WO2020066804A1 - 方向性結合器 - Google Patents

方向性結合器 Download PDF

Info

Publication number
WO2020066804A1
WO2020066804A1 PCT/JP2019/036626 JP2019036626W WO2020066804A1 WO 2020066804 A1 WO2020066804 A1 WO 2020066804A1 JP 2019036626 W JP2019036626 W JP 2019036626W WO 2020066804 A1 WO2020066804 A1 WO 2020066804A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
directional coupler
wiring
sub
line
Prior art date
Application number
PCT/JP2019/036626
Other languages
English (en)
French (fr)
Inventor
稜紀 敷島
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201980062899.0A priority Critical patent/CN112740477B/zh
Publication of WO2020066804A1 publication Critical patent/WO2020066804A1/ja
Priority to US17/213,814 priority patent/US12100881B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/185Edge coupled lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances

Definitions

  • the present invention relates to a directional coupler.
  • Patent Document 1 discloses a directional coupler having a main line and a sub line.
  • a low-pass filter section including an inductor and a capacitor is connected between the sub-line and the coupling port.
  • a resonance point is formed on the higher frequency side than the operating frequency band, and the degree of coupling in the operating frequency band is flattened.
  • Patent Document 2 discloses a directional coupler including a main line and a sub line, and a matching circuit connected to the directional coupler.
  • the matching circuit includes an inductor connected in series with the main line, and performs matching with an external circuit.
  • the degree of coupling is the degree of coupling.
  • the degree of coupling of the directional coupler increases as the length of the main line and the length of the sub line increase.
  • the size of the directional coupler has been restricted due to the miniaturization of the device, and it has become difficult to secure the lengths of the main line and the sub line for obtaining a desired degree of coupling. That is, the degree of coupling of the directional coupler tends to be insufficient.
  • an object of the present invention is to provide a directional coupler that can easily solve the shortage of the coupling degree without increasing the size.
  • a directional coupler includes a main line through which a main signal flows, and a sub line through which a sub signal according to the main signal flows due to electromagnetic coupling with the main line.
  • the first portion is electromagnetically coupled to the second portion of the second wiring forming the other of the main line and the sub line.
  • a directional coupler includes a main line through which a main signal flows, and a sub line through which a sub signal according to the main signal flows due to electromagnetic coupling with the main line.
  • the first part and the second part of the second wiring constituting the other of the main line and the sub-line are the first part of the first signal of the main signal and the sub-signal flowing through the first wiring.
  • the second portion is arranged to face the traveling direction of the second signal in a direction opposite to the traveling direction of the second signal flowing through the second wiring in the second portion.
  • the first portion and the second portion can form electromagnetic coupling between the first wiring and the second wiring to increase a sub signal.
  • the effective degree of coupling of the directional coupler can be increased, so that the shortage of the degree of coupling can be easily resolved without increasing the size of the directional coupler.
  • FIG. 1 is a circuit diagram showing an example of a functional configuration of the directional coupler according to the first embodiment.
  • FIG. 2 is a plan view showing an example of a layout of the directional coupler according to the first embodiment.
  • FIG. 3 is a plan view illustrating an example of a layout of a directional coupler according to a comparative example.
  • FIG. 4 is a graph illustrating an example of signal characteristics of the directional coupler according to the first embodiment.
  • FIG. 5 is a graph illustrating an example of a signal characteristic of the directional coupler according to the comparative example.
  • FIG. 6 is a plan view showing an example of a layout of the directional coupler according to the first embodiment.
  • FIG. 1 is a circuit diagram showing an example of a functional configuration of the directional coupler according to the first embodiment.
  • FIG. 2 is a plan view showing an example of a layout of the directional coupler according to the first embodiment.
  • FIG. 3 is a plan view illustrating an example of a
  • FIG. 7 is a plan view showing another example of the layout of the directional coupler according to the first embodiment.
  • FIG. 8 is a graph illustrating another example of the signal characteristics of the directional coupler according to Embodiment 1.
  • FIG. 9 is a circuit diagram showing an example of a functional configuration of the directional coupler according to the second embodiment.
  • FIG. 10 is a plan view showing an example of a layout of the directional coupler according to the second embodiment.
  • FIG. 11 is a plan view showing another example of the layout of the directional coupler according to the second embodiment.
  • FIG. 12 is a graph illustrating an example of signal characteristics of the directional coupler according to Embodiment 2.
  • FIG. 13 is a graph illustrating another example of the signal characteristics of the directional coupler according to Embodiment 2.
  • the directional coupler according to the first embodiment will be described using an example of a directional coupler including a main line, a sub line, and an inductor connected in series with the main line.
  • FIG. 1 is a circuit diagram showing an example of a functional configuration of the directional coupler 1.
  • the directional coupler 2 includes a main line 11, a sub line 12, an inductor 13, and a resistor 15.
  • the inductor 13 is connected in series with the main line 11.
  • the inductor 13 may be, for example, for matching the main line 11.
  • One end and the other end of the signal path 61 including the inductor 13 and the main line 11 are connected to the input port RFin and the output port RFout, respectively.
  • One end of the signal path 62 including the sub line 12 is connected to the coupling port CPL, and the other end is terminated to the ground.
  • the main line 11 and the sub line 12 are electromagnetically coupled to each other (dotted arrow M0 in FIG. 1).
  • the main signal 31 to be detected is supplied to the input port RFin, and flows through the inductor 13 and the main line 11 toward the output port RFout.
  • the direction in which the signal flows is the direction in which the power of the signal propagates, and is also referred to as the traveling direction of the signal.
  • a part of the power of the main signal 31 is extracted to the sub-line 12 as the sub-signal 32 by electromagnetic coupling with the main line 11.
  • the sub signal 32 flows through the sub line 12 in a direction opposite to the traveling direction of the main signal 31 on the main line 11, and is output from the coupling port CPL.
  • the sub signal 32 indicates a detection result of the main signal 31.
  • the resistor 15 is connected in series between the sub-line 12 and the ground.
  • the resistor 15 is a terminating resistor for terminating the reflected wave of the sub-signal 32 at the other end of the sub-line 12.
  • the coupling degree of the directional coupler 1 is represented by a ratio of the power of the sub-signal 32 flowing through the sub-line 12 to the power of the main signal 31 flowing through the main line 11. As described above, the degree of coupling of the directional coupler generally increases as the length of the main line and the length of the sub line increase.
  • the size of the directional coupler has been restricted due to the miniaturization of the device, and it has become difficult to secure the lengths of the main line and the sub line for obtaining a desired degree of coupling. That is, the degree of coupling of the directional coupler tends to be insufficient.
  • an electromagnetic coupling (dotted arrow M1 in FIG. 1) for increasing the sub signal 32 is formed between the inductor 13 and the sub line 12.
  • FIG. 2 is a plan view showing an example of the layout of the directional coupler 1.
  • the directional coupler 1 is configured by arranging electrodes 20 and wirings 21 and 22 on a substrate 10.
  • the main surface of the substrate 10 is represented by the XY plane, and the thickness direction of the substrate 10 is represented by the Z direction.
  • the same type of component is given the same type of pattern, and duplicated reference numerals are omitted as appropriate.
  • the substrate 10 is a multilayer substrate, and the wirings 21 and 22 that overlap in plan view (that is, when viewed in the Z direction) and the wirings 21 that intersect each other have an insulating layer (not shown) interposed therebetween. They are arranged on different layers.
  • the electrode 20 constitutes the input port RFin, the output port RFout, the coupling port CPL, and the ground port GND.
  • the wiring 21 forms a signal path 61 between the input port RFin and the output port RFout.
  • the wiring 22 forms a signal path 62 between the ground port GND and the coupling port CPL.
  • the resistance element 30 forms the resistance 15 which is a termination resistance.
  • Parts of the wirings 21 and 22 included in the region 50 function as the main line 11 and the sub line 12, respectively.
  • the main line 11 and the sub line 12 are arranged in the Z direction with an insulating layer (not shown) interposed therebetween, and are electromagnetically coupled to each other. Due to the electromagnetic coupling between the main line 11 and the sub line 12, a part of the power of the main signal 31 flowing through the main line 11 is extracted to the sub line 12 as the sub signal 32. Therefore, the original degree of coupling of the directional coupler 1 increases as the region 50 increases, that is, as the main line 11 and the sub line 12 increase.
  • the wiring 21 is the “first wiring” in the present invention, and the main signal 31 flowing through the wiring 21 is the “first signal” in the present invention.
  • the wiring 22 is the “second wiring” in the present invention, and the sub-signal 32 flowing through the wiring 22 is the “second signal” in the present invention.
  • the wiring 21 forms the inductor 13 at least in a part other than the main path 11.
  • the inductor 13 functions as, for example, a matching circuit for matching at the input end of the main line 11.
  • the portion 41 of the wiring 21 forming the inductor 13 and the portion 42 of the wiring 22 forming the sub-line 12 are, in a region 51, the direction in which the main signal 31 travels in the portion 41 and the direction of the sub-signal 32 in the portion 42. They are arranged facing each other so that the traveling direction is opposite to the traveling direction.
  • the traveling direction of the main signal 31 in the portion 41 is the ⁇ X direction
  • the traveling direction of the sub-signal 32 in the portion 42 is the + X direction
  • the portion 41 and the portion 42 face each other in the Y direction. ing.
  • the portion 41 is the “first portion” in the present invention
  • the portion 42 is the “second portion” in the present invention.
  • opposing means, for example, that the shortest distance from an arbitrary point of the portion 41 to the portion 42 is substantially constant, and a direction connecting the portion 41 and the portion 42 at the shortest distance. May be the direction in which the portion 41 and the portion 42 face each other.
  • the portion 41 of the wiring 21 forming the inductor 13 and the portion 42 of the wiring 22 forming the sub-line 12 are arranged to face each other in the region 51. Due to the arrangement in which the traveling direction of the main signal 31 in the portion 41 and the traveling direction of the sub-signal 32 in the portion 42 are opposite, the traveling proceeds in the same direction as the sub-signal 32 extracted from the main line 11 to the sub-line 12 in the region 50. A signal can be extracted from the inductor 13 to the auxiliary line 12. That is, the portion 41 and the portion 42 can form an electromagnetic coupling that increases the sub-signal 32. Thereby, the effective coupling degree of the directional coupler 1 can be increased, so that the shortage of the coupling degree can be easily resolved without increasing the size of the directional coupler 1.
  • the effect of the directional coupler 1 will be described based on comparison with the directional coupler 9 as a comparative example.
  • FIG. 3 is a plan view showing an example of the layout of the directional coupler 9. As shown in FIG. 3, the directional coupler 9 differs from the directional coupler 1 of FIG. 2 in the layout of the wiring 21.
  • the part 49 of the wiring 21 and the part 42 of the wiring 22 that constitute the inductor 13 are formed in a region 59 by a traveling direction of the main signal 31 in the part 49 and a traveling direction of the sub-signal 32 in the part 42. They are arranged facing each other so that the directions are the same.
  • the traveling direction of the main signal 31 in the portion 49 and the traveling direction of the sub-signal 32 in the portion 42 are both in the + X direction, and the portion 41 and the portion 42 face each other in the Y direction. .
  • the portion 49 and the portion 42 can form an electromagnetic coupling that reduces the sub-signal 32.
  • Models of the directional couplers 1 and 9 were set based on the layouts of FIGS. 2 and 3, and signal characteristics were obtained by simulation. In the simulation, a model of the directional couplers 1 and 9 was set with a design assuming that the used frequency band of the directional couplers 1 and 9 was 5 GHz to 6 GHz.
  • FIGS. 4 and 5 are graphs showing an example of signal characteristics of the directional couplers 1 and 9 and show simulation results of the degree of coupling and isolation. 4 and 5, at 5.5 GHz, the coupling degree of the directional coupler 1 is 17.6 dB, the isolation is 43.3 dB, and the coupling degree of the directional coupler 9 is 19.4 dB, and The ratio is 22.4 dB.
  • the directional coupler 1 can obtain a higher degree of coupling and higher isolation in the entire use frequency band of 5 GHz to 6 GHz as compared with the directional coupler 9. I understand.
  • FIG. 6 is a plan view showing an example of the layout of the directional coupler 1, in which reference numerals are added to the layout of FIG. As shown in FIG. 6, in the region 52, the traveling direction of the main signal 31 in the portion 43 and the traveling direction of the sub signal 32 in the portion 44 are the same in the region 52. So as to face each other.
  • the traveling direction of the main signal 31 in the portion 43 is the + X direction
  • the traveling direction of the sub-signal 32 in the portion 44 is the + X direction
  • the portion 43 and the portion 44 face each other in the Y direction. I have.
  • the portion 43 is the “third portion” in the present invention, and the portion 44 is the “fourth portion” in the present invention.
  • each of the portion 43 and the portion 44 is shorter than the length of each of the portion 41 and the portion 42.
  • the extension of the region 52 is shorter than the extension of the region 51 along the extension direction of the wiring.
  • the directional coupler 1 may include the portion 43 and the portion 44 that are electromagnetically coupled so as to reduce the sub-signal 32. If the amount of decrease of the sub-signal 32 due to the portions 43 and 44 is smaller than the amount of increase of the sub-signal 32 due to the portions 41 and 42, the effective degree of coupling of the directional coupler 1 increases. Without increasing the size of the directional coupler 1, shortage of the coupling degree can be easily eliminated.
  • the portion 45 of the wiring 21 and the portion 46 of the wiring 22 are arranged such that, in the region 53, the traveling direction of the main signal 31 in the portion 45 and the traveling direction of the sub-signal 32 in the portion 46 are opposite to each other. And are arranged to face each other.
  • the traveling direction of the main signal 31 in the portion 45 is the + X direction
  • the traveling direction of the sub-signal 32 in the portion 46 is the ⁇ X direction
  • the portion 45 and the portion 46 face in the Z direction. ing.
  • the portion 45 is the “fifth portion” in the present invention
  • the portion 46 is the “sixth portion” in the present invention.
  • an electromagnetic coupling for increasing the sub signal 32 can be further formed by the portion 45 and the portion 46.
  • the effective degree of coupling of the directional coupler 1 can be significantly increased, so that the shortage of the degree of coupling can be easily resolved without increasing the size of the directional coupler 1.
  • the portions where the signal traveling directions are opposite to each other may be opposed in the Y direction like the portion 41 and the portion 42, or may be the Z direction like the portion 45 and the portion 46. May be opposed to each other, or may be opposed in the X direction.
  • both the element and the wiring are arranged between the portion 41 of the wiring 21 and the portion 42 of the wiring 22. It has not been.
  • the portion 41 and the portion 42 are easily arranged close to each other, it is easy to form an electromagnetic coupling that greatly increases the sub-signal 31. Thereby, the effective coupling degree of the directional coupler 1 can be more effectively increased, so that the shortage of the coupling degree can be easily solved without increasing the size of the directional coupler 1.
  • FIG. 7 is a plan view showing an example of the layout of the directional coupler 2.
  • the directional coupler 2 differs from the directional coupler 1 of FIG. 6 in the layout of the wiring 21. Specifically, in the directional coupler 2, the portion 41 of the wiring 21 and the portion 42 of the wiring 22 are closer to each other in the region 54 than the portions 41 and 42 of the directional coupler 1.
  • the portion 41 of the wiring 21 is closest to the wiring 22 among the portions configuring the inductor 13 of the wiring 21 in plan view. That is, the distance between the part 41 of the wiring 21 and the part 42 of the wiring 22 is shorter than the shortest distance between any part other than the part 41 of the parts forming the inductor 13 of the wiring 21 and the wiring 22.
  • the signal travels along the wiring 21 and the wiring 22 travels. The signal traveling directions are opposite to each other.
  • a model of the directional coupler 2 was set based on the layout of FIG. 7, and the signal characteristics were obtained by simulation. In the simulation, a model of the directional coupler 2 was set with a design assuming that the use frequency band of the directional coupler 2 was 5 GHz to 6 GHz.
  • FIG. 8 is a graph showing an example of the signal characteristics of the directional coupler 2, and shows a simulation result of the coupling degree and the isolation.
  • the degree of coupling of the directional coupler 2 is 16.3 dB
  • the isolation is 32.7 dB.
  • the directional coupler 2 can obtain a higher degree of coupling over the entire use frequency band of 5 GHz to 6 GHz than the directional coupler 1.
  • FIG. 9 is a circuit diagram showing an example of a functional configuration of the directional coupler according to the second embodiment.
  • the directional coupler 3 includes a main line 11, a sub line 12, an inductor 14, and a resistor 15.
  • the reflected wave 33 of the main signal 31 flowing in the main line 11 in the opposite direction to the main signal 31 is shown together with the main signal 31 flowing in the main line 11.
  • the reflected wave 33 of the main signal 31 is a signal generated as a result of the main signal 31 being reflected at the output port RFout side, and the main line 11 is transmitted from the output port RFout side to the input port RFin side in the opposite direction to the main signal 31. Proceed to.
  • the reflected wave 33 will be referred to later in the description of the isolation characteristics.
  • the inductor 14 is connected in series with the sub-line 12.
  • the inductor 14 may be, for example, a filter for selecting a sub-signal 32 having a desired frequency from a signal extracted from the sub-line 12.
  • One end and the other end of the signal path 63 including the main line 11 are connected to the input port RFin and the output port RFout, respectively.
  • One end of the signal path 64 including the inductor 14 and the sub-line 12 is connected to the coupling port CPL, and the other end is terminated to the ground.
  • an electromagnetic coupling (dotted arrow M2 in FIG. 9) for increasing the sub signal 32 is formed between the inductor 14 and the main line 11. More specifically, the first part of the wiring forming the inductor 14 and the second part of the wiring forming the main line 11 are connected to the sub-signal 32 in the first part in the same way as the directional couplers 1 and 2. And the traveling direction of the main signal 31 in the second part is opposite to each other.
  • FIG. 10 is a plan view showing an example of the layout of the directional coupler 3.
  • the directional coupler 3 is configured by arranging electrodes 20 and wirings 23 and 24 on a substrate 10.
  • the main surface of the substrate 10 is represented by the XY plane, and the thickness direction of the substrate 10 is represented by the Z direction.
  • the same type of component is given the same type of pattern, and duplicated reference numerals are omitted as appropriate.
  • the substrate 10 is a multi-layer substrate, and the wirings 23 and 24 that overlap in plan view (that is, when viewed in the Z direction) and the wirings 24 that intersect each other with an insulating layer (not shown) interposed therebetween. They are arranged on different layers.
  • the electrode 20 constitutes the input port RFin, the output port RFout, the coupling port CPL, and the ground port GND.
  • the wiring 23 forms a signal path 63 between the input port RFin and the output port RFout.
  • the wiring 24 forms a signal path 64 between the ground port GND and the coupling port CPL.
  • the resistance element 30 forms the resistance 15 which is a termination resistance.
  • Parts of the wirings 23 and 24 included in the region 50 function as the main line 11 and the sub line 12, respectively.
  • the main line 11 and the sub line 12 are arranged in the Z direction with an insulating layer (not shown) interposed therebetween, and are electromagnetically coupled to each other. Due to the electromagnetic coupling between the main line 11 and the sub line 12, a part of the power of the main signal 31 flowing through the main line 11 is extracted to the sub line 12 as the sub signal 32.
  • the wiring 24 is the “first wiring” in the present invention, and the sub-signal 32 flowing through the wiring 24 is the “first signal” in the present invention.
  • the wiring 23 is the “second wiring” in the present invention, and the main signal 31 flowing through the wiring 23 is the “second signal” in the present invention.
  • the wiring 24 forms the inductor 14 at least in a part other than the sub-line 12.
  • the portion 74 of the wiring 24 forming the inductor 14 and the portion 73 of the wiring 23 forming the main line 11 are different from each other in the region 51 in the traveling direction of the sub-signal 32 in the portion 74 and the main signal 31 in the portion 73. They are arranged facing each other so that the traveling direction is opposite to the traveling direction.
  • the traveling direction of the sub signal 32 in the portion 74 is the + X direction
  • the traveling direction of the main signal 31 in the portion 73 is the ⁇ X direction
  • the portion 74 and the portion 73 are opposed to each other in the Y direction. ing.
  • the part 74 is the “first part” in the present invention, and the part 73 is the “second part” in the present invention.
  • the traveling direction of the sub-signal 32 in the portion 74 is opposite to the traveling direction of the main signal 31 in the portion 73, the traveling direction of the sub-signal 32 from the main line 11 to the sub-line 12 is the same.
  • This signal can be extracted from the main line 11 to the inductor 14. That is, an electromagnetic coupling that increases the sub-signal 32 can be formed by the first portion and the second portion.
  • the effective degree of coupling of the directional coupler 3 can be increased, so that the shortage of the degree of coupling can be easily resolved without increasing the size of the directional coupler 3.
  • the part 77 of the wiring 24 and the part 73 of the wiring 23 are formed such that the traveling direction of the sub signal 32 in the part 77 and the traveling direction of the reflected wave 33 of the main signal 31 in the part 73 are opposite to each other. , And are arranged to face each other.
  • the traveling direction of the sub signal 32 in the portion 77 is the ⁇ X direction
  • the traveling direction of the reflected wave 33 of the main signal 31 in the portion 73 is the + X direction
  • the portion 77 and the portion 73 are in the Y direction. Facing each other.
  • the portion 77 is the “seventh portion” in the present invention.
  • the traveling direction of the sub signal 32 in the portion 77 and the traveling direction of the reflected wave 33 of the main signal 31 in the portion 73 are opposite to each other.
  • the reflected wave 33 is generated, the reflected wave 33 is extracted from the main line 11 to the inductor 14.
  • electromagnetic coupling is formed between the second portion of the second wiring and the seventh portion of the first wiring, and the reflected wave 33 that should not be extracted from the main line 11 to the sub-line 12 is extracted.
  • the electromagnetic coupling between the portion where the sub-signal flows in the direction opposite to the traveling direction of the reflected wave of the main signal and the portion where the reflected wave of the main signal flows is strong, the amount of the reflected wave 33 extracted increases.
  • the isolation characteristics of the directional coupler will deteriorate.
  • the layout is such that the seventh portion of the first wiring (the portion 77 of the wiring 24 in the example of FIG. 10) and the second portion of the second wiring (the portion 73 of the wiring 23 in the example of FIG. 10) are further separated from each other. Consider suppressing a decrease in isolation characteristics.
  • FIG. 11 is a plan view showing an example of the layout of the directional coupler 4.
  • the directional coupler 4 differs from the directional coupler 3 of FIG. 10 in the layout of the wiring 24. Specifically, in the directional coupler 4, the portion 77 of the wiring 24 and the portion 73 of the wiring 23 are arranged farther apart in the region 56 than the portions 77 and 73 in the directional coupler 3. I have.
  • Models of the directional couplers 3 and 4 were set based on the layouts of FIGS. 10 and 11, and signal characteristics were obtained by simulation. In the simulation, a model of the directional couplers 3 and 4 was set with a design assuming that the used frequency band of the directional couplers 3 and 4 was 5 GHz to 6 GHz.
  • FIGS. 12 and 13 are graphs showing an example of signal characteristics of the directional couplers 3 and 4, and show simulation results of the coupling degree and the isolation.
  • the directional coupler 3 has a coupling degree of 18.2 dB and isolation of 38.0 dB
  • the directional coupler 4 has a coupling degree of 17.8 dB and isolator.
  • the ratio is 44.2 dB.
  • the directional coupler 4 can obtain greater isolation over the entire use frequency band of 5 GHz to 6 GHz as compared with the directional coupler 3.
  • the directional coupler 4 maintains a relatively high degree of coupling over the entire use frequency band of 5 GHz to 6 GHz. This is because the portion 74 of the wiring 24 and the portion 73 of the wiring 23 in the directional coupler 4 are close to each other (the portion 74 of the wiring 24 and the portion 73 of the wiring 23 in the directional coupler 3). This is because other elements or wirings are arranged between the first and third parts (without interposing any other element or wiring). In other words, the part 74 and the part 73 form an electromagnetic coupling that further increases the sub-signal 31.
  • the isolation characteristic is increased without reducing the coupling degree as compared with the directional coupler 3, and thus the directional coupler 4 is represented by the difference between the coupling degree and the isolation characteristic. It can be seen that the directionality is also improved.
  • the seventh portion of the first wiring constituting the inductor is connected to the inductor of the main line and the sub line compared to the first portion. It can be seen that the directionality is improved by arranging the second wiring apart from the second portion of the second wiring that forms the line that is not formed. Specifically, when the directional coupler is viewed in a plan view, as the distance between the first part of the first wiring and the second part of the second wiring becomes smaller, and the distance between the first part of the first wiring and the seventh part of the first wiring becomes smaller. As the distance between the second wiring and the second portion increases, the directionality improves.
  • the seventh portion is included in the wiring forming the inductor connected to the sub-line, but the seventh portion forms the inductor connected to the main line. Even in the case of being included in the wiring, the same effect can be obtained by keeping that part away from the sub line.
  • the third and fourth parts are not described. However, when these parts are included in the directional couplers 3, 4, the third and fourth parts are not included. By making the length shorter than the lengths of the first portion and the second portion, the same effect as that described for the directional coupler 1 can be obtained. Further, in the directional couplers 3 and 4, the fifth part and the sixth part are not described, but by providing these parts in addition to the first part and the second part, the directional coupler 1 is provided. An effect similar to the effect described can be obtained.
  • the directional couplers 1 to 4 no components and no wiring are arranged between the first part and the second part. Thereby, the distance between the first portion and the second portion can be easily reduced, so that the first portion and the second portion can be more securely electromagnetically coupled.
  • the above-mentioned components include all components such as passive components and active components.
  • the above-mentioned wiring includes not only wires for connecting components, but also pads and electrodes for mounting the components on a substrate. It is.
  • the directional couplers 1 to 4 are ceramic laminates, only the ceramic material constituting the body of the ceramic laminate is provided between the first portion and the second portion.
  • the directional coupler includes a main line through which a main signal flows, and a sub line through which a sub signal according to the main signal flows by electromagnetic coupling with the main line.
  • An inductor that is connected in series with one of the main line and the sub-line, and through which one of the main signal and the sub-signal flows; The portion and the second portion of the second wiring forming the other of the main line and the sub line are electromagnetically coupled.
  • the effective degree of coupling of the directional coupler can be increased, so that the coupling can be performed without increasing the size of the directional coupler. It becomes easy to resolve the lack of degree.
  • a main line through which a main signal flows, and a sub-signal corresponding to the main signal flow by being electromagnetically coupled to the main line.
  • a first wiring comprising: a sub-line; and an inductor connected in series with one of the main line and the sub-line, through which one of the main signal and the sub-signal flows.
  • the second part of the second wiring that constitutes the other of the main line and the sub-line is the first signal of the main signal and the sub-signal that flows through the first wiring.
  • the second portion is opposed to the first portion so that the traveling direction of the second signal flowing through the second wiring is opposite to the traveling direction of the second signal.
  • the first portion and the second portion can form an electromagnetic coupling between the first wiring and the second wiring to increase a sub signal.
  • the effective degree of coupling of the directional coupler can be increased, so that the shortage of the degree of coupling can be easily resolved without increasing the size of the directional coupler.
  • the third portion of the first wiring and the fourth portion of the second wiring have the same traveling direction of the first signal in the third portion and the traveling direction of the second signal in the fourth portion.
  • the length of each of the third portion and the fourth portion may be shorter than any of the lengths of the first portion and the second portion.
  • the amount of reduction of the sub-signal by the third portion and the fourth portion is reduced by the third portion. It is easy to configure so that the amount of increase of the sub-signal by the first part and the second part is less. Thus, the effect of increasing the effective coupling degree of the directional coupler is not impaired, and the shortage of the coupling degree can be easily resolved without increasing the size of the directional coupler.
  • a fifth portion of the first wiring different from the first portion and a sixth portion of the second wiring different from the second portion are defined by a direction in which the first signal travels in the fifth portion and the sixth direction.
  • the portions may be arranged to face each other such that the traveling direction of the second signal in the portion is opposite to the traveling direction.
  • the fifth portion and the sixth portion can further form an electromagnetic coupling between the first wiring and the second wiring to increase a sub signal.
  • the effective degree of coupling of the directional coupler can be significantly increased, so that the shortage of the degree of coupling can be easily resolved without increasing the size of the directional coupler.
  • the seventh part of the first wiring and the second part of the second wiring may have a direction in which the first signal travels in the seventh part and a travel direction of the reflected wave of the second signal in the second part.
  • the directional coupler is disposed so as to be opposite to the direction, and when the directional coupler is viewed in a plan view, the seventh portion is the first portion of the first wiring with respect to the second portion. It may be located farther than the part.
  • a fifth portion of the first wiring different from the first portion and a sixth portion of the second wiring different from the second portion may be coupled.
  • the seventh portion of the first wiring and the second portion of the second wiring are coupled to each other, and when the directional coupler is viewed in a plan view, the seventh portion of the directional coupler is moved with respect to the second portion.
  • the portion may be located farther than the first portion of the first wiring.
  • neither the element nor the wiring may be arranged between the first portion and the second portion.
  • the effective degree of coupling of the directional coupler can be more effectively increased, and the shortage of the degree of coupling can be easily resolved without increasing the size of the directional coupler.
  • the inductor may be connected to the main line.
  • the above-described effect can be obtained by using the inductor connected to the main line.
  • the matching inductor can be used for solving the shortage of the degree of coupling of the directional coupler.
  • the inductor may be connected to the sub-line.
  • the above-described effect can be obtained by using the inductor connected to the sub-line.
  • the inductor included in the filter can be used for solving the shortage of the degree of coupling of the directional coupler.
  • the present invention can be widely used as a directional coupler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Near-Field Transmission Systems (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

主信号(31)が流れる主線路(11)と、主線路(11)との電磁気的な結合により主信号(31)に応じた副信号(32)が流れる副線路(12)と、主線路(11)および副線路(12)のうち一方の線路と直列に接続され、主信号(31)および副信号(32)のうち一方の信号が流れるインダクタ(13)と、を備え、インダクタ(13)を構成する第1配線(21)の第1部分(41)と主線路(11)および副線路(12)のうち他方の線路を構成する第2配線(22)の第2部分(42)とが、電磁気的に結合している。

Description

方向性結合器
 本発明は、方向性結合器に関する。
 特許文献1には、主線路と副線路とを有する方向性結合器が示されている。副線路と結合ポートとの間にはインダクタとキャパシタとからなるローパスフィルタ部が接続されている。これにより、使用周波数帯域より高域側に共振点を形成して、使用周波数帯域における結合度を平坦化している。
 また、特許文献2には、主線路と副線路とを備える方向性結合器と、方向性結合器に接続された整合回路とが示されている。整合回路は、主線路と直列に接続されたインダクタを含み、外部回路との整合を取っている。
特開2013-46305号公報 国際公開第2016/006676号
 方向性結合器の特性の1つに結合度がある。方向性結合器の結合度は、一般に、主線路および副線路が長いほど大きい。しかしながら、昨今、装置の小型化に伴い方向性結合器のサイズが制約され、所望の結合度を得るための主線路および副線路の長さを確保することが難しくなっている。つまり、方向性結合器の結合度が不足しやすくなっている。
 そこで、本発明は、サイズを大型化させることなく結合度の不足を解消しやすい方向性結合器を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る方向性結合器は、主信号が流れる主線路と、前記主線路との電磁気的な結合により前記主信号に応じた副信号が流れる副線路と、前記主線路および前記副線路のうち一方の線路と直列に接続され、前記主信号および前記副信号のうち一方の信号が流れるインダクタと、を備え、前記インダクタを構成する第1配線の第1部分と前記主線路および前記副線路のうち他方の線路を構成する第2配線の第2部分とが、電磁気的に結合している。
 上記目的を達成するために、本発明の一態様に係る方向性結合器は、主信号が流れる主線路と、前記主線路との電磁気的な結合により前記主信号に応じた副信号が流れる副線路と、前記主線路および前記副線路のうち一方の線路と直列に接続され、前記主信号および前記副信号のうち一方の信号が流れるインダクタと、を備え、前記インダクタを構成する第1配線の第1部分と前記主線路および前記副線路のうち他方の線路を構成する第2配線の第2部分とは、前記主信号および前記副信号のうち前記第1配線を流れる第1信号の前記第1部分における進行方向と前記第2配線を流れる第2信号の前記第2部分における進行方向とが逆方向となるように、対向して配置されている。
 本発明に係る方向性結合器によれば、第1部分と第2部分とによって、第1配線と第2配線との間に副信号を増大させる電磁気的な結合を形成することができる。これにより、方向性結合器の実効的な結合度を増加できるので、方向性結合器のサイズを大型化させることなく、結合度の不足を解消しやすくなる。
図1は、実施の形態1に係る方向性結合器の機能的な構成の一例を示す回路図である。 図2は、実施の形態1に係る方向性結合器のレイアウトの一例を示す平面図である。 図3は、比較例に係る方向性結合器のレイアウトの一例を示す平面図である。 図4は、実施の形態1に係る方向性結合器の信号特性の一例を示すグラフである。 図5は、比較例に係る方向性結合器の信号特性の一例を示すグラフである。 図6は、実施の形態1に係る方向性結合器のレイアウトの一例を示す平面図である。 図7は、実施の形態1に係る方向性結合器のレイアウトの他の一例を示す平面図である。 図8は、実施の形態1に係る方向性結合器の信号特性の他の一例を示すグラフである。 図9は、実施の形態2に係る方向性結合器の機能的な構成の一例を示す回路図である。 図10は、実施の形態2に係る方向性結合器のレイアウトの一例を示す平面図である。 図11は、実施の形態2に係る方向性結合器のレイアウトの他の一例を示す平面図である。 図12は、実施の形態2に係る方向性結合器の信号特性の一例を示すグラフである。 図13は、実施の形態2に係る方向性結合器の信号特性の他の一例を示すグラフである。
 本発明の複数の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。
 (実施の形態1)
 実施の形態1に係る方向性結合器について、主線路と、副線路と、主線路と直列に接続されているインダクタとを有する方向性結合器の例を挙げて説明する。
 図1は、方向性結合器1の機能的な構成の一例を示す回路図である。図1に示されるように、方向性結合器2は、主線路11と、副線路12と、インダクタ13と、抵抗15とを備える。
 インダクタ13は主線路11と直列に接続されている。インダクタ13は、例えば、主線路11の整合用であってもよい。インダクタ13と主線路11とを含む信号経路61の一端および他端は、入力ポートRFinおよび出力ポートRFoutにそれぞれ接続されている。副線路12を含む信号経路62の一端はカップリングポートCPLに接続され、他端はグランドに終端されている。
 主線路11と副線路12とは、互いに電磁気的に結合している(図1の点線矢印M0)。検波対象である主信号31は、入力ポートRFinに供給され、出力ポートRFoutへ向かって、インダクタ13および主線路11を流れる。ここで、信号が流れる方向とは、信号の電力が伝搬する方向であり、信号の進行方向とも言う。
 主信号31の電力の一部は、主線路11との電磁気的な結合により、副信号32として副線路12に取り出される。副信号32は、主信号31の主線路11における進行方向とは逆方向に副線路12を流れ、カップリングポートCPLから出力される。副信号32は、主信号31の検波結果を表している。
 抵抗15は、副線路12とグランドとの間に直列に接続されている。抵抗15は副線路12の他端側において、副信号32の反射波を終端させるための終端抵抗である。
 方向性結合器1の結合度は、副線路12を流れる副信号32の電力の、主線路11を流れる主信号31の電力に対する比で表される。前述したように、方向性結合器の結合度は、一般に、主線路および副線路が長いほど大きい。
 しかしながら、昨今、装置の小型化に伴い方向性結合器のサイズが制約され、所望の結合度を得るための主線路および副線路の長さを確保することが難しくなっている。つまり、方向性結合器の結合度が不足しやすくなっている。
 そこで、方向性結合器1では、インダクタ13と副線路12との間に、副信号32を増大させる電磁気的な結合(図1の点線矢印M1)を形成する。
 図2は、方向性結合器1のレイアウトの一例を示す平面図である。図2に示されるように、方向性結合器1は、基板10に、電極20および配線21、22を配置して構成される。図2では、基板10の主面をXY平面とし、基板10の厚さ方向をZ方向として表している。また、同種の構成要素に同種の模様を付し、重複する符号を適宜省略する。
 基板10は、多層基板であり、平面視で(つまり、Z方向で見たときに)重複する配線21と配線22、および交差する配線21同士は、絶縁層(図示せず)を介在して互いに異なる層に配置されている。
 電極20は、入力ポートRFin、出力ポートRFout、カップリングポートCPLおよびグランドポートGNDを構成している。配線21は、入力ポートRFinと出力ポートRFoutとの間の信号経路61を構成している。配線22は、グランドポートGNDとカップリングポートCPLとの間の信号経路62を構成している。
 抵抗素子30は、終端抵抗である抵抗15を構成している。
 配線21、22の領域50に含まれる部分が、それぞれ主線路11および副線路12として機能する。主線路11と副線路12とは、図示しない絶縁層を介在してZ方向に重ねて配置され、互いに電磁気的に結合している。主線路11と副線路12との電磁気的な結合により、主線路11を流れる主信号31の電力の一部が、副信号32として副線路12に取り出される。そのため、方向性結合器1の本来の結合度は、領域50が大きいほど、つまり、主線路11および副線路12が長いほど、大きくなる。
 なお、方向性結合器1において、配線21が本発明における「第1配線」であり、配線21を流れる主信号31が本発明における「第1信号」である。また、配線22が本発明における「第2配線」であり、配線22を流れる副信号32が本発明における「第2信号」である。
 配線21は、主経路11以外の部分の少なくとも一部においてインダクタ13を構成している。インダクタ13は、例えば、主線路11の入力端での整合を取るための整合回路として機能する。インダクタ13を構成している配線21の部分41と副線路12を構成している配線22の部分42とは、領域51において、部分41における主信号31の進行方向と部分42における副信号32の進行方向とが逆方向となるように、対向して配置されている。
 図2の例では、部分41における主信号31の進行方向は-X方向であり、部分42における副信号32の進行方向は+X方向であり、部分41と部分42とは、Y方向に対向している。
 なお、方向性結合器1において、部分41が本発明における「第1部分」であり、部分42が本発明における「第2部分」である。
 ここで、対向しているとは、一例として、部分41の任意の点から部分42までの最短距離が略一定であることを意味し、部分41と部分42との間を最短距離で結ぶ方向を、部分41と部分42とが対向する方向であるとしてもよい。
 このようなレイアウトによれば、インダクタ13を構成している配線21の部分41と副線路12を構成している配線22の部分42とは、領域51において、対向して配置されている。部分41における主信号31の進行方向と部分42における副信号32の進行方向とが逆方向になる配置により、領域50において主線路11から副線路12に取り出される副信号32と同方向に進行する信号を、インダクタ13から副線路12に取り出すことができる。つまり、部分41と部分42とで、副信号32を増大させる電磁気的な結合を形成することができる。これにより、方向性結合器1の実効的な結合度を増加できるので、方向性結合器1のサイズを大型化させることなく、結合度の不足を解消しやすくなる。
 方向性結合器1による効果を、比較例としての方向性結合器9との対比に基づいて説明する。
 図3は、方向性結合器9のレイアウトの一例を示す平面図である。図3に示されるように、方向性結合器9は、図2の方向性結合器1と比べて、配線21のレイアウトが相違する。
 方向性結合器9では、インダクタ13を構成している配線21の部分49と配線22の部分42とは、領域59において、部分49における主信号31の進行方向と部分42における副信号32の進行方向とが同方向となるように、対向して配置されている。
 図3の例では、部分49における主信号31の進行方向および、部分42における副信号32の進行方向は、いずれも+X方向であり、部分41と部分42とは、Y方向に対向している。
 このようなレイアウトによれば、領域50において主線路11から副線路12に取り出される副信号32と逆方向に進行する信号が、部分49から部分42に取り出される可能性がある。つまり、部分49と部分42とによって、副信号32を減少させる電磁気的な結合が形成され得る。
 図2、3のレイアウトに基づいて方向性結合器1、9のモデルをそれぞれ設定し、シミュレーションにより信号特性を求めた。シミュレーションでは、方向性結合器1、9の使用周波数帯域を5GHzから6GHzと想定した設計で、方向性結合器1、9のモデルを設定した。
 図4、図5は、方向性結合器1、9の信号特性の一例を示すグラフであり、結合度、および、アイソレーションのシミュレーション結果を示している。図4、図5の例では、5.5GHzにおいて、方向性結合器1の結合度は17.6dB、アイソレーションは43.3dBであり、方向性結合器9の結合度は19.4dB、アイソレーションは22.4dBである。
 図4と図5との対比により、方向性結合器1では、方向性結合器9と比べて、5GHzから6GHzの使用周波数帯域の全域においてより大きな結合度およびより大きなアイソレーションが得られることが分かる。
 方向性結合器1のレイアウトの他の特徴について、図6を参照して、説明を続ける。
 図6は、方向性結合器1のレイアウトの一例を示す平面図であり、図2のレイアウトに、説明のための符号を追加したものである。図6に示されるように、配線21の部分43と配線22の部分44とは、領域52において、部分43における主信号31の進行方向と部分44における副信号32の進行方向とが同方向となるように、対向して配置されている。
 図6の例では、部分43における主信号31の進行方向は+X方向であり、部分44における副信号32の進行方向は+X方向であり、部分43と部分44とは、Y方向に対向している。
 なお、方向性結合器1において、部分43が本発明における「第3部分」であり、部分44が本発明における「第4部分」である。
 また、部分43および部分44のいずれの長さも部分41および部分42のいずれの長さより短い。言い換えれば、配線の延長方向に沿って、領域52の延長は領域51の延長より短い。
 このようなレイアウトによれば、部分43と部分44とによって副信号32を減少させる電磁気的な結合が形成される場合に、部分43と部分44とによる副信号32の減少量を、部分41と部分42とによる副信号32の増大量を下回るように構成しやすくなる。
 このように、方向性結合器1には、副信号32を減少させるように電磁気的に結合する部分43と部分44とがあってもよい。部分43と部分44とによる副信号32の減少量が、部分41と部分42とによる副信号32の増大量を下回っていれば、方向性結合器1の実効的な結合度は増加するので、方向性結合器1のサイズを大型化させることなく、結合度の不足を解消しやすくなる。
 また、図6において、配線21の部分45と配線22の部分46とは、領域53において、部分45における主信号31の進行方向と部分46における副信号32の進行方向とが逆方向となるように、対向して配置されている。
 図6の例では、部分45における主信号31の進行方向は+X方向であり、部分46における副信号32の進行方向は-X方向であり、部分45と部分46とは、Z方向に対向している。
 なお、方向性結合器1において、部分45が本発明における「第5部分」であり、部分46が本発明における「第6部分」である。
 このようなレイアウトによれば、部分41と部分42とによる電磁気的な結合とは別に、副信号32を増大させる電磁気的な結合を部分45と部分46とによってさらに形成することができる。これにより、方向性結合器1の実効的な結合度をより大幅に増加できるので、方向性結合器1のサイズを大型化させることなく、結合度の不足を解消しやすくなる。
 なお、このように、信号の進行方向が互いに逆方向となる部分同士は部分41と部分42とのようにY方向に対向していてもよいし、部分45と部分46とのようにZ方向に対向していてもよいし、あるいはX方向に対向していてもよい。
 また、方向性結合器1を平面視した場合(図4の例ではZ方向に見た場合)に、配線21の部分41と配線22の部分42との間に、素子および配線はいずれも配置されていない。
 このようなレイアウトによれば、部分41と部分42とを近づけて配置しやすくなるため、副信号31をより大幅に増大させる電磁気的な結合を形成しやすくなる。これにより、方向性結合器1の実効的な結合度をより効果的に増加できるので、方向性結合器1のサイズを大型化させることなく、結合度の不足を解消しやすくなる。
 配線22の部分41と部分42とをさらに近づけて配置したレイアウトによって得られる効果について、より詳しく説明する。
 図7は、方向性結合器2のレイアウトの一例を示す平面図である。図7に示されるように、方向性結合器2は、図6の方向性結合器1と比べて、配線21のレイアウトが相違する。具体的に、方向性結合器2では、配線21の部分41と配線22の部分42とが、領域54において、方向性結合器1における部分41と部分42と比べて、より近接している。
 例えば、図7では、配線21の部分41は、平面視したとき、配線21のインダクタ13を構成する部分のうち配線22に最も近い部分となっている。すなわち、配線21の部分41と配線22の部分42との間の距離は、配線21のインダクタ13を構成する部分のうち部分41以外のいずれかの部分と配線22との間の最短距離より短くなっている。これにより、平面視したとき、配線21のインダクタ13を構成する部分のうち配線22に最も近い部分(図7では、部分41)において、配線21を進行する信号の進行方向と配線22を進行する信号の進行方向とが互いに逆方向になっている。
 図7のレイアウトに基づいて方向性結合器2のモデルを設定し、シミュレーションにより信号特性を求めた。シミュレーションでは、方向性結合器2の使用周波数帯域を5GHzから6GHzと想定した設計で、方向性結合器2のモデルを設定した。
 図8は、方向性結合器2の信号特性の一例を示すグラフであり、結合度、および、アイソレーションのシミュレーション結果を示している。図8の例では、5.5GHzにおいて、方向性結合器2の結合度は16.3dB、アイソレーションは32.7dBである。
 図8と図4との対比により、方向性結合器2によれば、方向性結合器1と比べて、5GHzから6GHzの使用周波数帯域の全域においてより大きな結合度が得られることが分かる。
 (実施の形態2)
 実施の形態1では、主線路11と直列に接続されているインダクタ13が副線路12と電磁気的に結合している方向性結合器の例を挙げて説明したが、この例には限られない。以下では、実施の形態2に係る方向性結合器について、主線路と、副線路と、副線路と直列に接続されているインダクタとを有する方向性結合器の例を挙げて説明する。副線路と直列に接続されているインダクタが主線路と電磁気的に結合している方向性結合器によっても、サイズを大型化させることなく結合度の不足を解消しやすい方向性結合器を得ることができる。
 図9は、実施の形態2に係る方向性結合器の機能的な構成の一例を示す回路図である。図9に示されるように、方向性結合器3は、主線路11と、副線路12と、インダクタ14と、抵抗15とを備える。
 図9の例では、主線路11を流れる主信号31とともに、主線路11を主信号31とは逆方向に流れる主信号31の反射波33を示している。主信号31の反射波33は、主信号31が出力ポートRFout側にて反射した結果生じる信号であり、主線路11を、主信号31とは逆方向に、出力ポートRFout側から入力ポートRFin側へと進行する。反射波33については、後ほど、アイソレーション特性の説明において参照する。
 インダクタ14は副線路12と直列に接続されている。インダクタ14は、例えば、副線路12から取り出される信号から所望の周波数の副信号32を選択するためのフィルタであってもよい。主線路11を含む信号経路63の一端および他端は、入力ポートRFinおよび出力ポートRFoutにそれぞれ接続されている。インダクタ14と副線路12とを含む信号経路64の一端はカップリングポートCPLに接続され、他端はグランドに終端されている。
 方向性結合器3では、インダクタ14と主線路11との間に、副信号32を増大させる電磁気的な結合(図9の点線矢印M2)を形成する。具体的には、方向性結合器1、2と同様の考え方により、インダクタ14を構成する配線の第1部分と主線路11を構成する配線の第2部分とを、第1部分における副信号32の進行方向と第2部分における主信号31の進行方向とが逆方向になるように、対向して配置する。
 図10は、方向性結合器3のレイアウトの一例を示す平面図である。図10に示されるように、方向性結合器3は、基板10に、電極20および配線23、24を配置して構成される。図10では、基板10の主面をXY平面とし、基板10の厚さ方向をZ方向として表している。また、同種の構成要素に同種の模様を付し、重複する符号を適宜省略する。
 基板10は、多層基板であり、平面視で(つまり、Z方向で見たときに)重複する配線23と配線24、および交差する配線24同士は、絶縁層(図示せず)を介在して互いに異なる層に配置されている。
 電極20は、入力ポートRFin、出力ポートRFout、カップリングポートCPLおよびグランドポートGNDを構成している。配線23は、入力ポートRFinと出力ポートRFoutとの間の信号経路63を構成している。配線24は、グランドポートGNDとカップリングポートCPLとの間の信号経路64を構成している。
 抵抗素子30は、終端抵抗である抵抗15を構成している。
 配線23、24の領域50に含まれる部分が、それぞれ主線路11および副線路12として機能する。主線路11と副線路12とは、図示しない絶縁層を介在してZ方向に重ねて配置され、互いに電磁気的に結合している。主線路11と副線路12との電磁気的な結合により、主線路11を流れる主信号31の電力の一部が、副信号32として副線路12に取り出される。
 なお、方向性結合器3において、配線24が本発明における「第1配線」であり、配線24を流れる副信号32が本発明における「第1信号」である。また、配線23が本発明における「第2配線」であり、配線23を流れる主信号31が本発明における「第2信号」である。
 配線24は、副線路12以外の部分の少なくとも一部においてインダクタ14を構成している。インダクタ14を構成している配線24の部分74と主線路11を構成している配線23の部分73とは、領域51において、部分74における副信号32の進行方向と部分73における主信号31の進行方向とが逆方向となるように、対向して配置されている。
 図10の例では、部分74における副信号32の進行方向は+X方向であり、部分73における主信号31の進行方向は-X方向であり、部分74と部分73とは、Y方向に対向している。
 なお、方向性結合器3において、部分74が本発明における「第1部分」であり、部分73が本発明における「第2部分」である。
 このような、部分74における副信号32の進行方向と部分73における主信号31の進行方向とが逆方向になる配置により、主線路11から副線路12に取り出される副信号32と同方向に進行する信号を、主線路11からインダクタ14に取り出すことができる。つまり、第1部分と第2部分とで、副信号32を増大させる電磁気的な結合を形成することができる。これにより、方向性結合器3の実効的な結合度を増加できるので、方向性結合器3のサイズを大型化させることなく、結合度の不足を解消しやすくなる。
 また、方向性結合器3では、配線24の部分77と配線23の部分73とは、部分77における副信号32の進行方向と部分73における主信号31の反射波33の進行方向とが逆方向になるように、対向して配置されている。
 図10の例では、部分77における副信号32の進行方向は-X方向であり、部分73における主信号31の反射波33の進行方向は+X方向であり、部分77と部分73とは、Y方向に対向している。
 なお、方向性結合器3において、部分77が本発明における「第7部分」である。
 このように、部分77と部分73とでは、部分77における副信号32の進行方向と部分73における主信号31の反射波33の進行方向とが逆方向になるため、主線路11において主信号31の反射波33が生じた場合に、反射波33が主線路11からインダクタ14に取り出される。
 つまり、第2配線の第2部分と第1配線の第7部分とで電磁気的な結合が形成されてしまい、本来主線路11から副線路12に取り出されるべきではない反射波33が取り出されることとなる。このように主信号の反射波の進行方向と逆方向の副信号が流れる部分と主信号の反射波が流れる部分との電磁気的な結合が強いと、取り出される反射波33の量が増大して方向性結合器のアイソレーション特性が劣化してしまう。
 そこで、第1配線の第7部分(図10の例では配線24の部分77)と第2配線の第2部分(図10の例では配線23の部分73)とをさらに離して配置したレイアウトによって、アイソレーション特性の低下を抑制することを検討する。
 図11は、方向性結合器4のレイアウトの一例を示す平面図である。図11に示されるように、方向性結合器4は、図10の方向性結合器3と比べて、配線24のレイアウトが相違する。具体的に、方向性結合器4では、配線24の部分77と配線23の部分73とが、領域56において、方向性結合器3における部分77と部分73と比べて、より離れて配置されている。
 このような配置により、第2部分と第7部分との間の電磁気的な結合を抑制することができるため、方向性結合器3に比べてアイソレーション特性が向上した方向性結合器4を得られる。このような方向性結合器4の効果について、以下シミュレーションに基づくデータに沿って方向性結合器3と対比しながら説明する。
 図10、図11のレイアウトに基づいて方向性結合器3、4のモデルをそれぞれ設定し、シミュレーションにより信号特性を求めた。シミュレーションでは、方向性結合器3、4の使用周波数帯域を5GHzから6GHzと想定した設計で、方向性結合器3、4のモデルを設定した。
 図12、図13は、方向性結合器3、4の信号特性の一例を示すグラフであり、結合度、および、アイソレーションのシミュレーション結果を示している。図12、図13の例では、5.5GHzにおいて、方向性結合器3の結合度は18.2dB、アイソレーションは38.0dBであり、方向性結合器4の結合度は17.8dB、アイソレーションは44.2dBである。
 図12と図13との対比により、方向性結合器4では、方向性結合器3と比べて、5GHzから6GHzの使用周波数帯域の全域においてより大きなアイソレーションが得られることが分かる。
 また、方向性結合器4は、方向性結合器3と同様に、5GHzから6GHzの使用周波数帯域の全域において比較的高い結合度を維持している。これは、方向性結合器4における配線24の部分74と配線23の部分73とが、方向性結合器3における配線24の部分74と配線23の部分73と同様に、近接して(部分74と部分73との間に他の素子や配線を挟まずに)配置されているためである。言い換えれば、部分74と部分73とにより、副信号31をより大幅に増大させる電磁気的な結合が形成されているためである。
 このように、方向性結合器4では、方向性結合器3と比べて、結合度を小さくすることなくアイソレーション特性を大きくしているため、結合度とアイソレーション特性との差分で表される方向性も向上していることが分かる。
 以上より、本発明の実施の形態に係る方向性結合器において、インダクタを構成する第1配線のうち、第7部分を、第1部分と比べて、主線路および副線路のうち当該インダクタが接続されない線路を構成する第2配線の第2部分から離して配置することで、方向性が向上することが分かる。具体的には、方向性結合器を平面視した場合に、第1配線の第1部分と第2配線の第2部分との間の距離が小さくなるほど、そして、第1配線の第7部分と第2配線の第2部分との間の距離が大きくなるほど、方向性が向上する。
 なお、方向性結合器3、4においては、第7部分が副線路に接続されたインダクタを構成する配線に含まれる場合を説明したが、第7部分が主線路に接続されたインダクタを構成する配線に含まれる場合でも、その部分を副線路から遠ざけることで同じような効果が得られる。
 また、方向性結合器3、4においては、第3部分および第4部分に関して触れていないが、これらの部分を方向性結合器3、4が含む場合には、第3部分および第4部分の長さを第1部分および第2部分の長さより短くすることで、方向性結合器1について説明した効果と同様の効果が得られる。さらに、方向性結合器3、4においては、第5部分および第6部分に関して触れていないが、これらの部分を第1部分、第2部分に加えてさらに備えることで、方向性結合器1について説明した効果と同様の効果を得られる。
 また、方向性結合器1~4において、第1部分および第2部分の間には、部品および配線が配置されていない。これにより、第1部分と第2部分との間の距離を近づけやすくなるため、第1部分と第2部分とをより確実に電磁気結合させることができる。なお、上記部品には、受動部品、能動部品などのあらゆる部品が含まれ、また、上記配線には、部品同士を接続する配線のほか、部品を基板に実装するためのパッドや電極などが含まれる。なお、例えば、方向性結合器1~4がセラミック積層体である場合は、第1部分および第2部分の間には、前記セラミック積層体の素体を構成するセラミック材料のみが設けられる。
 以上、本発明の方向性結合器について、実施の形態に基づいて説明したが、本発明は、個々の実施の形態には限定されない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の1つまたは複数の態様の範囲内に含まれてもよい。
 (まとめ)
 以上説明したように、本発明の一態様に係る方向性結合器は、主信号が流れる主線路と、前記主線路との電磁気的な結合により前記主信号に応じた副信号が流れる副線路と、前記主線路および前記副線路のうち一方の線路と直列に接続され、前記主信号および前記副信号のうち一方の信号が流れるインダクタと、を備え、前記インダクタを構成する第1配線の第1部分と前記主線路および前記副線路のうち他方の線路を構成する第2配線の第2部分とが、電磁気的に結合している。
 このように、第1部分と第2部分とを電磁気的に結合させることで、方向性結合器の実効的な結合度を増加できるので、方向性結合器のサイズを大型化させることなく、結合度の不足を解消しやすくなる。
 また、以上説明したように、本発明の一態様に係る方向性結合器は、主信号が流れる主線路と、前記主線路と電磁気的に結合することによって前記主信号に応じた副信号が流れる副線路と、前記主線路および前記副線路のうち一方の線路と直列に接続され、前記主信号および前記副信号のうち一方の信号が流れるインダクタと、を備え、前記インダクタを構成する第1配線の第1部分と前記主線路および前記副線路のうち他方の線路を構成する第2配線の第2部分とは、前記主信号および前記副信号のうち前記第1配線を流れる第1信号の前記第1部分における進行方向と前記第2配線を流れる第2信号の前記第2部分における進行方向とが逆方向となるように、対向して配置されている。
 このような構成によれば、第1部分と第2部分とによって、第1配線と第2配線との間に副信号を増大させる電磁気的な結合を形成することができる。これにより、方向性結合器の実効的な結合度を増加できるので、方向性結合器のサイズを大型化させることなく、結合度の不足を解消しやすくなる。
 また、前記第1配線の第3部分と前記第2配線の第4部分とは、前記第3部分における前記第1信号の進行方向と前記第4部分における前記第2信号の進行方向とが同方向となるように、対向して配置され、前記第3部分および前記第4部分のいずれの長さも、前記第1部分および前記第2部分のいずれの長さより短いとしてもよい。
 このような構成によれば、第3部分と第4部分とによって副信号を減少させる電磁気的な結合が形成される場合に、第3部分と第4部分とによる副信号の減少量を、第1部分と第2部分とによる副信号の増大量を下回るように構成しやすくなる。これにより、方向性結合器の実効的な結合度を増加する効果は損なわれず、方向性結合器のサイズを大型化させることなく、結合度の不足を解消しやすくなる。
 また、前記第1配線の前記第1部分と異なる第5部分と前記第2配線の前記第2部分と異なる第6部分とは、前記第5部分における前記第1信号の進行方向と前記第6部分における前記第2信号の進行方向とが逆方向となるように、対向して配置されているとしてもよい。
 このような構成によれば、第5部分と第6部分とによって、第1配線と第2配線との間に副信号を増大させる電磁気的な結合をさらに形成することができる。これにより、方向性結合器の実効的な結合度をより大幅に増加できるので、方向性結合器のサイズを大型化させることなく、結合度の不足を解消しやすくなる。
 また、前記第1配線の第7部分と前記第2配線の前記第2部分とは、前記第7部分における前記第1信号の進行方向と前記第2部分における前記第2信号の反射波の進行方向とが逆方向となるように、対向して配置されており、前記方向性結合器を平面視した場合に、前記第2部分に対して、前記第7部分は前記第1配線の第1部分より遠くに配置されていてもよい。
 このような構成によれば、第1部分を第2部分に近づけて配置しやすくなり、かつ、第7部分を第2部分から遠ざけて配置しやすくなる。これにより、方向性結合器のアイソレーション特性の劣化を抑制しやすくなり、かつ、結合度の向上もしやすくなるため、方向性結合器の方向性が向上しやすくなる。
 また、前記第1配線の前記第1部分と異なる第5部分と前記第2配線の前記第2部分と異なる第6部分とは結合していてもよい。
 また、前記第1配線の第7部分と前記第2配線の前記第2部分とは結合しており、前記方向性結合器を平面視した場合に、前記第2部分に対して、前記第7部分は前記第1配線の第1部分より遠くに配置されていてもよい。
 また、前記方向性結合器を平面視した場合に、前記第1部分と前記第2部分との間に、素子および配線はいずれも配置されていないとしてもよい。
 このような構成によれば、第1部分と第2部分とを近づけて配置しやすくなるため、副信号をより大幅に増大させる電磁気的な結合を形成しやすくなる。これにより、方向性結合器の実効的な結合度をより効果的に増加できるので、方向性結合器のサイズを大型化させることなく、結合度の不足を解消しやすくなる。
 また、前記インダクタは前記主線路に接続されていてもよい。
 このような構成によれば、主線路に接続されたインダクタを利用して前述の効果を得ることができる。例えば、主線路に整合用のインダクタが接続されている場合、整合用のインダクタを方向性結合器の結合度の不足解消に利用することができる。
 また、前記インダクタは前記副線路に接続されていてもよい。
 このような構成によれば、副線路に接続されたインダクタを利用して前述の効果を得ることができる。例えば、インダクタを含むフィルタが接続されている場合、フィルタに含まれるインダクタを方向性結合器の結合度の不足解消に利用することができる。
 本発明は、方向性結合器として広く利用できる。
 1、2、3、4、9 方向性結合器
 10 基板
 11 主線路
 12 副線路
 13、14 インダクタ
 20 電極
 21、22、23、24 配線
 30 抵抗素子
 31 主信号
 32 副信号
 33 反射波
 41、42、43、44、45、46、49、73、74、77 (配線の)部分
 50、51、52、53、54、55、56、59 領域
 61、62、63、64 信号経路

Claims (10)

  1.  主信号が流れる主線路と、
     前記主線路との電磁気的な結合により前記主信号に応じた副信号が流れる副線路と、
     前記主線路および前記副線路のうち一方の線路と直列に接続され、前記主信号および前記副信号のうち一方の信号が流れるインダクタと、を備え、
     前記インダクタを構成する第1配線の第1部分と前記主線路および前記副線路のうち他方の線路を構成する第2配線の第2部分とが、電磁気的に結合している、
     方向性結合器。
  2.  主信号が流れる主線路と、
     前記主線路との電磁気的な結合により前記主信号に応じた副信号が流れる副線路と、
     前記主線路および前記副線路のうち一方の線路と直列に接続され、前記主信号および前記副信号のうち一方の信号が流れるインダクタと、を備え、
     前記インダクタを構成する第1配線の第1部分と前記主線路および前記副線路のうち他方の線路を構成する第2配線の第2部分とは、前記主信号および前記副信号のうち前記第1配線を流れる第1信号の前記第1部分における進行方向と前記第2配線を流れる第2信号の前記第2部分における進行方向とが逆方向となるように、対向して配置されている、
     方向性結合器。
  3.  前記第1配線の第3部分と前記第2配線の第4部分とは、前記第3部分における前記第1信号の進行方向と前記第4部分における前記第2信号の進行方向とが同方向となるように、対向して配置され、
     前記第3部分および前記第4部分のいずれの長さも、前記第1部分および前記第2部分のいずれの長さより短い、
     請求項2に記載の方向性結合器。
  4.  前記第1配線の前記第1部分と異なる第5部分と前記第2配線の前記第2部分と異なる第6部分とは、前記第5部分における前記第1信号の進行方向と前記第6部分における前記第2信号の進行方向とが逆方向となるように、対向して配置されている、
     請求項2または3に記載の方向性結合器。
  5.  前記第1配線の第7部分と前記第2配線の前記第2部分とは、前記第7部分における前記第1信号の進行方向と前記第2部分における前記第2信号の反射波の進行方向とが逆方向となるように、対向して配置されており、
     前記方向性結合器を平面視した場合に、前記第2部分に対して、前記第7部分は前記第1配線の第1部分より遠くに配置されている、
     請求項2から4のいずれか1項に記載の方向性結合器。
  6.  前記第1配線の前記第1部分と異なる第5部分と前記第2配線の前記第2部分と異なる第6部分とは結合している、
     請求項1に記載の方向性結合器。
  7.  前記第1配線の第7部分と前記第2配線の前記第2部分とは結合しており、
     前記方向性結合器を平面視した場合に、前記第2部分に対して、前記第7部分は前記第1配線の第1部分より遠くに配置されている、
     請求項1または6に記載の方向性結合器。
  8.  前記方向性結合器を平面視した場合に、前記第1部分と前記第2部分との間に、素子および配線はいずれも配置されていない、
     請求項1から7のいずれか1項に記載の方向性結合器。
  9.  前記インダクタは前記主線路に接続されている、
     請求項1から8のいずれか1項に記載の方向性結合器。
  10.  前記インダクタは前記副線路に接続されている、
     請求項1から8のいずれか1項に記載の方向性結合器。
PCT/JP2019/036626 2018-09-28 2019-09-18 方向性結合器 WO2020066804A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980062899.0A CN112740477B (zh) 2018-09-28 2019-09-18 定向耦合器
US17/213,814 US12100881B2 (en) 2018-09-28 2021-03-26 Directional coupler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018183287 2018-09-28
JP2018-183287 2018-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/213,814 Continuation US12100881B2 (en) 2018-09-28 2021-03-26 Directional coupler

Publications (1)

Publication Number Publication Date
WO2020066804A1 true WO2020066804A1 (ja) 2020-04-02

Family

ID=69950652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036626 WO2020066804A1 (ja) 2018-09-28 2019-09-18 方向性結合器

Country Status (2)

Country Link
CN (1) CN112740477B (ja)
WO (1) WO2020066804A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330008A (ja) * 2001-05-02 2002-11-15 Murata Mfg Co Ltd 積層型方向性結合器
JP2003258512A (ja) * 2002-02-27 2003-09-12 Murata Mfg Co Ltd 方向性結合器
JP2011040978A (ja) * 2009-08-11 2011-02-24 Murata Mfg Co Ltd 方向性結合器
US20160028363A1 (en) * 2014-07-22 2016-01-28 Airoha Technology Corp. Wide band directional coupler

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100551577B1 (ko) * 2001-10-19 2006-02-13 가부시키가이샤 무라타 세이사쿠쇼 방향성 결합기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330008A (ja) * 2001-05-02 2002-11-15 Murata Mfg Co Ltd 積層型方向性結合器
JP2003258512A (ja) * 2002-02-27 2003-09-12 Murata Mfg Co Ltd 方向性結合器
JP2011040978A (ja) * 2009-08-11 2011-02-24 Murata Mfg Co Ltd 方向性結合器
US20160028363A1 (en) * 2014-07-22 2016-01-28 Airoha Technology Corp. Wide band directional coupler

Also Published As

Publication number Publication date
US20210218120A1 (en) 2021-07-15
CN112740477B (zh) 2023-02-17
CN112740477A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
JP4722614B2 (ja) 方向性結合器及び180°ハイブリッドカプラ
US10236856B2 (en) Diplexer
JP4004048B2 (ja) 高周波伝送線路
JP2007150000A (ja) プリント配線板
JP4916300B2 (ja) 多層配線基板
US8476533B2 (en) Printed circuit board
US9699887B2 (en) Circuit board and electronic device
JP2017216260A (ja) 回路基板及びこれを用いた電子回路モジュール
US20150109069A1 (en) Directional coupler
US20070194434A1 (en) Differential signal transmission structure, wiring board, and chip package
JP2009111132A (ja) 多層配線基板
JP2007104102A (ja) 受動部品
JP5519328B2 (ja) 高周波用伝送線路基板
JP5051836B2 (ja) 半導体装置およびその設計方法
JP4629013B2 (ja) 高周波回路基板
WO2020066804A1 (ja) 方向性結合器
JP6187011B2 (ja) プリント回路基板
US12100881B2 (en) Directional coupler
JP5454222B2 (ja) 低域通過フィルタ
JP4381701B2 (ja) 同軸コネクタと多層基板との接続構造
JP5542231B1 (ja) 多層回路基板
JP5506719B2 (ja) フィルタ回路
US20090002101A1 (en) High-pass filter
WO2012153835A1 (ja) プリント配線基板
US20240250656A1 (en) Filter and filter module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP