WO2016103804A1 - 耐曲げ加工性に優れる絶縁電線、それを用いたコイルおよび電子・電気機器 - Google Patents

耐曲げ加工性に優れる絶縁電線、それを用いたコイルおよび電子・電気機器 Download PDF

Info

Publication number
WO2016103804A1
WO2016103804A1 PCT/JP2015/075973 JP2015075973W WO2016103804A1 WO 2016103804 A1 WO2016103804 A1 WO 2016103804A1 JP 2015075973 W JP2015075973 W JP 2015075973W WO 2016103804 A1 WO2016103804 A1 WO 2016103804A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
coating layer
insulated wire
thickness
resin
Prior art date
Application number
PCT/JP2015/075973
Other languages
English (en)
French (fr)
Inventor
真 大矢
恒夫 青井
Original Assignee
古河電気工業株式会社
古河マグネットワイヤ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河マグネットワイヤ株式会社 filed Critical 古河電気工業株式会社
Priority to EP15872373.4A priority Critical patent/EP3239988A4/en
Priority to KR1020177018929A priority patent/KR102000380B1/ko
Priority to CN201580068353.8A priority patent/CN107112081B/zh
Publication of WO2016103804A1 publication Critical patent/WO2016103804A1/ja
Priority to US15/632,026 priority patent/US10483013B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/307Other macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/32Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes natural resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals

Definitions

  • the present invention relates to an insulated wire excellent in bending resistance, a coil and an electronic / electric device using the insulated wire.
  • Patent Document 1 As an insulated wire using a flat wire, for example, Patent Document 1 has a high partial discharge start voltage because the thickness and dielectric constant at the corner and side of the insulating film are in a predetermined relationship, Insulated wires with improved corner insulation have been proposed. However, in order to increase the partial discharge start voltage, it is necessary to provide a thick insulating film, resulting in a low space factor. Patent Document 2 describes an insulated wire in which the space between the insulated wires is suppressed and the space factor is improved by curving the cross-sectional shape of the insulating film.
  • Windings used as motors are subjected to a strong bending force during motor manufacture.
  • the film is easily broken when the corner portion is rubbed.
  • further miniaturization and higher space factor will be inevitable in the future, and it is required to further reduce the radius of curvature of the conductor.
  • an object of the present invention is to provide an insulated wire that has a high space factor by thinning the insulating coating layer, and is excellent in edgewise and flatwise bending workability, and dielectric breakdown strength after stretching. To do.
  • the present invention prevents the generation of cracks in the insulating coating layer due to bending in the manufacture of motors and the like by using the insulated wire having the above-described excellent performance, and has a high space factor and after bending.
  • An object of the present invention is to provide a coil and an electronic or electrical device that are excellent in maintaining a dielectric breakdown voltage and can be reduced in size and performance.
  • the inventors of the present invention focused on edgewise bending workability for bending the edge surface and flatwise bending workability for bending the flat surface, and after further investigation, the thickness of the corner portion, the edge surface, and the flat surface was specified.
  • an insulating coating layer that has a specific thickness on the edge surface and flat surface, the edgewise and flatwise bending workability of the insulated wire is improved, and the dielectric breakdown strength after stretching is also excellent. I found.
  • the present invention has been made based on these findings.
  • the “edge surface” is a surface in which the short side of the flat cross section of the rectangular wire is formed continuously in the axial direction
  • the “flat surface” is the surface in which the long side of the flat cross section of the flat wire is continuously formed in the axial direction. It means the surface to do.
  • the thickness t2 ( ⁇ m) of the insulating coating layer coated on the continuous surface and the thickness t3 ( ⁇ m) of the corner portion of the insulating coating layer are in the relationship of the following formula (1):
  • the t1 ( ⁇ m) and t2 ( ⁇ m) are each independently 20 ⁇ m or more and 50 ⁇ m or less, And an insulated wire wherein the value of the ratio of the insulated wire cross-sectional area Sw the conductor cross section for (mm 2) Sc (mm 2) is characterized in that a relation of the following formula (2).
  • thermoplastic resin is a crystalline resin, and a flexural modulus at 23 ° C. is 2,000 MPa or more.
  • thermoplastic resin is selected from the group consisting of polyether ether ketone, modified polyether ether ketone, polyether ketone ketone, polyether ketone, polyether ketone ether ketone ketone, and polyphenylene sulfide.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the “side” of the conductor means a portion of the side other than the corner portion of the conductor having the curvature radius Rc.
  • the “corner portion of the conductor” means a curved portion of the conductor formed with a curvature radius Rc.
  • the rectangle means a substantially rectangle having a radius of curvature Rc at the corner.
  • the insulated wire of the present invention has a high space factor, and is excellent in edgewise and flatwise bending workability and dielectric breakdown strength after stretching. Moreover, since the insulated wire used for the coil of this invention is excellent in edgewise and flatwise bending workability, the generation
  • FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the insulated wire of the present invention.
  • FIG. 2 is a schematic diagram showing long sides, short sides, and corners of the insulated wire of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another preferred embodiment of the insulated wire of the present invention.
  • the insulated wire of the present invention has an insulating coating layer made of a thermoplastic resin on the outer peripheral surface of a conductor having a rectangular cross-sectional shape and having long and short sides and a corner portion having a radius of curvature Rc. Furthermore, the insulated wire according to the present invention has a thickness of an insulating coating layer coated on a surface continuous in the axial direction of the conductor on the long side of the cross section of the conductor (hereinafter also referred to as the thickness of the long side of the insulating coating layer).
  • Th1 ( ⁇ m) and the thickness of the insulating coating layer coated on the surface of the short side of the cross section of the conductor continuous in the axial direction of the conductor (hereinafter also referred to as the thickness of the short side of the insulating coating layer) t2 ( ⁇ m) and the thickness t3 ( ⁇ m) of the corner portion of the insulating coating layer have the relationship of the following formula (1):
  • t1 ( ⁇ m) and t2 ( ⁇ m) are each independently 20 ⁇ m or more and 50 ⁇ m or less
  • And ratio of conductor cross-sectional area Sc (mm ⁇ 2 >) with respect to insulated wire cross-sectional area Sw (mm ⁇ 2 >) has the relationship of following formula (2).
  • the resin constituting the layer and the additive to be contained are laminated adjacently in the same layer, these are combined into one layer. Moreover, even if it is comprised with the same resin, when the layer from which the kind and compounding quantity of an additive differ is laminated
  • the insulated wire 1 of the preferable form of this invention which showed sectional drawing in FIG. 1 has the conductor 11 and the insulation coating layer 12 provided on the outer periphery of the conductor 11.
  • the four corners of the conductor have corner portions with a radius of curvature Rc
  • the insulating coating layer 12 has a long side thickness t1 ( ⁇ m) as a resin thickness. It has a short side thickness t2 ( ⁇ m) and a corner thickness t3 ( ⁇ m).
  • the corner portion of the insulating coating layer means a portion of the insulating coating layer that covers the corner portion of the conductor.
  • the thickness of the insulating coating layer can be measured with a scanning electron microscope (SEM) or a commercially available microscope.
  • SEM scanning electron microscope
  • the observation magnification can be appropriately determined according to the thickness of the insulating coating layer, but is preferably approximately 400 times or more.
  • the thicknesses t1 ( ⁇ m) and t2 ( ⁇ m) of the long and short sides of the insulating coating layer are uniform.
  • the measurement location to be t1 can be determined as appropriate.
  • variation in thickness it is preferable to use an average value. In this case, it is desirable to measure five or more points at equal intervals and calculate an average value.
  • the thickness t3 ( ⁇ m) of the corner portion of the insulating coating layer is not necessarily uniform, and it is preferable that the thickness of the apex of the corner portion is maximized.
  • t3 ( ⁇ m) in the present invention is defined as the thickness of the insulating coating layer on a straight line connecting the center and apex of the corner portion of the conductor.
  • the thickness t3 ( ⁇ m) of the corner portion of the insulating coating layer is larger than the average thickness of the long side thickness t1 ( ⁇ m) of the insulating coating layer and the short side thickness t2 ( ⁇ m) of the insulating coating layer.
  • t1 ( ⁇ m) and t2 ( ⁇ m) are each independently 20 ⁇ m or more and 50 ⁇ m or less,
  • the cross-sectional area Sc (mm 2 ) of the conductor 11 with respect to the cross-sectional area Sw (mm 2 ) of the insulated wire 1 shown in the cross-sectional view of FIG. An insulated wire that can be miniaturized when the motor is molded can be obtained.
  • an inner layer 13 is provided between a conductor 11 and an insulating coating layer 12.
  • the total thickness of the insulating coating layer 12 and the inner layer 13 is respectively determined as the long side thickness t1 ( ⁇ m), the short side thickness t2 ( ⁇ m), and the corner portion of the insulating coating layer. The thickness is set to t3 ( ⁇ m).
  • the conductor used in the present invention has a rectangular cross section (also referred to as a square) and has a corner portion with a radius of curvature Rc.
  • Any material may be used as long as it has conductivity. Examples thereof include copper, copper alloy, aluminum, and aluminum alloy, but are not limited thereto.
  • the conductor is copper, for example, when welding the conductor, from the viewpoint of preventing the generation of voids in the weld due to the contained oxygen, preferably the copper content is 99.96% or more, and the oxygen content is preferably 30 ppm or less. More preferably, low oxygen copper or oxygen-free copper of 20 ppm or less is preferable.
  • the conductor is aluminum, various aluminum alloys can be used depending on the application in consideration of the required mechanical strength. For example, for applications such as rotating electrical machines, pure aluminum having a purity of 99.00% or more that can obtain a high current value is preferable.
  • the space factor with respect to the stator slot is higher than that of a circular cross-sectional shape.
  • the conductor used in the present invention has a shape in which chamfers (curvature radius Rc) are provided at the corners of the four corners, for example, as shown in FIG. 2 from the viewpoint of suppressing the partial discharge from the corners.
  • the curvature radius Rc is preferably 0.60 mm or less, and more preferably in the range of 0.10 mm to 0.40 mm.
  • the size of the conductor is not particularly limited because it is determined according to the use of the insulated wire and coil.
  • the width (long side) c1 is preferably 4.7 mm or less, more preferably 1.0 mm to 4.7 mm, and still more preferably 1.4 mm to 4.5 mm.
  • the thickness (short side) c2 is preferably 3.5 mm or less, more preferably 0.4 mm to 3.0 mm, and further preferably 0.5 mm to 2.5 mm.
  • the cross-sectional shape is generally rectangular rather than square. The size of the cross-sectional shape of the conductor is not particularly limited.
  • the length of the long side and the short side of the conductor cross section used in this specification corresponds to the long side and the short side in the rectangle before the corner portion is chamfered.
  • the space factor is a conductor space factor calculated by the following formula, and the ratio of the cross-sectional area Sc (mm 2 ) of the conductor 11 to the cross-sectional area Sw (mm 2 ) of the insulated wire 1 or 2 is calculated. means.
  • This high conductor space factor improves the space factor when the coil is manufactured, making it possible to manufacture a high-performance, compact motor.
  • the insulated wire of this invention has the insulation coating layer which consists of thermoplastic resins on the outer periphery of a conductor.
  • thermoplastic resin used for the insulating coating layer is polyamide (PA) (nylon), polyacetal (POM), polycarbonate (PC), polyphenylene ether (including modified polyphenylene ether), polybutylene terephthalate (PBT).
  • PA polyamide
  • POM polyacetal
  • PC polycarbonate
  • PBT polyphenylene ether
  • PBT polybutylene terephthalate
  • thermoplastic resins include, for example, general-purpose engineering such as polyamide (PA), polyacetal (POM), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), and ultrahigh molecular weight polyethylene.
  • PES polyphenylene sulfide
  • Plastic polyetheretherketone (PEEK), polyetherketone (PEK), polyaryletherketone (PAEK) (including modified PEEK), polyetherketoneketone (PEKK), polyetherketoneetherketoneketone (PEKEKK), heat A plastic polyimide resin (TPI) may be mentioned and is preferable.
  • thermoplastic resins a resin selected from the group consisting of PEEK, modified PEEK, PEKK, PEK, PEKEKK and PPS is preferable, and a resin selected from the group consisting of PEEK, modified PEEK, PEKK, PEK and PEKEKK is more preferable.
  • PEEK or modified PEEK is more preferable.
  • thermoplastic resins may be used individually by 1 type, and may be used in combination of 2 or more type. Further, the resin used is not limited by the resin name shown above, and it is needless to say that any resin other than those listed above can be used as long as it is superior in performance to those resins.
  • polyether ether ketone PEEK, flexural modulus at 23 ° C .: 3,500 to 4,500 MPa
  • modified polyether ether ketone modified PEEK, flexural modulus at 23 ° C .: 2,800 to 4,400 MPa
  • polyether ketone ketone PEKK, flexural modulus at 23 ° C .: 3800 to 4,500 MPa
  • polyether ketone PEK, flexural modulus at 23 ° C .: 4,000 to 5,000 MPa
  • Polyether ketone ether ketone ketone PEKEKK, flexural modulus at 23 ° C .: 4,000 to 4,600 MPa
  • thermoplastic polyimide resin TPI, flexural modulus at 23 ° C .: 2,500 to 3,000 MPa
  • PPS Polyphenylene sulfide
  • the flexural modulus at 23 ° C. of the thermoplastic resin is preferably 2,000 MPa or more, more preferably 3,000 MPa or more, and further preferably 3,500 MPa or more.
  • the upper limit value of this bending elastic modulus is not particularly limited. In the case where an inner layer formed by baking a varnish made of a thermosetting resin is provided between the conductor and the insulating coating layer, the bending elastic modulus at 23 ° C.
  • thermoplastic resin in the present invention is preferably a crystalline resin and has a flexural modulus at 23 ° C. of 2,000 MPa or more.
  • thermoplastic resin examples include, for example, PEEK450G (trade name, flexural modulus at 23 ° C .: 4,200 MPa) manufactured by Victrex Japan as PEEK, and AvaSpire AV-650 manufactured by Solvay as modified PEEK (product) Name, bending elastic modulus at 23 ° C .: 3,700 MPa) or AV-651 (trade name, bending elastic modulus at 23 ° C .: 3,100 MPa), PEKK made by Cytec Industries, Ltd.
  • PEEK450G trade name, flexural modulus at 23 ° C .: 4,200 MPa
  • AvaSpire AV-650 manufactured by Solvay as modified PEEK (product) Name, bending elastic modulus at 23 ° C .: 3,700 MPa) or AV-651 (trade name, bending elastic modulus at 23 ° C .: 3,100 MPa)
  • PEKK made by Cytec Industries, Ltd.
  • the thickness t1 of the long side of the insulating coating layer, the thickness t2 of the short side of the insulating coating layer, and the thickness t3 of the corner portion of the insulating coating layer are expressed by the following formula (1). There is a relationship.
  • the value of the left side in the above formula (1): t3 / ⁇ (t1 + t2) / 2 ⁇ is 1.2 or more, preferably 1.5 or more, more preferably 1.8 or more from the viewpoint of suppressing a decrease in film thickness due to stretching.
  • 2.1 or more is more preferable.
  • the upper limit is preferably 2.5 or less from the viewpoint of ease of alignment when assembled in a motor having a shape of an insulating film.
  • the long side thickness t1 and the short side thickness t2 of the insulating coating layer in the present invention are each independently 20 ⁇ m or more and 50 ⁇ m or less, preferably 25 ⁇ m or more and 40 ⁇ m or less, and more preferably 25 ⁇ m or more and 35 ⁇ m or less.
  • the difference between the minimum value and the maximum value is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • the thickness of the long side and the short side of the insulating coating layer is within this range, the insulating coating layer is thin and an insulated wire having a high space factor can be obtained.
  • the long side thickness t1 and the short side thickness t2 of the insulating coating layer have a relationship of the following formulas (1a) and (1b).
  • the thickness of the insulating coating layer at the corner when the insulated wire is stretched is effectively maintained, and the dielectric breakdown voltage after stretching is maintained.
  • the insulating coating layer in the present invention is preferably provided by extrusion coating a thermoplastic resin on the outer periphery of the conductor.
  • a thermoplastic resin By providing the thermoplastic resin by extrusion coating, the thickness t1, t2 and t3 of the insulating coating layer can be adjusted to an arbitrary thickness so as to satisfy the relationship of the above formula (1).
  • the thermoplastic resin can also be provided by applying and baking a varnish like a thermosetting resin described later.
  • the insulated wire of the present invention it is preferable to provide a single insulating coating layer in the present invention on the outer periphery of the conductor.
  • conventional insulated wires it has been necessary to provide an enamel layer between the conductor and the insulating coating layer in order to improve the adhesion and the dielectric breakdown voltage after stretching.
  • the long side thickness t1, the short side thickness t2 and the corner portion thickness t3 of the insulating coating layer are in the relationship of the formula (1), so that the enamel layer is not provided. Even if a strong processing pressure is applied, an insulated wire having good adhesion and a dielectric breakdown voltage after stretching can be obtained.
  • the manufacturing process of an insulated wire can be simplified by omitting the step of providing an enamel layer on the conductor, the insulated wire 1 shown in FIG. 1 having a single insulating coating layer directly on the outer periphery of the conductor is more preferable. .
  • the ratio of the conductor cross-sectional area Sc to the insulated wire cross-sectional area Sw is in the relationship of the following formula (2).
  • the conductor cross-sectional area Sc and the insulated wire cross-sectional area Sw can be measured with a scanning electron microscope (SEM) or a commercially available microscope.
  • SEM scanning electron microscope
  • the observation magnification can be appropriately determined according to the thickness of the insulating coating layer, but in the case of the insulated wire cross-sectional area Sw, it is preferably approximately 400 times or more.
  • the insulated wire of a high space factor can be obtained.
  • the lower limit value of Sc / Sw is preferably 0.85 or more, and more preferably 0.90 or more.
  • the long side length c1 (mm) and the short side length c2 (mm) of the conductor cross section, and the long side thickness t1 ( ⁇ m) and the short side thickness t2 ( ⁇ m) of the insulating coating layer are expressed by the following formula (3a ) And (3b) are also preferred.
  • the relationship is in the above formulas (3a) and (3b), and the length c1 of the long side of the conductor cross section is 4.5 mm or less, More preferably, the short side length c2 is 3.5 mm or less and the curvature radius Rc is 0.60 mm or less.
  • thermoplastic resins When two or more types of thermoplastic resins are mixed and used, for example, they are polymer-alloyed and used as a compatible homogeneous mixture, or an incompatible blend is made compatible with a compatibilizing agent. A state can be formed and used.
  • various additives described later may be contained in the raw material for obtaining the insulating coating layer as long as the properties are not affected.
  • the inner layer that may be provided between the conductor and the insulating coating layer may be any layer as long as it has a dielectric breakdown voltage after stretching and good bending workability.
  • an enamel baking layer is mentioned.
  • the thickness of the inner layer is 5 ⁇ m from the viewpoint of obtaining the high space factor, maintaining the dielectric breakdown voltage after stretching, and good bending resistance, which are the characteristics of the present invention without affecting the relative dielectric constant of the insulated wire.
  • the following is preferable, 3 ⁇ m or less is more preferable, and 2 ⁇ m or less is more preferable.
  • the enamel baking layer is formed by applying and baking a resin varnish on a conductor, and the resin varnish to be used contains a thermosetting resin.
  • the thermosetting resin may be any thermosetting resin that can be applied to a conductor and baked to form an insulating film.
  • Polyimide (PI), polyurethane, polyamideimide (PAI), thermosetting polyester, H-type polyester, polybenzo Imidazole, polyesterimide (PEsI), polyetherimide (PEI), melamine resin, epoxy resin, or the like can be used.
  • a thermosetting resin selected from the group consisting of polyimide, polyamideimide, polyetherimide, and polyesterimide is preferable as the thermosetting resin.
  • the polyimide is not particularly limited, and ordinary polyimides such as wholly aromatic polyimides and thermosetting aromatic polyimides can be used.
  • ordinary polyimides such as wholly aromatic polyimides and thermosetting aromatic polyimides
  • a commercially available product trade name: Uimide (manufactured by Unitika Ltd.), trade name: U-Varnish (manufactured by Ube Industries, Ltd.)
  • a conventional method using aromatic tetracarboxylic dianhydride Using a polyamic acid solution obtained by reacting a product with an aromatic diamine in a polar solvent, a product obtained by imidization by a heat treatment during baking at the time of coating can be used.
  • the polyamide imide may be thermosetting, and commercially available products (for example, trade name: HI406 (manufactured by Hitachi Chemical Co., Ltd.), trade name: HCI series (manufactured by Hitachi Chemical Co., Ltd.)) are used. Or obtained by directly reacting a tricarboxylic acid anhydride and a diisocyanate in a polar solvent, for example, or by reacting a diamine with a tricarboxylic acid anhydride in a polar solvent first. And then amidated with diisocyanates can be used. Polyamideimide has a lower thermal conductivity than other resins, a high dielectric breakdown voltage, and can be baked and cured.
  • the polyether imide may be a polymer having an ether bond and an imide bond in the molecule.
  • a commercially available product such as trade name: Ultem 1000 (manufactured by SABIC) can be used.
  • Polyetherimide is, for example, baked when coated using a polyamic acid solution obtained by reacting an aromatic tetracarboxylic dianhydride and an aromatic diamine having an ether bond in the molecule in a polar solvent. What is obtained by imidating by the heat processing of time can also be used.
  • the polyesterimide may be a polymer having an ester bond and an imide bond in the molecule and may be thermosetting.
  • a commercial product such as a trade name: Neoheat 8600A (manufactured by Tohoku Paint Co., Ltd.) can be used.
  • the polyesterimide is not particularly limited, and for example, an imide bond is formed from a tricarboxylic acid anhydride and an amine, an ester bond is formed from an alcohol and a carboxylic acid or an alkyl ester thereof, and a free acid group of the imide bond or Those obtained by adding an anhydrous group to the ester forming reaction can be used.
  • polyesterimide for example, a product obtained by reacting a tricarboxylic acid anhydride, a dicarboxylic acid compound or an alkyl ester thereof, an alcohol compound and a diamine compound by a known method can be used.
  • thermosetting resin may be used individually by 1 type, and may use 2 or more types together.
  • thermosetting resin coating is composed of a plurality of thermosetting resin layers, different thermosetting resins may be used in each layer, or thermosetting resins having different mixing ratios may be used.
  • the resin varnish used in the present invention is a bubble nucleating agent, an antioxidant, an antistatic agent, an anti-ultraviolet agent, a light stabilizer, a fluorescent brightening agent, a pigment, a dye, and a compatibilizing agent, as long as the properties are not affected.
  • various additives such as a lubricant, a reinforcing agent, a flame retardant, a crosslinking agent, a crosslinking aid, a plasticizer, a thickener, a thickener, and an elastomer may be contained.
  • the layer which consists of resin containing these additives may be laminated
  • the resin varnish may be baked by adding powder having a high aspect ratio such as glass fiber or carbon nanotube to the paint in order to improve the elastic modulus of the thermosetting resin layer. By doing so, the powder is aligned in the flow direction of the line during processing, and strengthened with respect to the bending direction.
  • powder having a high aspect ratio such as glass fiber or carbon nanotube
  • the resin varnish contains an organic solvent or the like for varnishing the thermosetting resin.
  • the organic solvent is not particularly limited as long as it does not inhibit the reaction of the thermosetting resin.
  • NMP N-methyl-2-pyrrolidone
  • DMAC N-dimethylacetamide
  • DMF N-dimethylformamide Amide solvents
  • urea solvents such as N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea and tetramethylurea
  • lactone solvents such as ⁇ -butyrolactone and ⁇ -caprolactone, propylene carbonate, etc.
  • Carbonate solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ester solvents such as ethyl acetate, n-butyl acetate, butyl cellosolve acetate, butyl carbitol acetate, ethyl cellosolve acetate, ethyl carbitol acetate, diglyme
  • Examples include glyme solvents such as triglyme and tetraglyme, hydrocarbon solvents such as toluene, xylene and cyclohexane, phenol solvents such as cresol, phenol and halogenated phenol, sulfone solvents such as sulfolane, dimethyl sulfoxide (DMSO) and the like. It is done.
  • amide solvents and urea solvents are preferable, and N-methyl-is preferable in that it does not have a hydrogen atom that easily inhibits a crosslinking reaction by heating.
  • 2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea, and tetramethylurea are more preferable.
  • N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N , N-dimethylformamide and dimethyl sulfoxide are particularly preferred.
  • An organic solvent etc. may be used individually by 1 type, and may use 2 or more types together.
  • the insulated wire of the present invention is excellent in space factor, edgewise and flatwise bending workability, and maintaining characteristics of dielectric breakdown voltage after stretching.
  • the space factor is evaluated by the conductor space factor, which means the ratio of the cross-sectional area Sc (mm 2 ) of the conductor 11 to the cross-sectional area Sw (mm 2 ) of the insulated wire 1 or 2.
  • An insulated wire having a conductor space factor of 0.90 or more and less than 1.00 is regarded as “A” because the effect of improving the motor efficiency is large, and an insulated wire of 0.85 or more and less than 0.90 is regarded as effective.
  • C an insulated wire less than 0.80 is less effective than “C”
  • an insulated wire less than 0.80 is compared with an insulated wire using a conductor having a circular cross section. Therefore, “D” is given as having almost no superiority, and is evaluated in four stages. “C” and above are acceptable levels.
  • edgewise bending workability The edgewise bending test is performed according to JIS 3216-3. In addition, edgewise bending under more severe conditions is performed by making a 5 ⁇ m depth cut using a feather razor blade S single blade (for example, manufactured by Feather Safety Razor Co., Ltd.) in the bent portion of the insulated wire.
  • the insulated electric wire with a cut is bent by being wound around a 1.5 mm diameter stainless steel rod so that the cut portion is at the center.
  • the flatwise bending test is performed by applying an edgewise bending workability test.
  • flat-wise bending under more severe conditions is performed by making a 5 ⁇ m depth cut using a feather razor blade S single blade (for example, manufactured by Feather Safety Razor Co., Ltd.) in a portion where the insulated wire is bent.
  • the insulated electric wire into which the cut is made is judged by being bent by winding it around a SUS 1.5 mm ⁇ rod so that the cut portion is centered.
  • the withstand voltage characteristic of the insulated wire is evaluated by measuring a voltage using a dielectric breakdown tester, extending 20% at an extension speed of 300 mm / min using an autograph (for example, manufactured by Shimadzu Corporation). Specifically, a ground electrode is connected to the part where the terminal on one side of the insulated wire is peeled off, and an aluminum foil is wound around the 300 mm length from the end of the insulated wire from which the terminal is peeled, and the wound aluminum foil is subjected to high pressure. Connect the side electrodes. The voltage is increased at a voltage increase rate of 500 V / sec and the voltage when a current of 15 mA or more flows is read.
  • the dielectric breakdown strength is calculated by dividing this value by the average value of “total film thickness on the long side” and “film thickness on the short side”.
  • 100V / ⁇ m or more is “A”
  • 80V / ⁇ m or more and less than 100V / ⁇ m is “B”
  • 60V / ⁇ m or more and less than 80V / ⁇ m is “C”
  • less than 60V / ⁇ m is “D”.
  • the insulated wire of this invention can be manufactured by forming the insulation coating layer which consists of thermoplastic resins on the outer periphery of a conductor.
  • the insulation coating layer which consists of thermoplastic resins on the outer periphery of a conductor.
  • the insulated wire of this invention can be manufactured by forming an insulation coating layer. Below, it demonstrates in order of an inner layer and an insulation coating layer.
  • the inner layer is formed, for example, by applying a resin varnish containing a thermosetting resin on a conductor and baking it.
  • the method of applying the resin varnish may be a conventional method, for example, a method using a varnish application die having a similar shape to the conductor shape, or a “universal die” formed in a cross-beam shape when the conductor cross-sectional shape is rectangular. Dice called can be used.
  • the conductor coated with these resin varnishes is baked in a baking furnace in a conventional manner.
  • the specific baking conditions depend on the shape of the furnace used, but in the case of a natural convection type vertical furnace of approximately 8 m, the passage time is 10 to 90 seconds at a furnace temperature of 400 to 650 ° C. Can be achieved.
  • the baking of the resin varnish may be repeated once or several times. When repeating several times, the same or different baking conditions may be used. In this way, one inner layer can be formed. When a plurality of inner layers are formed, the resin varnish to be used may be replaced.
  • an insulating coating layer made of a thermoplastic resin is provided on the outer periphery of the conductor on which the inner layer is formed.
  • a conductor also referred to as an enameled wire
  • an insulating coating layer is formed by extruding a thermoplastic resin onto the enameled wire using a screw of an extruder to obtain an insulated wire Can do.
  • a temperature equal to or higher than the melting point of the thermoplastic resin so that the shape of the outer shape of the cross section of the extrusion-coated resin layer is similar to the shape of the conductor and can obtain a predetermined long side, short side, and corner thickness.
  • Extrusion coating of the thermoplastic resin is performed using an extrusion die (in the case of an amorphous resin, the glass transition temperature or higher).
  • a thermoplastic resin layer (for example, an insulating coating layer made of a thermoplastic resin) can also be formed using an organic solvent or the like and a thermoplastic resin.
  • varnish dissolved in an organic solvent or the like is coated on the enamel wire using a die similar to the shape of the conductor and baked. Can also be formed.
  • the organic solvent of the varnish is preferably the organic solvent mentioned in the above resin varnish.
  • specific baking conditions depend on the shape of the furnace used, the conditions described in the conditions for the thermosetting resin are preferable.
  • the insulated wire of the present invention can be used in fields that require high voltage resistance and bending workability, such as various electric devices.
  • the insulated wire of the present invention is coiled and used for a motor, a transformer, etc., and can constitute a high-performance electric device. It is preferably used for both the distributed winding coil used in the high voltage region and the concentrated winding coil used in the low / medium voltage region, and particularly preferably used for the concentrated winding coil. Specifically, it is suitably used as a winding for an HV or EV drive motor.
  • Example 1 the insulated wire 1 shown in FIG. 1 was manufactured.
  • a rectangular conductor 11 copper having an oxygen content of 15 ppm
  • PEEK Polyetheretherketone resin
  • PEEK450G flexural modulus at 23 ° C .: 4,200 MPa
  • the PEEK extrusion coating was performed at 370 ° C. using an extrusion die so that the long side, the short side, and the thickness of the corners shown in Table 1 could be obtained.
  • the insulation coating layer 12 (extrusion coating resin layer) having a thickness t1 of the long side and a thickness t2 of the short side of 30 ⁇ m, a thickness t3 of the four corner portions of 40 ⁇ m, and a radius of curvature of 0.3 mm.
  • the insulated wire 1 which consists of a PEEK extrusion coating resin layer was obtained.
  • Example 2 the insulated wire 2 shown in FIG. 3 was manufactured.
  • a rectangular conductor 11 copper having an oxygen content of 15 ppm
  • a polyamide imide resin (PAI) varnish (trade name: HI406, manufactured by Hitachi Chemical Co., Ltd.) is used as a conductor by using a die similar to the shape of the inner layer formed on the conductor 11.
  • the inner layer 13 having a thickness of 3 ⁇ m is formed by passing through a baking furnace having a furnace length of 8 m set at a furnace temperature of 550 ° C. at a speed of 15 seconds, and an enamel having the inner layer 13 Got a line.
  • the thermoplastic resin is a modified polyetheretherketone resin (modified PEEK) (trade name: AvaSpire AV-650, manufactured by Solvay Japan Co., Ltd.), and the outer shape of the cross section of the insulating coating layer is similar to the shape of the conductor.
  • the extrusion coating of the modified PEEK is performed at 370 ° C. using an extrusion die so that the long side, the short side, and the thickness of the corner part shown in Table 1 are obtained, and the long side is formed on the outer periphery of the conductor.
  • An insulating coating layer 12 (extruded coating resin layer) having a thickness of 36 ⁇ m, a short side thickness of 34 ⁇ m, a thickness of four corners of 50 ⁇ m, and a radius of curvature of 0.3 mm is formed, and modified PEEK An insulated wire 2 made of an extrusion-coated resin layer was obtained.
  • Example 3 the insulated wire 2 shown in FIG. 3 was manufactured.
  • the conductor 11 a rectangular conductor 11 (copper having an oxygen content of 15 ppm) having the lengths of the long side c1 and the short side c2 shown in Table 1 and the curvature radius Rc of the corner portion was used.
  • the inner layer 13 having a thickness of 3 ⁇ m was formed in the same manner as in Example 2 except that a polyimide resin (PI) varnish (trade name: U imide, manufactured by Unitika Ltd.) was used instead of the polyamideimide resin (PAI) varnish.
  • PI polyimide resin
  • PAI polyamideimide resin
  • An enameled wire having an inner layer 13 was obtained.
  • Example 2 except that the obtained enameled wire was used as a core wire, and polyether ether ketone resin (PEEK) (trade name: PEEK450G, manufactured by Victorex Japan Co., Ltd.) was used instead of modified polyether ether ketone resin (modified PEEK).
  • PEEK polyether ether ketone resin
  • modified PEEK modified polyether ether ketone resin
  • Example 4 the insulated wire 1 shown in FIG. 1 was manufactured.
  • the conductor 11 a rectangular conductor 11 (copper having an oxygen content of 15 ppm) having the lengths of the long side c1 and the short side c2 shown in Table 1 and the curvature radius Rc of the corner portion was used.
  • polyetheretherketone resin PEEK
  • PEEK polyetherketone resin
  • An insulating coating layer 12 having a long side, a short side, a corner portion thickness, and a radius of curvature Rr was formed to obtain an insulated wire 1 made of a PEKK extrusion-coated resin layer.
  • Example 5 the insulated wire 2 shown in FIG. 3 was manufactured.
  • a rectangular conductor 11 (copper having an oxygen content of 15 ppm) having the lengths of the long side c1 and the short side c2 shown in Table 1 and the curvature radius Rc of the corner portion was used.
  • An inner layer 13 having a thickness of 2 ⁇ m is formed in the same manner as in Example 2 except that a polyetherimide resin (PEI) varnish (manufactured by SABIC, trade name: Ultem 1000) is used instead of the polyamideimide resin (PAI) varnish.
  • PEI polyetherimide resin
  • PAI polyamideimide resin
  • an enameled wire having the inner layer 13 was obtained.
  • the obtained enameled wire was used as a core wire, and Example 2 was used except that a thermoplastic polyimide resin (TPI) (trade name: Aurum PL450C, manufactured by Mitsui Chemicals, Inc.) was used instead of the modified polyetheretherketone resin (modified PEEK).
  • TPI thermoplastic polyimide resin
  • the insulation coating layer 12 having the long side, short side and corner thicknesses and the curvature radius Rr shown in Table 1 was formed, and the insulated wire 2 made of PEEK extrusion coating resin layer was obtained.
  • Example 6 the insulated wire 2 shown in FIG. 3 was manufactured.
  • a rectangular conductor 11 (copper having an oxygen content of 15 ppm) having the lengths of the long side c1 and the short side c2 shown in Table 1 and the curvature radius Rc of the corner portion was used.
  • Example 2 In the same manner as in Example 2 except that a polyesterimide resin (PEsI) varnish (manufactured by Tohoku Paint Co., Ltd., trade name: Neoheat 8600A) was used instead of the polyamideimide resin (PAI) varnish, Inner layer 13 was formed, and an enameled wire having inner layer 13 was obtained.
  • the obtained enameled wire was used as a core wire, and an aromatic polyamide resin (aromatic PA) (trade name: Amodel AT-1001L, manufactured by Solvay Solvay Specialty Polymers) was used in place of the modified polyetheretherketone resin (modified PEEK).
  • aromatic PA aromatic polyamide resin
  • modified polyetheretherketone resin modified PEEK
  • Example 2 In the same manner as in Example 2, except that the insulating coating layer 12 having the long side, the short side, the corner portion thickness and the curvature radius Rr shown in Table 1 is formed, and the insulated electric wire 2 made of the PEEK extrusion coating resin layer is formed. Obtained.
  • Example 7 the insulated wire 1 shown in FIG. 1 was manufactured.
  • a rectangular conductor 11 (copper having an oxygen content of 15 ppm) having the lengths of the long side c1 and the short side c2 shown in Table 1 and the curvature radius Rc of the corner portion was used.
  • a modified polyetheretherketone resin (modified PEEK) (manufactured by Solvay Japan Co., Ltd., trade name: AvaSpire AV-650) was used in the same manner as in Example 1 instead of the polyetheretherketone resin (PEEK).
  • Example 8 the insulated wire 1 shown in FIG. 1 was manufactured.
  • a rectangular conductor 11 (copper having an oxygen content of 15 ppm) having the lengths of the long side c1 and the short side c2 shown in Table 1 and the curvature radius Rc of the corner portion was used.
  • the long side and short side shown in Table 1 are the same as in Example 1 except that polyethylene terephthalate resin (PET) (manufactured by Teijin Ltd., trade name: TR8550N) is used instead of the polyether ether ketone resin (PEEK). Then, an insulating coating layer 12 having a corner portion thickness and a radius of curvature Rr was formed to obtain an insulated wire 1 made of a PET extruded coating resin layer.
  • PET polyethylene terephthalate resin
  • TR8550N polyether ether ketone resin
  • Example 9 the insulated wire 1 shown in FIG. 1 was manufactured.
  • a rectangular conductor 11 (copper having an oxygen content of 15 ppm) having the lengths of the long side c1 and the short side c2 shown in Table 1 and the curvature radius Rc of the corner portion was used.
  • Table 1 shows the same as in Example 1, except that polyphenylene sulfide resin (PPS) (manufactured by DIC Corporation, trade name: PPS FZ-2100) was used instead of polyether ether ketone resin (PEEK).
  • PPS polyphenylene sulfide resin
  • PEEK polyether ether ketone resin
  • the insulation coating layer has the structure of the insulated wire 2 shown in FIG. 3 except that the long and short sides of the insulating coating layer have the same thickness as the corner and do not satisfy the relationship of the formula (1).
  • An electric wire was manufactured.
  • As the conductor a rectangular conductor (copper having an oxygen content of 15 ppm) having the long side and short side lengths shown in Table 2 and the radius of curvature of the corner portion was used.
  • Example 2 In the same manner as in Example 2, an inner layer having a thickness of 3 ⁇ m was formed, and an enameled wire having the inner layer was obtained.
  • Example 2 except that the obtained enameled wire was used as a core wire, and polyether ether ketone resin (PEEK) (trade name: PEEK450G, manufactured by Victorex Japan Co., Ltd.) was used instead of modified polyether ether ketone resin (modified PEEK).
  • PEEK polyether ether ketone resin
  • modified PEEK modified polyether ether ketone resin
  • Comparative Example 2 In this example, the thickness of the long side and the short side of the insulating coating layer and the thickness of the corner portion do not satisfy the relationship of formula (1), the long side and the short side of the insulating coating layer are thick, An insulated wire having the structure of the insulated wire 1 shown in FIG. 1 was manufactured except that the ratio of the conductor cross-sectional area to the area did not satisfy the relationship of the formula (2).
  • As the conductor a rectangular conductor (copper having an oxygen content of 15 ppm) having the long side and short side lengths shown in Table 2 and the radius of curvature of the corner portion was used.
  • a modified polyetheretherketone resin (PEEK) (manufactured by Solvay Japan Co., Ltd., trade name: AvaSpire AV-650) was used instead of the polyetheretherketone resin (PEEK).
  • An insulating coating layer having a long side, a short side, a corner portion thickness and a radius of curvature Rr described in Table 2 is formed and does not satisfy the relationship of the formula (1) and the formula (2).
  • An insulated wire with a short short side was obtained.
  • Comparative Example 3 an insulated wire having the structure of the insulated wire 1 shown in FIG. 1 is manufactured except that the thickness of the long side and the short side of the insulating coating layer and the thickness of the corner portion do not satisfy the relationship of the formula (1). did.
  • the conductor a rectangular conductor (copper having an oxygen content of 15 ppm) having the long side and short side lengths shown in Table 2 and the radius of curvature of the corner portion was used.
  • Table 2 shows the same as in Example 1, except that polyphenylene sulfide resin (PPS) (manufactured by DIC Corporation, trade name: PPS FZ-2100) was used instead of polyether ether ketone resin (PEEK).
  • PPS polyphenylene sulfide resin
  • PEEK polyether ether ketone resin
  • Comparative Example 4 an insulated wire having the structure of the insulated wire 1 shown in FIG. 1 was manufactured except that the ratio of the conductor sectional area to the insulated wire sectional area did not satisfy the relationship of the expression (2).
  • the conductor a rectangular conductor (copper having an oxygen content of 15 ppm) having the long side and short side lengths shown in Table 2 and the radius of curvature of the corner portion was used.
  • PEEK polyetheretherketone resin
  • PEEK polyetherketone resin
  • An insulating coating layer having a long side, a short side, a corner portion thickness, and a radius of curvature Rr was formed to obtain an insulated wire that does not satisfy the relationship of formula (2).
  • the insulating coating layer is made of a thermosetting resin
  • the thickness of the long side and the short side of the insulating coating layer is the same as the thickness of the corner portion, and does not satisfy the relationship of formula (1).
  • An insulated wire having the structure of the insulated wire 2 shown in FIG. 3 was manufactured except that the long side was thick.
  • As the conductor a rectangular conductor (copper having an oxygen content of 15 ppm) having the long side and short side lengths shown in Table 2 and the radius of curvature of the corner portion was used.
  • An inner layer having a thickness of 2 ⁇ m was formed in the same manner as in Example 2 except that a polyetherimide resin (PEI) varnish (manufactured by SABIC, trade name: Ultem 1000) was used instead of the polyamideimide resin (PAI) varnish.
  • PEI polyetherimide resin
  • PAI polyamideimide resin
  • An enameled wire having an inner layer was obtained.
  • the obtained enameled wire was used as a core wire, and a polyamide-imide resin (PAI) varnish (manufactured by Hitachi Chemical Co., Ltd., trade name: HI406) was used in place of the modified polyetheretherketone resin (modified PEEK).
  • PEEK modified polyetheretherketone resin
  • an insulating coating layer having a long side, a short side, a corner portion thickness and a curvature radius Rr described in Table 2 is formed, and the insulating coating layer is made of a thermosetting resin.
  • An insulated wire that did not satisfy the relationship and had a thick long side of the insulating coating layer was obtained.
  • Comparative Example 6 In this example, the thickness of the long side and the short side of the insulating coating layer and the thickness of the corner portion do not satisfy the relationship of Formula (1), and the ratio of the conductor cross-sectional area to the cross-sectional area of the insulated wire satisfies the relationship of Formula (2).
  • As the conductor a rectangular conductor (copper having an oxygen content of 15 ppm) having the long side and short side lengths shown in Table 2 and the radius of curvature of the corner portion was used.
  • An enameled wire having an inner layer was obtained in the same manner as in Example 2 except that the thickness of the inner layer shown in Table 2 was used.
  • the obtained enameled wire was used as a core wire, and a polyphenylene sulfide resin (PPS) (manufactured by DIC Corporation, trade name: PPS FZ-2100) was used in place of the modified polyetheretherketone resin (modified PEEK).
  • PPS polyphenylene sulfide resin
  • modified PEEK modified polyetheretherketone resin
  • Comparative Example 7 an insulated wire having the structure of the insulated wire 1 shown in FIG. 1 was manufactured except that the long and short sides of the insulating coating layer were thick.
  • the conductor a rectangular conductor (copper having an oxygen content of 15 ppm) having the long side and short side lengths shown in Table 2 and the radius of curvature of the corner portion was used.
  • Example 2 In the same manner as in Example 1, the insulating coating layer having the long side, the short side and the corner portion described in Table 2 and the curvature radius Rr is formed, and the long side and the short side of the insulating coating layer are thick. An insulated wire was obtained.
  • the space factor was evaluated by the conductor space factor, which means the ratio of the cross-sectional area Sc (mm 2 ) of the conductor 11 to the cross-sectional area Sw (mm 2 ) of the insulated wire 1.
  • An insulated wire having a conductor space factor of 0.90 or more and less than 1.00 is regarded as “A” because the effect of improving the motor efficiency is large, and an insulated wire of 0.85 or more and less than 0.90 is regarded as effective.
  • C an insulated wire less than 0.80 is less effective than “C”
  • an insulated wire less than 0.80 is compared with an insulated wire using a conductor having a circular cross section. Therefore, it was evaluated as “D” as having almost no superiority, and evaluated in four stages. “C” and above are acceptable levels.
  • edgewise bending workability The edgewise bending test was performed according to JIS 3216-3. In addition, edgewise bending was performed under more severe conditions by making a 5 ⁇ m deep incision using a feather razor blade S single blade (manufactured by Feather Safety Razor Co., Ltd.) at the portion where each insulated wire is bent. Each insulated electric wire with a cut was bent and judged by being wound around a SUS 1.5 mm ⁇ rod so that the cut portion was centered.
  • the withstand voltage characteristic of the insulated wire was evaluated by measuring the voltage using a dielectric breakdown tester, extending 20% at an extension rate of 300 mm / min using an autograph (manufactured by Shimadzu Corporation). Specifically, a ground electrode is connected to the part where the terminal on one side of the insulated wire is peeled off, and an aluminum foil is wound around the 300 mm length from the end of the insulated wire from which the terminal is peeled, and the wound aluminum foil is subjected to high pressure. Side electrodes were connected. The voltage was increased at a voltage increase rate of 500 V / sec, and the voltage when a current of 15 mA or more flowed was read.
  • the dielectric breakdown strength was calculated by dividing this value by the average value of “total film thickness on the long side” and “film thickness on the short side”. 100V / ⁇ m or more was evaluated as “A”, 80V / ⁇ m or more and less than 100V / ⁇ m as “B”, 60V / ⁇ m or more and less than 80V / ⁇ m as “C”, and less than 60V / ⁇ m as “D”. . “C” and above are acceptable levels.
  • the configurations and evaluation results of each insulated wire are summarized in Tables 1 and 2 below.
  • the overall evaluation is “A” when there are two or more A evaluations and the others are B evaluations, and B evaluation or a combination of one or more A evaluations and C evaluations in all evaluation criteria.
  • “C” and above are acceptable levels.
  • PEEK polyetheretherketone resin (manufactured by Victrex Japan, trade name: PEEK450G, flexural modulus at 23 ° C .: 4,200 MPa)
  • Modified PEEK Modified polyetheretherketone resin (manufactured by Solvay Japan Co., Ltd., trade name: AvaSpire AV-650, flexural modulus at 23 ° C .: 3,700 MPa)
  • PEKK Polyetherketone ketone resin (manufactured by Cytec Industries, Inc., flexural modulus at 23 ° C .: 4,500 MPa)
  • PEK Polyetherketone resin (manufactured by Victrex Japan, trade name: HT-G22, flexural modulus at 23 ° C .: 4,200 MPa)
  • TPI Thermoplastic polyimide resin (Mitsui Chemicals, Inc., trade name: Aurum PL450C, flexural modulus at 23 ° C .: 2,900 MPa
  • Inner layer / PAI Polyamideimide resin varnish (manufactured by Hitachi Chemical Co., Ltd., trade name: HI406)
  • PI Polyimide resin varnish (product name: Uimide, manufactured by Unitika Ltd.)
  • PEI polyetherimide resin varnish (SABIC, trade name: Ultem 1000)
  • -PEsI Polyesterimide resin varnish (manufactured by Tohoku Paint Co., Ltd., trade name: Neoheat 8600A)
  • the insulating coating layer is made of a specific thermoplastic resin, and the thickness of the long side and the short side of the insulating coating layer and the thickness of the corner portion are in the relationship of the formula (1).
  • Comparative Examples 1 and 3 in which the thickness of the long side and the short side of the insulating coating layer and the thickness of the corner portion do not satisfy the relationship of the formula (1) do not satisfy the dielectric breakdown strength after stretching.
  • Comparative Example 4 in which the ratio of the conductor cross-sectional area to the electric wire cross-sectional area does not satisfy the relationship of Expression (2), the space factor is insufficient, and Comparative Example 7 in which the long side and the short side of the insulating coating layer are thick is The edgewise and flatwise bending workability was not satisfied.
  • Comparative Example 5 having an insulating coating layer made of a thermosetting resin and not satisfying the relationship of the formula (1) did not satisfy the flatwise bending workability and the dielectric breakdown strength after stretching.
  • Comparative Example 5 which does not satisfy the relationship of the formula (1) and has a thick long side of the insulating coating layer did not satisfy the flatwise bending workability and the dielectric breakdown strength after stretching.
  • Comparative Example 6 in which the long side and the short side of the insulating coating layer were thick and did not satisfy the relationship of Expression (2), the space factor, edgewise and flatwise bending workability were not satisfied.
  • Comparative Example 2 that does not satisfy the relationship of the formulas (1) and (2) and the long and short sides of the insulating coating layer are thick has a space factor, edgewise and flatwise bending workability, and after stretching. None of the dielectric breakdown strengths were satisfied.
  • the motor coil and the electronic or electric device using the insulated wire of the present invention can reduce the cracking of the insulating coating layer of the insulated wire due to the bending process during the winding process, and the corner portion of the conductor even after the extension. Therefore, it is possible to reduce the size and improve the performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulated Conductors (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Organic Insulating Materials (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

 断面形状が矩形で、長辺と短辺と、曲率半径Rcのコーナー部とを有する導体の外周面上に、熱可塑性樹脂からなる絶縁被覆層を有する絶縁電線であって、 前記導体の横断面の長辺の、前記導体の軸線方向に連続する面に被覆された前記絶縁被覆層の厚さt1(μm)および前記導体の横断面の短辺の、前記導体の軸線方向に連続する面に被覆された前記絶縁被覆層の厚さt2(μm)ならびに前記絶縁被覆層のコーナー部の厚さt3(μm)が下記式(1)の関係にあり、 式(1) t3/{(t1+t2)/2}≧1.2 前記t1(μm)及びt2(μm)が各々独立に20μm以上50μm以下であり、 かつ、前記絶縁電線断面積Sw(mm)に対する前記導体断面積Sc(mm)の比の値が下記式(2)の関係にあることを特徴とする絶縁電線、それを用いたコイル及び電子・電気機器。 式(2) 1.0>Sc/Sw≧0.8

Description

耐曲げ加工性に優れる絶縁電線、それを用いたコイルおよび電子・電気機器
 本発明は、耐曲げ加工性に優れる絶縁電線、それを用いたコイルおよび電子・電気機器に関する。
 近年の電子もしくは電気機器(以下、単に電気機器ということがある)では、各種性能、例えば耐熱性、機械的特性、化学的特性、電気的特性等を従来より一段と向上させることにより信頼性を高めたものが要求されるようになってきている。このような中で宇宙用電気機器、航空機用電気機器、原子力用電気機器、エネルギー用電気機器、自動車用電気機器用のマグネット電線として用いられるエナメル線などの絶縁電線には、優れた耐摩耗性、耐熱老化特性、耐溶剤性が要求されるようになってきている。
 また、モーターや変圧器に代表される電気機器は近年、機器の小型化及び高性能化が進展している。そこで、絶縁電線を巻線加工(コイル加工)して、電線を非常に狭い部分へ押しこんで使用する様な使い方が多く見られるようになった。具体的には、絶縁電線をコイル加工した巻線をステータースロット中に何本入れられるかにより、そのモーターなどの回転機の性能が決定するといっても過言ではない。その結果、ステータースロット断面積に対する導体の断面積の比率(占積率)の向上に対する要求が高まっている。
 占積率を向上させる手段として、近年では、導体の断面形状が四角形(正方形や長方形)に類似した平角線を使用することが行われている。
 しかし、平角線の使用は、占積率の向上には劇的な効果を示す一方、断面平角のコーナー部がコイル加工等の曲げ加工に対して極端に弱い。そのため、強い圧力をかけての加工によって皮膜が割れてしまう問題がある。特にこのコーナー部の曲率半径が小さいほどこの曲げ加工による皮膜の割れが発生しやすいことがわかっている。
 平角線を用いた絶縁電線としては、例えば、特許文献1には、絶縁皮膜のコーナー部と辺部における厚さおよび誘電率が所定の関係にあることで、高い部分放電開始電圧を有し、コーナー部の絶縁性を向上させた絶縁電線が提案されている。しかし、部分放電開始電圧を高くするためには、絶縁皮膜を厚く設ける必要があり、結果として占積率が低くなってしまう。
 また、特許文献2には、絶縁性皮膜の断面形状を湾曲させることにより、絶縁電線間の空隙を抑制し、占積率を向上させた絶縁電線が記載されている。
特許第5196532号公報 特開2012-90441号公報
 モーターとして使用される巻線は、モーター製造時に強い曲げ加工力を加えられる。これに加え、小型化のために絶縁皮膜を薄くした場合には、コーナー部分が擦れた場合に皮膜が破れやすい。
 また、今後更なる小型化、高占積率化は必至であり、導体の曲率半径を一層小さくしていくことが要求される。
 したがって、本発明は、絶縁被覆層を薄くすることにより高占積率を有し、かつエッジワイズおよびフラットワイズ曲げ加工性ならびに伸張後の絶縁破壊強度にも優れる絶縁電線を提供することを目的とする。
 また、本発明は、上記の優れた性能を有する絶縁電線を用いることにより、モーター等の製造において、曲げ加工による絶縁被覆層の割れの発生を防止し、高占積率で、曲げ加工後も絶縁破壊電圧の維持に優れる、小型化および高性能化が可能なコイルおよび電子もしくは電気機器を提供することを目的とする。
 本発明者らは、エッジ面を曲げるエッジワイズ曲げ加工性およびフラット面を曲げるフラットワイズ曲げ加工性に着目し、さらに検討を重ねたところ、コーナー部とエッジ面およびフラット面の厚さが特定の関係を有し、エッジ面およびフラット面が特定の厚さを有する絶縁被覆層を用いることで、絶縁電線のエッジワイズおよびフラットワイズ曲げ加工性が向上し、伸張後の絶縁破壊強度にも優れることを見出した。本発明は、これらの知見に基づき、なされたものである。
 ここで、「エッジ面」とは平角線の横断面の短辺が軸線方向に連続して形成する面を、「フラット面」は平角線の横断面の長辺が軸線方向に連続して形成する面をそれぞれ意味する。
 すなわち、本発明の上記課題は、以下の手段によって達成された。
(1)断面形状が矩形で、長辺と短辺と、曲率半径Rcのコーナー部とを有する導体の外周面上に、熱可塑性樹脂からなる絶縁被覆層を有する絶縁電線であって、
 前記導体の横断面の長辺の、前記導体の軸線方向に連続する面に被覆された前記絶縁被覆層の厚さt1(μm)および前記導体の横断面の短辺の、前記導体の軸線方向に連続する面に被覆された前記絶縁被覆層の厚さt2(μm)ならびに前記絶縁被覆層のコーナー部の厚さt3(μm)が下記式(1)の関係にあり、
 式(1)    t3/{(t1+t2)/2}≧1.2
 前記t1(μm)およびt2(μm)が各々独立に20μm以上50μm以下であり、
 かつ、前記絶縁電線断面積Sw(mm)に対する前記導体断面積Sc(mm)の比の値が下記式(2)の関係にあることを特徴とする絶縁電線。
 式(2)    1.0>Sc/Sw≧0.8
(2)前記導体の横断面の長辺の長さc1(mm)が4.5mm以下、短辺の長さc2(mm)が3.5mm以下および曲率半径Rc(mm)が0.60mm以下であって、
 前記t1(μm)およびc2(mm)、ならびに、t2(μm)およびc1(mm)が、各々下記式(3a)および(3b)の関係にあることを特徴とする(1)に記載の絶縁電線。
 式(3a)    0<t1/(c2×1000)≦0.02
 式(3b)    0<t2/(c1×1000)≦0.02
(3)前記熱可塑性樹脂が結晶性樹脂であって、かつ23℃での曲げ弾性率が2,000MPa以上であることを特徴とする(1)または(2)に記載の絶縁電線。
(4)前記熱可塑性樹脂が、ポリエーテルエーテルケトン、変性ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルケトン、ポリエーテルケトンエーテルケトンケトンおよびポリフェニレンスルフィドからなる群から選択されることを特徴とする(1)~(3)のいずれか1項に記載の絶縁電線。
(5)(1)~(4)のいずれか1項に記載の絶縁電線を巻線加工してなるコイル。
(6)(5)に記載のコイルを用いた電子・電気機器。
 本発明の説明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本発明の絶縁電線において、導体の「辺」は曲率半径Rcを有する導体のコーナー部以外の辺の部分を意味する。
 本発明の絶縁電線において、また、「導体のコーナー部」とは、曲率半径Rcで形成された導体の曲部を意味する。
 また、本発明の絶縁電線において、矩形とは、コーナー部に曲率半径Rcを有する略長方形を意味する。
 なお、本発明の絶縁電線において、長辺および短辺の長さが同じである場合には、一方の向かい合う1対の辺を長辺とし、残りの向かい合う1対の辺を短辺とする。
 本発明の絶縁電線は、高占積率を有し、かつエッジワイズおよびフラットワイズ曲げ加工性ならびに伸張後の絶縁破壊強度にも優れる。
 また、本発明のコイルは、用いる絶縁電線が、エッジワイズおよびフラットワイズ曲げ加工性に優れるため、巻線加工時の曲げ加工に起因する絶縁被覆層の割れ発生が防止される。さらに、本発明のコイルを用いた電気機器は、占積率が高く、伸張後も導体のコーナー部の絶縁被覆層の厚さは薄くならない。したがって、電子もしくは電気機器の小型化および高性能化が可能になる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、本発明の絶縁電線の好ましい実施態様を示す概略断面図である。 図2は、本発明の絶縁電線の長辺、短辺およびコーナー部を示す模式図である。 図3は、本発明の絶縁電線の別の好ましい実施態様を示す概略断面図である。
<<絶縁電線>>
 本発明の絶縁電線は、断面形状が矩形で、長辺と短辺と、曲率半径Rcのコーナー部とを有する導体の外周面上に、熱可塑性樹脂からなる絶縁被覆層を有する。
 さらに、本発明の絶縁電線は、導体の横断面の長辺の、導体の軸線方向に連続する面に被覆された絶縁被覆層の厚さ(以下、絶縁被覆層の長辺の厚さとも称す。)t1(μm)および導体の横断面の短辺の、導体の軸線方向に連続する面に被覆された絶縁被覆層の厚さ(以下、絶縁被覆層の短辺の厚さとも称す。)t2(μm)ならびに絶縁被覆層のコーナー部の厚さt3(μm)が下記式(1)の関係にあり、
 式(1)    t3/{(t1+t2)/2}≧1.2
 t1(μm)およびt2(μm)が各々独立に20μm以上50μm以下であり、
 かつ、絶縁電線断面積Sw(mm)に対する導体断面積Sc(mm)の比が下記式(2)の関係にある。
 式(2)    1.0>Sc/Sw≧0.8
 本発明において、層を構成する樹脂および含有する添加物が全く同じ層で隣接して積層した場合は、これらを合わせて1つの層とする。
 また、同一樹脂で構成されていても添加物の種類や配合量が異なる層を積層した場合は、隣接しているか否かに関わらず、それぞれの層を別層とする。
 以下、本発明の好ましい絶縁電線を、図面を参照して、説明するが、本発明はこれに限定されない。
 図1に断面図を示した本発明の好ましい形態の絶縁電線1は、導体11と、導体11の外周上に設けられた絶縁被覆層12を有してなる。また、図2の模式図に示したように、導体の4隅は、曲率半径Rcのコーナー部を有し、絶縁被覆層12は、樹脂の厚みとして、長辺の厚さt1(μm)、短辺の厚さt2(μm)およびコーナー部の厚さt3(μm)を有する。ここで、絶縁被覆層のコーナー部とは、導体のコーナー部を被覆する絶縁被覆層の部位を意味する。
 ここで、絶縁被覆層の厚さは、走査型電子顕微鏡(SEM)あるいは市販のマイクロスコープ等で測定ができる。観察倍率は絶縁被覆層の厚さに応じて適宜決定できるが、概ね400倍以上が好ましい。
 絶縁被覆層の長辺および短辺の厚さであるt1(μm)およびt2(μm)は均一であることが望ましい。絶縁被覆層の長辺および短辺の厚さが均一な場合、t1とする測定箇所は適宜決定できる。
 なお、厚さにばらつきがある場合は平均値を用いるのが好ましい。この場合、均等間隔で5点以上を測定し、平均値を算出するのが望ましい。
 絶縁被覆層のコーナー部の厚さt3(μm)は必ずしも均一である必要はなく、コーナー部の頂点の厚さが最大になっていることが好ましい。本発明におけるt3(μm)は、図2に示すように、導体のコーナー部の中心と頂点を結んだ直線上における絶縁被覆層の厚さと定義する。
 本発明の絶縁電線においては、2つの長辺、2つの短辺、4つのコーナー部が存在するため、各々の長辺、短辺およびコーナー部の絶縁被覆層の厚さが異なる場合は、それぞれの平均値をt1(μm)、t2(μm)、t3(μm)とする。
 また、絶縁被覆層のコーナー部の厚さt3(μm)が、絶縁被覆層の長辺の厚さt1(μm)および絶縁被覆層の短辺の厚さt2(μm)の平均厚さに対して、下記式(1)の関係にあり、
 式(1)    t3/{(t1+t2)/2}≧1.2
 t1(μm)およびt2(μm)が各々独立に20μm以上50μm以下であり、
 かつ、図1の断面図に示した絶縁電線1の断面積Sw(mm)に対する導体11の断面積Sc(mm)が下記式(2)の関係にあることで、曲げ加工性に優れ、モータ成型した際に小型化可能な絶縁電線を得ることができる。
 式(2)    1.0>Sc/Sw≧0.8
 図3に断面図を示した本発明の別の好ましい形態の絶縁電線2は、導体11と絶縁被覆層12との間に、内層13を設けたものである。
 なお、絶縁電線2においては、絶縁被覆層12および内層13の厚さの合計を、それぞれ絶縁被覆層の長辺の厚さt1(μm)、短辺の厚さt2(μm)およびコーナー部の厚さt3(μm)とする。
 以下、本発明の絶縁電線について、導体から順に説明する。
<導体>
 本発明に用いる導体は、断面形状が矩形(四角とも称される)であって、曲率半径Rcのコーナー部を有する。
 その材質は導電性を有するものであればよく、例えば銅、銅合金、アルミニウム、アルミニウム合金等が挙げられるがこれらに限定されるものではない。
 導体が銅の場合、例えば、導体を溶接する際に、含有酸素に起因する溶接部分におけるボイド発生を防止する観点から、好ましくは銅99.96%以上で、酸素含有量が好ましくは30ppm以下、より好ましくは20ppm以下の低酸素銅または無酸素銅が好ましい。
 導体がアルミニウムの場合、必要機械強度を考慮したうえで、用途に応じて様々なアルミニウム合金を用いることができる。例えば回転電機のような用途に対しては、高い電流値を得られる純度99.00%以上の純アルミニウムが好ましい。
 本発明に用いる導体は断面形状が矩形であるため、断面形状が円形のものと比較して、ステータースロットに対する占積率が高い。
 本発明に用いる導体は、コーナー部からの部分放電を抑制するという点から、例えば、図2に示すように、4隅のコーナー部には面取り(曲率半径Rc)を設けた形状を有する。
 後述の占積率の観点から、曲率半径Rcは、0.60mm以下が好ましく、0.10mm~0.40mmの範囲がより好ましい。
 導体のサイズは絶縁電線、コイルの用途に応じて決めるものであるため特に制限はない。ただし、導体断面の一辺の長さは、幅(長辺)c1は4.7mm以下が好ましく、1.0mm~4.7mmがより好ましく1.4mm~4.5mmがさらに好ましい。厚み(短辺)c2は3.5mm以下が好ましく、0.4mm~3.0mmがより好ましく、0.5mm~2.5mmがさらに好ましい。
 また、断面形状は正方形よりも、長方形が一般的である。
 導体の断面形状の大きさは、特に限定はない。ただし、幅(長辺)の長さc1に対する厚み(短辺)の長さc2の比は、c1:c2=1:1~4:1が好ましい。
 なお、本明細書において使用する導体断面の長辺および短辺の長さとは、図1に示すように、コーナー部の面取りが行われる前の長方形における長辺および短辺に相当する。
(占積率)
 本明細書において占積率とは、下記式で算出される導体占積率であり、絶縁電線1または2の断面積Sw(mm)に対する導体11の断面積Sc(mm)の比を意味する。
   [導体占積率]=Sc/Sw
 この導体占積率が高いことで、コイルを製造したときの占積率を向上させ、高性能で小型化可能なモーターを製造できる。
<絶縁被覆層>
 本発明の絶縁電線は、導体の外周上に、熱可塑性樹脂からなる絶縁被覆層を有する。
 本発明の絶縁電線において、絶縁被覆層に用いる熱可塑性樹脂は、ポリアミド(PA)(ナイロン)、ポリアセタール(POM)、ポリカーボネート(PC)、ポリフェニレンエーテル(変性ポリフェニレンエーテルを含む)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、超高分子量ポリエチレン等の汎用エンジニアリングプラスチックの他、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド(PPS)、ポリアリレート(Uポリマー)、ポリアミドイミド、ポリエーテルケトン(PEK)、ポリアリールエーテルケトン(PAEK)(変性ポリエーテルエーテルケトン(変性PEEK)を含む)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリエーテルエーテルケトン(PEEK)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)、熱可塑性ポリイミド樹脂(TPI)、ポリアミドイミド(PAI)、液晶ポリエステル等のスーパーエンジニアリングプラスチック、さらに、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)をベース樹脂とするポリマーアロイ、ABS/ポリカーボネート、ナイロン6,6、芳香族ポリアミド樹脂(芳香族PA)、ポリフェニレンエーテル/ナイロン6,6、ポリフェニレンエーテル/ポリスチレン、ポリブチレンテレフタレート/ポリカーボネート等の前記エンジニアリングプラスチックを含むポリマーアロイが挙げられる。
 これら樹脂のうち結晶性熱可塑性樹脂は、例えば、ポリアミド(PA)、ポリアセタール(POM)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリフェニレンスルフィド(PPS)、超高分子量ポリエチレン等の汎用エンジニアリングプラスチック、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリアリールエーテルケトン(PAEK)(変性PEEKを含む)、ポリエーテルケトンケトン(PEKK)、ポリエーテルケトンエーテルケトンケトン(PEKEKK)、熱可塑性ポリイミド樹脂(TPI)が挙げられ、好ましい。
 これらの樹脂のなかでも、PEEK、変性PEEK、PEKK、PEK、PEKEKKおよびPPSからなる群から選択される樹脂が好ましく、PEEK、変性PEEK、PEKK、PEKおよびPEKEKKからなる群から選択される樹脂がより好ましく、PEEKまたは変性PEEKがさらに好ましい。これらの熱可塑性樹脂は1種単独で用いても良く、また、2種以上を組み合わせて用いてもよい。また、上記に示した樹脂名によって使用樹脂が限定されるものではなく、先に列挙した樹脂以外にも、それらの樹脂より性能的に優れる樹脂であれば使用可能であるのは勿論である。
 具体的には、ポリエーテルエーテルケトン(PEEK、23℃での曲げ弾性率:3,500~4,500MPa)、変性ポリエーテルエーテルケトン(変性PEEK、23℃での曲げ弾性率:2,800~4,400MPa)、ポリエーテルケトンケトン(PEKK、23℃での曲げ弾性率:3800~4,500MPa)、ポリエーテルケトン(PEK、23℃での曲げ弾性率:4,000~5,000MPa)、ポリエーテルケトンエーテルケトンケトン(PEKEKK、23℃での曲げ弾性率:4,000~4,600MPa)、熱可塑性ポリイミド樹脂(TPI、23℃での曲げ弾性率:2,500~3,000MPa)およびポリフェニレンスルフィド(PPS、23℃での曲げ弾性率:3,500~4,200MPa)などが挙げられる。
 23℃での曲げ弾性率が1,000MPa未満の場合には変形する効果は高くなる。
 23℃での曲げ弾性率が800MPa以上の場合には、熱可塑性樹脂の形状可変の能力を損なうことなく、さらに耐摩耗特性を良好なレベルで維持することが可能である。
 熱可塑性樹脂の23℃における曲げ弾性率は、2,000MPa以上が好ましく、3,000MPa以上がより好ましく、3,500MPa以上がさらに好ましい。
 この曲げ弾性率の上限値は特に限定されない。なお、導体と絶縁被覆層の間に、熱硬化性樹脂からなるワニスを焼き付けてなる内層を設ける場合には、絶縁被覆層を形成する熱可塑性樹脂の23℃での曲げ弾性率が、内層を形成する熱硬化性樹脂の23℃での曲げ弾性率を大幅に上回らない限り、外側の熱可塑性樹脂への応力の集中が抑えられ、エッジワイズ曲げでの割れの発生を抑制できる点から、5,000MPa以下が好ましい。
 よって、本発明における熱可塑性樹脂は、結晶性樹脂であって、かつ23℃での曲げ弾性率が2,000MPa以上であることが好ましい。
 熱可塑性樹脂の具体例としては、例えば、PEEKとしてビクトレックスジャパン社製のPEEK450G(商品名、23℃での曲げ弾性率:4,200MPa)、変性PEEKとしてソルベイ社製のアバスパイアAV-650(商品名、23℃での曲げ弾性率:3,700MPa)またはAV-651(商品名、23℃での曲げ弾性率:3,100MPa)、PEKKとしてサイテックインダストリーズ社製のPEKK(23℃での曲げ弾性率:4,500MPa)、PEKとしてビクトレックスジャパン社製のHT-G22(商品名、23℃での曲げ弾性率:4,200MPa)、PEKEKKとしてビクトレックスジャパン社製のST-STG45(商品名、23℃での曲げ弾性率:4,100MPa)、TPIとして三井化学社製のオーラムPL450C(商品名、23℃での曲げ弾性率:2,900MPa)、PPSとしてポリプラスチックス社製のジュラファイド0220A9(商品名、23℃での曲げ弾性率:3,800MPa)またはDIC社製のPPS FZ-2100(商品名、23℃での曲げ弾性率:3,800MPa)等の市販品を挙げることができる。
 また、本発明における絶縁被覆層は、絶縁被覆層の長辺の厚さt1および絶縁被覆層の短辺の厚さt2ならびに絶縁被覆層のコーナー部の厚さt3が、下記式(1)の関係にある。
 式(1)    t3/{(t1+t2)/2}≧1.2
 上記式(1)の関係にあることで、伸張後における絶縁電線の絶縁破壊電圧を維持することが可能である。
 なお、機構については定かではないものの、伸張前と伸張後の断面形状の観察により、絶縁被覆層において膜厚の薄い部分がより薄くなる現象が発生しており、最も電解集中するコーナー部の絶縁被覆層の膜厚が、伸張後も維持されることにより、伸張後の絶縁破壊電圧が維持されていると考えられる。
 上記式(1)における左辺:t3/{(t1+t2)/2}の値は、伸張による膜厚減少を抑える観点から1.2以上であり、1.5以上が好ましく、1.8以上がより好ましく、2.1以上がさらに好ましい。なお、上限値は、絶縁皮膜の形状によるモーターに組んだときの整列しやすさの点から2.5以下が好ましい。
 さらに、本発明における絶縁被覆層の長辺厚さt1および短辺厚さt2は、各々独立して20μm以上50μm以下であり、25μm以上40μm以下が好ましく、25μm以上35μm以下がより好ましい。
 なお、厚さt1およびt2にばらつきがある場合、それぞれにおける最小値と最大値の厚さの差は、10μm以下が好ましく、5μm以下がより好ましく、3μm以下がさらに好ましい。
 絶縁被覆層の長辺および短辺の厚さがこの範囲内にあることで、絶縁被覆層の厚さは薄く、占積率の高い絶縁電線を得ることができる。
 また、絶縁被覆層の長辺厚さt1および短辺厚さt2は下記式(1a)および(1b)の関係にあることが好ましい。
 式(1a)    0≦|t1-t2|/t1≦0.2
 式(1b)    0≦|t1-t2|/t2≦0.2
 上記式(1a)および(1b)の関係にあることで、絶縁電線を伸張した際のコーナー部の絶縁被覆層の膜厚が効果的に維持され、伸張後の絶縁破壊電圧が維持される。
 本発明における絶縁被覆層は、導体の外周上に、熱可塑性樹脂を押出被覆して設けることが好ましい。
 熱可塑性樹脂を押出被覆して設けることにより、絶縁被覆層の厚さt1、t2およびt3が上記式(1)の関係にあるよう任意の厚さに調節することができる。なお、熱可塑性樹脂は、後述の熱硬化性樹脂のようにワニスを塗布、焼き付けて、設けることもできる。
 本発明の絶縁電線は、導体の外周上に、本発明における絶縁被覆層を単層設けることが好ましい。
 これまでの絶縁電線では、密着力および伸張後の絶縁破壊電圧の向上のため、導体と絶縁被覆層との間にエナメル層を設ける必要があった。しかし、本発明では、絶縁被覆層の長辺厚さt1、短辺厚さt2およびコーナー部厚さt3が式(1)の関係にあるようにすることで、エナメル層を設けなくても、強い加工圧を加えても良好な密着力および伸張後の絶縁破壊電圧を有する絶縁電線が得られる。
 導体上にエナメル層を設ける工程を省くことで絶縁電線の製造工程を簡略化できるため、導体の外周上に、単層の絶縁被覆層を直接有する、図1で示される絶縁電線1がより好ましい。
 -導体と絶縁被覆層の関係-
 本発明において、絶縁電線断面積Swに対する導体断面積Scの比は、下記式(2)の関係にある。
 式(2)    1.0>Sc/Sw≧0.8
 なお、導体断面積Scおよび絶縁電線断面積Swは、走査型電子顕微鏡(SEM)あるいは市販のマイクロスコープ等で測定ができる。観察倍率は絶縁被覆層の厚さに応じて適宜決定できるが、絶縁電線断面積Swの場合は、概ね400倍以上が好ましい。
 上記式(2)の関係にあることで、高い占積率の絶縁電線を得ることができる。より優れたモーターの効率向上効果を得る観点からは、Sc/Swの下限値は、0.85以上が好ましく、0.90以上がより好ましい。
 導体断面の長辺の長さc1(mm)および短辺の長さc2(mm)ならびに絶縁被覆層の長辺厚さt1(μm)および短辺厚さt2(μm)が、下記式(3a)および(3b)の関係にあることも好ましい。
 式(3a)    0<t1/(c2×1000)≦0.02
 式(3b)    0<t2/(c1×1000)≦0.02
 上記式(3a)および(3b)の関係にあることで、エッジワイズおよびフラットワイズ曲げ加工性に優れた絶縁電線を得ることができる。
 なお、より優れたエッジワイズおよびフラットワイズ曲げ加工性を得る観点からは、上記式(3a)および(3b)の関係にあり、かつ、導体断面の長辺の長さc1が4.5mm以下、短辺の長さc2が3.5mm以下および曲率半径Rcが0.60mm以下であることがより好ましい。
 2種以上の熱可塑性樹脂を混合して使用する場合は、例えば両者をポリマーアロイ化して相溶型の均一な混合物として使用するか、非相溶系のブレンドを、相溶化剤を用いて相溶状態を形成して使用することができる。
 本発明において、特性に影響を及ぼさない範囲で、絶縁被覆層を得る原料に、後述の各種添加剤を含有していてもよい。
<内層(C)>
 本発明においては、導体と絶縁被覆層との間に設けてもよい内層は、伸張後の絶縁破壊電圧の維持、良好な曲げ加工性を有するものであればどのような層であってもよく、例えばエナメル焼付け層が挙げられる。
 絶縁電線の比誘電率に変化を及ばさず、本発明の特性である高い占積率、伸張後の絶縁破壊電圧の維持、良好な耐曲げ性を得る観点からは、内層の厚さは5μm以下が好ましく、3μm以下がより好ましく、2μm以下がさらに好ましい。
 エナメル焼付け層は、樹脂ワニスを導体上に塗布、焼付けして形成したものであり、用いる樹脂ワニスは、熱硬化性樹脂を含有する。
 熱硬化性樹脂は、導体に塗布し焼き付けて絶縁皮膜を形成できる熱硬化性樹脂であればよく、ポリイミド(PI)、ポリウレタン、ポリアミドイミド(PAI)、熱硬化性ポリエステル、H種ポリエステル、ポリベンゾイミダゾール、ポリエステルイミド(PEsI)、ポリエーテルイミド(PEI)、メラミン樹脂、エポキシ樹脂などを用いることができる。
 本発明では、熱硬化性樹脂として、ポリイミド、ポリアミドイミド、ポリエーテルイミドおよびポリエステルイミドからなる群より選択される熱硬化性樹脂が好ましい。
 ポリイミドは、特に制限はなく、全芳香族ポリイミドおよび熱硬化性芳香族ポリイミドなど、通常のポリイミドを用いることができる。例えば、市販品(商品名:Uイミド(ユニチカ(株)社製)、商品名:U-ワニス(宇部興産(株)社製))を用いるか、常法により、芳香族テトラカルボン酸二無水物と芳香族ジアミン類を極性溶媒中で反応させて得られるポリアミド酸溶液を用い、被覆する際の焼き付け時の加熱処理によってイミド化させることによって得られるものを用いることができる。
 ポリアミドイミドは、熱硬化性のものであればよく、市販品(例えば、商品名:HI406(日立化成(株)社製)、商品名:HCIシリーズ(日立化成(株)社製))を用いるか、常法により、例えば極性溶媒中でトリカルボン酸無水物とジイソシアネート類を直接反応させて得たもの、または、極性溶媒中でトリカルボン酸無水物にジアミン類を先に反応させて、まずイミド結合を導入し、ついでジイソシアネート類でアミド化して得たものを用いることができる。なお、ポリアミドイミドは、他の樹脂に比べ熱伝導率が低く、絶縁破壊電圧が高く、焼付け硬化が可能なものである。
 ポリエーテルイミドは、分子内にエーテル結合とイミド結合を有するポリマーであればよく、例えば、商品名:ウルテム1000(SABIC社製)などの市販品を用いることができる。
 また、ポリエーテルイミドは、例えば、芳香族テトラカルボン酸二無水物と分子内にエーテル結合を有する芳香族ジアミン類を極性溶媒中で反応させて得られるポリアミド酸溶液を用い、被覆する際の焼き付け時の加熱処理によってイミド化させることによって得られるものを用いることもできる。
 ポリエステルイミドは、分子内にエステル結合とイミド結合を有するポリマーであって熱硬化性のものであればよく、例えば、商品名:ネオヒート8600A(東特塗料(株)社製)などの市販品を用いることができる。
 また、ポリエステルイミドは、特に限定されないが、例えば、トリカルボン酸無水物とアミンからイミド結合を形成し、アルコールとカルボン酸またはそのアルキルエステルからエステル結合を形成し、そして、イミド結合の遊離酸基または無水基がエステル形成反応に加わることで得られるものを用いることができる。このようなポリエステルイミドは、例えば、トリカルボン酸無水物、ジカルボン酸化合物またはそのアルキルエステル、アルコール化合物およびジアミン化合物を公知の方法で反応させて得たものを用いることもできる。
 熱硬化性樹脂は、1種のみを単独で使用してもよく、2種以上を併用してもよい。
 また、熱硬化性樹脂被覆が複数の熱硬化性樹脂層からなる場合、各層で互いに異なった熱硬化性樹脂を用いても、異なった混合比率の熱硬化性樹脂を使用してもよい。
 本発明に用いる樹脂ワニスは、特性に影響を及ぼさない範囲で、気泡化核剤、酸化防止剤、帯電防止剤、紫外線防止剤、光安定剤、蛍光増白剤、顔料、染料、相溶化剤、滑剤、強化剤、難燃剤、架橋剤、架橋助剤、可塑剤、増粘剤、減粘剤およびエラストマーなどの各種添加剤を含有してもよい。また、得られる絶縁電線に、これらの添加剤を含有する樹脂からなる層を積層してもよいし、これらの添加剤を含有する塗料をコーティングしてもよい。
 樹脂ワニスは、熱硬化性樹脂層の弾性率を向上させるために、ガラスファイバーやカーボンナノチューブなど、高いアスペクト比を有する粉体を塗料に添加して、焼き付けても良い。このようにすることで、加工時に線の流れ方向に粉体が整列し、曲げ方向に対して強化される。
 樹脂ワニスは、熱硬化性樹脂をワニス化させるために有機溶媒等を含有する。有機溶媒としては、熱硬化性樹脂の反応を阻害しない限りは特に制限はなく、例えば、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAC)、N,N-ジメチルホルムアミド(DMF)等のアミド系溶媒、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素等の尿素系溶媒、γ-ブチロラクトン、γ-カプロラクトン等のラクトン系溶媒、プロピレンカーボネート等のカーボネート系溶媒、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート、エチルセロソルブアセテート、エチルカルビトールアセテート等のエステル系溶媒、ジグライム、トリグライム、テトラグライム等のグライム系溶媒、トルエン、キシレン、シクロヘキサン等の炭化水素系溶媒、クレゾール、フェノール、ハロゲン化フェノールなどのフェノール系溶媒、スルホラン等のスルホン系溶媒、ジメチルスルホキシド(DMSO)などが挙げられる。
 これらのうち、高溶解性、高反応促進性等に着目すると、アミド系溶媒、尿素系溶媒が好ましく、加熱による架橋反応を阻害しやすい水素原子をもたない等の点で、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素がより好ましく、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシドが特に好ましい。
 有機溶媒等は、1種のみを単独で使用してもよく、2種以上を併用してもよい。
<絶縁電線の特性>
 本発明の絶縁電線は、占積率、エッジワイズおよびフラットワイズ曲げ加工性、伸張後の絶縁破壊電圧の維持特性に優れる。
[占積率]
 占積率は、絶縁電線1または2の断面積Sw(mm)に対する導体11の断面積Sc(mm)の比を意味する、導体占積率で評価する。
 導体占積率が0.90以上1.00未満の絶縁電線を、モーターの効率向上への効果が大きいとして「A」、0.85以上0.90未満の絶縁電線を効果があるとして「B」、0.80以上0.85未満の絶縁電線を、効果は小さいものの効果があるとして「C」、0.80未満の絶縁電線を、断面形状が円形の導体を用いた絶縁電線と比較して優位性がほとんどないものとして「D」とし、4段階で評価する。なお、「C」以上が合格レベルである。
[エッジワイズ曲げ加工性]
 エッジワイズ曲げ試験はJIS 3216-3に従って実施する。
 なお、絶縁電線の曲げられる部分にフェザー剃刃S片刃(例えば、フェザー安全剃刀株式会社製)を用いて深さ5μmの切込みを入れることで、より厳しい条件でのエッジワイズ曲げを実施する。切込みを入れた絶縁電線を、切込み部分が中心となるように直径1.5mmのステンレス鋼製の棒に巻き付けることによって曲げて判断する。
 絶縁被覆層が裂け、亀裂が導体の面全体に進展した絶縁電線を「D」、絶縁被覆層に亀裂が進展したものの導体までは達していない絶縁電線を「C」、切込み部分も一緒に伸びて切込みが進展していない絶縁電線を「B」とし、3段階で評価する。なお、「C」以上が合格レベルである。
[フラットワイズ曲げ加工性]
 フラットワイズ曲げ試験はエッジワイズ曲げ加工性の試験を応用して実施する。
 なお、絶縁電線の曲げられる部分にフェザー剃刃S片刃(例えば、フェザー安全剃刀株式会社製)を用いて深さ5μmの切込みを入れることで、より厳しい条件でのフラットワイズ曲げを実施する。切込みを入れた絶縁電線を、切込み部分が中心となるようにΦ1.5mmのSUS製の棒に巻き付けることによって曲げて判断する。
 絶縁被覆層が裂け、亀裂が導体の面全体に進展した絶縁電線を「D」、絶縁被覆層に亀裂が進展したものの導体までは達していない絶縁電線を「C」、切込み部分も一緒に伸びて切込みが進展していない絶縁電線を「B」とし、3段階で評価する。なお、「C」以上が合格レベルである。
[伸張後絶縁破壊強度]
 絶縁電線の耐電圧特性は、オートグラフ(例えば、島津製作所社製)を用いて伸張速度300mm/minで20%伸張し、絶縁破壊試験機を使用して、電圧を測定して評価する。
 具体的には、絶縁電線の片側の端末を剥離した部分に接地電極を接続し、端末を剥離した絶縁電線の端からの長さが300mmの部分にアルミ箔を巻き、巻き付けたアルミ箔に高圧側電極を接続する。昇圧速度500V/秒で昇圧して、15mA以上の電流が流れたときの電圧を読み取る。試験数n=5で実施し、その平均値で絶縁破壊電圧を評価する。この値について「長辺の合計皮膜厚さ」と「短辺の皮膜厚さ」の平均値で除することで絶縁破壊強度を算出する。
 100V/μm以上を「A」、80V/μm以上100V/μm未満を「B」、60V/μm以上80V/μm未満を「C」、60V/μm未満を「D」とし、4段階で評価する。なお、「C」以上が合格レベルである。
<<絶縁電線の製造方法>>
 本発明の絶縁電線は、導体の外周上に、熱可塑性樹脂からなる絶縁被覆層を形成することで製造できる。
 なお、導体と絶縁被覆層の間に内層を設ける場合には、導体上に内層を設けた後、絶縁被覆層を形成することで、本発明の絶縁電線を製造できる。
 以下に、内層、絶縁被覆層の順に説明する。
 内層は、例えば、熱硬化性樹脂を含有する樹脂ワニスを導体上に塗布し、焼き付けて形成される。樹脂ワニスを塗布する方法は、常法でよく、例えば、導体形状の相似形としたワニス塗布用ダイスを用いる方法や、導体断面形状が矩形である場合、井桁状に形成された「ユニバーサルダイス」と呼ばれるダイスを用いることができる。
 これらの樹脂ワニスを塗布した導体は、常法にて、焼付炉で焼付けされる。具体的な焼付け条件はその使用される炉の形状などに左右されるが、およそ8mの自然対流式の竪型炉であれば、炉内温度400~650℃にて通過時間を10~90秒に設定することにより、達成することができる。
 樹脂ワニスの焼付けは、1回でも、数回繰り返してもよい。数回繰り返す場合は、同一の焼付け条件でもよく、異なる焼付け条件でもよい。
 このようにして1層の内層を形成できる。内層を複数層形成する場合には、用いる樹脂ワニスを代えればよい。
 次いで、内層を形成した導体の外周上に、熱可塑性樹脂からなる絶縁被覆層を設ける。例えば、内層が形成された導体(エナメル線とも称す)を心線とし、押出機のスクリューを用いて熱可塑性樹脂をエナメル線上に押出被覆することにより絶縁被覆層を形成し、絶縁電線を得ることができる。この際、押出被覆樹脂層の断面の外形の形状が導体の形状と相似形で所定の長辺、短辺およびコーナー部の厚みが得られる形状になるように、熱可塑性樹脂の融点以上の温度(非晶性樹脂の場合にはガラス転移温度以上)で押出ダイを用いて熱可塑性樹脂の押出被覆を行う。熱可塑性樹脂層(例えば、熱可塑性樹脂からなる絶縁被覆層)は、有機溶媒等と熱可塑性樹脂を用いて形成することもできる。
 非晶性の熱可塑性樹脂を用いる場合には、押出成形の他に、有機溶媒等に溶解させたワニスを、導体の形状と相似形のダイスを使用して、エナメル線上にコーティングして焼付けて、形成することもできる。
 ワニスの有機溶媒は、上記樹脂ワニスにおいて挙げた有機溶媒が好ましい。
 また、具体的な焼付け条件はその使用される炉の形状などに左右されるが、熱硬化性樹脂における条件で記載した条件が好ましい。
 本発明の絶縁電線は、各種電気機器など、耐高電圧性や曲げ加工性を必要とする分野に利用可能である。例えば、本発明の絶縁電線はコイル加工してモーターやトランスなどに用いられ、高性能の電気機器を構成できる。高電圧領域で使用される分布巻コイルおよび低・中電圧領域で使用される集中巻コイルのどちらにも好ましく用いられ、特に集中巻コイルに好ましく用いられる。具体的には、HVやEVの駆動モーター用の巻線として好適に用いられる。
 以下に、本発明を実施例に基づいて、さらに詳細に説明するが、これは本発明を制限するものではない。
実施例1
 本例では、図1に示される絶縁電線1を製造した。
 導体には、断面平角(長辺c1:3.2mm×短辺c2:1.7mmで、四隅の面取りの曲率半径Rc=0.3mm)の平角導体11(酸素含有量15ppmの銅)を用いた。
 押出機のスクリューは、30mmフルフライト、L/D=20、圧縮比3を用いた。
 熱可塑性樹脂はポリエーテルエーテルケトン樹脂(PEEK)(ビクトレックスジャパン社製、商品名:PEEK450G、23℃での曲げ弾性率:4,200MPa)を用い、絶縁被覆層の断面の外形の形状が導体の形状と相似形でかつ表1に記載の長辺、短辺およびコーナー部の厚みが得られる形状になるように、押出ダイを用いてPEEKの押出被覆を370℃で行い、導体の外周上に、長辺の厚さt1および短辺の厚さt2がともに、30μmで、4つのコーナー部の厚さt3が40μmで、曲率半径が0.3mmの絶縁被覆層12〔押出被覆樹脂層〕を形成し、PEEK押出被覆樹脂層からなる絶縁電線1を得た。
実施例2
 本例では、図3に示される絶縁電線2を製造した。
 導体には、断面平角(長辺c1:4.5mm×短辺c2:1.8mmで、四隅の面取りの曲率半径Rc=0.3mm)の平角導体11(酸素含有量15ppmの銅)を用いた。
 内層13の形成に際しては、導体11上に形成される内層の形状と相似形のダイスを使用して、ポリアミドイミド樹脂(PAI)ワニス(日立化成(株)社製、商品名:HI406)を導体11へコーティングし、炉内温度550℃に設定した炉長8mの焼付炉内を、通過時間15秒となる速度で通過させることで、厚さ3μmの内層13を形成し、内層13を有するエナメル線を得た。
 得られたエナメル線を芯線とし、押出機のスクリューは30mmフルフライト、L/D=20、圧縮比3を用いた。
 熱可塑性樹脂は変性ポリエーテルエーテルケトン樹脂(変性PEEK)(ソルベイジャパン(株)社製、商品名:アバスパイア AV-650)を用い、絶縁被覆層の断面の外形の形状が導体の形状と相似形でかつ表1に記載の長辺、短辺およびコーナー部の厚みが得られる形状になるように、押出ダイを用いて変性PEEKの押出被覆を370℃で行い、導体の外周上に、長辺の厚さが36μmで、短辺の厚さが34μmで、4つのコーナー部の厚さが50μmで、曲率半径が0.3mmの絶縁被覆層12〔押出被覆樹脂層〕を形成し、変性PEEK押出被覆樹脂層からなる絶縁電線2を得た。
実施例3
 本例では、図3に示される絶縁電線2を製造した。
 導体11には、表1に記載の長辺c1および短辺c2の長さならびにコーナー部の曲率半径Rcを有する平角導体11(酸素含有量15ppmの銅)を用いた。
 ポリアミドイミド樹脂(PAI)ワニスに代えてポリイミド樹脂(PI)ワニス(ユニチカ(株)社製、商品名:Uイミド)を用いた以外は実施例2と同様にして、厚さ3μmの内層13を形成し、内層13を有するエナメル線を得た。
 得られたエナメル線を芯線とし、変性ポリエーテルエーテルケトン樹脂(変性PEEK)に代えてポリエーテルエーテルケトン樹脂(PEEK)(ビクトレックスジャパン社製、商品名:PEEK450G)を用いた以外は実施例2と同様にして、表1に記載の長辺、短辺およびコーナー部の厚さならびに曲率半径Rrの絶縁被覆層12を形成し、PEEK押出被覆樹脂層からなる絶縁電線2を得た。
実施例4
 本例では、図1に示される絶縁電線1を製造した。
 導体11には、表1に記載の長辺c1および短辺c2の長さならびにコーナー部の曲率半径Rcを有する平角導体11(酸素含有量15ppmの銅)を用いた。
 ポリエーテルエーテルケトン樹脂(PEEK)に代えてポリエーテルケトン樹脂(PEK)(ビクトレックスジャパン社製、商品名:HT-G22)を用いた以外は実施例1と同様にして、表1に記載の長辺、短辺およびコーナー部の厚さならびに曲率半径Rrの絶縁被覆層12を形成し、PEKK押出被覆樹脂層からなる絶縁電線1を得た。
実施例5
 本例では、図3に示される絶縁電線2を製造した。
 導体11には、表1に記載の長辺c1および短辺c2の長さならびにコーナー部の曲率半径Rcを有する平角導体11(酸素含有量15ppmの銅)を用いた。
 ポリアミドイミド樹脂(PAI)ワニスに代えてポリエーテルイミド樹脂(PEI)ワニス(SABIC社製、商品名:ウルテム1000)を用いた以外は実施例2と同様にして、厚さ2μmの内層13を形成し、内層13を有するエナメル線を得た。
 得られたエナメル線を芯線とし、変性ポリエーテルエーテルケトン樹脂(変性PEEK)に代えて熱可塑性ポリイミド樹脂(TPI)(三井化学社製、商品名:オーラムPL450C)を用いた以外は実施例2と同様にして、表1に記載の長辺、短辺およびコーナー部の厚さならびに曲率半径Rrの絶縁被覆層12を形成し、PEEK押出被覆樹脂層からなる絶縁電線2を得た。
実施例6
 本例では、図3に示される絶縁電線2を製造した。
 導体11には、表1に記載の長辺c1および短辺c2の長さならびにコーナー部の曲率半径Rcを有する平角導体11(酸素含有量15ppmの銅)を用いた。
 ポリアミドイミド樹脂(PAI)ワニスに代えてポリエステルイミド樹脂(PEsI)ワニス(東特塗料(株)社製、商品名:ネオヒート8600A)を用いた以外は実施例2と同様にして、厚さ3μmの内層13を形成し、内層13を有するエナメル線を得た。
 得られたエナメル線を芯線とし、変性ポリエーテルエーテルケトン樹脂(変性PEEK)に代えて芳香族ポリアミド樹脂(芳香族PA)(ソルベイソルベイスペシャルティポリマーズ社製、商品名:アモデル AT-1001L)を用いた以外は実施例2と同様にして、表1に記載の長辺、短辺およびコーナー部の厚さならびに曲率半径Rrの絶縁被覆層12を形成し、PEEK押出被覆樹脂層からなる絶縁電線2を得た。
実施例7
 本例では、図1に示される絶縁電線1を製造した。
 導体11には、表1に記載の長辺c1および短辺c2の長さならびにコーナー部の曲率半径Rcを有する平角導体11(酸素含有量15ppmの銅)を用いた。
 ポリエーテルエーテルケトン樹脂(PEEK)に代えて変性ポリエーテルエーテルケトン樹脂(変性PEEK)(ソルベイジャパン(株)社製、商品名:アバスパイア AV-650)を用いた以外は実施例1と同様にして、表1に記載の長辺、短辺およびコーナー部の厚さならびに曲率半径Rrの絶縁被覆層12を形成し、変性PEEK押出被覆樹脂層からなる絶縁電線1を得た。
実施例8
 本例では、図1に示される絶縁電線1を製造した。
 導体11には、表1に記載の長辺c1および短辺c2の長さならびにコーナー部の曲率半径Rcを有する平角導体11(酸素含有量15ppmの銅)を用いた。
 ポリエーテルエーテルケトン樹脂(PEEK)に代えてポリエチレンテレフタレート樹脂(PET)(帝人社製、商品名:TR8550N)を用いた以外は実施例1と同様にして、表1に記載の長辺、短辺およびコーナー部の厚さならびに曲率半径Rrの絶縁被覆層12を形成し、PET押出被覆樹脂層からなる絶縁電線1を得た。
実施例9
 本例では、図1に示される絶縁電線1を製造した。
 導体11には、表1に記載の長辺c1および短辺c2の長さならびにコーナー部の曲率半径Rcを有する平角導体11(酸素含有量15ppmの銅)を用いた。
 ポリエーテルエーテルケトン樹脂(PEEK)に代えてポリフェニレンスルフィド樹脂(PPS)(DIC(株)社製、商品名:PPS FZ-2100)を用いた以外は実施例1と同様にして、表1に記載の長辺、短辺およびコーナー部の厚さならびに曲率半径Rrの絶縁被覆層12を形成し、PPS押出被覆樹脂層からなる絶縁電線1を得た。
比較例1
 本例では、絶縁被覆層の長辺および短辺の厚さとコーナー部の厚さが同じで、式(1)の関係を満たさない以外は、図3に示される絶縁電線2の構造を有する絶縁電線を製造した。
 導体には、表2に記載の長辺および短辺の長さならびにコーナー部の曲率半径を有する平角導体(酸素含有量15ppmの銅)を用いた。
 実施例2と同様にして、厚さ3μmの内層を形成し、内層を有するエナメル線を得た。
 得られたエナメル線を芯線とし、変性ポリエーテルエーテルケトン樹脂(変性PEEK)に代えてポリエーテルエーテルケトン樹脂(PEEK)(ビクトレックスジャパン社製、商品名:PEEK450G)を用いた以外は実施例2と同様にして、表2に記載の長辺、短辺およびコーナー部の厚さならびに曲率半径Rrの絶縁被覆層を形成し、式(1)の関係を満たさない絶縁電線を得た。
比較例2
 本例では、絶縁被覆層の長辺および短辺の厚さとコーナー部の厚さが式(1)の関係を満たさず、絶縁被覆層の長辺および短辺の厚さが厚く、絶縁電線断面積に対する導体断面積の比が式(2)の関係を満たさない以外は、図1に示される絶縁電線1の構造を有する絶縁電線を製造した。
 導体には、表2に記載の長辺および短辺の長さならびにコーナー部の曲率半径を有する平角導体(酸素含有量15ppmの銅)を用いた。
 ポリエーテルエーテルケトン樹脂(PEEK)に代えて変性ポリエーテルエーテルケトン樹脂(PEEK)(ソルベイジャパン(株)社製、商品名:アバスパイア AV-650)を用いた以外は実施例1と同様にして、表2に記載の長辺、短辺およびコーナー部の厚さならびに曲率半径Rrの絶縁被覆層を形成し、式(1)および式(2)の関係を満たさず、絶縁被覆層の長辺および短辺の厚さが厚い絶縁電線を得た。
比較例3
 本例では、絶縁被覆層の長辺および短辺の厚さとコーナー部の厚さが式(1)の関係を満たさない以外は、図1に示される絶縁電線1の構造を有する絶縁電線を製造した。
 導体には、表2に記載の長辺および短辺の長さならびにコーナー部の曲率半径を有する平角導体(酸素含有量15ppmの銅)を用いた。
 ポリエーテルエーテルケトン樹脂(PEEK)に代えてポリフェニレンスルフィド樹脂(PPS)(DIC(株)社製、商品名:PPS FZ-2100)を用いた以外は実施例1と同様にして、表2に記載の長辺、短辺およびコーナー部の厚さならびに曲率半径Rrの絶縁被覆層を形成し、式(1)の関係を満たさない絶縁電線を得た。
比較例4
 本例では、絶縁電線断面積に対する導体断面積の比が式(2)の関係を満たさない以外は、図1に示される絶縁電線1の構造を有する絶縁電線を製造した。
 導体には、表2に記載の長辺および短辺の長さならびにコーナー部の曲率半径を有する平角導体(酸素含有量15ppmの銅)を用いた。
 ポリエーテルエーテルケトン樹脂(PEEK)に代えてポリエーテルケトン樹脂(PEK)(ビクトレックスジャパン社製、商品名:HT-G22)を用いた以外は実施例1と同様にして、表2に記載の長辺、短辺およびコーナー部の厚さならびに曲率半径Rrの絶縁被覆層を形成し、式(2)の関係を満たさない絶縁電線を得た。
比較例5
 本例では、絶縁被覆層が熱硬化性樹脂からなり、絶縁被覆層の長辺および短辺の厚さとコーナー部の厚さが同じで、式(1)の関係を満たさず、絶縁被覆層の長辺の厚さが厚い以外は、図3に示される絶縁電線2の構造を有する絶縁電線を製造した。
 導体には、表2に記載の長辺および短辺の長さならびにコーナー部の曲率半径を有する平角導体(酸素含有量15ppmの銅)を用いた。
 ポリアミドイミド樹脂(PAI)ワニスに代えてポリエーテルイミド樹脂(PEI)ワニス(SABIC社製、商品名:ウルテム1000)を用いた以外は実施例2と同様にして、厚さ2μmの内層を形成し、内層を有するエナメル線を得た。
 得られたエナメル線を芯線とし、変性ポリエーテルエーテルケトン樹脂(変性PEEK)に代えてポリアミドイミド樹脂(PAI)ワニス(日立化成(株)社製、商品名:HI406)を用いた以外は実施例2と同様にして、表2に記載の長辺、短辺およびコーナー部の厚さならびに曲率半径Rrの絶縁被覆層を形成し、絶縁被覆層が熱硬化性樹脂からなり、式(1)の関係を満たさず、絶縁被覆層の長辺の厚さが厚い絶縁電線を得た。
比較例6
 本例では、絶縁被覆層の長辺および短辺の厚さとコーナー部の厚さが式(1)の関係を満たさず、絶縁電線断面積に対する導体断面積の比が式(2)の関係を満たさず、絶縁被覆層の長辺および短辺の厚さが厚い以外は、図3に示される絶縁電線2の構造を有する絶縁電線を製造した。
 導体には、表2に記載の長辺および短辺の長さならびにコーナー部の曲率半径を有する平角導体(酸素含有量15ppmの銅)を用いた。
 表2に記載の内層の厚さとした以外は実施例2と同様にして、内層を有するエナメル線を得た。
 得られたエナメル線を芯線とし、変性ポリエーテルエーテルケトン樹脂(変性PEEK)に代えてポリフェニレンスルフィド樹脂(PPS)(DIC(株)社製、商品名:PPS FZ-2100)を用いた以外は実施例2と同様にして、表2に記載の長辺、短辺およびコーナー部の厚さならびに曲率半径Rrの絶縁被覆層を形成し、式(1)および式(2)の関係を満たさず、絶縁被覆層の長辺および短辺の厚さが厚い絶縁電線を得た。
比較例7
 本例では、絶縁被覆層の長辺および短辺の厚さが厚い以外は、図1に示される絶縁電線1の構造を有する絶縁電線を製造した。
 導体には、表2に記載の長辺および短辺の長さならびにコーナー部の曲率半径を有する平角導体(酸素含有量15ppmの銅)を用いた。
 実施例1と同様にして、表2に記載の長辺、短辺およびコーナー部の厚さならびに曲率半径Rrの絶縁被覆層を形成し、絶縁被覆層の長辺および短辺の厚さが厚い絶縁電線を得た。
 上記のようにして製造した絶縁電線の各種特性は、下記の測定および評価によりを行った。
[占積率]
 占積率は、絶縁電線1の断面積Sw(mm)に対する導体11の断面積Sc(mm)の比を意味する、導体占積率で評価した。
 導体占積率が0.90以上1.00未満の絶縁電線を、モーターの効率向上への効果が大きいとして「A」、0.85以上0.90未満の絶縁電線を効果があるとして「B」、0.80以上0.85未満の絶縁電線を、効果は小さいものの効果があるとして「C」、0.80未満の絶縁電線を、断面形状が円形の導体を用いた絶縁電線と比較して優位性がほとんどないものとして「D」とし、4段階で評価した。なお、「C」以上が合格レベルである。
[エッジワイズ曲げ加工性]
 エッジワイズ曲げ試験はJIS 3216-3に従って実施した。
 なお、各絶縁電線の曲げられる部分にフェザー剃刃S片刃(フェザー安全剃刀株式会社製)を用いて深さ5μmの切込みを入れることで、より厳しい条件でのエッジワイズ曲げを実施した。切込みを入れた各絶縁電線を、それぞれ切込み部分が中心となるように、Φ1.5mmのSUS製の棒に巻き付けることによって曲げて判断した。
 絶縁被覆層が裂け、亀裂が導体の面全体に進展した絶縁電線を「D」、絶縁被覆層に亀裂が進展したものの導体までは達していない絶縁電線を「C」、切込み部分も一緒に伸びて切込みが進展していなかい絶縁電線を「B」とし、3段階で評価した。なお、「C」以上が合格レベルである。
[フラットワイズ曲げ加工性]
 フラットワイズ曲げ試験はエッジワイズ曲げ加工性の試験を応用して実施した。
 なお、各絶縁電線の曲げられる部分にフェザー剃刃S片刃(フェザー安全剃刀株式会社製)を用いて深さ5μmの切込みを入れることで、より厳しい条件でのフラットワイズ曲げを実施した。切込みを入れた各絶縁電線を、それぞれ切込み部分が中心となるように、Φ1.5mmのSUS製の棒に巻き付けることによって曲げて判断した。
 絶縁被覆層が裂け、亀裂が導体の面全体に進展した絶縁電線を「D」、絶縁被覆層に亀裂が進展したものの導体までは達していない絶縁電線を「C」、切込み部分も一緒に伸びて切込みが進展していなかい絶縁電線を「B」とし、3段階で評価した。なお、「C」以上が合格レベルである。
[伸張後絶縁破壊強度]
 絶縁電線の耐電圧特性は、オートグラフ(島津製作所社製)を用いて伸張速度300mm/minで20%伸張し、絶縁破壊試験機を使用して、電圧を測定して評価した。
 具体的には、絶縁電線の片側の端末を剥離した部分に接地電極を接続し、端末を剥離した絶縁電線の端からの長さが300mmの部分にアルミ箔を巻き、巻き付けたアルミ箔に高圧側電極を接続した。昇圧速度500V/秒で昇圧して、15mA以上の電流が流れたときの電圧を読み取った。試験数n=5で実施し、その平均値で絶縁破壊電圧を評価した。この値について「長辺の合計皮膜厚さ」と「短辺の皮膜厚さ」の平均値で除することで絶縁破壊強度を算出した。
 100V/μm以上を「A」、80V/μm以上100V/μm未満を「B」、60V/μm以上80V/μm未満を「C」、60V/μm未満を「D」とし、4段階で評価した。なお、「C」以上が合格レベルである。
 各絶縁電線の構成と評価結果を、下記表1および2にまとめて示す。
 なお、総合評価は、2つ以上のA評価があり、その他がB評価の場合のものを「A」、すべての評価基準でB評価もしくは1つ以上のA評価とC評価が混在したものを「B」、1つ以上のC評価があり、その他がB評価のものを「C」、いずれかの評価でD判定となったものを「D」とし、4段階で評価した。なお、「C」以上が合格レベルである。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
 表1および2における絶縁被覆層および内層の種類は、それぞれ以下の樹脂の略称を記載した。
絶縁被覆層

・PEEK:ポリエーテルエーテルケトン樹脂(ビクトレックスジャパン社製、商品名:PEEK450G、23℃での曲げ弾性率:4,200MPa)
・変性PEEK:変性ポリエーテルエーテルケトン樹脂(ソルベイジャパン(株)社製、商品名:アバスパイアAV-650、23℃での曲げ弾性率:3,700MPa)
・PEKK:ポリエーテルケトンケトン樹脂(サイテックインダストリーズ社製、23℃での曲げ弾性率:4,500MPa)
・PEK:ポリエーテルケトン樹脂(ビクトレックスジャパン社製、商品名:HT-G22、23℃での曲げ弾性率:4,200MPa)
・TPI:熱可塑性ポリイミド樹脂(三井化学(株)社製、商品名:オーラムPL450C、23℃での曲げ弾性率:2,900MPa)
・芳香族PA:芳香族ポリアミド樹脂(ソルベイソルベイスペシャルティポリマーズ社製、商品名:アモデル AT-1001L、23℃での曲げ弾性率:2,210MPa)
・PPS:ポリフェニレンスルフィド樹脂(DIC(株)社製、商品名:PPS FZ-2100、23℃での曲げ弾性率:3,800MPa)
・PET:ポリエチレンテレフタレート樹脂(帝人社製、商品名:TR8550N、23℃での曲げ弾性率:2,500MPa)
・PAI:ポリアミドイミド樹脂(日立化成(株)社製、商品名:HI406、23℃での曲げ弾性率:4,900MPa)
内層
・PAI:ポリアミドイミド樹脂ワニス(日立化成(株)社製、商品名:HI406)
・PI:ポリイミド樹脂ワニス(ユニチカ(株)社製、商品名:Uイミド)
・PEI:ポリエーテルイミド樹脂ワニス(SABIC社製、商品名:ウルテム1000)
・PEsI:ポリエステルイミド樹脂ワニス(東特塗料(株)社製、商品名:ネオヒート8600A)
 表1および2から明らかなように、特定の熱可塑性樹脂からなる絶縁被覆層を有し、絶縁被覆層の長辺および短辺の厚さとコーナー部の厚さが式(1)の関係にあり、絶縁被覆層の長辺および短辺が特定の厚さを有し、絶縁電線断面積に対する導体断面積の比が式(2)の関係にある実施例1~9の絶縁電線は、占積率、エッジワイズおよびフラットワイズ曲げ加工性ならびに伸張後の絶縁破壊強度のいずれにも優れていた。
 これに対して、絶縁被覆層の長辺および短辺の厚さとコーナー部の厚さが式(1)の関係を満たさない比較例1および3は、伸張後の絶縁破壊強度を満たさず、絶縁電線断面積に対する導体断面積の比が式(2)の関係を満たさない比較例4は占積率が不十分であり、絶縁被覆層の長辺および短辺の厚さが厚い比較例7は、エッジワイズおよびフラットワイズ曲げ加工性を満たさなかった。熱硬化性樹脂からなる絶縁被覆層を有し、式(1)の関係を満たさない比較例5は、フラットワイズ曲げ加工性および伸張後の絶縁破壊強度を満たさなかった。
 また、式(1)の関係を満たさず、絶縁被覆層の長辺の厚さが厚い比較例5は、フラットワイズ曲げ加工性および伸張後の絶縁破壊強度を満たなかった。絶縁被覆層の長辺および短辺の厚さが厚く、式(2)の関係を満たさない比較例6は、占積率、エッジワイズおよびフラットワイズ曲げ加工性を満たさなかった。また、式(1)および(2)の関係を満たさず、絶縁被覆層の長辺および短辺の厚さが厚い比較例2は、占積率、エッジワイズおよびフラットワイズ曲げ加工性ならびに伸張後の絶縁破壊強度のいずれも満たさなかった。
 以上より、本発明の絶縁電線を用いたモーターコイルおよび電子もしくは電気機器は、巻線加工時の曲げ加工による絶縁電線の絶縁被覆層の割れを低減することができ、伸張後も導体のコーナー部の絶縁破壊強度が維持され、占積率にも優れるため、小型化および高性能化が可能になる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2014年12月26日に日本国で特許出願された特願2014-265391に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1、2 絶縁電線
11 導体
12 絶縁被覆層
13 内層
Rc 導体断面のコーナー部における曲率半径
c1 導体断面の長辺の長さ
c2 導体断面の短辺の長さ
t1 導体の横断面の長辺の、導体の軸線方向に連続する面に被覆された絶縁被覆層の厚さ(絶縁被覆層の長辺の厚さ)
t2 導体の横断面の短辺の、導体の軸線方向に連続する面に被覆された絶縁被覆層の厚さ(絶縁被覆層の短辺の厚さ)
t3 絶縁被覆層のコーナー部の厚さ

Claims (6)

  1.  断面形状が矩形で、長辺と短辺と、曲率半径Rcのコーナー部とを有する導体の外周面上に、熱可塑性樹脂からなる絶縁被覆層を有する絶縁電線であって、
     前記導体の横断面の長辺の、前記導体の軸線方向に連続する面に被覆された前記絶縁被覆層の厚さt1(μm)および前記導体の横断面の短辺の、前記導体の軸線方向に連続する面に被覆された前記絶縁被覆層の厚さt2(μm)ならびに前記絶縁被覆層のコーナー部の厚さt3(μm)が下記式(1)の関係にあり、
     式(1)    t3/{(t1+t2)/2}≧1.2
     前記t1(μm)およびt2(μm)が各々独立に20μm以上50μm以下であり、
     かつ、前記絶縁電線断面積Sw(mm)に対する前記導体断面積Sc(mm)の比の値が下記式(2)の関係にあることを特徴とする絶縁電線。
     式(2)    1.0>Sc/Sw≧0.8
  2.  前記導体の横断面の長辺の長さc1(mm)が4.5mm以下、短辺の長さc2(mm)が3.5mm以下および曲率半径Rc(mm)が0.60mm以下であって、
     前記t1(μm)およびc2(mm)、ならびに、t2(μm)およびc1(mm)が、各々下記式(3a)および(3b)の関係にあることを特徴とする請求項1に記載の絶縁電線。
     式(3a)    0<t1/(c2×1000)≦0.02
     式(3b)    0<t2/(c1×1000)≦0.02
  3.  前記熱可塑性樹脂が結晶性樹脂であって、かつ23℃での曲げ弾性率が2,000MPa以上であることを特徴とする請求項1または2に記載の絶縁電線。
  4.  前記熱可塑性樹脂が、ポリエーテルエーテルケトン、変性ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルケトン、ポリエーテルケトンエーテルケトンケトンおよびポリフェニレンスルフィドからなる群から選択されることを特徴とする請求項1~3のいずれか1項に記載の絶縁電線。
  5.  請求項1~4のいずれか1項に記載の絶縁電線を巻線加工してなるコイル。
  6.  請求項5に記載のコイルを用いた電子・電気機器。
PCT/JP2015/075973 2014-12-26 2015-09-14 耐曲げ加工性に優れる絶縁電線、それを用いたコイルおよび電子・電気機器 WO2016103804A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15872373.4A EP3239988A4 (en) 2014-12-26 2015-09-14 Insulated electrical wire having excellent resistance to bending process, coil and electronic/electric equipment using same
KR1020177018929A KR102000380B1 (ko) 2014-12-26 2015-09-14 내굽힘 가공성이 우수한 절연전선, 그것을 이용한 코일 및 전자·전기 기기
CN201580068353.8A CN107112081B (zh) 2014-12-26 2015-09-14 耐弯曲加工性优异的绝缘电线、使用其的线圈和电子/电气设备
US15/632,026 US10483013B2 (en) 2014-12-26 2017-06-23 Insulated wire excellent in bending resistance, as well as coil and electric or electronic equipment using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-265391 2014-12-26
JP2014265391A JP5778332B1 (ja) 2014-12-26 2014-12-26 耐曲げ加工性に優れる絶縁電線、それを用いたコイルおよび電子・電気機器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/632,026 Continuation US10483013B2 (en) 2014-12-26 2017-06-23 Insulated wire excellent in bending resistance, as well as coil and electric or electronic equipment using the same

Publications (1)

Publication Number Publication Date
WO2016103804A1 true WO2016103804A1 (ja) 2016-06-30

Family

ID=54192739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075973 WO2016103804A1 (ja) 2014-12-26 2015-09-14 耐曲げ加工性に優れる絶縁電線、それを用いたコイルおよび電子・電気機器

Country Status (7)

Country Link
US (1) US10483013B2 (ja)
EP (1) EP3239988A4 (ja)
JP (1) JP5778332B1 (ja)
KR (1) KR102000380B1 (ja)
CN (1) CN107112081B (ja)
MY (1) MY177807A (ja)
WO (1) WO2016103804A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016498A1 (ja) * 2016-07-19 2018-01-25 古河電気工業株式会社 絶縁電線、コイル及び電気・電子機器
EP3605558A4 (en) * 2017-03-22 2020-11-11 Mitsubishi Materials Corporation INSULATED ELECTRIC WIRE, ITS PRODUCTION PROCESS, COIL AND COIL PRODUCTION PROCESS USING IT
WO2021200937A1 (ja) * 2020-03-30 2021-10-07 株式会社オートネットワーク技術研究所 被覆電線およびワイヤーハーネス
US20220005629A1 (en) * 2018-10-04 2022-01-06 Autonetworks Technologies, Ltd. Insulated wire

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10937564B2 (en) 2009-10-26 2021-03-02 Goto Denshi Co., Ltd. Electric wire for high frequency, high voltage and large current
JP5421064B2 (ja) 2009-10-26 2014-02-19 後藤電子 株式会社 高周波高圧高電流電線
JP6424792B2 (ja) * 2015-10-09 2018-11-21 株式会社デンソー コイル用導体及び回転電機
MY188171A (en) * 2016-02-19 2021-11-24 Furukawa Magnet Wire Co Ltd Insulated wire, motor coil, and electrical or electronic equipment
JP6963395B2 (ja) * 2017-02-28 2021-11-10 株式会社小松製作所 波巻きコイル用平角線
WO2019124389A1 (ja) * 2017-12-19 2019-06-27 株式会社リケン 内燃機関用ピストンリング
GB2574826A (en) * 2018-06-19 2019-12-25 Rolls Royce Plc Generating thrust
GB2574827A (en) * 2018-06-19 2019-12-25 Rolls Royce Plc Generating electric power
JP6827454B2 (ja) * 2018-10-18 2021-02-10 本田技研工業株式会社 ステータ
JP6909243B2 (ja) * 2019-01-16 2021-07-28 矢崎総業株式会社 バスバー電線
US20200328011A1 (en) * 2019-04-12 2020-10-15 Goto Denshi Co., Ltd. Electric wire for high frequency, high voltage and large current
JP7130591B2 (ja) * 2019-04-23 2022-09-05 矢崎総業株式会社 バスバー電線
CN110491619A (zh) * 2019-09-04 2019-11-22 同济大学 一种磁浮列车用箔绕电磁铁
JP7334558B2 (ja) * 2019-09-25 2023-08-29 株式会社村田製作所 インダクタ部品
IT202000002263A1 (it) 2020-02-05 2021-08-05 Ferrari Spa Macchina elettrica rotante con isolamento di cava perfezionato
US20210367483A1 (en) * 2020-05-19 2021-11-25 Ge Aviation Systems Llc Method and system for thermally insulating portions of a stator core
CN114334289B (zh) * 2021-02-24 2023-03-10 佳腾电业(赣州)有限公司 一种绝缘电线制备方法、绝缘电线和电子/电气设备
JP2023106791A (ja) * 2022-01-21 2023-08-02 株式会社オートネットワーク技術研究所 ステータ
FR3134476A1 (fr) * 2022-04-06 2023-10-13 Tresse Metallique J. Forissier Dispositif de connexion électrique à résistance au feu accrue

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161607A (ja) * 1985-01-10 1986-07-22 三菱電機株式会社 絶縁電線
JP2009123418A (ja) * 2007-11-13 2009-06-04 Nippon Soken Inc 平角電線

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196532A (en) 1975-02-19 1976-08-24 Burasho toryuganjugoseiseni
JP3313277B2 (ja) * 1995-09-22 2002-08-12 古河サーキットフォイル株式会社 ファインパターン用電解銅箔とその製造方法
MY120077A (en) * 1998-06-26 2005-08-30 Ibiden Co Ltd Multilayer printed wiring board having a roughened inner conductor layer and production method thereof
US7033910B2 (en) * 2001-09-12 2006-04-25 Reveo, Inc. Method of fabricating multi layer MEMS and microfluidic devices
US20070128827A1 (en) * 2001-09-12 2007-06-07 Faris Sadeg M Method and system for increasing yield of vertically integrated devices
US7420147B2 (en) * 2001-09-12 2008-09-02 Reveo, Inc. Microchannel plate and method of manufacturing microchannel plate
EP1679727A4 (en) * 2003-10-23 2015-02-25 Toshiba Kk INDUCTIVE DEVICE AND METHOD OF MANUFACTURING THE SAME
US20080164050A1 (en) * 2005-03-10 2008-07-10 Hiroyuki Kamibayashi Regular Square Insulating Cable, Application of Such Regular Square Insulating Cable and Method for Manufacturing Such Regular Square Insulating Cable
DE102005028704B4 (de) * 2005-06-20 2016-09-08 Infineon Technologies Ag Verfahren zur Herstellung eines Halbleiterbauteils mit in Kunststoffgehäusemasse eingebetteten Halbleiterbauteilkomponenten
JP4445448B2 (ja) * 2005-09-16 2010-04-07 株式会社東芝 回路基板の製造方法
US20090146280A1 (en) * 2005-11-28 2009-06-11 Dai Nippon Printing Co., Ltd. Circuit member, manufacturing method of the circuit member, and semiconductor device including the circuit member
EP2133885B1 (en) * 2007-03-30 2013-06-19 Furukawa Electric Co., Ltd. Method and apparatus for manufacturing insulated electric wire
US8692135B2 (en) * 2008-08-27 2014-04-08 Nec Corporation Wiring board capable of containing functional element and method for manufacturing same
JP2010123389A (ja) * 2008-11-19 2010-06-03 Sumitomo Electric Ind Ltd 絶縁電線
US20140216340A1 (en) * 2010-04-08 2014-08-07 Furukawa Electric Co., Ltd. Method and apparatus for producing insulated wire
JP2012090441A (ja) 2010-10-20 2012-05-10 Toyota Motor Corp 絶縁性皮膜付導線及び回転電機
JP5609732B2 (ja) * 2011-03-22 2014-10-22 日立金属株式会社 絶縁塗料及びそれを用いた絶縁電線
JP5624942B2 (ja) * 2011-05-27 2014-11-12 日立オートモティブシステムズ株式会社 回転電機およびその製造方法
JP2013020726A (ja) * 2011-07-07 2013-01-31 Nitto Denko Corp 平角電線用被覆材、被覆平角電線及び電気機器
JP5454804B2 (ja) * 2011-08-12 2014-03-26 古河電気工業株式会社 絶縁ワイヤ
KR101479658B1 (ko) * 2011-11-18 2015-01-06 제일모직 주식회사 가압착 공정성이 개선된 이방성 도전 필름
JP2013191356A (ja) * 2012-03-13 2013-09-26 Hitachi Cable Ltd 絶縁電線及びそれを用いて形成されたコイル
JP5486646B2 (ja) * 2012-07-20 2014-05-07 株式会社デンソー 絶縁電線
JP5391324B1 (ja) * 2012-11-30 2014-01-15 古河電気工業株式会社 耐インバータサージ絶縁ワイヤ及びその製造方法
JP5391341B1 (ja) 2013-02-05 2014-01-15 古河電気工業株式会社 耐インバータサージ絶縁ワイヤ
MY175284A (en) * 2013-04-26 2020-06-18 Furukawa Magnet Wire Co Ltd Insulated wire, and electric/electronic equipments, motor and transformer using the same
EP3089167B1 (en) * 2013-12-26 2022-09-21 Essex Furukawa Magnet Wire Japan Co., Ltd. Insulating wire and method for manufacturing insulating wire
US9324476B2 (en) * 2014-02-05 2016-04-26 Essex Group, Inc. Insulated winding wire
JP6156250B2 (ja) * 2014-05-08 2017-07-05 株式会社デンソー 回転電機の固定子及びその固定子を備えた回転電機
WO2016019367A2 (en) * 2014-08-01 2016-02-04 Hygenia, LLC Hand sanitizer station

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161607A (ja) * 1985-01-10 1986-07-22 三菱電機株式会社 絶縁電線
JP2009123418A (ja) * 2007-11-13 2009-06-04 Nippon Soken Inc 平角電線

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3239988A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016498A1 (ja) * 2016-07-19 2018-01-25 古河電気工業株式会社 絶縁電線、コイル及び電気・電子機器
JP2018014191A (ja) * 2016-07-19 2018-01-25 古河電気工業株式会社 絶縁電線、コイル及び電気・電子機器
KR20190031277A (ko) * 2016-07-19 2019-03-25 후루카와 덴키 고교 가부시키가이샤 절연 전선, 코일 및 전기·전자 기기
US10366809B2 (en) 2016-07-19 2019-07-30 Furukawa Electric Co., Ltd. Insulated wire, coil, and electric or electronic equipment
KR102166630B1 (ko) 2016-07-19 2020-10-16 후루카와 덴키 고교 가부시키가이샤 절연 전선, 코일 및 전기·전자 기기
EP3605558A4 (en) * 2017-03-22 2020-11-11 Mitsubishi Materials Corporation INSULATED ELECTRIC WIRE, ITS PRODUCTION PROCESS, COIL AND COIL PRODUCTION PROCESS USING IT
US11581127B2 (en) 2017-03-22 2023-02-14 Mitsubishi Materials Corporation Insulated electric wire, production method therefor, coil and coil production method using same
US20220005629A1 (en) * 2018-10-04 2022-01-06 Autonetworks Technologies, Ltd. Insulated wire
WO2021200937A1 (ja) * 2020-03-30 2021-10-07 株式会社オートネットワーク技術研究所 被覆電線およびワイヤーハーネス
JPWO2021200937A1 (ja) * 2020-03-30 2021-10-07
JP7367855B2 (ja) 2020-03-30 2023-10-24 株式会社オートネットワーク技術研究所 被覆電線およびワイヤーハーネス

Also Published As

Publication number Publication date
CN107112081B (zh) 2019-08-16
KR102000380B1 (ko) 2019-07-15
CN107112081A (zh) 2017-08-29
JP5778332B1 (ja) 2015-09-16
US20170294249A1 (en) 2017-10-12
EP3239988A1 (en) 2017-11-01
KR20170099933A (ko) 2017-09-01
MY177807A (en) 2020-09-23
JP2016126867A (ja) 2016-07-11
US10483013B2 (en) 2019-11-19
EP3239988A4 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP5778332B1 (ja) 耐曲げ加工性に優れる絶縁電線、それを用いたコイルおよび電子・電気機器
US10199139B2 (en) Insulated wire, motor coil, electric/electronic equipment and method of producing insulated wire
US10566109B2 (en) Insulated wire, coil and electrical or electronic equipment
JP6382224B2 (ja) 絶縁ワイヤ、コイルおよび電気・電子機器ならびに皮膜剥離防止絶縁ワイヤの製造方法
JP6839695B2 (ja) 絶縁電線、モーターコイルおよび電気・電子機器
US20160322126A1 (en) Insulated wire, coil, and electrical/electronic equipment, and method of preventing cracking of insulated wire
WO2019159922A1 (ja) 絶縁ワイヤ、コイル及び電気・電子機器
US9892819B2 (en) Insulated wire, coil, and electronic/electrical equipment
JP6974330B2 (ja) 絶縁電線、コイルおよび電気・電子機器
JP6932642B2 (ja) 絶縁電線、絶縁電線の製造方法、コイル、回転電機および電気・電子機器
KR102166630B1 (ko) 절연 전선, 코일 및 전기·전자 기기
JP2017117681A (ja) 自己融着性絶縁電線、コイル及び電気・電子機器
JP6490505B2 (ja) 絶縁電線、コイル及び電気・電子機器
JP7257558B1 (ja) 絶縁電線、コイル、回転電機および電気・電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177018929

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015872373

Country of ref document: EP