WO2016103511A1 - 電気デバイス - Google Patents

電気デバイス Download PDF

Info

Publication number
WO2016103511A1
WO2016103511A1 PCT/JP2014/084681 JP2014084681W WO2016103511A1 WO 2016103511 A1 WO2016103511 A1 WO 2016103511A1 JP 2014084681 W JP2014084681 W JP 2014084681W WO 2016103511 A1 WO2016103511 A1 WO 2016103511A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite oxide
lithium
positive electrode
active material
electrode active
Prior art date
Application number
PCT/JP2014/084681
Other languages
English (en)
French (fr)
Inventor
敬之 藤井
洋介 喜多
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201480084389.0A priority Critical patent/CN107112526A/zh
Priority to PCT/JP2014/084681 priority patent/WO2016103511A1/ja
Priority to US15/539,564 priority patent/US20170346128A1/en
Priority to KR1020187030460A priority patent/KR20180118241A/ko
Priority to EP14909113.4A priority patent/EP3240067B1/en
Priority to JP2016565849A priority patent/JP6414230B2/ja
Priority to KR1020177017489A priority patent/KR20170090450A/ko
Publication of WO2016103511A1 publication Critical patent/WO2016103511A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrical device.
  • an electrical device such as a non-aqueous electrolyte secondary battery has a positive electrode in which a positive electrode active material or the like is applied to a current collector and a negative electrode in which a negative electrode active material or the like is applied to a current collector. It has the structure connected through the electrolyte layer holding liquid or nonaqueous electrolyte gel. Then, when ions such as lithium ions are occluded / released in the electrode active material, a charge / discharge reaction of the battery occurs.
  • electric devices such as non-aqueous electrolyte secondary batteries with a low environmental load are not only portable devices, but also power sources for electric vehicles such as hybrid vehicles (HEV), electric vehicles (EV), and fuel cell vehicles (FCV). It is also being used in devices.
  • HEV hybrid vehicles
  • EV electric vehicles
  • FCV fuel cell vehicles
  • the nonaqueous electrolyte secondary battery directed to application to an electric vehicle is required to have high output and high capacity.
  • a positive electrode active material used for a positive electrode of a non-aqueous electrolyte secondary battery for an electric vehicle for example, a lithium cobalt composite oxide that is a composite oxide having a layered crystal structure such as LiCoO 2 obtains a high voltage of 4 V class. Since it has a high energy density, it has already been widely put into practical use.
  • cobalt which is a raw material, is scarce in terms of resources and is expensive, there is anxiety in terms of supply of raw materials, considering the possibility that demand will increase significantly in the future. In addition, the price of cobalt raw materials may rise. Therefore, a composite oxide having a low cobalt content is desired.
  • a lithium transition metal complex oxide spinel-based lithium manganese complex oxide or spinel-based complex oxide
  • spinel crystal structure containing manganese for example, LiMn 2 O 4 ; LMO
  • ⁇ -MnO 2 functions as a positive electrode material of 4V class.
  • spinel lithium manganese composite oxide has a three-dimensional host structure that is different from the layered crystal structure of LiCoO 2 etc., most of the theoretical capacity can be used, and excellent cycle durability is expected. ing.
  • a lithium ion secondary battery using a spinel-based lithium manganese composite oxide as a positive electrode material has a volume energy density smaller than that of LiCoO 2, and the capacity gradually decreases with repeated charge and discharge. It was confirmed that deterioration was inevitable. As a result, the spinel-type lithium manganese composite oxide has had a large problem in practical use because of its low volumetric energy density and low cycle durability.
  • a mixed positive electrode containing a spinel-type lithium manganese composite oxide and another composite oxide is used.
  • Japanese Patent Application Laid-Open No. 2011-54334 discloses a Li-transition metal composite oxide having a layered crystal structure (NM-based composite oxide) containing Mn and Ni and a Li-transition metal composite oxide having a spinel crystal structure containing Mn.
  • the lithium secondary battery which the positive electrode active material containing a thing (spinel type complex oxide) has is described.
  • the positive electrode active material has a composition ratio of nickel to a transition metal element other than Li in the NM composite oxide of 50 atomic% or more, and a mixing ratio of the NM composite oxide and the spinel composite oxide Is disclosed to be in the range of 60:40 to 95: 5 by weight.
  • the spinel composite oxide deteriorates due to elution of Mn from the spinel composite oxide even by the technique described in JP 2011-54334 A, and capacity and cycle durability. Turned out to be still not enough. Further, it was also found that the eluted Mn is deposited on the negative electrode side to form dendrites (dendritic crystals), and the battery life is reduced. On the other hand, as a means for suppressing Mn elution from the spinel composite oxide, a technique of adding a compound having an S ⁇ O bond in the molecule (S-based additive) to the electrolyte is known.
  • S-based additive a compound having an S ⁇ O bond in the molecule
  • the mixed positive electrode containing the NM composite oxide and the spinel composite oxide disclosed in JP 2011-54334 A is used together with the S additive, the increase in cell resistance during storage is suppressed, and the spinel system While it has the merit of suppressing the elution of Mn of the composite oxide, it has been found that it has the following demerits. That is, the S-based additive enters the grain boundary (between the primary particles) due to the expansion and contraction of the NM-based composite oxide particles due to charge / discharge, the remaining Li and S react to form a large volume product, and the cracking of the particles Facilitate. Therefore, it has been found that there is a problem that the deterioration of the NM composite oxide is easily accelerated (because the particle structure of the NM composite oxide is easily destroyed), and the capacity and cycle durability are still insufficient.
  • the present invention uses a positive electrode active material layer including a lithium transition metal composite oxide (N-based composite oxide) having a layered crystal structure containing nickel and a spinel-based composite oxide, and has a capacity and cycle durability.
  • the purpose is to provide electrical devices that are excellent in both.
  • an electric device having a positive electrode including a positive electrode active material layer including an N-based composite oxide and a spinel-based composite oxide, and an electrolyte including an S-based additive.
  • the content ratio of the N-based composite oxide is in a range exceeding 50% by mass with respect to the total mass of the positive electrode active material. Further, in the electrical device, the content ratio of Ni contained in transition metal atoms other than Li in the N-based composite oxide is 30 to 90 atomic% in composition ratio with respect to the total amount of transition metal atoms other than Li. This is characterized in that the c-axis length of the crystal structure is in the range of 14.180 to 14.240 mm.
  • FIG. 1 is a schematic cross-sectional view showing a basic configuration of a non-aqueous electrolyte lithium ion secondary battery that is not a flat type (stacked type) bipolar type, which is an embodiment of the electric device of the present invention. It is a perspective view showing the appearance of a flat lithium ion secondary battery which is a typical embodiment of the electric device of the present invention.
  • a positive electrode active material containing, as a positive electrode active material, a lithium transition metal composite oxide having a layered crystal structure containing nickel and a lithium transition metal composite oxide having a spinel crystal structure containing manganese.
  • a positive electrode including a material layer; and an electrolyte containing a compound having an S ⁇ O bond in the molecule, wherein the content ratio of the lithium transition metal composite oxide of the layered crystal structure of the positive electrode active material layer is the positive electrode
  • the content ratio of nickel in the transition metal atom other than lithium of the lithium transition metal composite oxide having the layered crystal structure is in a range exceeding 50% by mass with respect to the total mass of the active material.
  • the composition ratio is in the range of 30 to 90 atomic% with respect to the total amount of metal atoms, and the c-axis length of the crystal structure is in the range of 14.180 to 14.240 mm. Care device is provided.
  • the lithium transition metal composite oxide having a layered crystal structure containing nickel is hereinafter also referred to as a lithium nickel composite oxide or an N composite oxide.
  • a lithium transition metal composite oxide having a spinel crystal structure containing manganese is hereinafter also referred to as a spinel lithium manganese composite oxide or a spinel composite oxide.
  • a compound having an S ⁇ O bond in the molecule is also referred to as an S-based additive hereinafter.
  • the S-based additive forms a SEI film on the negative electrode, and suppresses the side reaction between the negative electrode active material and the electrolyte on the negative electrode, thereby suppressing the deterioration of the negative electrode. Further, the S-based additive suppresses the deterioration of the spinel-based lithium manganese composite oxide particles due to the effect of suppressing the dissolution of Mn from the spinel-based lithium manganese composite oxide particles. Further, by using a lithium-based composite oxide as a main component (over 50% by mass) in the mixed positive electrode, a high capacity (initial discharge capacity) can be realized by increasing the capacity of the entire mixed positive electrode active material.
  • the safety can be improved, and the capacity and the safety can be balanced.
  • the balance between the capacity and the safety can be further increased by adjusting the Ni content of the lithium nickel composite oxide to the above range.
  • the following effects can be produced by adjusting the c-axis length of the crystal structure of the lithium nickel composite oxide within the above range. That is, when an S-based additive coexists in the mixed positive electrode disclosed in Japanese Patent Application Laid-Open No. 2011-54334, residual Li and S between primary particles (grain boundaries) react with each other during expansion due to charging of the N-based composite oxide, resulting in a volume.
  • FIG. 1 is a drawing showing a structural model of a lithium nickel composite oxide having a layered crystal structure used in the electrical device of the present invention. Me in the figure indicates a transition metal containing nickel. As shown in FIG. 1, by adjusting the c-axis length of the crystal structure to the above range (14.180 to 14.240 mm), the electrostatic repulsion between the OO layers is suppressed. The crystal structure is stable. In addition, the structure is hard to break with atoms.
  • the lithium nickel-based composite oxide having the c-axis length in the above range Li is present in the crystal close to the ideal state, thereby reducing expansion and generally reducing the residual Li. Therefore, the S-based additive can be prevented from entering the grain boundary, the reaction with the S-based additive can be suppressed, the cracking of the lithium nickel-based composite oxide particles (secondary particles) can be suppressed, and the lithium nickel It is possible to suppress deterioration of the system complex oxide. As a result of these, an electric device excellent in both capacity and cycle durability can be provided. Specifically, it is possible to provide an electric device that is excellent in cycle durability and has a balance between high capacity and safety.
  • a non-aqueous electrolyte lithium ion secondary battery which is a kind of non-aqueous electrolyte secondary battery, will be mainly described as a preferred embodiment of the electrical device according to the present embodiment, but is not limited to the following embodiment.
  • X to Y indicating a range means “X or more and Y or less”.
  • the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
  • FIG. 2 is a schematic cross-sectional view schematically showing the basic structure of a non-aqueous electrolyte lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”) that is not a flat (stacked) bipolar type.
  • the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a battery exterior material 29 that is an exterior body.
  • the power generation element 21 has a configuration in which a positive electrode, a separator 17, and a negative electrode are stacked.
  • the separator 17 contains a nonaqueous electrolyte (for example, a liquid electrolyte).
  • the positive electrode has a structure in which the positive electrode active material layers 15 are disposed on both surfaces of the positive electrode current collector 12.
  • the negative electrode has a structure in which the negative electrode active material layer 13 is disposed on both surfaces of the negative electrode current collector 11.
  • the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 15 and the negative electrode active material layer 13 adjacent thereto face each other with a separator 17 therebetween.
  • the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 2 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel.
  • the negative electrode active material layer 13 is arrange
  • the positive electrode current collector 12 and the negative electrode current collector 11 are each provided with a positive electrode current collector plate (tab) 27 and a negative electrode current collector plate (tab) 25 that are electrically connected to the respective electrodes (positive electrode and negative electrode). It has the structure led out of the battery exterior material 29 so that it may be pinched
  • the positive electrode current collector plate 27 and the negative electrode current collector plate 25 are ultrasonically welded to the positive electrode current collector 11 and the negative electrode current collector 12 of each electrode via a positive electrode lead and a negative electrode lead (not shown), respectively, as necessary. Or resistance welding or the like.
  • FIG. 2 illustrates a flat battery (stacked battery) that is not a bipolar battery, but a positive electrode active material layer that is electrically coupled to one surface of the current collector and the opposite side of the current collector.
  • a bipolar battery including a bipolar electrode having a negative electrode active material layer electrically coupled to the surface.
  • one current collector also serves as a positive electrode current collector and a negative electrode current collector.
  • the positive electrode has a positive electrode current collector and a positive electrode active material layer formed on the surface of the positive electrode current collector.
  • a metal is preferably used.
  • the metal include aluminum, nickel, iron, stainless steel, titanium, copper, and other alloys.
  • a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals can be preferably used.
  • covered on the metal surface may be sufficient.
  • aluminum, stainless steel, and copper are preferable from the viewpoints of electronic conductivity and battery operating potential.
  • the size of the current collector is determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used. There is no particular limitation on the thickness of the current collector.
  • the thickness of the current collector is usually about 1 to 100 ⁇ m.
  • the positive electrode active material layer includes a positive electrode active material.
  • the positive electrode active material essentially contains a lithium nickel composite oxide and a spinel lithium manganese composite oxide (spinel composite oxide).
  • the cycle durability and capacity resulting from the lithium nickel composite oxide are further increased by increasing the content ratio of the lithium nickel composite oxide.
  • the increase in capacity due to the increase in the ratio of lithium-nickel composite oxide is generally that spinel composite oxide has a smaller molecular weight than lithium-nickel composite oxide, and lithium nickel composite oxide has a reaction lithium per unit mass. It can be obtained from the fact that the number is large.
  • the non-aqueous electrolyte lithium ion secondary battery of this embodiment can improve the safety by containing the spinel composite oxide, and the spinel composite oxide by increasing the content ratio of the spinel composite oxide. Safety due to oxides is further increased.
  • lithium nickel complex oxide and spinel complex oxide as the positive electrode active material, each of the advantages of lithium nickel complex oxide and spinel complex oxide (excellent cycle durability, capacity and safety)
  • an excellent positive electrode active material layer having characteristics excellent in balance can be produced.
  • the positive electrode active material layer containing a lithium nickel composite oxide and a spinel lithium manganese composite oxide as a mixed active material is particularly large in terms of a large battery requiring high safety, particularly in terms of battery capacity and battery area. It is more preferable to use for a battery in which is defined.
  • a battery for example, the ratio of the battery area (projected area of the battery including the battery outer casing) to the rated capacity as described later is 5 cm 2 / Ah or more, and the rated capacity is 3 Ah or more.
  • the large-sized battery etc. which are mentioned.
  • the inventors further developed a cycle of a non-aqueous electrolyte lithium ion secondary battery having a positive electrode including a positive electrode active material layer containing a mixed positive electrode active material including a lithium nickel-based composite oxide and a spinel-based lithium manganese composite oxide.
  • a measure for improving durability an attempt was made to form an SEI film on the negative electrode.
  • the SEI film is a film formed on the negative electrode active material layer by a specific compound in the electrolyte, and has a protective effect on the negative electrode, and thus is known to contribute to improving cycle durability.
  • the present inventors have used lithium nickel-based composite oxide (or spinel-based lithium manganese composite oxide) when a compound having an S ⁇ O bond (S-based additive) described later in the molecule is used. It was found that the cycle durability has an unexpectedly significant dependency on the content ratio of. Specifically, it has been found that when the content ratio of the lithium nickel composite oxide falls within a predetermined range, a particularly remarkable cycle durability improvement effect can be obtained. In addition, this remarkable addition amount dependence was not confirmed by the positive electrode containing the positive electrode active material layer which consists only of lithium nickel type complex oxide, or spinel type lithium manganese complex oxide.
  • the S-based additive improved the cycle durability of a non-aqueous electrolyte lithium ion secondary battery having a positive electrode using a positive electrode active material made of a spinel-based lithium manganese composite oxide. It was found that it can be improved. Moreover, it discovered that the cycle durability of the nonaqueous electrolyte lithium ion secondary battery which has a positive electrode using the positive electrode active material which consists of lithium nickel type complex oxides was reduced.
  • the content ratio dependence of the lithium-nickel composite oxide shows that the cycle durability reduction effect on the lithium nickel composite oxide system and the cycle durability improvement effect on the spinel lithium manganese composite oxide system. It is thought that it was obtained by balance.
  • an optimum It is necessary to adjust the content ratio of the lithium nickel composite oxide.
  • this embodiment includes an N-based composite oxide whose cycle durability is lowered due to the presence of an S-based additive in a high content ratio in the positive electrode active material layer,
  • an S-based additive in a high content ratio in the positive electrode active material layer
  • the content ratio of the N-based composite oxide in the positive electrode active material layer exceeds 50% by mass with respect to the total mass of the positive electrode active material in terms of the above capacity, cycle durability, and safety. It is a range.
  • the range is preferably 55 to 90% by mass, more preferably 60 to 90% by mass, still more preferably 65 to 90% by mass, and particularly preferably 70 to 90% by mass.
  • the content ratio of the N-based composite oxide exceeds 50% by mass, preferably 55% by mass or more, more preferably 60% by mass or more, still more preferably 65% by mass or more, and particularly preferably 70% by mass or more.
  • the capacity can be increased as compared with the spinel-based lithium manganese composite oxide alone, and the above-mentioned capacity, cycle durability and safety can be achieved, and it is excellent in that capacity merit can be obtained as a cell (battery). Yes.
  • the content ratio of the N-based composite oxide (particularly NMC) is 70% by mass or more, the theoretical maximum discharge capacity (135 mAh / g) of LMO, which is a spinel-based lithium manganese composite oxide, can be exceeded. It is also excellent in that the capacity can be further increased.
  • the upper limit value may be less than 100% by mass because a mixed positive electrode active material is used, but it is in the range of 90% by mass or less from the viewpoint of compatibility of the above capacity, cycle durability and safety. .
  • the spinel lithium manganese composite oxide is contained in an amount of 10% by mass or more, it is desirable that the content ratio of the N-based composite oxide is 90% by mass or less from the viewpoint of improving the safety.
  • spinel type lithium manganese complex oxide for example, LiMn 2 O 4 ; LMO
  • LMO spinel type lithium manganese complex oxide
  • NMC complex NMC complex
  • the safety improvement effect is seen. This is because the oxide (NMC) has a high thermal stability with a self-heating start temperature of 200 to 300 ° C. and an LMO of about 400 ° C. This is also because the total calorific value after self-heating is NMC> LMO.
  • the ratio of the total amount of the lithium nickel-based composite oxide and the spinel-based lithium manganese composite oxide in the total amount of 100% by weight of the positive electrode active material contained in the positive electrode active material layer is preferably in the range exceeding 50% by weight, and more Preferably it is 70 mass% or more, More preferably, it is 85 mass% or more, More preferably, it is 90 mass% or more, Most preferably, it is 95 mass% or more, Most preferably, it is 100 mass%.
  • the thickness of the positive electrode active material layer is not particularly limited, and conventionally known knowledge about the battery can be appropriately referred to.
  • the thickness of each active material layer (the thickness of the active material layer on one side of the current collector) is about 2 to 100 ⁇ m.
  • lithium nickel complex oxide is not specifically limited as long as it is a lithium transition metal complex oxide (see FIG. 1) having a layered crystal structure containing nickel.
  • Typical examples of the lithium nickel composite oxide include lithium nickel composite oxide (LiNiO 2 ; LMO), Li (Ni, Mn, Co) O 2 , Li (Li, Ni, Mn, Co) O 2 ). Is mentioned.
  • a ternary system, a NiMn system, a NiCo system, and the like are included.
  • the ternary system include nickel / manganese / cobalt (composite oxide) cathode materials.
  • Examples of the NiMn system include LiNi 0.5 Mn 1.5 O 4 .
  • NiCo Li (NiCo) O 2 .
  • a composite oxide in which a part of nickel atoms of the lithium nickel composite oxide is substituted with another metal atom is more preferable.
  • a lithium transition metal composite oxide having a layered crystal structure containing nickel, manganese, and cobalt (hereinafter, also simply referred to as “NMC composite oxide”) includes a lithium atomic layer and a transition metal (Mn, Ni, and Co).
  • the atomic layer has a layered crystal structure in which oxygen atoms are alternately stacked via an oxygen atomic layer, one Li atom is included per one atom of the transition metal M, and the amount of Li that can be extracted is spinel-based lithium manganese oxide Twice that of the product, that is, the supply capacity is doubled, and it can have a high capacity.
  • it since it has higher thermal stability than LiNiO 2 , it is particularly advantageous among the nickel-based composite oxides used as the positive electrode active material.
  • the NMC composite oxide includes a composite oxide in which a part of the transition metal element is substituted with another metal element.
  • Other elements in that case include Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, Fe, B, Ga, In, Si, Mo, Y, Sn, V, Cu , Ag, Zn, etc., preferably Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, more preferably Ti, Zr, P, Al, Mg, From the viewpoint of improving cycle characteristics, Ti, Zr, Al, Mg, and Cr are more preferable.
  • a represents the atomic ratio of Li
  • b represents the atomic ratio of Ni
  • c represents the atomic ratio of Mn
  • d represents the atomic ratio of Co
  • x represents the atomic ratio of M.
  • composition of each element can be measured by, for example, inductively coupled plasma (ICP) emission spectrometry.
  • ICP inductively coupled plasma
  • Ni nickel
  • Co cobalt
  • Mn manganese
  • Ti which is another metal element of the NMC composite oxide (M element in the general formula (1)) partially substitutes the transition metal in the crystal lattice. From the viewpoint of cycle durability, a part of the transition element may be substituted with another metal element.
  • the crystal structure is stabilized by dissolving at least one selected from the group consisting of Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr and Cr, which are other metal elements. . Therefore, even when the NMC composite oxide contains other metal elements, it is possible to prevent a decrease in battery capacity even when charging and discharging are repeated in the same manner as an NMC composite oxide containing no other metal elements, and excellent cycle durability. It is thought that sex can be realized.
  • the NMC composite oxide is not particularly limited, for example, LiNi 0.30 Mn 0.35 Co 0.35 O 2 ( Example 2), LiNi 1/3 Mn 1/3 Co 1/3 O 2, LiNi 0.50 Mn 0.30 Co 0.20 O 2 (Examples 1, 4, 5, 8), LiNi 0.6 Mn 0.2 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0 0.1 O 2 , LiNi 0.90 Mn 0.05 Co 0.05 O 2 (Example 3), LiNi 0.45 Mn 0.45 Co 0.10 O 2 (Example 6), LiNi 0.54 Mn 0.28 Co 0.18 O 2 (Example 7), and the like.
  • the content of nickel contained in transition metal atoms other than lithium in the lithium-nickel composite oxide is the total amount of transition metal atoms other than lithium in the lithium-nickel composite oxide from the viewpoint of balancing capacity and safety.
  • the composition ratio is in the range of 30 to 90 atomic%.
  • the content ratio of nickel is 30 atomic% or more, the capacity can be further increased. It is speculated that such an increase in capacity is caused by an increase in the number of lithium contributing to the reaction per unit mass. Further, when the nickel content is 90 atomic% or less, the safety can be further improved.
  • the nickel content is 90 atomic% or less, in addition to the improvement of the safety, the effect of further improving the cycle durability can be obtained.
  • Such an improvement in cycle durability is presumed to be caused by a decrease in the number of lithium entering and exiting the positive electrode active material layer due to a decrease in the number of lithium per unit mass.
  • the content ratio of nickel contained in the transition metal atom other than lithium in the lithium nickel composite oxide is 35 to 65 atomic%. It is preferably 40 to 60 atomic%, more preferably 45 to 54 atomic%.
  • the c-axis length of the crystal structure of the lithium nickel-based composite oxide is in the range of 14.180 to 14.240 mm, and is preferably 14.220 to 14.24 from the viewpoint of improving durability and suppressing deterioration by the S-based additive.
  • the range is 240cm.
  • the mechanism (reason) that can be performed is as follows. That is, when an S-based additive is present in the mixed positive electrode active material as in JP 2011-54334 A, the residual Li between the primary particles (grain boundaries) during expansion associated with the charging of the lithium nickel-based composite oxide S reacts to form a product, which prevents shrinkage and causes primary particle isolation and active material degradation.
  • Li in the lithium nickel-based composite oxide having the c-axis length within the above range (appropriately short), Li is present in the crystal in an ideal state, thereby reducing the expansion.
  • the reaction with the S-based additive can be suppressed.
  • Adjustment of the c-axis length of the crystal structure of the lithium nickel composite oxide can generally be performed by changing the firing conditions during the production of the composite oxide.
  • the c-axis length can also be adjusted by changing the Ni content ratio. In the case of the same Ni content ratio, durability can be improved by using a material having an appropriately short c-axis length (that is, the range of the c-axis length defined in the present invention).
  • the c-axis length of the crystal structure of the lithium nickel composite oxide can be calculated from the X-ray diffraction spectrum.
  • the “c-axis length of the crystal structure of the lithium nickel composite oxide” means that the powdered lithium nickel composite oxide is 1 ° / min by CuK ⁇ ray using a powder X-ray diffractometer. It is a value calculated after measuring the scanning speed at an angle of 100-150 ° and refining the lattice constant by the error function measurement method (wilson & pike method).
  • the c-axis length changes due to charging and discharging, and becomes longer as charging progresses.
  • the c-axis length of the crystal structure of the lithium nickel composite oxide defined in the present invention is the one in the discharge state, that is, when the SOC is 0% (lithium nickel composite oxide). Further, as shown in FIG. 1, the c-axis length of the crystal structure of the lithium nickel composite oxide is from the center of the Me layer (transition metal layer containing nickel) to the center of the adjacent (adjacent) Me layer. Indicates the length (distance) in the c-axis direction.
  • the lithium nickel composite oxide has a secondary particle structure in which primary particles are aggregated.
  • the average primary particle size (average primary particle size) is preferably 0.9 ⁇ m or less, more preferably 0.20 to 0.6 ⁇ m, and even more preferably 0.25 to 0.5 ⁇ m.
  • the average particle diameter of the secondary particles (average secondary particle diameter) is preferably 5 to 20 ⁇ m, more preferably 5 to 15 ⁇ m.
  • the value of the average primary particle diameter, the average secondary particle diameter, and the crystallite diameter in the lithium nickel composite oxide can be measured by a known method.
  • the diffraction peak intensity ratio ((003) / (104)) is the diffraction peak on the (104) plane and the diffraction peak on the (003) plane obtained by powder X-ray diffraction measurement. It is preferably 1.28 or more, more preferably 1.35 to 2.1.
  • the diffraction peak integrated intensity ratio ((003) / (104)) is preferably 1.08 or more, more preferably 1.10 to 1.45.
  • the lithium nickel composite oxide such as NMC composite oxide can be prepared by selecting various known methods such as coprecipitation method and spray drying method.
  • the coprecipitation method is preferably used because the complex oxide according to this embodiment is easy to prepare.
  • a nickel-cobalt-manganese composite oxide is manufactured by a coprecipitation method as in the method described in JP2011-105588A, and then nickel-cobalt. It can be obtained by mixing and firing a manganese composite oxide and a lithium compound.
  • the method As a method of mixing with nickel, cobalt and manganate in advance, a method of adding simultaneously with nickel, cobalt and manganate, a method of adding to the reaction solution during the reaction, and a nickel-cobalt-manganese composite oxide together with a Li compound Any means such as a method of adding to the above may be used.
  • the lithium nickel composite oxide can be produced by appropriately adjusting the reaction conditions such as pH of the reaction solution, reaction temperature, reaction concentration, addition rate, and stirring time.
  • a lithium transition metal composite oxide (spinel-based lithium manganese composite oxide) having a spinel crystal structure containing manganese typically has a composition of LiMn 2 O 4 (LMO), A complex oxide having a spinel structure and essentially containing lithium and manganese.
  • LMO LiMn 2 O 4
  • JP-A-2000-77071 JP-A-2000-77071
  • the spinel-type lithium manganese composite oxide also has a secondary particle structure in which primary particles are aggregated.
  • the average particle diameter (average secondary particle diameter) of the secondary particles is preferably 5 to 50 ⁇ m, more preferably 7 to 20 ⁇ m.
  • the present mixed mixed positive electrode active material may appropriately contain an appropriate amount if necessary.
  • the positive electrode active material is not particularly limited as long as it does not impair the effects of the present invention, and a conventionally known positive electrode active material can be used. Examples include lithium metal, lithium-transition metal composite oxides other than the above-mentioned lithium nickel composite oxide and spinel lithium manganese composite oxide, lithium-transition metal phosphate compounds, lithium-transition metal sulfate compounds, solid solution systems, etc. It is done.
  • lithium-transition metal composite oxides other than the lithium nickel composite oxide and spinel lithium manganese composite oxide include, for example, LiCoO 2 , LiFePO 4, and a part of these transition metals substituted by other elements And the like.
  • the positive electrode active material layer may include, in addition to the positive electrode active material described above, a positive electrode active material other than the above, a conductive additive, a binder, an electrolyte (polymer matrix, ion conductive polymer, And other additives such as a lithium salt for enhancing ion conductivity.
  • Conductive aid refers to an additive blended to improve the conductivity of the positive electrode active material layer.
  • the conductive auxiliary agent include carbon materials such as carbon black such as ketjen black and acetylene black, graphite, and carbon fiber.
  • electrolyte salt examples include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
  • Examples of the ion conductive polymer include polyethylene oxide (PEO) and polypropylene oxide (PPO) polymers.
  • the content of the material that can function as the active material in the positive electrode active material layer is not particularly limited and can be adjusted by appropriately referring to known knowledge about the lithium ion secondary battery, but 85 to 99.5 mass. % Is preferred.
  • a binder used for a positive electrode active material layer For example, the following materials are mentioned. Polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile, polyacrylonitrile, polyimide, polyamide, cellulose, carboxymethyl cellulose (CMC) and its salts, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene-butadiene rubber (SBR) ), Isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated product thereof, styrene / isoprene / styrene block copolymer and hydrogenated product thereof.
  • Thermoplastic polymers such as products, polyvinylidene fluoride (PVdF), polyt
  • the positive electrode can be produced by forming a positive electrode active material layer on the positive electrode current collector.
  • the method for forming the positive electrode active material layer is not particularly limited.
  • a positive electrode active material slurry containing at least a positive electrode active material and a slurry viscosity adjusting solvent is applied onto the positive electrode current collector, dried, and then compressed by a roll press or the like.
  • a method of molding is mentioned.
  • the slurry viscosity adjusting solvent is not particularly limited.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode active material layer contains an active material, and other additives such as a conductive additive, a binder, an electrolyte (polymer matrix, ion conductive polymer, electrolyte, etc.), and a lithium salt to enhance ionic conductivity as necessary.
  • a conductive additive such as aluminum silicate, aluminum silicate, magnesium silicate, magnesium silicate, magnesium silicate, magnesium silicate, magnesium silicate, magnesium silicate, magnesium, magnesium, magnesium, magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium
  • the thickness of the negative electrode active material layer is not particularly limited, and conventionally known knowledge about the battery can be appropriately referred to.
  • the thickness of each active material layer (the thickness of the active material layer on one side of the current collector) is about 2 to 100 ⁇ m.
  • the content of the material that can function as the active material in the negative electrode active material layer is 85 to 99.5% by mass, similar to the content of the material that can function as the active material in the positive electrode active material. Preferably there is.
  • additives such as conductive assistants, binders, electrolytes (polymer matrix, ion conductive polymers, electrolytes, etc.) and lithium salts for enhancing ion conductivity are described in the column of the positive electrode active material layer. It is the same as that.
  • the negative electrode active material examples include carbon materials such as graphite (graphite), soft carbon, and hard carbon, lithium-transition metal composite oxides (for example, Li 4 Ti 5 O 12 ), metal materials, lithium alloy negative electrode materials, and the like. Is mentioned. In some cases, two or more negative electrode active materials may be used in combination. Preferably, from the viewpoint of capacity and output characteristics, a carbon material or a lithium-transition metal composite oxide is used as the negative electrode active material. Of course, negative electrode active materials other than those described above may be used.
  • the negative electrode active material layer preferably contains at least an aqueous binder.
  • a water-based binder has a high binding power.
  • it is easy to procure water as a raw material and since steam is generated at the time of drying, the capital investment in the production line can be greatly suppressed, and the environmental load can be reduced. There is.
  • the water-based binder refers to a binder using water as a solvent or a dispersion medium, and specifically includes a thermoplastic resin, a polymer having rubber elasticity, a water-soluble polymer, or a mixture thereof.
  • the binder using water as a dispersion medium refers to a polymer that includes all expressed as latex or emulsion and is emulsified or suspended in water.
  • kind a polymer latex that is emulsion-polymerized in a system that self-emulsifies.
  • water-based binders include styrene polymers (styrene-butadiene rubber, styrene-vinyl acetate copolymer, styrene-acrylic copolymer, etc.), acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber, ) Acrylic polymers (polyethyl acrylate, polyethyl methacrylate, polypropyl acrylate, polymethyl methacrylate (methyl methacrylate rubber), polypropyl methacrylate, polyisopropyl acrylate, polyisopropyl methacrylate, polybutyl acrylate, polybutyl methacrylate, polyhexyl acrylate , Polyhexyl methacrylate, polyethylhexyl acrylate, polyethylhexyl methacrylate, polylauryl acrylate, polylauryl meta Acrylate, etc.), polytyren
  • the aqueous binder may contain at least one rubber binder selected from the group consisting of styrene-butadiene rubber, acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber, and methyl methacrylate rubber from the viewpoint of binding properties. preferable. Furthermore, it is preferable that the water-based binder contains styrene-butadiene rubber because of good binding properties.
  • Water-soluble polymers suitable for use in combination with styrene-butadiene rubber include polyvinyl alcohol and modified products thereof, starch and modified products thereof, cellulose derivatives (such as carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, and salts thereof), polyvinyl Examples include pyrrolidone, polyacrylic acid (salt), or polyethylene glycol. Among them, it is preferable to combine styrene-butadiene rubber and carboxymethyl cellulose (salt) as a binder.
  • the content of the aqueous binder is preferably 80 to 100% by mass, preferably 90 to 100% by mass, and preferably 100% by mass.
  • the average particle diameter of the negative electrode active material is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m from the viewpoint of increasing the output.
  • the negative electrode can be produced by forming a negative electrode active material layer on the negative electrode current collector.
  • the method for forming the negative electrode active material layer is not particularly limited.
  • a negative electrode active material slurry containing at least a negative electrode active material and a slurry viscosity adjusting solvent is applied onto the negative electrode current collector, dried, and then compressed by a roll press or the like.
  • a method of molding is mentioned.
  • the slurry viscosity adjusting solvent is not particularly limited.
  • NMP N-methyl-2-pyrrolidone
  • the separator has a function of holding an electrolyte and ensuring lithium ion conductivity between the positive electrode and the negative electrode, and a function as a partition wall between the positive electrode and the negative electrode.
  • separator examples include a separator made of a porous sheet made of a polymer or fiber that absorbs and holds the electrolyte and a nonwoven fabric separator.
  • a microporous (microporous film) can be used as the separator of the porous sheet made of polymer or fiber.
  • the porous sheet made of the polymer or fiber include polyolefins such as polyethylene (PE) and polypropylene (PP); a laminate in which a plurality of these are laminated (for example, three layers of PP / PE / PP) And a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • PE polyethylene
  • PP polypropylene
  • a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • the thickness of the microporous (microporous membrane) separator cannot be uniquely defined because it varies depending on the intended use. For example, in applications such as secondary batteries for driving motors such as electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles (FCV), the thickness may be 4 to 60 ⁇ m in a single layer or multiple layers. desirable.
  • the fine pore diameter of the microporous (microporous membrane) separator is desirably 1 ⁇ m or less (usually a pore diameter of about several tens of nm).
  • nonwoven fabric separator cotton, rayon, acetate, nylon, polyester; polyolefins such as PP and PE; conventionally known ones such as polyimide and aramid are used alone or in combination.
  • the bulk density of the nonwoven fabric is not particularly limited as long as sufficient battery characteristics can be obtained by the impregnated polymer gel electrolyte.
  • the thickness of the nonwoven fabric separator may be the same as that of the electrolyte layer, and is preferably 5 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m.
  • the separator includes an electrolyte.
  • the electrolyte is not particularly limited as long as it can exhibit such a function, but a liquid electrolyte or a gel polymer electrolyte is used.
  • a gel polymer electrolyte By using the gel polymer electrolyte, the distance between the electrodes is stabilized, the occurrence of polarization is suppressed, and the durability (cycle characteristics) is improved.
  • the electrolyte essentially includes a compound having an S ⁇ O bond in the molecule (S-based additive).
  • the S-based additive is used as a mixed-type positive electrode active material by adding a spinel-based composite oxide to improve the thermal stability, which is a disadvantage of the N-based composite oxide. This is because an S-based additive is added to suppress a certain Mn elution to balance the capacity and safety.
  • the electrolyte containing the S-based additive is usually present in the entire separator, positive electrode, negative electrode (all in the pores), and excess volume (such as a gap between the power generation element and the exterior material). By this, the said effect can be expressed more effectively and effectively.
  • the cycle durability of the non-aqueous electrolyte lithium ion secondary battery is improved by setting the concentration of the S-based additive in the electrolyte within a predetermined range.
  • the S-based additive has a concentration within a predetermined range with respect to the electrolyte, a particularly remarkable cycle durability improvement effect can be obtained.
  • some S-based additives are capable of forming an SEI film.
  • the cycle durability improvement effect is known to be the SEI film formation on the surface of the negative electrode active material, which has been conventionally known. The behavior was completely different from that of, and showed a more remarkable improvement effect.
  • the S-based additive is a non-aqueous electrolyte lithium having a positive electrode using a positive electrode active material layer including a positive electrode active material made of a spinel-based lithium manganese composite oxide. It has been found that the cycle durability of the ion secondary battery is greatly improved. In addition to the SEI film forming action on the negative electrode, the S-based additive has the effect of suppressing Mn elution from the spinel-based lithium manganese composite oxide, and contributes to the suppression of deterioration of the positive electrode active material layer. Can be obtained.
  • spinel-based lithium manganese composite oxide tends to cause Mn elution, and the eluted Mn is deposited on the negative electrode, causing Li deposition to occur as a nucleus, thereby causing a decrease in cell capacity.
  • S-based additive is coordinated to an oxygen deficient portion in the spinel-based lithium manganese composite oxide to suppress Mn elution, cycle durability can be improved.
  • the present inventors use an S-based additive in a non-aqueous electrolyte lithium ion secondary battery having a positive electrode using a positive electrode active material layer containing a positive electrode active material made only of a lithium nickel-based composite oxide. It has been found that the positive electrode active material particles (secondary particles) may be cracked to deteriorate the cycle durability. This deterioration is caused by the reaction between the residual Li and the S-based additive, in which the reaction existing between the primary particles (grain boundaries) did not occur during the expansion accompanying the charging of the lithium nickel-based composite oxide, and the product Is present between the primary particles, and the cracks are generated by inhibiting the shrinkage during discharge.
  • the remarkable concentration dependency of the S-based additive is obtained by the balance of the SEI film forming effect on the negative electrode, the Mn elution suppressing effect on the spinel-based lithium manganese composite oxide, and the deterioration on the lithium nickel-based composite oxide. It is thought that
  • the cycle durability depends on the characteristics of the positive electrode active material layer itself containing the mixed positive electrode active material including the lithium nickel composite oxide and the spinel lithium manganese composite oxide, and lithium nickel. It also depends on the content ratio of the composite oxide to the total amount of the mixed positive electrode active material.
  • the remarkable cycle durability improvement effect is within the optimum range of the content ratio of the lithium nickel composite oxide to the total amount of the mixed positive electrode active material, the Ni content of the lithium nickel composite oxide and the c-axis length of the crystal structure. It is obtained by setting the value of.
  • the effect of improving both capacity and cycle durability can be obtained by further adjusting the concentration of the S-based additive to a value within the optimum range.
  • the compound (S-based additive) having an S ⁇ O bond in the molecule has a concentration in the electrolyte of 0.4 to 2.0 mol / L. If the density
  • the concentration in the electrolyte is 2.0 mol / L or less, the positive electrode active material, together with the SEI film forming ability on the surface of the negative electrode active material layer and the Mn elution suppression effect from the spinel-based lithium manganese composite oxide, can be obtained from the above mechanism. This is because deterioration of the lithium nickel composite oxide in the layer can be effectively suppressed. From the above viewpoint, it is more preferably 1.2 to 1.6 mol / L.
  • the compound having an S ⁇ O bond is not particularly limited, but is preferably a cyclic sulfonic acid ester from the viewpoint of an effect of suppressing deterioration of manganese and an excellent effect of improving cycle durability.
  • R 5 represents at least one group selected from the group consisting of a hydrogen atom, a monovalent aliphatic hydrocarbon group, a monovalent alicyclic hydrocarbon group, and a monovalent aromatic hydrocarbon group.
  • R 1 , R 2 , R 3 and R 4 each independently represents a single bond or a divalent aliphatic hydrocarbon group. It is preferable that it is a compound represented by this.
  • R 5 is at least one selected from the group consisting of a hydrogen atom, a monovalent aliphatic hydrocarbon group, a monovalent alicyclic hydrocarbon group, and a monovalent aromatic hydrocarbon group. It is a group.
  • the aliphatic hydrocarbon group is preferably a linear or branched alkyl group having 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • n-propyl group n-butyl group, n-pentyl group (amyl group), n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, i-propyl group , Sec-butyl group, i-butyl group, t-butyl group, 1-methylbutyl group, 1-ethylpropyl group, 2-methylbutyl group, neopentyl group, 1,2-dimethylpropyl group, 1,1-dimethylpropyl group 1,3-dimethylbutyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, 2-ethyl-2-methylpropyl group, 1-methylheptyl group, 2-ethylhexyl group, 1,5-dimethyl group Hexyl group, t- octyl group.
  • the alicyclic hydrocarbon group is preferably a cycloalkyl group having 3 to 12 carbon atoms, more preferably 3 to 7 carbon atoms, still more preferably 3 to 5 carbon atoms, and particularly preferably 3 carbon atoms.
  • the aromatic hydrocarbon group is preferably an aryl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, still more preferably 6 to 10 carbon atoms, and particularly preferably 6 to 9 carbon atoms.
  • Examples thereof include a phenyl group, an alkylphenyl group, a phenyl group substituted with an alkylphenyl group, and a naphthyl group.
  • R 1 , R 2 , R 3 and R 4 each independently represents a single bond or a divalent aliphatic hydrocarbon group.
  • the divalent aliphatic hydrocarbon group may be any linear or branched alkylene group, preferably having 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • the divalent aliphatic hydrocarbon group may be any linear or branched alkenylene group having preferably 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms, and even more preferably 2 to 3 carbon atoms.
  • cyclic sulfonate ester has the following formula (2):
  • X is an alkylene group having 1 to 5 carbon atoms, a sulfonylalkylene group, an alkenylene group, or a sulfonylalkenylene group
  • the alkylene group preferably has 1 to 3 carbon atoms
  • the alkenylene group more preferably has 2 to 3 carbon atoms.
  • the cyclic sulfonic acid ester represented by the formula (2) also includes a disulfonic acid compound in which X is a sulfonylalkylene group (—SO 2 —C n H 2n —).
  • the alkylene group preferably has 1 to 3 carbon atoms.
  • cyclic sulfonate ester has the following formula (3):
  • Y is an alkylene group having 1 to 5 carbon atoms, a sulfonylalkylene group, an alkenylene group, a sulfonylalkenylene group
  • Z is an alkylene group having 1 to 5 carbon atoms, a sulfonylalkylene group, an alkenylene group, or a sulfonylalkenylene group. It is more preferable that it is a compound represented by.
  • the alkylene group preferably has 1 to 3 carbon atoms.
  • Examples of the cyclic sulfonate esters represented by the formulas (1) to (3) include 1,3-propane sultone, 1,3-prop-1-ene sultone (1,3-propene sultone), and methylene methane disulfonate. 1,4-butane sultone, 2,4-butane sultone, and the like, but are not limited thereto.
  • 1,3-propane sultone, 1,3-propene sultone, and methylenemethane disulfonate are preferable from the viewpoint of improving cycle durability, and 1,3-propane sultone, 1,3-propene is preferable. Sultone is more preferable, and 1,3-propene sultone is more preferable.
  • the electrolyte may further include an additive other than the S-based additive component described above.
  • Such an additive includes an electrode protective agent having a function of preventing deterioration of the electrode, particularly a compound that forms a SEI film on the surface of the negative electrode active material in that cycle durability can be improved.
  • an electrode protective agent having a function of preventing deterioration of the electrode, particularly a compound that forms a SEI film on the surface of the negative electrode active material in that cycle durability can be improved.
  • a compound that forms a SEI film on the surface of the negative electrode active material in that cycle durability can be improved.
  • cycle durability can be improved.
  • Examples of the compound that forms the SEI film include, but are not limited to, cyclic carbonate derivatives, divalent phenol derivatives, terphenyl derivatives, phosphate derivatives, lithium fluorophosphate derivatives, and the like. Of these compounds, cyclic carbonate derivatives are preferable, and as the cyclic carbonate derivatives, vinylene carbonate derivatives and ethylene carbonate derivatives are more preferable.
  • vinylene carbonate derivatives and ethylene carbonate derivatives include vinylene carbonate (VC), vinyl ethylene carbonate, fluoroethylene carbonate (FEC), difluoroethylene carbonate (DFEC), methyl vinylene carbonate, dimethyl vinylene carbonate, phenyl vinylene carbonate, diphenyl Vinylene carbonate, ethyl vinylene carbonate, diethyl vinylene carbonate, 1,2-divinylethylene carbonate, 1-methyl-1-vinylethylene carbonate, 1-methyl-2-vinylethylene carbonate, 1-ethyl-1-vinylethylene carbonate, 1 -Ethyl-2-vinylethylene carbonate, vinyl vinylene carbonate, allyl ethylene carbonate, Nyloxymethyl ethylene carbonate, allyloxymethyl ethylene carbonate, acryloxymethyl ethylene carbonate, methacryloxymethyl ethylene carbonate, ethynyl ethylene carbonate, propargyl ethylene carbonate, ethynyloxymethyl
  • vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, and difluoroethylene carbonate are preferable as those having particularly excellent electrode protecting action and contributing to improvement in cycle durability, and vinylene carbonate and fluoroethylene carbonate are more preferable. preferable.
  • these electrode protective agents only 1 type may be used independently and 2 or more types may be used together.
  • the concentration of the electrode protective agent in the electrolyte is preferably 0.5 to 2.0% by mass from the viewpoint of forming a stable film on the surface of the negative electrode active material and suppressing an increase in resistance.
  • concentration in the electrolyte is 0.5% by mass or more, the SEI film forming ability on the surface of the negative electrode active material layer becomes a sufficient amount, so that the cycle durability improving effect can be obtained.
  • concentration in the electrolyte is 2.0% by mass or less, an increase in resistance due to the thickening of the SEI film does not occur, so that an effect of improving cycle durability is obtained.
  • the concentration of the electrode protective agent in the electrolyte is more preferably 0.7 to 1.8% by mass, and further preferably 0.9% by mass.
  • the liquid electrolyte functions as a lithium ion carrier.
  • the liquid electrolyte has a form in which a lithium salt as a supporting salt is dissolved in an organic solvent as a plasticizer.
  • organic solvent include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate.
  • the lithium salt Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF such 6, LiCF 3 SO 3
  • the concentration of the lithium salt is not particularly limited, but is preferably 0.8 to 1.2 mol / L.
  • the gel polymer electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer.
  • a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and the ion conductivity between the layers is easily cut off.
  • ion conductive polymer used as the matrix polymer (host polymer) examples include polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene glycol (PEG), polyacrylonitrile (PAN), polyvinylidene fluoride-hexafluoropropylene ( PVdF-HEP), poly (methyl methacrylate (PMMA), and copolymers thereof.
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • PEG polyethylene glycol
  • PAN polyacrylonitrile
  • PVdF-HEP polyvinylidene fluoride-hexafluoropropylene
  • PMMA methyl methacrylate
  • the matrix polymer of gel electrolyte can express excellent mechanical strength by forming a crosslinked structure.
  • thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator.
  • a polymerization treatment may be performed.
  • the separator is preferably a separator in which a heat-resistant insulating layer is laminated on a porous substrate (a separator with a heat-resistant insulating layer).
  • the heat-resistant insulating layer is a ceramic layer containing inorganic particles and a binder.
  • a highly heat-resistant separator having a melting point or a heat softening point of 150 ° C. or higher, preferably 200 ° C. or higher is used.
  • the separator is less likely to curl in the battery manufacturing process due to the effect of suppressing thermal shrinkage and high mechanical strength.
  • the inorganic particles in the heat resistant insulating layer contribute to the mechanical strength and heat shrinkage suppressing effect of the heat resistant insulating layer.
  • the material used as the inorganic particles is not particularly limited. Examples thereof include silicon, aluminum, zirconium, titanium oxides (SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 ), hydroxides and nitrides, and composites thereof. These inorganic particles may be derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine and mica, or may be artificially produced. Moreover, only 1 type may be used individually for these inorganic particles, and 2 or more types may be used together. Of these, silica (SiO 2 ) or alumina (Al 2 O 3 ) is preferably used, and alumina (Al 2 O 3 ) is more preferably used from the viewpoint of cost.
  • the basis weight of the heat-resistant particles is not particularly limited, but is preferably 5 to 15 g / m 2 . If it is this range, sufficient ion conductivity will be acquired and it is preferable at the point which maintains heat resistant strength.
  • the binder in the heat-resistant insulating layer has a role of adhering the inorganic particles and the inorganic particles to the resin porous substrate layer. With the binder, the heat-resistant insulating layer is stably formed, and peeling between the porous substrate layer and the heat-resistant insulating layer is prevented.
  • the binder used for the heat-resistant insulating layer is not particularly limited.
  • a compound such as butadiene rubber, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), or methyl acrylate can be used as a binder.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVF polyvinyl fluoride
  • methyl acrylate methyl acrylate
  • PVDF polyvinylidene fluoride
  • these compounds only 1 type may be used independently and 2 or more types may be used together.
  • the binder content in the heat resistant insulating layer is preferably 2 to 20% by mass with respect to 100% by mass of the heat resistant insulating layer.
  • the binder content is 2% by mass or more, the peel strength between the heat-resistant insulating layer and the porous substrate layer can be increased, and the vibration resistance of the separator can be improved.
  • the binder content is 20% by mass or less, the gaps between the inorganic particles are appropriately maintained, so that sufficient lithium ion conductivity can be ensured.
  • the thermal shrinkage rate of the separator with a heat-resistant insulating layer is preferably 10% or less for both MD and TD (flow direction: MD and direction perpendicular to flow: TD) after holding for 1 hour at 150 ° C. and 2 gf / cm 2. .
  • the material which comprises a current collector plate (25, 27) is not restrict
  • a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable.
  • the same material may be used for the positive electrode current collecting plate 27 and the negative electrode current collecting plate 25, and different materials may be used.
  • the battery outer case 29 a known metal can case can be used, and a bag-like case using a laminate film containing aluminum that can cover the power generation element can be used.
  • a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used as the laminate film, but the laminate film is not limited thereto.
  • a laminate film is desirable from the viewpoint that it is excellent in high output and cooling performance, and can be suitably used for a battery for large equipment for EV and HEV.
  • the outer package is more preferably a laminate film containing aluminum.
  • the thickness of the laminate film is not particularly limited, but is preferably 70 to 180 ⁇ m.
  • FIG. 3 is a perspective view showing the appearance of a flat lithium ion secondary battery which is a typical embodiment of the secondary battery.
  • the flat lithium ion secondary battery 50 has a rectangular flat shape, and a positive electrode tab 58 and a negative electrode tab 59 for taking out electric power are drawn out from both sides thereof.
  • the power generation element 57 is encased by the battery outer packaging material 52 of the lithium ion secondary battery 50, and the periphery thereof is heat-sealed. The power generation element 57 is sealed with the positive electrode tab 58 and the negative electrode tab 59 pulled out to the outside.
  • the power generation element 57 corresponds to the power generation element 21 of the lithium ion secondary battery 10 illustrated in FIG. 2 described above.
  • the power generation element 57 is formed by laminating a plurality of single battery layers (single cells) 19 including a positive electrode (positive electrode active material layer) 15, an electrolyte layer 17, and a negative electrode (negative electrode active material layer) 13.
  • the lithium ion secondary battery is not limited to a stacked flat shape.
  • the wound lithium ion secondary battery may have a cylindrical shape, or may have a shape that is a flattened rectangular shape by deforming such a cylindrical shape.
  • a laminate film may be used for the exterior material, and the conventional cylindrical can (metal can) may be used, for example, It does not restrict
  • the power generation element is covered with an aluminum laminate film. With this configuration, weight reduction can be achieved.
  • the tabs 58 and 59 shown in FIG. 3 are not particularly limited.
  • the positive electrode tab 58 and the negative electrode tab 59 may be drawn out from the same side, or the positive electrode tab 58 and the negative electrode tab 59 may be divided into a plurality of parts and taken out from each side, as shown in FIG. It is not limited to.
  • a terminal may be formed using a cylindrical can (metal can).
  • the battery storage space is about 170L. Since auxiliary equipment such as a cell (battery) and a charge / discharge control device is stored in this space, the storage space efficiency of the normal cell is about 50%. The efficiency of loading cells into this space is a factor that governs the cruising range of electric vehicles. If the size of the single cell is reduced, the loading efficiency is impaired, so that the cruising distance cannot be secured.
  • the battery structure in which the power generation element is covered with the exterior body is preferably large.
  • the length of the short side of the laminated cell battery is preferably 100 mm or more. Such a large battery can be used for vehicle applications.
  • the length of the short side of the laminated cell battery refers to the side having the shortest length.
  • the upper limit of the short side length is not particularly limited, but is usually 400 mm or less.
  • volume energy density and rated discharge capacity In a general electric vehicle, a travel distance (cruising range) by a single charge is 100 km. Considering such a cruising distance, the volume energy density of the battery is preferably 157 Wh / L or more, and the rated capacity is preferably 20 Wh or more.
  • a non-aqueous electrolyte lithium ion secondary battery in which the positive electrode according to the present embodiment is used as a viewpoint of a large-sized battery, which is different from the viewpoint of the physical size of the electrode, is related to the battery area and battery capacity. Increase in size is prescribed.
  • the non-aqueous electrolyte lithium ion secondary battery according to this embodiment is a flat laminated battery, and the ratio of the battery area (projected area of the battery including the battery outer package) to the rated capacity is 5 cm. 2 / Ah or more, and the rated capacity is preferably 3 Ah or more.
  • This embodiment is particularly preferably used for a large-capacity, large-area non-aqueous electrolyte lithium ion secondary battery that requires high safety.
  • the safety can be improved by including the spinel lithium manganese composite oxide. This is because increasing the content ratio of the spinel-based lithium manganese composite oxide increases the safety resulting from the spinel-based lithium manganese composite oxide.
  • the value of the rated capacity is more preferably 10 Ah or more, further preferably 20 Ah or more, and particularly preferably 30 Ah or more.
  • the aspect ratio of the rectangular electrode is preferably 1 to 3, and more preferably 1 to 2.
  • the electrode aspect ratio is defined as the aspect ratio of the rectangular positive electrode active material layer.
  • the assembled battery is configured by connecting a plurality of batteries. Specifically, at least two or more are used, and are configured by serialization, parallelization, or both. Capacitance and voltage can be freely adjusted by paralleling in series.
  • a small assembled battery that can be attached and detached by connecting a plurality of batteries in series or in parallel. Then, a plurality of small assembled batteries that can be attached and detached are connected in series or in parallel to provide a large capacity and large capacity suitable for vehicle drive power supplies and auxiliary power supplies that require high volume energy density and high volume output density.
  • An assembled battery having an output can also be formed. How many batteries are connected to make an assembled battery, and how many small assembled batteries are stacked to make a large-capacity assembled battery depends on the battery capacity of the mounted vehicle (electric vehicle) It may be determined according to the output.
  • the nonaqueous electrolyte lithium ion secondary battery of the present invention maintains a discharge capacity even when used for a long period of time, and has good cycle characteristics. Furthermore, the volume energy density is high. Vehicle applications such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles require higher capacity, larger size, and longer life than electric and portable electronic devices. . Therefore, the non-aqueous electrolyte lithium ion secondary battery can be suitably used as a vehicle power source, for example, a vehicle driving power source or an auxiliary power source.
  • a battery or an assembled battery formed by combining a plurality of these batteries can be mounted on the vehicle.
  • a battery having a long life and excellent long-term reliability and output characteristics can be configured, it is possible to configure a plug-in hybrid electric vehicle having a long EV travel distance and an electric vehicle having a long charge travel distance when such a battery is mounted.
  • a hybrid car a fuel cell car, an electric car (four-wheeled vehicles (passenger cars, trucks, buses, commercial vehicles, light cars, etc.)
  • the application is not limited to automobiles.
  • it can be applied to various power sources for moving vehicles such as other vehicles, for example, trains, and power sources for mounting such as uninterruptible power supplies. It is also possible to use as.
  • a non-aqueous electrolyte secondary battery is preferable as the electric device from the viewpoint of low environmental load.
  • a non-aqueous electrolyte lithium ion secondary battery which is a kind of non-aqueous electrolyte secondary battery, is preferred from the viewpoint of high output and high capacity among non-aqueous electrolyte secondary batteries intended for application to electric vehicles.
  • the present embodiment is not limited to this, and can be applied to other types of non-aqueous electrolyte secondary batteries, other types of secondary batteries, and further to primary batteries. Moreover, it can be applied not only to batteries but also to electric double layer capacitors, hybrid capacitors, lithium ion capacitors, and the like.
  • Example 1 (1) Production of positive electrode The following two types were used as the mixed liquid positive electrode active material.
  • the ratio is 50 atomic% in composition ratio with respect to the total amount of transition metal atoms other than lithium.
  • LiMn 2 O 4 (LMO) having an average particle diameter (median diameter D 50 ) of 12 ⁇ m was prepared as the spinel-based lithium manganese composite oxide.
  • a total of 90% by mass of the NMC composite oxide and LMO, 5% by mass of carbon black (Super-P, 3M) as a conductive additive, and polyvinylidene fluoride (PVDF) (manufactured by Kureha) as a binder. , # 7200) 5% by mass was prepared.
  • NMP N-methyl-2-pyrrolidone
  • the obtained positive electrode active material slurry was applied to the surface of an aluminum foil (thickness: 20 ⁇ m) as a current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression-molded with a roll press to obtain a planar shape.
  • a rectangular positive electrode active material layer was produced.
  • a positive electrode active material layer was formed on the back surface, and a positive electrode having a thickness of 150 ⁇ m was produced, in which a positive electrode active material layer was formed on both surfaces of a positive electrode current collector (aluminum foil).
  • a rectangular negative electrode active material layer was produced.
  • a negative electrode active material layer was formed on the back surface, and a negative electrode having a thickness of 140 ⁇ m was produced, in which a negative electrode active material layer was formed on both sides of a negative electrode current collector (copper foil).
  • test cell (battery)
  • the positive electrode produced in the above (1) and the negative electrode produced in the above (2) are alternately arranged through a polyethylene microporous membrane (thickness 25 ⁇ m) as a separator.
  • a power generation element was produced by laminating (positive electrode 10 layers (sheets), negative electrode 11 layers (sheets), separator (electrolyte layer) 20 layers (sheets)).
  • the obtained power generation element was placed in a bag (bag-like case) made of an aluminum laminate sheet having a thickness of 150 ⁇ m as an exterior body, and the electrolytic solution prepared in the above (3) was injected.
  • the injection amount of the electrolytic solution was an amount that is 1.40 times the total pore volume (calculated by calculation) of the positive electrode active material layer, the negative electrode active material layer, and the separator.
  • the opening of the aluminum laminate sheet bag is sealed so that the current extraction tabs connected to both electrodes are led out, and a test cell (battery) that is a laminated lithium ion secondary battery is obtained. Completed.
  • Evaluation results of capacity (Embodiment 1 is assumed to be 100) A: 105 or more ⁇ : 100 or more and less than 105 ⁇ : 95 or more and less than 100 ⁇ : less than 95
  • the rated capacity of the test cell is measured by injecting the electrolyte solution, leaving it for about 10 hours, and performing initial charge / discharge at a temperature of 25 ° C. according to the following procedure. That is, the discharge capacity by the initial discharge in the procedure 2 below is set as the rated capacity.
  • Procedure 1 Charge for 12 hours with a constant current / constant voltage charge of 0.2 C / 4.15 V, and rest for 10 minutes.
  • Procedure 2 After reaching 2.5 V with constant current discharge of 0.2 C, pause for 10 minutes.
  • the rated capacity (Ah) of the obtained test cell (battery) of Example 1 and the ratio of the battery area to the rated capacity were 4.5 Ah and 70 cm 2 / Ah, respectively.
  • a test cell (battery) was prepared in the same manner as in Example 1 except that (LiNi 0.90 Mn 0.05 Co 0.05 O 2 ) was used, and the capacity maintenance rate was evaluated and the rated capacity was measured. went.
  • Example 4 Tested in the same manner as in Example 1 except that 1,3-propan-1-ene sultone (PRS) was used instead of 1,3-propane sultone (PS) as the compound having an S ⁇ O bond in the molecule. Cell was prepared, capacity retention rate was evaluated, and rated capacity was measured.
  • PRS 1,3-propan-1-ene sultone
  • PS 1,3-propane sultone
  • Example 5 A test cell was prepared in the same manner as in Example 1 except that methylenemethane disulfonate (MMDS) was used instead of 1,3-propane sultone (PS) as a compound having an S ⁇ O bond in the molecule. The capacity maintenance rate was evaluated and the rated capacity was measured.
  • MMDS methylenemethane disulfonate
  • PS 1,3-propane sultone
  • Example 8 The same as Example 1 except that NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) having a crystal structure c-axis length of 14.220 mm was used as the lithium nickel composite oxide.
  • a test cell (battery) was prepared by the method described above, and the capacity retention rate was evaluated and the rated capacity was measured.
  • Example 1 The same as Example 1 except that an NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) having a crystal structure c-axis length of 14.244 mm was used as the lithium nickel composite oxide.
  • a test cell (battery) was prepared by the above method, and the capacity retention rate was evaluated and the rated capacity was measured.
  • test cells (batteries) of Examples 2 to 8 and Comparative Examples 1 to 4 thus obtained had a rated capacity (Ah) and a ratio of the battery area to the rated capacity of 4.5 Ah and 70 cm 2 / Ah, respectively.
  • the NMCs used in Examples 1 to 8 and Comparative Examples 1 to 4, particularly those having different c-axis lengths, were obtained by changing the charged material composition. Those having the same charged material composition but different c-axis lengths are obtained by changing the NMC firing conditions.
  • Table 1 below shows the capacities (initial discharge capacities) of the examples and comparative examples, the capacity retention ratios after 300 cycles, and the evaluations thereof.
  • the test cells of Examples 1 to 8 use a positive electrode containing NMC and LMO and an electrolyte containing an S-based additive, and the NMC ratio in the positive electrode active material exceeds 50% by mass.
  • NMC has a Ni ratio of 30 to 90 atomic% and a c-axis length of 14.180 to 14.240 mm.
  • both the high capacity and the capacity retention ratio (cycle durability) can be improved as compared with Comparative Examples 1 to 4 that are outside these ranges. It was.
  • the LMO content is 30% by mass, the safety can be improved, so that a battery having an excellent capacity retention rate (cycle durability) and a balance between the capacity and the safety can be provided.
  • test cells used in the examples and comparative examples are large, large capacity and large area test cells, as can be seen from the ratio of the battery area to the rated capacity and the rated capacity. From this, although the effect of this invention is not limited by the capacity

Abstract

【課題】容量とサイクル耐久性の両方を向上してなる電気デバイスを提供する。 【解決手段】少なくとも2種のリチウムイオンを挿入脱離可能な正極活物質を有し、そのうち少なくとも1種にニッケルを含有する層状結晶構造のリチウム遷移金属複合酸化物を含有する正極活物質層を含む正極と、分子内にS=O結合を有する化合物を含有する電解質とを有し、前記正極活物質層の前記層状結晶構造のリチウム遷移金属複合酸化物の含有比率が、前記正極活物質の合計質量に対して50質量%を超える範囲であり、前記層状結晶構造のリチウム遷移金属複合酸化物のリチウム以外の遷移金属原子中に含まれるニッケルの含有比率が、前記リチウム以外の遷移金属原子の合計量に対して組成比で30~90原子%の範囲であり、結晶構造のc軸長が14.180Å以上、14.240Å以下であることを特徴とする電気デバイス。

Description

電気デバイス
 本発明は、電気デバイスに関する。
 現在、携帯電話などの携帯機器向けに利用される、リチウムイオン二次電池をはじめとする非水電解質二次電池等の電気デバイスが商品化されている。非水電解質二次電池等の電気デバイスは、一般的に、正極活物質等を集電体に塗布した正極と、負極活物質等を集電体に塗布した負極とが、セパレータに非水電解液または非水電解質ゲルを保持した電解質層を介して接続された構成を有している。そして、リチウムイオン等のイオンが電極活物質中に吸蔵・放出されることにより、電池の充放電反応が起こる。
 ところで、近年、地球温暖化に対処するために二酸化炭素量を低減することが求められている。そこで、環境負荷の少ない非水電解質二次電池等の電気デバイスは、携帯機器等だけでなく、ハイブリッド自動車(HEV)、電気自動車(EV)、および燃料電池自動車(FCV)等の電動車両の電源装置にも利用されつつある。
 なかでも、電動車両への適用を指向した非水電解質二次電池は、高出力および高容量であることが求められる。電動車両用の非水電解質二次電池の正極に使用する正極活物質としては、たとえばLiCoO等の層状結晶構造の複合酸化物であるリチウムコバルト系複合酸化物が、4V級の高電圧を得ることができ、かつ高いエネルギー密度を有することから、既に広く実用化されている。しかし、その原料であるコバルトは、資源的にも乏しく高価であるため、今後も大幅に需要が拡大してゆく可能性を考えると、原料供給の面で不安がある。また、コバルトの原料価格が高騰する可能性もある。そこで、コバルトの含有比率の少ない複合酸化物が望まれている。
 マンガンを含有するスピネル結晶構造のリチウム遷移金属複合酸化物(スピネル系リチウムマンガン複合酸化物ないしスピネル系複合酸化物)(例えば、LiMn;LMO)は安価かつ安全性が高く、λ-MnOとの組成間で4V級の正極材料として機能する。スピネル系リチウムマンガン複合酸化物はLiCoO等が有するような層状結晶構造とは異なる3次元のホスト構造を有することから、理論容量のほとんどが使用可能であり、サイクル耐久性に優れることが期待されている。
 しかしながら、実際にはスピネル系リチウムマンガン複合酸化物を正極材料として用いたリチウムイオン二次電池は、体積エネルギー密度がLiCoOよりも小さく、充放電を繰り返すことによって徐々に容量が低下していく容量劣化が避けられないことが確認された。これより、スピネル系リチウムマンガン複合酸化物はその体積エネルギー密度の小ささ、およびサイクル耐久性の低さより、実用化には大きな問題が残されていた。
 このようなスピネル系リチウムマンガン複合酸化物の小さい体積あたりの容量および低いサイクル耐久性の課題を解決する技術として、スピネル系リチウムマンガン複合酸化物と他の複合酸化物とを含む混合系正極を用いる技術が提案されている。例えば、特開2011-54334号公報には、Mn、Niを含有する層状結晶構造のLi遷移金属複合酸化物(NM系複合酸化物)と、Mnを含有するスピネル結晶構造のLi遷移金属複合酸化物(スピネル系複合酸化物)とを含む正極活物質が有するリチウム二次電池が記載されている。更に前記正極活物質は、前記NM系複合酸化物におけるLi以外の遷移金属元素に対するニッケルの組成比が50原子%以上であり、前記NM系複合酸化物と前記スピネル系複合酸化物との混合割合が重量比で、60:40~95:5の範囲であることが開示されている。
 本発明者らの検討によれば、特開2011-54334号公報に記載の技術によってもなお、スピネル系複合酸化物からのMn溶出により、スピネル系複合酸化物が劣化し、容量およびサイクル耐久性が依然として十分ではないことが判明した。また溶出したMnが負極側で析出することでデンドライト(樹状結晶)を形成し、電池寿命を低下させる等の問題があることもわかった。一方、スピネル系複合酸化物からのMn溶出を抑制する手段として、電解液中に、分子内にS=O結合を有する化合物(S系添加剤)を添加する技術が知られている。しかしながら、特開2011-54334号公報のNM系複合酸化物と、スピネル系複合酸化物とを含む混合系正極を、S系添加剤と共に用いると、保存時のセル抵抗上昇を抑制し、スピネル系複合酸化物のMn溶出を抑制するメリットがある反面、以下のデメリットがあることがわかった。即ち、充放電によるNM系複合酸化物粒子の膨張収縮によってS系添加剤が粒界(一次粒子間)に入り込み、残存LiとSが反応し、体積の大きい生成物を作り、粒子の割れを促進する。そのため、(NM系複合酸化物の粒子構造を破壊しやすいことから)NM系複合酸化物の劣化が加速しやすく、容量およびサイクル耐久性が依然として十分ではないという問題があることがわかった。
 そこで、本発明は、ニッケルを含有する層状結晶構造のリチウム遷移金属複合酸化物(N系複合酸化物)とスピネル系複合酸化物を含む正極活物質層を用いてなる、容量とサイクル耐久性の両方に優れた電気デバイスの提供を目的とする。
 本発明者らは、鋭意研究を積み重ねた。その結果、電気デバイスにN系複合酸化物とスピネル系複合酸化物を含有する正極と、S系添加剤を含有する電解質とを用い、N系複合酸化物のNi含有量と結晶構造のc軸長を所定の範囲に調整することで、上記課題が解決されうることを見出した。これにより本発明を完成させるに至ったものである。すなわち、本発明の一形態によれば、N系複合酸化物とスピネル系複合酸化物を含む正極活物質層を含む正極と、S系添加剤を含有する電解質とを有する電気デバイスが提供される。そして、当該電気デバイスは、N系複合酸化物の含有比率が、正極活物質の合計質量に対して50質量%を超える範囲である。更に当該電気デバイスは、N系複合酸化物のLi以外の遷移金属原子中に含まれるNiの含有比率が、前記Li以外の遷移金属原子の合計量に対して組成比で30~90原子%の範囲であり、結晶構造のc軸長が14.180~14.240Åの範囲である点に特徴がある。
本発明の電気デバイスに用いられる層状結晶構造のリチウムニッケル系複合酸化物の構造モデルを示す図面である。 本発明の電気デバイスの一実施形態である、扁平型(積層型)の双極型でない非水電解質リチウムイオン二次電池の基本構成を示す断面概略図である。 本発明の電気デバイスの代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。
 本発明の一形態によれば、正極活物質として、ニッケルを含有する層状結晶構造のリチウム遷移金属複合酸化物と、マンガンを含有するスピネル結晶構造のリチウム遷移金属複合酸化物とを含有する正極活物質層を含む正極と、分子内にS=O結合を有する化合物を含有する電解質とを有し、前記正極活物質層の前記層状結晶構造のリチウム遷移金属複合酸化物の含有比率が、前記正極活物質の合計質量に対して50質量%を超える範囲であり、前記層状結晶構造のリチウム遷移金属複合酸化物のリチウム以外の遷移金属原子中に含まれるニッケルの含有比率が、前記リチウム以外の遷移金属原子の合計量に対して組成比で30~90原子%の範囲であり、結晶構造のc軸長が14.180~14.240Åの範囲であることを特徴とする電気デバイスが提供される。なお、ニッケルを含有する層状結晶構造のリチウム遷移金属複合酸化物を、以下、リチウムニッケル系複合酸化物ないしN系複合酸化物ともいう。また、マンガンを含有するスピネル結晶構造のリチウム遷移金属複合酸化物を、以下、スピネル系リチウムマンガン複合酸化物ないしスピネル系複合酸化物ともいう。さらに、分子内にS=O結合を有する化合物を、以下、S系添加剤ともいう。本形態に係る電気デバイスによれば、S系添加剤が負極上にSEI被膜を形成し、負極上における負極活物質と電解質との副反応を抑制することで負極の劣化を抑止する。また、S系添加剤が、スピネル系リチウムマンガン複合酸化物粒子からのMn溶出抑止効果により、スピネル系リチウムマンガン複合酸化物粒子の劣化を抑止する。更に混合系正極で、リチウムニッケル系複合酸化物を主成分(50質量%超)とすることで、混合系正極活物質全体の高容量化により高い容量(初期放電容量)を実現することができると共に、スピネル系リチウムマンガン複合酸化物を含むことで、安全性を向上させることができ、容量と安全性のバランスを取ることができる。またリチウムニッケル系複合酸化物のNi含有量を上記範囲に調整することで、容量と安全性のバランスをより一層高めることができる。更にリチウムニッケル系複合酸化物の結晶構造のc軸長を上記範囲に調整することで、以下の効果を奏することができる。即ち特開2011-54334号公報の混合系正極にS系添加剤を共存させると、N系複合酸化物の充電に伴う膨張時に一次粒子間(粒界)の残存LiとSが反応して体積の大きい生成物を作り、収縮を妨げて一次粒子の孤立(更には二次粒子の割れ)による活物質の劣化を引き起こす問題があることがわかった。図1は、本発明の電気デバイスに用いられる層状結晶構造のリチウムニッケル系複合酸化物の構造モデルを示す図面である。図中のMeは、ニッケルを含む遷移金属を指す。図1に示すように、結晶構造のc軸長を適当な短さになるように上記範囲(14.180~14.240Å)に調整することで、O-O層間の静電斥力が抑制され、結晶構造が安定する。また、原子が詰まった壊れにくい構造となる。そのため上記範囲のc軸長を有するリチウムニッケル系複合酸化物では結晶内にLiが理想状態に近く存在しており、それによって膨張が小さくなると共に、一般的に残存Liも減る。そのため、S系添加剤が粒界に入り込むことを抑制し、S系添加剤との反応も抑制でき、リチウムニッケル系複合酸化物粒子(二次粒子)の割れを抑制することができ、リチウムニッケル系複合酸化物の劣化を抑制することができる。これらの結果として、容量とサイクル耐久性の両方に優れた電気デバイスが提供できる。詳しくは、サイクル耐久性に優れ、高い容量と安全性のバランスのとれた電気デバイスが提供できる。
 以下、本形態に係る電気デバイスの好ましい実施形態として、主に非水電解質二次電池の一種である非水電解質リチウムイオン二次電池について説明するが、以下の実施形態のみには制限されない。また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 図2は、扁平型(積層型)の双極型ではない非水電解質リチウムイオン二次電池(以下、単に「積層型電池」ともいう)の基本構成を模式的に表した断面概略図である。図2に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体である電池外装材29の内部に封止された構造を有する。ここで、発電要素21は、正極と、セパレータ17と、負極とを積層した構成を有している。なお、セパレータ17は、非水電解質(例えば、液体電解質)を内蔵している。正極は、正極集電体12の両面に正極活物質層15が配置された構造を有する。負極は、負極集電体11の両面に負極活物質層13が配置された構造を有する。具体的には、1つの正極活物質層15とこれに隣接する負極活物質層13とが、セパレータ17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。これにより、隣接する正極、電解質層および負極は、1つの単電池層19を構成する。したがって、図2に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。
 なお、発電要素21の両最外層に位置する最外層正極集電体には、いずれも片面のみに負極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図2とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層正極集電体が位置するようにし、該最外層正極集電体の片面または両面に正極活物質層が配置されているようにしてもよい。
 正極集電体12および負極集電体11は、各電極(正極および負極)と導通される正極集電板(タブ)27および負極集電板(タブ)25がそれぞれ取り付けられ、電池外装材29の端部に挟まれるようにして電池外装材29の外部に導出される構造を有している。正極集電板27および負極集電板25はそれぞれ、必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体11および負極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。
 なお、図2では、扁平型(積層型)の双極型ではない積層型電池を示したが、集電体の一方の面に電気的に結合した正極活物質層と、集電体の反対側の面に電気的に結合した負極活物質層と、を有する双極型電極を含む双極型電池であってもよい。この場合、一の集電体が正極集電体および負極集電体を兼ねることとなる。
 以下、各部材について、さらに詳細に説明する。
 [正極]
 正極は、正極集電体と、前記正極集電体の表面に形成された正極活物質層とを有するものである。
 (正極集電体)
 正極集電体を構成する材料に特に制限はないが、好適には金属が用いられる。具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅、その他合金等などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位の観点からは、アルミニウム、ステンレス、銅が好ましい。
 集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。
 また、後述の負極において、負極集電体を用いる場合も、上記と同様のものを用いることができる。
 (正極活物質層)
 正極活物質層は、正極活物質を含む。本形態において、正極活物質は、リチウムニッケル系複合酸化物とスピネル系リチウムマンガン複合酸化物(スピネル系複合酸化物)を必須に含む。本形態の非水電解質リチウムイオン二次電池は、リチウムニッケル系複合酸化物の含有比率を大きくすることで、リチウムニッケル系複合酸化物に起因するサイクル耐久性および容量がより大きくなる。リチウムニッケル系複合酸化物の比率増加による容量増加は、一般にリチウムニッケル系複合酸化物よりもスピネル系複合酸化物の方が分子量が小さく、リチウムニッケル系複合酸化物の方が単位質量あたりの反応リチウム数が多いことより得られると考えられる。また、本形態の非水電解質リチウムイオン二次電池は、スピネル系複合酸化物を含有することで安全性を向上させることができ、スピネル系複合酸化物の含有比率を大きくすることでスピネル系複合酸化物に起因する安全性がより高くなる。正極活物質としてリチウムニッケル系複合酸化物およびスピネル系複合酸化物を含むことで、リチウムニッケル系複合酸化物およびスピネル系複合酸化物の各々の長所(サイクル耐久性に優れ、更に容量と安全性とのバランスに優れた特性)を有する優れた正極活物質層が作製できる。
 混合系活物質としてリチウムニッケル系複合酸化物およびスピネル系リチウムマンガン複合酸化物を含む正極活物質層は、特に、高い安全性が求められる大型化電池、特に電池容量および電池面積の観点から大型化が規定された電池に用いることがより好ましい。かような電池としては、たとえば、後述のような定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比の値が5cm/Ah以上であり、かつ、定格容量が3Ah以上である大型化電池等が挙げられる。
 本発明者らは、リチウムニッケル系複合酸化物およびスピネル系リチウムマンガン複合酸化物を含む混合系正極活物質を含有する正極活物質層を含む正極を有する非水電解質リチウムイオン二次電池のさらなるサイクル耐久性向上策として、負極上のSEI被膜形成を試みた。SEI被膜は、電解質中の特定の化合物により負極活物質層上に形成される被膜であり、負極の保護作用を有するため、サイクル耐久性向上に寄与することが知られている。本発明者らは、鋭意検討の結果、分子内に後述のS=O結合を有する化合物(S系添加剤)を使用したとき、リチウムニッケル系複合酸化物(またはスピネル系リチウムマンガン複合酸化物)の含有比率に対して、サイクル耐久性が予想外の顕著な依存性を有することを見出した。具体的には、リチウムニッケル系複合酸化物の含有比率を所定の範囲内としたときに、特に顕著なサイクル耐久性向上効果が得られることを見出したのである。なお、この顕著な添加量依存性は、リチウムニッケル系複合酸化物のみ、またはスピネル系リチウムマンガン複合酸化物のみよりなる正極活物質層を含む正極では確認されなかった。
 さらに、本発明者らは、検討を進めるなかで、S系添加剤はスピネル系リチウムマンガン複合酸化物よりなる正極活物質を用いた正極を有する非水電解質リチウムイオン二次電池のサイクル耐久性を向上させることができることを見出した。また、リチウムニッケル系複合酸化物よりなる正極活物質を用いた正極を有する非水電解質リチウムイオン二次電池のサイクル耐久性を低下させることを見出した。
 本現象についてはS系添加剤のリチウムニッケル系複合酸化物およびスピネル系リチウムマンガン複合酸化物に対する作用に起因すると推測しており、その詳細な推測メカニズムについては、後述のS系添加剤の説明に記載する。
 これらの結果より、リチウムニッケル系複合酸化物の含有比率依存性は、リチウムニッケル系複合酸化物の系に対するサイクル耐久性低下効果と、スピネル系リチウムマンガン複合酸化物の系に対するサイクル耐久性向上効果のバランスにより得られたものであると考えられる。上記の種々の作用の結果として、リチウムニッケル系複合酸化物およびスピネル系リチウムマンガン複合酸化物を含む正極活物質層において優れた容量特性、サイクル耐久性および安全性を達成するためには、最適なリチウムニッケル系複合酸化物の含有比率を調整する必要がある。更にはリチウムニッケル系複合酸化物のNi含有量と結晶構造のc軸長を最適な範囲に調整する必要がある。本形態は、驚くべきことに、S系添加剤の存在によりサイクル耐久性が低下するN系複合酸化物を正極活物質層中に高い含有比率で含み、N系複合酸化物のNi含有量と結晶構造のc軸長を最適な範囲に調整することで、従来困難であったサイクル耐久性と容量の両立が実現できるものである。更に容量と安全性のバランスを取ることもできる。即ち、サイクル耐久性に優れ、容量と安全性のバランスのとれた電池を提供できるものである。なお、上記メカニズムは推測に基づくものであり、その正誤が本形態の技術的範囲に影響を及ぼすものではない。
 (正極活物質層中のN系複合酸化物の含有比率)
 本形態における正極活物質層中のN系複合酸化物の含有比率は、上記の容量、サイクル耐久性および安全性の両立の観点から、正極活物質全量の合計質量に対して50質量%を超える範囲である。好ましくは55~90質量%、より好ましくは60~90質量%、更に好ましくは65~90質量%、特に好ましくは70~90質量%の範囲である。N系複合酸化物の含有比率が50質量%を超える範囲、好ましくは55質量%以上、より好ましくは60質量%以上、更に好ましくは65質量%以上、特に好ましくは70質量%以上にすることで、スピネル系リチウムマンガン複合酸化物単独よりも容量を上昇させることができ、上記の容量、サイクル耐久性および安全性の両立が図れ、セル(電池)として容量メリットを出すことができる点で優れている。とりわけ、N系複合酸化物(特にNMC)の含有比率が70質量%以上であれば、スピネル系リチウムマンガン複合酸化物であるLMOの理論最大放電容量(135mAh/g)を超えることができ、より一層の高容量化が図れる点でも優れている。なお、上限値については、混合系正極活物質を用いることから100質量%未満であればよいが、上記の容量、サイクル耐久性および安全性の両立の観点から、90質量%以下の範囲である。言い換えれば、スピネル系リチウムマンガン複合酸化物が10質量%以上含まれていれば、安全性向上効果がみられる点から、N系複合酸化物の含有比率は90質量%以下が望ましいものである。なお、スピネル系リチウムマンガン複合酸化物(例えば、LiMn;LMO)が10質量%以上含まれていれば、安全性向上効果がみられるのは、N系複合酸化物、例えば、NMC複合酸化物(NMC)は自己発熱の開始温度が200~300℃に対し、LMOは400℃程度と、熱安定性が高くなるためである。また、自己発熱後の総発熱量も、NMC>LMOとなるためである。
 正極活物質層に含まれる正極活物質の全量100質量%に占めるリチウムニッケル系複合酸化物およびスピネル系リチウムマンガン複合酸化物の合計量の割合は、好ましくは50質量%を超える範囲であり、より好ましくは70質量%以上であり、さらに好ましくは85質量%以上であり、いっそう好ましくは90質量%以上であり、特に好ましくは95質量%以上であり、最も好ましくは100質量%である。
 正極活物質層の厚さについては特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さ(集電体の片面の活物質層の厚さ)は、2~100μm程度である。
 ・リチウムニッケル系複合酸化物
 リチウムニッケル系複合酸化物は、ニッケルを含有する層状結晶構造のリチウム遷移金属複合酸化物(図1参照)である限り、その組成は具体的に限定されない。リチウムニッケル系複合酸化物の典型的な例としては、リチウムニッケル複合酸化物(LiNiO;LMO)、Li(Ni、Mn、Co)O、Li(Li、Ni、Mn、Co)O)が挙げられる。この他にも、例えば、3元系、NiMn系、NiCo系などが挙げられる。3元系としては、ニッケル・マンガン・コバルト系(複合酸化物)正極材等が挙げられる。NiMn系としては、LiNi0.5Mn1.5等が挙げられる。NiCo系としては、Li(NiCo)O等が挙げられる。ただし、リチウムニッケル複合酸化物のニッケル原子の一部が他の金属原子で置換された複合酸化物がより好ましい。好ましい例として、ニッケル、マンガン、コバルトを含有する層状結晶構造のリチウム遷移金属複合酸化物(以下、単に「NMC複合酸化物」とも称する)は、リチウム原子層と遷移金属(Mn、NiおよびCoが秩序正しく配置)原子層とが酸素原子層を介して交互に積み重なった層状結晶構造を持ち、遷移金属Mの1原子あたり1個のLi原子が含まれ、取り出せるLi量が、スピネル系リチウムマンガン酸化物の2倍、つまり供給能力が2倍になり、高い容量を持つことができる。加えて、LiNiOより高い熱安定性を有しているため、正極活物質として用いられるニッケル系複合酸化物の中でも特に有利である。
 本明細書において、NMC複合酸化物は、遷移金属元素の一部が他の金属元素により置換されている複合酸化物も含む。その場合の他の元素としては、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Cr、Fe、B、Ga、In、Si、Mo、Y、Sn、V、Cu、Ag、Znなどが挙げられ、好ましくは、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crであり、より好ましくは、Ti、Zr、P、Al、Mg、Crであり、サイクル特性向上の観点から、さらに好ましくは、Ti、Zr、Al、Mg、Crである。
 NMC複合酸化物は、理論放電容量が高いことから、好ましくは、一般式(1):LiNiMnCo(但し、式中、a、b、c、d、xは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、0≦x≦0.3、b+c+d=1を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crから選ばれる元素で少なくとも1種類である)で表される組成を有するものである。ここで、aは、Liの原子比を表し、bは、Niの原子比を表し、cは、Mnの原子比を表し、dは、Coの原子比を表し、xは、Mの原子比を表す。上記一般式(1)において、b、cおよびdが、0.44≦b≦0.51、0.27≦c≦0.31、0.19≦d≦0.26であると、本発明の効果がより顕著に得られることから好ましい。
 なお、各元素の組成は、例えば、誘導結合プラズマ(ICP)発光分析法により測定できる。
 一般に、ニッケル(Ni)、コバルト(Co)およびマンガン(Mn)は、材料の純度向上および電子伝導性向上という観点から、容量および出力特性に寄与することが知られている。
 NMC複合酸化物の他の金属元素(一般式(1)中のM元素)であるTi等は、結晶格子中の遷移金属を一部置換するものである。サイクル耐久性の観点からは、遷移元素の一部が他の金属元素により置換されていてもよい。他の金属元素であるTi、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCrからなる群から選ばれる少なくとも1種が固溶することにより、結晶構造が安定化される。そのためNMC複合酸化物が他の金属元素を含む場合であっても、他の金属元素を含まないNMC複合酸化物と同様に充放電を繰り返しても電池の容量低下が防止でき、優れたサイクル耐久性が実現し得ると考えられる。
 NMC複合酸化物としては、特に限定されないが、例えば、LiNi0.30Mn0.35Co0.35(実施例2)、LiNi1/3Mn1/3Co1/3、LiNi0.50Mn0.30Co0.20(実施例1、4、5、8)、LiNi0.6Mn0.2Co0.2、LiNi0.8Mn0.1Co0.1、LiNi0.90Mn0.05Co0.05(実施例3)、LiNi0.45Mn0.45Co0.10(実施例6)、LiNi0.54Mn0.28Co0.18(実施例7)、等が挙げられる。
 (リチウムニッケル系複合酸化物のLi以外の遷移金属原子中に含まれるNiの含有比率)
 リチウムニッケル系複合酸化物のリチウム以外の遷移金属原子中に含まれるニッケルの含有比率は、容量と安全性のバランスが取れる観点から、リチウムニッケル系複合酸化物のリチウム以外の遷移金属原子の合計量に対して組成比で30~90原子%の範囲である。ニッケルの含有比率が30原子%以上であると、より容量を増加することができる。かような容量の増加は、単位質量あたりの反応に寄与するリチウム数が増加することに起因すると推測している。また、ニッケルの含有比率が90原子%以下であると、さらに安全性を向上できる。さらに、ニッケルの含有比率が90原子%以下であると、前記安全性の向上に加えて、サイクル耐久性のさらなる向上効果も得られる。かようなサイクル耐久性の向上は、単位質量あたりのリチウム数が減少することで、正極活物質層に出入りするリチウム数が減少することに起因すると推測している。上記観点、特に容量と安全性のバランスがより取りやすくなることから、リチウムニッケル系複合酸化物のリチウム以外の遷移金属原子中に含まれるニッケルの含有比率は、35~65原子%であることが好ましく、40~60原子%であることがより好ましく、45~54原子%であることがさらに好ましい。
 (リチウムニッケル系複合酸化物の結晶構造のc軸長)
 リチウムニッケル系複合酸化物の結晶構造のc軸長は、14.180~14.240Åの範囲、更に耐久性向上やS系添加剤による劣化抑制向上の観点から、好ましくは14.220~14.240Åの範囲である。結晶構造のc軸長を上記範囲内(適度な短さ)とすることで、原子が詰まった壊れにくい構造にすることができ、S系添加剤による劣化を抑制することができる点で優れている。ここで、リチウムニッケル系複合酸化物の結晶構造のc軸長を上記範囲内(適度な短さに;原子が詰まった壊れにくい構造に)することで、S系添加剤による劣化を抑制することができるメカニズム(理由)としては、以下の通りである。即ち、特開2011-54334号公報のように混合系正極活物質にS系添加剤が存在させると、リチウムニッケル系複合酸化物の充電に伴う膨張時に一次粒子間(粒界)の残存LiとSが反応して生成物を作り、収縮を妨げて一次粒子の孤立及び活物質の劣化を引き起こす。一方、本発明で規定するようにc軸長が上記範囲内(適度な短さ)のリチウムニッケル系複合酸化物では、結晶内にLiが理想状態に近く存在しており、それによって膨張が小さくなると共に、一般的に残存Liも減るため、S系添加剤との反応を抑制できることによる。
 リチウムニッケル系複合酸化物の結晶構造のc軸長の調整としては、一般的には、当該複合酸化物の製造時の焼成条件を変えることにより行うことができる。また上記したNiの含有比率を変えることでもc軸長を調製することができる。なお、同じNiの含有比率の場合、c軸長が適度に短い材料(即ち本発明で規定するc軸長の範囲)を用いることで耐久性を向上させることができる。
 リチウムニッケル系複合酸化物の結晶構造のc軸長は、X線回折のスペクトルから計算することができる。詳しくは、本発明において「リチウムニッケル系複合酸化物の結晶構造のc軸長」は、粉末のリチウムニッケル系複合酸化物を、粉末X線回折装置を使用し、CuKα線により1°/minの走査速度、100-150°の角度で測定し、誤差関数測定法(wilson&pike法)により格子定数の精密化を行った上で算出した値である。なお、充放電により当該c軸長は変化し、充電が進むほどに長くなる。よって、本発明で規定するリチウムニッケル系複合酸化物の結晶構造のc軸長は、放電状態のとき、即ち、SOC0%のときのもの(リチウムニッケル系複合酸化物)とする。また、リチウムニッケル系複合酸化物の結晶構造のc軸長は、図1に示すように、Me層(ニッケルを含む遷移金属層)の中心から、隣接する(隣の)Me層の中心までのc軸方向の長さ(距離)を指す。
 リチウムニッケル系複合酸化物は、一次粒子が凝集してなる二次粒子の構成を有している。そして、当該一次粒子の平均粒子径(平均一次粒子径)は好ましくは0.9μm以下であり、より好ましくは0.20~0.6μmであり、さらに好ましくは0.25~0.5μmである。また、二次粒子の平均粒子径(平均二次粒子径)は、好ましくは5~20μmであり、より好ましくは5~15μmである。ここで、本明細書において、リチウムニッケル系複合酸化物における平均一次粒子径、平均二次粒子径および結晶子径の値は、公知の手法により測定可能である。
 さらに、リチウムニッケル系複合酸化物について、粉末X線回折測定により得られる(104)面の回折ピークと(003)面の回折ピークとが、回折ピーク強度比((003)/(104))として1.28以上であることが好ましく、より好ましくは1.35~2.1である。また、回折ピーク積分強度比((003)/(104))としては1.08以上であることが好ましく、より好ましくは1.10~1.45である。
 NMC複合酸化物などのリチウムニッケル系複合酸化物は、共沈法、スプレードライ法など、種々公知の方法を選択して調製することができる。本形態に係る複合酸化物の調製が容易であることから、共沈法を用いることが好ましい。具体的に、NMC複合酸化物の合成方法としては、例えば、特開2011-105588号に記載の方法のように、共沈法によりニッケル-コバルト-マンガン複合酸化物を製造した後、ニッケル-コバルト-マンガン複合酸化物と、リチウム化合物とを混合して焼成することにより得ることができる。
 必要に応じて、活物質材料を構成するニッケル(好ましくは更に、コバルト、マンガン)を含有する層状結晶構造のリチウム遷移金属複合酸化物の一部を置換する金属元素を微量添加する場合、該方法としては、あらかじめニッケル、コバルト、マンガン酸塩と混合する方法、ニッケル、コバルト、マンガン酸塩と同時に添加する方法、反応途中で反応溶液に添加する方法、Li化合物とともにニッケル-コバルト-マンガン複合酸化物に添加する方法などいずれの手段を用いても構わない。
 リチウムニッケル系複合酸化物は、反応溶液のpH、反応温度、反応濃度、添加速度、攪拌時間などの反応条件を適宜調整することにより製造することができる。
 ・スピネル系リチウムマンガン複合酸化物
 マンガンを含有するスピネル結晶構造のリチウム遷移金属複合酸化物(スピネル系リチウムマンガン複合酸化物)は、典型的にはLiMn(LMO)の組成を有し、スピネル構造を有する、リチウムおよびマンガンを必須に含有する複合酸化物であり、その具体的な構成や製造方法については、例えば、特開2000-77071号公報等の従来公知の知見が適宜参照されうる。
 スピネル系リチウムマンガン複合酸化物もまた、一次粒子が凝集してなる二次粒子の構成を有している。そして、二次粒子の平均粒子径(平均二次粒子径)は、好ましくは5~50μmであり、より好ましくは7~20μmである。
 ・その他の正極活物質成分
 本形態混合系正極活物質には、上記リチウムニッケル系複合酸化物およびスピネル系リチウムマンガン複合酸化物以外にも、必要に応じ、適宜適量を含んでいてもよい。かかる正極活物質としては、本発明の作用効果を損なわない範囲内であれば、特に制限されるものではなく、従来公知の正極活物質を用いることができる。例えば、金属リチウム、上記リチウムニッケル系複合酸化物およびスピネル系リチウムマンガン複合酸化物以外のリチウム-遷移金属複合酸化物、リチウム-遷移金属リン酸化合物、リチウム-遷移金属硫酸化合物、固溶体系などが挙げられる。上記リチウムニッケル系複合酸化物およびスピネル系リチウムマンガン複合酸化物以外のリチウム-遷移金属複合酸化物としては、例えば、LiCoO、LiFePOおよびこれらの遷移金属の一部が他の元素により置換されたもの等が挙げられる。固溶体系としては、xLiMO・(1-x)LiNO(0<x<1、Mは平均酸化状態が3+、Nは平均酸化状態が4+である1種類以上の遷移金属)、LiRO-LiMn(R=Ni、Mn、Co、Fe等の遷移金属元素)等が挙げられる。
 ・正極活物質以外の他の成分
 正極活物質層は上述した正極活物質の他、必要に応じて、上述以外の正極活物質、導電助剤、バインダー、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含むことができる。
 導電助剤とは、正極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、ケッチェンブラック、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料が挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
 電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。
 イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
 正極活物質層中、活物質として機能しうる材料の含有量は、特に限定はなく、リチウムイオン二次電池についての公知の知見を適宜参照することにより調整されうるが、85~99.5質量%であることが好ましい。
 正極活物質層に用いられるバインダーとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)およびその塩、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。これらのバインダーは、単独で用いてもよいし、2種以上を併用してもよい。
 正極は、正極集電体上に正極活物質層を形成することにより作製することができる。正極活物質層の形成方法は、特に限定されないが、たとえば、少なくとも正極活物質およびスラリー粘度調整溶媒を含む正極活物質スラリーを正極集電体上に塗布し、乾燥後、ロールプレス機等で圧縮成型する方法が挙げられる。スラリー粘度調整溶媒としては、特に限定されないが、たとえばN-メチル-2-ピロリドン(NMP)等を使用することができる。
 [負極活物質層]
 負極活物質層は活物質を含み、必要に応じて、導電助剤、バインダー、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。
 負極活物質層の厚さについては特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さ(集電体の片面の活物質層の厚さ)は、2~100μm程度である。
 負極活物質層中、活物質として機能しうる材料の含有量は、前記正極活性物質中の活物質として機能しうる材料の含有量として述べたものと同様に、85~99.5質量%であることが好ましい。
 また、導電助剤、バインダー、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤については、上記正極活物質層の欄で述べたものと同様である。
 負極活物質としては、例えば、グラファイト(黒鉛)、ソフトカーボン、ハードカーボン等の炭素材料、リチウム-遷移金属複合酸化物(例えば、LiTi12)、金属材料、リチウム合金系負極材料などが挙げられる。場合によっては、2種以上の負極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、炭素材料またはリチウム-遷移金属複合酸化物が、負極活物質として用いられる。なお、上記以外の負極活物質が用いられてもよいことは勿論である。
 負極活物質層においては、少なくとも水系バインダーを含むことが好ましい。水系バインダーは、結着力が高い。また、原料としての水の調達が容易であることに加え、乾燥時に発生するのは水蒸気であるため、製造ラインへの設備投資が大幅に抑制でき、環境負荷の低減を図ることができるという利点がある。
 水系バインダーとは水を溶媒もしくは分散媒体とするバインダーをいい、具体的には熱可塑性樹脂、ゴム弾性を有するポリマー、水溶性高分子など、またはこれらの混合物が該当する。ここで、水を分散媒体とするバインダーとは、ラテックスまたはエマルジョンと表現される全てを含み、水と乳化または水に懸濁したポリマーを指し、例えば自己乳化するような系で乳化重合したポリマーラテックス類が挙げられる。
 水系バインダーとしては、具体的にはスチレン系高分子(スチレン-ブタジエンゴム、スチレン-酢酸ビニル共重合体、スチレン-アクリル共重合体等)、アクリロニトリル-ブタジエンゴム、メタクリル酸メチル-ブタジエンゴム、(メタ)アクリル系高分子(ポリエチルアクリレート、ポリエチルメタクリレート、ポリプロピルアクリレート、ポリメチルメタクリレート(メタクリル酸メチルゴム)、ポリプロピルメタクリレート、ポリイソプロピルアクリレート、ポリイソプロピルメタクリレート、ポリブチルアクリレート、ポリブチルメタクリレート、ポリヘキシルアクリレート、ポリヘキシルメタクリレート、ポリエチルヘキシルアクリレート、ポリエチルヘキシルメタクリレート、ポリラウリルアクリレート、ポリラウリルメタクリレート等)、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリブタジエン、ブチルゴム、フッ素ゴム、ポリエチレンオキシド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル、ポリスチレン、エチレン-プロピレン-ジエン共重合体、ポリビニルピリジン、クロロスルホン化ポリエチレン、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂;ポリビニルアルコール(平均重合度は、好適には200~4000、より好適には、1000~3000、ケン化度は好適には80モル%以上、より好適には90モル%以上)およびその変性体(エチレン/酢酸ビニル=2/98~30/70モル比の共重合体の酢酸ビニル単位のうちの1~80モル%ケン化物、ポリビニルアルコールの1~50モル%部分アセタール化物等)、デンプンおよびその変性体(酸化デンプン、リン酸エステル化デンプン、カチオン化デンプン等)、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、およびこれらの塩等)、ポリビニルピロリドン、ポリアクリル酸(塩)、ポリエチレングリコール、(メタ)アクリルアミドおよび/または(メタ)アクリル酸塩の共重合体[(メタ)アクリルアミド重合体、(メタ)アクリルアミド-(メタ)アクリル酸塩共重合体、(メタ)アクリル酸アルキル(炭素数1~4)エステル-(メタ)アクリル酸塩共重合体など]、スチレン-マレイン酸塩共重合体、ポリアクリルアミドのマンニッヒ変性体、ホルマリン縮合型樹脂(尿素-ホルマリン樹脂、メラミン-ホルマリン樹脂等)、ポリアミドポリアミンもしくはジアルキルアミン-エピクロルヒドリン共重合体、ポリエチレンイミン、カゼイン、大豆蛋白、合成蛋白、ならびにマンナンガラクタン誘導体等の水溶性高分子などが挙げられる。これらの水系バインダーは1種単独で用いてもよいし、2種以上併用して用いてもよい。
 上記水系バインダーは、結着性の観点から、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、メタクリル酸メチル-ブタジエンゴム、およびメタクリル酸メチルゴムからなる群から選択される少なくとも1つのゴム系バインダーを含むことが好ましい。さらに、結着性が良好であることから、水系バインダーはスチレン-ブタジエンゴムを含むことが好ましい。
 水系バインダーとしてスチレン-ブタジエンゴムを用いる場合、塗工性向上の観点から、上記水溶性高分子を併用することが好ましい。スチレン-ブタジエンゴムと併用することが好適な水溶性高分子としては、ポリビニルアルコールおよびその変性体、デンプンおよびその変性体、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、およびこれらの塩等)、ポリビニルピロリドン、ポリアクリル酸(塩)、またはポリエチレングリコールが挙げられる。中でも、バインダーとして、スチレン-ブタジエンゴムと、カルボキシメチルセルロース(塩)とを組み合わせることが好ましい。スチレン-ブタジエンゴムと、水溶性高分子との含有質量比は、特に制限されるものではないが、スチレン-ブタジエンゴム:水溶性高分子=1:0.1~10であることが好ましく、0.5~2であることがより好ましい。
 負極活物質層に用いられるバインダーのうち、水系バインダーの含有量は80~100質量%であることが好ましく、90~100質量%であることが好ましく、100質量%であることが好ましい。
 負極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1~100μm、より好ましくは1~20μmである。
 負極は、負極集電体上に負極活物質層を形成することにより作製することができる。負極活物質層の形成方法は、特に限定されないが、たとえば、少なくとも負極活物質およびスラリー粘度調整溶媒を含む負極活物質スラリーを負極集電体上に塗布し、乾燥後、ロールプレス機等で圧縮成型する方法が挙げられる。スラリー粘度調整溶媒としては、特に限定されないが、たとえばN-メチル-2-ピロリドン(NMP)等を使用することができる。
 [セパレータ(電解質層)]
 セパレータは、電解質を保持して正極と負極との間のリチウムイオン伝導性を確保する機能、および正極と負極との間の隔壁としての機能を有する。
 セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。
 ポリマーないし繊維からなる多孔性シートのセパレータとしては、例えば、微多孔質(微多孔膜)を用いることができる。該ポリマーないし繊維からなる多孔性シートの具体的な形態としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;これらを複数積層した積層体(例えば、PP/PE/PPの3層構造をした積層体など)、ポリイミド、アラミド、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔質(微多孔膜)セパレータが挙げられる。
 微多孔質(微多孔膜)セパレータの厚みとして、使用用途により異なることから一義的に規定することはできない。一例を示せば、電気自動車(EV)やハイブリッド電気自動車(HEV)、燃料電池自動車(FCV)などのモータ駆動用二次電池などの用途においては、単層あるいは多層で4~60μmであることが望ましい。前記微多孔質(微多孔膜)セパレータの微細孔径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが望ましい。
 不織布セパレータとしては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなど従来公知のものを、単独または混合して用いる。
また、不織布のかさ密度は、含浸させた高分子ゲル電解質により十分な電池特性が得られるものであればよく、特に制限されるべきものではない。さらに、不織布セパレータの厚さは、電解質層と同じであればよく、好ましくは5~200μmであり、特に好ましくは10~100μmである。
 また、上述したように、セパレータは、電解質を含む。電解質としては、かような機能を発揮できるものであれば特に制限されないが、液体電解質またはゲルポリマー電解質が用いられる。ゲルポリマー電解質を用いることにより、電極間距離の安定化が図られ、分極の発生が抑制され、耐久性(サイクル特性)が向上する。
 (S系添加剤)
 電解質は、分子内にS=O結合を有する化合物(S系添加剤)を必須に含む。S系添加剤を用いるのは、混合系正極活物質として、N系複合酸化物の欠点である熱安定性を向上させるためにスピネル系複合酸化物を添加し、スピネル系複合酸化物の欠点であるMn溶出を抑制するためにS系添加剤を添加し、容量と安全性のバランスを図るためである。なお、S系添加剤を含む電解質は、通常、セパレータ、正極、負極(いずれも空孔内)、余剰体積(発電要素と外装材との隙間など)の全体に存在する。このことにより上記作用効果をより有効かつ効果的に発現することができるものである。
 電解質中のS系添加剤を所定の範囲内の濃度とすることで、非水電解質リチウムイオン二次電池のサイクル耐久性が向上する。
 従来、電極を保護する効果を有する添加剤として、負極活物質表面にSEI被膜を形成する化合物を用いることで、充放電時の負極上における負極活物質と電解液との副反応を抑制し、負極活物質の劣化を防ぐことでサイクル耐久性を向上できることは知られている。本発明者らは、種々のSEI被膜形成剤の効果を確認した結果、リチウムニッケル系複合酸化物およびスピネル系リチウムマンガン複合酸化物を含む混合系正極活物質を含有する正極活物質層を使用した系において、S系添加剤の濃度に対するサイクル耐久性の予想外の顕著な依存性を見出した。具体的には、S系添加剤を電解質に対して所定の範囲内の濃度としたときに、特に顕著なサイクル耐久性向上効果が得られることを見出した。ここで、S系添加剤のなかにはSEI被膜を形成することができるものが存在することは知られていたが、前記サイクル耐久性向上効果は、従来知られていた負極活物質表面のSEI被膜形成による効果とはその挙動が全く異なり、より顕著な向上効果を示した。
 ここで、本発明者らは、さらなる検討を進めた結果、S系添加剤は、スピネル系リチウムマンガン複合酸化物からなる正極活物質を含む正極活物質層を用いた正極を有する非水電解質リチウムイオン二次電池のサイクル耐久性を大きく向上させることを見出した。この効果は、S系添加剤が、負極上のSEI被膜形成作用に加えて、スピネル系リチウムマンガン複合酸化物からのMn溶出抑制効果を有しており、正極活物質層の劣化抑制にも寄与することにより得られる。より詳細には、スピネル系リチウムマンガン複合酸化物はMn溶出が生じ易く、溶出したMnが負極上に析出し、それを核としてLi析出が生じてセルの容量低下を引き起こすと考えられる。ここで、S系添加剤がスピネル系リチウムマンガン複合酸化物中の酸素欠損部に配位してMn溶出を抑えることにより、サイクル耐久性の向上が得られる。
 また、本発明者らは、S系添加剤をリチウムニッケル系複合酸化物のみよりなる正極活物質を含む正極活物質層を用いた正極を有する非水電解質リチウムイオン二次電池に用いることで、正極活物質粒子(二次粒子)に割れを生じさせ、サイクル耐久性を劣化させることがあることを見出した。この劣化は、リチウムニッケル系複合酸化物の充電に伴う膨張の際、一次粒子間(粒界)に存在する反応が生じなかった残存LiとS系添加剤との間で反応が生じ、生成物が一次粒子間に存在することとなり、放電時の収縮を阻害して割れが生じることによる。
 これより、S系添加剤の顕著な濃度依存性は、負極上のSEI被膜形成効果、スピネル系リチウムマンガン複合酸化物に対するMn溶出抑制効果、およびリチウムニッケル系複合酸化物に対する劣化のバランスにより得られたものであると考えられる。
 また、正極の説明に記載したように、サイクル耐久性はリチウムニッケル系複合酸化物およびスピネル系リチウムマンガン複合酸化物を含む混合系正極活物質を含有する正極活物質層自体の特性、およびリチウムニッケル系複合酸化物の混合系正極活物質全量に対する含有比率にも依存する。
 よって、顕著なサイクル耐久性向上効果は、リチウムニッケル系複合酸化物の混合系正極活物質全量に対する含有比率、リチウムニッケル系複合酸化物のNi含有量と結晶構造のc軸長を最適な範囲内の値とすることにより得られる。好ましくは、これらに加えて、更にS系添加剤の濃度を最適な範囲内の値とすることにより、容量とサイクル耐久性の両方の向上効果が得られる。これにより、サイクル耐久性に優れ、容量と安全性のバランスのとれた電池を提供できる。なお、上記メカニズムは推測に基づくものであり、その正誤が本形態の技術的範囲に影響を及ぼすものではない。
 分子内にS=O結合を有する化合物(S系添加剤)は、電解質中の濃度が、0.4~2.0mol/Lである。電解質中の濃度が0.4mol/L以上であれば、より顕著なサイクル耐久性向上効果が得られる点で優れている。これは、前記メカニズムより、電解質中のS系添加剤の濃度が、負極活物質層表面のSEI被膜形成能およびスピネル系リチウムマンガン複合酸化物からのMn溶出抑制を得るために十分な量といえるためである。また、電解質中の濃度が2.0mol/L以下であれば、優れたサイクル耐久性向上効果が得られる点で優れている。これは、SEI被膜の厚膜化を防止し抵抗上昇を防止することができるためである。また、電解質中の濃度が2.0mol/L以下であれば、前記メカニズムより、負極活物質層表面のSEI被膜形成能およびスピネル系リチウムマンガン複合酸化物からのMn溶出抑制効果と共に、正極活物質層中のリチウムニッケル系複合酸化物の劣化を効果的に抑制し得るためである。上記観点より、1.2~1.6mol/Lであることがより好ましい。
 S=O結合を有する化合物としては、特に限定されないが、マンガンの劣化抑制効果、優れたサイクル耐久性改善効果より、環式スルホン酸エステルであることが好ましい。
 環式スルホン酸エステルとしては、下記式(1):
Figure JPOXMLDOC01-appb-C000001
(式中、
 Oは酸素、Sは硫黄を表し、
 A、BおよびDは、それぞれ独立して、単結合、酸素、硫黄、カルボニル基、チオカルボニル基、スルフィニル基、スルホニル基、およびNR基からなる群より選ばれる少なくとも1種の基を表し、この際、Rは、水素原子、一価の脂肪族炭化水素基、一価の脂環式炭化水素基および一価の芳香族炭化水素基からなる群より選ばれる少なくとも1種の基を表し、
 R、R、RおよびRは、それぞれ独立して、単結合、または二価の脂肪族炭化水素基を表す。)で表される化合物であることが好ましい。
 式(1)において、Rは、水素原子、一価の脂肪族炭化水素基、一価の脂環式炭化水素基および一価の芳香族炭化水素基からなる群より選ばれる少なくとも1種の基である。脂肪族炭化水素基としては、好ましくは炭素数1~10、より好ましくは炭素数1~5、さらに好ましくは炭素数1~3の直鎖または分岐のアルキル基であり、たとえば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基(アミル基)、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、i-プロピル基、sec-ブチル基、i-ブチル基、t-ブチル基、1-メチルブチル基、1-エチルプロピル基、2-メチルブチル基、ネオペンチル基、1,2-ジメチルプロピル基、1,1-ジメチルプロピル基、1,3-ジメチルブチル基、3,3-ジメチルブチル基、2-エチルブチル基、2-エチル-2-メチルプロピル基、1-メチルヘプチル基、2-エチルヘキシル基、1,5-ジメチルヘキシル基、t-オクチル基などが挙げられる。脂環式炭化水素基としては、好ましくは炭素数3~12、より好ましくは炭素数3~7、さらに好ましくは炭素数3~5、特に好ましくは炭素数3のシクロアルキル基であり、たとえば、シクロプロピル基、シクロプロピルメチル基、シクロブチル基、シクロブチルメチル基、シクロペンチル基、シクロヘキシル基、シクロヘキシルメチル基、シクロヘプチル基、シクロオクチル基、シクロヘキシルプロピル基、シクロドデシル基、ノルボルニル基(C7)、アダマンチル基(C10)、シクロペンチルエチル基などが挙げられる。芳香族炭化水素基としては、好ましくは炭素数6~30、より好ましくは炭素数6~20、さらに好ましくは炭素数6~10、特に好ましくは炭素数6~9のアリール基であり、たとえば、フェニル基、アルキルフェニル基、アルキルフェニル基で置換されたフェニル基、ナフチル基などが挙げられる。
 R、R、RおよびRは、それぞれ独立して、単結合または二価の脂肪族炭化水素基を表す。二価の脂肪族炭化水素基としては、好ましくは炭素数1~10、より好ましくは炭素数1~5、さらに好ましくは炭素数1~3の直鎖または分岐のアルキレン基のいずれでもよく、たとえば、メチレン基、エチレン基、トリメチレン基、イソプロピレン基、テトラメチレン基などが挙げられる。また、二価の脂肪族炭化水素基としては、好ましくは炭素数2~10、より好ましくは2~5、さらに好ましくは2~3の直鎖または分岐のアルケニレン基のいずれでもよく、たとえば、ビニレン基、1-プロペニレン基、アリレン基、イソプロペニレン基、1-ブテニレン基、2-ブテニレン基、1-ペンテニレン基、2-ペンテニレン基などが挙げられる。
 また、環式スルホン酸エステルは、下記式(2):
Figure JPOXMLDOC01-appb-C000002
(式中、Xは炭素数1~5のアルキレン基、スルホニルアルキレン基、アルケニレン基、スルホニルアルケニレン基である。)で表される化合物であることがより好ましい。式(2)における、アルキレン基としては、炭素数1~3がさらに好ましく、アルケニレン基としては、炭素数2~3がさらに好ましい。式(2)で表される環式スルホン酸エステルとしては、Xがスルホニルアルキレン基(-SO-C2n-)であるジスルホン酸化合物も含む。ジスルホン酸化合物としては、アルキレン基としては、炭素数1~3がより好ましい。
 また、環式スルホン酸エステルは、下記式(3):
Figure JPOXMLDOC01-appb-C000003
(式中、
 Yは炭素数1~5のアルキレン基、スルホニルアルキレン基、アルケニレン基、スルホニルアルケニレン基であり、
 Zは炭素数1~5のアルキレン基、スルホニルアルキレン基、アルケニレン基、スルホニルアルケニレン基である。)で表される化合物であることがより好ましい。式(3)における、アルキレン基としては、炭素数1~3がより好ましい。
 式(1)~式(3)で表される環式スルホン酸エステルとしては、1,3-プロパンスルトン、1,3-プロパ-1-エンスルトン(1,3-プロペンスルトン)、メチレンメタンジスルホネート、1,4-ブタンスルトン、2,4-ブタンスルトンなどが挙げられるが、これらに限定されるものではない。環式スルホン酸エステルとしては、サイクル耐久性向上効果の観点より、1,3-プロパンスルトン、1,3-プロペンスルトン、メチレンメタンジスルホネートが好ましく、1,3-プロパンスルトン、1,3-プロペンスルトンがより好ましく、1,3-プロペンスルトンがさらに好ましい。
 電解質は、上述したS系添加剤成分以外の添加剤をさらに含んでもよい。
 かような添加剤としては、サイクル耐久性を向上することができる点で、電極の劣化を防止する機能を有する電極保護剤、特に負極活物質の表面にSEI被膜を形成する化合物を含むことが好ましい。SEI被膜を形成する化合物を用いて負極活物質表面に安定被膜を形成することで、充放電時の負極上における負極活物質と電解液との副反応を抑制し、負極活物質の劣化を防ぐことでサイクル耐久性を向上できる。
 SEI被膜を形成する化合物としては、環式炭酸エステル誘導体、2価フェノール誘導体、テルフェニル誘導体、ホスフェート誘導体、フルオロリン酸リチウム誘導体等が挙げられるが、これらに限定されない。これらの化合物のなかでも環式炭酸エステル誘導体が好ましく、環式炭酸エステル誘導体としては、ビニレンカーボネート誘導体、エチレンカーボネート誘導体がさらに好ましい。ビニレンカーボネート誘導体およびエチレンカーボネート誘導体の具体例としては、ビニレンカーボネート(VC)、ビニルエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、1,2-ジビニルエチレンカーボネート、1-メチル-1-ビニルエチレンカーボネート、1-メチル-2-ビニルエチレンカーボネート、1-エチル-1-ビニルエチレンカーボネート、1-エチル-2-ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1-ジメチル-2-メチレンエチレンカーボネートなどが挙げられる。なかでも、特に優れた電極保護作用を有し、サイクル耐久性の向上に寄与しうるものとして、ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、ジフルオロエチレンカーボネートが好ましく、ビニレンカーボネート、フルオロエチレンカーボネートがより好ましい。これらの電極保護剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
 電極保護剤の電解質中の濃度は、負極活物質表面に安定被膜を生成し、なおかつ抵抗上昇を抑える観点から、0.5~2.0質量%であることが好ましい。電解質中の濃度が0.5質量%以上であると、負極活物質層表面のSEI被膜形成能が十分な量となることより、サイクル耐久性向上効果が得られる。また、電解質中の濃度が2.0質量%以下であると、SEI被膜の厚膜化による抵抗上昇が生じないことより、サイクル耐久性向上効果が得られる。上記効果より、電極保護剤の電解質中の濃度は、0.7~1.8質量%であることがより好ましく、0.9質量%であることがさらに好ましい。
 液体電解質は、リチウムイオンのキャリヤーとしての機能を有する。液体電解質は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有する。用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート等のカーボネート類が例示される。また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiCFSO等の電極の活物質層に添加されうる化合物が同様に採用されうる。リチウム塩の濃度としては、特に制限はされないが、0.8~1.2mol/Lであることが好ましい。
 ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導性を遮断することで容易になる点で優れている。マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HEP)、ポリ(メチルメタクリレート(PMMA)およびこれらの共重合体等が挙げられる。
 ゲル電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
 また、セパレータとしては多孔質基体に耐熱絶縁層が積層されたセパレータ(耐熱絶縁層付セパレータ)であることが好ましい。耐熱絶縁層は、無機粒子およびバインダーを含むセラミック層である。耐熱絶縁層付セパレータは融点または熱軟化点が150℃以上、好ましくは200℃以上である耐熱性の高いものを用いる。耐熱絶縁層を有することによって、温度上昇の際に増大するセパレータの内部応力が緩和されるため熱収縮抑制効果が得られうる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。また、耐熱絶縁層を有することによって、耐熱絶縁層付セパレータの機械的強度が向上し、セパレータの破膜が起こりにくい。さらに、熱収縮抑制効果および機械的強度の高さから、電池の製造工程でセパレータがカールしにくくなる。
 耐熱絶縁層における無機粒子は、耐熱絶縁層の機械的強度や熱収縮抑制効果に寄与する。無機粒子として使用される材料は特に制限されない。例えば、ケイ素、アルミニウム、ジルコニウム、チタンの酸化物(SiO、Al、ZrO、TiO)、水酸化物、および窒化物、ならびにこれらの複合体が挙げられる。これらの無機粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来のものであってもよいし、人工的に製造されたものであってもよい。また、これらの無機粒子は1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。これらのうち、コストの観点から、シリカ(SiO)またはアルミナ(Al)を用いることが好ましく、アルミナ(Al)を用いることがより好ましい。
 耐熱性粒子の目付けは、特に限定されるものではないが、5~15g/mであることが好ましい。この範囲であれば、十分なイオン伝導性が得られ、また、耐熱強度を維持する点で好ましい。
 耐熱絶縁層におけるバインダーは、無機粒子どうしや、無機粒子と樹脂多孔質基体層とを接着させる役割を有する。当該バインダーによって、耐熱絶縁層が安定に形成され、また多孔質基体層および耐熱絶縁層の間の剥離を防止される。
 耐熱絶縁層に使用されるバインダーは、特に制限はなく、例えば、カルボキシメチルセルロース(CMC)、ポリアクリロニトリル、セルロース、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン-ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、アクリル酸メチルなどの化合物がバインダーとして用いられうる。このうち、カルボキシメチルセルロース(CMC)、アクリル酸メチル、またはポリフッ化ビニリデン(PVDF)を用いることが好ましい。これらの化合物は、1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。
 耐熱絶縁層におけるバインダーの含有量は、耐熱絶縁層100質量%に対して、2~20質量%であることが好ましい。バインダーの含有量が2質量%以上であると、耐熱絶縁層と多孔質基体層との間の剥離強度を高めることができ、セパレータの耐振動性を向上させることができる。一方、バインダーの含有量が20質量%以下であると、無機粒子の隙間が適度に保たれるため、十分なリチウムイオン伝導性を確保することができる。
 耐熱絶縁層付セパレータの熱収縮率は、150℃、2gf/cm条件下、1時間保持後にMD、TD(流れ方向:MDと流れに直角方向:TD)ともに10%以下であることが好ましい。このような耐熱性の高い材質を用いることで、正極発熱量が高くなり電池内部温度が150℃に達してもセパレータの収縮を有効に防止することができる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。
 [正極集電板および負極集電板]
 集電板(25、27)を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板27と負極集電板25とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
 [正極リードおよび負極リード]
 また、図示は省略するが、集電体11と集電板(25、27)との間を正極リードや負極リードを介して電気的に接続してもよい。正極および負極リードの構成材料としては、公知のリチウムイオン二次電池において用いられる材料が同様に採用されうる。なお、外装から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆することが好ましい。
 [電池外装体]
 電池外装体29としては、公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。また、外部から掛かる発電要素への群圧を容易に調整することができ、所望の電解液層厚みへと調整容易であることから、外装体はアルミニウムを含むラミネートフィルムがより好ましい。ラミネートフィルムの厚さとしては、特に制限はされないが、70~180μmであることが好ましい。
 [セルサイズ]
 図3は、二次電池の代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。
 図3に示すように、扁平なリチウムイオン二次電池50では、長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極タブ58、負極タブ59が引き出されている。発電要素57は、リチウムイオン二次電池50の電池外装材52によって包まれ、その周囲は熱融着されており、発電要素57は、正極タブ58および負極タブ59を外部に引き出した状態で密封されている。ここで、発電要素57は、先に説明した図2に示すリチウムイオン二次電池10の発電要素21に相当するものである。発電要素57は、正極(正極活物質層)15、電解質層17および負極(負極活物質層)13で構成される単電池層(単セル)19が複数積層されたものである。
 なお、上記リチウムイオン二次電池は、積層型の扁平な形状のものに制限されるものではない。巻回型のリチウムイオン二次電池では、円筒型形状のものであってもよいし、こうした円筒型形状のものを変形させて、長方形状の扁平な形状にしたようなものであってもよいなど、特に制限されるものではない。上記円筒型の形状のものでは、その外装材に、ラミネートフィルムを用いてもよいし、従来の円筒缶(金属缶)を用いてもよいなど、特に制限されるものではない。好ましくは、発電要素がアルミニウムラミネートフィルムで外装される。当該形態により、軽量化が達成されうる。
 また、図3に示すタブ58、59の取り出しに関しても、特に制限されるものではない。正極タブ58と負極タブ59とを同じ辺から引き出すようにしてもよいし、正極タブ58と負極タブ59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図3に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、タブに変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。
 一般的な電気自動車では、電池格納スペースが170L程度である。このスペースにセル(電池)および充放電制御機器等の補機を格納するため、通常セルの格納スペース効率は50%程度となる。この空間へのセルの積載効率が電気自動車の航続距離を支配する因子となる。単セルのサイズが小さくなると上記積載効率が損なわれるため、航続距離を確保できなくなる。
 したがって、本発明において、発電要素を外装体で覆った電池構造体は大型であることが好ましい。具体的には、ラミネートセル電池の短辺の長さが100mm以上であることが好ましい。かような大型の電池は、車両用途に用いることができる。ここで、ラミネートセル電池の短辺の長さとは、最も長さが短い辺を指す。短辺の長さの上限は特に限定されるものではないが、通常400mm以下である。
 [体積エネルギー密度および定格放電容量]
 一般的な電気自動車では、一回の充電による走行距離(航続距離)は100kmが市場要求である。かような航続距離を考慮すると、電池の体積エネルギー密度は157Wh/L以上であることが好ましく、かつ定格容量は20Wh以上であることが好ましい。
 ここで、電極の物理的な大きさの観点とは異なる、大型化電池の観点として、本形態に係る正極が用いられる非水電解質リチウムイオン二次電池では、電池面積や電池容量の関係から電池の大型化が規定される。具体的には、本形態に係る非水電解質リチウムイオン二次電池は扁平積層型ラミネート電池であって、定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比の値が5cm/Ah以上であり、かつ、定格容量が3Ah以上であることが好ましい。
 本形態は、特に、高い安全性が求められる大型である大容量、大面積の非水電解質リチウムイオン二次電池に用いることがより好ましい。前述のように、リチウムニッケル系複合酸化物およびスピネル系リチウムマンガン複合酸化物を含む正極活物質層を含む正極では、スピネル系リチウムマンガン複合酸化物を含有することで安全性を向上させることができ、スピネル系リチウムマンガン複合酸化物の含有比率を大きくすることでスピネル系リチウムマンガン複合酸化物に起因する安全性がより高くなるからである。また、大容量化の観点より、定格容量の値は10Ah以上がより好ましく、20Ah以上であることがさらに好ましく、30Ah以上であることが特に好ましい。
 さらに、矩形状の電極のアスペクト比は1~3であることが好ましく、1~2であることがより好ましい。なお、電極のアスペクト比は矩形状の正極活物質層の縦横比として定義される。アスペクト比をかような範囲とすることで、車両要求性能と搭載スペースを両立できるという利点がある。
 [組電池]
 組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。
 電池が複数、直列にまたは並列に接続して装脱着可能な小型の組電池を形成することもできる。そして、この装脱着可能な小型の組電池をさらに複数、直列に又は並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池を形成することもできる。何個の電池を接続して組電池を作製するか、また、何段の小型組電池を積層して大容量の組電池を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。
 [車両]
 本発明の非水電解質リチウムイオン二次電池は、長期使用しても放電容量が維持され、サイクル特性が良好である。さらに、体積エネルギー密度が高い。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記非水電解質リチウムイオン二次電池は、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。
 具体的には、電池またはこれらを複数個組み合わせてなる組電池を車両に搭載することができる。本形態では、長期信頼性および出力特性に優れた高寿命の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いプラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。電池またはこれらを複数個組み合わせてなる組電池を、例えば、自動車ならばハイブリット車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いることにより高寿命で信頼性の高い自動車となるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。
 なお、上記実施形態では、電気デバイスとして、環境負荷の少ない観点から、非水電解質二次電池が好ましい。さらに、電動車両への適用を指向した非水電解質二次電池の中でも高出力および高容量である観点から、非水電解質二次電池の一種である非水電解質リチウムイオン二次電池が好ましい。但し、本形態では、これに制限されるわけではなく、他のタイプの非水電解質二次電池、他のタイプの二次電池、さらには、一次電池にも適用できる。また、電池だけでなく、電気二重層キャパシタ、ハイブリッドキャパシタ、リチウムイオンキャパシタなどにも適用できる。
 以下、実施例および比較例を用いてさらに詳細に説明するが、本発明は以下の実施例のみに何ら限定されるわけではない。
 [実施例1]
 (1)正極の作製
 混合液正極活物質として、以下の2種を用いた。まず、リチウムニッケル系複合酸化物として、リチウム以外の遷移金属の組成比(原子比)が、Ni:Mn:Co=50:30:20(原子%)、結晶構造のc軸長が14.235Åである平均粒子径(メディアン径D50)10μmのNMC複合酸化物(LiNi0.50Mn0.30Co0.20)を準備した。ここで、NMC複合酸化物のリチウム以外の遷移金属の組成比(原子比)は、Ni:Mn:Co=50:30:20(原子%)であり、遷移金属原子中に含まれるニッケルの含有比率が、リチウム以外の遷移金属原子の合計量に対して組成比で50原子%である。
 また、スピネル系リチウムマンガン複合酸化物として、平均粒子径(メディアン径D50)12μmのLiMn(LMO)を準備した。
 上記のNMC複合酸化物およびLMOを、NMC複合酸化物の比率が、NMC複合酸化物およびLMO(=混合液正極活物質)の合計質量に対して70質量%となるように用意し、混合した。次に、前記NMC複合酸化物およびLMOを合計で90質量%、ならびに、導電助剤としてカーボンブラック(Super-P、3M社製)5質量%、バインダーとしてポリフッ化ビニリデン(PVDF)(クレハ社製、♯7200)5質量%を用意した。これらをスラリー粘度調整溶媒であるN-メチル-2-ピロリドン(NMP)を適量混合し分散させて正極活物質スラリーを調製した。得られた正極活物質スラリーを集電体であるアルミニウム箔(厚さ:20μm)の表面にダイコーターにて塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形して平面形状が矩形の正極活物質層を作製した。裏面にも同様にして正極活物質層を形成して、正極集電体(アルミニウム箔)の両面に正極活物質層が形成されてなる、厚さ150μmの正極を作製した。
 (2)負極の作製
 負極活物質として平均粒子径(メディアン径D50)20μmのグラファイト粉末95質量%、ならびに、バインダーとしてポリフッ化ビニリデン(PVDF)(クレハ社製、♯7200)5質量%を用意した。これらをスラリー粘度調整溶媒であるN-メチル-2-ピロリドン(NMP)を適量混合し分散させて負極活物質スラリーを調製した。得られた負極活物質スラリーを集電体である銅箔(厚さ:10μm)の表面にダイコーターにて塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形して平面形状が矩形の負極活物質層を作製した。裏面にも同様にして負極活物質層を形成して、負極集電体(銅箔)の両面に負極活物質層が形成されてなる、厚さ140μmの負極を作製した。
 (3)電解質の作製
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)との1:1(EC:DECの体積比)混合溶媒に、リチウム塩としてLiPFを1.0mol/Lとなるよう溶解させた。この溶液に対して、分子内にS=O結合を有する化合物として1,3-プロパンスルトン(PS)を1.0質量%、ならびに他の添加剤としてビニレンカーボネート(VC)およびフルオロエチレンカーボネート(FEC)をそれぞれ1.0質量%となるよう添加して溶解させ、電解質を作製した。
 (4)試験用セル(電池)の作製
 上記(1)で作製した正極と、上記(2)で作製した負極とを、セパレータであるポリエチレン製微多孔質膜(厚さ25μm)を介して交互に積層(正極10層(枚)、負極11層(枚)、セパレータ(電解質層)20層(枚))することによって発電要素を作製した。得られた発電要素を外装体である厚さ150μmのアルミラミネートシート製のバッグ(袋状のケース)中に載置し、上記(3)で作製した電解液を注液した。ここで、電解液の注液量は、正極活物質層、負極活物質層およびセパレータの全空孔容積(計算により算出した)に対して1.40倍となる量とした。次いで、真空条件下において、両電極に接続された電流取り出しタブが導出するようにアルミラミネートシート製バッグの開口部を封止し、ラミネート型リチウムイオン二次電池である試験用セル(電池)を完成させた。
 (5)電池の評価(初期容量及び容量維持率の評価)
 面内の均一性を維持するため、作製した試験用セル(電池)を、試験用セル(電池)にかかる圧力が100g/mとなるよう、厚さ5mmのステンレス板で挟んで固定した。この試験用セル(電池)を用いて、25℃で0.2Cで4.2Vまで定電流定電圧(CCCV)充電を7時間行った。次いで、10分間の休止後、0.2Cで定電流(CC)放電で2.5Vまで放電を行った。その後、55℃雰囲気下で1Cで4.2Vまで定電流定電圧(CCCV)充電(0.0015Cカット)、および1CでCC定電流(CC)(2.5V電圧カット)のサイクルを繰り返すことでサイクル試験を行い、1サイクル目の放電容量に対する、300サイクル目における放電容量の値を容量維持率として算出した。得られた試験用セル(電池)の容量(1サイクル目の放電容量)および容量維持率とそれらの評価結果を下記の表1に示す。なお、容量維持率が高いことは、サイクル耐久性に優れることを表す。
 ・容量(実施例1を100とする)の評価結果
  ◎:105以上のもの
  ○:100以上105未満のもの
  △:95以上100未満のもの
  ×:95未満のもの。
 ・容量維持率の評価結果
  ◎:95%以上のもの
  ○:90%以上95%未満のもの
  △:85%以上90%未満のもの
  ×:85%未満のもの。
 (6)定格容量の測定
 定格容量は、評価に用いた試験用セルとは別に、新たに同様の構成からなる試験用セルを用意して測定を行った。
 定格容量は、試験用セルについて、電解液を注入した後で、10時間程度放置し、温度25℃で、以下の手順で初期充放電を行うことによって測定される。即ち、下記手順2の初期放電による放電容量を定格容量とする。
 手順1:0.2C/4.15Vの定電流/定電圧充電にて12時間充電し、10分間休止する。
 手順2:0.2Cの定電流放電にて2.5Vに到達後、10分間休止する。
 得られた実施例1の試験用セル(電池)の定格容量(Ah)および定格容量に対する電池面積の比は、それぞれ4.5Ahおよび70cm/Ahであった。
 [実施例2]
 リチウムニッケル系複合酸化物として、リチウム以外の遷移金属の組成比が、Ni:Mn:Co=30:35:35(原子%)、結晶構造のc軸長が14.240ÅであるNMC複合酸化物(LiNi0.30Mn0.35Co0.35)を用いた以外は実施例1と同様の方法で試験用セル(電池)を作製し、容量維持率の評価および定格容量の測定を行った。なお、本実施例で用いたNMC複合酸化物のリチウム以外の遷移金属の組成比は、Ni:Mn:Co=30:35:35であり、遷移金属原子中に含まれるニッケルの含有比率が、リチウム以外の遷移金属原子の合計量に対して組成比で30原子%である。
 [実施例3]
 リチウムニッケル系複合酸化物として、リチウム以外の遷移金属の組成比が、Ni:Mn:Co=90:5:5(原子%)、結晶構造のc軸長が14.180ÅであるNMC複合酸化物(LiNi0.90Mn0.05Co0.05)を用いた以外は実施例1と同様の方法で試験用セル(電池)を作製し、容量維持率の評価および定格容量の測定を行った。なお、本実施例で用いたNMC複合酸化物のリチウム以外の遷移金属の組成比は、Ni:Mn:Co=90:5:5であり、遷移金属原子中に含まれるニッケルの含有比率が、リチウム以外の遷移金属原子の合計量に対して組成比で90原子%である。
 [実施例4]
 分子内にS=O結合を有する化合物として、1,3-プロパンスルトン(PS)に替えて1,3-プロパ-1-エンスルトン(PRS)を用いた以外は実施例1と同様の方法で試験用セルを作成し、容量維持率の評価および定格容量の測定を行った。
 [実施例5]
 分子内にS=O結合を有する化合物として、1,3-プロパンスルトン(PS)に替えてメチレンメタンジスルホネート(MMDS)を用いた以外は実施例1と同様の方法で試験用セルを作成し、容量維持率の評価および定格容量の測定を行った。
 [実施例6]
 リチウムニッケル系複合酸化物として、リチウム以外の遷移金属の組成比が、Ni:Mn:Co=45:45:10(原子%)、結晶構造のc軸長が14.238ÅであるNMC複合酸化物(LiNi0.45Mn0.45Co0.10)を用いた以外は実施例1と同様の方法で試験用セル(電池)を作製し、容量維持率の評価および定格容量の測定を行った。なお、本実施例で用いたNMC複合酸化物のリチウム以外の遷移金属の組成比は、Ni:Mn:Co=45:45:10であり、遷移金属原子中に含まれるニッケルの含有比率が、リチウム以外の遷移金属原子の合計量に対して組成比で45原子%である。
 [実施例7]
 リチウムニッケル系複合酸化物として、リチウム以外の遷移金属の組成比が、Ni:Mn:Co=54:28:18(原子%)、結晶構造のc軸長が14.240ÅであるNMC複合酸化物(LiNi0.54Mn0.28Co0.18)を用いた以外は実施例1と同様の方法で試験用セル(電池)を作製し、容量維持率の評価および定格容量の測定を行った。なお、本実施例で用いたNMC複合酸化物のリチウム以外の遷移金属の組成比は、Ni:Mn:Co=54:28:18であり、遷移金属原子中に含まれるニッケルの含有比率が、リチウム以外の遷移金属原子の合計量に対して組成比で54原子%である。
 [実施例8]
 リチウムニッケル系複合酸化物として、結晶構造のc軸長が14.220ÅであるNMC複合酸化物(LiNi0.50Mn0.30Co0.20)を用いた以外は実施例1と同様の方法で試験用セル(電池)を作製し、容量維持率の評価および定格容量の測定を行った。
 [比較例1]
 リチウムニッケル系複合酸化物として、結晶構造のc軸長が14.244ÅであるNMC複合酸化物(LiNi0.50Mn0.30Co0.20)を用いた以外は実施例1と同様の方法で試験用セル(電池)を作製し、容量維持率の評価および定格容量の測定を行った。
 [比較例2]
 NMC複合酸化物の比率を、NMC複合酸化物およびLMO(=混合液正極活物質)の合計質量に対して50質量%とした以外は実施例1と同様の方法で試験用セル(電池)を作製し、容量維持率の評価および定格容量の測定を行った。
 [比較例3]
 リチウムニッケル系複合酸化物として、リチウム以外の遷移金属の組成比が、Ni:Mn:Co=28:36:36(原子%)、結晶構造のc軸長が14.240ÅであるNMC複合酸化物(LiNi0.28Mn0.36Co0.36)を用いた以外は実施例1と同様の方法で試験用セル(電池)を作製し、容量維持率の評価および定格容量の測定を行った。なお、本比較例で用いたNMC複合酸化物のリチウム以外の遷移金属の組成比は、Ni:Mn:Co=28:36:36であり、遷移金属原子中に含まれるニッケルの含有比率が、リチウム以外の遷移金属原子の合計量に対して組成比で28原子%である。
 [比較例4]
 リチウムニッケル系複合酸化物として、リチウム以外の遷移金属の組成比が、Ni:Mn:Co=92:4:4(原子%)、結晶構造のc軸長が14.179ÅであるNMC複合酸化物(LiNi0.92Mn0.04Co0.04)を用いた以外は実施例1と同様の方法で試験用セル(電池)を作製し、容量維持率の評価および定格容量の測定を行った。なお、本比較例で用いたNMC複合酸化物のリチウム以外の遷移金属の組成比は、Ni:Mn:Co=92:4:4であり、遷移金属原子中に含まれるニッケルの含有比率が、リチウム以外の遷移金属原子の合計量に対して組成比で92原子%である。
 得られた実施例2~8および比較例1~4の試験用セル(電池)の定格容量(Ah)および定格容量に対する電池面積の比は全て、それぞれ4.5Ahおよび70cm/Ahであった。また、実施例1~8および比較例1~4で用いたNMC、特にc軸長の異なるものは、仕込み材料組成の変更により得たものである。仕込み材料組成が同じでc軸長の異なるものは、NMCの焼成の条件を変更した得たものである。
 実施例および比較例の容量(初期放電容量)及び300サイクル後の容量維持率と、それらの評価を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1に示す結果から、実施例1~8の試験用セルは、NMCとLMOを含有する正極と、S系添加剤を含有する電解質とを用い、正極活物質に占めるNMC比率50質量%超、NMCのNi比率30~90原子%、c軸長14.180~14.240Åとするものである。かかる範囲を満足する実施例1~8の試験用セルでは、これらの範囲から外れる比較例1~4に比較して、高い容量及び容量維持率(サイクル耐久性)の両方を向上できることが確認された。更に、LMOを30質量%含有することから安全性を向上させることができるため、容量維持率(サイクル耐久性)に優れ、容量と安全性のバランスのとれた電池を提供できることがわかった。
 また、実施例および比較例で用いた試験用セルは、定格容量および定格容量に対する電池面積の比よりもわかるように、大型、大容量および大面積の試験用セルである。これより、本発明の効果は試験用セルの容量やサイズによりに限定されるものではないが、本発明は大型、大容量および大面積の電気デバイスにとって有用であることが確認された。
  10、50 リチウムイオン二次電池、
  11 負極集電体、
  12 正極集電体、
  13 負極活物質層、
  15 正極活物質層、
  17 セパレータ、
  19 単電池層、
  21、57 発電要素、
  25 負極集電板、
  27 正極集電板、
  29、52 電池外装材、
  58 正極タブ、
  59 負極タブ。

Claims (11)

  1.  正極活物質として、ニッケルを含有する層状結晶構造のリチウム遷移金属複合酸化物と、マンガンを含有するスピネル結晶構造のリチウム遷移金属複合酸化物とを含有する正極活物質層を含む正極と、
     分子内にS=O結合を有する化合物を含有する電解質とを有し、
     前記正極活物質層の前記層状結晶構造のリチウム遷移金属複合酸化物の含有比率が、前記正極活物質の合計質量に対して50質量%を超える範囲であり、
     前記層状結晶構造のリチウム遷移金属複合酸化物のリチウム以外の遷移金属原子中に含まれるニッケルの含有比率が、前記リチウム以外の遷移金属原子の合計量に対して組成比で30~90原子%の範囲であり、結晶構造のc軸長が14.180~14.240Åの範囲であることを特徴とする電気デバイス。
  2.  前記正極活物質層の前記層状結晶構造のリチウム遷移金属複合酸化物の含有比率が、前記正極活物質の合計質量に対して70~90質量%の範囲であることを特徴とする請求項1に記載の電気デバイス。
  3.  前記層状結晶構造のリチウム遷移金属複合酸化物のリチウム以外の遷移金属元素中に含まれるニッケルの含有比率が、前記リチウム以外の遷移金属元素の合計量に対して組成比で45~54原子%の範囲であることを特徴とする請求項1または2に記載の電気デバイス。
  4.  前記層状結晶構造のリチウム遷移金属複合酸化物における結晶構造のc軸長が、14.220~14.240Åの範囲であることを特徴とする請求項1~3のいずれか1項に記載の電気デバイス。
  5.  前記分子内にS=O結合を有する化合物が、環式スルホン酸エステルを含むことを特徴とする請求項1~4のいずれか1項に記載の電気デバイス。
  6.  前記電解質が、環式炭酸エステル誘導体をさらに含有することを特徴とする請求項1~5のいずれか1項に記載の電気デバイス。
  7.  前記層状結晶構造のリチウム遷移金属複合酸化物が、ニッケル、マンガン、コバルトを含有する層状結晶構造のリチウム遷移金属複合酸化物(NMC複合酸化物)であることを特徴とする請求項1~6のいずれか1項に記載の電気デバイス。
  8.  前記NMC複合酸化物が、一般式:LiNiMnCo(但し、式中、a、b、c、d、xは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、0≦x≦0.3、b+c+d=1を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCrからなる群から選ばれる少なくとも1種である)で表される組成を有することを特徴とする請求項7に記載の電気デバイス。
  9.  定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比の値が5cm/Ah以上であり、かつ、定格容量が3Ah以上であることを特徴とする請求項1~8のいずれか1項に記載の電気デバイス。
  10.  非水電解質二次電池であることを特徴とする請求項1~9のいずれか1項に記載の電気デバイス。
  11.  前記非水電解質二次電池がリチウムイオン二次電池であることを特徴とする請求項10に記載の電気デバイス。
PCT/JP2014/084681 2014-12-26 2014-12-26 電気デバイス WO2016103511A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201480084389.0A CN107112526A (zh) 2014-12-26 2014-12-26 电气设备
PCT/JP2014/084681 WO2016103511A1 (ja) 2014-12-26 2014-12-26 電気デバイス
US15/539,564 US20170346128A1 (en) 2014-12-26 2014-12-26 Electric Device
KR1020187030460A KR20180118241A (ko) 2014-12-26 2014-12-26 전기 디바이스
EP14909113.4A EP3240067B1 (en) 2014-12-26 2014-12-26 Electrical device
JP2016565849A JP6414230B2 (ja) 2014-12-26 2014-12-26 電気デバイス
KR1020177017489A KR20170090450A (ko) 2014-12-26 2014-12-26 전기 디바이스

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084681 WO2016103511A1 (ja) 2014-12-26 2014-12-26 電気デバイス

Publications (1)

Publication Number Publication Date
WO2016103511A1 true WO2016103511A1 (ja) 2016-06-30

Family

ID=56149593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084681 WO2016103511A1 (ja) 2014-12-26 2014-12-26 電気デバイス

Country Status (6)

Country Link
US (1) US20170346128A1 (ja)
EP (1) EP3240067B1 (ja)
JP (1) JP6414230B2 (ja)
KR (2) KR20180118241A (ja)
CN (1) CN107112526A (ja)
WO (1) WO2016103511A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3113273A1 (en) * 2015-06-30 2017-01-04 Automotive Energy Supply Corporation Lithium ion secondary battery
EP3306729A1 (en) * 2016-10-06 2018-04-11 Samsung Electronics Co., Ltd. Lithium secondary battery comprising disulfonate additive and method of preparing the lithium secondary battery
EP3315638A1 (en) * 2016-07-11 2018-05-02 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same
WO2019172193A1 (ja) * 2018-03-07 2019-09-12 日立金属株式会社 リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
US10693136B2 (en) 2016-07-11 2020-06-23 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same
US10903490B2 (en) * 2016-08-02 2021-01-26 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same
JP2021015751A (ja) * 2019-07-16 2021-02-12 トヨタ自動車株式会社 リチウムイオン電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109174173B (zh) * 2018-09-30 2019-10-15 中自环保科技股份有限公司 一种分子筛scr催化剂制备方法及其制备的催化剂
CN110265632B (zh) * 2018-11-28 2020-09-01 宁德时代新能源科技股份有限公司 锂离子二次电池
US20220029152A1 (en) * 2019-03-07 2022-01-27 Lg Energy Solution, Ltd. Lithium Secondary Battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044801A (ja) * 2003-07-18 2005-02-17 Samsung Sdi Co Ltd リチウム二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池
WO2005028371A1 (ja) * 2003-09-16 2005-03-31 Seimi Chemical Co., Ltd. リチウム−ニッケル−コバルト−マンガン−フッ素含有複合酸化物ならびにその製造方法およびそれを用いたリチウム二次電池
JP2006278322A (ja) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd 非水電解質二次電池
JP2011054516A (ja) * 2009-09-04 2011-03-17 Hitachi Ltd リチウムイオン二次電池
JP2012004110A (ja) * 2010-06-13 2012-01-05 Samsung Sdi Co Ltd リチウム二次電池用正極活物質、これを利用したリチウム二次電池及びその製造方法
WO2014133163A1 (ja) * 2013-03-01 2014-09-04 日本電気株式会社 非水電解液二次電池
JP2014160568A (ja) * 2013-02-20 2014-09-04 Shin Kobe Electric Mach Co Ltd リチウムイオン二次電池およびそれを用いた二次電池システム
WO2014175354A1 (ja) * 2013-04-26 2014-10-30 日産自動車株式会社 非水電解質二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270245A (ja) * 2001-03-14 2002-09-20 Osaka Gas Co Ltd 非水系二次電池
JP3729164B2 (ja) * 2002-08-05 2005-12-21 日産自動車株式会社 自動車用電池
US8936873B2 (en) * 2005-08-16 2015-01-20 Lg Chem, Ltd. Cathode active material and lithium secondary battery containing them
KR100801637B1 (ko) * 2006-05-29 2008-02-11 주식회사 엘지화학 양극 활물질 및 그것을 포함하고 있는 리튬 이차전지
US7841282B2 (en) * 2006-09-21 2010-11-30 John Kimberlin Apparatus, system, and method for operating and controlling combustor for ground or particulate biomass
CN102356487A (zh) * 2009-06-17 2012-02-15 日立麦克赛尔能源株式会社 电化学元件用电极及使用其的电化学元件
CN106395918A (zh) * 2009-10-22 2017-02-15 户田工业株式会社 镍-钴-锰类化合物颗粒粉末和锂复合氧化物颗粒粉末及其制造方法和非水电解质二次电池
CN102280633A (zh) * 2010-06-13 2011-12-14 三星Sdi株式会社 正极活性材料、其制造方法和使用其的可充电锂电池
KR20150088913A (ko) * 2011-03-24 2015-08-03 닛본 덴끼 가부시끼가이샤 2차 전지
JP6085994B2 (ja) * 2012-04-27 2017-03-01 日産自動車株式会社 非水電解質二次電池の製造方法
US10199680B2 (en) * 2014-04-11 2019-02-05 Nissan Motor Co., Ltd. Electric device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044801A (ja) * 2003-07-18 2005-02-17 Samsung Sdi Co Ltd リチウム二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池
WO2005028371A1 (ja) * 2003-09-16 2005-03-31 Seimi Chemical Co., Ltd. リチウム−ニッケル−コバルト−マンガン−フッ素含有複合酸化物ならびにその製造方法およびそれを用いたリチウム二次電池
JP2006278322A (ja) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd 非水電解質二次電池
JP2011054516A (ja) * 2009-09-04 2011-03-17 Hitachi Ltd リチウムイオン二次電池
JP2012004110A (ja) * 2010-06-13 2012-01-05 Samsung Sdi Co Ltd リチウム二次電池用正極活物質、これを利用したリチウム二次電池及びその製造方法
JP2014160568A (ja) * 2013-02-20 2014-09-04 Shin Kobe Electric Mach Co Ltd リチウムイオン二次電池およびそれを用いた二次電池システム
WO2014133163A1 (ja) * 2013-03-01 2014-09-04 日本電気株式会社 非水電解液二次電池
WO2014175354A1 (ja) * 2013-04-26 2014-10-30 日産自動車株式会社 非水電解質二次電池

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3113273A1 (en) * 2015-06-30 2017-01-04 Automotive Energy Supply Corporation Lithium ion secondary battery
US10777848B2 (en) 2015-06-30 2020-09-15 Envision Aesc Japan Ltd. Lithium ion secondary battery
CN113488626A (zh) * 2016-07-11 2021-10-08 Ecopro Bm有限公司 锂二次电池用锂复合氧化物及其制备方法
EP3315638A1 (en) * 2016-07-11 2018-05-02 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same
US10693136B2 (en) 2016-07-11 2020-06-23 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same
US10903490B2 (en) * 2016-08-02 2021-01-26 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same
US11508964B2 (en) 2016-08-02 2022-11-22 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same
US11502297B2 (en) 2016-08-02 2022-11-15 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same
EP3306729A1 (en) * 2016-10-06 2018-04-11 Samsung Electronics Co., Ltd. Lithium secondary battery comprising disulfonate additive and method of preparing the lithium secondary battery
CN107919499A (zh) * 2016-10-06 2018-04-17 三星电子株式会社 包括二磺酸酯添加剂的锂二次电池和制备其的方法
US10622677B2 (en) 2016-10-06 2020-04-14 Samsung Electronics Co., Ltd. Lithium secondary battery comprising disulfonate additive and method of preparing the same
WO2019172193A1 (ja) * 2018-03-07 2019-09-12 日立金属株式会社 リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
JPWO2019172193A1 (ja) * 2018-03-07 2021-02-25 日立金属株式会社 リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
JP7272345B2 (ja) 2018-03-07 2023-05-12 株式会社プロテリアル リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
US11949100B2 (en) 2018-03-07 2024-04-02 Proterial, Ltd. Cathode active material used for lithium ion secondary battery and lithium ion secondary battery
JP7132187B2 (ja) 2019-07-16 2022-09-06 トヨタ自動車株式会社 リチウムイオン電池
JP2021015751A (ja) * 2019-07-16 2021-02-12 トヨタ自動車株式会社 リチウムイオン電池

Also Published As

Publication number Publication date
JP6414230B2 (ja) 2018-11-07
EP3240067A4 (en) 2018-04-18
EP3240067B1 (en) 2021-03-31
JPWO2016103511A1 (ja) 2017-10-12
EP3240067A1 (en) 2017-11-01
CN107112526A (zh) 2017-08-29
KR20180118241A (ko) 2018-10-30
US20170346128A1 (en) 2017-11-30
KR20170090450A (ko) 2017-08-07

Similar Documents

Publication Publication Date Title
JP6575972B2 (ja) 非水電解質二次電池
JP6036999B2 (ja) 非水電解質二次電池
JP5967287B2 (ja) 正極活物質、正極材料、正極および非水電解質二次電池
JP6070824B2 (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP6414230B2 (ja) 電気デバイス
JP6156491B2 (ja) 非水電解質二次電池
JP6112204B2 (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP6176317B2 (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP6070822B2 (ja) 非水電解質二次電池
JP6414229B2 (ja) 電気デバイス
JP6070823B2 (ja) 非水電解質二次電池
WO2015156400A1 (ja) 電気デバイス用正極、およびこれを用いた電気デバイス
JP6241543B2 (ja) 電気デバイス
JP6528543B2 (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP2017073281A (ja) 非水電解質二次電池用正極材料、並びにこれを用いた非水電解質二次電池用正極および非水電解質二次電池
JP2017004696A (ja) 非水電解質二次電池用正極
JP2016184528A (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565849

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15539564

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177017489

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014909113

Country of ref document: EP