and the outer shape of the component pad 1a Is projected onto the ground layer so that its outer shape is included in the second ground removal section 3b.
  • auxiliary ground conductor 2b is arranged so that the center of the auxiliary ground conductor 2b is located at the center of the first ground removal portion 3a. Further, the auxiliary ground conductor 2b and the first ground removal portion 3a have shapes that are line-symmetric with each other.
  • FIG. 1 and 2 show the configuration of the multilayer circuit board according to the first embodiment in a state where no stacking deviation occurs.
  • FIG. 3 and FIG. 4 show the configuration of the multilayer circuit board according to the first embodiment in a situation in which a stacking error has occurred.
  • 3 is a partial plan view corresponding to FIG. 1
  • FIG. 4 is a cross-sectional view taken along line X 1 -X 2 of FIG. 3 corresponding to FIG. The reflection characteristics when such a stacking deviation occurs will be described in comparison with a conventional configuration.
  • FIGS. 7 and 8 show a situation in which stacking shift occurs.
  • 5 and 7 are partial plan views
  • FIGS. 6 and 8 are cross-sectional views taken along line X 1 -X 2 in FIGS.
  • the component pad 1a, the transmission line 1b, the ground conductor 2a, and the auxiliary ground conductor 2b have the same configuration as that in FIGS. 1 to 4, and the ground deletion unit 3a is the first ground in FIGS. This is a part corresponding to the deletion unit 3a.
  • FIG. 9 shows the analysis results of the reflection characteristics of the multilayer circuit board according to Embodiment 1 and the conventional multilayer circuit board with respect to the presence or absence of misalignment.
  • solid lines 90a and 90b indicate the reflection characteristics of the multilayer circuit board according to Embodiment 1
  • broken lines 91a and 91b indicate the reflection characteristics of the conventional multilayer circuit board.
  • the solid line 90a and the broken line 91a are the characteristics of the configuration of the first embodiment and the conventional configuration at the reference position, respectively
  • the solid line 90b and the broken line 91b are the configuration of the first embodiment and the conventional configuration when there is a stacking deviation, respectively.
  • the characteristics are shown. As shown in FIG. 9, in the multilayer circuit board according to the first embodiment, it can be seen that the reflection characteristics are greatly improved when there is a stacking deviation from the conventional configuration.
  • the area where the component pad 1a and the ground layer 2 overlap is larger than that in the multilayer circuit board according to the first embodiment in which the stacking error has occurred.
  • the characteristic impedance mismatch becomes large and the reflection characteristic is deteriorated.
  • the auxiliary ground conductor 2b and the second ground removal portion 3b are provided in the first ground removal portion 3a by a microstrip line, as shown in FIGS.
  • the area where the component pad 1a and the ground layer 2 overlap can be made smaller than that of the conventional multilayer circuit board.
  • the change in capacitance can be reduced, and hence the mismatch in characteristic impedance can be reduced, so that the reflection characteristic can be maintained as good.
  • L is an inductance
  • C is a capacitance.
  • the characteristic impedance Zcp of the component pad 1a at the reference position is designed to be substantially the same as the characteristic impedance Zct of the transmission line 1b connected to the component pad 1a.
  • the relationship is as follows. ⁇ Capacitance change is large ⁇ Characteristic impedance mismatch is large ⁇ Reflective characteristics are deteriorated ⁇ Capacitance change is small ⁇ Characteristic impedance mismatch is small ⁇ Reflective characteristics are good
  • FIG. 7 the conventional configuration
  • FIG. 8 the overlapping area of the component pad 1a and the ground conductor 2a increases, and the change in capacitance increases (see arrow 80).
  • auxiliary ground conductor 2b As for the auxiliary ground conductor 2b, Zcp and Zct are matched at the reference position (because the area of the first ground deletion portion 3a is widened), and when the misalignment occurs, the component pad 1a and the auxiliary ground conductor 2b It is necessary that the overlapping area be smaller than the conventional configuration.
  • the reflection characteristics (see the solid line 90a and the broken line 91a) of the multilayer circuit board of the first embodiment and the conventional multilayer circuit board have the same value. be able to.
  • the multilayer circuit board of the first embodiment in the multilayer circuit board formed by laminating at least one signal layer and one ground layer with the insulator layer interposed therebetween, the multilayer circuit board is formed on the signal layer. And a ground conductor formed in the signal layer and connected to the transmission line and wider than the transmission line, and a ground conductor formed in the ground layer and having the first ground deletion portion removed from the conductor. And an auxiliary ground conductor connected to the ground conductor, and the first ground removal portion has a characteristic determined by the first ground removal portion and the conductor pad. Since the impedance is larger than the characteristic impedance determined by the ground conductor and the transmission line, the desired characteristic impedance can be obtained even if a stacking error occurs. Et far off it is not, it is possible to suppress degradation of the reflection characteristic.
  • the conductor pads are configured in a pair, and when the outer shape of the conductor pads is projected onto the ground layer, the conductor pads are located at the center of the first ground removal portion. Since the center of the sandwiched region is arranged, the characteristic impedance mismatch can be reduced and the deterioration of the reflection characteristic can be suppressed.
  • the center of the auxiliary ground conductor is arranged at the center of the first ground removal portion, the mismatch of characteristic impedance can be reduced, Deterioration of reflection characteristics can be suppressed.
  • the auxiliary ground conductor has the second ground removal portion therein, and when the outer shape of the conductor pad is projected onto the ground layer, the conductor pad becomes the second ground. Since it is arranged in the deletion part, mismatching of characteristic impedance can be reduced, and deterioration of reflection characteristics can be suppressed.
  • the auxiliary ground conductor and the first ground removal portion have a shape that is line symmetric, so that the mismatch of characteristic impedance can be reduced, Deterioration of reflection characteristics can be suppressed.
  • Embodiment 2 the surface of the auxiliary ground conductor 2b that faces the component pad 1a has an uneven shape.
  • the first embodiment an example in which a multilayer circuit board using microstrip lines is configured will be described.
  • the second embodiment shows a case where the shape of the first ground removal portion 3a is changed so that the area where the component pad 1a and the ground layer overlap can be suppressed even if a stacking error occurs.
  • FIG. 10 is a configuration diagram schematically showing a multilayer circuit board according to the second embodiment.
  • the second ground removal portion 3b is omitted from the multilayer circuit board according to the first embodiment shown in FIGS. 1 to 4, and the surface of the auxiliary ground conductor 2b on the component pad 1a side is removed. It has a concavo-convex shape. That is, this configuration is equivalent to a configuration in which the side surface shape of the first ground removal portion 3a is uneven.
  • the first ground deleting unit 3a is such that the characteristic impedance determined by the first ground deleting unit 3a and the component pad 1a is higher than the characteristic impedance determined by the ground conductor 2a and the transmission line 1b. This is the same as in the first embodiment. Since other configurations are the same as those of the first embodiment, the corresponding parts are denoted by the same reference numerals and description thereof is omitted.
  • the configuration is such that the side surface of the first ground removal portion 3a is made uneven by a microstrip line, so that when the stacking shift occurs, the component pad 1a and the ground layer ( The area where the ground conductor 2a and the auxiliary ground conductor 2b overlap can be made smaller than that of the conventional multilayer circuit board.
  • FIG. 11 is an explanatory diagram illustrating a situation in which a stacking shift has occurred in the multilayer circuit board according to the second embodiment. It can be seen that the area where the component pad 1a overlaps with the ground conductor 2a or the auxiliary ground conductor 2b is smaller than when the stacking deviation of the conventional configuration in FIG. 7 occurs.
  • the overlapping area between the component pad 1a and the ground layer is reduced even when the stacking shift occurs, so that the change in capacitance is large as in the first embodiment. Therefore, the characteristic impedance mismatch is reduced and the reflection characteristic can be improved.
  • the auxiliary ground conductor has an uneven shape on the surface facing the conductor pad. Therefore, the deterioration of the reflection characteristics can be suppressed.
  • Embodiment 3 FIG. In the first and second embodiments, the configuration of the microstrip line is shown. On the other hand, Embodiment 3 shows a case in which a strip line is used.
  • FIG. 12 is a block diagram schematically showing a multilayer circuit board according to the third embodiment
  • FIG. 13 is a cross-sectional view taken along line X 1 -X 2 in FIG.
  • the ground layers above and below the signal transmission conductor serve as the reference ground.
  • a ground conductor 2a, an auxiliary ground conductor 2b, a first ground deletion portion 3a, and a second ground deletion portion 3b are formed.
  • the auxiliary ground conductor 2b, the first ground deletion section 3a, and the second ground deletion section 3b are respectively provided in the upper and lower ground layers in the strip line as in the first embodiment.
  • the area where the component pad 1a and the ground layer overlap can be made smaller than that of the conventional multilayer circuit board.
  • the overlapping area between the component pad 1a and the ground layer is reduced even if the stacking shift occurs.
  • the reflection characteristics can obtain almost the same value.
  • the configuration in which the auxiliary ground conductor 2b, the first ground deleting section 3a, and the second ground deleting section 3b are respectively provided in the upper and lower ground layers in the strip line as in the first embodiment will be described.
  • the configuration may be such that the shape of the side surface of the first ground removal portion 3a is uneven.
  • the multilayer circuit board according to the present invention relates to a multilayer circuit board in which at least one signal layer and a ground layer are laminated with an insulator layer in between, and mounting of chip parts and connectors Suitable for use in parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Waveguides (AREA)

Abstract

 グランド層に形成された第1のグランド削除部3aは、第1のグランド削除部3aと部品パッド1aとで決定される特性インピーダンスが、グランド導体2aと伝送線路1bとで決定される特性インピーダンスよりも高くなる大きさに形成されている。部品パッド1aの外形をグランド層に投影したとき、第1のグランド削除部3aの中心に、部品パッド1a同士に挟まれた領域の中心が配置される。

Description

多層回路基板
 本発明は、絶縁体層を挟んで、信号層とグランド層をそれぞれ少なくとも1層ずつ積層してなる多層回路基板に関するものである。
 近年、デジタル伝送の高速化が著しく、特性インピーダンスの不整合による反射特性の増加が顕著となっている。特にチップ部品やコネクタを実装するためのパッドは伝送線路より幅広となり、所望のパッドの特性インピーダンスが得られず、その結果、特性インピーダンス不整合が生じるため、上記パッドで反射が生じてしまう問題がある。
 このようなパッドの特性インピーダンス不整合を解決するために、パッドのグランドを削除することで所望の特性インピーダンスを得る手法が知られている(例えば特許文献1)。
実開昭55-25339号公報
 しかしながら、上記特許文献1に記載された従来の技術では、基板製造時に積層ずれが起きた場合、パッドの特性インピーダンスが所望の値から著しく変化するため、パッドでの反射特性が劣化するという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、積層ずれが発生しても所望の特性インピーダンスから大きく外れることが無く、反射特性の劣化を抑制することができる多層回路基板を提供することを目的とする。
 この発明に係る多層回路基板は、絶縁体層を挟んで、信号層とグランド層とをそれぞれ少なくとも1層ずつ積層してなる多層回路基板において、信号層に形成された伝送線路と、信号層に形成されるとともに伝送線路に接続され、かつ、伝送線路より幅広の導体パッドと、グランド層に形成され、導体を抜いた第1のグランド削除部を有するグランド導体と、第1のグランド削除部の内部に設けられ、グランド導体と接続された補助グランド導体とを備え、第1のグランド削除部は、第1のグランド削除部と導体パッドとで決定される特性インピーダンスが、グランド導体と伝送線路とで決定される特性インピーダンスよりも高くなる大きさに形成されたものである。
 この発明に係る多層回路基板は、グランド層に形成された第1のグランド削除部は、第1のグランド削除部と導体パッドとで決定される特性インピーダンスが、グランド導体と伝送線路とで決定される特性インピーダンスよりも高くなる大きさに形成するようにしたものである。これにより、積層ずれが発生しても所望の特性インピーダンスから大きく外れることが無く、反射特性の劣化を抑制することができる。
この発明の実施の形態1に係る多層回路基板を模式的に示す構成図である。 図1におけるX-X線断面図である。 この発明の実施の形態1に係る多層回路基板の積層ずれを起こした場合の説明図である。 図3におけるX-X線断面図である。 従来の多層回路基板を模式的に示す構成図である。 図5におけるX-X線断面図である。 従来の多層回路基板の積層ずれを起こした場合の説明図である。 図7におけるX-X線断面図である。 この発明の実施の形態1に係る多層回路基板及び従来の多層回路基板による反射特性の解析結果を示す説明図である。 この発明の実施の形態2に係る多層回路基板を模式的に示す構成図である。 この発明の実施の形態2に係る多層回路基板の積層ずれを起こした場合の説明図である。 この発明の実施の形態3に係る多層回路基板を模式的に示す構成図である。 図12におけるX-X線断面図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、本実施の形態による多層回路基板を模式的に示す構成図であり、図2は、図1におけるX-X線断面図である。実施の形態1では、マイクロストリップ線路による多層回路基板を構成する場合について示している。
 これらの図に示すように、実施の形態1の多層回路基板は、誘電体層(絶縁体層)4の上層と下層に、信号層(信号伝送用導体:部品パッド(導体パッド)1a及び伝送線路1b)と、グランド層(グランド導体2a及び補助グランド導体2b)とが形成され、さらに、グランド層にはグランド削除部(第1のグランド削除部3aと第2のグランド削除部3b)が形成されている。
 信号伝送用導体は、一対となった2つの部品パッド1aの一端側が近接するように配置され、かつ、それぞれ部品パッド1aの他端側が伝送線路1bと接続されている。また、グランド層に形成された第1のグランド削除部3aの内部には補助グランド導体2bが配置されており、さらに補助グランド導体2bの内部に第2のグランド削除部3bが配置されている。補助グランド導体2bは、グランド導体2aと電気的に接続されている。
 このように、実施の形態1に係る多層回路基板は、グランド層に、グランド導体2aに囲まれた第1のグランド削除部3aを設け、かつ、この第1のグランド削除部3a内に、グランド導体2aと電気的に接続された補助グランド導体2bを配置し、さらに、補助グランド導体2bに囲まれた第2のグランド削除部3bを設けている。
 ここで、第1のグランド削除部3aは、第1のグランド削除部3aと部品パッド1aとで決定される特性インピーダンスが、グランド導体2aと伝送線路1bとで決定される特性インピーダンスよりも高くなる大きさに形成されている。なお、これらの特性インピーダンスの関係については後述する。
 また、一対の部品パッド1aの外形をグランド層に投影したとき、第1のグランド削除部3aの中心に、部品パッド1a同士に挟まれた領域の中心が配置され、かつ、部品パッド1aの外形をグランド層に投影したとき、その外形が第2のグランド削除部3b内に含まれるよう構成されている。また、第1のグランド削除部3aの中心に補助グランド導体2bの中心が位置するよう補助グランド導体2bが配置されている。
 さらに、補助グランド導体2bと第1のグランド削除部3aは、それぞれが線対称となる形状を有している。
 図1及び図2では、積層ずれが起きていない状況における実施の形態1の多層回路基板の構成を示している。一方、図3及び図4に、積層ずれを起こした状況における実施の形態1の多層回路基板の構成を示す。図3は図1に対応した部分平面図であり、図4は図2に対応した図3のX-X線断面図である。このような積層ずれを起こした場合の反射特性について、従来構成と比較して説明する。
 図5及び図6は従来構成における積層ずれが起きていない状況であり、図7及び図8は積層ずれを起こしている状況を示している。なお、図5及び図7は部分平面図、図6及び図8は図5及び図7のX-X線断面図である。これらの図において、部品パッド1a,伝送線路1b及びグランド導体2a,補助グランド導体2bは、図1~図4と同様の構成であり、グランド削除部3aは図1~図4の第1のグランド削除部3aに相当する部分である。
 図1~図4に示した実施の形態1の多層回路基板及び図5~図8に示した従来の多層回路基板における積層ずれの有無の状況において、反射特性を解析した。
 図9は、積層ずれの有無に対して、実施の形態1に係る多層回路基板及び従来の多層回路基板による反射特性の解析結果を示している。図9において、実線90a,90bが実施の形態1に係る多層回路基板による反射特性を示し、破線91a,91bが従来の多層回路基板による反射特性を示している。また、実線90a及び破線91aがそれぞれ基準位置の実施の形態1の構成と従来構成の特性であり、実線90b及び破線91bが、それぞれ積層ずれがあった場合の実施の形態1の構成と従来構成の特性を示している。
 この図9に示すように、実施の形態1に係る多層回路基板では、従来構成に対し、積層ずれがあるときに反射特性が大きく改善していることがわかる。
 積層ずれが起きた従来の多層回路基板では、積層ずれが起きた実施の形態1に係る多層回路基板よりも部品パッド1aとグランド層2が重なる面積が大きくなるため、容量の変化が大きく、その結果、特性インピーダンス不整合が大きくなって、反射特性が低下してしまう。
 一方、実施の形態1では、マイクロストリップ線路で第1のグランド削除部3a内に補助グランド導体2bと第2のグランド削除部3bを設けた構成とすることで、図3、図4のように積層ずれが起きた場合でも、部品パッド1aとグランド層2が重なる面積を従来の多層回路基板より小さくできる。その結果、容量の変化を小さくすることができ、従って、特性インピーダンスの不整合を小さくできるため、反射特性を良好のまま維持することができる。以下、この点をさらに詳細に説明する。
 特性インピーダンスZは、Z=(L/C)^1/2で与えられる。ここで、Lはインダクタンス、Cは容量である。一般的に、入力から出力まで特性インピーダンスZはできるだけ一定に設計しないと反射特性が悪化する。このため、基準位置における部品パッド1aの特性インピーダンスZcpは、部品パッド1aに接続された伝送線路1bの特性インピーダンスZctとほぼ同じに設計する。そして、積層ずれが生じた場合は、部品パッド1aと伝送線路1bの容量のみ変化が起きるので、特性インピーダンスの不整合が生じ、反射特性が悪化する。関係性は以下の通りである。
 ・容量の変化が大きい→特性インピーダンスの不整合が大きい→反射特性が悪化
 ・容量の変化が小さい→特性インピーダンスの不整合が小さい→反射特性が良好
 反射特性を良好に保つためには、積層ずれが起きてもできるだけ容量の変化量を小さくし、一定に保つことが重要である。このため、基準位置において、従来構成ではZcp=Zctとなるように、第1のグランド削除部3aのサイズを決定する(図5,図6)が、従来構成で積層ずれが生じると(図7、図8)、部品パッド1aとグランド導体2aの重なる面積が大きくなり、容量の変化が大きくなる(矢印80参照)。これに対し、実施の形態1では、積層ずれが生じた場合でも部品パッド1aとグランド導体2a間の容量の変化が小さくなる(矢印40参照)ように、第1のグランド削除部3aのサイズを図5のグランド削除部3aより広くする。このように、第1のグランド削除部3aを広くする=容量の変化は小さくする=ZcpはZctより高くする、となる。すなわち、ZcpはZctより高くするということが「積層ずれが発生しても所望の特性インピーダンスから大きく外れることが無い」ということになる。
 また、補助グランド導体2bについては、基準位置において、ZcpとZctの整合がとれ(第1のグランド削除部3aの面積を広くしたため)、かつ、積層ずれ発生時に、部品パッド1aと補助グランド導体2bの重なる面積が、従来の構成よりも小さくなる形状とすることが必要である。
 なお、図9から明らかなように、積層ずれが起きていない場合は、実施の形態1の多層回路基板と従来の多層回路基板の反射特性(実線90a,破線91a参照)は同等の値を得ることができる。
 以上説明したように、実施の形態1の多層回路基板によれば、絶縁体層を挟んで、信号層とグランド層とをそれぞれ少なくとも1層ずつ積層してなる多層回路基板において、信号層に形成された伝送線路と、信号層に形成されるとともに伝送線路に接続され、かつ、伝送線路より幅広の導体パッドと、グランド層に形成され、導体を抜いた第1のグランド削除部を有するグランド導体と、第1のグランド削除部の内部に設けられ、グランド導体と接続された補助グランド導体とを備え、第1のグランド削除部は、第1のグランド削除部と導体パッドとで決定される特性インピーダンスが、グランド導体と伝送線路とで決定される特性インピーダンスよりも高くなる大きさに形成されたので、積層ずれが発生しても所望の特性インピーダンスから大きく外れることが無く、反射特性の劣化を抑制することができる。
 また、実施の形態1の多層回路基板によれば、導体パッドは一対に構成され、かつ、導体パッドの外形をグランド層に投影したとき、第1のグランド削除部の中心に、導体パッド同士に挟まれた領域の中心が配置されるようにしたので、特性インピーダンスの不整合を小さくすることができ、反射特性の劣化を抑制することができる。
 また、実施の形態1の多層回路基板によれば、第1のグランド削除部の中心に、補助グランド導体の中心が配置されるようにしたので、特性インピーダンスの不整合を小さくすることができ、反射特性の劣化を抑制することができる。
 また、実施の形態1の多層回路基板によれば、補助グランド導体はその内部に第2のグランド削除部を有し、導体パッドの外形をグランド層に投影したとき、導体パッドが第2のグランド削除部内に配置されるようにしたので、特性インピーダンスの不整合を小さくすることができ、反射特性の劣化を抑制することができる。
 また、実施の形態1の多層回路基板によれば、補助グランド導体及び第1のグランド削除部は、線対称となる形状を有するようにしたので、特性インピーダンスの不整合を小さくすることができ、反射特性の劣化を抑制することができる。
実施の形態2.
 実施の形態2は、補助グランド導体2bの部品パッド1aに対向する面を凹凸形状としたものである。以下、実施の形態1と同様に、マイクロストリップ線路による多層回路基板を構成する例を説明する。
 実施の形態1では、第2のグランド削除部3bを有した補助グランド導体2bが電気的に接続された構成を示した。それに対し、実施の形態2では、第1のグランド削除部3aの形状を変化させて、積層ずれが起きても、部品パッド1aとグランド層が重なる面積を抑えられる場合について示す。
 図10は、実施の形態2に係る多層回路基板を模式的に示す構成図である。実施の形態2に係る多層回路基板は、図1~図4に示す実施の形態1に係る多層回路基板から第2のグランド削除部3bを省き、補助グランド導体2bの部品パッド1a側の面を凹凸形状としたものである。すなわち、この構成は第1のグランド削除部3aの側面形状が凹凸を有するよう構成されているのと同等である。なお、第1のグランド削除部3aは、第1のグランド削除部3aと部品パッド1aとで決定される特性インピーダンスが、グランド導体2aと伝送線路1bとで決定される特性インピーダンスよりも高くなる大きさに形成されているのは実施の形態1と同様である。その他の構成は実施の形態1と同様であるため、対応する部分に同一符号を付してその説明を省略する。
 実施の形態2の多層回路基板では、マイクロストリップ線路で第1のグランド削除部3aの側面の形状を凹凸にした構成とすることで、積層ずれが起きた場合に、部品パッド1aとグランド層(グランド導体2a及び補助グランド導体2b)が重なる面積を従来の多層回路基板より小さくできる。図11は、実施の形態2の多層回路基板で積層ずれが起きた状況を示す説明図である。図7の従来構成の積層ずれが起きた場合に比べて部品パッド1aとグランド導体2aまたは補助グランド導体2bと重なる面積が小さいのが分かる。
 このように、実施の形態2の多層回路基板では、積層ずれが起きても部品パッド1aとグランド層の重なる面積が小さくなるようにしたので、実施の形態1と同様に、容量の変化が大きくなるのを抑え、特性インピーダンス不整合が小さくなり反射特性を改善することができる。
 なお、積層ずれが起きていない場合は、実施の形態2の多層回路基板と、グランド層に第1のグランド削除部3aを削除した従来の多層回路基板の反射特性はほぼ同等の値を得ることができる。
 以上説明したように、実施の形態2の多層回路基板によれば、補助グランド導体は、導体パッドに対向する面が凹凸形状であるようにしたので、積層ずれが発生しても所望の特性インピーダンスから大きく外れることが無く、反射特性の劣化を抑制することができる。
実施の形態3.
 実施の形態1、2では、マイクロストリップ線路の構成を示した。それに対し、実施の形態3では、ストリップ線路で構成された場合を示す。
 図12は、実施の形態3に係る多層回路基板を模式的に示す構成図であり、図13は図12におけるX-X線断面図である。
 これらの図に示すように、信号伝送用導体(部品パッド1a,伝送線路1b)の上下のグランド層が基準グランドとなる。上下のグランド層には、それぞれ実施の形態1と同様に、グランド導体2a,補助グランド導体2b及び第1のグランド削除部3a,第2のグランド削除部3bが形成されている。
 実施の形態3では、ストリップ線路で上下のグランド層に補助グランド導体2bと第1のグランド削除部3a及び第2のグランド削除部3bを実施の形態1と同様にそれぞれ設けた構成とすることで、積層ずれが起きた場合に、部品パッド1aとグランド層が重なる面積を従来の多層回路基板より小さくできる。
 このように実施の形態3の多層回路基板では、ストリップ線路の構成において、積層ずれが起きても部品パッド1aとグランド層の重なる面積が小さくなるようにしたので、実施の形態1及び実施の形態2と同様に、容量の変化が大きくなるのを抑え、特性インピーダンス不整合が小さくなり反射特性を改善することができる効果を奏する。
 なお、積層ずれが起きていない場合は、実施の形態3の多層回路基板と、ストリップ線路で上下のグランド層に第1のグランド削除部3aをそれぞれ削除して構成された従来の多層回路基板の反射特性はほぼ同等の値を得ることができる。
 また、実施の形態3では、ストリップ線路で上下のグランド層に補助グランド導体2bと第1のグランド削除部3a及び第2のグランド削除部3bを実施の形態1と同様にそれぞれ設けた構成について説明したが、実施の形態2と同様に第1のグランド削除部3aの側面の形状を凹凸にした構成であってもよい。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 以上のように、この発明に係る多層回路基板は、絶縁体層を挟んで、信号層とグランド層をそれぞれ少なくとも1層ずつ積層してなる多層回路基板に関するものであり、チップ部品やコネクタの実装部に用いるのに適している。
 1a 部品パッド、1b 伝送線路、2a グランド導体、2b 補助グランド導体、3a 第1のグランド削除部、3b 第2のグランド削除部、4 誘電体層。

Claims (6)

  1.  絶縁体層を挟んで、信号層とグランド層とをそれぞれ少なくとも1層ずつ積層してなる多層回路基板において、
     前記信号層に形成された伝送線路と、
     前記信号層に形成されるとともに前記伝送線路に接続され、かつ、当該伝送線路より幅広の導体パッドと、
     前記グランド層に形成され、導体を抜いた第1のグランド削除部を有するグランド導体と、
     前記第1のグランド削除部の内部に設けられ、前記グランド導体と接続された補助グランド導体とを備え、
     前記第1のグランド削除部は、当該第1のグランド削除部と前記導体パッドとで決定される特性インピーダンスが、前記グランド導体と前記伝送線路とで決定される特性インピーダンスよりも高くなる大きさに形成されたことを特徴とする多層回路基板。
  2.  前記導体パッドは一対に構成され、かつ、当該導体パッドの外形を前記グランド層に投影したとき、前記第1のグランド削除部の中心に、前記導体パッド同士に挟まれた領域の中心が位置することを特徴とする請求項1記載の多層回路基板。
  3.  前記第1のグランド削除部の中心に、前記補助グランド導体の中心が配置されることを特徴とする請求項1記載の多層回路基板。
  4.  前記補助グランド導体はその内部に第2のグランド削除部を有し、
     前記導体パッドの外形を前記グランド層に投影したとき、当該導体パッドが前記第2のグランド削除部内に配置されることを特徴とする請求項1記載の多層回路基板。
  5.  前記補助グランド導体は、前記導体パッドに対向する面が凹凸形状であることを特徴とする請求項1記載の多層回路基板。
  6.  前記補助グランド導体及び前記第1のグランド削除部は、線対称となる形状を有することを特徴とする請求項1記載の多層回路基板。
PCT/JP2015/050152 2015-01-06 2015-01-06 多層回路基板 WO2016110945A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/050152 WO2016110945A1 (ja) 2015-01-06 2015-01-06 多層回路基板
EP15876823.4A EP3244480A4 (en) 2015-01-06 2015-01-06 Multilayer circuit board
US15/519,626 US20170257942A1 (en) 2015-01-06 2015-01-06 Multilayer circuit board
JP2016549530A JP6180648B2 (ja) 2015-01-06 2015-01-06 多層回路基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/050152 WO2016110945A1 (ja) 2015-01-06 2015-01-06 多層回路基板

Publications (1)

Publication Number Publication Date
WO2016110945A1 true WO2016110945A1 (ja) 2016-07-14

Family

ID=56355670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050152 WO2016110945A1 (ja) 2015-01-06 2015-01-06 多層回路基板

Country Status (4)

Country Link
US (1) US20170257942A1 (ja)
EP (1) EP3244480A4 (ja)
JP (1) JP6180648B2 (ja)
WO (1) WO2016110945A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107210A (ja) * 1995-10-11 1997-04-22 Nec Corp マイクロストリップライン伝送線路
JP2010166276A (ja) * 2009-01-15 2010-07-29 Fujitsu Optical Components Ltd 高周波用基板及びパッケージ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI241702B (en) * 2003-07-28 2005-10-11 Siliconware Precision Industries Co Ltd Ground pad structure for preventing solder extrusion and semiconductor package having the ground pad structure
TWI226763B (en) * 2003-10-17 2005-01-11 Via Tech Inc Signal transmission structure
US7385459B2 (en) * 2005-09-08 2008-06-10 Northrop Grumman Corporation Broadband DC block impedance matching network
WO2009001170A2 (en) * 2006-11-16 2008-12-31 Nortel Networks Limited Filter having impedance matching circuits
US20120061129A1 (en) * 2010-09-15 2012-03-15 Ying-Jiunn Lai Circuit board structure with low capacitance
US8680403B2 (en) * 2011-09-08 2014-03-25 Texas Instruments Incorporated Apparatus for broadband matching
TWI578870B (zh) * 2013-04-26 2017-04-11 Anti - wear and grounding pattern structure of soft circuit board pad area
TWI562536B (en) * 2014-09-30 2016-12-11 Wistron Corp Common mode filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107210A (ja) * 1995-10-11 1997-04-22 Nec Corp マイクロストリップライン伝送線路
JP2010166276A (ja) * 2009-01-15 2010-07-29 Fujitsu Optical Components Ltd 高周波用基板及びパッケージ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3244480A4 *

Also Published As

Publication number Publication date
JP6180648B2 (ja) 2017-08-16
EP3244480A1 (en) 2017-11-15
JPWO2016110945A1 (ja) 2017-04-27
US20170257942A1 (en) 2017-09-07
EP3244480A4 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP4722614B2 (ja) 方向性結合器及び180°ハイブリッドカプラ
JP6183553B2 (ja) 伝送線路部材
JP2004320109A (ja) 高周波伝送線路及び高周波基板
WO2005112186A1 (ja) 方向性結合器
JP2009044303A (ja) アッテネータ複合カプラ
JP2006352347A (ja) 高周波伝送線路
WO2017110389A1 (ja) 多層基板およびその多層基板の製造方法
JP2017117890A5 (ja)
JP5770936B2 (ja) プリント基板
JP6180648B2 (ja) 多層回路基板
US7586195B2 (en) Semiconductor device
US20210013579A1 (en) Directional coupler
US20090231819A1 (en) Multilayer substrate
JP2015035468A (ja) プリント回路基板
JP6680404B2 (ja) 回路モジュール
JP4471281B2 (ja) 積層型高周波回路基板
WO2018003383A1 (ja) 多層基板
JPH05160605A (ja) 高周波回路部品
WO2020066804A1 (ja) 方向性結合器
JP7320341B2 (ja) 配線基板
JP4201257B2 (ja) 高周波信号伝送線路基板
JPS6137803B2 (ja)
JP2009021747A (ja) バンドパス・フィルタ
JP4973521B2 (ja) インピーダンス可変素子及び電子機器
WO2020115978A1 (ja) 伝送装置、印刷配線基板、並びに情報機器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016549530

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876823

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015876823

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015876823

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15519626

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE