WO2005112186A1 - 方向性結合器 - Google Patents

方向性結合器 Download PDF

Info

Publication number
WO2005112186A1
WO2005112186A1 PCT/JP2005/006345 JP2005006345W WO2005112186A1 WO 2005112186 A1 WO2005112186 A1 WO 2005112186A1 JP 2005006345 W JP2005006345 W JP 2005006345W WO 2005112186 A1 WO2005112186 A1 WO 2005112186A1
Authority
WO
WIPO (PCT)
Prior art keywords
line electrode
electrode
directional coupler
line
electrodes
Prior art date
Application number
PCT/JP2005/006345
Other languages
English (en)
French (fr)
Inventor
Atushi Toujo
Kenji Ajioka
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to EP05728022A priority Critical patent/EP1753072B1/en
Priority to DE602005026517T priority patent/DE602005026517D1/de
Priority to CN200580001729.XA priority patent/CN1906800B/zh
Priority to AT05728022T priority patent/ATE499723T1/de
Priority to US10/596,286 priority patent/US7567147B2/en
Publication of WO2005112186A1 publication Critical patent/WO2005112186A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/185Edge coupled lines

Definitions

  • the present invention relates to a directional coupler, in particular, a direction in which a transmission line is coupled only to a microwave traveling in one direction to extract an output proportional to the microwave power, and is not coupled to a microwave traveling in the opposite direction.
  • a directional coupler in particular, a direction in which a transmission line is coupled only to a microwave traveling in one direction to extract an output proportional to the microwave power, and is not coupled to a microwave traveling in the opposite direction.
  • Patent Document 1 discloses a conventional directional coupler composed of microstrips as shown in FIG. This is the so-called side edge, in which the strip line electrodes 8 la and 82 a of the microstrips 81 and 82 are partially approached laterally over ⁇ ⁇ 4, and the lower and upper sides are shielded by the ground electrodes 83 and 84. This is called a type cutlet.
  • the microwave power input from the port 1 to the microstrip 81 as the main line is applied to the port 3 of the microstrip 82 as the sub line. A fraction of the microwave power will appear.
  • the transmission power is minimized as shown in FIG.
  • the main line 70a of the coupler 70 is disposed between the transmission power amplifier 71 and the antenna 72, and one end of the sub line 70b is connected to the automatic gain control circuit 73, and the transmission power amplifier is connected to the automatic gain control circuit 73.
  • the output of 71 is adjusted.
  • Patent Document 1 discloses a dielectric electrode substrate formed with a ground electrode and a pair of strip line electrodes formed so as to run in a spiral shape in close proximity.
  • Directional coupler with a 1Z4 wavelength stripline electrode portion formed by alternately stacking the substrate substrates and connecting the corresponding stripline electrodes of each dielectric substrate in series through a pair of adjacent via holes. Has been proposed.
  • the 1Z4 wavelength stripline electrode portion is formed by dividing the stripline electrode and the via hole over a plurality of stacked dielectric substrates. Can be downsized compared to the directional coupler shown in FIG.
  • the total length of the stripline electrode needs to be the length of 1Z4 wavelength, and there has been a limit to a significant miniaturization.
  • the side edge type coupler generally has a problem that the characteristic power of the magnetic field distribution around the strip line electrode is difficult to achieve high coupling, but the improved directional coupler also has a problem that a pair of strip line electrode Since the couplers use side edge coupling between them, there is a problem that the coupling is difficult to achieve! /.
  • Patent Document 2 discloses a so-called broadside type cut-off plate in which a spirally formed coupling line is opposed to each other with a dielectric layer interposed therebetween to obtain a coupling between them. Couplers have been proposed. In this directional coupler, the inductance value of the coupling line is high, so it can be configured with a line shorter than 1/4 wavelength, and it is easy to reduce the size, and it is possible to obtain high coupling with little loss .
  • Patent Document 1 JP-A-5-160614
  • Patent Document 2 Japanese Patent No. 3203253
  • an object of the present invention is to provide a small directional coupler having a high coupling value and high isolation characteristics.
  • a directional coupler includes at least one dielectric layer and two line electrodes formed on the dielectric layer.
  • the line electrode includes an inner line electrode and an outer line electrode surrounding the inner line electrode in a plan view, and the inner line electrode and the outer line electrode have the same current propagation direction in an adjacent parallel portion. I do.
  • the inner line electrode and the outer line electrode have the same current propagation direction in the adjacent parallel portion, so that the inductance value of the line electrode increases.
  • the electromagnetic coupling between the inner line electrode and the outer line electrode can be increased, the capacitive coupling is reduced, and the isolation is increased.
  • a large inductance value can be obtained with a small size, and the size can be reduced.
  • the inductance values of both can be easily matched.
  • the directional coupler according to the second invention is characterized in that at least one dielectric layer is formed on the dielectric layer. Two line electrodes are formed, and the two line electrodes surround the inner line electrode formed in a spiral shape or a spiral shape and have a spiral shape or a helical shape outside the inner line electrode in plan view. And an outer line electrode formed on the substrate.
  • the inner line electrode and the outer line electrode are formed in a spiral or helical shape.
  • the propagation direction becomes the same, the inductance value of the line electrode increases, the electromagnetic coupling between the inner line electrode and the outer line electrode can be increased, the capacitive coupling decreases, and the isolation decreases. Get higher.
  • the force a large inductance value can be obtained with a small size, and the size can be reduced.
  • the inductance values of both can be easily matched.
  • the inner line electrode and the outer line electrode have large electromagnetic coupling, their lengths can be less than 1Z4 wavelength. Thereby, the size of the coupler can be further reduced.
  • the width of the inner line electrode is set smaller than the width of the outer line electrode.
  • the number of turns of the inner line electrode may be set to be larger than the number of turns of the outer line electrode. By increasing the number of turns of the inner line electrode, it is possible to easily adjust the inner line electrode and the outer line electrode to have the same inductance value.
  • the inner line electrode and the outer line electrode may be formed on the same plane.
  • the facing area between the spiral or helical outer line electrode and the spiral or helical inner line electrode located inside is the inner edge of the innermost periphery of the outer line electrode and the outermost periphery of the inner line electrode.
  • the inner line electrode and the outer line electrode only partially face each other at a part thereof, and the inner line electrode and the outer line electrode only partially face each other.
  • the electrodes and outer line electrodes are very thin. For this reason, the capacitance formed between the inner line electrode and the outer line electrode is reduced, and the isolation between them can be greatly increased.
  • the inner line electrode and the outer line electrode may be formed on different planes. By forming the inner line electrode and the outer line electrode on different planes, the capacitance formed between the inner line electrode and the outer line electrode can be further reduced, and the isolation between them can be increased. can do.
  • At least one of the inner line electrode and the outer line electrode may be divided on a plurality of planes, and the divided line electrodes may be connected in series by via holes. If the inner line electrode and Z or outer line electrode are formed by dividing them on multiple planes, the number of line electrodes formed on one plane per unit area is reduced, and the size of the directional coupler is further reduced. Can be achieved.
  • the directional coupler according to the present invention has a ground electrode formed on the dielectric layer, and is provided between each end of the inner line electrode and the outer line electrode and the ground electrode, respectively. You may form capacitance!
  • the capacitance formed between each end of the inner line electrode and the outer line electrode and the ground electrode can reduce the resonance frequency of the inner line electrode and the outer line electrode. Thereby, the line length for obtaining a predetermined resonance frequency can be shortened, and the size of the directional coupler can be further reduced.
  • FIG. 1 is a perspective view showing an appearance of a first embodiment of a directional coupler according to the present invention.
  • FIG. 3 is an exploded perspective view of a directional coupler according to a second embodiment of the present invention.
  • FIG. 4 is an exploded perspective view of a third embodiment of the directional coupler according to the present invention.
  • FIG. 5 is an exploded perspective view of a directional coupler according to a fourth embodiment of the present invention.
  • FIG. 6 is an explanatory diagram of a conventional type directional coupler.
  • FIG. 7 is a block diagram showing an RF transmission circuit using a directional coupler.
  • FIG. 1 shows an appearance of a directional coupler 10a according to a first embodiment of the present invention
  • FIG. 2 shows an exploded configuration thereof.
  • the directional coupler 10a includes a first ground electrode substrate 11, a dielectric substrate 12 in which a spiral inner line electrode 21a and an outer line electrode 22a described later are formed on one main surface, and A chip-like laminate 16 formed by laminating a lead conductor substrate 13 on which lead conductors 23a, 24a, 25a of the line electrode 21a and the outer line electrode 22a are formed, a second ground electrode substrate 14, and a protective substrate 15 It is composed of
  • the substrates 11, 12, 13, 14, and 15 are made of ceramic green sheets formed by molding a dielectric ceramic material by a method such as a doctor blade method or a pull-up method, and these are laminated to form a laminate 16. As a sintered product.
  • P and P may be formed after the firing of the laminate 16.
  • a ground electrode 17 is formed on the main surface of the first ground electrode substrate 11.
  • the ground electrode 17 completely covers the two spiral inner line electrodes 21a and the outer line electrodes 22a formed on the dielectric substrate 12 except for the peripheral portion of the main surface of the first ground electrode substrate 11. It is formed in a size to cover.
  • the lead portions 17a, 17a are connected to ground external electrodes G, G.
  • a spiral inner line electrode 21a for the main line and an outer line electrode 22a for the sub line are formed by printing at the stage of the green sheet before firing.
  • the inner line electrode 2 la and the outer line electrode 22 a have the same width, and the number of turns is 2.5 turns and 1.5 turns, respectively. ing.
  • the length of the line is less than 1Z4 wavelength for both the main line and the sub line.
  • lead conductors 23a, 24a, and 25a are formed on the main surface of the lead conductor substrate 13. And The inner end of the spiral inner line electrode 21a is connected to the main line external electrode P through a via hole Vh formed in the lead conductor substrate 13 and the lead conductor 23a,
  • the spiral outer line electrode 22a has an inner end connected to a sub-line external electrode P through a via hole Vh formed in the lead conductor substrate 13 and a lead conductor 25a.
  • the second ground electrode substrate 14 laminated on the upper side of the lead conductor substrate 13 also has a ground electrode 18 formed on the main surface, similarly to the first ground electrode substrate 11.
  • the ground electrode 18 is large enough to completely cover the two spiral line electrodes 21a and 22a formed on the dielectric substrate 12 except for the peripheral portion of the main surface of the second ground electrode substrate 14. It is formed.
  • the lead portions 18a are connected to the ground external electrodes G.
  • the ground electrode 18 is covered with a protection substrate 15 laminated on the second ground electrode substrate 14.
  • the connection between the two is obtained by the edge connection.
  • the facing area between the inner line electrode 21a and the outer line electrode 22a is substantially the same as the facing area between the inner edge of the innermost peripheral portion of the outer line electrode 22a and the outer edge of the outermost peripheral portion of the inner line electrode 21a.
  • the inner line electrode 21a and the outer line electrode 22a are only partially opposed to each other.
  • the inner line electrode 21a and the outer line electrode 22a are formed by printing, and their thickness is thin. For this reason, the capacitance formed between the inner line electrode 21a and the outer line electrode 22a is reduced, and the isolation between them can be increased.
  • the inner line electrode 21a and the outer line electrode 22a have a spiral shape, and in an adjacent parallel portion, for example, an arrow A in a left portion on the near side in FIG. Since the current is propagated in the same direction as indicated by, the inductance value of the line electrodes 21a, 22a increases, and the electromagnetic coupling between the inner line electrode 21a and the outer line electrode 22a increases. And the capacitive coupling is reduced. Further, by adjusting the number of turns of the inner line electrode 21a and the outer line electrode 22a, the inductance values of both can be easily matched.
  • the inner line electrode 2la and the outer line electrode 22a have a spiral shape, and the current propagates in the same direction in adjacent parallel portions.
  • a large inductance value can be obtained in size, each length can be less than 1Z4 wavelength, and the size of the directional coupler 10a can be reduced.
  • the force described with the inner line electrode 21a as the main line electrode and the outer line electrode 22a as the sub line electrode is described as the inner line electrode 21a as the sub line, and the outer line electrode 22a as the main line.
  • FIG. 3 shows a directional coupler 10b according to a second embodiment of the present invention.
  • the directional coupler 10b forms an inner line electrode 21a and an outer line electrode 22a having the same width as each other in the directional coupler 10a of the first embodiment described with reference to FIGS.
  • a dielectric substrate 12a formed such that the width of the inner line electrode 21b is smaller than the width of the outer line electrode 22b is used.
  • the inductance value increases when the width of the inner line electrode 21b is reduced, the number of turns of the inner line electrode 2 lb can be reduced accordingly. Thereby, in the directional coupler 10b, a directional coupler smaller in size than the directional coupler 10a can be obtained.
  • FIG. 3 portions corresponding to FIG. 2 are denoted by corresponding reference numerals, and redundant description will be omitted.
  • the operation and effect of the second embodiment are basically the same as those of the first embodiment.
  • FIG. 4 shows a directional coupler according to a third embodiment of the present invention.
  • the directional coupler 10c forms an inner line electrode 21a and an outer line electrode 22a having the same width as each other in the directional coupler 10a of the first embodiment described with reference to FIGS.
  • One invitation Instead of the electric substrate 12, three dielectric substrates 32, 33, 34 formed by dividing the inner line electrode into three inner partial line electrodes 2 laa, 21ab, 21 ac, respectively, and the outer line electrode
  • two dielectric substrates 32 and 33 formed by dividing into two outer partial line electrodes 22aa and 22ab are used. With this configuration, both the inner line electrode and the outer line electrode are formed as helical lines.
  • One end of the inner partial line electrode 21aa is connected to a via hole Vh formed in the dielectric substrate 32.
  • the other end of the inner partial line electrode 21aa is connected to the inner partial line electrode 21ab formed on the dielectric substrate 33 through a via hole Vh formed on the dielectric substrate 33.
  • the other end of the inner partial line electrode 21ab is connected to one end of the inner partial line electrode 21ac formed on the dielectric substrate 34 through a via hole Vh formed on the dielectric substrate 34.
  • the other end of the inner partial line electrode 21ac is directly connected to the main-line external electrode P on the dielectric substrate 34.
  • one end of the outer partial line electrode 22aa is directly connected to the external electrode P for the sub-line on the dielectric substrate 32, and the other end is formed on the dielectric substrate 33.
  • the other end of the outer partial line electrode 22ab is directly connected to the sub-line external electrode P on the dielectric substrate 33.
  • FIG. 5 shows a directional coupler 1 Od according to a fourth embodiment of the present invention.
  • This directional coupler 10d divides the inner line electrode into three inner partial line electrodes 21aa, 21ab, and 21ac, similarly to the directional coupler 10c of the third embodiment described with reference to FIG.
  • the outer line electrode is also divided into three outer partial line electrodes 22aa, 22ab, and 22ac to form three dielectric substrates 57, 58, and 59.
  • External electrodes External electrodes
  • the capacitance is formed between the external electrodes G for lands.
  • One end of the inner partial line electrode 21aa is connected to a via hole Vh formed in the dielectric substrate 57.
  • the other end of the inner partial line electrode 21aa is connected to the inner partial line electrode 21ab formed on the dielectric substrate 58 through a via hole Vh formed on the dielectric substrate 58.
  • the other end of the inner partial line electrode 21ab is connected to the inner partial line electrode formed on the dielectric substrate 59 through a via hole Vh formed on the dielectric substrate 59.
  • the other end of the inner partial line electrode 21ac is directly connected to the main-line external electrode P on the dielectric substrate 59.
  • one end of the outer partial line electrode 22aa is formed on the lead-out conductor substrate 56 by a via hole Vh formed on the dielectric substrate 57, and is connected to the external electrode P for a sub-line.
  • the other end is connected to one end of the outer partial line electrode 22ab formed on the dielectric substrate 58 through the via hole Vh formed on the dielectric substrate 58.
  • the other end of the outer partial line electrode 22ab is connected to the outer partial line electrode 22ac formed on the dielectric substrate 59 through a via hole Vh formed on the dielectric substrate 59.
  • the other end of the outer partial line electrode 22ac is directly on the dielectric substrate 59, and is directly
  • a dummy substrate 55a is laminated between the lead conductor substrate 56 and the ground electrode substrate 11, and a dummy substrate 55b is laminated between the dielectric substrate 59 and the ground electrode substrate 14. I have.
  • the capacitor electrode substrates 51 to 54 for forming the capacitance are stacked below the ground electrode substrate 11 in order from the lower side.
  • a capacitor electrode 61 is formed on the main surface of the capacitor electrode substrate 51.
  • the capacitor electrode 61 covers almost the entire surface of the main surface of the capacitor electrode substrate 51 except for the peripheral portion. It is connected to the ground external electrodes G by the lead portions 61a.
  • On the main surface of the capacitor electrode substrate 52 two band-shaped capacitor electrodes 63b and 64b are formed. These capacitor electrodes 63b, 64b are connected to external electrodes P, P for sub-lines, respectively.
  • the capacitor electrode 62 is formed on the main surface of the capacitor electrode substrate 53.
  • the capacitor electrode 62 is formed on the main surface of the capacitor electrode substrate 53 so as to cover almost the entire surface except for the peripheral portion thereof, and is connected to the ground external electrodes G, G by the lead portions 62a, 62a. I have.
  • two band-shaped capacitor electrodes 63a and 64a are formed on the main surface of the capacitor electrode substrate. These capacitor electrodes 63a, 64a are connected to external electrodes P, P for the main line, respectively.
  • the operation and effect of the fourth embodiment are the same as those of the first embodiment. Furthermore, by employing the above-described configuration, capacitance is formed between the capacitor electrodes 63a and 64a and the capacitor electrode 62 and the ground electrode 17, and between the capacitor electrodes 63b and 64b and the capacitor electrodes 61 and 62, respectively. Is done. Due to these capacitances, an inner line electrode formed by dividing into three inner partial line electrodes 21aa, 21ab, and 2lac, and also formed by dividing into three outer partial line electrodes 22aa, 22ab, and 22ac. The resonance frequency of the outer line electrode decreases. This makes it possible to further reduce the size of the directional coupler 10d by reducing the length of the line electrode for obtaining a predetermined resonance frequency.
  • the directional coupler according to the present invention is not limited to the above embodiments, but may be variously configured within the scope of the invention.
  • the inner line electrode 21a is formed on one dielectric substrate, and the outer line electrode 22a is formed on another dielectric substrate. It may be formed. By doing so, the capacitance between the inner line electrode 21a and the outer line electrode 22a decreases, and the isolation increases.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Waveguides (AREA)
  • Paper (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 グランド電極基板(11)、線路電極(21a),(22a)が形成された誘電体基板(12)、線路電極(21a),(22a)の引出導体(23a),(24a),(25a)が形成された引出導体基板(13)、グランド電極基板(14)、保護基板(15)を積層した積層体からなる方向性結合器。積層体には、グランド用外部電極(G)、主線用外部電極(P1),(P2)、副線用外部電極(P3),(P4)が形成されている。内側線路電極(21a)と外側線路電極(22a)はスパイラル状又はヘリカル状をなし、隣接した平行部分において電流の伝搬方向が同じである。                                                                                     

Description

明 細 書
方向性結合器
技術分野
[0001] 本発明は、方向性結合器、特に、伝送線を一方向に進むマイクロ波にだけ結合し てそのマイクロ波電力に比例する出力を取り出し、反対方向に伝わるマイクロ波には 結合しない方向性結合器に関する。
背景技術
[0002] 例えば、特許文献 1に記載されているように、マイクロ波回路の主流であった導波 管回路は、高い精度の機械工作を必要とするので、多量生産には向かず、高価であ り、また、外形も大きぐ重量も大きいという問題点を有していた。このため、無線機、 BS受信機などでは、高集積ィ匕技術を利用して小型軽量ィ匕が実現できるマイクロスト リップが用いられるようになって 、る。
[0003] マイクロストリップで構成される従来の方向性結合器として、特許文献 1には図 6に 示すものが記載されている。これは、マイクロストリップ 81, 82のストリップライン電極 8 la, 82aを λ Ζ4にわたり部分的に横方向に接近させ、その下側及び上側をグランド 電極 83, 84で遮蔽した構成を有する、いわゆるサイドエッジ型カツブラと呼ばれるも のである。ストリップライン電極 8 la, 82aの接近部分の結合モードで、ポート 1から主 線であるマイクロストリップ 81に投入されるマイクロ波電力に対して、副線であるマイク ロストリップ 82のポート 3へはその数分の 1のマイクロ波電力が現れるようになる。
[0004] 前記のような方向性結合器における高周波信号の二分配作用を利用して、例えば 、携帯電話装置などでは、送信電力を必要最小限に抑えるベぐ図 7に示すように、 方向性結合器 70の主線 70aを送信電力増幅器 71とアンテナ 72との間に配するとと もに、副線 70bの一端を自動利得制御回路 73に接続し、該自動利得制御回路 73に て送信電力増幅器 71の出力を調整するようにしている。
[0005] ところで、携帯電話装置などでは、その小型化が重要な課題となっており、その結 果として、方向性結合器についても、より一層の小型化が要求されるようになっている 。し力しながら、図 6に示した方向性結合器にあっては、例えば、 1GHzでのえ /4は 7. 5cm (但し、比誘電率 = 1のとき)であり、ストリップライン電極 81a, 82aは、横方向 に接近させた部分の長さは、少なくとも 7. 5cmを超える寸法が必要であり、それに応 じてストリップライン電極 8 la, 82aが形成される基板の寸法も大きくなる。また、ストリ ップライン電極 81a, 82aが形成される基板の下側及び上側に、グランド電極 83及び 84をそれぞれ形成した基板を配設してビス止めするような構成を採用すると、小型化 に限界があり、コストも力さむという問題点がある。
[0006] そこで、特許文献 1には、前記問題点を解消するため、グランド電極を形成したダラ ンド電極基板と、一対のストリップライン電極を近接してスパイラル状に並走するように 形成した誘電体基板とを交互に積層し、一対の近接したビアホールを通して各誘電 体基板の対応するストリップライン電極を直列に接続することにより、 1Z4波長ストリツ プライン電極部分を形成するように改良した方向性結合器が提案されて ヽる。
[0007] 改良された方向性結合器では、 1Z4波長ストリップライン電極部分を、ストリップラ イン電極とビアホールとにより、積層された複数層の誘電体基板にわたって分割して 形成しているので、図 6に示した方向性結合器に比較して小型化することができる。 しかしながら、改良された方向性結合器でも、ストリップライン電極の合計長さを 1Z4 波長の長さとする必要があり、大幅な小型化には限界があった。また、サイドエッジ型 カップラは、一般に、ストリップライン電極のまわりの磁界分布の特性力も高い結合が とりにくいという問題点を有しているが、改良された方向性結合器も、一対のストリップ ライン電極間のサイドエッジ結合を用いるカップラであるため、高 、結合がとりにく!/、と いう問題点を有している。
[0008] 他方、特許文献 2には、スパイラル状に形成された結合ラインを、誘電体層を間にし て対向させて両者の結合を得るようにした、いわゆるブロードサイド型カツブラと呼ば れる方向性結合器が提案されている。この方向性結合器では、結合ラインのインダク タンス値が高くなるので、 1/4波長よりも短いラインで構成することができ、小型化も 容易であり、損失も少なく高い結合を得ることができる。
[0009] し力しながら、特許文献 2に記載のものでは、誘電体層を間にしてスパイラル状の 結合ラインを対向させて両者の結合を得ているので、結合ライン間の静電容量が大 きくなり、結合ライン間のアイソレーションを高くすることができないという問題点を有し ている。
[0010] さらに、前記文献 1,文献 2に記載の方向性結合器では、ともに、結合の調整はライ ン間隔を調整することにより行うが、ライン間隔の調整によってラインのまわりの磁界 及び電界の両方が変化し、その片方だけを調整できない。このため、アイソレーショ ンの調整が困難であった。そして、アイソレーションは磁界結合、電界結合が互いに 打ち消し合う現象であるので、アイソレーションの調整には、結合ラインが形成される 基板材料を選択することにより誘電率や透磁率を変えて調整する以外に方法がなか つた o
特許文献 1 :特開平 5— 160614号公報
特許文献 2:特許第 3203253号公報
発明の開示
発明が解決しょうとする課題
[0011] そこで、本発明の目的は、高い結合値を有するとともに高いアイソレーション特性を 有する小型の方向性結合器を提供することにある。
課題を解決するための手段
[0012] 前記目的を達成するため、第 1の発明に係る方向性結合器は、少なくとも一つの誘 電体層と、該誘電体層に形成された二つの線路電極とを備え、前記二つの線路電 極が内側線路電極と該内側線路電極を平面視で取り囲む外側線路電極とからなり、 内側線路電極と外側線路電極は隣接した平行部分において電流の伝搬方向が同じ であること、を特徴とする。
[0013] 第 1の発明に係る方向性結合器によれば、内側線路電極及び外側線路電極は隣 接した平行部分において電流の伝搬方向が同じであるため、線路電極のインダクタ ンス値が大きくなつて、内側線路電極と外側線路電極との間の電磁結合を大きくする ことができるとともに、容量結合が小さくなり、アイソレーションが高くなる。し力も、小さ なサイズで大きなインダクタンス値を得ることができ、サイズも小さくすることができる。 また、内側線路電極及び外側線路電極のターン数を調整することにより、両者のイン ダクタンス値を簡単に合致させることができる。
[0014] 第 2の発明に係る方向性結合器は、少なくとも一つの誘電体層と、該誘電体層に形 成された二つの線路電極とを備え、前記二つの線路電極がスパイラル状又はへリカ ル状に形成された内側線路電極と該内側線路電極を取り囲んで平面視でその外側 にスパイラル状又はヘリカル状に形成された外側線路電極とからなること、を特徴と する。
[0015] 第 2の発明に係る方向性結合器によれば、内側線路電極及び外側線路電極はス ノ ィラル状又はヘリカル状に形成されているため、結果的に隣接した平行部分にお いて電流の伝搬方向が同じになり、線路電極のインダクタンス値が大きくなつて、内 側線路電極と外側線路電極との間の電磁結合を大きくすることができるとともに、容 量結合が小さくなり、アイソレーションが高くなる。し力も、小さなサイズで大きなインダ クタンス値を得ることができ、サイズも小さくすることができる。また、内側線路電極及 び外側線路電極のターン数を調整することにより、両者のインダクタンス値を簡単に 合致させることができる。
[0016] 第 1及び第 2の発明に係る方向性結合器において、内側線路電極と外側線路電極 は電磁結合が大きいため、それぞれの長さを 1Z4波長未満とすることができる。これ にて、結合器のサイズをより小さくすることができる。
[0017] また、第 1及び第 2の発明に係る方向性結合器は、内側線路電極の幅を外側線路 電極の幅よりも小さく設定することが好ましい。内側線路電極の幅を狭くすることによ り、そのインダクタンスが大きくなり、内側線路電極のターン数を少なくしても内側線 路電極と外側線路電極のインダクタンスを等しくすることができ、方向性結合器のさら なる小型化を図ることができる。
[0018] また、内側線路電極のターン数を外側線路電極のターン数よりも大きく設定してもよ い。内側線路電極のターン数を大きくすることにより、容易に内側線路電極と外側線 路電極とのインダクタンス値が等しくなるように調整することができる。
[0019] また、内側線路電極と外側線路電極が同一平面上に形成されて 、てもよ 、。スパイ ラル状又はヘリカル状の外側線路電極とその内側に位置するスパイラル状又はヘリ カル状の内側線路電極との対向面積は、外側線路電極の最内周部分の内側エッジ と内側線路電極の最外周部分の外側エッジとの間の対向面積の程度となり、内側線 路電極と外側線路電極とはその一部分で部分的にしか対向せず、しかも、内側線路 電極及び外側線路電極はその厚みが非常に薄い。このため、内側線路電極と外側 線路電極との間に形成される静電容量が小さくなり、両者のアイソレーションを大幅 に高くすることができる。
[0020] また、内側線路電極及び外側線路電極が互いに異なる平面上に形成されていても ょ ヽ。内側線路電極及び外側線路電極を互いに異なる平面上に形成することにより 、内側線路電極と外側線路電極との間に形成される静電容量をさらに小さくすること ができ、両者のアイソレーションをより高くすることができる。
[0021] また、内側線路電極及び外側線路電極の少なくとも一方が複数の平面上に分割し て形成され、該分割された線路電極はビアホールにより直列に接続されて 、てもよ ヽ 。内側線路電極及び Z又は外側線路電極を複数の平面上に分割して形成すれば、 一の平面上に形成される線路電極の単位面積当たりの本数が少なくなり、方向性結 合器のさらなる小型化を図ることができる。
[0022] また、本発明に係る方向性結合器は、前記誘電体層に形成されたグランド電極を 有し、内側線路電極及び外側線路電極のそれぞれの端部と前記グランド電極との間 にそれぞれ静電容量を形成してもよ!ヽ。内側線路電極及び外側線路電極のそれぞ れの端部とグランド電極との間にそれぞれ形成される静電容量により、内側線路電極 及び外側線路電極の共振周波数を低下させことができる。これにより、所定の共振周 波数を得るための線路長を短くして、方向性結合器のさらなる小型化を図ることがで きる。
図面の簡単な説明
[0023] [図 1]本発明に係る方向性結合器の第 1実施例の外観を示す斜視図である。
[図 2]図 1の方向性結合器の構成を示す分解斜視図である。
[図 3]本発明に係る方向性結合器の第 2実施例の分解斜視図である。
圆 4]本発明に係る方向性結合器の第 3実施例の分解斜視図である。
[図 5]本発明に係る方向性結合器の第 4実施例の分解斜視図である。
[図 6]従来の型方向性結合器の説明図である。
[図 7]方向性結合器が用いられた RF送信回路を示すブロック図である。
発明を実施するための最良の形態 [0024] 以下、本発明に係る方向性結合器の実施例を添付図面を参照して説明する。
[0025] (第 1実施例、図 1及び図 2参照)
本発明の第 1実施例である方向性結合器 10aの外観を図 1に、その分解した構成 を図 2に示す。この方向性結合器 10aは、第 1のグランド電極基板 11と、後に説明す るスパイラル状の内側線路電極 21a及び外側線路電極 22aがーつの主面に形成さ れた誘電体基板 12と、内側線路電極 21a及び外側線路電極 22aの引出導体 23a, 24a, 25aが形成された引出導体基板 13と、第 2のグランド電極基板 14と、保護基板 15とを積層してなるチップ状の積層体 16にて構成されて 、る。
[0026] 積層体 16の側面には、第 1のグランド電極基板 11から保護基板 15にかけて、ダラ ンド用の外部電極 G, Gと、主線用の外部電極 P , Pと、副線用の外部電極 P , Pと
1 2 3 4 が形成されている。
[0027] 前記基板 11, 12, 13, 14, 15は、誘電体セラミック材料をドクターブレード法や引 き上げ法などの手法で成形したセラミックグリーンシートを素材とし、それらを積層して 積層体 16として焼結したものである。
[0028] このため、図 1において、基板 11, 12, 13, 14, 15の積層方向で互いに隣り合う層 間には、実際には、区分線が生じることはない。なお、前記外部電極 G, G, P , P ,
1 2
P , Pは、積層体 16の焼成の後に形成してもよい。
3 4
[0029] 第 1のグランド電極基板 11の主面には、グランド電極 17が形成されている。該グラ ンド電極 17は、第 1のグランド電極基板 11の主面の周縁部を残して、誘電体基板 12 に形成された二つのスパイラル状の内側線路電極 21a及び外側線路電極 22aを完 全に覆う大きさに形成されている。そして、引出し部 17a, 17aによりグランド用の外部 電極 G, Gに接続されている。
[0030] 誘電体基板 12の主面には、焼成前のグリーンシートの段階で印刷により主線用の スパイラル状の内側線路電極 21a及び副線用の外側線路電極 22aが形成されてい る。本第 1実施例にあっては、内側線路電極 2 la及び外側線路電極 22aは等しい幅 を有しており、そのターン数はそれぞれ 2. 5ターン及び 1. 5ターンとなるように形成さ れている。また、線路の長さは、主線、副線ともに 1Z4波長未満とされている。
[0031] 引出導体基板 13の主面には、引出導体 23a, 24a, 25aが形成されている。そして 、スパイラル状の内側線路電極 21aは、その内側の端部が引出導体基板 13に形成 されたビアホール Vh及び引出導体 23aを通して主線用の外部電極 Pに接続され、
1 1
その外側の端部が引出導体基板 13に形成されたビアホール Vh及び引出導体 24a
2
を通して主線用の外部電極 Pに接続されている。
2
[0032] また、スパイラル状の外側線路電極 22aは、その内側の端部が引出導体基板 13に 形成されたビアホール Vh及び引出導体 25aを通して副線用の外部電極 Pに接続さ
3 3 れ、その外側の端部が誘電体基板 12上で、直接、副線用の外部電極 Pに接続され
4
ている。
[0033] 引出導体基板 13の上側に積層される第 2のグランド電極基板 14も、第 1のグランド 電極基板 11と同様に、その主面にグランド電極 18が形成されている。該グランド電 極 18は、第 2のグランド電極基板 14の主面の周縁部を残して、誘電体基板 12に形 成された二つのスパイラル状の線路電極 21a, 22aを完全に覆う大きさに形成されて いる。そして、引出し部 18a, 18aによりグランド用の外部電極 G, Gに接続されている 。グランド電極 18は、第 2のグランド電極基板 14の上に積層された保護基板 15により 覆われている。
[0034] このような構成を有する方向性結合器 10aでは、スパイラル状の外側線路電極 22a と該外側線路電極 22aに取り囲まれてその内側に位置するスパイラル状の内側線路 電極 21aとの間のサイドエッジ結合により、両者の結合を得ている。そして、内側線路 電極 21aと外側線路電極 22aとの対向面積はほぼ外側線路電極 22aの最内周部分 の内側エッジと内側線路電極 21aの最外周部分の外側エッジとの間の対向面積の 程度となり、内側線路電極 21aと外側線路電極 22aとはその一部分で部分的にしか 対向しない。しかも、内側線路電極 21a及び外側線路電極 22aは印刷により形成さ れており、その厚みは薄い。このため、内側線路電極 21aと外側線路電極 22aとの間 に形成される静電容量は小さくなり、両者のアイソレーションを高くすることができる。
[0035] また、方向性結合器 10aでは、内側線路電極 21a及び外側線路電極 22aはスパイ ラル形状を有しており、隣接した平行部分において、例えば,図 2において手前側左 方部分では矢印 Aで示す同方向に電流が伝搬されるため,線路電極 21a, 22aのィ ンダクタンス値が大きくなり、内側線路電極 21aと外側線路電極 22aとの間の電磁結 合が大きくなり、容量結合が小さくなる。さらに、内側線路電極 21a及び外側線路電 極 22aのターン数を調整することにより、両者のインダクタンス値を簡単に合致させる ことができる。
[0036] 換言すれば、方向性結合器 10aでは、内側線路電極 2 la及び外側線路電極 22a はスパイラル形状を有し、隣接した平行部分にぉ 、て同じ方向に電流が伝搬するた め、小さなサイズで大きなインダクタンス値を得ることができ、それぞれの長さを 1Z4 波長未満とすることができ、方向性結合器 10aのサイズも小さくなる。
[0037] なお、方向性結合器 10aでは、内側線路電極 21aを主線路電極、外側線路電極 2 2aを副線路電極として説明した力 内側線路電極 21aを副線路、外側線路電極 22a を主線路としても同じ方向性結合器として動作させることができる。このことは、以下 に説明する実施例でも同様である。
[0038] (第 2実施例、図 3参照)
本発明の第 2実施例である方向性結合器 10bを図 3に示す。この方向性結合器 10 bは、図 1及び図 2を参照して説明した第 1実施例である方向性結合器 10aにおいて 、互いに等 ヽ幅を有する内側線路電極 21a及び外側線路電極 22aを形成した誘 電体基板 12に代えて、内側線路電極 21bの幅を外側線路電極 22bの幅よりも狭くな るように形成した誘電体基板 12aを用いたものである。
[0039] このように、内側線路電極 21bの幅を狭くするとそのインダクタンス値が大きくなるの で、その分、内側線路電極 2 lbのターン数を少なくすることができる。これにより、方 向性結合器 10bでは、前記方向性結合器 10aよりもさらにサイズが小さい方向性結 合器を得ることができる。
[0040] なお、図 3において、図 2に対応する部分には対応する符号を付して示し、重複し た説明は省略する。そして、本第 2実施例の作用効果は基本的には前記第 1実施例 と同じである。
[0041] (第 3実施例、図 4参照)
本発明の第 3実施例である方向性結合器を図 4に示す。この方向性結合器 10cは 、図 1及び図 2を参照して説明した第 1実施例である方向性結合器 10aにおいて、互 いに等しい幅を有する内側線路電極 21a及び外側線路電極 22aを形成した 1枚の誘 電体基板 12に代えて、内側線路電極を三つの内側部分線路電極 2 laa, 21ab, 21 acに分割してそれぞれ形成した 3枚の誘電体基板 32, 33, 34と、外側線路電極を 二つの外側部分線路電極 22aa, 22abに分割してそれぞれ形成した 2枚の誘電体 基板 32, 33を用いたものである。このよう〖こ構成すること〖こよって、内側線路電極と 外側線路電極はいずれもヘリカル状の線路として形成される。
[0042] なお、図 4において、図 2に対応する部分には対応する符号を付して示し、重複し た説明は省略する。
[0043] 内側部分線路電極 21aaの一端は、誘電体基板 32に形成されたビアホール Vh を
11 通して、引出導体基板 31に形成されて主線用の外部電極 Pに接続された引出導体
1
23bに接続されている。内側部分線路電極 21aaの他端は、誘電体基板 33に形成さ れたビアホール Vh を通して、誘電体基板 33に形成された内側部分線路電極 21ab
12
の一端に接続されている。
[0044] また、内側部分線路電極 21abの他端は、誘電体基板 34に形成されたビアホール Vh を通して、誘電体基板 34に形成された内側部分線路電極 21acの一端に接続さ
13
れている。そして、内側部分線路電極 21acの他端は誘電体基板 34上にて、直接、 主線用の外部電極 P
2に接続されている。
[0045] 他方、外側部分線路電極 22aaは、その一端が誘電体基板 32上にて、直接、副線 用の外部電極 Pに接続されており、その他端が誘電体基板 33に形成されたビアホ
3
ール Vh を通して誘電体基板 33に形成された外側部分線路電極 22abの一端に接
14
続されている。そして、外側部分線路電極 22abの他端は誘電体基板 33上にて、直 接、副線用の外部電極 P
4に接続されている。
[0046] このような構成を採用しても、図 1及び図 2を参照して説明した前記方向性結合器 1 Oaと同様の作用効果を奏することができる。そして、図 4にて明らかなように、内側線 路電極を三つの外側部分線路電極 21aa, 21ab, 21acに分割して形成し、また、外 側線路電極を二つの外側部分線路電極 22aa, 22abに分割して形成して ヽるので、 誘電体基板 32, 33, 34に形成される線路電極の単位面積当たりの本数が少なくな り、方向性結合器のさらなる小型化を図ることができる。
[0047] (第 4実施例、図 5参照) 本発明の第 4実施例である方向性結合器 1 Odを図 5に示す。この方向性結合器 10 dは、図 4を参照して説明した第 3実施例である方向性結合器 10cと同様に、内側線 路電極を三つの内側部分線路電極 21aa, 21ab, 21acに分割し、また、外側線路電 極も三つの外側部分線路電極 22aa, 22ab, 22acに分割して 3枚の誘電体基板 57 , 58, 59〖こ形成するととも〖こ、主線用及び副線用の外部電極 P〜Pのそれぞれとグ
1 4
ランド用の外部電極 G間に静電容量がそれぞれ形成されるようにしたものである。
[0048] 内側部分線路電極 21aaの一端は、誘電体基板 57に形成されたビアホール Vh を
21 通して、引出導体基板 56に形成されて主線用の外部電極 Pに接続された引出導体
1
23cに接続されている。内側部分線路電極 21aaの他端は、誘電体基板 58に形成さ れたビアホール Vh を通して、誘電体基板 58に形成された内側部分線路電極 21ab
22
の一端に接続されている。また、内側部分線路電極 21abの他端は、誘電体基板 59 に形成されたビアホール Vh を通して、誘電体基板 59に形成された内側部分線路
23
電極 21acの一端に接続されている。そして、内側部分線路電極 21acの他端は誘電 体基板 59上にて、直接、主線用の外部電極 Pに接続されている。
2
[0049] 他方、外側部分線路電極 22aaは、その一端が誘電体基板 57に形成されたビアホ ール Vh により、引出導体基板 56に形成されて副線用の外部電極 Pに接続されて
24 4
いる引出導体 26に接続されており、その他端が誘電体基板 58に形成されたビアホ ール Vh を通して誘電体基板 58に形成された外側部分線路電極 22abの一端に接
25
続されている。そして、外側部分線路電極 22abの他端は誘電体基板 59に形成され たビアホール Vh を通して誘電体基板 59に形成された外側部分線路電極 22acの
26
一端に接続されている。外側部分線路電極 22acの他端は誘電体基板 59上にて、 直接、副線用の外部電極 P
3に接続されている。
[0050] 引出導体基板 56とグランド電極基板 11との間にはダミー基板 55aが積層されるとと もに、誘電体基板 59とグランド電極基板 14との間にもダミー基板 55bが積層されて いる。そして、方向性結合器 10dにあっては、グランド電極基板 11の下側に、下側か ら順に、静電容量形成用のキャパシタ電極基板 51〜54が積層されている。
[0051] キャパシタ電極基板 51の主面にはキャパシタ電極 61が形成されている。キャパシ タ電極 61は、キャパシタ電極基板 51の主面にその周縁部を残してほぼ全面を覆うよ うに形成されており、引出し部 61a, 61aによりグランド用の外部電極 G, Gに接続さ れている。また、キャパシタ電極基板 52の主面には、帯状の二つのキャパシタ電極 6 3b, 64bが形成されている。これらキャパシタ電極 63b, 64bはそれぞれ副線用の外 部電極 P , Pに接続されている。
4 3
[0052] キャパシタ電極基板 53の主面にはキャパシタ電極 62が形成されている。キャパシ タ電極 62は、キャパシタ電極基板 53の主面にその周縁部を残してほぼ全面を覆うよ うに形成されており、引出し部 62a, 62aによりグランド用の外部電極 G, Gに接続さ れている。また、キャパシタ電極基板 54の主面にも、帯状の二つのキャパシタ電極 6 3a, 64aが形成されている。これらキャパシタ電極 63a, 64aはそれぞれ主線用の外 部電極 P , Pに接続されている。
1 2
[0053] 本第 4実施例の作用効果は前記第 1実施例と同じである。さらに、前述の構成を採 用することにより、キャパシタ電極 63a, 64aとキャパシタ電極 62、グランド電極 17との 間、キャパシタ電極 63b, 64bとキャパシタ電極 61, 62との間にそれぞれ静電容量が 形成される。これらの静電容量によって、三つの内側部分線路電極 21aa, 21ab, 2 lacに分割して形成される内側線路電極、また、三つの外側部分線路電極 22aa, 2 2ab, 22acに分割して形成される外側線路電極の共振周波数が低下する。これによ り、所定の共振周波数を得るための線路電極長を短くして方向性結合器 10dをさら に小型化することができる。
[0054] (他の実施例)
本発明に係る方向性結合器は、前記各実施例に限定されるものではなぐその要 旨の範囲内で種々の構成とすることができる。
[0055] 例えば、具体的には図示しないが、前記方向性結合器 10aにおいて、内側線路電 極 21aを一つの誘電体基板に形成し、外側線路電極 22aを!、ま一つの誘電体基板 に形成するようにしてもよい。このようにすれば、内側線路電極 21aと外側線路電極 2 2aとの間の静電容量が小さくなり、アイソレーションが高くなる。
産業上の利用可能性
[0056] 以上のように、本発明は、マイクロ波帯の方向性結合器に有用であり、特に、高い 結合値を有するとともに高 、アイソレーション特性を有する点で優れて 、る。

Claims

請求の範囲
[1] 少なくとも一つの誘電体層と、該誘電体層に形成された二つの線路電極とを備え、 前記二つの線路電極が内側線路電極と該内側線路電極を平面視で取り囲む外側 線路電極とからなり、
内側線路電極と外側線路電極は隣接した平行部分において電流の伝搬方向が同 じであること、
を特徴とする方向性結合器。
[2] 少なくとも一つの誘電体層と、該誘電体層に形成された二つの線路電極とを備え、 前記二つの線路電極がスパイラル状又はヘリカル状に形成された内側線路電極と 該内側線路電極を取り囲んで平面視でその外側にスパイラル状又はヘリカル状に形 成された外側線路電極とからなること、
を特徴とする方向性結合器。
[3] 前記内側線路電極と外側線路電極はそれぞれの長さが 1Z4波長未満であること を特徴とする請求の範囲第 1項又は第 2項に記載の方向性結合器。
[4] 前記内側線路電極の幅が前記外側線路電極の幅よりも小さいことを特徴とする請 求の範囲第 1項、第 2項又は第 3項に記載の方向性結合器。
[5] 前記内側線路電極のターン数が前記外側線路電極のターン数よりも大き 、ことを 特徴とする請求の範囲第 1項、第 2項、第 3項又は第 4項に記載の方向性結合器。
[6] 前記内側線路電極と前記外側線路電極が同一平面上に形成されて!、ることを特徴 とする請求の範囲第 1項、第 2項、第 3項、第 4項 4又は第 5項に記載の方向性結合
[7] 前記内側線路電極及び外側線路電極が互いに異なる平面上に形成されて ヽるこ とを特徴とする請求の範囲第 1項、第 2項、第 3項、第 4項又は第 5項に記載の方向 性結合器。
[8] 前記内側線路電極及び外側線路電極の少なくとも一方が複数の平面上に分割し て形成され、該分割された線路電極はビアホールにより直列に接続されて ヽることを 特徴とする請求の範囲第 1項、第 2項、第 3項,第 4項又は第 5項に記載の方向性結 前記誘電体層に形成されたグランド電極を有し、前記内側線路電極及び前記外側 線路電極のそれぞれの端部と前記グランド電極との間にそれぞれ静電容量を形成し たことを特徴とする請求の範囲第 1項、第 2項、第 3項、第 4項、第 5項、第 6項、第 7 項又は第 8項に記載の方向性結合器。
PCT/JP2005/006345 2004-05-18 2005-03-31 方向性結合器 WO2005112186A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05728022A EP1753072B1 (en) 2004-05-18 2005-03-31 Directional coupler
DE602005026517T DE602005026517D1 (de) 2004-05-18 2005-03-31 Richtungskoppler
CN200580001729.XA CN1906800B (zh) 2004-05-18 2005-03-31 定向耦合器
AT05728022T ATE499723T1 (de) 2004-05-18 2005-03-31 Richtungskoppler
US10/596,286 US7567147B2 (en) 2004-05-18 2005-05-31 Directional coupler

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004148116 2004-05-18
JP2004-148116 2004-05-18
JP2005-068773 2005-03-11
JP2005068773A JP3791540B2 (ja) 2004-05-18 2005-03-11 方向性結合器

Publications (1)

Publication Number Publication Date
WO2005112186A1 true WO2005112186A1 (ja) 2005-11-24

Family

ID=35394454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006345 WO2005112186A1 (ja) 2004-05-18 2005-03-31 方向性結合器

Country Status (7)

Country Link
US (1) US7567147B2 (ja)
EP (1) EP1753072B1 (ja)
JP (1) JP3791540B2 (ja)
CN (1) CN1906800B (ja)
AT (1) ATE499723T1 (ja)
DE (1) DE602005026517D1 (ja)
WO (1) WO2005112186A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914444A (zh) * 2015-02-24 2016-08-31 Tdk株式会社 定向耦合器及无线通信装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4729464B2 (ja) * 2006-09-20 2011-07-20 ルネサスエレクトロニクス株式会社 方向性結合器および高周波回路モジュール
KR101136519B1 (ko) * 2010-03-09 2012-04-17 (주)파트론 일체형 커플러-써큘레이터 및 그를 포함하는 전력 증폭기
US8446230B2 (en) 2010-05-28 2013-05-21 Raytheon Company Microwave directional coupler
WO2012005041A1 (ja) * 2010-07-06 2012-01-12 株式会社村田製作所 方向性結合器
US8928428B2 (en) * 2010-12-22 2015-01-06 Rfaxis, Inc. On-die radio frequency directional coupler
JP5517003B2 (ja) * 2012-02-01 2014-06-11 Tdk株式会社 方向性結合器
US9379678B2 (en) * 2012-04-23 2016-06-28 Qualcomm Incorporated Integrated directional coupler within an RF matching network
US9356330B1 (en) * 2012-09-14 2016-05-31 Anadigics, Inc. Radio frequency (RF) couplers
WO2014169247A1 (en) * 2013-04-12 2014-10-16 Rfaxis, Inc. Miniature radio frequency directional coupler for cellular applications
JP5975059B2 (ja) * 2014-04-28 2016-08-23 株式会社村田製作所 方向性結合器
JP6098842B2 (ja) * 2015-03-11 2017-03-22 Tdk株式会社 方向性結合器および無線通信装置
US10920041B2 (en) 2015-08-11 2021-02-16 South Dakota Board Of Regents Discontinuous-fiber composites and methods of making the same
RU2693501C1 (ru) * 2018-10-03 2019-07-03 Акционерное общество "Микроволновые системы" Спиральный сверхширокополосный микрополосковый квадратурный направленный ответвитель
WO2021024778A1 (ja) * 2019-08-07 2021-02-11 パナソニックIpマネジメント株式会社 伝送装置、パワーデバイス駆動回路および信号伝送方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006821A (en) * 1989-09-14 1991-04-09 Astec International, Ltd. RF coupler having non-overlapping off-set coupling lines
JPH07131211A (ja) * 1993-08-31 1995-05-19 Hitachi Ferrite Ltd ストリップライン型高周波部品
JPH09153708A (ja) * 1995-12-01 1997-06-10 Tdk Corp 方向性結合器
JPH11168309A (ja) * 1997-12-05 1999-06-22 Murata Mfg Co Ltd 方向性結合器
JPH11284413A (ja) * 1998-03-27 1999-10-15 Tdk Corp 方向性結合器
JP2001520468A (ja) * 1997-10-15 2001-10-30 エイブイエックス コーポレイション 表面実装カプラデバイス
JP2002280810A (ja) * 2001-03-16 2002-09-27 Murata Mfg Co Ltd 方向性結合器
JP2002280812A (ja) * 2001-03-21 2002-09-27 Ngk Spark Plug Co Ltd 高周波カプラ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2817487B2 (ja) * 1991-12-09 1998-10-30 株式会社村田製作所 チップ型方向性結合器
DE69532581T2 (de) 1994-05-19 2004-08-05 Tdk Corp. Richtkoppler
US5742210A (en) * 1997-02-12 1998-04-21 Motorola Inc. Narrow-band overcoupled directional coupler in multilayer package
US6686812B2 (en) * 2002-05-22 2004-02-03 Honeywell International Inc. Miniature directional coupler

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006821A (en) * 1989-09-14 1991-04-09 Astec International, Ltd. RF coupler having non-overlapping off-set coupling lines
JPH07131211A (ja) * 1993-08-31 1995-05-19 Hitachi Ferrite Ltd ストリップライン型高周波部品
JPH09153708A (ja) * 1995-12-01 1997-06-10 Tdk Corp 方向性結合器
JP2001520468A (ja) * 1997-10-15 2001-10-30 エイブイエックス コーポレイション 表面実装カプラデバイス
JPH11168309A (ja) * 1997-12-05 1999-06-22 Murata Mfg Co Ltd 方向性結合器
JPH11284413A (ja) * 1998-03-27 1999-10-15 Tdk Corp 方向性結合器
JP2002280810A (ja) * 2001-03-16 2002-09-27 Murata Mfg Co Ltd 方向性結合器
JP2002280812A (ja) * 2001-03-21 2002-09-27 Ngk Spark Plug Co Ltd 高周波カプラ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914444A (zh) * 2015-02-24 2016-08-31 Tdk株式会社 定向耦合器及无线通信装置
CN105914444B (zh) * 2015-02-24 2019-07-02 Tdk株式会社 定向耦合器及无线通信装置

Also Published As

Publication number Publication date
JP2006005905A (ja) 2006-01-05
CN1906800A (zh) 2007-01-31
ATE499723T1 (de) 2011-03-15
EP1753072A1 (en) 2007-02-14
JP3791540B2 (ja) 2006-06-28
EP1753072B1 (en) 2011-02-23
CN1906800B (zh) 2014-05-14
EP1753072A4 (en) 2007-05-23
US20080297272A1 (en) 2008-12-04
US7567147B2 (en) 2009-07-28
DE602005026517D1 (de) 2011-04-07

Similar Documents

Publication Publication Date Title
WO2005112186A1 (ja) 方向性結合器
JP3780414B2 (ja) 積層型バラントランス
US6515556B1 (en) Coupling line with an uncoupled middle portion
US6388551B2 (en) Method of making a laminated balun transform
JP2773617B2 (ja) バルントランス
EP0641037B1 (en) Strip line-type high-frequency element
US9035718B2 (en) Directional coupler
JP4500840B2 (ja) 積層型バラン及び混成集積回路モジュール並びに積層基板
JP3800121B2 (ja) 積層型バラントランス
JP2008017523A (ja) 高効率方向性結合器
JPH05160614A (ja) チップ型方向性結合器
US20140085019A1 (en) Symmetrical hybrid coupler
WO2021244648A1 (zh) 一种3dB正交混合耦合器及射频前端模块、通信终端
KR100476561B1 (ko) 적층형 발룬 트랜스포머
JP2007318661A (ja) バンドパスフィルタおよびそれを用いた高周波モジュールならびにそれらを用いた無線通信機器
JP4783996B2 (ja) 積層型複合バラントランス
JP2840814B2 (ja) チップ型トランス
JP6315347B2 (ja) 方向性結合器およびそれを用いたモジュール
JP5578440B2 (ja) 差動伝送線路
JP4586282B2 (ja) 積層型バラントランス
JPH09153708A (ja) 方向性結合器
JP2003069317A (ja) 積層型方向性結合器
JP2004266697A (ja) 積層型バンドパスフィルタ
JP2001006941A (ja) 高周波トランスおよびインピーダンス変換器
JPH05243820A (ja) 方向性結合器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001729.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005728022

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10596286

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005728022

Country of ref document: EP