WO2016104740A1 - ブロック共重合体水素化物および合わせガラス - Google Patents

ブロック共重合体水素化物および合わせガラス Download PDF

Info

Publication number
WO2016104740A1
WO2016104740A1 PCT/JP2015/086316 JP2015086316W WO2016104740A1 WO 2016104740 A1 WO2016104740 A1 WO 2016104740A1 JP 2015086316 W JP2015086316 W JP 2015086316W WO 2016104740 A1 WO2016104740 A1 WO 2016104740A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
copolymer hydride
hydride
glass
weight
Prior art date
Application number
PCT/JP2015/086316
Other languages
English (en)
French (fr)
Inventor
洋平 小出
洋輔 原内
淳 石黒
小原 禎二
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2016566536A priority Critical patent/JP6690552B2/ja
Priority to EP15873308.9A priority patent/EP3239181A4/en
Priority to US15/537,431 priority patent/US20180171057A1/en
Priority to CN201580068105.3A priority patent/CN107001489B/zh
Publication of WO2016104740A1 publication Critical patent/WO2016104740A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating

Definitions

  • the present invention relates to a laminated glass excellent in sound insulation, using a block copolymer hydride having specific viscoelastic properties, a sheet made of the block copolymer hydride or a modified product thereof as an intermediate film.
  • Laminated glass is highly safe because it has less scattering of glass fragments even when it is broken by a collision object and can resist the penetration of the collision object. Therefore, it is widely used as window glass, wall material, flooring material, roofing material, etc. for automobiles, aircraft, buildings and the like.
  • laminated glass with improved sound insulation has been used to enhance the comfort of automobiles and the like.
  • Glass is a material with low damping performance. For example, in a laminated glass obtained by laminating a glass having a thickness of about 3 mm, the sound transmission loss is reduced due to the coincidence effect and the sound insulation performance is lowered in the middle and high frequencies around 2000 to 3000 Hz. For this reason, there is known a method of improving the sound insulation performance by reducing the coincidence effect and simultaneously preventing the glass fragments from being scattered at the time of breakage by bonding the glass using a resin intermediate film having excellent damping performance.
  • a laminated glass plate for example, (a) a laminated interlayer film in which two kinds of polyvinyl acetal are blended with a plasticizer is used for the resin interlayer film (Patent Documents 1 to 3), and (b) a reinforcing film.
  • a laminated interlayer film in which two kinds of polyvinyl acetal are blended with a plasticizer is used for the resin interlayer film (Patent Documents 1 to 3)
  • a reinforcing film Using an intermediate film in which rubber layers made of butyl rubber-based or thermoplastic block copolymer rubber-based adhesive are laminated on both sides (Patent Document 4), (c) hydrogenated styrene / diene block copolymer layer And the like (Patent Documents 5 and 6) using an interlayer film in which an adhesive resin layer made of a polyvinyl acetal resin or the like is laminated on both sides.
  • Non-Patent Document 1 a polyvinyl acetal resin containing a large amount of plasticizer widely used as an interlayer film for laminated glass plates has a relatively low softening point. It may occur.
  • Non-Patent Document 1 a polyvinyl acetal resin containing a large amount of plasticizer widely used as an interlayer film for laminated glass plates has a relatively low softening point. It may occur.
  • because of its high hygroscopicity when left in a high humidity atmosphere for a long period of time, it gradually whitens from the periphery, and the adhesive strength with the glass decreases or before the glass is bonded, In order to control the adhesive force with glass, there was a problem such as strictly controlling the water content (Non-Patent Document 1).
  • the laminated glass plate that includes the rubber layer in the interlayer film has problems such as excellent anti-scattering and penetration resistance of glass fragments when broken and excellent sound insulation performance, but poor transparency and heat resistance. Yes.
  • Patent Documents 7 and 8 a block copolymer comprising a polymer block comprising an aromatic vinyl compound and a polymer block comprising a conjugated diene compound or a hydride thereof, wherein the conjugated diene compound is 3,
  • a polymer block that polymerizes with 4 bonds and / or 1,2 bonds and has a loss tangent hereinafter sometimes referred to as “tan ⁇ ”
  • vibration is introduced. It is disclosed that a material excellent in vibration control performance that reduces noise can be obtained.
  • these documents do not describe the reduction of the coincidence effect of laminated glass.
  • Patent Document 9 discloses a polymer block containing an aromatic vinyl compound as a main component (hereinafter sometimes referred to as “polymer block [A]”) and a heavy polymer containing a chain conjugated diene compound as a main component.
  • the polymer block hereinafter sometimes referred to as “polymer block [B]”
  • the weight fraction of the total polymer block [A] in the entire block copolymer is wA
  • the ratio of wA to wB (wA: wB) is 30:70 to 60:40 when the weight fraction of the entire block copolymer of B] is wB.
  • Block copolymer hydride obtained by hydrogenating 90% or more of the carbon-carbon unsaturated bonds in the side chain and the total unsaturated bonds of the carbon-carbon unsaturated bonds in the aromatic ring.
  • Block copolymer hydride The laminated glass using the adhesive agent containing this is disclosed. However, this document does not disclose a technique for imparting sound insulation performance.
  • JP-A-4-254444 (US 5,190,826) JP-A-6-000926 JP-A-9-156967 Japanese Unexamined Patent Publication No. 1-224443 JP 2007-91491 A JP 2009-256128 A Japanese Patent Laid-Open No. 2-102212 JP-A-2-300218 International Publication No. WO2013 / 176258 (US2015 / 0104654A)
  • the present invention has been made in view of the above-described conventional technology, and uses a specific block copolymer hydride, the block copolymer hydride, or an interlayer film for laminated glass made of a modified product thereof. It aims at providing the laminated glass excellent in the.
  • a block copolymer having a polymer block mainly composed of an aromatic vinyl compound and a polymer block mainly composed of a chain conjugated diene compound (hereinafter referred to as “block copolymer [C]”)
  • block copolymer [C] A block copolymer hydride obtained by hydrogenating the carbon-carbon unsaturated bond of the main chain and the side chain and the carbon-carbon unsaturated bond of the aromatic ring (hereinafter referred to as “block copolymer hydride”).
  • the soft transition segment composed of the polymer block [B] has a glass transition temperature (hereinafter sometimes referred to as“ Tg 1 ”) within a specific temperature range.
  • Tg glass transition temperature
  • the glass transition temperature here (hereinafter sometimes referred to as “Tg”) is a value obtained from the peak top temperature of tan ⁇ in the dynamic viscoelastic properties of the block copolymer hydride [D].
  • Tg 1 glass transition temperature on the low temperature side derived from the soft segment of the polymer hydride [D] was Tg 1
  • the glass transition temperature on the high temperature side derived from the hard segment was Tg 2 .
  • block copolymer hydrides modified block copolymer hydrides, sheets comprising the same, and laminated glass.
  • the weight fraction of the total amount of the polymer block [A] in the entire block copolymer [C] is wA
  • the total amount of the polymer block [B] is the block copolymer weight
  • Modified block copolymer hydride [E] obtained by introducing an alkoxysilyl group into the block copolymer hydride [D] according to (1).
  • At least one sheet of the block copolymer hydride [D] described in (1) and / or the modified block copolymer hydride [E] described in (2) is interposed between glass plates.
  • a laminated glass having improved sound insulation using a specific block copolymer hydride and a sheet comprising the same as an intermediate film.
  • Block copolymer hydride [D] The block copolymer hydride [D] of the present invention comprises a carbon-carbon unsaturated bond in the main chain and side chain of the block copolymer [C], which is a precursor thereof, and a carbon-carbon unsaturated group in an aromatic ring. It is obtained by hydrogenating 90% or more of all unsaturated bonds in the bond, and the peak temperature of tan ⁇ on the low temperature side in the dynamic viscoelastic property is ⁇ 20 to 20 ° C., and the tan ⁇ on the high temperature side The peak temperature is 100 ° C. or higher.
  • the block copolymer [C] is composed of two or more polymer blocks [A] and one or more polymer blocks [B].
  • the polymer block [A] has a structural unit derived from an aromatic vinyl compound as a main component.
  • the content ratio of the structural unit derived from the aromatic vinyl compound in the polymer block [A] is usually 95% by weight or more, preferably 98% by weight or more.
  • Examples of the component other than the structural unit derived from the aromatic vinyl compound in the polymer block [A] include a structural unit derived from a chain conjugated diene compound and / or a structural unit derived from another vinyl compound.
  • the content is 5% by weight or less, preferably 2% by weight or less.
  • the block copolymer hydride [D] of the present invention When the content ratio of the structural unit derived from the chain conjugated diene compound and / or the structural unit derived from other vinyl compound in the polymer block [A] becomes too high, the block copolymer hydride [D] of the present invention
  • the Tg 2 of the hard segment is lowered, and the heat resistance of the sheet made of the block copolymer hydride [D] may be lowered.
  • the two polymer blocks [A] contained in the block copolymer hydride [D] may be the same as or different from each other as long as the above range is satisfied.
  • the polymer block [B] has a structural unit derived from a chain conjugated diene compound as a main component.
  • the content ratio of the structural unit derived from the chain conjugated diene compound in the polymer block [B] is usually 80% by weight or more, preferably 90% by weight or more, more preferably 95% by weight or more.
  • Examples of the component other than the structural unit derived from the chain conjugated diene compound in the polymer block [B] include a structural unit derived from an aromatic vinyl compound and / or a structural unit derived from another vinyl compound.
  • the content is usually 20% by weight or less, preferably 10% by weight or less, more preferably 5% by weight or less.
  • the polymer block [B] is a structural unit obtained by polymerizing a part of a chain conjugated diene compound with 1,2, and / or 3,4 bonds (a structural unit derived from 1,2- and 3,4-addition polymerization). And the remainder has structural units polymerized with 1,4 bonds (structural units derived from 1,4-addition polymerization).
  • the ratio of the structural unit derived from the chain conjugated diene compound polymerized by 1, 2, and / or 3, 4 bonds is usually 40 with respect to the entire structural unit derived from the chain conjugated diene compound in the polymer block [B]. -80% by weight, preferably 50-75% by weight, more preferably 55-70% by weight.
  • the soft segment of the block copolymer hydride [D] of the present invention by setting the content ratio of the structural unit derived from the chain conjugated diene compound polymerized by 1, 2 and / or 3, 4 bonds within the above range.
  • Tg 1 derived from the above can be controlled in the range of ⁇ 20 to 20 ° C., and the sound insulation performance appears in the normal use temperature range.
  • aromatic vinyl compound examples include styrene; ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, Styrenes having a C 1-6 alkyl group as a substituent, such as 5-t-butyl-2-methylstyrene; halogen atoms as a substituent, such as 4-chlorostyrene, dichlorostyrene, 4-monofluorostyrene Styrenes having 1 to 6 carbon atoms as substituents such as 4-methoxystyrene; styrenes having aryl groups as substituents such as 4-phenylstyrene; 1-vinylnaphthalene, And vinyl naphthalenes such as 2-vinyl naphthalen
  • Chain conjugated diene compounds examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and the like. From the viewpoint of hygroscopicity, the chain does not contain a polar group. From the viewpoint of industrial availability, 1,3-butadiene and isoprene are more preferable, and the Tg 1 of the soft segment of the block copolymer hydride [D] is ⁇ 20 to 20 ° C. Isoprene is particularly preferred because it is easy to control the range.
  • Examples of other vinyl compounds include chain vinyl compounds and cyclic vinyl compounds. Examples thereof include a vinyl compound optionally having a nitrile group, an alkoxycarbonyl group, a hydroxycarbonyl group, or a halogen group, an unsaturated cyclic acid anhydride, and an unsaturated imide compound.
  • the block copolymer [C] which is a precursor of the block copolymer hydride [D] of the present invention, is a polymer containing at least two polymer blocks [A] and at least one polymer block [B]. It is.
  • the number of polymer blocks [A] in the block copolymer [C] is usually 3 or less, preferably 2 and the number of polymer blocks [B] is usually 2 or less, preferably 1 It is.
  • Mw (A) max is usually 8,000 to 50,000, preferably 9,000 to 40,000, more preferably 10,000 to 30,000.
  • Mw (A) max is usually 8,000 to 50,000, preferably 9,000 to 40,000, more preferably 10,000 to 30,000.
  • the form of the block of the block copolymer [C] is not particularly limited, and may be a chain type block or a radial type block, but a chain type block is preferable because of excellent mechanical strength.
  • the most preferable form of the block copolymer [C] is a triblock copolymer ([A]-[B]-[A]) in which the polymer block [A] is bonded to both ends of the polymer block [B]. is there.
  • the weight fraction of all the polymer blocks [A] in the block copolymer [C] is wA
  • the polymer block [B] is in the block copolymer [C].
  • the weight fraction is wB
  • the ratio of wA to wB (wA: wB) is 15:85 to 40:60, preferably 17:83 to 35:65, more preferably 20:80 to 30:70. It is.
  • wB is too small, there exists a possibility that the sound insulation performance of the block copolymer hydride [D] of this invention may fall.
  • there is too much wB there exists a possibility that heat resistance may fall.
  • the molecular weight of the block copolymer [C] is a polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent, and is usually 40,000 to 200. , Preferably 50,000 to 170,000, more preferably 60,000 to 150,000. Further, the molecular weight distribution (Mw / Mn) of the block copolymer [C] is preferably 3 or less, more preferably 2 or less, and particularly preferably 1.5 or less.
  • a monomer mixture (a) containing an aromatic vinyl compound as a main component and a chain conjugated diene compound as a main component by a method such as living anion polymerization.
  • the method of coupling the terminal of polymer block [B] with a coupling agent; etc. are mentioned.
  • the monomer mixture (a) contains the aromatic vinyl compound in an amount of usually 95% by weight or more, preferably 98% by weight or more based on the whole mixture (a).
  • the monomer mixture (b) contains the chain conjugated diene compound in an amount of usually 80% by weight or more, preferably 90% by weight or more, more preferably 95% by weight or more based on the entire mixture (b).
  • the coupling agent to be used is not particularly limited.
  • the polymer block [B] in the block copolymer [C] is a specific compound having an electron donating atom with a chain conjugated diene compound and, if necessary, an aromatic vinyl compound and other vinyl compounds as a randomizing agent.
  • a random copolymer block in which the content of a structural unit derived from a chain conjugated diene compound polymerized with 3, 4 bonds and / or 1, 2 bonds is increased by polymerization in the presence of.
  • the content of the monomer unit derived from the chain conjugated diene compound polymerized with 3, 4 bonds and / or 1, 2 bonds can be controlled by the addition amount of the randomizing agent.
  • the compound having an electron donating atom a compound having an electron donating atom such as oxygen (O) and nitrogen (N) is preferable.
  • the compound having an electron donating atom include ether compounds, tertiary amine compounds, and phosphine compounds.
  • ether compounds are preferred from the viewpoint that the molecular weight distribution of the random copolymer block can be reduced and the hydrogenation reaction is hardly inhibited.
  • the compound having an electron donor atom examples include diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol diisopropyl ether, ethylene glycol dibutyl ether, ethylene glycol methyl phenyl ether, propylene glycol.
  • Examples thereof include dimethyl ether, propylene glycol diethyl ether, propylene glycol diisopropyl ether, propylene glycol dibutyl ether, di (2-tetrahydrofuryl) methane, diethylene glycol dibutyl ether, dipropylene glycol dibutyl ether, and tetramethylethylenediamine.
  • These compounds having an electron donor atom are usually used in a proportion of 0.001 to 10 parts by weight, preferably 0.01 to 1 part by weight, based on 100 parts by weight of the chain conjugated diene compound.
  • the block copolymer hydride [D] of the present invention hydrogenates the main chain and side chain carbon-carbon unsaturated bonds and the aromatic ring carbon-carbon unsaturated bonds of the block copolymer [C]. It is a thing.
  • the hydrogenation ratio of the block copolymer hydride [D] to the main-chain and side-chain carbon-carbon unsaturated bonds and the total unsaturated bonds of the carbon-carbon unsaturated bonds of the aromatic ring is usually 90% or more, preferably 95% or more, more preferably 99% or more. The higher the hydrogenation rate, the better the weather resistance, heat resistance and transparency of the molded body.
  • the hydrogenation ratio of the block copolymer hydride [D] to the main-chain and side-chain carbon-carbon unsaturated bonds and the total unsaturated bonds of the carbon-carbon unsaturated bonds of the aromatic ring is usually 90% or more, preferably 95% or more, more preferably 99% or more.
  • the hydrogenation rate of the carbon-carbon unsaturated bond derived from the conjugated diene in the block copolymer hydride [D] is usually 90% or more, preferably 95% or more, more preferably 98% or more.
  • the hydrogenation rate of the carbon-carbon unsaturated bond of the aromatic ring derived from the aromatic vinyl compound is usually 90% or more, preferably 95% or more, more preferably 98% or more.
  • the hydrogenation rate of the block copolymer hydride [D] can be determined by comparison of peak areas between the UV detector and the RI detector by 1 H-NMR or GPC.
  • the hydrogenation method and reaction mode of the unsaturated bond are not particularly limited, and may be carried out according to a known method, but a hydrogenation method that can increase the hydrogenation rate and has little polymer chain scission reaction is preferable.
  • Examples of such hydrogenation methods include the methods described in WO2011 / 096389 pamphlet, WO2012 / 043708 pamphlet and the like.
  • the block copolymer hydride [D] can be recovered from the resulting solution.
  • the form of the recovered block copolymer hydride [D] is not limited, it can be usually formed into a pellet shape and subjected to subsequent sheet forming and modification reactions.
  • the molecular weight of the block copolymer hydride [D] is a polystyrene-reduced weight average molecular weight (Mw) measured by GPC using THF as a solvent, and is usually 40,000 to 200,000, preferably 50,000 to 170. , 000, more preferably 60,000 to 150,000.
  • the molecular weight distribution (Mw / Mn) of the block copolymer hydride [D] is preferably 3 or less, more preferably 2 or less, and particularly preferably 1.5 or less. When Mw and Mw / Mn are within the above ranges, the molded sheet has good heat resistance and mechanical strength.
  • the polymer block [A] when there are a plurality of polymer blocks [A] and / or polymer blocks [B], the polymer block [A] has the largest weight average molecular weight.
  • the weight average molecular weight is Mw (A) max
  • the weight average molecular weight of the polymer block having the smallest weight average molecular weight is Mw (A) min
  • the ratio of Mw (A) max to Mw (A) min exceeds 5
  • the elastic modulus of the block copolymer hydride [D] increases, but the mechanical strength may become brittle.
  • the ratio of Mw (B) max and Mw (B) min exceeds 5 exceeds 5, the glass transition temperature Tg 2 on the high temperature side is lowered and the heat resistance is lowered.
  • Modified block copolymer hydride having alkoxysilyl group [E] The modified block copolymer hydride having an alkoxysilyl group according to the present invention (hereinafter sometimes referred to as a modified block copolymer hydride [E]) is added to the block copolymer hydride [D]. A silyl group is introduced. By introducing an alkoxysilyl group, adhesion to an inorganic substance such as glass or a metal is imparted.
  • alkoxysilyl groups include trialkoxysilyl groups such as trimethoxysilyl group, triethoxysilyl group, and tripropoxysilyl group; methyldimethoxysilyl group, methyldiethoxysilyl group, ethyldimethoxysilyl group, ethyldiethoxysilyl group, propyl Alkyl dialkoxysilyl groups such as dimethoxysilyl group and propyldiethoxysilyl group; dimethylmethoxysilyl group, dimethylethoxysilyl group, diethylmethoxysilyl group, diethylethoxysilyl group, dipropylmethoxysilyl group, dipropylethoxysilyl group, etc.
  • dialkylalkoxysilyl groups aryldialkoxysilyl groups such as phenyldimethoxysilyl group and phenyldiethoxysilyl group; and the like.
  • a trialkoxysyl group and an alkyl dialkoxysilyl group are preferable from the viewpoint of availability of production raw materials.
  • the alkoxysilyl group may be directly bonded to the block copolymer hydride [D] or may be bonded via a divalent organic group.
  • the divalent organic group include alkylene groups having 1 to 10 carbon atoms such as a methylene group, ethylene group, propylene group and trimethylene group; 6 to 20 carbon atoms such as 1,4-phenylene group and 1,4-naphthalene group.
  • the amount of alkoxysilyl group introduced is usually 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, more preferably 0.3 parts by weight based on 100 parts by weight of the block copolymer hydride [D]. ⁇ 3 parts by weight. If the introduction amount of alkoxysilyl group is too small, the adhesion to glass becomes insufficient when it is used as an adhesive sheet for glass, and if the introduction amount of alkoxysilyl group is too large, alkoxysilyl group decomposed by a small amount of moisture or the like. There arises a problem that the degree of cross-linking between the groups increases, and the adhesiveness to glass tends to decrease.
  • the amount of alkoxysilyl group introduced can be calculated, for example, by measuring a 1 H-NMR spectrum (increasing the number of integrations when the amount introduced is small) and calculating the area ratio of the corresponding signal.
  • the method for producing the modified block copolymer hydride [E] is not particularly limited.
  • the modified block copolymer hydride [E] can be obtained, for example, by reacting the block copolymer hydride [D] with an ethylenically unsaturated silane compound in the presence of an organic peroxide.
  • an alkoxysilyl group can be introduced into the block copolymer hydride [D] by graft polymerization with the block copolymer hydride [D] in the presence of an organic peroxide. If it is, it will not be specifically limited.
  • Examples of the ethylenically unsaturated silane compound include alkoxysilanes having a vinyl group such as vinyltrimethoxysilane, vinyltriethoxysilane, dimethoxymethylvinylsilane, and diethoxymethylvinylsilane; allyl such as allyltrimethoxysilane and allyltriethoxysilane.
  • Alkoxysilanes having a group alkoxysilanes having a p-styryl group such as p-styryltrimethoxysilane and p-styryltriethoxysilane; 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3- Alkoxysilanes having a 3-methacryloxypropyl group such as methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldiethoxysilane; 3-acryloxypropyltri Alkoxysilanes having a 3-acryloxypropyl group such as toxisilane, 3-acryloxypropyltriethoxysilane, etc .; alkoxysilanes having a 2-norbornene-5-yl group such as 2-norbornene-5-yltrimethoxysilane; Can be mentioned.
  • the amount of the ethylenically unsaturated silane compound used is usually 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, more preferably 100 parts by weight of the block copolymer hydride [D]. 0.3 to 3 parts by weight.
  • the organic peroxide used is not particularly limited as long as it functions as a radical reaction initiator, and examples thereof include dibenzoyl peroxide, t-butyl peroxyacetate, 2,2-di- (t-butylperoxide).
  • t-butyl cumyl peroxide, dicumyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, di-t-butyl Peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexene-3, etc. are preferably used.
  • the amount of the organic peroxide to be used is generally 0.01 to 3.0 parts by weight, preferably 0.2 to 2.0 parts by weight, and more preferably 0.8 to 100 parts by weight of the block copolymer hydride. 3 to 1.0 parts by weight.
  • the method of reacting the block copolymer hydride [D] with the ethylenically unsaturated silane compound in the presence of an organic peroxide is not particularly limited, but it is possible to continuously knead and heat such as a twin-screw kneader.
  • a method using an apparatus capable of extrusion is preferred. For example, a mixture containing a block copolymer hydride [D], an ethylenically unsaturated silane compound and an organic peroxide is heated and melted at a temperature equal to or higher than the melting temperature of the block copolymer hydride [D] in a biaxial kneader. Then, the modified block copolymer hydride [E] as the target product can be obtained by kneading for a desired time.
  • the heating and kneading temperature is usually 180 to 230 ° C, preferably 190 to 210 ° C, more preferably 200 to 210 ° C. If it is this temperature range, since block copolymer hydride [D] has moderate melt viscosity, it is easy to knead
  • the heat kneading time is usually about 0.3 to 5 minutes, preferably about 0.5 to 3 minutes, more preferably about 0.7 to 2 minutes.
  • the kneading time can be appropriately determined so as to be a time at which usually 80% or more, preferably 90% or more, more preferably 95% or more of the organic peroxide used is decomposed.
  • the rate of decomposition of the organic peroxide can be estimated from the numerical value of the half-life at a predetermined temperature of the peroxide.
  • continuous kneading equipment such as a twin-screw kneader and a short-screw extruder, the kneading and extruding may be performed continuously such that the residence time is in the above range.
  • the molecular weight of the modified block copolymer hydride [E] is substantially the same as the molecular weight of the block copolymer hydride [D] used as a raw material because the amount of the introduced alkoxysilyl group is small.
  • the cross-linking reaction and cleavage reaction of the polymer occur simultaneously, and the molecular weight distribution of the modified block copolymer hydride [E] is large. Become.
  • the molecular weight of the modified block copolymer hydride [E] is a polystyrene-equivalent weight average molecular weight (Mw) measured by GPC using THF as a solvent, and is usually 40,000 to 200,000, preferably 50,000 to 150,000, more preferably 60,000 to 100,000.
  • Mw / Mn The molecular weight distribution (Mw / Mn) is preferably 3.5 or less, more preferably 2.5 or less, and particularly preferably 2.0 or less. When Mw and Mw / Mn are within the above ranges, the heat resistance and mechanical strength of the laminated glass using the sheet formed from the modified block copolymer hydride [E] as the intermediate film are maintained.
  • the block copolymer hydride [D] and / or the modified block copolymer hydride [E] of the present invention can be used as a resin composition in which various compounding agents generally blended into a resin are blended.
  • Preferred compounding agents include softeners and tackifiers for adjusting flexibility, lowering of bonding temperature and adhesion to metals, etc .; antioxidant for enhancing heat stability, light stability, workability, etc. Agents, ultraviolet absorbers, light stabilizers, and anti-blocking agents.
  • softeners include polyisobutylene, polybutene, poly-4-methylpentene, poly-1-octene, low molecular weight compounds such as ethylene / ⁇ -olefin copolymers and hydrides thereof; polyisoprene, polyisoprene Examples thereof include low molecular weight substances such as butadiene copolymers and hydrides thereof.
  • a softener can be used individually by 1 type or in combination of 2 or more types.
  • tackifiers include rosin resins; terpene resins; coumarone / indene resins; styrene resins; aliphatic, alicyclic or aromatic petroleum resins; and hydrogenated products thereof. Can be mentioned. These tackifiers can be used alone or in combination of two or more.
  • Antioxidants, ultraviolet absorbers, light stabilizers, anti-blocking agents and the like can be used singly or in combination of two or more.
  • the antioxidant include phosphorus antioxidants, phenol antioxidants, sulfur antioxidants and the like.
  • ultraviolet absorbers include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, benzotriazole compounds, acrylonitrile compounds, triazine compounds, nickel complex compounds, inorganic powders, and the like.
  • Examples of the light stabilizer include hindered amine light stabilizers. The total compounding amount of these compounding agents is usually 0.01% by weight to 5% by weight and preferably 0.05% by weight to 3% by weight with respect to the entire resin composition.
  • the method of adding a compounding agent to the block copolymer hydride [D] and / or the modified block copolymer hydride [E] is not particularly limited, and a known method can be adopted.
  • block copolymer hydride [D] and / or modified block copolymer hydride [E] are melted with a twin-screw kneader, roll, brabender, extruder, etc., and various compounding agents are added. And kneading.
  • Sheet made of block copolymer hydride [D] and / or modified block copolymer hydride [E] Block copolymer hydride [D] and / or modified block copolymer hydride [E] of the present invention
  • the sheet (hereinafter sometimes referred to as sheet [F]) is formed by a method such as melt extrusion molding of the block copolymer hydride [D] and / or the modified block copolymer hydride [E]. It is formed into a sheet shape.
  • the thickness of the sheet [F] is usually 0.1 to 10 mm, preferably 0.2 to 5 mm, more preferably 0.3 to 2 mm.
  • the block copolymer hydride [D] and / or the modified block copolymer hydride [E] is usually melted by an extruder and attached to the extruder. It is formed by a method of extruding from a die into a film, and forming and pulling the extruded sheet in close contact with at least one cooling roll.
  • the molding conditions in the melt extrusion molding are appropriately selected according to the composition, molecular weight, etc. of the block copolymer hydride [D] and / or the modified block copolymer hydride [E] to be used.
  • the cylinder temperature of the extruder is usually set in the range of 170 to 260 ° C, more preferably 180 to 250 ° C.
  • the temperature of the cooling roll of the sheet take-up machine is usually set in the range of 50 to 200 ° C, preferably 70 to 180 ° C.
  • the formed sheet [F] can be wound into a roll or cut into a single sheet and used as an interlayer film for bonding a glass plate or a metal plate, a damping material, or the like.
  • the thickness of the sheet [F] to be melt extruded can be appropriately selected.
  • the thickness of the interlayer film is usually 0.2 to 2 mm, preferably 0.3 to 1.5 mm. When it is within this range, two sheets of 0.7 to 2.2 mm in thickness are bonded together to reduce the coincidence effect, and at the same time, it is preferable for economy.
  • laminated glass of the present invention has a sheet [F] made of the block copolymer hydride [D] and / or the modified block copolymer hydride [E] of the present invention interposed between at least two glass plates. And laminated glass (hereinafter, sometimes referred to as laminated glass [G]).
  • the sheet [F] made of the modified block copolymer hydride [E] has strong adhesion to glass, it can be bonded to a glass plate without using a special adhesive. Since the sheet [F] made of the block copolymer hydride [D] has low adhesiveness to glass, it is desirable to bond it to a glass plate via an adhesive.
  • the adhesive the modified block copolymer hydride [E] of the present invention is preferable, but other than the modified block copolymer hydride [E] of the present invention, for example, WO2012 / 043708 pamphlet, WO2013 / 176258 pamphlet, etc. Modified block copolymer hydrides described in 1) can also be preferably used.
  • the laminated glass of the present invention includes at least a first glass plate, a sheet [F] made of a block copolymer hydride [D] and / or a modified block copolymer hydride [E], and a second glass plate. It is a laminated glass formed by laminating in this order. Further, an adhesive layer may be provided between the glass plate and the sheet [F] made of the block copolymer hydride [D] and / or the modified block copolymer hydride [E].
  • Preferred layer configurations are glass / modified block copolymer hydride [E] / glass, glass / block copolymer hydride [D] / glass, glass / modified block copolymer hydride [E] / block copolymer.
  • the first glass plate and the second glass plate to be used may be the same or different in thickness and material.
  • the thickness of the glass plate to be used is not particularly limited, but is usually 0.5 to 4 mm, preferably 0.7 to 3 mm, more preferably 1.0 to 2.5 mm.
  • a glass plate having a thickness of 1.0 mm (first glass plate) / modified block copolymer hydride [E] / a thin film glass plate having a thickness of 0.7 mm (second glass plate) Different thickness glass plates can also be used.
  • the material of the glass plate to be used is not particularly limited. Examples thereof include aluminosilicate glass, aluminoborosilicate glass, uranium glass, potassium glass, silicate glass, crystallized glass, germanium glass, quartz glass, soda glass, lead glass, barium silicate glass, and silicate glass.
  • a second A glass plate is laminated in this order to obtain a laminate, which is put in a heat-resistant resin bag that can be depressurized, degassed, and then adhered under heat and pressure using an autoclave; A method of adhering using a vacuum laminator under heating and reduced pressure can be applied.
  • the laminated glass of the present invention is characterized by using an interlayer film composed of a block copolymer hydride [D] and / or a modified block copolymer hydride [E] having low hygroscopicity and moisture permeability. Therefore, even when used in a high temperature and high humidity environment without applying a water shielding treatment to the end face of the laminated glass, problems such as peeling and whitening of the interface between the glass and the intermediate film are less likely to occur.
  • the laminated glass of the present invention is useful as window glass for automobiles, window glass for buildings, roof glass, sound insulation partition walls for rooms, rear glass for automobiles, glass for sunroofs, window glass for railway vehicles and ships, and the like.
  • the hydrogenation rate of the block copolymer hydride [D] is the carbon-carbon of the aromatic ring contained in the repeating unit derived from the aromatic vinyl compound of the block copolymer [C] as the precursor.
  • the hydrogenation rate of the block copolymer hydride [D] is calculated by 1 H-NMR spectrum or GPC analysis. The region where the hydrogenation rate was 99% or less was calculated by measuring a 1 H-NMR spectrum, and the region exceeding 99% was calculated from the ratio of the peak areas obtained by the UV detector and the RI detector by GPC analysis.
  • the block copolymer hydride [D] or the modified block copolymer hydride [E] was press-molded to prepare a test piece having a length of 50 mm, a width of 10 mm, and a thickness of 1 mm.
  • a viscoelasticity measuring device (ARES, manufactured by T.A. Instruments Japan Co., Ltd.), in the range of ⁇ 100 ° C. to + 150 ° C.
  • the dynamic viscoelastic properties were measured at a temperature elevation rate of 5 ° C./min.
  • the glass transition temperature Tg 1 derived from the soft segment from the peak top temperature on the low temperature side of the loss tangent tan ⁇ , and the glass transition temperature Tg 2 derived from the hard segment from the peak top temperature on the high temperature side were determined.
  • (5) Sound insulating property A test piece having a length of 300 mm and a width of 25 mm was cut out from a sheet obtained by extrusion molding the block copolymer hydride [D] or the modified block copolymer hydride [E]. Using this test piece, a laminated glass test for sound transmission loss measurement is performed by sandwiching one or many test pieces between two blue plate glasses having a length of 300 mm, a width of 25 mm, and a thickness of 1.2 mm. A piece was made.
  • a loss factor corresponding to the frequency was measured by a central excitation method using a vibration damping test apparatus (manufactured by Rion).
  • the sound transmission loss corresponding to the frequency was obtained from the ratio between the loss coefficient obtained here and the resonance frequency of the laminated glass test piece.
  • the sound insulation property is ⁇ (good) when the laminated glass specimen has no region where the value of sound transmission loss falls below 35 dB in the frequency range of 2000 to 4000 Hz, and ⁇ (bad) when there is a region below 35 dB. It was evaluated.
  • a test piece having a length of 300 mm and a width of 300 mm was cut out from a sheet obtained by extruding the block copolymer hydride [D] or the modified block copolymer hydride [E].
  • this test piece one or many test pieces were sandwiched between two blue plate glasses having a length of 300 mm, a width of 300 mm, and a thickness of 1.2 mm to produce a laminated glass test piece.
  • this laminated glass test piece in accordance with JIS-R3212 method, it was immersed in boiling water (100 ° C.) in a vertical state, held for 2 hours, and then visually evaluated for appearance change.
  • the heat resistance of the laminated glass is ⁇ (good) when there are no cracks, bubbles, discoloration, or other defects on the laminated glass test piece, and any change of cracks, bubbles, discoloration, or other defects on the laminated glass test piece.
  • x defect
  • Example 1 Production of Block Copolymer Hydride [D1]
  • a reactor equipped with a stirrer and sufficiently purged with nitrogen inside was charged with 270 parts of dehydrated cyclohexane and 0.53 part of ethylene glycol dibutyl ether, and , 0.47 parts of n-butyllithium (15% cyclohexane solution) was added. While stirring the whole volume at 60 ° C., 12.5 parts of dehydrated styrene was continuously added into the reactor over 40 minutes. After completion of the addition, the whole volume was further stirred at 60 ° C. for 20 minutes. When the reaction solution was measured by gas chromatography, the polymerization conversion rate at this point was 99.5%.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • the proportion of structural units derived from 1,2- and 3,4-addition polymerization was 58%.
  • the polymer solution was transferred to a pressure-resistant reactor equipped with a stirrer, and a diatomaceous earth supported nickel catalyst (product name “product name“ E22U ”, nickel supported amount 60 manufactured by JGC Catalysts & Chemicals Co., Ltd.) as a hydrogenation catalyst. %) 7.0 parts and dehydrated cyclohexane 80 parts were added and mixed. The inside of the reactor was replaced with hydrogen gas, and hydrogen was supplied while stirring the solution. A hydrogenation reaction was performed at a temperature of 190 ° C. and a pressure of 4.5 MPa for 6 hours. The weight average molecular weight (Mw) of the block copolymer hydride [D1] after the hydrogenation reaction was 89,300, and the molecular weight distribution (Mw / Mn) was 1.04.
  • Mw weight average molecular weight
  • the reaction solution was filtered to remove the hydrogenation catalyst, and the filtrate was then subjected to pentaerythrityl tetrakis [3- (3,5-di-t-butyl- 4-hydroxyphenyl) propionate] (product name “Songnox 1010” manufactured by Koyo Chemical Laboratory Co., Ltd.) 1.0 part of xylene solution in which 0.1 part was dissolved was added and dissolved. Next, the above solution was subjected to removal of cyclohexane, xylene and other volatile components as solvents from the solution at a temperature of 260 ° C.
  • the molten polymer was continuously extruded from the die into a strand, and after cooling, 93 parts of pellets of the block copolymer hydride [D1] were obtained by a pelletizer.
  • the obtained block-like block copolymer hydride [D1] had a weight average molecular weight (Mw) of 88,400, a molecular weight distribution (Mw / Mn) of 1.05, and a hydrogenation rate of almost 100%.
  • the molded body of the block copolymer hydride [D1] was colorless and transparent, Tg 1 was ⁇ 6 ° C., and Tg 2 was 109 ° C.
  • the composition and physical property values of the block copolymer hydride [D1] are shown in Table 1.
  • Example 2 Production of block copolymer hydride [D2] Except that the amount of ethylene glycol dibutyl ether was 0.61 part and the amount of n-butyllithium (15% cyclohexane solution) was 0.45 part, Polymerization was carried out in the same manner as in Example 1.
  • the polymerization conversion after completion of the polymerization reaction was almost 100%.
  • the proportion of structural units derived from 1,2- and 3,4-addition polymerization was 65%.
  • Example 2 the polymer solution was subjected to a hydrogenation reaction in the same manner as in Example 1. Thereafter, in the same manner as in Example 1, 95 parts of a block copolymer hydride [D2] pellet was obtained.
  • the resulting block copolymer hydride [D2] had a weight average molecular weight (Mw) of 92,400, a molecular weight distribution (Mw / Mn) of 1.05, and a hydrogenation rate of almost 100%.
  • the molded block copolymer hydride [D2] was colorless and transparent, with Tg 1 of 2 ° C. and Tg 2 of 111 ° C.
  • the composition and physical property values of the block copolymer hydride [D2] are shown in Table 1.
  • Example 3 Production of block copolymer hydride [D3] The amount of ethylene glycol dibutyl ether was 0.55 parts, and the amount of n-butyllithium (15% cyclohexane solution) was 0.55 parts. Polymerization was carried out in the same manner as in Example 1 except that the monomer was 15 parts of styrene, 70 parts of isoprene, and 15 parts of styrene.
  • the polymerization conversion after completion of the polymerization reaction was almost 100%.
  • the proportion of structural units derived from 1,2- and 3,4-addition polymerization was 50%.
  • Example 2 the polymer solution was subjected to a hydrogenation reaction in the same manner as in Example 1. Thereafter, 94 parts of block copolymer hydride [D3] pellets were obtained in the same manner as in Example 1.
  • the resulting block copolymer hydride [D3] had a weight average molecular weight (Mw) of 76,100, a molecular weight distribution (Mw / Mn) of 1.05, and a hydrogenation rate of almost 100%.
  • the molded body of the block copolymer hydride [D3] was colorless and transparent, Tg 1 was ⁇ 14 ° C., and Tg 2 was + 115 ° C.
  • the composition and physical property values of the block copolymer hydride [D3] are shown in Table 1.
  • Example 4 Production of block copolymer hydride [D4] The amount of ethylene glycol dibutyl ether was 0.68 parts and the amount of n-butyllithium (15% cyclohexane solution) was 0.44 parts. Polymerization was carried out in the same manner as in Example 1 except that the monomer was 10 parts of styrene, 80 parts of isoprene, and 10 parts of styrene.
  • the polymerization conversion after completion of the polymerization reaction was almost 100%.
  • the proportion of structural units derived from 1,2- and 3,4-addition polymerization was 71%.
  • Example 2 the polymer solution was subjected to a hydrogenation reaction in the same manner as in Example 1. Thereafter, in the same manner as in Example 1, 88 parts of block copolymer hydride [D4] pellets were obtained.
  • the resulting block copolymer hydride [D4] had a weight average molecular weight (Mw) of 93,800, a molecular weight distribution (Mw / Mn) of 1.05, and a hydrogenation rate of almost 100%.
  • the molded body of the block copolymer hydride [D4] was colorless and transparent, Tg 1 was 9 ° C., and Tg 2 was 104 ° C.
  • the composition and physical property values of the block copolymer hydride [D4] are shown in Table 1.
  • Example 5 Production of modified block copolymer hydride [E1] To 100 parts of the block copolymer hydride [D1] pellet produced in Example 1, 2.0 parts vinyltrimethoxysilane and di 0.2 part of t-butyl peroxide (manufactured by NOF Corporation, Perbutyl D, temperature at which half-life is 1 minute: 185.9 ° C.) was added and mixed with a blender. This mixture was kneaded continuously using a twin screw extruder (Toshiba Machine Co., Ltd., TEM37B) at a resin temperature of 210 ° C. and a residence time of about 80 seconds.
  • a twin screw extruder Toshiba Machine Co., Ltd., TEM37B
  • the kneaded resin was continuously extruded through a die attached to a twin-screw extruder at a die temperature of 220 ° C. to form a strand having a diameter of about 2.2 mm and solidified by air cooling.
  • the solidified strand was cut with a pelletizer to obtain 96 parts of a pellet of hydrogenated modified block copolymer [E1] having a trimethoxysilyl group.
  • the IR spectrum by the ATR method of the surface of the pellet of the obtained modified block copolymer hydride [E1] was measured using an infrared spectroscopic device (Thermo Fisher Scientific, iS5).
  • the IR spectrum, Si-OCH 3 groups to 1090cm -1, 825cm -1 and 739cm new absorption band derived from Si-CH 2 group at -1, their 1075 cm -1 of vinyltrimethoxysilane, 808Cm - 1 and 766 cm ⁇ 1 were observed at different positions.
  • the molded body of the modified block copolymer hydride [E1] was colorless and transparent, and Tg 1 was ⁇ 5 ° C. and Tg 2 was 102 ° C.
  • the polymerization conversion after completion of the polymerization reaction was almost 100%.
  • the proportion of structural units derived from 1,2- and 3,4-addition polymerization was 9%.
  • Example 2 the polymer solution was subjected to a hydrogenation reaction in the same manner as in Example 1. Thereafter, in the same manner as in Example 1, 91 parts of a block copolymer hydride [D5] pellet was obtained.
  • the resulting block copolymer hydride [D5] had a weight average molecular weight (Mw) of 96,700, a molecular weight distribution (Mw / Mn) of 1.05, and a hydrogenation rate of almost 100%.
  • the molded body of the block copolymer hydride [D5] was colorless and transparent, Tg 1 was ⁇ 50 ° C., and Tg 2 was 110 ° C.
  • the polymerization conversion after completion of the polymerization reaction was almost 100%.
  • the proportion of structural units derived from 1,2- and 3,4-addition polymerization was 9%.
  • Example 2 the polymer solution was subjected to a hydrogenation reaction in the same manner as in Example 1. Thereafter, in the same manner as in Example 1, 96 parts of a block copolymer hydride [D6] pellet was obtained.
  • the resulting block copolymer hydride [D6] had a weight average molecular weight (Mw) of 66,300, a molecular weight distribution (Mw / Mn) of 1.05, and a hydrogenation rate of almost 100%.
  • the molded product of the block copolymer hydride [D6] was colorless and transparent, Tg 1 was ⁇ 50 ° C., and Tg 2 was 137 ° C.
  • the IR spectrum of the surface of the pellet of the obtained modified block copolymer hydride [E6] by the ATR method is as follows: Si—OCH 3 groups at 1090 cm ⁇ 1 , Si—CH 2 groups at 825 cm ⁇ 1 and 739 cm ⁇ 1. A new absorption band was observed, and analysis was conducted in the same manner as in Example 5. As a result, 1.8 parts of vinyltrimethoxysilane was bonded to 100 parts of the block copolymer hydride [D6]. It was confirmed to be a thing.
  • the molded body of the modified block copolymer hydride [E6] was colorless and transparent, and Tg 1 was ⁇ 49 ° C. and Tg 2 was 129 ° C.
  • Example 6 Two sheets of modified block copolymer hydride [E6] formed in Reference Example 5 between two blue plate glass (thickness 1.2 mm, length 300 mm, width 25 mm) plates, and reference Two sheets [D1F300] made of the block copolymer hydride [D1] formed in Example 4 were laminated in the order of glass / [E6F80] / [D1F300] / [D1F300] / [E6F80] / glass.
  • This laminate was put in a resin bag having a layer structure of NY / adhesive layer / PP and having a thickness of 75 ⁇ m. Heat seal both sides with a heat sealer leaving 200mm width at the center of the opening of the bag, then heat the opening using a sealed pack device (BH-951, manufactured by Panasonic Corporation) while degassing the inside of the bag The laminate was sealed and sealed. The resin bag was in close contact with the shape of the laminate. Thereafter, the hermetically packaged laminate was placed in an autoclave and heated and pressurized at a temperature of 140 ° C. and a pressure of 0.8 MPa for 30 minutes to prepare a laminated glass test piece for measuring sound transmission loss.
  • BH-951 manufactured by Panasonic Corporation
  • Two sheets [E6F80] composed of E6] and two sheets [D1F300] composed of the block copolymer hydride [D1] formed in Reference Example 4 were made of glass / [E6F80] / [D1F300] / [D1F300. ] / [E6F80] / glass were laminated in this order to produce a laminated glass test piece for heat resistance evaluation.
  • This laminated glass specimen was held in boiling water (100 ° C.) for 2 hours and then visually evaluated for changes in appearance. However, cracks, bubbles, discoloration, and other defects were not observed, and the evaluation of heat resistance was ⁇ ( It was good. The results are shown in Table 2.
  • Table 2 shows sheets [D2F300] to [D4F300] formed from block copolymer hydrides [D2] to [D4], and a sheet [E6F80] formed from modified block copolymer hydrides [E6].
  • a laminated glass test piece was produced in the same manner as in Example 6 with the layer structure of the intermediate film.
  • the sound transmission loss data with respect to the frequency measured using the obtained test piece is shown in FIG.
  • a region where the sound transmission loss due to the coincidence effect was lower than 35 dB was observed in the frequency range of 2000 to 4000 Hz, and the evaluation was x (defect).
  • the evaluation was good (good).
  • the sound transmission loss data with respect to the frequency measured using the obtained test piece is shown in FIG.
  • a region where the sound transmission loss due to the coincidence effect was less than 35 dB was observed in the frequency range of 2000 to 4000 Hz, and the evaluation was x (defect).
  • x defect
  • the heat resistance test of the laminated glass test piece cracks, bubbles, and discoloration were not observed, but the two glasses that were bonded together through the interlayer film were misaligned, and the evaluation was x (defect). It was.
  • the sound transmission loss data with respect to the frequency measured using the obtained test piece is shown in FIG.
  • a region where the acoustic transmission loss due to the coincidence effect was less than 35 dB was observed in the frequency range of 2000 to 4000 Hz, and the evaluation was x (defect).
  • the evaluation was good (good).
  • FIG. 1 the data of the sound transmission loss with respect to the frequency measured using the obtained test piece are shown in FIG. 1
  • the data of Examples 6 to 10 and Comparative Examples 1 to 3 show substantially the same values up to the frequency range of 125 to 2000 Hz.
  • the block copolymer hydride [D] obtained by hydrogenating the block copolymer [C] composed of one or more vinyl bonds to the monomer units derived from the chain conjugated diene compound in the polymer block [B] By introducing the monomer unit polymerized by the above, the peak temperature of tan ⁇ on the low temperature side (glass transition temperature Tg 1 originating from the soft segment) in the dynamic viscoelastic property is set to ⁇ 20 to 20 ° C.
  • the peak temperature (glass transition temperature Tg 2 derived from the hard segment) can be controlled to 100 ° C. or higher.
  • the laminated glass using the intermediate film made of [E] (Comparative Examples 1 to 3), there is a region where the sound transmission loss is reduced by the coincidence effect in the frequency range of 2000 to 4000 Hz, and the sound insulation is poor.
  • Tg 2 on the high temperature side derived from the hard segment is less than 100 ° C., and this was used for the intermediate film.
  • Tg 1 derived from the soft segment is in the range of ⁇ 20 to 20 ° C.
  • Laminated glass (Examples 6 to 10) using an interlayer made of hydride [E] has the effect of reducing the coincidence effect in the frequency range of 2000 to 4000 Hz and suppressing the decrease in sound transmission loss, and is sound insulating. Is improved.
  • the specific block copolymer hydride of the present invention is industrially useful because a laminated glass excellent in sound insulation can be provided by using a sheet made thereof as an interlayer film for laminated glass.

Abstract

 本発明は、芳香族ビニル化合物由来の単量体単位を主成分とする重合体ブロック[A]の2つ以上と、鎖状共役ジエン化合物由来の単量体単位を主成分とする重合体ブロック[B]の1つ以上とからなるブロック共重合体[C]を水素化したブロック共重合体水素化物[D]であって、動的粘弾性特性における低温側のtanδのピーク温度が-20~20℃にあり、かつ、高温側のtanδのピーク温度が100℃以上であるブロック共重合体水素化物[D]である。該ブロック共重合体水素化物[D]は、ブロック共重合体全体[C]に占める、重合体ブロック[A]の重量分率をwA、重合体ブロック[B]の重量分率をwBとしたときに、(wA:wB)が15:85~40:60であり、重合体ブロック[B]中の鎖状共役ジエン化合物由来の構造単位の内、1,2-および3,4-付加重合由来の構造単位の含有割合が40重量%以上であるブロック共重合体[C]の、主鎖及び側鎖の炭素-炭素不飽和結合、並びに、芳香環の炭素-炭素不飽和結合の全不飽和結合の90%以上が水素化されたものであり、かつ、重量平均分子量が40,000~200,000のものである。

Description

ブロック共重合体水素化物および合わせガラス
 本発明は、特定の粘弾性特性を有するブロック共重合体水素化物、該ブロック共重合体水素化物またはその変性物からなるシートを中間膜として使用した、遮音性に優れた合わせガラスに関する。
 合わせガラスは、衝突物により割れた場合にもガラス破片の飛散が少なく、また、衝突物の貫通に対しても抵抗することができるため、安全性が高い。そのため、自動車、航空機、建築物等の窓ガラス、壁材、床材、屋根材等として広く使用されている。
 また、近年、自動車等の快適性を高めるため、遮音性を高めた合わせガラスが使用されるようになった。ガラスはダンピング性能が低い材料である。例えば、厚さ3mm程度のガラスを貼り合わせた合わせガラスでは、周波数2000~3000Hz付近の中高音域において、コインシデンス効果によって音響透過損失量が低下し、遮音性が低下する。このため、ダンピング性能に優れる樹脂中間膜を使用してガラスを貼り合わせることにより、破損時のガラス破片の飛散防止と同時にコインシデンス効果を低減して遮音性能を向上させる方法が知られている。
  このような合わせガラス板としては、例えば、(a)樹脂中間膜に2種のポリビニルアセタールに可塑剤を配合した積層中間膜を使用したもの(特許文献1~3)、(b)補強性フィルムの両側に粘着性付与したブチルゴム系あるいは熱可塑性ブロック共重合体ゴム系からなるゴム層を積層した中間膜を使用したもの(特許文献4)、(c)水添スチレン・ジエンブロック共重合体層の両側にポリビニルアセタール系樹脂等からなる接着性樹脂層を積層した中間膜を使用したもの(特許文献5、6)等が挙げられる。
  しかし、合わせガラス板の中間膜として広く用いられている可塑剤を多く含むポリビニルアセタール系樹脂は、軟化点が比較的低いために、貼合わせた後において、熱によりガラス板がずれたり、気泡が発生する場合があった。また、吸湿性が高いために、高湿度雰囲気下に長期間に亘り放置しておくと、周辺部から次第に白色化すると共に、ガラスとの接着力が低下したり、ガラスを貼り合わせる前において、ガラスとの接着力を制御するために厳密に含水率管理を必要とする(非特許文献1)等の問題点を有していた。
 また、中間膜にゴム層を含む合わせガラス板は、破損時のガラス破片の飛散防止や耐貫通性に優れ、遮音性能も優れるが、透明性や耐熱性が劣る等の問題点を有している。
  一方、特許文献7,8には、芳香族ビニル化合物からなる重合体ブロックと、共役ジエン化合物からなる重合体ブロックとからなるブロック共重合体又はその水素化物であって、共役ジエン化合物が3,4結合及び/又は1,2結合で重合し、粘弾性特性における損失正接(以下、「tanδ」ということがある。)のピーク温度が0℃以上となる重合体ブロックを導入することにより、振動、騒音を低減する制震性能に優れた材料が得られることが開示されている。
 しかしながら、これらの文献には、合わせガラスのコインシデンス効果の低減に関しては記載がない。
 また、特許文献9には、芳香族ビニル化合物を主成分とする重合体ブロック(以下、「重合体ブロック[A]」ということがある。)と、鎖状共役ジエン化合物を主成分とする重合体ブロック(以下、「重合体ブロック[B]」ということがある。)とからなり、全重合体ブロック[A]のブロック共重合体全体に占める重量分率をwAとし、全重合体ブロック[B]のブロック共重合体全体に占める重量分率をwBとしたときに、wAとwBとの比(wA:wB)が30:70~60:40であるブロック共重合体の、主鎖及び側鎖の炭素-炭素不飽和結合、並びに、芳香環の炭素-炭素不飽和結合の全不飽和結合の90%以上を水素化して得られるブロック共重合体水素化物に、アルコキシシリル基が導入されたブロック共重合体水素化物を含有する接着剤を用いた合わせガラスが開示されている。
しかしながら、この文献には遮音性能を付与する技術の開示はない。
特開平4-254444号公報(US5,190,826) 特開平6-000926号公報 特開平9-156967号公報 特開平1-244843号公報 特開2007-91491号公報 特開2009-256128号公報 特開平2-102212号公報 特開平2-300218号公報 国際公開第WO2013/176258号(US2015/0104654A)
藤崎靖之、日化協月報、35(10)、28(1982)
 本発明は、上述した従来技術に鑑みてなされたものであり、特定のブロック共重合体水素化物、該ブロック共重合体水素化物またはその変性物からなる合わせガラス用中間膜を使用した、遮音性に優れた合わせガラスを提供することを目的とする。 
 本発明者らは、耐熱性、耐湿性、遮音性等に優れた合わせガラスを得るための中間膜の材料に関して鋭意検討を進めた。その結果、芳香族ビニル化合物を主成分とする重合体ブロックと、鎖状共役ジエン化合物を主成分とする重合体ブロックを有するブロック共重合体(以下、「ブロック共重合体[C]」ということがある。)の、主鎖及び側鎖の炭素-炭素不飽和結合、並びに、芳香環の炭素-炭素不飽和結合を水素化したブロック共重合体水素化物(以下、「ブロック共重合体水素化物[D]」ということがある。)において、重合体ブロック[B]から構成されるソフトセグメントのガラス転位温度(以下、「Tg」ということがある。)が特定の温度範囲にあるブロック共重合体水素化物[D]からなる中間膜を使用すると、得られる合わせガラスのコインシデンス効果が低減され、遮音性能が向上することを見出し、本発明を完成するに至った。
ここでいうガラス転位温度(以下、「Tg」ということがある。)は、ブロック共重合体水素化物[D]の動的粘弾性特性におけるtanδのピークトップ温度から求めた値であり、ブロック共重合体水素化物[D]のソフトセグメントに由来する低温側のガラス転位温度をTg、ハードセグメントに由来する高温側のガラス転位温度をTgとした。
 かくして本発明によれば、下記(1)~(4)のブロック共重合体水素化物、変性ブロック共重合体水素化物、それからなるシート、及び合わせガラスが提供される。
(1)芳香族ビニル化合物由来の単量体単位を主成分とする重合体ブロック[A]の2つ以上と、鎖状共役ジエン化合物由来の単量体単位を主成分とする重合体ブロック[B]の1つ以上とからなるブロック共重合体[C]を水素化したブロック共重合体水素化物[D]であって、
動的粘弾性特性における低温側のtanδのピーク温度が-20~20℃にあり、かつ、高温側のtanδのピーク温度が100℃以上であることを特徴とするブロック共重合体水素化物[D]。
 該ブロック共重合体水素化物[D]は、重合体ブロック[A]の全量がブロック共重合体全体[C]に占める重量分率をwAとし、重合体ブロック[B]の全量がブロック共重合体全体[C]に占める重量分率をwBとしたときに、wAとwBとの比(wA:wB)が15:85~40:60であり、
重合体ブロック[B]中の鎖状共役ジエン化合物由来の構造単位の内、1,2-および3,4-付加重合由来の構造単位の含有割合が40重量%以上であるブロック共重合体[C]の、主鎖及び側鎖の炭素-炭素不飽和結合、並びに、芳香環の炭素-炭素不飽和結合の全不飽和結合の90%以上が水素化されたものであり、かつ、
重量平均分子量が40,000~200,000のものである。
(2)(1)に記載のブロック共重合体水素化物[D]にアルコキシシリル基が導入されてなる変性ブロック共重合体水素化物[E]。
(3)ガラス板の間に、(1)に記載のブロック共重合体水素化物[D]及び/又は(2)に記載の変性ブロック共重合体水素化物[E]からなるシートの少なくとも1枚を中間膜として介在させ、当該ガラス板を接着一体化してなることを特徴とする合わせガラス。
 本発明によれば、特定のブロック共重合体水素化物及びそれから成るシートを中間膜として使用した遮音性の改善された合わせガラスが提供される。
実施例及び比較例で得られた試験片を用いて測定した、周波数に対する音響透過損失のデータを示す図である。
 以下、本発明を詳細に説明する。
1.ブロック共重合体水素化物[D]
 本発明のブロック共重合体水素化物[D]は、その前駆体であるブロック共重合体[C]の主鎖及び側鎖の炭素-炭素不飽和結合、並びに、芳香環の炭素-炭素不飽和結合の全不飽和結合の90%以上を水素化して得られるものであって、動的粘弾性特性における低温側のtanδのピーク温度が-20~20℃にあり、かつ、高温側のtanδのピーク温度が100℃以上であることを特徴とする。
 ブロック共重合体[C]は、2つ以上の重合体ブロック[A]と、1つ以上の重合体ブロック[B]から構成される。
(重合体ブロック[A])
 重合体ブロック[A]は、芳香族ビニル化合物由来の構造単位を主成分とするものである。重合体ブロック[A]中の、芳香族ビニル化合物由来の構造単位の含有割合は、通常95重量%以上、好ましくは98重量%以上である。重合体ブロック[A]中の、芳香族ビニル化合物由来の構造単位以外の成分としては、鎖状共役ジエン化合物由来の構造単位及び/又はその他のビニル化合物由来の構造単位が挙げられる。その含有割合は、5重量%以下、好ましくは2重量%以下である。
 重合体ブロック[A]中の鎖状共役ジエン化合物由来の構造単位及び/又はその他のビニル化合物由来の構造単位の含有割合が高くなりすぎると、本発明のブロック共重合体水素化物[D]のハードセグメントのTgが低下し、ブロック共重合体水素化物[D]からなるシートの耐熱性が低下するおそれがある。
 ブロック共重合体水素化物[D]に含まれる2つの重合体ブロック[A]は、上記の範囲を満足すれば互いに同じであっても、異なっていても良い。
(重合体ブロック[B])
 重合体ブロック[B]は、鎖状共役ジエン化合物由来の構造単位を主成分とするものである。重合体ブロック[B]に占める、鎖状共役ジエン化合物由来の構造単位の含有割合は、通常80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上である。重合体ブロック[B]中の鎖状共役ジエン化合物由来の構造単位以外の成分としては、芳香族ビニル化合物由来の構造単位及び/又はその他のビニル化合物由来の構造単位が挙げられる。その含有割合は、通常20重量%以下、好ましくは10重量%以下、より好ましくは5重量%以下である。
 重合体ブロック[B]は、鎖状共役ジエン化合物の一部が、1,2結合及び/又は3,4結合で重合した構造単位(1,2-および3,4-付加重合由来の構造単位)を有し、残部は1,4結合(1,4-付加重合由来の構造単位)で重合した構造単位を有するものである。1,2結合及び/又は3,4結合で重合した鎖状共役ジエン化合物由来の構造単位の割合は、重合体ブロック[B]中の鎖状共役ジエン化合物由来の構造単位全体に対して通常40~80重量%、好ましくは50~75重量%、より好ましくは55~70重量%である。1,2結合及び/又は3,4結合で重合した鎖状共役ジエン化合物由来の構造単位の含有割合を上記の範囲とすることにより、本発明のブロック共重合体水素化物[D]のソフトセグメントに由来するTgを-20~20℃の範囲に制御することができ、通常の使用温度領域で遮音性能が発現するようになる。
(芳香族ビニル化合物)
 芳香族ビニル化合物としては、スチレン;α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン等の、置換基として炭素数1~6のアルキル基を有するスチレン類;4-クロロスチレン、ジクロロスチレン、4-モノフルオロスチレン等の、置換基としてハロゲン原子を有するスチレン類;4-メトキシスチレン等の、置換基として炭素数1~6のアルコキシ基を有するスチレン類;4-フェニルスチレン等の、置換基としてアリール基を有するスチレン類;1-ビニルナフタレン、2-ビニルナフタレン等のビニルナフタレン類;等が挙げられる。これらの中でも、吸湿性の観点から、スチレン、置換基として炭素数1~6のアルキル基を有するスチレン類等の、極性基を含有しない芳香族ビニル化合物が好ましく、工業的な入手の容易さから、スチレンが特に好ましい。
(鎖状共役ジエン化合物)
 鎖状共役ジエン化合物としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン等が挙げられ、吸湿性の観点から、極性基を含有しない鎖状共役ジエン系化合物が好ましく、工業的な入手の容易さから、1,3-ブタジエン、イソプレンがより好ましく、ブロック共重合体水素化物[D]のソフトセグメントのTgを-20~20℃の範囲に制御し易いことからイソプレンが特に好ましい。
(その他のビニル化合物)
 その他のビニル化合物としては、鎖状ビニル化合物や環状ビニル化合物が挙げられる。例えば、ニトリル基、アルコキシカルボニル基、ヒドロキシカルボニル基、又はハロゲン基を有していてもよいビニル化合物、不飽和の環状酸無水物、不飽和イミド化合物等が挙げられる。これらの中でも、吸湿性の観点から、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、1-エイコセン、4-メチル-1-ペンテン、4,6-ジメチル-1-ヘプテン等の炭素数2~20の鎖状オレフィン;ビニルシクロヘキサン、4-ビニルシクロヘキセン、ノルボルネン等の炭素数5~20の環状オレフィン;等の、極性基を含有しないものが好ましく、炭素数2~20の鎖状オレフィンがより好ましく、エチレン、プロピレンが特に好ましい。
(ブロック共重合体[C])
 本発明のブロック共重合体水素化物[D]の前駆体であるブロック共重合体[C]は、少なくとも2つの重合体ブロック[A]と少なくとも1つの重合体ブロック[B]を含有する高分子である。ブロック共重合体[C]中の重合体ブロック[A]の数は、通常3個以下、好ましくは2個であり、重合体ブロック[B]の数は、通常2個以下、好ましくは1個である。
 また、Mw(A)maxは、通常8,000~50,000、好ましくは9,000~40,000、より好ましくは10,000~30,000である。Mw(A)maxをこの範囲とすることにより、本発明のブロック共重合体水素化物[D]のハードセグメントに由来するTgを100℃以上にすることができ、耐熱性が良好になる。
 ブロック共重合体[C]のブロックの形態は、特に限定されず、鎖状型ブロックでもラジアル型ブロックでも良いが、鎖状型ブロックであるのが機械的強度に優れ好ましい。ブロック共重合体[C]の最も好ましい形態は、重合体ブロック[B]の両端に重合体ブロック[A]が結合したトリブロック共重合体([A]-[B]-[A])である。
 ブロック共重合体[C]中の、全重合体ブロック[A]がブロック共重合体[C]に占める重量分率をwAとし、重合体ブロック[B]がブロック共重合体[C]に占める重量分率をwBとした時に、wAとwBとの比(wA:wB)は、15:85~40:60、好ましくは17:83~35:65、より好ましくは20:80~30:70である。wBが小さすぎる場合は、本発明のブロック共重合体水素化物[D]の遮音性能が低下する懸念がある。wBが多すぎる場合は、耐熱性が低下する懸念がある。
 ブロック共重合体[C]の分子量は、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)により測定されるポリスチレン換算の重量平均分子量(Mw)で、通常40,000~200,000、好ましくは50,000~170,000、より好ましくは60,000~150,000である。また、ブロック共重合体[C]の分子量分布(Mw/Mn)は、好ましくは3以下、より好ましくは2以下、特に好ましくは1.5以下である。
 ブロック共重合体[C]の製造方法としては、例えば、リビングアニオン重合等の方法により、芳香族ビニル化合物を主成分として含有するモノマー混合物(a)と鎖状共役ジエン系化合物を主成分として含有するモノマー混合物(b)を交互に重合させる方法;芳香族ビニル化合物を主成分として含有するモノマー混合物(a)と鎖状共役ジエン系化合物を主成分として含有するモノマー混合物(b)を順に重合させた後、重合体ブロック[B]の末端同士を、カップリング剤によりカップリングさせる方法;等が挙げられる。
 ここで、モノマー混合物(a)は、芳香族ビニル化合物を、混合物(a)全体に対し、通常95重量%以上、好ましくは98重量%以上含有するものである。また、モノマー混合物(b)は、混合物(b)全体に対し、鎖状共役ジエン化合物を、通常80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上含有するものである。
 用いるカップリング剤は、特に限定されない。例えば、1,2-ジブロモエタン、メチルジクロロシラン、トリクロロシラン、メチルトリクロロシラン、テトラクロロシラン、テトラメトキシシラン、ジビニルベンゼン、アジピン酸ジエチル、アジピン酸ジオクチル、ベンゼン-1,2,4-トリイソシアナート、トリレンジイソシアナート、エポキシ化1,2-ポリブタジエン、エポキシ化アマニ油、テトラクロロゲルマニウム、テトラクロロスズ、ブチルトリクロロスズ、ブチルトリクロロシラン、ジメチルクロロシラン、1,4-クロロメチルベンゼン、ビス(トリクロロシリル)エタン等が挙げられる。
 ブロック共重合体[C]中の重合体ブロック[B]は、鎖状共役ジエン化合物及び必要に応じて芳香族ビニル化合物及びその他のビニル化合物を、ランダム化剤として電子供与原子を有する特定の化合物の存在下で重合させることにより、3,4結合及び/又は1,2結合で重合した鎖状共役ジエン化合物由来の構造単位の含有量を増加させたランダム共重合体ブロックである。3,4結合及び/又は1,2結合で重合した鎖状共役ジエン化合物由来の単量体単位の含有量はランダム化剤の添加量により制御することができる。
 電子供与原子を有する化合物としては、酸素(O)、窒素(N)等の電子供与原子を有する化合物が好ましい。電子供与原子を有する化合物としては、エーテル化合物、第3級アミン化合物、ホスフィン化合物等が挙げられる。これらの化合物の中でも、ランダム共重合体ブロックの分子量分布を小さくすることができ、その水素添加反応を阻害し難い観点から、エーテル化合物が好ましい。
 電子供与原子を有する化合物の具体例としては、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジイソプロピルエーテル、エチレングリコールジブチルエーテル、エチレングリコールメチルフェニルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジイソプロピルエーテル、プロピレングリコールジブチルエーテル、ジ(2-テトラヒドロフリル)メタン、ジエチレングリコールジブチルエーテル、ジプロピレングリコールジブチルエーテル、テトラメチルエチレンジアミン等を挙げることができる。これらの電子供与原子を有する化合物は、鎖状共役ジエン化合物の量100重量部に対して、通常0.001~10重量部、好ましくは0.01~1重量部の割合で用いられる。
(ブロック共重合体水素化物[D])
 本発明のブロック共重合体水素化物[D]は、上記のブロック共重合体[C]の主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合を水素化したものである。ブロック共重合体水素化物[D]の主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合の全不飽和結合に対する水素化率は通常90%以上、好ましくは95%以上、より好ましくは99%以上である。水素化率が高いほど、成形体の耐候性、耐熱性及び透明性が良好である。
 ブロック共重合体水素化物[D]の主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合の全不飽和結合に対する水素化率は通常90%以上、好ましくは95%以上、より好ましくは99%以上である。水素化率が高いほど、成形体の耐候性、耐熱性及び透明性が良好である。
 また、ブロック共重合体水素化物[D]の、共役ジエンに由来する炭素-炭素不飽和結合の水素化率は、通常90%以上、好ましくは95%以上、より好ましくは98%以上である。また、芳香族ビニル化合物に由来する芳香環の炭素-炭素不飽和結合の水素化率は、通常90%以上、好ましくは95%以上、より好ましくは98%以上である。
 ブロック共重合体水素化物[D]の水素化率は、H-NMRやGPCによるUV検出器とRI検出器とのピーク面積の比較等により求めることができる。
 不飽和結合の水素化方法や反応形態等は特に限定されず、公知の方法にしたがって行えばよいが、水素化率を高くでき、重合体鎖切断反応の少ない水素化方法が好ましい。このような水素化方法としては、例えば、WO2011/096389号パンフレット、WO2012/043708号パンフレット等に記載された方法を挙げることができる。
 水素化反応終了後においては、水素化触媒及び/又は重合触媒を反応溶液から除去した後、得られた溶液からブロック共重合体水素化物[D]を回収することができる。回収されたブロック共重合体水素化物[D]の形態は限定されるものではないが、通常はペレット形状にして、その後のシートの成形加工や変性反応に供することができる。
 ブロック共重合体水素化物[D]の分子量は、THFを溶媒としたGPCにより測定されるポリスチレン換算の重量平均分子量(Mw)で、通常40,000~200,000、好ましくは50,000~170,000、より好ましくは60,000~150,000である。また、ブロック共重合体水素化物[D]の分子量分布(Mw/Mn)は、好ましくは3以下、より好ましくは2以下、特に好ましくは1.5以下にする。Mw及びMw/Mnが上記範囲となるようにすると、成形したシートの耐熱性や機械的強度が良好である。
 ブロック共重合体[C]において、重合体ブロック[A]及び/又は重合体ブロック[B]が複数存在する際、重合体ブロック[A]の中で、重量平均分子量が最大の重合体ブロックの重量平均分子量をMw(A)max、重量平均分子量が最少の重合体ブロックの重量平均分子量をMw(A)minとし、重合体ブロック[B]の中で、重量平均分子量が最大の重合体ブロックの重量平均分子量をMw(B)max、重量平均分子量が最少の重合体ブロックの重量平均分子量をMw(B)minとしたとき、Mw(A)maxとMw(A)minとの比(Mw(A)max/Mw(A)min)、及びMw(B)maxとMw(B)minとの比(Mw(B)max/Mw(B)min)は、それぞれ5.0以下、好ましくは4.0以下、より好ましくは3.0以下である。Mw(A)maxとMw(A)minの比が5を超える場合は、ブロック共重合体水素化物[D]の弾性率が高くなるが、機械的強度が脆くなるおそれがある。
Mw(B)maxとMw(B)minの比が5を超える場合は、高温側のガラス転位温度Tgが低下し、耐熱性が低下する。
2.アルコキシシリル基を有する変性ブロック共重合体水素化物[E]
 本発明のアルコキシシリル基を有する変性ブロック共重合体水素化物(以下、変性ブロック共重合体水素化物[E]」ということがある。)は、前記のブロック共重合体水素化物[D]にアルコキシシリル基が導入されたものである。アルコキシシリル基を導入することにより、ガラス等の無機物や金属等に対する接着性が付与される。
 アルコキシシリル基としては、トリメトキシシリル基、トリエトキシシリル基、トリプロポキシシリル基等のトリアルコキシシリル基;メチルジメトキシシリル基、メチルジエトキシシリル基、エチルジメトキシシリル基、エチルジエトキシシリル基、プロピルジメトキシシリル基、プロピルジエトキシシリル基等のアルキルジアルコキシシリル基;ジメチルメトキシシリル基、ジメチルエトキシシリル基、ジエチルメトキシシリル基、ジエチルエトキシシリル基、ジプロピルメトキシシリル基、ジプロピルエトキシシリル基等のジアルキルアルコキシシリル基;フェニルジメトキシシリル基、フェニルジエトキシシリル基等のアリールジアルコキシシリル基;等が挙げられる。これらの中でも、製造原料の入手容易性等の観点から、トリアルコキシシル基、アルキルジアルコキシシリル基が好ましい。
  アルコキシシリル基は、上記ブロック共重合体水素化物[D]に直接結合していても、2価の有機基を介して結合していても良い。2価の有機基としては、メチレン基、エチレン基、プロピレン基、トリメチレン基等の炭素数1~10のアルキレン基;1,4-フェニレン基、1,4-ナフタレン基等の炭素数6~20のアリーレン基;-C(=O)-O-、-O-C(=O)-等のエステル基;-C(=O)-;及びこれらの組み合わせ;等が挙げられる。
  アルコキシシリル基の導入量は、通常、ブロック共重合体水素化物[D]の100重量部に対し、0.1~10重量部、好ましくは0.2~5重量部、より好ましくは0.3~3重量部である。アルコキシシリル基の導入量が少なすぎると、ガラス用接着シートとした場合にガラスとの接着性が不十分となり、アルコキシシリル基の導入量が多すぎると、微量の水分等で分解されたアルコキシシリル基同士の架橋度が高くなり、ガラスとの接着性が低下し易くなるという問題を生じる。
  アルコキシシリル基の導入量は、例えば、H-NMRスペクトル(導入量が少ない場合は積算回数を増やす)を測定し、該当するシグナルの面積比から算出することができる。
 変性ブロック共重合体水素化物[E]の製造方法は特に限定されない。変性ブロック共重合体水素化物[E]は、例えば、有機過酸化物の存在下に、ブロック共重合体水素化物[D]とエチレン性不飽和シラン化合物とを反応させることにより得ることができる。
 用いるエチレン性不飽和シラン化合物としては、有機過酸化物の存在下で、ブロック共重合体水素化物[D]とグラフト重合し、ブロック共重合体水素化物[D]にアルコキシシリル基を導入できるものであれば、特に限定されない。
 エチレン性不飽和シラン化合物としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン等のビニル基を有するアルコキシシラン;アリルトリメトキシシラン、アリルトリエトキシシラン等のアリル基を有するアルコキシシラン;p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン等のp-スチリル基を有するアルコキシシラン;3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン等の3-メタクリロキシプロピル基を有するアルコキシシラン;3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン等の3-アクリロキシプロピル基を有するアルコキシシラン;2-ノルボルネン-5-イルトリメトキシシラン等の2-ノルボルネン-5-イル基を有するアルコキシシラン;等が挙げられる。
 これらの中でも、得られる変性ブロック共重合体水素化物[E]の低吸湿性の観点から、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、p-スチリルトリメトキシシランが好ましい。これらのエチレン性不飽和シラン化合物は、1種単独で、あるいは2種以上を組み合わせて使用してもよい。
  エチレン性不飽和シラン化合物の使用量は、ブロック共重合体水素化物[D]の100重量部に対して、通常0.1~10重量部、好ましくは0.2~5重量部、より好ましくは0.3~3重量部である。
 用いる有機過酸化物としては、ラジカル反応開始剤として機能するものであれば、特に限定されず、例えば、ジベンゾイルパーオキシド、t-ブチルパーオキシアセテート、2,2-ジ-(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、t-ブチルクミルパーオキシド、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキセン-3、t-ブチルヒドロパーオキシド、t-ブチルパーオキシイソブチレート、ラウロイルパーオキシド、ジプロピオニルパーオキシド、p-メンタンハイドロパーオキサイド等が挙げられる。これらは、1種単独で、あるいは2種以上を組み合わせて使用してもよい。
 本発明においては、これらの中でも、1分間半減期温度が170~200℃のものが好ましい。具体的には、t-ブチルクミルパーオキシド、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキセン-3等が好適に用いられる。
有機過酸化物の使用量は、ブロック共重合体水素化物100重量部に対して、通常0.01~3.0重量部、好ましくは0.2~2.0重量部、より好ましくは0.3~1.0重量部である。
 有機過酸化物の存在下、ブロック共重合体水素化物[D]とエチレン性不飽和シラン化合物とを反応させる方法は、特に限定されないが、二軸混練機のような、連続して加熱混練及び押出しができる装置を用いる方法が好ましい。例えば、ブロック共重合体水素化物[D]、エチレン性不飽和シラン化合物及び有機過酸化物を含む混合物を、二軸混練機にてブロック共重合体水素化物[D]の溶融温度以上で加熱溶融させて、所望の時間混練することにより、目的物である変性ブロック共重合体水素化物[E]を得ることができる。
 加熱混練温度は、通常180~230℃、好ましくは190~210℃、より好ましくは200~210℃である。この温度範囲であれば、ブロック共重合体水素化物[D]が適度な溶融粘度を有するため、混練が容易であり、また、アルコキシシリル基が反応することなく維持されるため好ましい。
 加熱混練時間は、通常0.3~5分、好ましくは0.5~3分、より好ましくは0.7~2分程度である。混練時間は使用する有機過酸化物の通常80%以上、好ましくは90%以上、より好ましくは95%以上が分解するような時間となるように適宜決定することができる。有機過酸化物の分解する割合は、過酸化物の所定温度における半減期の数値により推算することができる。
 二軸混練機、短軸押出し機等の連続混練設備を使用する場合は、滞留時間が上記範囲になるようにして、連続的に混練、押出しをすればよい。
 変性ブロック共重合体水素化物[E]の分子量は、導入されるアルコキシシリル基の量が少ないため、原料として用いたブロック共重合体水素化物[D]の分子量と実質的には変わらない。一方、過酸化物の存在下で、エチレン性不飽和シラン化合物と反応させるため、重合体の架橋反応、切断反応が併発し、変性ブロック共重合体水素化物[E]の分子量分布の値は大きくなる。
 変性ブロック共重合体水素化物[E]の分子量は、THFを溶媒としたGPCにより測定されるポリスチレン換算の重量平均分子量(Mw)で、通常40,000~200,000、好ましくは50,000~150,000、より好ましくは60,000~100,000である。また、分子量分布(Mw/Mn)は、好ましくは3.5以下、より好ましくは2.5以下、特に好ましくは2.0以下である。Mw及びMw/Mnが上記範囲となるようにすると、変性ブロック共重合体水素化物[E]で成形したシートを中間膜として使用した合わせガラスの耐熱性や機械的強度が維持される。
(配合剤)
 本発明のブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]は、樹脂に一般的に配合される各種の配合剤を配合した樹脂組成物として用いることができる。好ましい配合剤としては、柔軟性、接着温度の低下及び金属との接着性等を調整するための軟化剤及び粘着付与剤;耐熱安定性、耐光安定性、加工性等を高めるための、酸化防止剤、紫外線吸収剤、光安定剤、及びブロッキング防止剤;等が挙げられる。
 軟化剤の具体例としては、ポリイソブチレン、ポリブテン、ポリ-4-メチルペンテン、ポリ-1-オクテン、エチレン・α-オレフィン共重合体等の低分子量体及びその水素化物;ポリイソプレン、ポリイソプレン-ブタジエン共重合体等の低分子量体及びその水素化物等が挙げられる。軟化剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 粘着付与剤の具体例としては、ロジン系樹脂;テルペン系樹脂;クマロン・インデン樹脂;スチレン系樹脂;脂肪族系、脂環族系又は芳香族系の石油樹脂;及びそれらの水素添加物等が挙げられる。これらの粘着付与剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 酸化防止剤、紫外線吸収剤、光安定剤、ブロッキング防止剤等は、それぞれ1種単独で、あるいは2種以上を組み合わせて用いることができる。酸化防止剤としては、リン系酸化防止剤、フェノ-ル系酸化防止剤、硫黄系酸化防止剤等が挙げられる。紫外線吸収剤としては、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、アクリロニトリル系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。光安定剤としてはヒンダードアミン系光安定剤が挙げられる。
 これら配合剤のトータルの配合量は、樹脂組成物全体に対して、通常0.01重量%~5重量&、好ましくは0.05重量%~3重量%である。
 ブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]に配合剤を添加する方法としては、特に限定されず、公知の方法が採用できる。例えば、二軸混錬機、ロール、ブラベンダー、押出機等でブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]を溶融状態にして、各種配合剤を添加し、混練する方法が挙げられる。
3.ブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]からなるシート
 本発明のブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]からなるシート(以下、シート[F]ということがある。)は、上記のブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]を溶融押出し成形等の方法によりシート状に成形されたものである。シート[F]の厚さは、通常、0.1~10mm、好ましくは0.2~5mm、より好ましくは0.3~2mmである。
 本発明のシート[F]は、通常、ブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]を、押出機によって溶融させて、当該押出機に取り付けられたTダイからフィルム状に押出し、押出されたシートを少なくとも1つの冷却ロールに密着させて成形して引き取る方法で成形されるものである。
 溶融押出し成形での成形条件は、使用するブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]の組成や分子量等に合わせて適宜選択される。
押出し機のシリンダー温度は、通常170~260℃、より好ましくは180~250℃の範囲で設定される。
シート引取り機の冷却ロールの温度は、通常50~200℃、好ましくは70~180℃の範囲で設定される。
 成形されたシート[F]は、ロール状に巻いたり、切断して枚葉にして、ガラス板や金属板の貼り合わせ用中間膜、制震材等に利用することができる。
 溶融押出しされるシート[F]の厚さは、適宜選定することができる。例えば、自動車用の合わせガラスに遮音性を付与する観点からは、中間膜の厚さは、通常0.2~2mm、好ましくは0.3~1.5mmである。この範囲にある場合、厚さ0.7~2.2mmの2枚のガラスを貼り合わせてコインシデンス効果を低減し、同時に経済性にも好ましい。
4.合わせガラス
 本発明の合わせガラスは、少なくとも2枚のガラス板の間に、本発明のブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]からなるシート[F]を介在させ、積層一体化させてなる合わせガラス(以下、合わせガラス[G]ということがある。)である。
 変性ブロック共重合体水素化物[E]からなるシート[F]は、ガラスとの強固な接着性を有するため、特別な接着剤を使用することなくガラス板と貼り合わせることができる。
 ブロック共重合体水素化物[D]からなるシート[F]は、ガラスに対する接着性は弱いため、接着剤を介してガラス板と貼り合わせることが望ましい。接着剤としては本発明の変性ブロック共重合体水素化物[E]が好ましいが、本発明の変性ブロック共重合体水素化物[E]以外の、例えばWO2012/043708号パンフレット、WO2013/176258号パンフレット等に記載されている変性ブロック共重合体水素化物等も好ましく使用できる。
  本発明の合わせガラスは、少なくとも、第1のガラス板、ブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]からなるシート[F]、及び第2のガラス板の順に積層してなる合わせガラスである。また、ガラス板とブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]からなるシート[F]の間に接着剤層が有っても良い。
 好ましい層構成は、ガラス/変性ブロック共重合体水素化物[E]/ガラス、ガラス/ブロック共重合体水素化物[D]/ガラス、ガラス/変性ブロック共重合体水素化物[E]/ブロック共重合体水素化物[D]/変性ブロック共重合体水素化物[E]/ガラス、ガラス/接着剤層/ブロック共重合体水素化物[D]/接着剤層/ガラス、ガラス/接着剤層/変性ブロック共重合体水素化物[E]/接着剤層/ガラス、ガラス/変性ブロック共重合体水素化物(ソフトセグメントに由来するTgが-50℃付近であるもの)/ブロック共重合体水素化物[D]/変性ブロック共重合体水素化物(ソフトセグメントに由来するTgが-50℃付近であるもの)/ガラス、等である。ここで、「-50℃付近」は、-55℃から-45℃の温度を意味する。
 本発明の合わせガラスにおいて、用いる第1のガラス板と第2のガラス板同士は、厚みや材質等が互いに同一であっても、相異なっていてもよい。
使用するガラス板の厚みは特に限定されないが、通常0.5~4mm、好ましくは0.7~3mm、より好ましくは1.0~2.5mmである。また例えば、厚さ1.0mmのガラス板(第1のガラス板)/変性ブロック共重合体水素化物[E]/厚さ0.7mmの薄膜ガラス板(第2のガラス板)のように、異なる厚みのガラス板を使用することもできる。
 使用するガラス板の材質は特に限定されない。例えば、アルミノシリケート酸ガラス、アルミノホウケイ酸ガラス、ウランガラス、カリガラス、ケイ酸ガラス、結晶化ガラス、ゲルマニウムガラス、石英ガラス、ソーダガラス、鉛ガラス、バリウム瑚珪酸ガラス、瑚珪酸ガラス等が挙げられる。
  本発明の合わせガラスを製造するには、少なくとも、第1のガラス板、ブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]からなるシート[F]、第2のガラス板をこの順に重ねて積層物を得、このものを減圧可能な耐熱性の樹脂製袋に入れて脱気後、オートクレーブを使用して、加熱加圧下で接着させる方法;前記積層物を真空ラミネータを用いて加熱減圧下で接着させる方法;等が適用できる。
  本発明の合わせガラスは、吸湿性及び透湿性が小さいブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]からなる中間膜を使用することを特徴とする。従って、合わせガラス端面の遮水処理を施すことなく、高温高湿度環境下で使用した場合であっても、ガラスと中間膜の界面の剥離や白化する等の不具合が発生することが少ない。
 本発明の合わせガラスは、自動車の窓ガラス、建築物の窓ガラス、屋根用ガラス、部屋用遮音仕切り壁、自動車のリヤガラスやサンルーフ用ガラス、鉄道車両や船舶用の窓ガラス等として有用である。
 以下に、本発明を実施例によりさらに詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。なお部及び%は特に断りのない限り重量基準である。
 本実施例における評価は、以下の方法によって行う。
(1)重量平均分子量(Mw)及び分子量分布(Mw/Mn)
 ブロック共重合体及びブロック共重合体水素化物の分子量は、テトラヒドロフランを溶離液とするゲルパーミエーションクロマトグラフィ(GPC)による標準ポリスチレン換算値として、38℃において測定した。
 測定装置として、東ソー社製、HLC8020GPCを用いた。
(2)重合体ブロック[B]中の鎖状共役ジエン化合物由来の構造単位の内、1,2-および3,4-付加重合由来の構造単位の割合
 重合体ブロック[B]中の鎖状共役ジエン化合物由来の構造単位の内、1,2-および3,4-付加重合由来の構造単位の割合は、ブロック共重合体[C]のH-NMRスペクトル(重クロロホルム中)から、ポリマー主鎖にある炭素-炭素不飽和結合部の炭素に結合したHと、ポリマー側鎖にある炭素-炭素不飽和結合部の炭素に結合したHの比率から算出した。
(3)水素化率
 ブロック共重合体水素化物[D]の水素化率は、前駆体であるブロック共重合体[C]の芳香族ビニル化合物由来の繰り返し単位に含まれる芳香環の炭素-炭素不飽和結合及び鎖状共役ジエン由来の繰り返し単位に含まれる炭素-炭素不飽和結合の合計に対して水素化された炭素-炭素結合の割合である。
ブロック共重合体水素化物[D]の水素化率は、H-NMRスペクトル又はGPC分析により算出される。水素化率99%以下の領域は、H-NMRスペクトルを測定して算出し、99%を超える領域は、GPC分析により、UV検出器とRI検出器によるピーク面積の比率から算出した。
(4)ガラス転移温度(Tg)
 ブロック共重合体水素化物[D]又は変性ブロック共重合体水素化物[E]をプレス成形して、長さ50mm、幅10mm、厚さ1mmの試験片を作製した。この試験片を用いて、JIS-K7244-4法に基づき、粘弾性測定装置(ティー・エイ・インスツルメント・ジャパン社製、ARES)を使用して、-100℃から+150℃の範囲で、昇温速度5℃/分で動的粘弾性特性を測定した。損失正接tanδの低温側のピークトップ温度から、ソフトセグメントに由来するガラス転移温度Tg、高温側のピークトップ温度から、ハードセグメントに由来するガラス転移温度Tgを求めた。
(5)遮音性
 ブロック共重合体水素化物[D]又は変性ブロック共重合体水素化物[E]を押出し成形して得られたシートから、長さ300mm、幅25mmの試験片を切り出した。この試験片を用いて、長さ300mm、幅25mm、厚さ1.2mmの2枚の青板ガラスの間に、1枚もしくは多数枚の試験片を挟持させて音響透過損失測定用の合わせガラス試験片を作製した。
 この合わせガラス試験片を用いて、JIS-K7391法に基づき、振動減衰試験装置(リオン社製)を使用して、中央加振法により周波数に対応した損失係数を測定した。ここで求めた損失係数と、合わせガラス試験片の共振周波数との比から、周波数に対応した音響透過損失を求めた。
 遮音性は、合わせガラス試験片が、周波数2000~4000Hzの範囲で音響透過損失の値が35dBを下まわる領域が無い場合を○(良好)、35dBを下まわる領域が有る場合を×(不良)と評価した。
(6)耐熱性
 ブロック共重合体水素化物[D]又は変性ブロック共重合体水素化物[E]を押出し成形して得られたシートから、長さ300mm、幅300mmの試験片を切り出した。この試験片を用いて、長さ300mm、幅300mm、厚さ1.2mmの2枚の青板ガラスの間に、1枚もしくは多数枚の試験片を挟持させて合わせガラス試験片を作製した。
 この合わせガラス試験片を用いて、JIS-R3212法に準じて、沸騰水中(100℃)で、鉛直の状態に浸漬し、2時間保持した後、外観変化の目視評価を行った。
合わせガラスの耐熱性は、合わせガラス試験片に、ひび割れ、気泡、変色、その他欠点が認められない場合を○(良好)、合わせガラス試験片にひび割れ、気泡、変色、その他欠点のいずれかの変化がある場合を×(不良)と評価した。
[実施例1] ブロック共重合体水素化物[D1]の製造
 攪拌装置を備え、内部が充分に窒素置換された反応器に、脱水シクロヘキサン270部、エチレングリコールジブチルエーテル0.53部を入れ、さらに、n-ブチルリチウム(15%シクロヘキサン溶液)0.47部を加えた。全容を60℃で攪拌しながら、脱水スチレン12.5部を40分間に亘って連続的に反応器内に添加した。添加終了後、そのままさらに60℃で20分間全容を攪拌した。反応液をガスクロマトグラフィーにより測定したところ、この時点での重合転化率は99.5%であった。
次に、脱水したイソプレン75.0部を、反応液に100分間に亘って連続的に添加し、添加終了後そのまま20分間攪拌を続けた。この時点での重合転化率は99.5%であった。
 その後、更に、脱水スチレン12.5部を、60分間に亘って連続的に添加し、添加終了後そのまま全容を30分間攪拌した。この時点での重合転化率はほぼ100%であった。
 ここで、反応液にイソプロピルアルコール0.5部を加えて反応を停止させた。得られたブロック共重合体[C1]の重量平均分子量(Mw)は84,500、分子量分布(Mw/Mn)は1.03、wA:wB=25:75、全イソプレン由来の構造単位の内、1,2-および3,4-付加重合由来の構造単位の割合は58%であった。
 次に、上記重合体溶液を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒として珪藻土担持型ニッケル触媒(日揮触媒化成社製、製品名「製品名「E22U」、ニッケル担持量60%)7.0部、及び脱水シクロヘキサン80部を添加して混合した。反応器内部を水素ガスで置換し、さらに溶液を攪拌しながら水素を供給し、温度190℃、圧力4.5MPaにて6時間水素化反応を行った。水素化反応後のブロック共重合体水素化物[D1]の重量平均分子量(Mw)は89,300、分子量分布(Mw/Mn)は1.04であった。
 水素化反応終了後、反応溶液をろ過して水素化触媒を除去した後、ろ液に、フェノール系酸化防止剤であるペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](コーヨ化学研究所社製、製品名「Songnox1010」)0.1部を溶解したキシレン溶液1.0部を添加して溶解させた。
  次いで、上記溶液を、円筒型濃縮乾燥器(日立製作所社製、コントロ)を用いて、温度260℃、圧力0.001MPa以下で、溶液から溶媒であるシクロヘキサン、キシレン及びその他の揮発成分を除去した。連続して溶融ポリマーをダイからストランド状に押出し、冷却後、ペレタイザーによりブロック共重合体水素化物[D1]のペレット93部を得た。得られたペレット状のブロック共重合体水素化物[D1]の重量平均分子量(Mw)は88,400、分子量分布(Mw/Mn)は1.05、水素化率はほぼ100%であった。
 ブロック共重合体水素化物[D1]の成形体は、無色透明で、Tgは-6℃、Tgは109℃であった。ブロック共重合体水素化物[D1]の組成及び物性値を表1に記載した。
[実施例2]ブロック共重合体水素化物[D2]の製造
 エチレングリコールジブチルエーテルの量を0.61部、n-ブチルリチウム(15%シクロヘキサン溶液)の量を0.45部とする以外は、実施例1と同様にして重合を行った。
 重合反応終了後の重合転化率はほぼ100%であった。得られたブロック共重合体[C2]の重量平均分子量(Mw)は88,200、分子量分布(Mw/Mn)は1.03、wA:wB=25:75、全イソプレン由来の構造単位の内、1,2-および3,4-付加重合由来の構造単位の割合は65%であった。
 次に、上記重合体の溶液を、実施例1と同様にして水素化反応を行った。その後、実施例1と同様にして、ブロック共重合体水素化物[D2]のペレット95部を得た。得られたブロック共重合体水素化物[D2]の重量平均分子量(Mw)は92,400、分子量分布(Mw/Mn)は1.05、水素化率はほぼ100%であった。
 ブロック共重合体水素化物[D2]の成形体は、無色透明で、Tgは2℃、Tgは111℃であった。ブロック共重合体水素化物[D2]の組成及び物性値を表1に記載した。
[実施例3]ブロック共重合体水素化物[D3]の製造
 エチレングリコールジブチルエーテルの量を0.55部、n-ブチルリチウム(15%シクロヘキサン溶液)の量を0.55部とし、重合に供するモノマーを、スチレン15部、イソプレン70部、スチレン15部とする以外は、実施例1と同様にして重合を行った。
 重合反応終了後の重合転化率はほぼ100%であった。得られたブロック共重合体[C3]の重量平均分子量(Mw)は72,700、分子量分布(Mw/Mn)は1.03、wA:wB=30:70、全イソプレン由来の構造単位の内、1,2-および3,4-付加重合由来の構造単位の割合は50%であった。
 次に、上記重合体の溶液を、実施例1と同様にして水素化反応を行った。その後、実施例1と同様にして、ブロック共重合体水素化物[D3]のペレット94部を得た。得られたブロック共重合体水素化物[D3]の重量平均分子量(Mw)は76,100、分子量分布(Mw/Mn)は1.05、水素化率はほぼ100%であった。
 ブロック共重合体水素化物[D3]の成形体は、無色透明で、Tgは-14℃、Tgは+115℃であった。
 ブロック共重合体水素化物[D3]の組成及び物性値を表1に記載した。
[実施例4]ブロック共重合体水素化物[D4]の製造
 エチレングリコールジブチルエーテルの量を0.68部、n-ブチルリチウム(15%シクロヘキサン溶液)の量を0.44部とし、重合に供するモノマーを、スチレン10部、イソプレン80部、スチレン10部とする以外は、実施例1と同様にして重合を行った。
 重合反応終了後の重合転化率はほぼ100%であった。得られたブロック共重合体[C4]の重量平均分子量(Mw)は89,600、分子量分布(Mw/Mn)は1.03、wA:wB=20:80、全イソプレン由来の構造単位の内、1,2-および3,4-付加重合由来の構造単位の割合は71%であった。
 次に、上記重合体の溶液を、実施例1と同様にして水素化反応を行った。その後、実施例1と同様にして、ブロック共重合体水素化物[D4]のペレット88部を得た。得られたブロック共重合体水素化物[D4]の重量平均分子量(Mw)は93,800、分子量分布(Mw/Mn)は1.05、水素化率はほぼ100%であった。
 ブロック共重合体水素化物[D4]の成形体は、無色透明で、Tgは9℃、Tgは104℃であった。ブロック共重合体水素化物[D4]の組成及び物性値を表1に記載した。
Figure JPOXMLDOC01-appb-T000001
[実施例5]変性ブロック共重合体水素化物[E1]の製造
 実施例1で製造したブロック共重合体水素化物[D1]のペレット100部に対して、ビニルトリメトキシシラン2.0部及びジ-t-ブチルパーオキサイド(日油社製、パーブチルD、半減期が1分となる温度:185.9℃)0.2部を添加し、ブレンダーで混合した。この混合物を、二軸押出機(東芝機械社製、TEM37B)を用いて、樹脂温度210℃で、滞留時間が約80秒となるように制御して連続的に混練した。混練した樹脂は、二軸押出機に取り付けたダイを通して、ダイ温度220℃で連続的に押出し、直径約2.2mmのストランド状にして、空冷して固化した。固化したストランドは、ペレタイザーによりカッティングし、トリメトキシシリル基を有する変性ブロック共重合体水素化物[E1]のペレット96部を得た。
 得られた変性ブロック共重合体水素化物[E1]のペレットの表面のATR法によるIRスペクトルを、赤外分光装置(Thermo  Fisher  Scienthific社製、iS5)を使用して測定した。IRスペクトルには、1090cm-1にSi-OCH基、825cm-1と739cm-1にSi-CH基に由来する新たな吸収帯が、ビニルトリメトキシシランのそれらの1075cm-1、808cm-1、及び766cm-1と異なる位置に観察された。
 変性ブロック共重合体水素化物[E1]のペレット10部をシクロヘキサン100部に溶解させた後、このものを脱水したメタノール400部中に注いで変性ブロック共重合体水素化物[E1]を凝固させた。凝固物を濾取し、25℃で真空乾燥して変性ブロック共重合体水素化物[E1]のクラム9.5部を単離した。単離したクラムのH-NMRスペクトル(重クロロホルム中)では3.6ppmにメトキシ基のプロトンに基づく吸収帯が観察され、ピーク面積比からブロック共重合体水素化物[D1]の100部に対してビニルトリメトキシシラン1.9部が結合したものであることが確認された。
 変性ブロック共重合体水素化物[E1]の成形体は、無色透明で、Tgは-5℃、Tgは102℃であった。
[参考例1] ブロック共重合体水素化物[D5]の製造
 エチレングリコールジブチルエーテルに代えてジブチルエーテルを使用し、ジブチルエーテルを0.58部、n-ブチルリチウム(15%シクロヘキサン溶液)の量を0.43部とする以外は、実施例1と同様にして重合を行った。
 重合反応終了後の重合転化率はほぼ100%であった。得られたブロック共重合体[C5]の重量平均分子量(Mw)は92,300、分子量分布(Mw/Mn)は1.03、wA:wB=25:75、全イソプレン由来の構造単位の内、1,2-および3,4-付加重合由来の構造単位の割合は9%であった。
 次に、上記重合体の溶液を、実施例1と同様にして水素化反応を行った。その後、実施例1と同様にして、ブロック共重合体水素化物[D5]のペレット91部を得た。得られたブロック共重合体水素化物[D5]の重量平均分子量(Mw)は96,700、分子量分布(Mw/Mn)は1.05、水素化率はほぼ100%であった。
 ブロック共重合体水素化物[D5]の成形体は、無色透明で、Tgは-50℃、Tgは110℃であった。
[参考例2] ブロック共重合体水素化物[D6]の製造
 エチレングリコールジブチルエーテルに代えてジブチルエーテルを使用し、ジブチルエーテルを0.58部、n-ブチルリチウム(15%シクロヘキサン溶液)の量を0.65部、重合に供するモノマーを、スチレン25部、イソプレン50部、スチレン25部とする以外は、実施例1と同様にして重合を行った。
 重合反応終了後の重合転化率はほぼ100%であった。得られたブロック共重合体[C6]の重量平均分子量(Mw)は63,300、分子量分布(Mw/Mn)は1.03、wA:wB=50:50、全イソプレン由来の構造単位の内、1,2-および3,4-付加重合由来の構造単位の割合は9%であった。
 次に、上記重合体の溶液を、実施例1と同様にして水素化反応を行った。その後、実施例1と同様にして、ブロック共重合体水素化物[D6]のペレット96部を得た。得られたブロック共重合体水素化物[D6]の重量平均分子量(Mw)は66,300、分子量分布(Mw/Mn)は1.05、水素化率はほぼ100%であった。
 ブロック共重合体水素化物[D6]の成形体は、無色透明で、Tgは-50℃、Tgは137℃であった。
[参考例3] 変性ブロック共重合体水素化物[E6]の製造
 参考例2で製造したブロック共重合体水素化物[D6]のペレットを使用して、実施例5と同様にしてトリメトキシシリル基が導入されてなる変性ブロック共重合体水素化物[E6]のペレット96部を得た。
 得られた変性ブロック共重合体水素化物[E6]のペレットの表面のATR法によるIRスペクトルには、1090cm-1にSi-OCH基、825cm-1と739cm-1にSi-CH基に由来する新たな吸収帯が、観察され、また、実施例5と同様に分析した結果、ブロック共重合体水素化物[D6]の100部に対して、ビニルトリメトキシシラン1.8部が結合したものであることが確認された。
 変性ブロック共重合体水素化物[E6]の成形体は、無色透明で、Tgは-49℃、Tgは129℃であった。
[参考例4] ブロック共重合体水素化物[D1]からなるシート[D1F]の作製
 実施例1で作製したブロック共重合体水素化物[D1]のペレットを、40mmφのスクリューを備えた押出し機を有するTダイ式フィルム溶融押出し成形機(Tダイ幅600mm)、キャストロール(エンボスパターン付き)、及びシート引き取り装置を備えた押出しシート成形機を使用して、溶融樹脂温度230℃、Tダイ温度230℃、キャストロール温度40℃の成形条件にて押出し成形し、ブロック共重合体水素化物[D1]からなるシート[D1F300](厚さ300μm、幅500mm)を成形した。得られたシート[D1F]は厚さ25μmのPETフィルムと共にロールに巻き取り回収した。
[参考例5] ブロック共重合体水素化物[D2]~[D6]、変性ブロック共重合体水素化物[E1]及び[E6]からなるシートの作製
 実施例2~4及び参考例1~2で作製したブロック共重合体水素化物[D2]~[D6]のペレット、実施例5で作製した変性ブロック共重合体水素化物[E1]のペレット及び参考例3で作製した変性ブロック共重合体水素化物[E6]を使用し、参考例4で使用したのと同様のシート成形機を使用し、溶融樹脂温度210~230℃、Tダイ温度210~230℃、キャストロール温度40~60℃の成形条件で、参考例4と同様にして、厚さ300μm、幅500mmのシート[D2F300]、[D3F300]、[D4F300]、[D5F300]、[D6F300]、[E1F300]、[E6F300]、及び、厚さ80μm、幅500mmのシート[E6F80]を成形し、厚さ25μmのPETフィルムと共にロールに巻き取り回収した。
[参考例6] 鎖状共役ジエン化合物由来の単量体単位から成る重合体ブロック[B]のみを選択的に水素化したブロック共重合体水素化物[H1]からなるシートの作製
 スチレン-イソプレン-スチレンブロック共重合体の選択的水素化物[H1](製品名:セプトン 2007、クラレ社製、スチレン含有量:30%、Tg:-53℃、Tg:79℃)のペレットを使用し、参考例4で使用したのと同様のシート成形機を使用し、溶融樹脂温度230℃、Tダイ温度230℃、キャストロール温度40℃の成形条件で、参考例4と同様にして、厚さ300μm、幅500mmのシート[H1F300]を成形し、厚さ25μmのPETフィルムと共にロールに巻き取り回収した。
[実施例6]
 2枚の青板ガラス(厚さ1.2mm、長さ300mm、幅25mm)板の間に、参考例5で成形した変性ブロック共重合体水素化物[E6]から成るシート[E6F80]2枚、及び、参考例4で成形したブロック共重合体水素化物[D1]からなるシート[D1F300]2枚を、ガラス/[E6F80]/[D1F300]/[D1F300]/[E6F80]/ガラスの順に積層した。
 この積層物を、NY/接着層/PPの層構成を有する厚み75μmの樹脂製の袋に入れた。袋の開口部の中央部を200mm幅残して両側をヒートシーラーでヒートシールした後、密封パック器(BH-951、パナソニック社製)を使用して、袋内を脱気しながら開口部をヒートシールして積層物を密封包装した。樹脂製の袋は、積層物の形状に追従して密着していた。その後、密封包装した積層物をオートクレーブに入れて、30分間、温度140℃、圧力0.8MPaで加熱加圧し、音響透過損失測定用の合わせガラス試験片を作製した。
 この試験片を用いて温度20℃で、周波数125~5000Hzの範囲で測定した音響透過損失のデータを図1に示した。周波数2000~4000Hzの範囲では、音響透過損失が35dBを下まわる領域はなく、評価は○(良好)であった。結果を表2に示した。
 音響透過損失測定用試験片の作製と同様にして、2枚の青板ガラス(厚さ1.2mm、長さ300mm、幅300mm)板の間に、参考例5で成形した変性ブロック共重合体水素化物[E6]から成るシート[E6F80]2枚、及び、参考例4で成形したブロック共重合体水素化物[D1]からなるシート[D1F300]2枚を、ガラス/[E6F80]/[D1F300]/[D1F300]/[E6F80]/ガラスの順に積層し、耐熱性評価用の合わせガラス試験片を作製した。
 この合わせガラス試験片を、沸騰水中(100℃)で2時間保持した後、外観変化の目視評価を行ったが、ひび割れ、気泡、変色、その他欠点は認められず、耐熱性の評価は○(良好)であった。結果を表2に示した。
[実施例7~10]
 ブロック共重合体水素化物[D2]~[D4]で成形したシート[D2F300]~[D4F300]、変性ブロック共重合体水素化物[E6]で成形したシート[E6F80]を使用し、表2に示した中間膜の層構成で、実施例6と同様にして合わせガラス試験片を作製した。
 これらの試験片を用いて測定した周波数に対する音響透過損失のデータを図1に示した。実施例7~10の合わせガラス試験片は、周波数2000~4000Hzの範囲では、音響透過損失が35dBを下まわる領域はなく、評価は○(良好)であった。また、合せガラス試験片の耐熱性試験でも、ひび割れ、気泡、変色、その他欠点は認められず、評価は○(良好)であった。これらの結果を表2に示した。
[比較例1]
 ブロック共重合体水素化物[D5]で成形したシート[D5F300]、変性ブロック共重合体水素化物[E6]で成形したシート[E6F80]を使用し、表2に示した中間膜の層構成で、実施例6と同様にして合わせガラス試験片を作製した。
 得られた試験片を用いて測定した周波数に対する音響透過損失のデータを図1に示した。比較例1の合わせガラス試験片は、周波数2000~4000Hzの範囲に、コインシデンス効果による音響透過損失が35dBを下まわる領域が観察され、評価は×(不良)であった。
 合せガラス試験片の耐熱性試験では、ひび割れ、気泡、変色、その他欠点は認められず、評価は○(良好)であった。これらの結果を表2に示した。
[比較例2]
 ブロック共重合体の選択的水素化物[H1]で成形したシート[H1F300]、変性ブロック共重合体水素化物[E6]で成形したシート[E6F80]を使用し、表2に示した中間膜の層構成で、実施例6と同様にして合わせガラス試験片を作製した。
得られた試験片を用いて測定した周波数に対する音響透過損失のデータを図1に示した。比較例2の合わせガラス試験片は、周波数2000~4000Hzの範囲に、コインシデンス効果による音響透過損失が35dBを下まわる領域が観察され、評価は×(不良)であった。
合せガラス試験片の耐熱性試験では、ひび割れ、気泡、変色は認められなかったが、中間膜を介して貼り合わせた2枚のガラスに位置ずれが生じており、評価は×(不良)であった。これらの結果を表2に示した。
[比較例3]
 ブロック共重合体水素化物[D6]で成形したシート[D6F300]、変性ブロック共重合体水素化物[E6]で成形したシート[E6F80]を使用し、表2に示した中間膜の層構成で、実施例6と同様にして合わせガラス試験片を作製した。
得られた試験片を用いて測定した周波数に対する音響透過損失のデータを図1に示した。比較例3の合わせガラス試験片は、周波数2000~4000Hzの範囲に、コインシデンス効果による音響透過損失が35dBを下まわる領域が観察され、評価は×(不良)であった。
合わせガラス試験片の耐熱性試験では、ひび割れ、気泡、変色、その他欠点は認められず、評価は○(良好)であった。これらの結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 また、得られた試験片を用いて測定した周波数に対する音響透過損失のデータを図1に示した。図1中、周波数125~2000Hz付近までは、実施例6~10、比較例1~3のデータがほぼ同じ値を示している。
 実施例及び比較例の結果から以下のことがわかる。
 芳香族ビニル化合物由来の単量体単位を主成分とする重合体ブロック[A]の2つ以上と、鎖状共役ジエン化合物由来の単量体単位を主成分とする重合体ブロック[B]の1つ以上とからなるブロック共重合体[C]を水素化したブロック共重合体水素化物[D]において、重合体ブロック[B]中の鎖状共役ジエン化合物由来の単量体単位にビニル結合により重合した単量体単位を導入することにより、動的粘弾性特性における低温側のtanδのピーク温度(ソフトセグメントの由来するガラス転位温度Tg)を-20~20℃にし、高温側のtanδのピーク温度(ハードセグメントの由来するガラス転位温度Tg)を100℃以上に制御することができる。(実施例1~4)
ソフトセグメントに由来する低温側のTgが-20℃以下で、-20~20℃の範囲にtanδのピークを持たないブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]から成る中間膜を使用した合わせガラス(比較例1~3)では、周波数2000~4000Hzの範囲にコインシデンス効果による音響透過損失の低下する領域があり、遮音性が劣る。
 芳香環の炭素-炭素不飽和結合が水素化されていないブロック共重合体の選択的水素化物は、ハードセグメントに由来する高温側のTgが100℃に満たず、これを中間膜に使用した場合(比較例2)は、自動車合わせガラスに要求される耐熱試験の温度100℃で、十分な耐熱性を維持していない。
 動的粘弾性特性における低温側のtanδのピーク温度、即ち、ソフトセグメントに由来するTgが-20~20℃の範囲にあるブロック共重合体水素化物[D]及び/又は変性ブロック共重合体水素化物[E]から成る中間膜を使用した合わせガラス(実施例6~10)では、周波数2000~4000Hzの範囲のコインシデンス効果を低減して音響透過損失の低下を抑止する効果があり、遮音性が改善される。
 本発明の特定のブロック共重合体水素化物は、それから成るシートを合わせガラス用中間膜として使用することにより遮音性に優れた合わせガラスを提供することができるため、工業的に有用である。 

Claims (3)

  1.  芳香族ビニル化合物由来の単量体単位を主成分とする重合体ブロック[A]の2つ以上と、鎖状共役ジエン化合物由来の単量体単位を主成分とする重合体ブロック[B]の1つ以上とからなるブロック共重合体[C]を水素化したブロック共重合体水素化物[D]であって、
    動的粘弾性特性における低温側のtanδのピーク温度が-20~20℃にあり、かつ、高温側のtanδのピーク温度が100℃以上であることを特徴とするブロック共重合体水素化物[D]。
     該ブロック共重合体水素化物[D]は、重合体ブロック[A]の全量がブロック共重合体全体[C]に占める重量分率をwAとし、重合体ブロック[B]の全量がブロック共重合体全体[C]に占める重量分率をwBとしたときに、wAとwBとの比(wA:wB)が15:85~40:60であり、
    重合体ブロック[B]中の鎖状共役ジエン化合物由来の構造単位の内、1,2-および3,4-付加重合由来の構造単位の含有割合が40重量%以上であるブロック共重合体[C]の、主鎖及び側鎖の炭素-炭素不飽和結合、並びに、芳香環の炭素-炭素不飽和結合の全不飽和結合の90%以上が水素化されたものであり、かつ、
    重量平均分子量が40,000~200,000のものである。
  2.  請求項1記載のブロック共重合体水素化物[D]にアルコキシシリル基が導入されてなる変性ブロック共重合体水素化物[E]。
  3. ガラス板の間に、請求項1記載のブロック共重合体水素化物[D]及び/又は請求項2記載の変性ブロック共重合体水素化物[E]からなるシートの少なくとも1枚を中間膜として介在させ、当該ガラス板を接着一体化してなることを特徴とする合わせガラス。
PCT/JP2015/086316 2014-12-25 2015-12-25 ブロック共重合体水素化物および合わせガラス WO2016104740A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016566536A JP6690552B2 (ja) 2014-12-25 2015-12-25 ブロック共重合体水素化物および合わせガラス
EP15873308.9A EP3239181A4 (en) 2014-12-25 2015-12-25 Block copolymer hydride and laminated glass
US15/537,431 US20180171057A1 (en) 2014-12-25 2015-12-25 Hydrogenated block copolymer and laminated glass
CN201580068105.3A CN107001489B (zh) 2014-12-25 2015-12-25 嵌段共聚物氢化物及夹层玻璃

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014263364 2014-12-25
JP2014-263364 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016104740A1 true WO2016104740A1 (ja) 2016-06-30

Family

ID=56150752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086316 WO2016104740A1 (ja) 2014-12-25 2015-12-25 ブロック共重合体水素化物および合わせガラス

Country Status (5)

Country Link
US (1) US20180171057A1 (ja)
EP (1) EP3239181A4 (ja)
JP (1) JP6690552B2 (ja)
CN (1) CN107001489B (ja)
WO (1) WO2016104740A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062192A1 (ja) * 2016-09-27 2018-04-05 株式会社クラレ 樹脂組成物、ペレット、ベール、制振材、遮音材および合わせガラス用中間膜
WO2018097146A1 (ja) 2016-11-24 2018-05-31 日本ゼオン株式会社 接着剤シート及び合わせガラス
WO2018180427A1 (ja) 2017-03-29 2018-10-04 日本ゼオン株式会社 樹脂組成物、並びに、成形体およびその製造方法
CN110062748A (zh) * 2016-12-22 2019-07-26 日本瑞翁株式会社 夹层玻璃
JP2019532898A (ja) * 2016-10-19 2019-11-14 ソルティア・インコーポレーテッド 高い中間膜厚さ係数を有する遮音パネル
JPWO2018212331A1 (ja) * 2017-05-19 2020-03-26 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JPWO2020009064A1 (ja) * 2018-07-05 2021-08-02 日本ゼオン株式会社 積層体および合わせガラス
US11396162B2 (en) 2017-05-19 2022-07-26 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, and laminated glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112154160B (zh) * 2018-05-31 2023-10-31 株式会社可乐丽 改性加氢物及其制造方法、树脂组合物、以及它们的各种用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176258A1 (ja) * 2012-05-25 2013-11-28 日本ゼオン株式会社 合わせガラス、及びブロック共重合体水素化物を合わせガラスの接着剤として使用する方法
JP2014024936A (ja) * 2012-07-26 2014-02-06 Nippon Zeon Co Ltd 繊維状無機充填剤含有樹脂組成物
WO2014077267A1 (ja) * 2012-11-15 2014-05-22 日本ゼオン株式会社 樹脂組成物およびそれからなる成形体
WO2014091941A1 (ja) * 2012-12-10 2014-06-19 日本ゼオン株式会社 有機エレクトロニクスデバイス封止用樹脂組成物、及び有機エレクトロニクスデバイス

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2050620B1 (es) * 1992-11-03 1994-12-16 Repsol Quimica Sa Procedimiento de hidrogenacion en disolucion de los dobles enlaces de polimeros de dienos conjugados y copolimero bloque hidrogenado producido.
JP3381488B2 (ja) * 1995-11-06 2003-02-24 三菱化学株式会社 熱可塑性エラストマー組成物及び複合成形体
JP4475367B2 (ja) * 2000-03-01 2010-06-09 Jsr株式会社 共役ジエン系ブロック共重合体およびその水添物の製造法
DE50207732D1 (de) * 2001-05-18 2006-09-14 Basf Ag Kernhydrierte blockcopolymere mit assymetrischem aufbau
US20040260028A1 (en) * 2001-08-22 2004-12-23 Atsushi Sone Block copolymer, process for producing the same, and molded object
CN102575083B (zh) * 2009-09-30 2016-01-20 可乐丽股份有限公司 热塑性弹性体组合物、成型体及医疗用密封材料
WO2012026501A1 (ja) * 2010-08-27 2012-03-01 株式会社クラレ 熱可塑性重合体組成物および成形品
JPWO2013125628A1 (ja) * 2012-02-23 2015-07-30 Jsr株式会社 樹脂組成物、及び水添共役ジエンブロック共重合体の製造方法
WO2014194155A1 (en) * 2013-05-31 2014-12-04 Polyone Corporation Vibration damping thermoplastic elastomer with hot creep resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176258A1 (ja) * 2012-05-25 2013-11-28 日本ゼオン株式会社 合わせガラス、及びブロック共重合体水素化物を合わせガラスの接着剤として使用する方法
JP2014024936A (ja) * 2012-07-26 2014-02-06 Nippon Zeon Co Ltd 繊維状無機充填剤含有樹脂組成物
WO2014077267A1 (ja) * 2012-11-15 2014-05-22 日本ゼオン株式会社 樹脂組成物およびそれからなる成形体
WO2014091941A1 (ja) * 2012-12-10 2014-06-19 日本ゼオン株式会社 有機エレクトロニクスデバイス封止用樹脂組成物、及び有機エレクトロニクスデバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3239181A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6313918B1 (ja) * 2016-09-27 2018-04-18 株式会社クラレ 樹脂組成物、ペレット、ベール、制振材、遮音材および合わせガラス用中間膜
US10913843B2 (en) 2016-09-27 2021-02-09 Kuraray Co., Ltd. Resin composition, pellet, veil, damping material, sound insulation material, and intermediate film for laminated glass
WO2018062192A1 (ja) * 2016-09-27 2018-04-05 株式会社クラレ 樹脂組成物、ペレット、ベール、制振材、遮音材および合わせガラス用中間膜
JP2019532898A (ja) * 2016-10-19 2019-11-14 ソルティア・インコーポレーテッド 高い中間膜厚さ係数を有する遮音パネル
WO2018097146A1 (ja) 2016-11-24 2018-05-31 日本ゼオン株式会社 接着剤シート及び合わせガラス
EP3546538A4 (en) * 2016-11-24 2020-07-22 Zeon Corporation ADHESIVE SHEET, AND LAMINATED GLASS
CN110062748A (zh) * 2016-12-22 2019-07-26 日本瑞翁株式会社 夹层玻璃
JPWO2018116997A1 (ja) * 2016-12-22 2019-10-24 日本ゼオン株式会社 合わせガラス
EP3560901A4 (en) * 2016-12-22 2020-08-05 Zeon Corporation LAMINATED GLASS
JP7010241B2 (ja) 2016-12-22 2022-02-10 日本ゼオン株式会社 合わせガラス
CN110062748B (zh) * 2016-12-22 2022-05-13 日本瑞翁株式会社 夹层玻璃
WO2018180427A1 (ja) 2017-03-29 2018-10-04 日本ゼオン株式会社 樹脂組成物、並びに、成形体およびその製造方法
JPWO2018212331A1 (ja) * 2017-05-19 2020-03-26 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
EP3626690A4 (en) * 2017-05-19 2021-03-10 Sekisui Chemical Co., Ltd. INTERMEDIATE FILM FOR LAMINATED GLASS, AND LAMINATED GLASS
US11214043B2 (en) 2017-05-19 2022-01-04 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, and laminated glass
US11396162B2 (en) 2017-05-19 2022-07-26 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, and laminated glass
JPWO2020009064A1 (ja) * 2018-07-05 2021-08-02 日本ゼオン株式会社 積層体および合わせガラス
JP7259856B2 (ja) 2018-07-05 2023-04-18 日本ゼオン株式会社 積層体および合わせガラス

Also Published As

Publication number Publication date
US20180171057A1 (en) 2018-06-21
CN107001489B (zh) 2019-08-27
CN107001489A (zh) 2017-08-01
JP6690552B2 (ja) 2020-04-28
JPWO2016104740A1 (ja) 2017-10-05
EP3239181A4 (en) 2018-08-22
EP3239181A1 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6690552B2 (ja) ブロック共重合体水素化物および合わせガラス
JP6065221B2 (ja) 合わせガラス板
JP5510622B1 (ja) 合わせガラス、及びブロック共重合体水素化物を合わせガラスの接着剤として使用する方法
JP2017081775A (ja) 合わせガラス
WO2018097146A1 (ja) 接着剤シート及び合わせガラス
JP2017171575A (ja) 合わせガラス
JP2015078090A (ja) 合わせガラス
JP6658743B2 (ja) 合わせガラス
JPWO2018180427A1 (ja) 樹脂組成物、並びに、成形体およびその製造方法
US20190203086A1 (en) Method for producing adhesive sheet
JPWO2020175339A1 (ja) 合わせガラス用中間膜およびその製造方法、並びに、合わせガラス
US11247538B2 (en) Laminated glass
JP6435733B2 (ja) 変性ブロック共重合体水素化物の製造方法
JPWO2019044267A1 (ja) 合わせガラス
WO2020009064A1 (ja) 積層体および合わせガラス
JP2018002763A (ja) アルコキシシリル基を有する変性ブロック共重合体水素化物及びその利用
KR20220131850A (ko) 실란 작용기화 스티렌계 블록 공중합체
JPWO2019058953A1 (ja) 熱可塑性樹脂シートおよび積層体
JP2019081675A (ja) 複層ガラス用スペーサおよび複層ガラス
JP2021070269A (ja) 積層体及び積層体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873308

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566536

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15537431

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015873308

Country of ref document: EP