WO2016103502A1 - 定励磁磁束方式電流センサ - Google Patents

定励磁磁束方式電流センサ Download PDF

Info

Publication number
WO2016103502A1
WO2016103502A1 PCT/JP2014/084668 JP2014084668W WO2016103502A1 WO 2016103502 A1 WO2016103502 A1 WO 2016103502A1 JP 2014084668 W JP2014084668 W JP 2014084668W WO 2016103502 A1 WO2016103502 A1 WO 2016103502A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
excitation
magnetic flux
coil
flux detection
Prior art date
Application number
PCT/JP2014/084668
Other languages
English (en)
French (fr)
Inventor
孝 忠津
Original Assignee
有限会社ワイワイオフィス
孝 忠津
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ワイワイオフィス, 孝 忠津 filed Critical 有限会社ワイワイオフィス
Priority to JP2016565840A priority Critical patent/JP6564395B2/ja
Priority to PCT/JP2014/084668 priority patent/WO2016103502A1/ja
Publication of WO2016103502A1 publication Critical patent/WO2016103502A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers

Definitions

  • the present invention relates to a constant excitation magnetic flux type current sensor. Specifically, the present invention relates to a constant excitation magnetic flux type current sensor including a negative feedback control mechanism.
  • Magnetic bridge type current sensor magnetic fluid magnetic bridge type current sensor
  • magnetic fluid magnetic bridge type current sensor magnetic fluid magnetic bridge type current sensor
  • the measurement sensitivity may be lowered due to the core magnetic flux generated by the current to be measured.
  • a method of applying a feedback current to the secondary winding wound around the magnetic core is applied.
  • magnetic balance method it is necessary to flow a feedback current corresponding to the current to be measured. Therefore, when measuring a large current of 100 amperes or more in an electric vehicle, a power generation facility, etc., a large current equal to the current to be measured is used. Is necessary and practically problematic.
  • the magnetic fluid magnetic bridge type current sensor detects a change in excitation magnetic flux that is affected by an environmental magnetic field or current magnetic field to be measured. Therefore, when the original excitation magnetic flux to be affected is unstable, there is a problem that it is impossible to distinguish whether the original excitation magnetic flux is unstable or the influence of an environmental magnetic field or a current magnetic field. This "original excitation magnetic flux" becomes unstable due to changes in permeability due to temperature, and becomes unstable due to changes in permeability due to the strength of the environmental magnetic field or current magnetic field to be measured, resulting in measurement errors. It is considered a thing.
  • An object of the present invention is to provide a magnetic fluid magnetic bridge type current sensor of a constant excitation magnetic flux system that suppresses a change (unstable) of “original excitation magnetic flux” that causes measurement errors and improves measurement sensitivity. To do.
  • the present invention is a constant excitation magnetic flux type current sensor including a sensor unit and a negative feedback control mechanism, and the sensor unit includes two spaced annular magnetic paths formed by holding a magnetic fluid in a container.
  • An excitation magnetic flux detection coil that receives an excitation magnetic flux detection signal (electromotive force) is provided, and a magnetic resistance in the magnetic circuit is appropriately selected so that the sum of the magnetic fluxes of the two annular magnetic paths becomes zero (the magnetic flux has the same magnitude)
  • a magnetic fluid magnetic bridge characterized in that a magnetic equilibrium state is developed); and
  • the negative feedback control mechanism includes a variable amplifier that amplifies an excitation signal, a drive circuit that passes the amplified excitation current to the excitation coil, and a detection coil wound around a magnetic circuit of the magnetic fluid magnetic
  • An excitation magnetic flux detection coil that receives an excitation magnetic flux detection signal (electromotive force) proportional to the magnitude of the excitation magnetic flux of the excitation coil, and an AC amplifier that amplifies the excitation magnetic flux detection signal received by the excitation magnetic flux detection coil to a manageable size
  • a current sensor comprising a rectifier circuit that rectifies the magnitude of the current sensor so as to be expressed by a direct current.
  • a constant excitation magnetic flux type current sensor using a magnetic fluid magnetic bridge which can be controlled so that the magnitude of the excitation magnetic flux of the magnetic fluid magnetic bridge is always constant and the input / output characteristics are improved. It becomes possible. Furthermore, according to the present invention, it is possible to provide a constant excitation magnetic flux type current sensor using a magnetic fluid magnetic bridge capable of maintaining measurement sensitivity with a current of several milliamperes without using high power.
  • FIG. 1 and 3 show sensor portions 1 and 3 of a constant excitation magnetic flux type current sensor in an embodiment of the present invention, respectively.
  • the sensor unit 1 shown in FIG. 1 includes a magnetic fluid magnetic bridge 17 and a detection coil 18 wound around a magnetic circuit of the magnetic fluid magnetic bridge, and an excitation magnetic flux detection wound around the magnetic circuit of the magnetic fluid magnetic bridge 17.
  • An exciting magnetic flux detection coil 16 that receives a signal (electromotive force) is provided.
  • the magnetic fluid magnetic bridge 17 includes two spaced annular magnetic paths 13a and 13b formed by holding the magnetic fluid 12 in a container and a magnetic circuit in which the annular magnetic paths are connected by connecting magnetic paths 14a and 14b made of a magnetic material. And an exciting coil 15 wound around the connection magnetic path 14a driven by the excitation driving means, and the sum of the magnetic fluxes of the two annular magnetic paths becomes zero by appropriately selecting the magnetic resistance in the magnetic circuit. A magnetic equilibrium state is developed (the direction of the magnetic flux is the same and the direction is reversed).
  • the exciting magnetic flux detection coil 16 is wound around the connecting magnetic path 14a and detects the exciting magnetic flux in the connecting magnetic path at one place.
  • the sensor unit 3 shown in FIG. 3 includes a magnetic fluid magnetic bridge 37 and a detection coil 38 wound around the magnetic circuit of the magnetic fluid magnetic bridge, and detects the excitation magnetic flux wound around the magnetic circuit of the magnetic fluid magnetic bridge 37.
  • Excitation magnetic flux detection coils 36a and 36b for receiving signals (electromotive force) are provided.
  • the magnetic fluid magnetic bridge 37 includes two separated annular magnetic paths 33a and 33b formed by holding the magnetic fluid 32 in a container and a magnetic circuit in which the annular magnetic paths are connected by connecting magnetic paths 34a and 34b made of a magnetic material. And an excitation coil 35 wound around the connection magnetic path 34a driven by the excitation drive means, and the sum of the magnetic fluxes of the two annular magnetic paths becomes zero by appropriately selecting the magnetic resistance in the magnetic circuit. A magnetic equilibrium state is developed (the direction of the magnetic flux is the same and the direction is reversed).
  • the exciting magnetic flux detection coils 36a and 36b are wound around two locations of the annular magnetic paths 33a and 33b, and detect the exciting magnetic flux that flows from the connecting magnetic path 34a in the left-right direction and flows into the annular magnetic path.
  • the exciting magnetic flux detection coils 36a and 36b detect substantially the same amount of exciting magnetic flux divided into the left and right through the connecting magnetic path by being wound around the connecting magnetic path 34a at a substantially equidistant position in the left and right direction.
  • the exciting magnetic flux is detected by the exciting magnetic flux detection coil 14a shown in FIG. 1, all the exciting magnetic fluxes passing through the connection magnetic path are detected at one place.
  • the excitation magnetic flux that is divided into the left and right and is transmitted through the annular magnetic path 33a and the annular magnetic path 34a is detected at two places, the excitation magnetic flux detection coil 36a and the excitation magnetic flux detection coil 36b. is doing.
  • the amount of excitation magnetic flux of each of the excitation magnetic flux detection coil 36a and the excitation magnetic flux detection coil 36b is approximately one half of the excitation magnetic flux passing through the connection magnetic path.
  • the ferrofluid magnetic bridge detects changes in the excitation magnetic flux affected by the influence of the environmental magnetic field and current magnetic field to be measured, so when detecting that the "original excitation magnetic flux" to be affected is unstable, It cannot be distinguished whether the original excitation magnetic flux is unstable or the influence of environmental magnetic field or current magnetic field.
  • the “original excitation magnetic flux” becomes unstable due to a change in magnetic permeability due to temperature, and further becomes unstable due to a change in magnetic permeability due to the strength of an environmental magnetic field or current magnetic field to be measured. Therefore, in the present invention, the sensor unit composed of the magnetic fluid magnetic bridge and the detection coil is provided with the negative feedback control mechanism 2 configured as shown in FIG.
  • the excitation magnetic flux is kept constant (constant excitation magnetic flux method).
  • FIG. 2 is a block diagram showing the configuration of the negative feedback control mechanism 2 of the constant excitation magnetic flux type current sensor according to one embodiment of the present invention.
  • the negative feedback control mechanism 20 is proportional to the variable amplifier 22 that amplifies the excitation signal, the drive circuit 23 that sends the amplified excitation current to the excitation coil 24 of the magnetic fluid magnetic bridge 21, and the magnitude of the excitation magnetic flux of the excitation coil 24.
  • the exciting magnetic flux detection coil 25 that receives the excited magnetic flux detection signal (electromotive force)
  • the AC amplifier 26 that amplifies the exciting magnetic flux detection signal received by the exciting magnetic flux detection coil 25 to a manageable magnitude
  • the magnitude of the exciting magnetic flux detection signal by a direct current A rectifier circuit 27 is provided for rectification so that it can be expressed.
  • the magnetic fluid magnetic bridge, the excitation coil, and the excitation magnetic flux detection coil constitute a sensor unit.
  • the sensor unit 1 shown in FIG. 1 corresponds to the magnetic fluid magnetic bridge 17, the excitation coil 15, and the excitation magnetic flux detection coil 16, respectively.
  • the excitation signal is amplified and an excitation current is passed through the excitation coil 24 by the drive circuit 23.
  • An exciting magnetic flux detection signal (electromotive force) proportional to the magnitude of the exciting magnetic flux is obtained by the exciting magnetic flux detection coil 25, amplified to a manageable magnitude, and rectified so that the magnitude can be expressed by a DC voltage. .
  • the amplification degree of the variable amplifier 22 is controlled by this DC voltage. That is, when the excitation magnetic flux detection signal becomes large, the amplification degree of the variable amplifier 22 is lowered. Conversely, when the excitation magnetic flux detection signal becomes small, the amplification degree of the variable amplifier 22 is increased.
  • FIG. 4 is a front sectional view of the ferrofluid magnetic bridge 17, 37 of FIGS. 1 and 3.
  • FIG. 5 is a cross-sectional view taken along line AA in FIG. 6 is a cross-sectional view taken along line BB in FIG.
  • the magnetic path casing MC illustrated in FIGS. 4 to 6 is attached to an annular container main body 41 having a substantially H-shaped cross section and an annular open surface above and below the container main body 41 to close the main body 41.
  • Two annular channels are formed in the cross section, and the upper lid body 42 and the lower lid body 43 are formed.
  • the annular container body 41 is separated from the partition bottom 41c by 180 degrees with the partition inner bottom 41c in a form in which the opposing surfaces of the inner and outer peripheral walls 41a and 41b and the inner and outer peripheral walls 41a and 41b are connected at the intermediate portion of the height.
  • Two holes 41d and 41e are provided.
  • the upper and lower lid bodies 42 and 43 are attached to the upper and lower annular open surfaces of the container main body 41, and the container main body 41 is further partitioned by a partition middle bottom 41c, but is communicated by two communication holes 41d and 41e.
  • the lower two closed annular spaces (annular passages) R1 and R2 are formed.
  • each of the recesses 42a to 43b is formed in an air chamber stretched with a thin film such as a flexible film.
  • a thin film such as a flexible film.
  • the partition plate 41c is communicated by two communication holes 41d and 41e separated by 180 degrees, and the bottom two annular paths are covered with a lid 43 serving as a bottom, so that the magnetic fluid 2
  • the lid 42 is applied and sealed as a canopy.
  • the magnetic fluid 2 may be injected into the annular passage by an injection needle to seal the injection hole.
  • two spaced annular magnetic paths 13a and 13b are formed by the magnetic fluid 2 in the upper and lower two annular paths.
  • the magnetic fluid 2 which exists in the communicating holes 41d and 41e of the partition middle bottom 41c which connects these two magnetic paths 13a and 13b forms two connection magnetic paths 14a and 14b.
  • the recesses 42a to 43b are formed in the air chamber with a resilient film (not shown) so as to cover it, but this configuration (the recess and the film) is hermetically sealed. This is to cope with the expansion and contraction of the magnetic fluid 2 in the magnetic path casing MC. That is, if the magnetic fluid 2 expands or contracts, the casing MC may be destroyed. However, the presence of this air chamber causes an extreme change in internal pressure due to the elasticity of the air (or gas) in the air chamber and the film. This is because it can be absorbed.
  • the position where the recesses 42a to 43b are provided is within the magnetic path casing MC. It can be anywhere and at least one.
  • FIG. 1 When the magnetic circuit 2 formed by the magnetic fluid 2 enclosed in the magnetic path casing MC of FIGS. 4 to 6 is shown by only the magnetic fluid 2 with the magnetic path casing MC omitted, as schematically shown in FIG.
  • the upper and lower annular magnetic paths 13a and 13b are formed in a magnetic circuit in which these magnetic paths 13a and 13b are connected by two connection magnetic paths 14a and 14b.
  • FIG. 7 is a graph showing typical basic input / output characteristics (solid line) and ideal characteristics (broken line) of the magnetic fluid type magnetic bridge type current sensor.
  • This figure shows the input / output characteristics when measuring ⁇ 100 amperes, but the solid line of the S-curve showing the basic input / output characteristics is the most inclined near OA (the center point where the solid line graph and the dotted line intersect). It shows large sensitivity. The inclination becomes gentler as the absolute value of the current (input) to be measured increases. This indicates that the measurement sensitivity decreases as the absolute value of the current (input) increases.
  • a broken line indicates an ideal characteristic.
  • FIG. 8A is a graph showing input / output characteristics of the constant excitation magnetic flux type current sensor of the present invention. Since the ideal characteristic is the broken line (straight line) shown in FIG. 7 as described above, the linearity of the input / output characteristic of the sensor is improved and the measurement sensitivity can be kept almost constant by the constant excitation magnetic flux type current sensor of the present invention. Is shown.
  • FIG. 8B is a graph showing the linearity error of the value of FIG. As can be seen from the graph, the linearity error is within 0.5%.
  • the constant excitation magnetic flux type current sensor provided with the negative feedback control mechanism of the present invention, it is possible to provide a current sensor with improved measurement sensitivity without using a large current like a magnetic balance type. Therefore, it is possible to provide a current sensor that can be used for detection of charging / discharging of an electric vehicle or a hybrid vehicle using a large current by utilizing the characteristics of the magnetic fluid type magnetic bridge that there is no offset.
  • FIG. 2 is a front sectional view of FIG. 1.
  • FIG. 5 is a cross-sectional view taken along line AA in FIG. 4.
  • FIG. 6 is a cross-sectional view taken along line BB in FIG. 5.
  • FIG. 8A is a graph showing input / output characteristics of the constant excitation magnetic flux type current sensor of the present invention.
  • FIG. 8B is a graph showing the linearity error of the value of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

磁性流体磁気ブリッジと磁性流体磁気ブリッジの磁気回路に巻回された検出コイルから構成され、さらに磁性流体磁気ブリッジの磁気回路に巻回された励磁磁束検出信号(起電力)を受信する励磁磁束検出コイルを備えたセンサ部;及び励磁信号を増幅する可変増幅器と、増幅された励磁電流を励磁コイルに流す駆動回路と、前記励磁コイルの励磁磁束の大きさに比例した励磁磁束検出信号(起電力)を受信する励磁磁束検出コイルと、前記励磁磁束検出コイルで受信した励磁磁束検出信号を扱いやすい大きさまで増幅する交流増幅器と、その大きさを直流電流で表現できるように整流する整流回路とを備える負帰還制御機構から構成される定励磁磁束方式電流センサ。

Description

定励磁磁束方式電流センサ
本発明は、定励磁磁束方式電流センサに関する。詳しくは、本発明は、負帰還制御機構を備える定励磁磁束方式電流センサに関する。
電力を効率よく安全に使うためには、電流・電圧の計測と制御が重要であり、正確な情報で細かく制御をすることが高効率化につながる。
より精密に電流を計測・制御する電力センサとして、磁性流体にヒステリシスがないという原理に着目し磁性流体をコアとした磁気ブリッジ式の電流センサ(磁性流体磁気ブリッジ型電流センサ)が開発されている(例えば、「特許文献1」。)。
一般の磁性体を用いた電流センサでは、被測定電流により発生したコア磁束により測定感度の低下が生じることがある。この様な測定感度の低下を抑制するため、磁性体コアに巻かれた二次巻線にフィードバック電流を流す方式(磁気平衡方式)等が適用される。
しかし磁気平衡方式では、被測定電流に相当するフィードバック電流を流す必要があるため、電気自動車や発電施設等において、100アンペア以上の大電流を測定する場合は、被測定電流と同量の大電流が必要になり実用上問題がある。
特許4310373号公報
磁性流体磁気ブリッジ型電流センサでは、計測したい環境磁界や電流磁界の影響によって受ける励磁磁束の変化を検出している。よって影響を受けさせる本来の励磁磁束が不安定であると、検出する際に、本来の励磁磁束の不安定なのか、環境磁界や電流磁界の影響なのかが区別できないという課題がある。
この「本来の励磁磁束」は、温度による透磁率の変化により不安定になり、さらに計測しようとする環境磁界や電流磁界の強さによる透磁率の変化によって不安定になり、測定誤差が発生するものと考えられる。
本発明は、測定誤差の原因となる「本来の励磁磁束」の変化(不安定)を抑制し、測定感度を向上した定励磁磁束方式の磁性流体磁気ブリッジ型電流センサを提供することを目的とする。
すなわち本発明は、センサ部と負帰還制御機構とを備える定励磁磁束方式の電流センサであって、前記センサ部は、磁性流体を容器で保型して形成した2つの離隔した環状磁路と該環状磁路を磁性材による接続磁路で接続した磁気回路と、励磁駆動手段により駆動される前記接続磁路に巻回された励磁コイルと、前記励磁コイルの励磁磁束の大きさに比例した励磁磁束検出信号(起電力)を受信する励磁磁束検出コイルを備え、前記磁気回路における磁気抵抗を適宜選択して前記2つの環状磁路の磁束の和がゼロになる(磁束の大きさが同じで方向が逆になる)磁気平衡状態を発現させるようにしたことを特徴とする磁性流体磁気ブリッジ;及び、
前記磁性流体磁気ブリッジの磁気回路に巻回された検出コイルから構成され、前記負帰還制御機構は、励磁信号を増幅する可変増幅器と、増幅された励磁電流を励磁コイルに流す駆動回路と、前記励磁コイルの励磁磁束の大きさに比例した励磁磁束検出信号(起電力)を受信する励磁磁束検出コイルと、前記励磁磁束検出コイルで受信した励磁磁束検出信号を扱いやすい大きさまで増幅する交流増幅器と、その大きさを直流電流で表現できるように整流する整流回路を備えることを特徴とする電流センサである。
本発明により、磁性流体磁気ブリッジの励磁磁束の大きさが常に一定となるように制御することができ、入出力特性が改善された磁性流体磁気ブリッジを用いた定励磁磁束方式電流センサを提供することが可能となる。さらに本発明により、大電力を使わず、数ミリアンペアの電流により測定感度を維持することが可能な磁性流体磁気ブリッジを用いた定励磁磁束方式電流センサを提供することが可能となる。
本発明の電流センサの一実施形態について、図を参照しながら説明する。
図1及び図3は、それぞれ本発明の一の実施態様における定励磁磁束方式電流センサのセンサ部1及び3を示す。
図1に示すセンサ部1は、磁性流体磁気ブリッジ17と磁性流体磁気ブリッジの磁気回路に巻回された検出コイル18から構成され、磁性流体磁気ブリッジ17の磁気回路に巻回された励磁磁束検出信号(起電力)を受信する励磁磁束検出コイル16を備える。
磁性流体磁気ブリッジ17は、磁性流体12を容器で保型して形成した2つの離隔した環状磁路13a、13bと該環状磁路を磁性材による接続磁路14a、14bで接続した磁気回路と、励磁駆動手段により駆動される前記接続磁路14aに巻回された励磁コイル15を備えており、磁気回路における磁気抵抗を適宜選択して前記2つの環状磁路の磁束の和がゼロになる(磁束の大きさが同じで方向が逆になる)磁気平衡状態を発現させるようにしたものである。
励磁磁束検出コイル16は、前記接続磁路14aに巻回されていて、接続磁路の励磁磁束を一か所で検出する。
図3に示すセンサ部3は、磁性流体磁気ブリッジ37と磁性流体磁気ブリッジの磁気回路に巻回された検出コイル38から構成され、磁性流体磁気ブリッジ37の磁気回路に巻回された励磁磁束検出信号(起電力)を受信する励磁磁束検出コイル36a、36bを備える。
磁性流体磁気ブリッジ37は、磁性流体32を容器で保型して形成した2つの離隔した環状磁路33a、33bと該環状磁路を磁性材による接続磁路34a、34bで接続した磁気回路と、励磁駆動手段により駆動される前記接続磁路34aに巻回された励磁コイル35を備えており、磁気回路における磁気抵抗を適宜選択して前記2つの環状磁路の磁束の和がゼロになる(磁束の大きさが同じで方向が逆になる)磁気平衡状態を発現させるようにしたものである。
励磁磁束検出コイル36a、36bは、前記環状磁路33a、33bの2か所に巻回されていて、接続磁路34aから左右方向に分かれて環状磁路に流れてくる励磁磁束を検出する。
励磁磁束検出コイル36a、36bは、接続磁路34aから左右方向にほぼ等距離の位置に巻回すことで、接続磁路を通り左右に二分されたほぼ等量の励磁磁束を検出する。
図1に示す励磁磁束検出コイル14aで励磁磁束を検出する場合は、接続磁路を通るすべての励磁磁束を一か所で検出する。これに対して、図3に示す態様では、左右に分かれて環状磁路33aと環状磁路34aを伝ってくる励磁磁束を、励磁磁束検出コイル36aと励磁磁束検出コイル36bの二か所で検出している。励磁磁束検出コイル36aと励磁磁束検出コイル36bそれぞれの励磁磁束の量は、接続磁路を通る励磁磁束のほぼ2分の一の量となる。
磁性流体磁気ブリッジは、計測したい環境磁界や電流磁界の影響によって受ける励磁磁束の変化を検出しているので、影響を受けさせる「本来の励磁磁束」が不安定であると、検出する際に、本来の励磁磁束の不安定なのか、環境磁界や電流磁界の影響なのかが区別できない。
「本来の励磁磁束」は、温度による透磁率の変化により不安定になり、さらに計測しようとする環境磁界や電流磁界の強さによる透磁率の変化によって不安定になる。そこで本発明では、磁性流体磁気ブリッジと検出コイルから構成されるセンサ部に、図2に示すような構成の負帰還制御機構2を備えることで、励磁磁束の変化(不安定)を抑制して励磁磁束を一定に保っている(定励磁磁束方式)。
図2は、本発明の一実施形態の定励磁磁束方式電流センサの負帰還制御機構2の構成を示すブロック図である。
負帰還制御機構20は、励磁信号を増幅する可変増幅器22と、増幅された励磁電流を磁性流体磁気ブリッジ21の励磁コイル24に流す駆動回路23と、励磁コイル24の励磁磁束の大きさに比例した励磁磁束検出信号(起電力)を受信する励磁磁束検出コイル25と、励磁磁束検出コイル25で受信した励磁磁束検出信号を扱いやすい大きさまで増幅する交流増幅器26と、その大きさを直流電流で表現できるように整流する整流回路27を備える。
磁性流体磁気ブリッジ、励磁コイル、ならびに励磁磁束検出コイルは、センサ部を構成する。図1に示すセンサ部1では、それぞれ磁性流体磁気ブリッジ17、励磁コイル15、ならびに励磁磁束検出コイル16に相当し、図3に示すセンサ部3では、それぞれ磁性流体磁気ブリッジ37、励磁コイル35、ならびに励磁磁束検出コイル36a、36bに相当する。
負帰還制御機構20では、励磁信号を増幅して駆動回路23で励磁コイル24に励磁電流を流している。そして、励磁磁束検出コイル25で励磁磁束の大きさに比例した励磁磁束検出信号(起電力)を得て、扱いやすい大きさまで増幅し、その大きさを直流電圧で表現できるように整流している。
この直流電圧で可変増幅器22の増幅度を制御している。つまり、励磁磁束検出信号が大きくなると可変増幅器22の増幅度を下げる。また逆に、励磁磁束検出信号が小さくなると可変増幅器22の増幅度を上げる。
このような負帰還制御を行う回路で適切に調整する(定磁束励磁方式)ことにより、励磁磁束の変化(不安定)を抑制して励磁磁束を一定に保つことができるので、計測したい環境磁界や電流磁界のみによる影響を受けた励磁磁束の変化分を起電力として検出できる。また、この負帰還制御の際の励磁電流の増減は、数パーセント(数ミリアンペア)程度であり、磁気平衡式センサの様な大電流を必要としない。
本発明を構成する磁性流体磁気ブリッジ17、37について、図4~図6を参照して以下詳細に説明する。
図4は、図1ならびに図3の磁性流体磁気ブリッジ17、37の正断面図である。図5は、図4のA-A矢視断面図である。図6は、図5のB-B矢視断面図である。
図4~図6に例示した磁路ケーシングMCは、断面が略H状をなす環状の容器本体41と、この容器本体41の上、下の環状開放面に被着して当該本体41の閉鎖断面内に2つの環状流路を形成する上、下の蓋体42、43とから形成されている。
環状の容器本体41は、内外周壁41a、41bとこの内外周壁41a、41bの対向面をその高さの中間部で接続する形態の仕切中底41cと、この仕切底41cに180度離隔して設けた2つの穴41d、41eを備えている。一方、上下の蓋体42、43は、容器本体41の上下の環状開放面に被着されて、さらに容器本体41は仕切中底41cにより仕切られているが2つの連通穴41d、41eで通じた上、下2つの閉鎖環状空間(環状路)R1とR2を形成する。この蓋体42、13において、仕切中底41cに設けた2つの連通穴41d、41eに対面した蓋体42、43の面内には、それぞれ凹部42a、42b、凹部43a、43bが形成されている。また、各凹部42a~43bは、その上面(開口面)に、図には示されていないが、柔軟なフィルムなどの薄膜を張った気室に形成されている。以上により、磁路ケーシングMCの一例を形成する。各構成の機能、役割については、以下に説明する。
上記の磁路ケーシングMCは、一例として仕切板41cの180度離れた2つの連通穴41d、41eで通じた上、下2つの環状路に底になる蓋体43を施着して磁性流体2を入れ、蓋体42を天蓋として施着し封止する。本発明では、上、下の蓋体42、43を施着してから磁性流体2を注射針により環状路内に注入し、注入孔を封止することもある。このようにして、上、下2つの環状路に入っている磁性流体2によって、2つの離隔した環状磁路13a、13bが形成される。そして、この2つの磁路13a、13bを繋ぐ仕切中底41cの連通穴41d、41eに在る磁性流体2が2つの接続磁路14a、14bを形成する。
本発明では、前記凹部42a~43bが、それに蓋をするように弾力のある膜(図示せず)を張って気室に形成されているが、この構成(凹部と膜)は、密閉された磁路ケーシングMC内で磁性流体2の膨張や収縮が生じた場合に対応するためである。すなわち、磁性流体2に膨張や収縮が起きると、当該ケーシングMCを破壊する恐れがあるが、この気室があることにより気室内の空気(あるいはガス)と膜の弾性により内圧の極端な変動を吸収することができるからである。凹部42a~43bとそれに張った膜による気室の作用は、上記のようにケーシング磁路内の内圧調整であるから、凹部42a~43bを設ける位置は、磁路ケーシングMCの内部であれば、どこでもよく、また少なくとも1つあれば良い。
図4~図6の磁路ケーシングMCに封じ込められた磁性流体2が形成する磁気回路は、磁路ケーシングMCを省略して磁性流体2だけで示すと、図1に模式的に示すように、上、下2つの環状磁路13a、13bと、これらの磁路13a、13bが2つの接続磁路14aと14bとで接続された磁気回路に形成されている。
図7は、磁性流体型磁気ブリッジ型電流センサの典型的な基本的入出力特性(実線)と理想的特性(破線)示すグラフである。
この図は±100アンペアを計測した時の入出力特性を示しているが、基本的入出特性を示すS字カーブの実線は、OA(実線グラフと点線が交わる中央の点)付近で傾斜が最も大きく感度が高いことを示している。そして、計測する電流(入力)の絶対値が大きくなるにつれて傾斜が緩やかになっている。これは電流(入力)の絶対値が大きくなるにつれて、測定感度が落ちていることを示している。破線(直線)は理想的特性を示している。
図8(a)は、本発明の定励磁磁束方式電流センサの入出力特性を示すグラフである。上述の通り、理想的特性は図7に示す破線(直線)であるので、本発明の定励磁磁束方式電流センサにより、センサの入出力特性の直線性が向上し測定感度をほぼ一定に保てることを示している。図8(b)は、図8(a)の値の直線性誤差を示すグラフである。グラフからわかるように、直線性の誤差は0.5%以内に収まっている。
本発明の負帰還制御機構を備える定励磁磁束方式電流センサにより、磁気平衡式の様な大電流を用いずに測定感度を向上した電流センサを提供することができる。そのため、オフセットが無いという磁性流体型磁気ブリッジの特性を活かし、大電流を用いる電気自動車やハイブリッド車の充放電の検出等にも利用可能な、電流センサを提供することができる。
本発明の一実施形態の定励磁磁束方式電流センサのセンサ部の構成を模式的に示した斜視図である。 本発明の一実施形態の定励磁磁束方式電流センサの負帰還制御機構20の構成を示すブロック図である。 本発明の他の一実施形態の定励磁磁束方式電流センサのセンサ部の構成を模式的に示した斜視図である。 図1の正断面図である。 図4のA-A矢視断面図である。 図5のB-B矢視断面図である。 磁性流体磁気ブリッジ型電流センサの典型的な基本的入出力特性(実線)と理想的特性(破線)示すグラフである。 図8(a)は、本発明の定励磁磁束方式電流センサの入出力特性を示すグラフである。図8(b)は、図8(a)の値の直線性誤差を示すグラフである。
1、3 定励磁磁束方式電流センサのセンサ部
2、12、32 磁性流体
13a、13b、33a、33b 環状磁路
14a、14b、34a、34b 接続磁路
15、35 励磁コイル
16、36a、36b 励磁磁束検出コイル
17、21、37 磁性流体磁気ブリッジ
18、38 検出コイル
20 負帰還制御機構
22 可変増幅器
23 駆動回路
24 交流増幅器
25 整流回路

Claims (4)

  1. センサ部と負帰還制御機構とを備える定励磁磁束方式電流センサであって、
    前記センサ部は、
    磁性流体を容器で保型して形成した2つの離隔した環状磁路と該環状磁路を磁性材による接続磁路で接続した磁気回路と、励磁駆動手段により駆動される前記接続磁路に巻回された励磁コイルと、前記励磁コイルの励磁磁束の大きさに比例した励磁磁束検出信号(起電力)を受信する励磁磁束検出コイルを備え、前記磁気回路における磁気抵抗を適宜選択して前記2つの環状磁路の磁束の和がゼロになる(磁束の大きさが同じで方向が逆になる)磁気平衡状態を発現させるようにしたことを特徴とする磁性流体磁気ブリッジ;及び、前記磁性流体磁気ブリッジの磁気回路に巻回された検出コイルから構成され、
    前記負帰還制御機構は、励磁信号を増幅する可変増幅器と、増幅された励磁電流を励磁コイルに流す駆動回路と、前記励磁コイルの励磁磁束の大きさに比例した励磁磁束検出信号(起電力)を受信する励磁磁束検出コイルと、前記励磁磁束検出コイルで受信した励磁磁束検出信号を扱いやすい大きさまで増幅する交流増幅器と、その大きさを直流電流で表現できるように整流する整流回路とを備えることを特徴とする定励磁磁束方式電流センサ。
  2. 前記励磁磁束検出コイルが、前記接続磁路に巻回されている請求項1に記載の定励磁磁束方式電流センサ。
  3. 前記励磁磁束検出コイルが、前記環状磁路の2か所に巻回されている請求項1に記載の定励磁磁束方式電流センサ。
  4. 前記励磁磁束検出コイルが、前記環状磁路の、前記接続磁路から左右方向にほぼ等距離の2か所に巻回されている請求項3に記載の定励磁磁束方式電流センサ。
PCT/JP2014/084668 2014-12-26 2014-12-26 定励磁磁束方式電流センサ WO2016103502A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016565840A JP6564395B2 (ja) 2014-12-26 2014-12-26 定励磁磁束方式電流センサ
PCT/JP2014/084668 WO2016103502A1 (ja) 2014-12-26 2014-12-26 定励磁磁束方式電流センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084668 WO2016103502A1 (ja) 2014-12-26 2014-12-26 定励磁磁束方式電流センサ

Publications (1)

Publication Number Publication Date
WO2016103502A1 true WO2016103502A1 (ja) 2016-06-30

Family

ID=56149584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084668 WO2016103502A1 (ja) 2014-12-26 2014-12-26 定励磁磁束方式電流センサ

Country Status (2)

Country Link
JP (1) JP6564395B2 (ja)
WO (1) WO2016103502A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579847A (zh) * 2020-04-30 2020-08-25 杭州电子科技大学 基于微纤维结和磁流体的双增强电流传感系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233451A (ja) * 1990-12-28 1992-08-21 Aichi Steel Works Ltd 残留オーステナイト量測定装置
WO2003107017A1 (ja) * 2002-06-01 2003-12-24 株式会社エルポート 磁気ブリッジ型電流センサー及び磁気ブリッジ型電流検出方法、並びに、前記センサーと検出方法に用いる磁気ブリッジ
JP4310373B1 (ja) * 2008-10-10 2009-08-05 有限会社ワイワイオフィス 磁性流体を用いたセンサ用の磁気ブリッジ、及び、この磁気ブリッジを用いた電流センサ並びに磁界センサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392401B1 (en) * 1998-06-05 2002-05-21 Chathan M. Cooke Closely-coupled multiple-winding magnetic induction-type sensor
JP2003075475A (ja) * 2001-09-03 2003-03-12 Yokogawa Electric Corp 交流電流センサ
JP2012063206A (ja) * 2010-09-15 2012-03-29 Aisan Ind Co Ltd 電流センサ
JP2012063331A (ja) * 2010-09-20 2012-03-29 Aisan Ind Co Ltd 電流センサ
JP2012198053A (ja) * 2011-03-18 2012-10-18 Kyocera Corp 磁気センサおよびそれを用いた電流センサ
JP2013108796A (ja) * 2011-11-18 2013-06-06 Kyocera Corp 磁気センサおよびそれを用いた電流センサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233451A (ja) * 1990-12-28 1992-08-21 Aichi Steel Works Ltd 残留オーステナイト量測定装置
WO2003107017A1 (ja) * 2002-06-01 2003-12-24 株式会社エルポート 磁気ブリッジ型電流センサー及び磁気ブリッジ型電流検出方法、並びに、前記センサーと検出方法に用いる磁気ブリッジ
JP4310373B1 (ja) * 2008-10-10 2009-08-05 有限会社ワイワイオフィス 磁性流体を用いたセンサ用の磁気ブリッジ、及び、この磁気ブリッジを用いた電流センサ並びに磁界センサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579847A (zh) * 2020-04-30 2020-08-25 杭州电子科技大学 基于微纤维结和磁流体的双增强电流传感系统

Also Published As

Publication number Publication date
JP6564395B2 (ja) 2019-08-21
JPWO2016103502A1 (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
JP5506385B2 (ja) 流量制御弁及び流量制御弁用のスプール位置検出装置
JP4310373B1 (ja) 磁性流体を用いたセンサ用の磁気ブリッジ、及び、この磁気ブリッジを用いた電流センサ並びに磁界センサ
KR101597862B1 (ko) 자석 가동형 리니어 모터용의 위치 검출 장치
JP5308500B2 (ja) 地磁気センサ
US20180259411A1 (en) Pressure sensor and pressure measuring method
JP2011174741A (ja) 電流センサ
JP2018179738A (ja) 磁気センサ
JP6564395B2 (ja) 定励磁磁束方式電流センサ
JP2014228418A (ja) 電流センサ
WO2016110932A1 (ja) 磁性流体磁気ブリッジ式電流センサを備える車両
US20100019581A1 (en) Method for controlling an electromagnet
JP2007033222A (ja) 電流センサ
JP2008107119A (ja) 電流センサ
JP4884384B2 (ja) 広帯域型電流検出器
JP2006262598A (ja) 電動機の可変速制御装置
WO2018159776A1 (ja) 磁気センサ
JP2012063331A (ja) 電流センサ
JP5257811B2 (ja) 高速反応及び低消費電流非接触直流電流センサ
WO2013073232A1 (ja) サーボ加速度計
JP2019002768A (ja) 電流センサ
JP2009121862A (ja) 力センサ
JP2007040758A (ja) 電流センサ
JP2007109787A (ja) 非接触型直流電流検流器
JP4842658B2 (ja) 磁気センサ装置
JPH0743105A (ja) 位置検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016565840

Country of ref document: JP

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/10/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14909104

Country of ref document: EP

Kind code of ref document: A1