WO2003107017A1 - 磁気ブリッジ型電流センサー及び磁気ブリッジ型電流検出方法、並びに、前記センサーと検出方法に用いる磁気ブリッジ - Google Patents

磁気ブリッジ型電流センサー及び磁気ブリッジ型電流検出方法、並びに、前記センサーと検出方法に用いる磁気ブリッジ Download PDF

Info

Publication number
WO2003107017A1
WO2003107017A1 PCT/JP2003/007729 JP0307729W WO03107017A1 WO 2003107017 A1 WO2003107017 A1 WO 2003107017A1 JP 0307729 W JP0307729 W JP 0307729W WO 03107017 A1 WO03107017 A1 WO 03107017A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
circuit
detected
magnetic flux
magnetic circuit
Prior art date
Application number
PCT/JP2003/007729
Other languages
English (en)
French (fr)
Inventor
孝 忠津
Original Assignee
株式会社エルポート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エルポート filed Critical 株式会社エルポート
Priority to EP03760164A priority Critical patent/EP1542025A4/en
Priority to AU2003244243A priority patent/AU2003244243A1/en
Priority to JP2004513784A priority patent/JP4515905B2/ja
Priority to US10/518,425 priority patent/US7218092B2/en
Priority to CA002503828A priority patent/CA2503828A1/en
Publication of WO2003107017A1 publication Critical patent/WO2003107017A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/18Arrangements for measuring currents or voltages or for indicating presence or sign thereof using conversion of DC into AC, e.g. with choppers
    • G01R19/20Arrangements for measuring currents or voltages or for indicating presence or sign thereof using conversion of DC into AC, e.g. with choppers using transductors, i.e. a magnetic core transducer the saturation of which is cyclically reversed by an AC source on the secondary side
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • G01R15/185Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core with compensation or feedback windings or interacting coils, e.g. 0-flux sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/261Amplifier which being suitable for instrumentation applications

Definitions

  • the present invention relates to a current sensor, such as a well-known CT (Current Transformer) for alternating current, which measures current in an insulated state without being connected to a conductor to be detected.
  • a current sensor capable of measuring and measuring a minute current in a current value of 100 iA region.
  • the present invention also relates to a magnetic bridge used in the current sensor and the current detection method.
  • the well-known CT has the advantage that measurement can be performed while it is insulated from the conductor to be detected.However, it is used for AC current of DC or near frequency, and pulsating current where DC and AC are superimposed. Can not. Therefore, as an insulated DC current sensor that replaces CT, there are Hall element type, Mag-amplifier type, Magnetic multivibrator type 1, Flux reversal time difference type (for example, Japanese Patent Application Laid-Open No. H10-116161, No. 10-33 32 745) and a magnetic path shoving type (for example, see Japanese Patent Application Laid-Open No. 2000-55940) have been proposed.
  • the magnetic flux reversal time difference type is the time from when the magnetic flux of the magnetic core flows in one direction until it reverses in the other direction, when a triangular wave-like excitation current exceeding the coercive force is passed through the magnetic core through which the detected wire passes And to detect the DC current of the conductor to be detected by comparing the time from turning in the other direction to reversing in the negative direction.
  • Reference 2 the structure is complicated because multiple magnetic cores are used, and there are multiple coils wound around a single magnetic core or multiple coils wound over multiple magnetic cores. However, there is a lack of uniformity in performance among products.
  • the type without feed packing (refer to the above-mentioned No.
  • saturation type cleaning type
  • zero flux type all of which are for detecting large current, and it is difficult to measure in the several mA range.
  • the current sensor according to the present invention which has been made to solve the above-mentioned problems, has a configuration of the invention according to claim 1, wherein one middle leg magnetic circuit 1 having both ends and the middle leg magnetic circuit are provided. 2, two outer leg magnetic circuits 2a, 2b respectively connected to one end and the other end of the first leg, excitation means 3a provided in the outer leg magnetic circuit 2a, and the outer leg magnetic circuit 2 b, excitation means 3 b provided in the middle leg magnetic circuit 1, magnetic flux detection means 4, and excitation drive means 7 for driving the excitation means 3 a, 3 b, respectively. And a detecting circuit 8 connected to the magnetic flux detecting means 4 and outputting an electric signal in conjunction with the detected magnetic flux detected by the magnetic flux detecting means 4.
  • the configuration of the invention of claim 2 according to the current sensor of the present invention is the same as the configuration of the invention of claim 1, except that the middle leg magnetic circuit 1, the outer leg magnetic circuit 2a ', and the outer leg magnetic circuit 2b At least one of the balanced restoration coil 5 in which a conductive wire is wound and an electric signal output from the detection circuit 8 so that the detected magnetic flux detected by the magnetic flux detection means 4 is reduced. It has a balance restoration current control circuit 9 for controlling the balance restoration current flowing through the balance restoration coil 5 and a detection value output circuit 10 for measuring and outputting the balance restoration current.
  • the configuration of the invention according to claim 3, which is one of the current detection methods of the present invention is characterized in that the excitation means 3a generates a first excitation magnetic flux, which is an alternating magnetic flux that is going to flow into the middle leg magnetic circuit 1. And by the excitation means 3 b The second exciting magnetic flux, which is an alternating magnetic flux that is about to flow through the leg magnetic circuit 1, and has the same magnitude as the first exciting magnetic flux, and the direction of the magnetic flux is equal to the first exciting magnetic flux.
  • a magnetic equilibrium state is produced, and the window and outer leg formed by being surrounded by the outer leg magnetic circuit 2a and the middle leg magnetic circuit 1 are formed.
  • the magnetic resistance of the outer leg magnetic circuit 2a and the outer leg magnetic circuit 2b is changed by passing the current to be detected to the outside, and the magnetic equilibrium state is destroyed by the change in the magnetic resistance, and the magnetic non-equilibrium state is developed.
  • the magnetic flux generated in the middle leg magnetic circuit 1 by the occurrence of the magnetic unbalanced state is output as an electric signal in conjunction with the detected magnetic flux detected by the magnetic flux detecting means 4.
  • the configuration of the invention according to claim 4 which is another one of the current detection methods of the present invention is the first excitation which is an alternating magnetic flux which tends to flow to the middle leg magnetic circuit 1 by the excitation means 3a.
  • a second exciting magnetic flux which is an alternating magnetic flux which generates a magnetic flux and is about to flow to the middle leg magnetic circuit 1 by the exciting means 3b, and has the same magnitude as the first exciting magnetic flux. Generates an exciting magnetic flux whose direction is opposite to that of the first exciting magnetic flux, thereby developing a magnetic equilibrium state and being surrounded by the outer leg magnetic circuit 2a and the middle leg magnetic circuit 1.
  • At least one of the window and the window formed by being surrounded by the outer leg magnetic circuit 2b and the middle leg magnetic circuit 1 forms the detected conductor 6 in at least one of the windows.
  • the magnetic resistance of the magnetic circuit 2b is changed, the magnetic equilibrium state is broken by the change of the magnetic resistance, and a magnetic non-equilibrium state is developed, and the magnetic resistance of the outer leg magnetic circuit 2a and the outer leg magnetic circuit 2b is reduced.
  • a magnetic flux having the same magnitude as the magnetic flux generated in the magnetic circuit around which the detected conductor 6 is wound and being in the opposite direction to the magnetic flux is generated.
  • the balanced restoration current which is a current
  • the balanced restoration current is passed through the same window as the window through which the wire to be detected 6 has been passed, and flows through the balanced restoration coil 5 that is wound, and the balanced restoration current is passed through the balanced restoration coil 5.
  • the magnetic resistance of the outer leg magnetic circuit 2a and the outer leg magnetic circuit 2b is changed, the magnetic flux generated in the middle leg magnetic circuit 1 is reduced, and a magnetic rebalancing state is developed, and the magnetic rebalancing state is established.
  • the restoration coil 5 It is characterized in that the detected current flowing through the detected wire 6 is detected by detecting the equilibrium restoring current flowing through the wire.
  • FIG. 1 is a perspective view of an essential part of an example of a magnetic bridge type current sensor of the present invention (hereinafter, referred to as a current sensor of the present invention) without a balance restoration coil
  • FIG. 2 is a perspective view of the current sensor of the present invention
  • FIG. 3 is a perspective view of a main part of an example in which a restoration coil is provided.
  • FIG. 3 is a waveform diagram of each part of the current sensor according to the present invention when a current to be detected flows, (a) is an exciting current, and (b) is an external current.
  • FIG. 4 is a waveform diagram showing each basic waveform of the electromotive force generated in the magnetic flux detection means (detection coil).
  • FIG. 4 shows the detected current in the current sensor of the present invention.
  • FIG. 5 is an equivalent magnetic circuit diagram when no current is flowing
  • FIG. 5 is an equivalent magnetic circuit diagram when a current to be detected is flowing in the current sensor of the present invention
  • FIG. Fig. 7 is a diagram showing the magnetic field versus magnetic permeability of a soft magnetic material
  • FIG. 8 is a circuit block showing an example of the configuration of the current sensor of the present invention.
  • Fig. 9 and Fig. 9 are perspective views showing an example of an application of the current sensor of the present invention.
  • Fig. 10 shows the detected wire passing through only one window surrounded by one outer leg magnetic circuit and one middle leg magnetic circuit.
  • FIG. 11 is a perspective view of an essential part of the current sensor according to the present invention, showing an example of a case in which the magnetic sensor is operated.
  • FIG. 11 is a magnetic circuit equivalent to the equivalent magnetic circuit of the sensor according to the present invention shown in FIG. 5 or FIG.
  • a magnetic circuit diagram equivalent to the equivalent magnetic circuit of Fig. 12, and Fig. 13 is equivalent to the equivalent magnetic circuit of Fig. 12.
  • FIG. 14 is a magnetic circuit diagram equivalent to the equivalent magnetic circuit of Fig. 13
  • Fig. 15 is a magnetic circuit diagram equivalent to the equivalent magnetic circuit of Fig. 14
  • Fig. 16 is the actual equivalent magnetic circuit of Fig. 15.
  • FIG. 17 is a perspective view of a main part of another example of the current sensor of the present invention shown in FIG. 18 is a magnetic circuit diagram equivalent to the equivalent magnetic circuit shown in FIG. 15, 19 is a perspective view showing an example of the current sensor of the present invention which substantially represents the equivalent magnetic circuit of FIG. 18, and
  • FIG. 21 is an enlarged plan view of a main part for explaining the position of the magnetic circuit 2 in which the excitation means of the example is arranged.
  • FIG. 21 is an enlarged plan view of a main part for explaining the position of the magnetic circuit 2 in which the excitation means of the example is arranged.
  • FIG. 21 is a view for explaining an example of the arrangement of the excitation coil and the balance restoration coil in the current sensor of the present invention.
  • FIG. 22 is a perspective view, and FIG. 22 is an example perspective view for explaining the basic configuration of the current sensor of the present invention.
  • Reference numeral 3 denotes a magnet according to the present invention using a magnetic prism according to the present invention having two exciting means (exciting coils) 3.
  • FIG. 24 is a perspective view of a first example of the air sensor, and FIG. 24 is a perspective view of a second example of the magnetic sensor of the present invention using the magnetic bridge of the present invention having one exciting means (excitation coil).
  • Fig. 26 is a side view of an example of the magnetic sensor of the present invention having a magnetic gap, Fig.
  • FIG. 26 is a perspective view of an example of the magnetic sensor of the present invention having a shape suitable for close-dipole magnetic detection, and Fig. 27 is a small size.
  • FIG. 28 is a perspective view of an example of the magnetic sensor of the present invention suitable for integration, and FIG. 28 is a diagram schematically showing an example of the arrangement of the magnetic flux detecting means 4.
  • FIG. 29 is a diagram in which the magnetic circuit 1 is made of a nonmagnetic material such as air. It is a perspective view of an example of the formed magnetic sensor.
  • FIG. 1 is a perspective view schematically showing a magnetic-bridge type current sensor according to an embodiment of the invention of claim 1 (however, the excitation driving means 7 and the detection circuit 8 are not shown in FIG. 1). Omitted).
  • the current sensor 1 of the present invention illustrated in FIG. 1 has one middle leg magnetic circuit 1 having both ends, and two outer leg magnets respectively connected to one end and the other end of the middle leg magnetic circuit 1. It has circuits 2a and 2b, the middle leg magnetic circuit 1 has magnetic flux detecting means 4, the outer leg magnetic circuit 2a has exciting means 3a, and the outer leg magnetic circuit 2b has Excitation means 3 b is provided.
  • the exciting means 3a and the exciting means 3b are both formed so as to generate an alternating magnetic field.
  • the above configuration may be hereinafter referred to as a “magnetic bridge”.
  • the magnetic circuits 1, 2a and 2b of the above magnetic bridge are made of ferrite, silicon steel plate, amorphous, permalloy. And the like.
  • the magnetic material forming the above magnetic circuit may be referred to as a “core material” or a “core”.
  • the current sensor of the present invention further includes a detection circuit 8.
  • excitation means 3a and excitation means 3b are provided by either a method of applying an alternating current to the wound conductor (hereinafter referred to as a "coil") shown in Fig. 1 or a method of generating an alternating magnetic field. It may be a technique. Alternating magnetic field is generated by rotating or oscillating the permanent magnet body or its magnetic path, changing the magnetic fluid using permanent magnet and magnetic fluid, and changing the magnetic resistance of the magnetic path of the permanent magnet or electromagnet The method may be selected as needed.
  • a magnetic detecting element such as a Hall element or a magnetic impedance element may be used.
  • a magnetic detecting element is used for the magnetic flux detecting means 4, it is necessary to form a gap in a part of the middle leg magnetic circuit and dispose the magnetic detecting element in the gear, as shown in FIG. If the coil around which the middle leg magnetic circuit 1 is wound (hereinafter referred to as “detection coil”) is used as the magnetic flux detecting means, the configuration of the magnetic flux detecting means 4 is simplified.
  • the detection circuit 8 may be anything as long as it can output the magnetic flux detected by the magnetic flux detection means 4 as an electric signal.
  • a detection coil or a magnetic detection element is used for the magnetic flux detection means 4, and an electromotive force generated in the detection coil by the detection coil or the magnetic detection element detecting a magnetic flux.
  • a circuit that only outputs the potential difference or the like generated in the magnetic detection element, that is, detection A circuit in which the coil or the magnetic sensing element and the output terminal are connected by a simple conductor may be used.
  • the detection circuit 8 may be a circuit in which one or more active elements such as passive elements such as resistors and capacitors are connected, or an active circuit using an operational amplifier or the like. That is, the detection circuit
  • the detection is performed from the one that does not change anything so that it can be used freely according to the customer's application, or the one that attaches a few elements to stabilize the operation of the detection coil or magnetic detection element.
  • the electromotive force generated in the detection coil performs signal processing such that the detected current can be read directly, such as an indicator that displays the electromotive force generated in the coil or the potential difference generated in the magnetic sensing element.
  • At least one of the windows is made to penetrate the conductor to be detected 6.
  • the detected conducting wire 6 passes through one window formed by being surrounded by the outer leg magnetic circuit 2a and the middle leg magnetic circuit 1 from the front side toward the side, Furthermore, it is arranged so as to penetrate the other window formed by being surrounded by the outer leg magnetic circuit 2b and the middle leg magnetic circuit 1 from the side facing the front to the near side.
  • the conductor 6 to be detected electromagnetically winds the middle leg magnetic circuit 1 once, which is equivalent to the outer leg magnetic circuit. This is equivalent to a single winding of 2a and the outer leg magnetic circuit 2b. Also, as shown in Fig. 10, when the conductor 6 to be detected penetrates only the negative window from the near side to the opposite side, the conductor 6 to be detected is connected to the outer leg magnetic circuit 2a. This is equivalent to a single turn of the middle leg magnetic circuit 1 and the outer leg magnetic circuit 2b.
  • first excitation magnetic flux the alternating magnetic flux flowing into the middle leg magnetic circuit 1 from the outer leg magnetic circuit 2a
  • second exciting magnetic flux the alternating magnetic flux flowing from the outer leg magnetic circuit 2 b into the middle leg magnetic circuit 1
  • the magnetizing force of the exciting means 3a and the exciting means 3b is determined so that the first exciting magnetic flux and the second exciting magnetic flux have the same magnitude and opposite directions, and the exciting means 3a and the When excited by the exciting means 3b, the first exciting magnetic flux and the second exciting magnetic flux flow in the middle leg magnetic circuit 1 because they have the same magnitude and opposite directions.
  • the total of the magnetic flux becomes zero.
  • the first excitation magnetic flux and the second excitation magnetic flux The condition of the same size and opposite directions is called the ⁇ balanced magnetic flux condition '', and the excitation conditions of the excitation means 3 a and the excitation means 3 b for expressing this balanced magnetic flux condition are called ⁇ balanced excitation conditions ''.
  • the state in which the sum of the magnetic fluxes flowing into the center leg magnetic circuit 1 is zero because the first exciting magnetic flux and the second exciting magnetic flux have the same magnitude and opposite directions is called ⁇ magnetic It is called equilibrium state J.
  • the magnetic flux flowing in is equal to the first exciting magnetic flux. Since only the second excitation magnetic flux has a total sum of zero, the sum of the magnetic flux flowing in at one end, which is an arbitrary point, is already zero. For this reason, the magnetic flux of the middle leg magnetic circuit 1 connected to the one point inevitably becomes zero, and cannot take a value other than zero. That is, in the present invention, when the magnetic prism is in a magnetic equilibrium state, no magnetic flux exists in the middle leg magnetic circuit 1, and the magnetic flux is detected by the magnetic flux detecting means 4. And not.
  • the balanced state of the magnetic bridge may be realized by driving the drive circuit such that the magnetomotive force of the exciting means 3a and the exciting means 3b satisfies the condition of equilibrium of the magnetic flux.
  • Magnetic circuit 2a and outer leg magnetic circuit
  • both exciting means 3a and exciting means 3b are composed of coils to form both exciting means.
  • the direction of the winding of the coil of the excitation means 3a and the direction of the winding of the coil of the excitation means 3b are set to the opposite directions.
  • the coil of 3a and the coil of excitation means 3b are connected in series. By arranging the alternating current and arranging the same, the current value and the phase become the same, so that the equilibrium state of the magnetic bridge can be easily realized.
  • the magnetic bridge is in a magnetic equilibrium state, and the detection target wire 6 is formed by being surrounded by the outer leg magnetic circuit 2a and the middle leg magnetic circuit 1, and the outer leg magnetic circuit 2b. And at least one of the windows formed so as to be surrounded by the middle leg magnetic circuit 1 and the center leg magnetic circuit 1, is disposed so as to penetrate through at least one of the windows. When the current to be detected flows, new magnetic flux is generated in the magnetic prism.
  • Fig. 1 if the current to be detected is flowing from the opposite side to the near side (hereinafter, this direction is called “positive direction” and the opposite direction is called “negative direction”), As a result, the magnetic flux generated in the middle leg magnetic circuit 1 goes downward from the top.
  • the magnetic flux of the middle leg magnetic circuit 1 due to the current to be detected in the positive direction enters the upper leg of the middle leg magnetic circuit 1 from the outer leg magnetic circuit 2a and the outer leg magnetic circuit 2b so as to gather at the upper end. It flows through the middle leg magnetic circuit 1 from top to bottom, and exits at the lower end of the middle leg magnetic circuit 1 so as to spread to the outer leg magnetic circuit 2a and the outer leg magnetic circuit 2b. Further, this magnetic flux flows through the outer leg magnetic circuit 2a and the outer leg magnetic circuit 2b from bottom to top.
  • the outer leg magnetic circuit 2a If the magnetic excitation satisfies the equilibrium excitation condition and a clockwise magnetic flux flows through the outer leg magnetic circuit 2a and the outer leg magnetic circuit 2b, the outer leg magnetic circuit 2 In a, the magnetic flux due to the detected current and the exciting magnetic flux of the exciting means 3a are in the same direction, and the magnetic flux increases. On the other hand, in the outer leg magnetic circuit 2b, the magnetic flux due to the detected current and the exciting magnetic flux of the exciting means 3b are in opposite directions, and the magnetic flux decreases. If the maximum magnetic flux density in the magnetic bridge is lower than the magnetic flux density at which the magnetic permeability of the magnetic material composing the magnetic bridge is lower than the maximum magnetic flux density, the magnetic flux increases in the outer leg magnetic circuit 2a.
  • the magnetic permeability increases, and the magnetic resistance of the magnetic circuit decreases.
  • the magnetic resistance of the outer leg magnetic circuit 2 b the magnetic flux decreases, the magnetic permeability decreases, and the magnetic resistance of the magnetic circuit increases.
  • the magnetic resistance of the outer leg magnetic circuit 2a decreases, the first exciting magnetic flux increases, and when the magnetic resistance of the outer leg magnetic circuit 2b increases, the second exciting magnetic flux decreases.
  • the equilibrium magnetic flux condition is no longer satisfied, and a magnetic flux is generated in the middle leg magnetic circuit 1.
  • the magnetic flux passing through the middle leg magnetic circuit 1 is zero when the current to be detected is zero, and the change in the magnetic resistance increases as the detected current increases, and passes through the middle leg magnetic circuit 1.
  • the magnetic flux also increases.
  • the magnitude of the magnetic flux of the middle leg magnetic circuit 1 is proportional to the magnitude of the current to be detected.
  • the magnetic flux detecting means 4 is a coil
  • the magnetic flux generated in the middle leg magnetic circuit 1 generates an electromotive force in the magnetic flux detecting means 4
  • the magnetic flux detecting means 4 is a magnetic detecting element
  • the magnetic flux is generated.
  • a potential difference or the like is generated in the detecting means 4, and the magnitude of the electromotive force or the potential difference generated in the magnetic flux detecting means 4 is proportional to the magnitude of the magnetic flux generated in the middle leg magnetic circuit 1.
  • the magnetic flux of the middle leg magnetic circuit 1 will be 2 Indicates a change.
  • the magnetic flux of the middle leg magnetic circuit 1 includes a component that changes for four periods in one cycle of the excitation magnetic flux. In this case as well, in the middle leg magnetic circuit 1, a magnetic flux including higher-order harmonics is generated because the magnetic field-permeability characteristics of the magnetic material are non-linear.
  • the current to be detected is detected by the detection circuit 8 outputting the magnetic flux generated in the middle leg magnetic circuit 1 as an electric signal linked to the magnetic flux detected by the magnetic flux detection means 4.
  • the output of the detection circuit 8 is connected to a display, the value of the electric signal output from the detection circuit 8 can be directly read by the display.
  • the output of the detection circuit 8 can be stored or transmitted as detection data to a computer or the like in parallel with the display by the display or alone.
  • the magnetic circuit at the position where the wire 6 to be detected is wound on the magnetic bridge is excited by using an exciting means for generating a magnetic flux, and the current to be detected that is breaking the magnetic equilibrium state of the magnetic bridge is lost. If the generated magnetic flux is reduced to zero, the magnetic bridge returns to a magnetic equilibrium state.
  • the attempt to bring the magnetic equilibrium state of the magnetic bridge collapsed by the current to be detected back to the equilibrium state is hereinafter referred to as “equilibrium restoration”.
  • the state in which the magnetic state has returned to the equilibrium state due to the restoration of the equilibrium is called the “magnetic re-equilibrium state”.
  • the balance restoration coil 5 illustrated in FIG. 2 is an exciting means for generating a magnetic flux in a magnetic circuit at a position where the detection target wire 6 is wound around the magnetic prism, and develops a magnetic rebalance state.
  • the detected conductor 6 is equivalent to the middle leg magnetic circuit 1 or the outer leg magnetic circuit 2a and the outer leg magnetic circuit 2b being wound together.
  • leg magnetic circuit 1 Provided in leg magnetic circuit 1.
  • the balance restoration coil 5 is provided in the outer leg magnetic circuit 2a.
  • balance restoration current A current that generates a magnetic flux whose magnitude is the same as that of the current to be detected and whose direction of the magnetic flux is opposite to that of the current to be detected (hereinafter referred to as “balance restoration current”) is applied to the balance restoration coil 5.
  • balance restoration current When it flows, the magnetic state of the magnetic bridge, whose magnetic equilibrium state has been destroyed by the detected current flowing through the detected wire 6, is restored to the equilibrium state.
  • the balance restoration means controlling the product of the number of turns of the balance restoration coil 5 and the balance restoration current to be equal to the product of the number of turns of the detected wire 6 and the detected current. But also. At this time, the direction of the magnetomotive force should be opposite.
  • the magnetomotive force is expressed as the product of the number of turns and its current value.
  • the detected current can be detected by detecting the balanced restoration current. That is, if the quotient obtained by dividing the number of turns of the balanced restoration coil 5 by the number of turns of the detected wire 6 is defined as a turns ratio, the detected current is a product of the balanced restoration current and the turns ratio.
  • the detected current is in the negative direction
  • the magnetic flux generated in the middle leg magnetic circuit 1 by the detected current is directed upward from the bottom, but magnetically, the detected current is in the positive direction.
  • the detection result has the opposite polarity.
  • the direction of the current to be detected can be known by examining the polarity of this detection result. That is, the magnitude of the current to be detected can be determined from the magnitude of the detection result for the balanced restoration current, and the direction of the current to be detected can be determined from the polarity of the detection result.
  • Whether or not the balance restoration has been realized can be determined by detecting the magnetic flux of the middle leg magnetic circuit 1 by the detection circuit 8 and observing whether or not the detection result is approaching zero.
  • the balance restoration current may be adjusted so that the value approaches zero while observing the detection result of the detection circuit 8 with an instrument such as a voltmeter or an ammeter.
  • the method of performing such an adjustment manually is suitable for special applications such as when experimenting the operation principle, and the method of performing the adjustment automatically when practicality is required.
  • the method for automatically restoring the balance is to detect the magnetic flux in the middle leg magnetic circuit 1.
  • a value obtained by dividing the input signal value of the control system by “width ratio + 1” of the feedback loop remains at the position where the feedback is performed.
  • the position to be fed back is the magnetic flux in the middle leg magnetic circuit 1, and is controlled by the feedback packing.
  • the magnetic flux remaining in the middle leg is obtained by dividing the magnetic flux originally generated in the middle leg magnetic circuit 1 by the detected current when the feedback control is not performed by the "gain + 1" of the feedback loop. Remains in magnetic circuit 1.
  • the magnetic flux passing through the magnetic flux detecting means 4 is 100
  • the value obtained by dividing 0 mA by 100000, that is, about 0.99999 A of magnetic flux remains.
  • a magnetic flux equivalent to 1 A remains.
  • Such a state that has not yet reached a perfect magnetic equilibrium state but is very close to the magnetic equilibrium state, and a magnetic equilibrium state are referred to as a “magnetic sub-equilibrium state”. Note that, even in the “magnetic sub-equilibrium state”, the influence of the magnetic resistance of the middle leg magnetic circuit 1 due to the magnetic flux remaining in the middle leg magnetic circuit 1 is negligible and negligible.
  • the above-described example of the magnetic-prediction current sensor of the present invention is not limited to the above-described embodiment of the current sensor, and the present invention employs a current sensor having a structure and an embodiment described below.
  • a sensor can be formed.
  • the equivalent circuit shown in FIG. 11 is equivalent to the equivalent circuit shown in FIG. 12, and the equivalent circuit shown in FIG. 12 is equal to the equivalent circuit shown in FIG.
  • the magnetic circuits 2a and 2b are divided into two magnetic circuits 2la and 22a, each of which is divided into the same 21b and 22b.
  • one excitation means 3a in Fig. 12 is inserted.
  • the excitation means 3a is reversed for the magnetic circuits 21b and 22b.
  • the other exciting means 3b in FIG. 12 can be omitted.
  • the excitation means in Fig. 13 Indicated by reference numeral 3. Since the equivalent circuit of FIG. 13 can be summarized and expressed as the equivalent circuit of FIG. 14, the current sensor of the present invention illustrated in FIGS. 1, 2 and 5, and 6 is eventually replaced with the equivalent circuit of FIG. Can also be expressed.
  • FIG. 16 When the equivalent circuit of FIG. 15 is schematically represented by the substantial form of the current sensor 1 of the present invention as shown in FIGS. 1 and 2, the form is as shown in FIG. 16 as an example. Further, if the form of the current sensor in FIG. 16 is expressed in a manner closer to the substantial form, the form of the current sensor illustrated in FIG. 17 is obtained.
  • FIGS. 16 and 17 the same members, the same parts, and the same elements as those in FIGS. 1 to 10 are denoted by the same reference numerals.
  • the condition of the magnetomotive force of the two exciting means 3 a and 3 b and the condition of the magnetoresistance of the two magnetic circuits 2 a and 2 b are different. It is a condition of magnetic equilibrium, and there are many factors of the magnetic equilibrium condition, so that it is not easy to manufacture.
  • wl, w2 are left by Ri the core material in window W drilled in the core material, the width of the remaining core member to the right, 1, 1 2 in the vertical width of the window W, the magnetic circuit
  • the setting position 2 is the vertical width of the window W that is internally divided.
  • the magnetic detecting means 4 and the balance restoration coil 5 are arranged in the magnetic circuit 1 for understanding the present invention and for convenience of explanation.
  • the magnetic circuits 21a, 22a, 21b, and 22b, the magnetic circuit 2, and the excitation means 3 are provided. Note that the symbols used in FIG. 21 have the same meaning as the same symbols used so far.
  • the current sensor of the present invention by adopting a mode in which the constituent members of the sensor are arranged on one side of the annular core material, the semi-annular side opposite to the core material is adopted.
  • the vicinity can be formed from the part shown by the dotted line so that it can be detached or opened and closed like a clamp.
  • the current sensor of the present invention can be set on the wiring and the current can be detected without cutting the wiring (conductive wire 6 to be detected).
  • the exciting means 3 and the magnetic flux detecting means 4 are coils
  • the exciting means 3 includes a window surrounded by magnetic circuits 21a, 21b, and 2; It suffices to penetrate both windows surrounded by the magnetic circuits 22a, 22b and 2 at least once, and the magnetic flux detecting means 4 is also surrounded by the magnetic circuits 2la, 22b and 1. It suffices to penetrate both the open window and the window enclosed by the magnetic circuits 22a, 21b, 1 at least once. Therefore, when this configuration is applied to the current sensor of the present invention of claim 5, the configuration shown in FIG. 22 is obtained, and this exemplifies the basic configuration of the current sensor of the present invention. In FIG. 22, the same symbols as those used so far have the same meaning.
  • the configuration of the magnetic bridge type current sensor of the present invention and the current detection method using this current sensor can be derived as follows.
  • one of the other configurations of the current sensor of the present invention is as follows.
  • a magnetic circuit 1 having both ends, magnetic circuits 21a and 21b each having one end connected to one end of the magnetic circuit 1, and a magnetic circuit 21 having two ends connected to the other end of the magnetic circuit 1.
  • a magnetic circuit 2 2b, 2 2a having both ends connected to one end of each and the other end connected to the magnetic circuit 2 1a, 2 lb, respectively; b, and one magnetic circuit 2 having both ends connected to the magnetic circuit 21b and 22a, respectively, and disposed so that magnetic flux can be generated in the magnetic circuit 2.
  • Excitation means 3 a magnetic flux detection means 4 arranged to detect the magnetic flux of the magnetic circuit 1, an excitation drive means 7 for driving the excitation means 3, and a magnetic flux connected to the magnetic flux detection means 4.
  • a current sensor comprising: a detection circuit for outputting an electric signal in conjunction with the detected magnetic flux detected by the detection means.
  • the configuration of the invention of the current detection method using the current sensor 1 is such that the magnetic resistances of the magnetic circuits 21 a, 21 b, 22 a, and 22 b are appropriately selected and the magnetic potentials at both ends of the magnetic circuit 1 are the same.
  • a magnetic equilibrium state in which the magnetic flux generated by the exciting means 3 does not exist in the magnetic circuit 1 is developed, and the window surrounded by the magnetic circuits 2 la, 22 b, 1 or the magnetic At least one of the windows surrounded by the circuits 21b, 22a, and 1 penetrates the wire to be detected 6 through at least one of the windows, and flows a current to be detected through the wire to be detected 6 so that the magnetic field is increased.
  • the current detection method is characterized in that the detection current is detected by a detection circuit 8 that outputs an electric signal in conjunction with the detected magnetic flux to be detected, thereby detecting the detected current flowing through the detected conductive wire 6.
  • the above detection method can be replaced with the following current detection method.
  • an equilibrium restoration current that is the same magnitude as the magnetic flux generated in the magnetic circuit around which the detected conducting wire 6 is wound and generates a magnetic flux in the opposite direction to the magnetic flux is calculated as:
  • the magnetic flux generated in the magnetic circuit 1 is reduced so that a magnetic rebalancing state is developed, and the current to be detected is detected by detecting the equilibrium restoring current flowing through the equilibrium restoring coil 5 when in the magnetic rebalancing state. 6 to detect the current to be detected.
  • This is a characteristic current detection method.
  • the current is detected by detecting a magnetic field generated around the current due to the current.
  • Bridges basically have magnetic detection capabilities.
  • a weak current can be detected with high sensitivity and high accuracy.
  • this ability depends on the magnetic detection ability of the magnetic bridge. Rollers are big.
  • the magnetic bridge used in the current sensor of the present invention described above can be configured as an invention of a magnetic sensor and a magnetic detection method. Therefore, a magnetic sensor completed by using this magnetic bridge and a magnetic detection method An embodiment of the method will be described with reference to FIGS. 23 to 29.
  • FIG. In the current sensor of the present invention described above, when detecting current, it is necessary to efficiently capture magnetic flux due to the detected current existing in a loop on the magnetic bridge. Although it was formed in a closed core in the form of a loop, in order for the magnetic prism to exert its performance as a magnetic sensor, the core portion that captures the magnetic flux was formed in an open state to efficiently use the magnetic flux in the space. It is necessary to take in well.
  • Figures 23 and 24 show examples of magnetic sensors using magnetic bridges formed to meet this requirement.
  • Fig. 23 shows an example of a magnetic sensor having two excitation coils with reference numbers 3a and 3b.
  • Fig. 24 shows an example of a magnetic sensor having one excitation coil with reference number 3. These correspond to the examples of FIGS. 1 and 16 of the current sensor of the present invention described above, respectively.
  • FIGS. 23 and 24 are configured as a magnetic sensor, the conductive wire 6 to be detected is unnecessary, and the balance restoration coil 5 in FIGS. 1 and 16 is omitted.
  • the balance restoration coil 5 may or may not be used, and in any case, functions as a magnetic sensor.
  • the balanced restoration coil 5 is employed, the dynamic range of detection is widened and the accuracy is improved.
  • the magnetic sensor shown in FIG. 24 detects the magnitude and direction of a magnetic field that acts magnetically on the magnetic sensor or the magnetic flux that passes through the magnetic sensor. Can be issued.
  • this magnetic sensor utilizes the magnetic detection function of the magnetic bridge used in the current sensor and the current detection method of the present invention described above. That is, in the current sensor and the current detection method of the present invention, a magnetic field orbiting the detected wire is generated by a weak magnetic field generated by the current flowing through the detected wire, and the magnetic flux is generated by the weak magnetic field. The magnetic flux is detected at the magnetic bridge.
  • the magnetic flux that can be detected by the magnetic bridge is not limited to the magnetic flux generated by the current of the conductor to be detected. It works similarly.
  • the magnetic introduction part 11a is a junction between the magnetic circuit 1 and the magnetic circuits 21a and 21b, and the magnetic introduction part 11b is a magnetic introduction part.
  • the junction between the circuit 1 and the magnetic circuits 22a and 22 is formed so as to protrude upward and downward, respectively.
  • the magnetic introduction sections 11a and 11b are formed so as to form a magnetic circuit for facilitating the introduction of the detected magnetism to the magnetic prism.
  • the magnetic introduction sections 11a and 11b may be referred to as magnetic circuits 11a and 11b. This is the same for the magnetic bridge shown in Fig. 23.
  • the magnetic flux generated by the exciting means (the exciting coil in FIG. 24) 3 passes through the magnetic circuit 1. It does not penetrate the detection coil 4. Therefore, no electromotive force is generated in the detection coil 4.
  • the magnetic sensor shown in Fig. 24 is exposed to a magnetic field having a component in the direction of the magnetic field indicated by reference numeral 7 in Fig. 24, the magnetic circuit 11a and the magnetic circuit 11b, which are the magnetic introduction portions, Magnetic flux is generated in the magnetic circuits 21a, 22a, 21b, and 22b connecting the circuits 11a and 11b. That is, the magnetic flux due to the detected magnetism passes through the magnetic prism of the magnetic sensor. As a result, the magnetic flux passing through the magnetic bridge disturbs the balance of the magnetic bridge, and the magnetic flux generated by the exciting means (excitation coil) 3 leaks from the magnetic bridge and passes through the magnetic circuit 1. .
  • the magnetic flux generated by the excitation means (excitation coil) 3 is an alternating magnetic flux
  • the magnetic flux passing through the magnetic circuit 1 also becomes an alternating magnetic flux, and an electromotive force is generated in the detection coil 4.
  • the magnetic flux passing through the magnetic circuit 1 contains many frequency components twice as high as the excitation frequency of the excitation means (excitation coil) 3 as in the above-described present invention current sensor.
  • the electromotive force generated in the detection coil 4 is proportional to the strength of the magnetic flux passing through the magnetic circuit 1, and the strength of the magnetic flux passing through the magnetic circuit 1 is proportional to the strength of the magnetic flux leaking from the magnetic bridge. . Furthermore, the strength of the magnetic flux leaking from the magnetic bridge is proportional to the strength of the detected magnet. That is, an electromotive force proportional to the strength of the detected magnetism can be obtained from the detection coil 4.
  • the above-described magnetic sensor can detect the strength of the magnetic field in the space where the magnetic sensor is placed by measuring the electromotive force of the detection coil 4.
  • the phase of the electromotive force generated in the detection coil 4 is inverted with respect to the direction of the detected magnetic field with reference to the magnetomotive force of the excitation means (excitation coil) 3.
  • the satellite can detect the direction of the magnetic field in addition to the strength of the magnetic field.
  • the magnetic sensor described above has better sensitivity if the magnetic flux due to the detected magnetism passes through the magnetic prism of the sensor efficiently.
  • the detected magnet passes through the magnetic path connecting the magnetic introduction sections 11a and 11b, there are two magnetic paths. That is, a magnetic path passing through the magnetic bridge and a magnetic path passing through the magnetic circuit 1. Of these, only the magnetic flux passing through the magnetic bridge directly contributes to magnetic detection. Therefore, it is better to allow more magnetic flux to pass through the magnetic bridge. In other words, it can be said that the magnetic flux due to the detected magnetism passing through the magnetic circuit 1 should be as small as possible.
  • the magnetic resistance of the magnetic circuit 1 may be made larger than the magnetic resistance of the magnetic bridge.
  • magnetic gaps 8a and 8b are provided at the junction between the magnetic circuit and the magnetic introduction sections 11a and 11b and the magnetic circuit 1.
  • the positions of the magnetic gaps 8a and 8b are not limited to the positions and numbers shown in FIG. 25, and may be provided at any position in the magnetic circuit 1 as long as the above-mentioned object is achieved. Good.
  • the magnetic gaps 8a and 8b serve as obstacles for the magnetic flux generated by the exciting means (exciting coil) 3 to pass through the magnetic circuit 1, but the exciting means (exciting means) leaking from the magnetic prism.
  • the magnetic path of the magnetic flux generated by the coil 3 passes through the magnetic circuit 8 through the magnetic gaps 8a and 8b, and passes through the magnetic circuit 1.
  • the detected magnetic field to be detected can be reduced. It is possible to arbitrarily produce magnetic sensors with various sensitivities according to the strength of the magnetic sensor.
  • the magnetic sensor 1 does not require the magnetic circuit 1 to efficiently capture magnetic flux. Its function relies on magnetic circuits 11a and 11b. If the magnetic sensor 1 has the magnetic circuit 1, its function is only to pass the exciting magnetic flux leaked from the magnetic prism.
  • the magnetic circuit 1 must exist as an actual case when the magnetic flux detecting means 4 is provided in the magnetic circuit 1, but when the magnetic flux detecting means 4 is provided on the magnetic prism side, the magnetic circuit 1 must be present. 1 does not have to exist as a reality. The reason will be described below.
  • the magnetic circuit 1 is described as being formed of a magnetic material, but the magnetic circuit 1 is formed of a non-magnetic material (vacuum 'air' plastic, water, etc.). If it is considered that the magnetic circuit 1 is composed of oil, etc., the magnetic circuit 1 does not need to actually exist. This is because ,
  • Such a magnetic sensor which does not actually include the magnetic circuit 1 is effective for producing an extremely small magnetic sensor.
  • it can be manufactured easily with a length of about 2.0 im and a width of about 1.6 im x a thickness of about 1.0 mm.
  • the configuration example of the magnetic sensor described above has a structure suitable for the case where the magnetic field lines of the detected magnet exist relatively linearly or for detecting the magnetism radiating from the N pole or the S pole. Magnetic detection when both N and S poles are close together may be necessary.
  • FIG. 26 shows an example of a preferred form of the magnetic sensor in this case.
  • the junction of the magnetic circuits can be regarded as the magnetic circuits 11a and 11b. This point is the same in the example of the magnetic sensor shown in FIG.
  • the reference numerals in FIGS. 26 to 29 have the same meanings as those in FIGS. 23 to 25.
  • the above-described magnetic bridge of the magnetic sensor 1 has the same effect as the above-described magnetic bridge of the current sensor 1 of the present invention. Therefore, even in the above magnetic sensor, if a balance restoration coil (not shown) is provided and a magnetic rebalance state is developed similarly to the current sensor of the present invention, higher-precision magnetic detection becomes possible.
  • the magnetic sensor using the magnetic bridge of the present invention can be specified as a magnetic sensor having a configuration described below.
  • the configuration of the first magnetic sensor is such that one magnetic circuit 1 having both ends is joined to one end and the other end of the magnetic circuit 1 and each joint is projected outward.
  • the magnetic flux detection provided in the magnetic circuit 1 Means 4, an exciting drive means 7 for driving the exciting means 3a and the exciting means 3, respectively, and an electric signal connected to the magnetic flux detecting means 4 and interlocked with the detected magnetic flux detected by the detecting means 4.
  • a detection circuit 8 for outputting a signal.
  • a magnetic circuit 2 having both ends connected to a connection point between the magnetic circuits 21a and 22b and a connection point between the magnetic circuits 21b and 22a, and a magnetic flux applied to the magnetic circuit 2
  • Excitation means 3 arranged so as to generate magnetic flux
  • magnetic flux detection means 4 arranged so as to be able to detect magnetic flux passing through the magnetic circuit 1
  • excitation means 3 and excitation drive means 7 for moving the detecting hands
  • a detection circuit connected to the stage and outputting an electric signal in conjunction with the detected magnetic flux detected by the detection means.
  • the configuration of the magnetic detection method employed in the first magnetic sensor is such that the exciting means 3a generates a first exciting magnetic flux which is an alternating magnetic flux which is about to flow to the middle leg magnetic circuit 1, and
  • the second exciting magnetic flux which is an alternating magnetic flux that is about to flow to the middle leg magnetic circuit 1 by the exciting means 3b, has the same magnitude as the first exciting magnetic flux, and the direction of the magnetic flux is the first exciting magnetic flux.
  • the second configuration of the magnetic detection method in the first magnetic sensor 1 is that the excitation means 3a generates a first excitation magnetic flux, which is an alternating magnetic flux that is going to flow through the magnetic circuits 11a and 11b. And a second exciting magnetic flux, which is an alternating magnetic flux which is about to flow into the magnetic circuits 11a and 11b by the exciting means 3, and has the same magnitude as the first exciting magnetic flux.
  • a magnetic equilibrium state is developed by generating an exciting magnetic flux in which the direction of the magnetic flux is opposite to the first exciting magnetic flux, the core material forming each magnetic circuit is exposed to the magnetic field. With the above, the magnetic equilibrium state is broken and a magnetic non-equilibrium state is developed, and the magnetic non-equilibrium state is developed.
  • the detection magnetism in the magnetic field is detected by a detection circuit 8 that outputs an electric signal in conjunction with the detected magnetic flux detected by the magnetic flux detection means 4.
  • the magnetic resistances of the magnetic circuits 21a, 21b, 22a, and 22b are appropriately selected so that the magnetic potentials at both ends of the magnetic circuit 1 are the same. Therefore, when a magnetic equilibrium state where the magnetic flux generated by the excitation means 3 does not exist in the magnetic circuit 1 is developed, the core material forming each magnetic circuit is exposed to the magnetic field, whereby the magnetic circuit 21 a , 22 a, 21 b, 22 b, the magnetic resistance of at least one magnetic circuit is changed, and the change in the magnetic resistance breaks the magnetic equilibrium state to develop a magnetic non-equilibrium state; The magnetic flux generated in the magnetic circuit 1 due to the occurrence of the equilibrium state is detected by a detection circuit 8 that outputs an electric signal linked to the detected magnetic flux detected by the magnetic flux detection means 4.
  • a magnetic detection method for detecting the detected magnetism in the magnetic field Can be taken.
  • magnetic circuits 21a and 21b having both ends connected to one end, and both ends connected to one end and the other end connected to the magnetic circuits 21a and 21b, respectively.
  • the two ends connected to the magnetic circuits 22b and 22a, respectively, and the connection point between the magnetic circuits 21a and 22b and the connection point between the magnetic circuits 21b and 22a, respectively.
  • a magnetic circuit 2 an exciting means 3 arranged to generate a magnetic flux in the magnetic circuit 2, and an exciting drive means 7 for driving the exciting means 3.
  • each magnetic circuit is By exposing the formed core material to a magnetic field, the magnetic resistance of at least one of the magnetic circuits 21a, 22a, 21b, and 22b is changed, and the magnetic resistance is changed.
  • the magnetic equilibrium state is destroyed by the change of the magnetic field and the magnetic non-equilibrium state is developed, and the magnetic non-equilibrium state is generated, whereby the connection point between the magnetic circuits 21 a and 21 b and the magnetic field are formed.
  • the magnetic flux generated by the magnetic potential difference generated between the connection points of the circuits 22b and 22a is output as an electric signal in conjunction with the detected magnetic flux detected by the magnetic flux detecting means 4.
  • a magnetic detection method for detecting the detected magnetism in the magnetic field can be adopted.
  • Conventional magnetic sensors include semiconductor magnetic sensors (magnetic resistance elements, hall elements, and Hall ICs), diamagnetic sensors (ferromagnetic thin film elements, magnetic impedance elements), and coil pick-ups.
  • the backup sensor is classified into one (fluxgate magnetometer) and others.
  • the semiconductor magnetic sensor scratch although fit for strong magnetic detection, Ri insensitive der sensitivity of about 1 0 _ 2 G (Gauss), also large field Rakki between or worse element temperature characteristics.
  • Diamagnetic sensors have a sensitivity of 10 to 6 G, but are expensive because they require special manufacturing techniques and equipment using special materials.
  • the coil pickup sensor is designed to detect the change in magnetic flux by the electromotive force generated in the coil, but it is not possible to detect the static magnetic field (DC magnetic field) simply by winding the coil around the core.
  • DC magnetic field static magnetic field
  • a flux gate magnetometer was invented, and the sensitivity of the conventional magnetic sensor is about 10 to 6 G, which belongs to high sensitivity and is about the same as the diamagnetic magnetic sensor. .
  • the magnetic permeability of the magnetic core repeats a low permeability and a high permeability at high speed.
  • the magnetic permeability is low, and when not excited, the magnetic permeability is high.
  • the magnetic flux due to the detected magnetism does not concentrate or concentrates in the magnetic core in the flat-gate magnetometer.
  • the magnetic flux in the magnetic core becomes weaker or stronger.
  • an electromotive force is generated in the magnetic flux detection coil wound around the magnet core. Can detect magnetism.
  • the point of magnetic detection by this magnetometer is that the maximum value of the magnetic flux in the magnetic core that repeats strong and weak is the magnetic flux determined by the strength of the magnetic to be detected and the magnetic permeability of the magnetic core. There is no greater or lesser magnetic flux.
  • the magnetic flux passing through the magnetic flux detecting coil is due to the exciting coil (exciting means).
  • the detected magnetism serves to disrupt the magnetic balance of the magnetic bridge, and the magnetic flux leaking from the magnetic bridge is due to the exciting coil. Therefore, if the exciting force of the exciting coil is increased, the magnetic flux leaking from the magnetic prism to the magnetic flux detecting coil also increases, and the electromotive force of the magnetic flux detecting coil also increases. At this time, the magnetic flux can be much larger than the magnetic flux of the detected magnetism.
  • the magnetic sensor using the magnetic bridge of the present invention can be manufactured with much higher sensitivity than the conventional fluxgate magnetometer. Also, the accuracy will be higher.
  • the magnetic sensor using the magnetic prism of the present invention has much higher sensitivity and higher precision than the conventional magnetic sensor. Therefore, it enables the manufacture of a magnetic sensor whose price is the same as that of a conventional sensor.
  • the magnetic detection means 4 As the magnetic detection means 4, a detection coil produced by winding a polyurethane wire having a conductor diameter of 0.03 mm on a plastic pobin 3, 000 times was used. Furthermore, a matching circuit was formed by connecting both terminals of the detection coil at 2,200 pF so as to resonate at about 1 kHz.
  • the matching circuit is a circuit that matches the impedance and the frequency characteristics between the detection coil and the detection circuit 8, and is employed as necessary.
  • the equilibrium restoration coil was formed by winding a polyurethane wire with a conductor diameter of 0.1 mm around the detection coil pobin 20 times.
  • the excitation driving means 7 includes the oscillation circuit, the frequency dividing circuit, and the And an output circuit.
  • the output of the drive circuit was output via an amplifier through a variable resistor for amplitude adjustment. For this output, 500 Hz obtained by the frequency dividing circuit was output as a rectangular wave. Note that the output of sine-wave current output increases the accuracy, but the magnetic flux detection means 4 and the detection circuit 8 have twice the current flowing through the coils used as the excitation means 3a and the excitation means 3b.
  • the output is a rectangular wave because the frequency of 1 kHz is selectively detected, and the accuracy is reduced with a square wave, but the circuit can be simplified. Since the output current of the drive circuit can be within 10 mA, a general-purpose operational amplifier can be used.
  • the detection circuit 8 was composed of a matching circuit, a phase detection circuit, and a low-pass filter circuit.
  • the detection coil used as the above-described magnetic flux detection means 4 makes the detected signal resonate at about 1 kHz, so that even if the exciting current output by the output circuit is a square wave, The power close to the sine wave of H z is input to the detection circuit 8. If the current output by the output circuit is a sine wave, power closer to a sine wave can be obtained.
  • the phase detection circuit performs phase detection of the signal obtained from the detection coil by using the 1 kHz reference signal obtained by the frequency dividing circuit.
  • the reference signal is a digital signal
  • the phase detection circuit is an amplification circuit whose amplification is positive when the signal is at a high level H and negative when the signal is at a low level L.
  • the output voltage of the phase detection circuit indicates a positive voltage when the detected current flows in a certain direction and a negative voltage when the detected current flows in the opposite direction.
  • the magnitude of the voltage is approximately proportional to the magnitude of the detected current.
  • the signal waveform output from the phase detection circuit has a pulsating flow containing a large amount of 2 kHz components. By smoothing this signal, a waveform close to the current to be detected can be obtained. Even though the detected current is DC, it actually contains a certain amount of AC component because its magnitude fluctuates.
  • the frequency up to which this AC component can be detected depends on the performance of the product required for the current sensor of the present invention, but in this example, the excitation current was set to 500 Hz. Up to about 5 Hz, which is about 100, detection can be performed with sufficiently high accuracy compared to conventional sensors of the same type.
  • the current sensor of the present invention is intended to detect both DC and commercial frequencies, setting the exciting current to about 10 kHz enables sufficient detection up to about 100 Hz, which satisfies the requirements.
  • the mouth-to-pass filter circuit has a frequency-dependent transfer characteristic and, of the signals obtained by the preceding phase detection circuit and rectifier circuit, passes low frequency components from DC to the frequency range to be detected, and detects the frequency to be detected. It is used for the purpose of not passing high frequency components exceeding the range. Circuits using only elements and circuits using active elements can be manufactured. In this example, a simpler resistor and capacitor-based smoothing circuit was used.
  • the output of this circuit reflects the magnitude and waveform according to the current to be detected.
  • a method is employed in which the output of the single-pass filter circuit is fed back by the balance restoration current control circuit 9 so that the balance restoration current is automatically determined. Feedback was multiplied by 100.
  • the balance restoration current may be the detected current 1 Z 20. Therefore, in the present embodiment for detecting up to 1 A, the output capability was set to 50 mA.
  • the detection value output circuit 10 is configured by connecting a resistor in series with the balance restoration coil 5 and amplifying the voltage generated at both ends of the resistor by the amplifier. .
  • the output of this circuit reflects the magnitude and waveform according to the current to be detected.
  • Table 1 shows the detection results when the detected current is 10 mA or less.
  • Table 2 shows the detection results when the current to be detected is 100 mA or less. As the detected current increases, the accuracy is also stable, exceeding 100 mA, and The full-scale error up to 1 A, the full-scale example, did not exceed 0.2%. In addition, the detection of 10 was confirmed when the value of the circuit element was changed so that the full scale became 10 mA.
  • the magnetic state of the magnetic prism is a magnetic equilibrium state, so that when the current to be detected is zero, the magnetic flux passing through the magnetic flux detecting means 4 is zero.
  • mag-amp type the magnetic multivibrator type
  • magnetic flux reversal time difference type use a soft magnetic material core near the saturation magnetic flux density with the alternating current of the coil wound around this core.
  • the current to be detected is detected by pre-exciting the magnetized magnetic field, and the magnetic flux is deflected by the current to be detected. It is always occurring.
  • the magnetic state of the magnetic bridge is a magnetic equilibrium state
  • the magnitude and polarity component of the detection result can all be regarded as information of the current to be detected.
  • the frequency component of the detection result is the frequency component information of the exciting magnetic flux.
  • the excitation magnetic flux must be strengthened to reach the magnetic saturation region, so the excitation magnetic flux becomes strong reaching the magnetic saturation region.
  • the exciting magnetic flux in the present invention may be weak, not more than the maximum magnetic permeability, and makes the difference in the information amount of the detected current more remarkable. As a result of such characteristics, the present invention can detect a very small current of 100 A, which could not be detected by the conventional method.
  • the detection sensitivity is improved in proportion to the number of turns, which is the number of times of the conductor to be detected.
  • the common feature is that the higher the number of turns of the wire to be detected, the higher the sensitivity will be. Therefore, a method of using this characteristic to increase the number of turns of the wire to be detected in order to detect a smaller current.
  • the exciting magnetic flux is constantly generated in the magnetic circuit wound around the conductor to be detected. An electromotive force is generated in the detected conductor by the excitation magnetic flux, and a current due to the electromotive force is superimposed on the detected current.
  • the current superimposed on the current to be detected by the excitation magnetic flux becomes relatively large as the current to be detected is small, and is harmful and harmful to the current to be detected.
  • the number of turns of the wire to be detected should be increased.
  • the problem that the current superimposed on the signal becomes large cannot be solved. That is, in the conventional methods represented by the mag-amp type, the magnetic multivibrator type and the magnetic flux reversal time difference type, there is a limit to the improvement of the sensitivity by increasing the number of turns of the detection target wire.
  • one of the windows formed by being surrounded by the outer leg magnetic circuit and the middle leg magnetic circuit as shown in FIG. Penetrates to this side, and further penetrates from the opposite side to the near side from the other window formed by being surrounded by the outer leg magnetic circuit and the middle leg magnetic circuit.
  • the excitation magnetic flux does not exist in the magnetic equilibrium state and the magnetic rebalancing state in the middle leg magnetic circuit around which the detected wire is wound.
  • no current superimposed on the current to be detected is generated by the magnetic flux.
  • even in the magnetic sub-equilibrium state there is only a very small exciting magnetic flux, so the current superimposed on the current to be detected by the exciting magnetic flux is extremely small.
  • a minute current can be detected even with a single penetration of the detected wire.
  • the number of turns of the detected wire can be easily increased by the above-described characteristics. Because of this, it is possible to detect a smaller current, and there is an advantage that no harmful noise is generated in the current to be detected.
  • the excitation magnetic flux according to the present invention can be operated at the maximum permeability or less of the magnetic material, so that the energy required for excitation can be reduced and an energy-saving current sensor can be realized.
  • the driving frequency of the excitation means can be increased to a high frequency of several hundred kHz, so that a frequency of up to several kHz is applied.
  • the detection current can be detected, and it is possible to detect a mixed current of DC and AC from DC to several kHz.
  • the magnetic flux of the middle leg magnetic circuit is extremely smaller than the magnetic flux of the outer leg magnetic circuit, and thus the mechanical dimensions of the middle leg magnetic circuit and the outer leg magnetic circuit are reduced.
  • the effect of the magnetic resistance of the middle leg magnetic circuit due to the magnetic flux remaining in the middle leg magnetic circuit is negligible and negligible. There is no problem.
  • the magnetic flux generated in the magnetic bridge due to the current to be detected is extremely small.
  • a tap is provided in the middle of the winding of the balance restoration coil, and when the current to be detected is small, the area where the number of turns is small is used, and as the current to be detected increases.
  • a magnetic sub-equilibrium state can be realized with a balanced restoring current limited within a predetermined range, and the output of a balanced restoring current control circuit for flowing the balanced restoring current is obtained. It is possible to detect a wide range of current to be detected from a small current to a large current with the same magnetic bridge while keeping the capability within a predetermined range.
  • the present invention is based on the fact that the magnetic properties of the middle leg magnetic circuit are extremely small in the magnetic sub-equilibrium state of the magnetic bridge, so that the magnetic characteristics of the middle leg magnetic circuit are improved in the accuracy and sensitivity of the current sensor of the present invention.
  • the effect on the environment is extremely small. That is, even if the magnetic resistance of the middle leg magnetic circuit changes due to the deformation of the middle leg magnetic circuit, the influence on the accuracy and sensitivity is extremely small.
  • the circuit can be deformed so that the conductor to be detected easily penetrates.
  • the middle leg magnetic circuit can be opened and closed by detaching it, or it can be attached and detached, and the current can be detected by clamping to the already detected wiring.

Abstract

本発明は、少なくとも100μA領域の感度と80dBのダイナミックレンジを可能とし、かつ構造も簡潔な電流センサーと電流検出方法を提供することを課題とし、この課題解決のための電流センサーの構成を、両端を持つ1つの中脚磁気回路1と、前記中脚磁気回路1の一方端と他方端とに各々が接続する2つの外脚磁気回路2a,2bと、前記外脚磁気回路2aに配設されている励磁手段3a並びに前記外脚磁気回路2bに配設されている励磁手段3bと、前記中脚磁気回路1に配設されている磁束検出手段4と、前記励磁手段3a,3bをそれぞれ駆動する励磁駆動手段7と、前記磁束検出手段4に接続され当該磁束検出手段4に検出される被検出磁束と連動した電気信号を出力する検出回路8とを有することとしたものである。

Description

明糸田書 磁気プリ ッ ジ型電流センサー及び磁気プリ ッ ジ型電流検出方法、 並びに、 前記センサ一と検出方法に用いる磁気プリ ッ ジ 技術分野
本発明は、 交流電流では周知の C T ( Current Transformer) の 如く 、 被検出導線に接続する こ となく絶縁状態のままで電流を測定 する電流センサ一に係 り 、 特に、 周波数特性においては直流も測定 でき、 電流値においては 1 0 0 i A領域の微小電流が測定できる電 流センサ一に関する。 また、 本発明は上記電流センサ一及び電流検 出方法に用いる磁気ブリ ッ ジにも関する。
発明の背景
周知の C Tは、 被検出導線と絶縁状態のままで測定できる長所を もっているが、 直流やその近傍の周波数の交流電流、 ならびに、 直 流と交流とが重畳した脈流電流に使用する こ とができない。そこで、 C Tに代わる絶縁型の直流電流センサ一と して、 ホール素子型、 マ グアンプ型、 磁気マルチバイ ブレータ一型、 磁束反転時間差型 (例 えば、 特開平 1 0 — 1 0 1 6 1 号、 同 1 0 - 3 3 2 7 4 5 号参照)、 磁路チヨ ッ ビング型 (例えば、 特開 2 0 0 0 — 5 5 9 4 0 号参照) 等が提案されている。
ホール素子型は、 被検出導線が貫通する磁気コアの一部にギヤ ッ プを形成し、 当該ギャ ッ プにホール素子を備え、 当該ホール素子の 電気特性値の変化か ら被検出導線に流れる電流値を検出しよ う とす る ものである。 マグアンプ型と磁気マルチバイ ブレー夕一型とは、 磁気コ アを交流電流で飽和磁束密度付近まで予め励磁し、 これを被 直流電流で偏磁させる こ とによ り 生じる交番磁束の飽和に達する時 間差を利用 して、 被検出導線に流れる電流値を検出しょう とする も のである。 以上の 3 つの型は、 被検出導線の卷回数 1 回あた り の電 流感度が数 A以上には適しているが、 数 m Aの電流は測定する こ と ができない。
一方、 磁束反転時間差型は、 被検出導線が貫通する磁気コ アに、 保持力を超える三角波状の励磁電流を流し、 磁気コアの磁束が一方 向に向いてから他方向に反転するまでの時間と、 他方向を向いてか らー方向に反転するまでの時間とを比較して被検出導線の直流電流 を検出 しょう とする ものであ り 、中でもフィ ー ドバッ ク をする型(前 記特許文献 2参照) においては、 複数の磁気コ アを用い、 単一の磁 気コアを卷回するコイルや複数の磁気コアにまたがって巻回するコ ィルなどが複数存在するため、 構造が複雑であ り 、 製品間での性能 の均一性に欠ける。 また、 フィ ー ドパッ ク をしない型 (前記 ^開平 1 0 - 1 0 1 6 1 号参照) では、 被検出導線の巻回数 1 回あた り の 電流感度が 1 0 0 m A程度で、 かつダイナミ ッ ク レンジも小さい。 磁路チヨ ッ ピング型は、 被検出導線が貫通する磁気コアの一部を 被検出導線が発生する磁束と直角方向の磁束で飽和し、 磁気コアの 磁気抵抗を増大させる こ とを時系列で断続的に行う。 すなわち、 被 検出導線が発生する直流磁束をチヨ ッ ビングし交流磁束化する こ と によって直流磁束の値、 すなわち被検出導線に流れる直流電流の値 を測定する ものであって、 よ く 知 られているチヨ ッパーアンプと基 本原理を一にする ものである。 この型は、 コイルの卷回方法、 磁気 コ アの形状ともに他の型に比較する と、 極めて複雑である。
この他にも、 飽和型 (ク レ一マ型)、 零磁束型と呼ばれる ものがあ るが、 いずれも大電流検出用であ り 、 数 m A領域の測定は困難であ る。
以上の通り 、 直流電流センサーの従来技術では、 被検出導線の卷 回数 1 回あた り の電流感度が悪く 、 また比較的感度のよいものは構 造が極めて複雑である という のが、 現状である。
と ころが、 近年、 環境保全が社会問題とな り 、 太陽光発電、 燃料 電池など直流電流の重要性が高ま り 、 電気自動車、 ハイ ブリ ッ ド 自 動車など、 二次電池を使用 した直流電力機器に対する需要の増大が 見込まれている。 また、 省エネルギーの観点から、 従来のシャ ン ト 抵抗器を使用 している分野では、 エネルギー消費が皆無に近い磁界 による電流検出が望ま しい。 さ ら に、 高電圧電子管等で使用される 直流高電圧回路においては、 電圧が高い分、 電流が小さ く なる傾向 にあるが、 このよう な回路では絶縁状態で高圧回路の電流を測定す る こ とができる と好都合なこ とが多い。
しかし、 従来技術には、 前記要請に対応できる感度とダイ ナミ ツ ク レンジをもち、 かつ安価に製造できて汎用的な普及が可能な電流 センサーおよび電流検出方法はなかった。
発明の開示 上記の課題を解決する こ とを目的と してなされた本発明電流セン サ一に係る請求項 1 の発明の構成は、 両端を持つ 1 つの中脚磁気回 路 1 と、 前記中脚磁気回路 1 の一方端と他方端とに各々が接続する 2 つの外脚磁気回路 2 a, 2 b と、 前記外脚磁気回路 2 a に配設さ れている励磁手段 3 a並びに前記外脚磁気回路 2 b に配設されてい る励磁手段 3 b と、 前記中脚磁気回路 1 に配設されている磁束検出 手段 4 と、 前記励磁手段 3 a , 3 b をそれぞれ駆動する励磁駆動手 段 7 と、 前記磁束検出手段 4 に接続され当該磁束検出手段 4 に検出 される被検出磁束と連動した電気信号を出力する検出回路 8 とを有 する こ とを特徴とするものである。
そして、 本発明電流センサーに係る請求項 2 の発明の構成は、 請 求項 1 の発明の構成において、 前記中脚磁気回路 1 および外脚磁気 回路 2 a'および外脚磁気回路 2 b との少なく ともそのいずれか一つ に導線を卷回配置した平衡復元コイル 5 と、 前記検出回路 8 から出 力する電気信号に基づき、 前記磁束検出手段 4 に検出される被検出 磁束が減少するよう に前記平衡復元コイル 5 に流す平衡復元電流を 制御する平衡復元電流制御回路 9 と、 前記平衡復元電流を測定し出 力する検出値出力回路 1 0 とを有する こ とを特徴とするものである 次に、本発明電流検出方法の一つである請求項 3 の発明の構成は、 励磁手段 3 a によ り 中脚磁気回路 1 に流れよう とする交番磁束であ る第 1 の励磁磁束を発生させ、 かつ、 励磁手段 3 b によ り 中脚磁気 回路 1 に流れよう とする交番磁束である第 2 の励磁磁束であって大 きさが第 1 の励磁磁束と同じであ り磁束の方向が第 1 の励磁磁束と 反対である励磁磁束を発生させる こ とによって、 磁気平衡状態を発 現させ、 外脚磁気回路 2 a と中脚磁気回路 1 とによ り包囲される こ とよって形成される窓部および外脚磁気回路 2 b と中脚磁気回路 1 とによ り包囲される こ とによって形成される窓部との少なく と もそ のいずれか一方の窓部に被検出導線 6 を貫通させ、 被検出導線 6 に 被検出電流を流すこ とによって外脚磁気回路 2 a および外脚磁気回 路 2 b の磁気抵抗を変化させ、 当該磁気抵抗の変化によって前記磁 気平衡状態を崩して磁気非平衡状態を発現させ、 前記磁気非平衡状 態が発現する こ とによ り 中脚磁気回路 1 に発生する磁束を、 磁束検 出手段 4 によ り検出される被検出磁束と連動した電気信号を出力す る検出回路 8 によって検出する こ とによって、 被検出導線 6 に流れ る被検出電流を検出する こ とを特徴とする ものである。
また、 本発明電流検出方法の他の一つである請求項 4 の発明の構 成は、 励磁手段 3 a によ り 中脚磁気回路 1 に流れよう とする交番磁 束である第 1 の励磁磁束を発生させ、 かつ、 励磁手段 3 b によ り 中 脚磁気回路 1 に流れよう とする交番磁束である第 2 の励磁磁束であ つて大きさが第 1 の励磁磁束と同じであ り磁束の方向が第 1 の励磁 磁束と反対である励磁磁束を発生させる こ とによって、 磁気平衡状 態を発現させ、 外脚磁気回路 2 a と中脚磁気回路 1 とによ り 包囲さ れる こ とよって形成される窓部および外脚磁気回路 2 b と中脚磁気 回路 1 とによ り包囲される こ とによって形成される窓部との少なく ともそのいずれか一方の窓部に被検出導線 6 を貫通させ、 被検出導 線 6 に被検出電流を流すこ とによって外脚磁気回路 2 aおよび外脚 磁気回路 2 b の磁気抵抗を変化させ、 前記磁気抵抗の変化によって 前記磁気平衡状態を崩して磁気非平衡状態を発現させ、 外脚磁気回 路 2 a および外脚磁気回路 2 b の磁気抵抗が変化した状態において 被検出導線 6 を貫通させる こ とによ り被検出導線 6 が巻回された磁 気回路に発生する磁束と同じ大きさであって前記磁束と反対方向で ある磁束を発生させる電流である平衡復元電流を、 被検出導線 6 を 貫通させた窓部と同一の窓部を貫通させて巻回した平衡復元コイル 5 に流し、 平衡復元電流を平衡復元コイル 5 に流すこ とによって、 外脚磁気回路 2 aおよび外脚磁気回路 2 b の磁気抵抗が変化した状, 態において中脚磁気回路 1 に発生する磁束を減少させて磁気再平衡 状態を発現させ、 磁気再平衡状態にある ときに平衡復元コイル 5 に 流れる平衡復元電流を検出する こ とによって被検出導線 6 に流れる 被検出電流を検出する こ とを特徴とする ものである。
図面の簡単な説明
図 1 は本発明磁気ブリ ッ ジ型電流センサ一 (以下、 本発明電流セ ンサ一 とい う) において平衡復元コイルを設けない例の要部の斜視 図、 図 2 は本発明電流センサ一において平衡復元コイルを設けた例 の要部の斜視図、 図 3 は被検出電流が流れている ときの本発明電流 センサーにおける各部の波形図であって、 (a)は励磁電流、 (b )は外 脚磁気回路の磁界、 (c )は外脚磁気回路の磁気抵抗、 (d )は中脚磁気 回路の磁束、 (e )は磁束検出手段 (検出コイル) に発生する起電力、 ( ί )は磁束検出手段 (検出コイル) に発生した起電力のそれぞれの基 本波形を示す波形図、 図 4 は本発明電流センサーにおいて、 被検出 電流が流れていないときの等価磁気回路図、 図 5 は本発明電流セン サ一において、 被検出電流が流れている ときの等価磁気回路図、 図 6 は本発明電流センサーにおいて、 被検出電流が流れ、 かつ平衡復 元電流が流れている ときの等価磁気回路図、 図 7 は軟性磁性材料の 磁界対透磁率特性図、 図 8 は本発明電流センサ一の構成例を示す回 路ブロ ッ ク 図、 図 9 は本発明電流センサ一の応用例の一例を示す斜 視図、図 10 は被検出導線が一方の外脚磁気回路と中脚磁気回路とで 囲まれた片方の窓のみを貫通している場合を例示した本発明電流セ ンサ一の要部の斜視図、図 11 は図 5 又は図 6 に示した本発明センサ —の等価磁気回路と等価な磁気回路、 図 12 は図 11 の等価磁気回路 と等価な磁気回路図、 図 13 は図 12 の等価磁気回路と等価な磁気回 路図、 図 14 は図 13 の等価磁気回路と等価な磁気回路図、 図 15 は図 14 の等価磁気回路と等価な磁気回路図、 図 16 は図 15 の等価磁気回 路を実体的に表わした本発明電流センサ一の他の例の要部の斜視図 図 17 は図 16 の本発明センサ一の他の例をよ り実際的に示した例の 要部の斜視図、 図 18 は図 15 の等価磁気回路と等価な磁気回路図、 19 は図 18 の等価磁気回路を実体的に表わした本発明電流センサー の例を示す斜視図、 図 20 は図 17 の本発明センサ一の例の励磁手段 を配置する磁気回路 2 の位置について説明するための要部の拡大平 面図、 図 21 は本発明電流センサーにおいて、 励磁コイルと平衡復 元コイルの配置例を説明するための斜視図、図 22 は本発明電流セン サ一の原理的構成を説明するための一例の斜視図、図 23 は励磁手段 (励磁コイル) 3 を 2 つ持つ本発明磁気プリ ッ ジを用いた本発明磁 気センサ一の第一例の斜視図、 図 2 4 は励磁手段 (励磁コイル) を 1 つ持つ本発明磁気ブリ ッ ジを用いた本発明磁気センサ一の第二例の 斜視図、図 2 5 は磁気ギヤ ッ プを持つ本発明磁気センサ一の例の側面 図、図 2 6 は接近した双極の磁気検出に適した形状の本発明磁気セン サ一の例の斜視図、図 2 7 は小型化に適した本発明磁気センサ一の例 の斜視図、図 2 8 は磁束検出手段 4 の配設態様例を模式的に示した図 図 2 9 は磁気回路 1 が空気などの非磁性材で形成された磁気センサ 一の一例の斜視図である。
発明を実施するための最良の形態
次に、 本発明電流センサ一の実施の形態例について、 その作用 と ともに図面を参照して説明する。
図 1 は請求項 1 に係る発明の実施例である磁気プリ ッ ジ型電流セ ンサ一を模式的に示した斜視図である (但し、 励磁駆動手段 7 と検 出回路 8 とは図 1 では省略している)。
図 1 に例示した本発明電流センサ一は、 両端を持つ 1 つの中脚磁 気回路 1 と、 前記中脚磁気回路 1 の一方の端と他方の端とに各々が 接続する 2 つの外脚磁気回路 2 a と 2 b とを有し、 中脚磁気回路 1 には磁束検出手段 4 を有し、 外脚磁気回路 2 a には励磁手段 3 a を 有し、 外脚磁気回路 2 b には励磁手段 3 b を有する。 励磁手段 3 a および励磁手段 3 b はいずれも交番磁界を発生させるよ う に形成さ れている。 本発明において、 前記の構成を、 以下では 「磁気ブリ ツ ジ」 と呼ぶこ とがある。 また、 上記磁気ブリ ッ ジの各磁気回路 1 , 2 a , 2 b は、 フェライ ト、 珪素鋼板、 アモルフ ァス、 パーマロイ 等の磁性材料によ り 形成されたものであ り 、 本明細書においては上 記磁気回路を形成した磁性体を 「コア材」 又は 「コ ア」 と呼ぶこ と もある。 なお、 図 1 には表していないが、 本発明電流センサーは、 さ ら に検出回路 8 を有する。
上記の励磁手段 3 aおよび励磁手段 3 b は、 図 1 に示す巻回導線 (以下 「コイル」 という) に、 交番電流を通電する方法、 或は、 交 番磁界を発生させる方法のいずれの励磁手法であってもよい。 交番 磁界の発生は、 永久磁石本体またはその磁路を回転または振動させ る方法、 永久磁石と磁性流体とを用い磁性流体を変流させる方法、 永久磁石または電磁石の磁路の磁気抵抗を変動させる方法などを必 要に応じて選択してよい。
磁束検出手段 4 には、 ホール素子や磁気ィ ンピ一ダンス素子等の 磁気検出素子を用いてもよい。 磁束検出手段 4 に磁気検出素子を用 いる ときは、 中脚磁気回路の一部にギャ ッ プを形成し、 当該ギヤ ッ プに磁気検出素子を配設する必要があるが、 図 1 に示すよう に中脚 磁気回路 1 を卷回したコイル (以下 「検出コイル」 という。) を磁束 検出手段とする と、 磁束検出手段 4 の構成が簡単になる。
検出回路 8 は、 前記の磁束検出手段 4で検出された磁束を電気信 号と して出力する こ とができる ものであれば、 何でもよい。 例えば、 検出の 目的が低精度である ときは、 磁束検出手段 4 に検出コイルま たは磁気検出素子を用い、 検出コイルまたは磁気検出素子が磁束を 検出する こ とよって検出コイルに発生する起電力、 または、 磁気検 出素子に発生する電位差等を出力するだけの回路、 すなわち、 検出 コイルまたは磁気検出素子と出力端が単なる導線でつながつている だけの回路でよい。
また、 検出回路 8 は、 抵抗器やコ ンデンサーなどの受動素子ゃダ ィ ォ一 ドなどの能動素子が一個以上つながっ た回路、 オペアンプな どを使ったアクティ ブ回路等であってもよい。 すなわち、 検出回路
8 は需要者の用途によっ て自 由に使えるよ う に何も手を加えないも のや、 検出コイルまたは磁気検出素子の動作安定化のための若干の 素子をつける程度のものから、 検出コイルに発生する起電力または 磁気検出素子に発生する電位差等を表示する表示器のよう な被検出 電流が直読できる程度の信号処理を、 検出コイルに発生する起電力
、 または、 磁気検出素子に発生する電位差等に施した構造のものま でのさまざまであってよい。
被検出導線 6 に流れる被検出電流の測定は、 一方の外脚磁気回路
2 a と中脚磁気回路 1 とによ り包囲されて形成される窓部、および、 他方の外脚磁気回路 2 b と前記中脚磁気回路 1 とによ り包囲されて 形成される窓部の、 少なく ともそのいずれか一方の窓部に被検出導 線 6 を貫通させる こ とによって行う。
図 1 においては、 被検出導線 6 は、 外脚磁気回路 2 a と中脚磁気 回路 1 とによ り包囲されて形成された一方の窓部を手前側か ら向こ う側へ貫通し、 さ ら に、 外脚磁気回路 2 b と中脚磁気回路 1 とによ り包囲されて形成される他方の窓部を向こ う側か ら手前側に貫通す るよう に配置されている。 電磁気的には、 外脚磁気回路 2 a 又は 2 b と中脚磁気回路 1 とによ り 包囲されて形成される窓部を有する磁 気回路における導線の巻回数は、 その導線が当該窓部を貫通する回 数に等しい。
したがって、図 1 に示すよう に被検出導線 6 が配置されたときは、 被検出導線 6 は電磁気的に中脚磁気回路 1 を 1 回卷回したこ とにな り、 これは外脚磁気回路 2 a と外脚磁気回路 2 b とを一括して 1 回 卷回している こ と と等価である。 また、 図 1 0 に示すよう に、 被検出 導線 6 がー方の窓だけを手前側から向こ う側に貫通するよう に配置 されたときは、 被検出導線 6 は外脚磁気回路 2 a を電磁気的に 1 回 卷回したこ とになるが、 これは中脚磁気回路 1 と外脚磁気回路 2 b とを一括して 1 回卷回している こ と と等価である。
次に、 上記で説明した 「磁気ブリ ッ ジ」 における磁気状態につい て説明する。
励磁手段 3 a によ り外脚磁気回路 2 a を励磁する と、 外脚磁気回 路 2 a か ら 中脚磁気回路 1 に流入する交番磁束 (以下、 「第 1 の励磁 磁束」 という。) が発生する。 そして、 励磁手段 3 b によ り外脚磁 気 Hi路 2 b を励磁する と、 外脚磁気回路 2 bか ら 中脚磁気回路 1 に 流入する交番磁束 (以下、 「第 2 の励磁磁束」 という 。) が発生する。 この場合において、 第 1 の励磁磁束と第 2 の励磁磁束とを同じ大き さでかつ反対向きとなるよう に'、 励磁手段 3 a と励磁手段 3 b の起 磁力を決定し励磁手段 3 a と励磁手段 3 b とによ り励磁する と、 第 1 の励磁磁束と第 2 の励磁磁束とは大きさは同じで向きが反対であ る こ とによ り 、 中脚磁気回路 1 に流入する磁束の総和は零となる。 よっ て、 本明細書では、 以下、 第 1 の励磁磁束と第 2 の励磁磁束 とを、 同じ大きさで向きを反対とする条件を 「平衡磁束条件」 とい い、 この平衡磁束条件を発現するための励磁手段 3 aおよび励磁手 段 3 b の励磁条件を 「平衡励磁条件」 といい、 第 1 の励磁磁束と第 2 の励磁磁束とが同 じ大きさで向きが反対であるために中脚磁気回 路 1 に流入する磁束の総和が零となっている状態を「磁気平衡状態 J という。
磁気ブリ ッ ジが磁気平衡状態にある ときは、 例えば、 中脚磁気回 路 1 の任意の一点である中脚磁気回路 1 の一方端をみる と、 流入す る磁束は第 1 の励磁磁束と第 2 の励磁磁束のみであ り その総和は零 であるため、 任意の一点である一方端においては流入する磁束の総 和は既に零となっている。 このため当該任意の一点に接続された中 脚磁気回路 1 の磁束も必然的に零とな り 、零以外の値を採り えない。 すなわち、 本発明においては磁気プリ ッ ジが磁気平衡状態にある と きは、 中脚磁気回路 1 内には磁束は存在しない こ とにな り 、 磁束検 出手段 4 によって磁束が検出される こ とはない。
磁気ブリ ッ ジの平衡状態の実現は、 励磁手段 3 a と励磁手段 3 b の起磁力が磁束の平衡均衡条件を満たすよう に駆動回路を駆動させ る こ とによって行っ てもよいが、 外脚磁気回路 2 a と外脚磁気回路
2 b とを、 それらの材料を同一の磁性材料で同一寸法に形成し、 励 磁手段 3 a と励磁手段 3 b をいずれもコイルで構成して両励磁手段
3 a と 3 b のコイルの卷回数を同一とする一方、 励磁手段 3 a のコ ィルの卷回の向きと励磁手段 3 b のコイルの卷回の向きを逆向きに 設定し、 励磁手段 3 a のコイルと励磁手段 3 b のコイルとを直列に 配置して交番電流を通電する こ とによ り 、 電流値と位相は同一とな るので、 簡単に磁気プリ ッ ジの平衡状態を実現する こ とができる。 磁気ブリ ッ ジが磁気平衡状態にあ り 、 被検出導線 6 が外脚磁気回 路 2 a と中脚磁気回路 1 とによ り 包囲されて形成される窓部および 前記外脚磁気回路 2 b と前記中脚磁気回路 1 とによ り包囲されて形 成される窓部との少なく と もそのいずれか一方の窓部に貫通するよ う に配置されている場合において、 被検出導線 6 に被検出電流が流 れる と、 磁気プリ ッ ジに新たな磁束が発生する。
図 1 において、 被検出電流が向こ う側か ら手前側 (以下、 この向 きを 「正方向」、 反対向きを 「負方向」 という 。) に流れている とす れば、 被検出電流によ り 中脚磁気回路 1 に生じる磁束は、 上から下 向きになる。 正方向の被検出電流による中脚磁気回路 1 の磁束は、 中脚磁気回路 1 の上端で外脚磁気回路 2 a および外脚磁気回路 2 b か ら 当該上端に集合するよ う に入 り 、 中脚磁気回路 1 を上か ら下に 流れ、 中脚磁気回路 1 の下端では外脚磁気回路 2 aおよび外脚磁気 回路 2 b に広がるよ う に出て行く 。 さ ら にこの磁束は外脚磁気回路 2 aおよび外脚磁気回路 2 b を下から上に向かって流れる。
磁気プリ ッ ジにおいて平衡励磁条件が満たされてお り、 外脚磁気 回路 2 a およぴ外脚磁気回路 2 b に時計回 り方向の磁束が流れてい る場合には、 外脚磁気回路 2 a においては、 被検出電流による磁束 と励磁手段 3 a の励磁磁束とは同一方向であ り、 磁束は増大する。 一方、 外脚磁気回路 2 b では、 被検出電流による磁束と励磁手段 3 b の励磁磁束とは逆方向であ り 、 磁束は減少する。 磁気プリ ッ ジ内における最大の磁束密度が、 仮に当該磁気プリ ッ ジを組成する磁性材料の最大透磁率になる磁束密度以下であった場 合は、 外脚磁気回路 2 a においては磁束が増大したこ とによ り透磁 率が大き く な り 当該磁気回路の磁気抵抗が下がる。 一方、 外脚磁気 回路 2 b においては、 磁束が減少したこ とによ り透磁率が小さ く な り 当該磁気回路の磁気抵抗が上がる。 外脚磁気回路 2 a の磁気抵抗 が下がる と第 1 の励磁磁束は大き く な り 、 外脚磁気回路 2 b の磁気 抵抗が上がる と第 2 の励磁磁束は小さ く なる。 この結果、 平衡磁束 条件が満たされなく な り、 中脚磁気回路 1 に磁束が発生する。 以上よ り 、 中脚磁気回路 1 を通る磁束は、 被検出電流が零のとき は零であ り 、 被検出電流が大き く なれば磁気抵抗の変化も大きく な り 中脚磁気回路 1 を通る磁束も大きく なる。 つま り 、 中脚磁気回路 1 の磁束の大きさは、 被検出電流の大きさ に比例する。 そして、 磁 束検出手段 4 がコイルである ときは中脚磁気回路 1 に発生する磁束 は磁束検出手段 4 に起電力を発生させ、 また、 磁束検出手段 4が磁 気検出素子である ときは磁束検出手段 4 に電位差等を発生させ、 磁 束検出手段 4 に発生する起電力、 または、 電位差等の大きさは中脚 磁気回路 1 に発生する磁束の大きさに比例する。
磁気プリ ッ ジは電磁的に中脚磁気回路 1 を基準に対称であるため 外脚磁気回路 2 aおよび外脚磁気回路 2 b に反時計回り方向に磁束 が流れている場合にも、 上記例と同じ結果が生じる。
この特性は、 磁気プリ ッ ジ内の最大磁束密度が最大透磁率以下で ある場合は、 励磁磁束の 1 周期で中脚磁気回路 1 の磁束は 2 周期の 変化をする こ とを示す。 また、 磁気ブリ ッ ジ内の最大磁束密度が最 大透磁率を超える場合は、 励磁磁束の 1 周期で中脚磁気回路 1 の磁 束は 4周期変化する成分が含まれてく るが、 いずれの場合も、 中脚 磁気回路 1 には磁性材料の磁界対透磁率特性が非直線であるために さ ら に高次の高調波を含んだ磁束が生じる。
検出回路 8 によ り 中脚磁気回路 1 に発生する磁束を磁束検出手段 4 に検出される磁束に連動する電気信号と して出力する こ とによ り 被検出電流が検出される。検出回路 8 の出力を表示器に接続する と、 当該表示器によって検出回路 8 が出力する電気信号の値を直読でき る。 検出回路 8 の出力は、 前記表示器による表示と併行して或は単 独でコ ンピュータ等に検出デ一夕 と して格納した り伝送する こ と も できる。
次に、 請求項 2 の本発明電流センサー、 および、 請求項 4 の本発 明電流検出方法の発明について説明する。
先に述べた電流検出において、 平衡励磁条件が満たされている場 合であっても、 被検出導線 6 に被検出電流が流れている と、 磁気ブ リ ッ ジの磁気抵抗が変化し、 磁気プリ ッ ジにおける磁気平衡状態は 崩れている。 したがって、 磁気ブリ ッ ジにおいて被検出導線 6 を卷 回した位置の磁気回路に、 磁束を発生させる励磁手段を用いて励磁 を行い、 磁気ブリ ッ ジの磁気平衡状態を崩している被検出電流によ つて発生する磁束を零にすれば、 磁気プリ ッジは再び磁気平衡状態 となる。 本発明では、 被検出電流によ り崩れた磁気ブリ ッ ジの磁気 平衡状態を再び平衡状態にしょう とする こ とを、 以下 「平衡復元」 といい、 平衡復元によ り再び磁気状態が平衡状態になっている状態 を 「磁気再平衡状態」 という こ と とする。
本発明において、 図 2 に例示した平衡復元コイル 5 は、 磁気プリ ッジにおいて被検出導線 6 を卷回した位置の磁気回路に磁束を発生 させる励磁手段であ り 、 磁気再平衡状態を発現させる手段である。 図 2 においては、 被検出導線 6 は中脚磁気回路 1 又は外脚磁気回路 2 a と外脚磁気回路 2 b とを一括して卷回したのと等価であるので. 平衡復元コイル 5 は中脚磁気回路 1 に設けられている。 また、 図 1 0 の例においては、 被検出導線 6 は外脚磁気回路 2 a を卷回している ので、 平衡復元コイル 5 は外脚磁気回路 2 a に設けられている。 磁束の大きさが被検出電流による磁束と同一で磁束の向きが被検 出電流による磁束とは反対である磁束を発生させる電流 (以下 「平 衡復元電流」 という 。) が平衡復元コイル 5 に流れる と、 被検出導線 6 に流れる被検出電流によ り磁気平衡状態が崩れた磁気プリ ッ ジの 磁気状態は平衡復元する。
被検出電流と平衡復元電流との関係を具体例で示せば、 被検出電 流が 1 0 0 m Aで被検出導線 6 の卷回数が 1 回と した場合、 平衡復 元コイル 5 の巻回数と平衡復元電流の大きさの関係は、 巻回数が 1 回である場合は、 平衡復元電流は 1 0 0 m A、 巻回数が 1 0 回であ る場合は、 平衡復元電流は 1 0 m Aとなる。 すなわち、 平衡復元と は、 平衡復元コイル 5 の卷回数と平衡復元電流との積が、 被検出導 線 6 の巻回数と被検出電流との積に等し く なるよ う に制御する こ と でもある。 なお、 この際、 起磁力の方向は反対向きになるよ う に接 続する。 ちなみに、 電気磁気工学では、 起磁力は巻回数とその電流 値との積で表される。
平衡復元コイル 5 および被検出導線 6 の巻回数は既知であるので 平衡復元電流を検知すれば被検出電流を検知できる。 つま り 、 平衡 復元コイル 5 の卷回数を被検出導線 6 の巻回数で除した商を巻数比 とすれば、被検出電流は平衡復元電流と巻数比とを乗じた積である。 次に、 被検出電流が負方向の場合には、 被検出電流によ り 中脚磁 気回路 1 に生じる磁束は、 下から上向きになるが、 磁気的には、 被 検出電流が正方向の場合を上下反転した状態と同じにな り 、 磁気的 作用は基本的に同じである。 ただし、 磁束検出手段 4 を貫通する磁 束の向きが反対になるため、 検出結果は極性が逆になる。 よって、 この検出結果の極性を調べる こ とよ り被検出電流の方向を知る こ と が出来る。 つま り 、 平衡復元電流についての検出結果の大きさか ら 被検出電流の大きさが、 また、 前記検出結果の極性か ら被検出電流 の方向が、 それぞれにわかる。
平衡復元が実現されているか否かは、 検出回路 8 によ り 中脚磁気 回路 1 の磁束を検出させその検出結果が零に近づいているか否かを 観測すれば判断できる。 平衡復元を手動で行う場合は、 検出回路 8 の検出結果を電圧計又は電流計などの計器で観測しながら、 その値 が零に近づく よ う に平衡復元電流を調整すればよい。 このよ うな調 整を手動で行う方法は動作原理を実験する場合などの特殊な用途に 向き、 実用性が求め られる ときは自動的に行う方法がよい。
平衡復元を自動的に行う方法には、 中脚磁気回路 1 の磁束を検出 した検出回路 8 の検出結果で平衡復元電流をフィ ー ドバッ ク制御す る方法がある。 このフィ ー ドバッ ク制御方法は、 制御系の入力信号 値をフィ ー ドバッ クループの 「增幅率 + 1 」 で除した値がフィ 一 ド バック される位置に残存する。 つま り 、 図 2 に示す磁気ブリ ッ ジの 場合、フィ ー ドバッ ク される位置は中脚磁気回路 1 内の磁束であ り 、 フィ ー ドパッ ク制御する こ とによ り 中脚磁気回路 1 内に残る磁束は フィ ー ドバッ ク制御しない場合に被検出電流によ り 中脚磁気回路 1 内に本来発生する磁束を、 フィ ー ドバッ クループの 「増幅率 + 1 」 で除した磁束が中脚磁気回路 1 内に残存する。
具体例を示せば、 被検出電流が 1 0 0 m Aで、 フィ ー ドバッ ク ループの増幅率が 1 0 0 0 0 0倍であった場合、 磁束検出手段 4 を 貫通する磁束は、 1 0 0 m Aを 1 0 0 0 0 1 で除した値、 つま り 、 約 0 . 9 9 9 9 A相当分の磁束が残存する事になる。 また、 フィ ー ドパッ クループの増幅率が 9 9 9 9 9 倍であっ た場合は、 1 A 相当分の磁束が残存する。 このよう に完全な磁気平衡状態には至つ ていないが磁気平衡状態に極めて近い状態と、 磁気平衡状態とを含 めて 「磁気亜平衡状態」 という。 なお、 「磁気亜平衡状態」 において も、 中脚磁気回路 1 に残存する磁束による中脚磁気回路 1 の磁気抵 抗の影響は無視できる程度で極めて小さい。
被検出電流の大きさ と方向は、 磁気再平衡状態にある ときにおけ る平衡復元電流の検出結果をもって測定されるか ら、 平衡復元電流 を測定し出力する検出値出力回路 1 0 は、 少なく とも平衡復元コィ ル 5 又は平衡復元電流制御回路 9 のいずれか一方に接続されていれ ば足り る。
以上に説明した本発明の磁気プリ ッ ジ型電流センサ一の例は、 上 記例の電流センサ一形態に限られる ものではな く 、 本発明では、 以 下に説明する構造, 形態を有する電流センサ一を形成する こ とがで きる。
先に説明した図 1 又は図 2 に例示した構造の本発明電流センサ一 は、 図 5 又は図 6 にその等価回路が示される。 図 5 又は図 6 に示し た本発明電流センサ一の等価回路は、図 11 に示す等価回路において 各磁気回路の磁気抵抗を、 Rmal + Rma2= Rma、 Rmbl + Rmb2= Rmb と し て表している。
また、図 11 において磁気平衡状態を発現する一つの状態と して、 2 つの励磁手段 3 a , 3 b の起磁力は同 じ大きさで向きが反対であ り、 且つ 2 つの磁気回路 2 a と 2 b の磁気抵抗が同じである場合、 起磁力は ni a =— nibで示され、 磁気抵抗は Rma=Rmb で示される。 さ ら に、 Rmal = Rmbl、 Rma2 = Rmb 2 とする こ とができる。
こ こで、 図 11 の等価回路は、 図 12 に表現した等価回路に等し く 、 図 12 に示した等価回路は図 13 に表現した等価回路に等しい。 つま り、説明の便宜のため、図 13 においては磁気回路 2 a と 2 b を、各々 に 2 つの磁気回路 2 l a , 2 2 a と同 2 1 b, 2 2 b に分断し、 分 断した各磁気回路の端部に、 図 12 の 1 個の励磁手段 3 a を挿入し た形をとるが、 このう ち磁気回路 2 1 b , 2 2 b に対しては励磁手 段 3 aが逆向きになるよ う に接続する こ とによ り 、図 12 のも う一方 の励磁手段 3 b を省略する こ とができる。 以下、 図 13 の励磁手段を 符号 3 で示す。 図 13 の等価回路は整理して図 14 に示す等価回路に 表現できるので、 結局、 図 1 , 図 2 と図 5 , 図 6 に例示した本発明 電流センサーは、 図 15 に示す等価回路と しても表現できる。
図 15 の等価回路を、 図 1 , 図 2 に示したよ う な本発明電流センサ 一の実体的形態で模式的に表現する と、一例と して図 16 に示す形態 となる。更に図 16 の電流センサーの形態をよ り実体的形態に近付け て表すと図 17 に例示する電流センサ一形態となる。 図 16, 図 17 に おいて、 図 1 〜図 10 と同一部材, 同一部位, 同一要素は同一符号を 付けている。
図 1 〜図 10 によ り説明した本発明電流センサ一の例では、 左, 右の外脚磁気回路 2 a と 2 に、 それぞれに励磁手段 3 a と 3 b を 2 つ設けたので、 磁気平衡状態が左右のコ ア材の磁気特性差の影響 を受け、 磁気平衡状態を微妙な調整をして実現したが、 図 17 の形態 を採る本発明電流センサ一の他の例では、 励磁手段 3 がーつで足 り るので、 当該磁気特性差の影響を考慮する必要が無く磁気平衡状態 の実現が容易になる。
因みに、図 1 〜図 10 で説明した本発明電流センサーの一例では、 2 つの励磁手段 3 a , 3 b の起磁力の条件と、 2 つの磁気回路 2 a , 2 b の磁気抵抗の条件とが磁気平衡状態の条件とな り 、 当該磁気平 衡条件の要因が多いために製作が容易ではないという点がある。
図 15〜図 17 などに示す本発明電流センサ一の他の例における 4 つの磁気回路 2 1 a , 2 2 a , 2 1 , 2 2 b は、 Rmal XRma2=Rmbl X Rmb 2 が満たされれば、 励磁手段 3 による磁束が磁気回路 1 に存在 しない磁気平衡状態を発現させる こ とができ、 励磁手段 3 の起磁力 の条件が省かれるので、 磁気回路の作製が容易になる。 この意味で 図 15 に示す本発明電流センサーの等価回路は、 図 18 の等価回路、 並びに、 図 18 を実体的に例示した図 19 の電流形態の電流センサ一 に表わすこ とができる。
次に、 図 20 を参照して、 図 17 における励磁コイル 3 が配設され る磁気回路 2 の位置が多少ずれても磁気回路 1 に磁気平衡状態を現 出できる点について説明する。
いま、 図 20 に示したよう に、 磁気回路 2 を介して交叉的に位置し た各磁気回路 2 1 a, 2 2 a , 2 1 b , 2 2 b において、 コア材の A , B部位の磁気抵抗が充分小さ く 無視できる ものとする と、 Rmbl oc 1 x / w 1 , Rmal oc l x / w2, Rmb2 o l 2 / w2, Rma2 oc l 2 / wl である。
こ こで、 wl, w2 はコア材にあけた窓部 Wによ り 当該コア材の左, 右に残っ たコ ア部材の幅、 1 , 1 2は窓部 Wの上下幅において、 磁気回路 2 の設定位置が内分する窓部 Wの上下幅である。
また、 各磁気回路 2 1 a , 2 1 b , 2 2 a, 2 2 b の磁気抵抗は、 磁気ブリ ッ ジの磁気平衡状態では、 Rma 1 X Rma2 = Rmb 1 X Rmb 2 である か ら、 磁気ブリ ッジの磁気平衡状態を発現する前記各磁気回路 2 1 a , 2 1 b , 2 2 a, 2 2 b の磁気抵抗の式を上記の比例式を用い て表すと、
( 1 ! / w2) X ( 1 2 /w 1 ) = ( 1 ! / wl) X ( 1 2 /w2) とな り 、 ( 1 1 X 1 2 )/ ( 2Xw 1 ) = ( 1 1 X 1 2 ) / (wl Xw2) が得られ、 1 ! , 1 2、 w 1, w 2 が任意の値で左辺と右辺は常に同一である。 ただし、 1 i、 1 2、 w 1、 w 2 はいずれも零であってはならない。 つま り 、 図 20 の磁気ブリ ッ ジにおける磁気回路 2 は、 図 20 のコ ア 材の窓部 Wのどの位置にあっても、 磁気回路 1 に流入する磁束の総 和は零になって平衡する。 なお、 実際には、 コア材の A , B部位の 磁気抵抗は零ではないので、 その影響を受け、 従って、 磁気回路 2 の位置は、 図 20 において 1 i = 1 2 となる位置 (窓部 Wの上下幅の 中点) が望ましいが、 コ ア材の A , B部位の磁気抵抗は磁気回路 2 1 a , 2 2 a , 2 1 b , 2 2 b に比べて非常に小さ いので多少の位 置ずれがあってもその影響はきわめて小さい。
次に、 図 17や図 19 などに例示した本発明電流センサ一において は、 磁気検出手段 4及び平衡復元コイル 5 を、 本発明の理解、 並び に、 説明の便宜のため、 磁気回路 1 に配置しているが、 この配置形 態は本発明電流センサ一を製作する上で、 及び、 電流検出手段と し て使用する上での便宜を考慮する と、 図 21 に例示するよう に、 各 磁気回路 2 1 a, 2 2 a , 2 1 b, 2 2 b、 磁気回路 2 , 励磁手段 3 が配備された磁気ブリ ッ ジ部付近に寄 *て配置する こ とが望ま し い場合がある。 なお、 図 21 に使用 した符号は、 これまで使用 した同 一符号と同じ意味で用いている。
上記のよう に、 本発明電流センサ一を構成するため、 環状コ ア材 の一辺に当該センサーの構成部材を配置する形態を採る こ とによ り 前記コ ア材の反対側の半環状の辺近傍を、 点線で示す部位か ら着脱 可能乃至ク ランプ状に開閉可能に形成する こ とができるので、 既設 の配線 (被検出導線 6 ) を切断する こ となく 、 その配線に本発明電 流センサ一をセッ ト して電流を検出する こ とができる こ と となる。 以上の説明を要約する と、 本発明電流センサーにおいては、 励磁 手段 3 と磁束検出手段 4がコイル場合、 励磁手段 3 は、 磁気回路 2 1 a , 2 1 b, 2 で囲まれた窓と、 磁気回路 2 2 a , 2 2 b , 2 で 囲まれた窓の両方を、 少なく とも 1 回貫通すれば足り 、 また、 磁束 検出手段 4 も、 磁気回路 2 l a , 2 2 b , 1 で囲まれた窓と、 磁気 回路 2 2 a , 2 1 b , 1 で囲まれた窓との両方を、 少なく とも 1 回 貫通すれば足 り る。 従って、 この構成を請求項 5 の本発明電流セン サ一に適用する と図 22 の形態とな り 、 これが本発明電流センサー の原理的構成を例示する こ とになる。 図 22 において、 これまで使用 した符号と同一符号は、 同じ意味で用いている。
以上の説明から本発明の磁気ブリ ッ ジ型電流センサ一の構成と、 この電流センサ一による電流検出法は、 次のよ う に導き出すこ とが 出来る。
即ち、 本発明電流センサ一の他の構成の一つは、
両端を持つ 1 つの磁気回路 1 と、 該磁気回路 1 の一方の端に各々 の一方の端を接続した両端を持つ磁気回路 2 1 a , 2 1 b と、 前記 磁気回路 1 の他方の端に各々の一方の端を接続し且つ他方の端を前 記磁気回路 2 1 a , 2 l b に各々接続した両端を持つ磁気回路 2 2 b , 2 2 a と、 前記磁気回路 2 1 a と 2 2 b との接続点と前記磁気 回路 2 1 b と 2 2 a との接続点とにそれぞれ接続した両端を持つ 1 つの磁気回路 2 と、 当該磁気回路 2 に磁束を発生できるよ う に配設 した励磁手段 3 と、 前記磁気回路 1 の磁束を検出できるよ う に配設 した磁束検出手段 4 と、 前記励磁手段 3 を駆動する励磁駆動手段 7 と、 前記磁束検出手段 4 に接続し当該磁束検出手段 4 に検出される 被検出磁束と連動した電気信号を出力する検出回路 8 とを有する こ とを特徴とする電流センサ一である。
また、 上記電流センサ一による電流検出方法の発明の構成は、 磁気回路 2 1 a , 2 1 b, 2 2 a, 2 2 b の磁気抵抗を適宜選択 し磁気回路 1 の両端の磁位を同じにする こ とによ り 、 励磁手段 3 に よる磁束が磁気回路 1 に存在しない磁気平衡状態を発現させ、 前記 磁気回路 2 l a , 2 2 b , 1 によ り 囲まれた窓部、 または磁気回路 2 1 b , 2 2 a , 1 によ り 囲まれた窓部の少なく と も一方の窓部に 被検出導線 6 を貫通させ、 被検出導線 6 に被検出電流を流すこ とに よって磁気回路 2 1 a , 2 2 a , 2 1 b, 2 2 b の少なく と も一つ の磁気回路の磁気抵抗を変化させ、 当該磁気抵抗の変化によって前 記磁気平衡状態を崩して磁気非平衡状態を発現させ、 前記磁気非平 衡状態が発現する こ とによ り 前記磁気回路 1 に発生する磁束を、 磁 束検出手段 4 によ り検出される被検出磁束と連動した電気信号を出 力する検出回路 8 によって検出する こ とによって、 被検出導線 6 に 流れる被検出電流を検出する こ とを特徴とする電流検出方法である 更に、 上記の検出方法は、 次の電流検出方法に代替する こ とがで きる。
即ち、 磁気回路 2 1 a, 2 2 a , 2 1 b , 2 2 b の少なく とも一つの 磁気回路の磁気抵抗が変化した状態において、 被検出導線 6 を賞通 させる こ と によ りその被検出導線 6 が卷回された磁気回路に発生す る磁束と同 じ大きさであって当該磁束と反対方向の磁束を発生させ る電流である平衡復元電流を、 被検出導線 6 を貧通させた窓部と同 一の窓部を貫通させて巻回した平衡復元コイル 5 に流し、 平衡復元 電流を平衡復元コイル 5 に流すこ とによって、前記磁気回路 2 1 a , 2 2 a , 2 1 b , 2 2 b の少なく とも一つの磁気回路の磁気抵抗が 変化した状態において、 磁気抵抗が変化した当該磁気回路の磁気抵 抗を変化前の磁気抵抗に戻すこ とによって前記磁気回路 1 に発生す る磁束を減少させて磁気再平衡状態を発現させ、 磁気再平衡状態に ある ときに平衡復元コイ ル 5 に流れる平衡復元電流を検出する こ と によって被検出導線 6 に流れる被検出電流を検出する こ とを特徴と する電流検出方法である。
上記に説明した本発明は、 電流に起因してその周辺に発生する磁 気を検出する こ とによ り電流を検出するよ う にしたものであるから 本発明の電流検出に用いている磁気ブリ ッ ジは、 基本的には磁気検 出能力を有する。 先にも述べたよう に本発明電流センサーおよぴ電 流検出方法によれば、 微弱な電流を高感度且つ高精度に検出できる が、この能力は磁気ブリ ッ ジの磁気検出能力に依る と ころが大きい。
この観点に立てば上記の本発明電流センサーに用いた磁気ブリ ツ ジは磁気センサ一および磁気検出方法の発明に構成できるので、 こ の磁気ブリ ッジを利用 して完成した磁気センサーおよび磁気検出方 法の発明について、 図 2 3〜図 2 9 を参照しつつ実施の形態例を説明 する。 先に説明した本発明電流センサーでは、 電流を検出する とき、 磁 気ブリ ッ ジにループ状に存在する被検出電流による磁束を効率良く 捉える必要があるため、 磁気プリ ッ ジのコ ア材はル一プ状に閉じた コアに形成したが、 磁気プリ ッ ジに磁気センサー と しての性能を発 揮させるには、 磁束を捉えるコア部分は開いた状態に形成して空間 の磁束を効率よ く 取り込むこ とが必要である。 この要求を満たすよ う に形成した磁気ブリ ッジを使用 した磁気センサ一の例を図 2 3 と 図 24 に示す。
図 2 3 は、 励磁コイルを符号 3 a , 3 b と して 2 つ持つ磁気センサ 一の例であ り 、 図 2 4 は励磁コイルを符号 3 と して 1 つ持つ磁気セ ンサ一の例であって、 それぞれ先に説明した本発明電流センサ一に おける図 1 と図 1 6 の例に対応する ものである。 但し、 図 2 3 および 図 24 は、磁気センサ一と して構成したものであるから被検出導線 6 は不要であ り 、 また図 1 , 図 1 6 における平衡復元コイル 5 は省略し ている。 なお、 上記磁気センサ一においても平衡復元コイル 5 は、 採用する こ ともあれば採用 しない こ ともあ り 、 いずれの場合も磁気 センサーと して機能する。また平衡復元コイル 5 を採用 した場合は、 検出のダイナミ ッ ク レンジが広が り 、 且つ、 精度もよ く なる。
以下に図 2 4 に示した励磁コイル 3 を 1 つ持つ磁気センサーの形 態例を、 本明細書での磁気センサーおよび磁気検出方法の代表例と して説明する。
図 24 の磁気センサーは、この磁気センサ一に磁気的作用をする磁 界、 或は、 この磁気センサーを貫通しう る磁束の大きさ と方向を検 出する こ とができる。
即ち、 この磁気センサ一は、 先に述べた本発明電流センサーおよ び本発明電流検出方法に用いた磁気ブリ ッ ジの磁気検出機能を利用 する ものだか らである。 つま り 、 先の本発明電流センサーおよび電 流検出方法では、 被検出導線に電流が流れる こ とによ り 発生する微 弱な磁界によって被検出導線を周回する磁気回路に磁束を発生させ、 当該磁束を磁気ブリ ッジの部分において検出するよう にしている。 この磁気プリ ッ ジの部分で検出できる磁束は、 被検出導線の電流に よ り発生する ものに限られず、 このほかの外来磁束あるいは磁界で あっても、 磁気ブリ ッジに電流検出の場合と同様の作用をする。 図 24 に例示した磁気センサーにおける磁気プリ ッ ジでは、磁気導 入部 1 1 a は磁気回路 1 と磁気回路 2 1 a, 2 1 b との接合部を、 また、 磁気導入部 1 1 b は磁気回路 1 と磁気回路 2 2 a , 2 2 と の接合部をそれぞれ上方と下方へ突出させた形態に形成してある。 つま り 、 磁気導入部 1 1 a と 1 1 b は、 被検出磁気をこの磁気プリ ッ ジに導入しやすく するための磁気回路となるよ う に形成されてい る。 以下において、 磁気導入部 1 1 a と 1 l b は磁気回路 1 1 a と 1 1 b と表現する こ とがある。この点は図 2 3 に示した磁気ブリ ッ ジ においても同様である。
いま、 図 24 の磁気ブリ ッ ジに対して外部磁界が存在せず、 この 磁気プリ ッ ジにおける磁気平衡がとれている場合、 励磁手段 (図 24 では励磁コイル) 3 による磁束は磁気回路 1 を通らず、 検出コイル 4 を貫通しない。 よって、 検出コイル 4 には起電力は発生しない。 しかし、図 24 に符号 7 で示す磁界の方向の成分を持った磁界中に 図 24 の磁気センサーを曝露する と、磁気導入部たる磁気回路 1 1 a と磁気回路 1 1 bおよび、 当該両磁気回路 1 1 a と 1 1 b を結ぶ磁 気回路 2 1 a , 2 2 a と 2 1 b , 2 2 b に磁束が生じる。 つま り 、 被検出磁気による磁束が磁気センサーの磁気プリ ッ ジを通る こ とに なる。 この結果、 磁気ブリ ッ ジを通る当該磁束によ り この磁気プリ ッジの平衡が崩れ、 励磁手段 (励磁コイル) 3 による磁束が磁気ブ リ ッジから漏れて磁気回路 1 を通るよう になる。
こ こで、 励磁手段 (励磁コイル) 3 による磁束は交番磁束である ため、 磁気回路 1 を通る磁束も交番磁束になり検出コイル 4 に起電 力が生じる。 このとき、 磁気回路 1 を通る磁束は、 先に述べた本発 明電流センサーと同様に励磁手段 (励磁コイル) 3 の励磁周波数の 2 倍の周波数成分を多く含む。
検出コイル 4 に発生する起電力は磁気回路 1 を通る磁束の強さ と 比例関係にあ り 、 磁気回路 1 を通る磁束の強さは磁気ブリ ッ ジから 漏れる磁束の強さ と比例関係にある。 さ ら に、 磁気ブリ ッ ジから漏 れる磁束の強さは被検出磁気の強さ と比例関係にある。 つま り、 検 出コイル 4 から被検出磁気の強さ と比例関係にある起電力を得る こ とが出来る。 このよ う に、 上述した磁気センサーは、 検出コイル 4 の前記起電力を測定する こ とによ り この磁気センサーが置かれる空 間の磁界の強さを検出できるのである。 こ こで、 検出コイル 4 に生 じる起電力は、 励磁手段 (励磁コイル) 3 の起磁力を基準にして、 被検出磁気の方向によ り位相が反転する。 この結果、 この磁気セン サ一は磁界の強さのほかに磁界の方向も検出できる こ とが判る。 上記磁気センサーは、 被検出磁気による磁束が効率よく このセン サ一の磁気プリ ッ ジを通っ たほうが感度がよい。 そして被検出磁気 が磁気導入部 1 1 a と 1 1 b を結ぶ磁路を通る際、 磁路は 2 つ存在 する。 つま り磁気ブリ ッ ジを通る磁路と、 磁気回路 1 を通る磁路で ある。 このう ち、 磁気ブリ ッ ジを通る磁束のみが磁気検出に直接寄 与する。 よって、 よ り多く の磁束が磁気ブリ ッ ジを通るよ う にした 方がよい。 言い換えれば、 磁気回路 1 を通る被検出磁気による磁束 はできる限り少ないほうがよいと言える。
これを実現するためには、 磁気回路 1 の磁気抵抗を磁気ブリ ッジ の磁気抵抗よ り も、 よ り大き く すればよい。 具体的には、 図 2 5 に示 すよ う に、 磁気プリ ッ ジおよび磁気導入部 1 1 a , 1 1 b と磁気回 路 1 との接合部に磁気ギャ ッ プ 8 a, 8 b を設ける方法がある。 但 し、 当該磁気ギャ ッ プ 8 a , 8 b の位置は、 図 2 5 に示した位置や数 に限らず前記の 目的を達成する ものであれば磁気回路 1 のどの位置 に幾つ設けてもよい。
一方、 前記磁気ギャ ッ プ 8 a, 8 b は、 励磁手段 (励磁コイル) 3 による磁束が磁気回路 1 を通る こ との障害になるが、 磁気プリ ッ ジか ら漏れてく る励磁手段 (励磁コイル) 3 による磁束の磁路は、 磁気ギャ ッ プ 8 a , 8 b を通り磁気回路 1 を通る回路の方が、 最も 磁気抵抗が小さいため大半の漏れてく る磁束は磁気回路 1 を通る こ とになる。 このよう な作用があるから、 図 2 5 に示す磁気ギャ ッ プ 8 a , 8 b を適切に調整する こ とによ り 、 検出せんとする被検出磁気 の強さ にあわせて、 様々な感度の磁気センサ一を随意に作製する こ とが可能になる。
こ こまでの磁気センサ一の説明では、 磁束検出手段 4 はすべて磁 気回路 1 に設けたものであつたが、 磁束検出手段 4 は先の電流セン サーでも説明したよ う に、 磁気回路 1 のみな らず、 磁気ブリ ッ ジに 設けてもよい。 その態様を、 図 2 8 に模式的に示す。 つま り 、 磁束検 出手段 4 の位置は、 図 2 8 に示す 4 一 (a )、 4 一 )、 4 一 (c )、 4 一 ( など、 ど こであってもよい。
先に説明した本発明電流センサーにおいて磁気回路 1 は、 磁気ブ リ ッジから漏れる励磁磁束を通すだけでなく 被検出電流による磁束 を効率よ く 捕らえるためにも必要であっ た。
しかし、 磁気センサ一では、 磁気回路 1 に磁束を効率よ く捕らえ る機能は必要ない。 その機能は磁気回路 1 1 a, 1 1 b に頼ってい る。 上記の磁気センサ一に磁気回路 1 がある場合、 その機能は磁気 プリ ッ ジか ら漏れた励磁磁束を通す機能のみである。
従って、 磁気回路 1 は、 当該磁気回路 1 に磁束検出手段 4 を設け る場合は実態と して存在しなければな らないが、 磁束検出手段 4 を 磁気プリ ッ ジ側に設ける場合は磁気回路 1 が実態と して存在しなく ても構わない。 その理由を次に述べる。
即ち、 図 2 3 、 図 2 4 の磁気センサ一においては、 磁気回路 1 は 磁性材料で形成されたものと して説明したが、 磁気回路 1 が非磁性 材料 (真空 ' 空気 ' プラスチック · 水 · 油 · 等々) で構成されてい る と考えれば、 当該磁気回路 1 は実態と して存在しなく てもよいこ とになるか らである。,
この こ とは、 次のよ う に考える こ と も出来る。 つま り 、 図 2 5 に示 す磁気回路 1 に設けた磁気ギャ ッ プ 8 a, 8 b を少しずつ広げ、 つ いには磁気回路 1 全体が磁気ギヤ ッ プになったと考えてもよい。 上記のよ う な考え方に基づいて、 磁気回路 1 が非磁性材で形成さ れ (実態と して設けられない〉 ていて励磁手段 3 がーつの場合の磁 気センサーの形態例を図 2 9 に示す。 励磁手段が二つ ( 3 a , 3 b ) め場合も同様の形態に形成する こ とが出来る。
このよ う に磁気回路 1 を実態と して具備しない磁気センサーは、 きわめて微小な磁気センサ一を作る ときに有効である。 例えば、 長 さ 2 . 0 im X幅 1 . 6 im X厚さ 1 . 0 删程度でも楽に製作する こ とができ る。 磁気センサ一がこのよう に小さ く なる と、 磁気ブリ ッジの両端 の距離は近く な り 少し広めの磁気ギャ ッ プと考えても無理はない。 以上に説明した磁気センサーの形態例は、 被検出磁気の磁力線が 比較的直線的に存在する場合や、 N極または S極の片磁極か ら放射 する磁気の検出に好適な構造であるが、 N極および S極の両磁極が 接近して存在する場合の磁気検出も必要なこ とがある。 この場合に 好適な磁気センサーの形態例を図 2 6 に示す。 図 2 6 の磁気センサー では、 磁気導入部 1 1 a と 1 l b が近接した両磁極に対応する形態 に形成されている。 このほか、 磁気センサーを細い形態、 或は、 細 く て凹凸のない形態に形成したい場合には、図 27 に示すよう な形態 を採る こ と もできるなど、 本発明磁気プリ ッ ジを用いた磁気センサ 一は用途に合わせて様々な形態を採る こ とができる。 上記磁気セン サ一における磁気導入部 1 1 a と 1 1 b (磁気回路 1 1 a と 1 1 b ) は、 外脚磁気回路 2 a と 2 b と中脚磁気回路 1 との接合部、 或は、 磁気回路 2 1 a , 2 l b と磁気回路 1 の接合部、 若し く は、 磁気回 路 2 2 a , 2 2 b と磁気回路 1 の接合部とい う よ う に、 明確な境界 をもって形成されたものではなく 、 図 2 7 に示した磁気センサ一の 例でも判る通 り 、 磁気回路の接合部分を この磁気回路 1 1 a と 1 1 b とみなすこ とが出来る ものである。 この点は図 2 9 の磁気センサ —の例においても同様である。 なお、 図 2 6 〜図 2 9 の符号は、 図 2 3〜図 2 5 の符号と同じ意味で使用 している。
以上よ り 明らかなよ う に、 上述した磁気センサ一の磁気ブリ ッジ も、 先に述べた本発明電流センサ一の磁気プリ ッジと同じ作用をす る。 よって、 上記磁気センサーにおいても本発明電流センサーと同 様に平衡復元コイル (図示せず) を設け磁気再平衡状態を発現させ れば、 よ り 高精度な磁気検出が可能になる。
以上の説明に基づき、 本発明磁気ブリ ッ ジを用いた磁気センサ一 は、 以下に述べる構成を具備した磁気センサ一と して特定する こ と ができる。
まず、 第一の磁気センサーの構成は、 両端を持つ 1 つの磁気回路 1 と、 前記磁気回路 1 の一方端と他方端とに各々が接合する と共に 各接合部を外方へ向け突出させた磁気導入部となる磁気回路 1 1 a , l i b を有する 2 つの磁気回路 2 a , 2 b と、 前記磁気回路 2 a に配設されている励磁手段 3 a並びに前記磁気回路 2 b に配設され ている励磁手段 3 b と、 前記磁気回路 1 に配設されている磁束検出 手段 4 と、 前記励磁手段 3 a と前記励磁手段 3 とをそれぞれ駆動 する励磁駆動手段 7 と、 前記磁束検出手段 4 に接続され、 当該検出 手段 4 に検出される被検出磁束と連動した電気信号を出力する検出 回路 8 とを有する こ とを特徴とする。
上記の第一の磁気センサ一は、 磁気回路 1 および磁気回路 2 aお ょぴ磁気回路 2 b との少なく ともそのいずれが一つに導線を巻回配 置した平衡復元コイル 5 と、 検出回路 8 か ら出力する電気信号に基 づき前記磁束検出手段 4 に検出される被検出磁束が減少するよ う に 前記平衡復元コイル 5 に流す平衡復元電流を制御する平衡復元電流 制御回路 9 と、 前記平衡復元電流の値を出力する検出値出力回路 1 0 と、 を有する構成とする こ とがでいる。
第二の磁気センサ一の構成は、 両端を持つ磁気回路 1 と、 該磁気 回路 1 の一方の端に各々の一方の端を接続した両端を持つ磁気回路 2 1 a , 2 1 b と、 前記磁気回路 1 の他方の端に各々の一方の端を 接続し且つ他方の端を前記磁気回路 2 l a , 2 l b に各々接続した 両端を持つ磁気回路 2 2 b, 2 2 a と、 前記磁気回路 2 1 a, 2 1 b及び磁気回路 2 2 b, 2 2 a と磁気回路 1 の夫々の接合部を外方 へ向け突出させた磁気導入部となる磁気回路 1 1 a, 1 1 と、 前 記磁気回路 2 1 a と 2 2 b との接続点と前記磁気回路 2 1 b と 2 2 a との接続点とにそれぞれ接続した両端を持つ 1 つの磁気回路 2 と 、当該磁気回路 2 に磁束を発生できるよ う に配設した励磁手段 3 と、 前記磁気回路 1 を通る磁束を検出できるよ う に配設した磁束検出手 段 4 と、 前記励磁手段 3 を駆動する励磁駆動手段 7 と、 前記検出手 段 4 に接続し当該検出手段 4 に検出される被検出磁束と連動した電 気信号を出力する検出回路 8 とを有する こ とを特徴とする。
そして、 上記第一の磁気センサーに採られた磁気検出方法の構成 は、 励磁手段 3 a によ り 中脚磁気回路 1 に流れよう とする交番磁束 である第 1 の励磁磁束を発生させ、 かつ、 励磁手段 3 b によ り 中脚 磁気回路 1 に流れよう とする交番磁束である第 2 の励磁磁束であつ て大きさが第 1 の励磁磁束と同じであ り磁束の方向が第 1 の励磁磁 束と反対である励磁磁束を発生させる こ とによって、 磁気平衡状態 を発現させている とき、 各磁気回路を形成しているコ ア材を磁界中 に曝すこ とによって、 前記磁気平衡状態を崩して磁気非平衡状態を 発現させ、 前記磁気非平衡状態が発現する こ とによ り磁気回路 1 に 磁束を通して磁束検出手段 4 に検出される被検出磁束と連動した電 気信号を出力する検出回路 8 によって、 前記磁界中の被検出磁気を 検出する こ とを特徴とする。
上記第一の磁気センサ一における磁気検出方法の第二の構成は、 励磁手段 3 a によ り磁気回路 1 1 a , 1 1 b に流れよう とする交番 磁束である第 1 の励磁磁束を発生させ、 かつ、 励磁手段 3 によ り 磁気回路 1 1 a , 1 1 b に流れよ う とする交番磁束である第 2 の励 磁磁束であって大きさが第 1 の励磁磁束と同じであ り磁束の方向が 第 1 の励磁磁束と反対である励磁磁束を発生させる こ とによって、 磁気平衡状態を発現させている とき、 各磁気回路を形成している コ ァ材を磁界中に曝すこ とによって、 前記磁気平衡状態を崩して磁気 非平衡状態を発現させ、 前記磁気非平衡状態が発現する こ とによ り 磁束検出手段 4 に検出される被検出磁束と連動した電気信号を出力 する検出回路 8 によって、 前記磁界中の被検出磁気を検出する こ と を特徴とする。
また、 第二の磁気センサ一においては、 磁気回路 2 1 a , 2 1 b , 2 2 a , 2 2 b の磁気抵抗を適宜選択し磁気回路 1 の両端の磁位を 同 じにする こ とによ り 、 励磁手段 3 による磁束が磁気回路 1 に存在 しない磁気平衡状態を発現させている とき、 各磁気回路を形成して いるコア材を磁界中に曝すこ とによって、 磁気回路 2 1 a , 2 2 a , 2 1 b , 2 2 b の少なく とも一つの磁気回路の磁気抵抗を変化させ、 当該磁気抵抗の変化によって前記磁気平衡状態を崩して磁気非平衡 状態を発現させ、 前記磁気非平衡状態が発現する こ とによ り 前記磁 気回路 1 に発生する磁束を、 磁束検出手段 4 によ り検出される被検 出磁束と連動した電気信号を出力する検出回路 8 によって検出する こ とによって、 前記磁界中の被検出磁気を検出する磁気検出方法を 採る こ とができる。
更には、 一方の端を接続した両端を持つ磁気回路 2 1 a , 2 1 b と、 一方の端を接続し且つ他方の端を前記磁気回路 2 1 a , 2 1 b に各々接続した両端を持つ磁気回路 2 2 b , 2 2 a と、 前記磁気回 路 2 1 a と 2 2 b との接続点と前記磁気回路 2 1 b と 2 2 a との接 続点とにそれぞれ接続した両端を持つ 1 つの磁気回路 2 と、 当該磁 気回路 2 に磁束を発生できるよう に配設した励磁手段 3 と、 前記励 磁手段 3 を駆動する励磁駆動手段 7 とを具備し、 前記磁気回路 2 1 a , 2 1 b , 2 2 a , 2 2 b の磁気抵抗を適宜選択し前記磁気回路 2 1 a と 2 1 b との接続点と、 前記磁気回路 2 2 b と 2 2 a との接 続点との磁位が同じになる磁気平衡状態を発現させている とき、 各 磁気回路を形成しているコ ア材を磁界中に曝すこ とによって、 磁気 回路 2 1 a , 2 2 a , 2 1 b , 2 2 b の少なく とも一つの磁気回路 の磁気抵抗を変化させ、 当該磁気抵抗の変化によって前記磁気平衡 状態を崩して磁気非平衡状態を発現させ、 前記磁気非平衡状態が発 現する こ とによ り 、 前記磁気回路 2 1 a, 2 1 b の接続点と前記磁 気回路 2 2 b, 2 2 a の接続点との間に発生する磁位差によ り発生 する磁束を、 磁束検出手段 4 によ り検出される被検出磁束と連動し た電気信号を出力する検出回路 8 によって検出する こ とによって、 前記磁界中の被検出磁気を検出する磁気検出方法を採る こ とができ る。
以上に説明した本発明磁気ブリ ッ ジを使用 した磁気センサーと従 来の磁気センサ一とを比較して効果の差異について言及する。
従来の磁気センサーは、 代表的なもの と して半導体磁気センサ一 (磁気抵抗素子 · ホール素子 ·ホール I C )、 反磁性体センサー (強磁 性薄膜素子 '磁気ィ ンピ一ダンス素子)、 コイルピ ッ ク アッ プセンサ 一 (フラ ッ クスゲー ト磁力計)、 その他に分類される。
半導体磁気センサ一は、 強い磁気の検出には向いているが、 1 0 _ 2 G (ガウス) 程度の感度で鈍感であ り、温度特性も悪く 素子間のば らっきも大きい。
反磁性体センサーは、 1 0 — 6 G の感度を持つが特殊な素材を使い 高度な製造技術や設備が必要であ り 高価になる。 コイルピッ ク アッ プセンサ一は磁束の変化をコイルに生じる起電 力で検出 しょ う とする ものであるが、単純にコ アにコイ ルを巻いた だけでは静磁界 (直流磁界) の検出はできない。 これを解決するた めにフラ ッ クスゲ一 ト磁力計が発明され、 従来の磁気センサ一と し ては高感度に属し反磁性磁気センサ一と同程度の 1 0 — 6 G 程度の 感度である。
本発明磁気ブリ ッ ジを用いた磁気センサーも上記の分類ではコィ ルビッ クア ッ プセンサ一に属し、 磁性材料とコイルのみで構成でき る点が大きな特徴である。これらの材料は、極めて一般的な原材料で 製造できるため材料も安価で、 製造設備も特殊なものを必要としな い。 よって、 高精度の磁気センサ一製品を安価に作製, 提供できる という特徴がある。
こ こで、 ともにコイルピッ クアップセンサ一の一種である本発明 磁気プリ ッ ジを用いた上記の磁気センサ一とフラ ッ クスゲ一 ト磁力 計との差異点について述べる。
フラ ッ クスゲー ト磁力計は、 被検出磁気を通す磁気コアに磁束検 出コイルを卷回しておき、 当該検出コイルと磁束が交差しないよう に前記磁気コアを磁気飽和するまで励磁した り 、 励磁しなかった り する。 この励磁と非励磁を高速で繰り返す。 こ こで、 フラ ッ クスゲ ー ト磁力計では、 励磁コイルの磁束は検出コイルに一切起電力を与 えないよ う に配置されている こ とを必須と している。
これによつてフラ ッ クスゲー ト磁力計では、 磁気コアの透磁率が 低透磁率と高透磁率を高速で繰り 返す。 因みに、 磁気飽和するまで 励磁した場合が低透磁率であ り 、 非励磁の場合が高透磁率である。 そうする と、 フラ ッ クゲー ト磁力計では被検出磁気による磁束は 磁気コ ア内に集中 しなかった り集中 した り する。 つま り、 磁気コ ア 内の磁束が弱く なつ た り 強く なつ た りする。 このよ う に、 フ ラ ッ ク ゲー ト磁力計では磁気コ ア内の磁束の強さが変化する とそこに巻か れた磁束検出コイルに起電力が発生するので、 これを検出する こ と によ り磁気を検出できる。
この磁力計による磁気検出のボイ ン トは、 強弱を繰り返す磁気コ ァ内の磁束は被検出磁気の強さ と磁気コ アの透磁率で決まる磁束が 最大値であって、 被検出磁気の強さ以上の磁束の強弱はない。
一方、 本発明磁気ブリ ッ ジを用いた磁気センサーは、 その磁気ブ リ ッ ジの説明でもわかる とお り 、 磁束検出コイルを貫く磁束は励磁 コイル (励磁手段) によるものである。 被検出磁気は磁気ブリ ッ ジ の磁気平衡を崩す役目 をしてお り 、 磁気プリ ッジか ら漏れてく る磁 束は励磁コイルによる ものである。 よっ て、 励磁コイルの励磁力を 強く してやれば、 磁気プリ ッジか ら磁束検出コイルに漏れて く る磁 束も強く な り 、 磁束検出コイルの起電力 も大き く なる。 この とき、 当該磁束は被検出磁気の磁束よ り はるかに大き く 出来る。
よって、 本発明磁気ブリ ッジを用いた磁気センサーは、 従来のフ ラ ッ クスゲー ト磁力計よ り もはるかに高感度に作成する こ とが出来 る。 また、 その分高精度にもなる。
以上から判るよう に、 本発明磁気プリ ッ ジを用いた磁気センサー は、 従来磁気センサ一よ り 、 はるかに高感度かつ高精度であ り なが ら、 価格は従来センサーと変わ らない磁気センサ一の製作を可能に する。
次に、 本発明電流センサ一の実施例を、 フルスケール ; ± 1 A、 分解能 ; 1 0 0 μ Aに した例によ り説明する。
(ィ) 中脚磁気回路 1 、 外脚磁気回路 2 aおよび外脚磁気回路 2 b には、 J I S C 2 5 1 4 、 型名略称 F E 1 6 Bの準拠品を 2個向 かい合わせに結合したものを用いた。
(口) 励磁手段 3 aおよび励磁手段 3 b には、 導体直径 0 . 0 3 m mのポリ ウ レタ ン線をプラスチッ ク製ポビンに 1 5 0 回卷回して製 作したコイルを用いた。
(Λ) 磁気検出手段 4 には、 導体直径 0 . 0 3 mmのポ リ ウ レタ ン 線をプラスチッ ク製ポビンに 3 , 0 0 0 回卷回して製作した検出コ ィルを用いた。 さ ら に当該検出コイルの両端子間を 2 , 2 0 0 p F で接続して、約 1 k H z に共振するよう にして整合回路を構成した。 整合回路は検出コイルと検出回路 8 とのィ ンピ一ダンスや周波数特 性が整合するよう にする回路で必要に応じて採用する。
に) 平衡復元コイルは、 導体直径 0 . 1 mmのポリ ウ レタ ン線を 検出コイルのポビンに 2 0 回卷回したものと した。
(ホ) 磁束検出手段 4 と して用いた検出コイルを約 1 k H z に共振 するよう に製作したため、 励磁手段 3 aおよび励磁手段 3 b として 用いたコイ ルには 5 0 0 H z の交番電流を流すこ と と した。
(へ) また、 後に説明する位相検波回路において 1 k H z の参照信 号が必要となるため、 励磁駆動手段 7 は、 発振回路、 分周回路およ び出力回路をもって構成した。
(ト) 発振回路にはコ ンパレータ I C を用いた発振周波数 2 k H z の矩形波発振回路を使用 した。
(チ) 分周回路では、 C M O S I C を用い 1 ノ 2 と 1 / 4 に分周 して、 それぞれ 1 k H z と 5 0 0 H z を得るよう にした。
(リ) 駆動回路の出力は、 振幅調整用の可変抵抗器を通してォペア ンプで出力 した。 この出力は、 前記分周回路で得た 5 0 0 H z を矩 形波のまま出力した。 なお、 正弦波電流出力にする方がよ り精度が 上がるが、 磁束検出手段 4や検出回路 8 で、 励磁手段 3 a およぴ励 磁手段 3 b として用いたコイルに流れる電流の 2 倍の周波数である 1 k H z を選択的に検出するよう にしたこ と、 また矩形波では精度 が落ち るが、 回路が簡素化できる利点もある こ とから、 矩形波で出 力 した。 なお、 駆動回路の出力電流は 1 0 m A以内でよいため、 汎 用オペアンプが使用可能である。
(ヌ) 検出回路 8 は、 整合回路と位相検波回路およびロ ーパス フ ィ ルター回路をもって構成した。
上記の磁束検出手段 4 として用いた検出コイルは検出される信号 が約 1 k H z に共振するよう にしているので、 出力回路によ り 出力 する励磁電流が矩形波であっても、 1 k H z の正弦波に近い電力が 検出回路 8 に入力される。 出力回路によ り 出力する電流を正弦波と する と、 さ ら に正弦波に近い電力が得られる。
位相検波回路は、 検出コイルから得られた信号を前記の分周回路 で得た 1 k H z の参照信号によ り位相検波する。この実施例の場合、 参照信号はデジタル信号であ り 、 位相検波回路は、 この信号が高 レ ベル Hの時は増幅度が正、 低レベル L の ときは負になるよ う な増幅 回路である。 位相検波回路の出力電圧は、 被検出電流がある方向に 流れた時は正電圧、 その逆に流れた時は負電圧を示し、 電圧の大き さが被検出電流の大きさ に略比例する。 なお、 被検出電流の大きさ だけを求める とき、 すなわち極性を求める必要がない ときは、 この 位相検波回路の代わ り に簡単な整流回路を使用する こ ともできる。 位相検波回路から出力される信号波形は、 2 k H z 成分を多く含 んだ脈流になっている。 この信号を平滑化する こ とによっ て、 被検 出電流に近い波形を得る こ とが出来る。 被検出電流は直流といって も、 実際には大きさが変動するためある程度の交流成分を含んでい る。 この交流成分をどの程度の周波数まで検出できるよう にするか は、 本発明電流センサーに求め られる製品と しての性能によるが、 この実施例では励磁電流を 5 0 0 H z に したため、 その 1 1 0 0 程度の 5 H z 程度までは、 従来の同種のセンサーと比較して充分に 高精度な検出ができる。
本発明電流センサ一で直流と商用周波数の両方とも検出しょう と する場合は、 励磁電流を 1 0 k H z 程度にすれば、 1 0 0 H z 程度 までは充分に検出でき、 要求を充たすこ とができる。 口一パスフィ ルター回路は周波数に依存した伝達特性を持ち前段の位相検波回路 や整流回路で得られた信号のう ち、 直流か ら検出したい周波数領域 までの低い周波数成分を通過させ、 検出したい周波数領域を超える 高い周波数成分を通過させないよ う な目的で用いるもので、 受動素 子のみによる回路や能動素子を用 いた回路など製作できる。 この実 施例では、 もっ とも単純な抵抗器とコ ンデンサ一による平滑回路を 採用 した。 本発明電流センサ一の う ち、 平衡復元コイル 5 を持たな い構成の場合は、 この回路の出力が、 被検出電流に準じた大きさ と 波形を反映したものである。
本実施例では、 平衡復元電流を自動的に決定するよう 、 平衡復元 電流制御回路 9 によって前記口一パスフィ ルター回路の出力をフィ — ドバッ クする方法を採用 し、 平衡復元コイル 5 の出力を約 1 0 0 倍してフィ ー ドバッ ク した。 この実施例では、 平衡復元コイル 5 の 巻き数は 2 0 回にしているので、 平衡復元電流は被検出電流の 1 Z 2 0 でよい。 よって、 最大 1 Aまで検出する本実施例では、 出力能 力を 5 0 m Aにした。
また、 本実施例では、 検出値出力回路 1 0 は、 平衡復元コイル 5 と直列に抵抗器を接続して、 この抵抗器の両端に発生する電圧を増 幅器によって増幅する こ とによって構成した。 本発明電流センサ一 のう ち、 平衡復元コイル 5 を持つ構成の場合は、 この回路の出力が、 被検出電流に準じた大きさ と波形を反映したものである。
以上の通り に形成した実施例の本発明電流センサーによって直流 電流を検出してみたと ころ、 きわめて高感度で精度もよ く 、 従来の ものに比べてはるかに高性能である こ とが確認できた。
表 1 に被検出電流が 1 0 m A以下の検出結果を示す。 また、 表 2 に被検出電流が 1 0 0 m A以下の検出結果を示す。 被検出電流が大 き く なる に伴い精度も安定してお り 、 1 0 0 m Aを超え、 上記実施 例のフルスケールである 1 Aまでのフルスケール誤差は 0 . 2 %を 超えなかった。 また、 フルスケールが 1 0 m Aになるよう に回路素 子の値を替えたものでは 1 0 の検出を確認できた。
被検出電流 実施例による検出値 誤差 フルスケール誤差 h [mA] Io [mA] {Io-Ix)lh C%] (fo-曙 [%]
.100 .087 -1.03 •0.013
-9.0 -8.89 -1.22 -0.011
-8.0 -7.88 -1.50 ■0.012
•7,0 -6.91 •1.29 -0,009
-5.94 -1.00 -0.006
-5 0 ■4.94 -1,20 .0.006
4.0 -3.96 -1.00 .0.004
-3.0 -2.97 -1.00 ■0.003
-2.0 -1.97 -1.50 •0.003
. -1.0 -0.98 -2.00 -0.002
除数 0のため
0.0 0.01 0.001
計算不能
1.0 1.01 1.00 0.001
2.0 2.01 0·50 0.001
3.0 3.02 0.67 0.002
4.0 4.03 0.75 0.003
5.0 5.04 0.80 0.004
6.0 6.05 0.83 0.005
7.0 7.04 0.57 0.004
8.0 8.07 0.88 0.007
9.0 9.03 0.33 0.003
10.0 10.00 0.00 0.000 2
Figure imgf000046_0001
本明細書及び図面に使用 した記号について表 3 と表 4 に示す 本発明の説明に用いられる亀磁気に関する記号の簡単な説明、 単独記号の一 5 表 外脚磁気回路に関し一方をん 他方を B、 中脚磁気回路に閱しては Cと表記する, 記号
単位
種類 ま
外脚磁気回路 Aの磁束
Φ Wb 外脚磁気回路 Bの磁束
中脚磁気回路 Cの磁束
磁性材料の初期透磁率
Wb/A-m
磁性材料の最大透磁率
n 励磁コイルの卷き数 (励磁手段)
Turn
Ν,η Nx または 被検出導線の卷き数
N0 平衡復元コイルの卷き数 (平衡《元励磁手段) ia 励磁コイル Aに流れる電流
励磁コイル Bに流れる電流
It i
I, 被検出電流
平衡 «元《流
外脚磁気回路 Aの磁気抵抗
A Wb 外脚磁気回路 Bの磁気抵抗 中脚磁気回路 Cの磁気抵抗
S S mJ 磁路の断面積
I I m 磁路の長さ
H H. AT/m 磁性材料の透磁率が最大になるときの磁界の強さ
B B Wb/m1 磁束密度
t t Sec 時 IB
e 図 3においては、 検出コイルに発生する起電力 e V
e* 検出コィルに発生する起 S力のラちの基本波成分
表 4
本発明の説明に用いられる鼇磁気に関する記号の簡単な説明、 裉合記号の一 K表
Figure imgf000048_0001
産業上の利用の可能性
本発明の電流検出においては、 磁気プリ ッ ジにおける磁気状態を 磁気平衡状態と しているので、 被検出電流が零である ときは、 磁束 検出手段 4 に通る磁束は零である。
これに対し、 マグアンプ型、 磁気マルチバイ ブレーター型および 磁束反転時間差型に代表される従来の電流検出方法は、 軟質磁性材 料のコアを このコアに巻回されたコイルの交流電流で飽和磁束密度 付近まで予め励磁し、 これを被検出電流で偏磁させる ことによって 被検出電流を検出する ものであるため、 マグアンプ型、 磁気マルチ バイ プレー夕一型および磁束反転時間差型の磁気回路には励磁磁束 が常に発生している。
上記の本発明と従来技術の相違点を情報量の観点から見る と、 従 来方法では被検出電流の情報と励磁磁束の情報が混在し、 且つ被検 出電流の情報量よ り も励磁磁束の情報のほう がはるかに多く 、 全情 報の中から被検出電流の情報のみを分離し取 り 出すのは容易ではな い。
この点、 本発明においては、 磁気ブリ ッ ジにおける磁気状態を磁 気平衡状態と しているので、 検出結果の大きさおよび極性成分は全 て被検出電流の情報と見做すこ とができ、 検出結果の周波数成分は 励磁磁束の周波数成分情報である。 つま り 、 本発明方法では、 検出 結果の大きさ と極性を利用する限り情報の分離は必要なく 、 結果的 に小さな情報でも容易に取 り 出すこ とができる。 換言すれば、 本発 明は、 よ り 高感度の電流検出をよ り容易に行う こ とができるのであ る。
次に、 従来のマグアンプ型、 磁気マルチバイ ブレーター型および 磁束反転時間差型では、 励磁磁束を磁気飽和領域にまで達するよう に強めなければならないために励磁磁束は磁気飽和領域まで達する 強いものとなるが、 本発明における励磁磁束は、 最大透磁率以下の 弱いものでよ く 、 前述した被検出電流の情報量の違いをさ ら に顕著 にする。 このような特性の結果、 本発明は従来方法では検出する こ とができなかった少なく と も 1 0 0 Aの微少電流を検出する こ と が可能になる。
一方、 マグアンプ型、 磁気マルチバイ ブレーター型および磁束反 転時間差型に代表される従来方法、 並びに、 本発明方法においては、 被検出導線の貫通回数である卷回数に比例して検出感度が良く な り 被検出導線の卷回数が多いほどよ り 高感度になる点では共通してい るので、 この特性を利用 してよ り微小な電流を検出するために被検 出導線の巻回数を多く する方法が考えられるが、 マグアンプ型、 磁 気マルチバイ ブレータ一型および磁束反転時 差型に代表される従 来方法では、 被検出導線を卷回する磁気回路に励磁磁束が常時発生 しているため、 この励磁磁束によ り被検出導線に起電力が発生し、 この起電力による電流が被検出電流に重畳する。
上記のよう に励磁磁束によ り被検出電流に重畳する電流は、 被検 出電流が小さいほど相対的に大き く な り 、 被検出電流に対してはノ ィ ズであ り有害であるが、 被検出電流が小さいほど高感度にする必 要があるため、 被検出導線の巻回数を多く したい と ころ、 従来技術 では、 被検出導線の卷回数が多いほど励磁磁束によ り 被検出電流に 重畳する電流が大き く なる という 問題がつきま とい、 この問題を解 決できない。 即ち、 マグアンプ型、 磁気マルチバイ ブレーター型お よび磁束反転時間差型に代表される従来方法では、 被検出導線の卷 回数を増やすこ とによる感度の向上には限界があった。
しかるに、 本発明では被検出導線を図 2 に例示したよ う に、 外脚 磁気回路と中脚磁気回路とによ り包囲される こ とよって形成される 一方の窓部を手前側か ら向こ う側へ貫通し、 さ ら に、 前記外脚磁気 回路と前記中脚磁気回路とによ り包囲される こ とによって形成され る他方の窓部を向こ う側か ら手前側に貫通するよ う な配置にする こ とによ り 、 被検出導線が巻回する中脚磁気回路には、 磁気平衡状態 および磁気再平衡状態においては励磁磁束が存在しないため、 励磁 磁束によ り 被検出電流に重畳する電流が発生する こ とがないとい う 格別な利点がある。 また、 磁気亜平衡状態においても極めて微小な 励磁磁束しか存在しないため励磁磁束によ り被検出電流に重畳する 電流も極めて微小である。
しかも、 本発明方法では被検出導線の 1 回貫通でも微小電流を検 出できる こ と勿論であ り 、 さ らに、 本発明では前述した特性によ り 被検出導線の巻回数を容易に増やすこ とができるため、 よ り微小な 電流を検出する こ とが可能であ り 、 また、 被検出電流に有害なノ ィ ズを発生する こ とがない という利点がある。 更には、 本発明におけ る励磁磁束は、 磁性材料の最大透磁率以下で動作できるため、 励磁 に必要なエネルギーが少なく てよ く 、 省エネルギーの電流センサー を実現できる。
次に、 本発明では磁気ブリ ッ ジのコア材料にフェライ ト コァを用 いる と、 励磁手段の駆動周波数を数百 k H z におよぶ高い周波数に できるので、 数 k H z までの周波数の被検出電流を検出する こ とが でき、 直流から数 k H z までの直流と交流が混在した電流を検出す る こ とが可能である。
本発明では、 磁気ブリ ッ ジの磁気亜平衡状態においては、 中脚磁 気回路の磁束は外脚磁気回路の磁束に比べて極めて小さいため、 中 脚磁気回路と外脚磁気回路の機械的寸法が、 例えば 1 0 0 0 倍と言 う よ う に著しい違いを持たない限り 、 中脚磁気回路に残存する磁束 による中脚磁気回路の磁気抵抗の影響は無視できる程度で極めて小 さ く 、 実用上問題となる こ とはない。 上述のよう に、 本発明では磁気亜平衡状態において被検出電流に よ り磁気プリ ッ ジ内に発生する磁束は極めて小さ いので、 フィ ー ド バッ クがなければ被検出電流が磁気ブリ ッ ジを完全に磁気飽和させ る値、 あるいはそれをはるかに超える大きな値であっても、 充分な フィ ー ドバッ ク によ り磁気プリ ッ ジを磁気亜平衡状態にする こ とが できる。 例えば、 図 2 の例において、 平衡復元コイルの巻回途中に タ ップを設け、 被検出電流が小さ いときは巻回数の少ない と ころを 使用 し、 被検出電流が大き く なる につれてよ り多い卷回数のタ ッ プ を使用する こ とによ り 、 所定の範囲内に限った平衡復元電流で磁気 亜平衡状態を実現でき、 平衡復元電流を流すための平衡復元電流制 御回路の出力能力を所定の範囲内に止めたまま、 同一の磁気プリ ッ ジで、 微小電流から大電流まで広範囲の被検出電流を検出する こ と が可能になる。
また、 本発明は、 磁気ブリ ッ ジの磁気亜平衡状態において中脚磁 気回路に存在する磁束が極めて小さいこ とによ り 、 中脚磁気回路の 磁気特性が本発明電流センサーの精度と感度に及ぼす影響は極めて 小さい。 即ち、 中脚磁気回路を変形して中脚磁気回路の磁気抵抗が 変化しても、 それが精度と感度に及ぼす影響は極めて小さいため、 例えば図 9 の実施例に示すよ う に中脚磁気回路を変形し、 被検出導 線が貫通しやすい形状にできる。 この結果、 中脚磁気回路を切断し て開閉できる構造や、 脱着できる構造にして、 既に配線が完了した 被検出導線にク ラ ンプして電流を検出できる構造にしても、 中脚磁 気回路の磁気特性が電流センサ一の精度と感度に及ぼす影響が極め て小さ いため、 精度のよいク ランプ式電流センサ一を実現できる。 加えて、 磁界対透磁率特性 (図 7 参照) は最大透磁率以下でも非 直線であ り 、 通常はこのような非直線な特性が検出精度を低下させ るが、 本発明では中脚磁気回路に残存する磁束、 すなわち被検出電 流によ り磁気ブリ ッ ジ内に発生する磁束は極めて小さ く 、 この微小 な範囲内における磁界対透磁率特性の非直線性は際立たず、 直線と みなすこ とができる程度であ り、 磁界対透磁率特性が非直線である がために生じる検出精度の低下も無視できる程度で極めて小さい。 本発明における このよう な特性は、 上記磁気プリ ッ ジの特性と相俟 つて量産時において磁性材料の特性にばらつきが生じても、 それが 電流センサーの特性に影響しにく く 、 結果的に精度の良い製品や、 安価な製品の生産を可能とする。

Claims

請求の範囲
1 両端を持つ 1 つの中脚磁気回路 1 と、 前記中脚磁気回路 1 の一 方端と他方端とに各々が接続する 2 つの外脚磁気回路 2 a , 2 b と、 前記外脚磁気回路 2 a に配設されている励磁手段 3 a並びに前記外 脚磁気回路 2 b に配設されている励磁手段 3 と、 前記中脚磁気回 路 1 に配設されている磁束検出手段 4 と、 前記励磁手段 3 a と前記 励磁手段 3 b とをそれぞれ駆動する励磁駆動手段 7 と、 前記磁束検 出手段 4 に接続され、 当該磁束検出手段 4 に検出される被検出磁束 と連動した電気信号を出力する検出回路 8 とを有する こ とを特徴と する電流センサ一。
2 中脚磁気回路 1 および外脚磁気回路 2 a および外脚磁気回路 2 b との少なく ともそのいずれか一つに導線を卷回配置した平衡復元 コイル 5 と、 検出回路 8 から 出力する電気信号に基づき前記磁束検 出手段 4 に検出される被検出磁束が減少するよう に前記平衡復元コ ィル 5 に流す平衡復元電流を制御する平衡復元電流制御回路 9 と、 前記平衡復元電流の値を出力する検出値出力回路 1 0 と、 を有する こ とを特徴とする請求項 1 に記載の電流センサ一。
3 励磁手段 3 a によ り 中脚磁気回路 1 に流れよ う とする交番磁束 である第 1 の励磁磁束を発生させ、 かつ、 励磁手段 3 b によ り 中脚 磁気回路 1 に流れよう とする交番磁束である第 2 の励磁磁束であつ て大きさが第 1 の励磁磁束と同じであ り磁束の方向が第 1 の励磁磁 束と反対である励磁磁束を発生させる こ とによって、 磁気平衡状態 を発現させ、 外脚磁気回路 2 a と中脚磁気回路 1 とによ り包囲され る こ とよっ て形成される窓部および外脚磁気回路 2 と中脚磁気回 路 1 とによ り包囲される こ とによって形成される窓部との少なく と もそのいずれか一方の窓部に被検出導線 6 を貫通させ、 被検出導線 6 に被検出電流を流すこ とによっ て外脚磁気回路 2 aおよび外脚磁 気回路 2 b の磁気抵抗を変化させ、 前記磁気抵抗の変化によって前 記磁気平衡状態を崩 して磁気非平衡状態を発現させ、 前記磁気非平 衡状態が発現する こ とによ り 中脚磁気回路 1 に発生する磁束を、 磁 束検出手段 4 によ り検出される被検出磁束と連動した電気信号を出 力する検出回路 8 によって検出する こ とによっ て、 被検出導線 6 に 流れる被検出電流を検出する こ とを特徴とする電流検出方法。
4 励磁手段 3 a によ り 中脚磁気回路 1 に流れよ う とする交番磁束 である第 1 の励磁磁束を発生させ、 かつ、 励磁手段 3 b によ り 中脚 磁気回路 1 に流れよ う とする交番磁束である第 2 の励磁磁束であつ て大きさが第 1 の励磁磁束と同じであ り磁束の方向が第 1 の励磁磁 束と反対である励磁磁束を発生させる こ とによって、 磁気平衡状態 を発現させ、 外脚磁気回路 2 a と中脚磁気回路 1 とによ り包囲され る こ とよっ て形成される窓部およぴ外脚磁気回路 2 b と中脚磁気回 路 1 とによ り包囲される こ とによって形成される窓部との少なく と もそのいずれか一方の窓部に被検出導線 6 を貫通させ、 被検出導線 6 に被検出電流を流すこ とによって外脚磁気回路 2 aおよび外脚磁 気回路 2 b の磁気抵抗を変化させ、 前記磁気抵抗の変化によって前 記磁気平衡状態を崩 して磁気非平衡状態を発現させ、 外脚磁気回路 2 aおよび外脚磁気回路 2 b の磁気抵抗が変化した状態において、 被検出導線 6 を貫通させる こ とによ り被検出導線 6 が卷回された磁 気回路に発生する磁束と同じ大きさであって前記磁束と反対方向で ある磁束を発生させる電流である平衡復元電流を、 被検出導線 6 を 貫通させた窓部と同一の窓部を貫通させて卷回した平衡復元コイル 5 に流し、 平衡復元電流を平衡復元コイル 5 に流すこ とによって、 外脚磁気回路 2 aおよび外脚磁気回路 2 b の磁気抵抗が変化した状 態において中脚磁気回路 1 に発生する磁束を減少させて磁気再平衡 状態を発現させ、 磁気再平衡状態にある ときに平衡復元コイル 5 に 流れる平衡復元電流を検出する こ とによって被検出導線 6 に流れる 被検出電流を検出する こ とを特徴とする電流検出方法。
5 両端を持つ 1 つの磁気回路 1 と、 該磁気回路 1 の一方の端に 各々の一方の端を接続した両端を持つ磁気回路 2 1 a , 2 1 b と、 前記磁気回路 1 の他方の端に各々 の一方の端を接続し且つ他方の端 を前記磁気回路 2 1 a, 2 1 b に各々接続した両端を持つ磁気回路 2 2 b , 2 2 a と、 前記磁気回路 2 l a と 2 2 b との接続点と前記 磁気回路 2 1 b と 2 2 a との接続点とにそれぞれ接続した両端を持 つ 1 つの磁気回路 2 と、 当該磁気回路 2 に磁束を発生できるよう に 配設した励磁手段 3 と、 前記磁気回路 1 の磁束を検出できるよう に 配設した磁束検出手段 4 と、 前記励磁手段 3 を駆動する励磁駆動手 段 7 と、 前記磁束検出手段 4 に接続し当該磁束検出手段 4 に検出さ れる被検出磁束と連動した電気信号を出力する検出回路 8 とを有す る こ とを特徵とする電流センサー。
6 励磁手段 3 がコイルの場合、 そのコイルは、 磁気回路 2 1 a , 2 1 b と磁気回路 2 で囲まれた窓部および磁気回路 2 2 a , 2 2 b と磁気回路 2 で囲まれた窓部の両方を、 少なく とも一回貫通するよ う に配設した請求項 5 に記載の電流センサー。
7 磁束検出手段 4 がコイルの場合、 そのコイルは、 磁気回路 2 1 a , 2 2 b と磁気回路 1 で囲まれた窓部および磁気回路 2 2 a , 2 1 b と磁気回路 1 で囲まれた窓部の両方を、 少なく とも一回貫通す るよう に配設した請求項 5 または 6 に記載の電流センサー。
8 磁気回路 1 と磁気回路 2 1 a, 2 2 a と磁気回路 2 1 b, 2 2 b と磁気回路 2 と励磁手段 3 とによ り磁気プリ ッ ジを構成した請求 項 5〜 7 のいずれかに記載の電流センサ一。
9 磁気回路 1 と磁気回路 2 1 a, 2 2 a と磁気回路 2 1 b, 2 2 b と磁気回路 2 と励磁手段 3 とによって構成される磁気プリ ッ ジの 任意の位置に配設した平衡復元コイル 5 と、 検出回路 8 から 出力す る電気信号に基づき前記磁束検出手段 4 に検出される被検出磁束が 減少するよ う に前記平衡復元コイル 5 に流す平衡復元電流を制御す る平衡復元電流制御回路 9 と、 前記平衡復元電流の値を出力する検 出値出力回路 1 0 とを有する こ とを特徴とする請求項 5〜 8 のいず れかに記載の電流センサ一。
10 磁気回路 2 1 a, 2 1 b, 2 2 a , 2 2 b の磁気抵抗を適宜選 択し磁気回路 1 の両端の磁位を同じにする こ とによ り 、 励磁手段 3 による磁束が磁気回路 1 に存在しない磁気平衡状態を発現させ、 前 記磁気回路 2 l a , 2 2 b , 1 によ り 囲まれた窓部、 または磁気回 路 2 l b , 2 2 a , 1 によ り 囲まれた窓部の少な く と も一方の窓部 に被検出導線 6 を貫通させ、 被検出導線 6 に被検出電流を流すこ と によって磁気回路 2 l a , 2 2 a, 2 1 b , 2 2 b の少なく とも一 つの磁気回路の磁気抵抗を変化させ、 当該磁気抵抗の変化によって 前記磁気平衡状態を崩 して磁気非平衡状態を発現させ、 前記磁気非 平衡状態が発現する こ とによ り 前記磁気回路 1 に発生する磁束を、 磁束検出手段 4 によ り検出される被検出磁束と連動した電気信号を 出力する検出回路 8 によって検出する こ とによって、 被検出導線 6 に流れる被検出電流を検出する こ とを特徴とする電流検出方法。 11 磁気回路 2 l a , 2 2 a , 2 1 , 2 2 b の少なく とも一つの 磁気回路の磁気抵抗が変化した状態において、 被検出導線 6 を貫通 させる こ とによ りその被検出導線 6 が卷回された磁気回路に発生す る磁束と同じ大きさであって当該磁束と反対方向の磁束を発生させ る電流である平衡復元電流を、 被検出導線 6 を貫通させた窓部と同 一の窓部を貫通させて卷回した平衡復元コイル 5 に流し、 平衡復元 電流を平衡復元コイル 5 に流すこ とによって、 前記磁気回路 2 l a , 2 2 a , 2 1 b , 2 2 b の少なく とも一つの磁気回路の磁気抵抗 が変化した状態において、 磁気抵抗が変化した当該磁気回路の磁気 抵抗を変化前の磁気抵抗に戻すこ とによって前記磁気回路 1 に発生 する磁束を減少させて磁気再平衡状態を発現させ、 磁気再平衡状態 にある ときに平衡復元コイル 5 に流れる平衡復元電流を検出する こ とによって被検出導線 6 に流れる被検出電流を検出する こ とを特徴 とする電流検出方法。
12 両端を持つ 1 つの中脚磁気回路 1 と、 前記中脚磁気回路 1 の一 方端と他方端とに各々が接続する 2 つの外脚磁気回路 2 a , 2 b と、 前記外脚磁気回路 2 a に配設されている励磁手段 3 a 並びに前記外 脚磁気回路 2 b に配設されている励磁手段 3 b と、 前記中脚磁気回 路 1 に配設されている磁束検出手段 4 と、 前記励磁手段 3 a と前記 励磁手段 3 b とをそれぞれ駆動する励磁駆動手段 7 とを具備し、 前 記励磁手段 3 a によ り 中脚磁気回路 1 に流れよう とする交番磁束で ある第 1 の励磁磁束を発生させ、 かつ、 励磁手段 3 b によ り 中脚磁 気回路 1 に流れよう とする交番磁束である第 2 の励磁磁束であっ て 大きさが第 1 の励磁磁束と同じであ り磁束の方向が第 1 の励磁磁束 と反対である励磁磁束を発生させる こ とによって、 磁気平衡状態を 発現させるよう にしたこ とを特徴とする磁気ブリ ッ ジ。
1 3 両端を持つ 1 つの磁気回路 1 と、 該磁気回路 1 の一方の端に各 々 の一方の端を接続した両端を持つ磁気回路 2 1 a , 2 1 b と、 前 記磁気回路 1 の他方の端に各々 の一方の端を接続し且つ他方の端を 前記磁気回路 2 l a , 2 l b に各々接続した両端を持つ磁気回路 2 2 b , 2 2 a と、 前記磁気回路 2 1 a と 2 2 b との接続点と前記磁 気回路 2 1 b と 2 2 a との接続点とにそれぞれ接続した両端を持つ 1 つの磁気回路 2 と、 当該磁気回路 2 に磁束を発生できるよ う に配 設した励磁手段 3 と、 前記磁気回路 1 の磁束を検出できるよ う に配 設した磁束検出手段 4 と、 前記励磁手段 3 を駆動する励磁駆動手段 7 とを具備し、 前記磁気回路 2 1 a, 2 1 b , 2 2 a , 2 2 b の磁 気抵抗を適宜選択し磁気回路 1 の両端の磁位を同じにする こ とによ り 、 励磁手段 3 による磁束が磁気回路 1 に存在しない磁気平衡状態 を発現させるよ う に したこ とを特徴とする磁気プリ ッ ジ。
14 一方の端を接続した両端を持つ磁気回路 2 1 a, 2 l b と、 一 方の端を接続し且つ他方の端を前記磁気回路 2 1 a , 2 1 bに各々 接続した両端を持つ磁気回路 2 2 b , 2 2 a と、 前記磁気回路 2 1 a と 2 2 b との接続点と前記磁気回路 2 1 b と 2 2 a との接続点と にそれぞれ接続した両端を持つ 1 つの磁気回路 2 と、 当該磁気回路 2に磁束を発生できるよう に配設した励磁手段 3 と、 前記励磁手段 3 を駆動する励磁駆動手段 7 とを具備し、 前記磁気回路 2 l a , 2 l b , 2 2 a , 2 2 bの磁気抵抗を適宜選択し前記磁気回路 2 l a と 2 1 b との接続点と、 前記磁気回路 2 2 b と 2 2 a との接続点と の磁位が同じになる磁気平衡状態を発現できるよう に したこ とを特 徵とする磁気プリ ッ ジ。
PCT/JP2003/007729 2002-06-01 2003-06-18 磁気ブリッジ型電流センサー及び磁気ブリッジ型電流検出方法、並びに、前記センサーと検出方法に用いる磁気ブリッジ WO2003107017A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP03760164A EP1542025A4 (en) 2002-06-18 2003-06-18 MAGNETIC BRIDGE TYPE CURRENT DETECTOR, MAGNETIC BRIDGE TYPE CURRENT DETECTION METHOD, AND MAGNETIC BRIDGE FOR USE WITH THIS SENSOR AND DETECTION METHOD
AU2003244243A AU2003244243A1 (en) 2002-06-18 2003-06-18 Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
JP2004513784A JP4515905B2 (ja) 2002-06-18 2003-06-18 磁気ブリッジ型電流センサー及び磁気ブリッジ型電流検出方法、並びに、前記センサーと検出方法に用いる磁気ブリッジ
US10/518,425 US7218092B2 (en) 2002-06-18 2003-06-18 Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
CA002503828A CA2503828A1 (en) 2002-06-18 2003-06-18 Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-176894 2002-06-18
JP2002176894 2002-06-18
JP2003-101353 2003-04-04
JP2003101353 2003-04-04

Publications (1)

Publication Number Publication Date
WO2003107017A1 true WO2003107017A1 (ja) 2003-12-24

Family

ID=29738431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007729 WO2003107017A1 (ja) 2002-06-01 2003-06-18 磁気ブリッジ型電流センサー及び磁気ブリッジ型電流検出方法、並びに、前記センサーと検出方法に用いる磁気ブリッジ

Country Status (8)

Country Link
US (1) US7218092B2 (ja)
EP (1) EP1542025A4 (ja)
JP (1) JP4515905B2 (ja)
KR (1) KR100993928B1 (ja)
CN (1) CN100454024C (ja)
AU (1) AU2003244243A1 (ja)
CA (1) CA2503828A1 (ja)
WO (1) WO2003107017A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710591A1 (en) * 2003-09-30 2006-10-11 Loyal Port Company Limited Magnetic bridge electric power sensor
JP4310373B1 (ja) * 2008-10-10 2009-08-05 有限会社ワイワイオフィス 磁性流体を用いたセンサ用の磁気ブリッジ、及び、この磁気ブリッジを用いた電流センサ並びに磁界センサ
JP2009535616A (ja) * 2006-04-28 2009-10-01 マイクロゲート インコーポレイテッド 薄膜型3軸フラックスゲート及びその製造方法
JP2010078401A (ja) * 2008-09-25 2010-04-08 Koichi Egashira 非接触磁気変調型信号増幅器。
JPWO2012011306A1 (ja) * 2010-07-20 2013-09-09 アルプス・グリーンデバイス株式会社 電流センサ
JP2015533420A (ja) * 2012-11-02 2015-11-24 シエヴァ デー.オー.オー. − ポスロヴナ エノタ イドリヤ 絶縁型の電流計測装置ならびに絶縁型の電流判定方法
WO2016103502A1 (ja) * 2014-12-26 2016-06-30 有限会社ワイワイオフィス 定励磁磁束方式電流センサ
CN103134967B (zh) * 2011-10-25 2017-03-01 霍尼韦尔国际公司 基于高电流范围磁阻的电流传感器
CN109655768A (zh) * 2017-10-12 2019-04-19 Tdk株式会社 磁传感器以及包括该磁传感器的电流传感器
JP2019086352A (ja) * 2017-11-06 2019-06-06 ロイヤルセンシング合同会社 波状磁束型磁界センサ

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006032763B4 (de) * 2006-07-14 2009-05-07 Lisa Dräxlmaier GmbH Vorrichtung und Verfahren zur Messung eines in einem elektrischen Leiter fließenden Stromes
DE102006032762B8 (de) * 2006-07-14 2009-10-08 Lisa Dräxlmaier GmbH Verfahren zur Messung eines in einem elektrischen Leiter fließenden Stromes und Verwendung des Verfahrens sowie einer Vorrichtung zur Überwachung von Strömen im Bordnetz eines Kraftfahrzeugs
FR2904425B1 (fr) * 2006-07-31 2008-12-05 Commissariat Energie Atomique Capteur de courant ameliore a excitation magnetique alternative
US8279037B2 (en) * 2008-07-11 2012-10-02 Cooper Technologies Company Magnetic components and methods of manufacturing the same
US9086444B2 (en) * 2009-12-28 2015-07-21 Tdk Corporation Magnetic field detection device and current sensor
DE102010047270A1 (de) * 2010-10-01 2012-04-05 Hochschule Für Angewandte Wissenschaften Fachhochschule Würzburg-Schweinfurt Fluxgatesensor
CN103454596B (zh) 2012-06-04 2017-04-12 国民技术股份有限公司 一种交变磁场感应装置
DE102012209782B4 (de) 2012-06-12 2017-10-19 Bender Gmbh & Co. Kg Verfahren und Vorrichtung zur allstromsensitiven Strommessung
JPWO2014010187A1 (ja) * 2012-07-09 2016-06-20 パナソニックIpマネジメント株式会社 電流検出装置
KR101329240B1 (ko) * 2012-10-31 2013-11-20 이상철 플럭스 게이트 방식의 비접촉 전류 계측기
US9790784B2 (en) * 2014-05-20 2017-10-17 Aps Technology, Inc. Telemetry system, current sensor, and related methods for a drilling system
US9976413B2 (en) 2015-02-20 2018-05-22 Aps Technology, Inc. Pressure locking device for downhole tools
US10763028B2 (en) * 2015-04-10 2020-09-01 Delta Electronics, Inc. Magnetic component and magnetic core of the same
TWI557759B (zh) * 2015-04-10 2016-11-11 台達電子工業股份有限公司 集成式電感及其集成式電感磁芯
JP6024814B1 (ja) * 2015-11-02 2016-11-16 Tdk株式会社 磁気センサ用インダクタンス素子及びこれを備える電流センサ
KR101630370B1 (ko) * 2015-11-03 2016-06-14 씨앤씨에이드 주식회사 선로진단시스템
CN113419197B (zh) * 2021-06-02 2022-02-15 华中科技大学 一种降压磁通环装置及磁通感应信号测量方法
CN113341201B (zh) * 2021-06-08 2022-08-09 合肥博微田村电气有限公司 一种磁通门电流传感器及电流测量方法
CN113655417A (zh) * 2021-07-30 2021-11-16 深圳南云微电子有限公司 一种磁通门磁饱和保护电路及磁饱和检测方法
CN114019218B (zh) * 2021-11-04 2024-04-09 国网河北省电力有限公司电力科学研究院 一种双通道零磁通电流传感器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212883A (ja) * 1987-03-02 1988-09-05 Glory Ltd 磁性薄膜の磁化特性検出方法
JP2000249727A (ja) * 1999-03-02 2000-09-14 Ntt Data Corp 電流検出装置及び電源装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB611027A (en) * 1944-10-31 1948-10-25 Smith & Sons Ltd S Improvements in electromagnetic apparatus of the flux-gate type
FR1063229A (fr) * 1952-06-27 1954-04-30 Appareil de mesure de courants continus faibles et détecteur de terres
US4182982A (en) * 1978-07-11 1980-01-08 Westinghouse Electric Corp. Current sensing transducer for power line current measurements
DE3480232D1 (en) * 1983-07-20 1989-11-23 Transformatoren & Roentgenwerk Device for measuring direct currents
CA2100135C (en) * 1992-07-10 1997-11-04 Makoto Kawakami Dc current sensor
JP3286431B2 (ja) * 1993-10-12 2002-05-27 住友特殊金属株式会社 直流電流センサー
US6018238A (en) * 1995-03-03 2000-01-25 Bell Technologies Inc. Hybrid non-contact clamp-on current meter
JPH1010161A (ja) 1996-06-20 1998-01-16 Sumitomo Special Metals Co Ltd 直流電流センサー
JPH10332745A (ja) 1997-05-29 1998-12-18 Sumitomo Special Metals Co Ltd 電流センサー
JP2000055940A (ja) 1998-08-07 2000-02-25 Sumitomo Special Metals Co Ltd 直流電流センサー
FI20000504A (fi) * 2000-03-06 2001-09-07 Nokia Multimedia Terminals Oy Järjestely tiedon siirtämiseksi muuntajassa

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212883A (ja) * 1987-03-02 1988-09-05 Glory Ltd 磁性薄膜の磁化特性検出方法
JP2000249727A (ja) * 1999-03-02 2000-09-14 Ntt Data Corp 電流検出装置及び電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1542025A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710591A1 (en) * 2003-09-30 2006-10-11 Loyal Port Company Limited Magnetic bridge electric power sensor
EP1710591A4 (en) * 2003-09-30 2010-07-28 Loyal Port Company Ltd MAGNETIC ELECTRIC BRIDGE CURRENT SENSOR
JP2009535616A (ja) * 2006-04-28 2009-10-01 マイクロゲート インコーポレイテッド 薄膜型3軸フラックスゲート及びその製造方法
JP2010078401A (ja) * 2008-09-25 2010-04-08 Koichi Egashira 非接触磁気変調型信号増幅器。
JP4310373B1 (ja) * 2008-10-10 2009-08-05 有限会社ワイワイオフィス 磁性流体を用いたセンサ用の磁気ブリッジ、及び、この磁気ブリッジを用いた電流センサ並びに磁界センサ
WO2010041340A1 (ja) * 2008-10-10 2010-04-15 有限会社ワイワイオフィス 磁性流体を用いたセンサ用の磁気ブリッジ、及び、この磁気ブリッジを用いた電流センサ並びに磁界センサ
JPWO2012011306A1 (ja) * 2010-07-20 2013-09-09 アルプス・グリーンデバイス株式会社 電流センサ
CN103134967B (zh) * 2011-10-25 2017-03-01 霍尼韦尔国际公司 基于高电流范围磁阻的电流传感器
JP2015533420A (ja) * 2012-11-02 2015-11-24 シエヴァ デー.オー.オー. − ポスロヴナ エノタ イドリヤ 絶縁型の電流計測装置ならびに絶縁型の電流判定方法
WO2016103502A1 (ja) * 2014-12-26 2016-06-30 有限会社ワイワイオフィス 定励磁磁束方式電流センサ
JPWO2016103502A1 (ja) * 2014-12-26 2018-03-01 有限会社ワイワイオフィス 定励磁磁束方式電流センサ
CN109655768A (zh) * 2017-10-12 2019-04-19 Tdk株式会社 磁传感器以及包括该磁传感器的电流传感器
JP2019086352A (ja) * 2017-11-06 2019-06-06 ロイヤルセンシング合同会社 波状磁束型磁界センサ

Also Published As

Publication number Publication date
AU2003244243A1 (en) 2003-12-31
US20060066292A1 (en) 2006-03-30
CA2503828A1 (en) 2003-12-24
KR100993928B1 (ko) 2010-11-12
KR20060012240A (ko) 2006-02-07
JP4515905B2 (ja) 2010-08-04
US7218092B2 (en) 2007-05-15
CN100454024C (zh) 2009-01-21
EP1542025A1 (en) 2005-06-15
CN1675557A (zh) 2005-09-28
EP1542025A4 (en) 2005-09-14
JPWO2003107017A1 (ja) 2005-10-13

Similar Documents

Publication Publication Date Title
WO2003107017A1 (ja) 磁気ブリッジ型電流センサー及び磁気ブリッジ型電流検出方法、並びに、前記センサーと検出方法に用いる磁気ブリッジ
Liakopoulos et al. A micro-fluxgate magnetic sensor using micromachined planar solenoid coils
Sandacci et al. Off-diagonal impedance in amorphous wires and its application to linear magnetic sensors
Chiesi et al. CMOS planar 2D micro-fluxgate sensor
JPS60194379A (ja) 磁界センサ及び磁界検出方法
Castro et al. Development of a contactless DC current sensor with high linearity and sensitivity based on the magnetoelectric effect
JP5116433B2 (ja) 変動磁場検出用磁気検出器
Lee et al. Magnetic tunnel junction based out-of-plane field sensor with perpendicular magnetic anisotropy in reference layer
US7271587B2 (en) High resolution and low power magnetometer using magnetoresistive sensors
JP4209114B2 (ja) 磁界センサ
JPS5946558A (ja) 電力計
Delevoye et al. Microfluxgate sensors for high frequency and low power applications
JP2002277522A (ja) 磁界センサ
JP4716030B2 (ja) 電流センサ
Ripka et al. Current sensor in PCB technology
Ripka et al. Symmetrical core improves micro-fluxgate sensors
CN110412331A (zh) 电流感测方法以及电流传感器
Choi et al. The microfluxgate magnetic sensor having closed magnetic path
JPH0784021A (ja) 微弱磁気測定装置及びそれを用いた非破壊検査方法
JP2004239828A (ja) フラックスゲート磁界センサ
JPH0224476B2 (ja)
WO1999008263A1 (en) Magnetic flux processing apparatus and method
JP2617570B2 (ja) 磁気測定装置
Yeh et al. Three-axis MEMS DC magnetic sensor using magnetic force interaction with the piezoelectric effect
Baschirotto et al. An integrated micro-fluxgate magnetic sensor with sputtered ferromagnetic core

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AU AZ BA BB BR BY BZ CA CN CO CR CU DM DZ EC GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL RO RU SC SD SG SL TJ TM TN TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006066292

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10518425

Country of ref document: US

Ref document number: 1020047020632

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003760164

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003819127X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004513784

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2503828

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2003760164

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047020632

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10518425

Country of ref document: US