WO2013073232A1 - サーボ加速度計 - Google Patents

サーボ加速度計 Download PDF

Info

Publication number
WO2013073232A1
WO2013073232A1 PCT/JP2012/068084 JP2012068084W WO2013073232A1 WO 2013073232 A1 WO2013073232 A1 WO 2013073232A1 JP 2012068084 W JP2012068084 W JP 2012068084W WO 2013073232 A1 WO2013073232 A1 WO 2013073232A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
servo
temperature sensor
pole piece
coils
Prior art date
Application number
PCT/JP2012/068084
Other languages
English (en)
French (fr)
Inventor
鈴木 利一
孝純 山田
Original Assignee
日本航空電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本航空電子工業株式会社 filed Critical 日本航空電子工業株式会社
Publication of WO2013073232A1 publication Critical patent/WO2013073232A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/13Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
    • G01P15/132Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position with electromagnetic counterbalancing means

Definitions

  • the ToruCa coils attached to both sides of the pendulum are respectively positioned in the magnetic air gaps of the magnetic circuit, and the Toruca current is caused to flow in accordance with the displacement of the pendulum by the acceleration input to the ToruCa coils, and the pendulum is balanced at the origin position.
  • a servo accelerometer related to a servo accelerometer.
  • FIG. 1 An example of the conventional structure of this type of servo accelerometer is shown in FIG.
  • the pendulum 11 that detects acceleration is supported by the frame 11b via a hinge 11a.
  • the pendulum 11 is displaced up and down by acceleration input.
  • the pendulum displacement detector 12 detects the displacement of the pendulum 11 by a change in capacitance.
  • the servo circuit 13 generates torquer current according to the output of the pendulum displacement detector 12.
  • the servo circuit 13 is mounted on the wiring board 14.
  • a torquer coil 15 through which torquer current flows is wound around a cylindrical bobbin 16.
  • the bobbins 16 are attached to both sides of the pendulum 11 respectively.
  • the housing 17 of the servo accelerometer is composed of three parts: an upper lid 17a, a bottom plate 17b, and a body part 17c.
  • the housing 17 has a cylindrical shape whose upper end and lower end are closed.
  • the C-rings 18 and 19 are mounted around the upper and lower magnet housings 21, respectively.
  • the terminal 22 is led out from the wiring board 14.
  • the magnet housing 21 has a cylindrical shape, one end of which is opened, and the other end is provided with a bottom plate portion 21a.
  • a disc-shaped pole piece bottom 23, a magnet 24, and a pole piece top 25 are sequentially joined and arranged.
  • the magnetic circuit of the servo accelerometer is composed of the magnet housing 21, the pole piece bottom 23, the magnet 24, and the pole piece top 25.
  • an arrow a indicates the flow of magnetic flux.
  • the torquer coil 15 is located in a magnetic gap 26 formed between the open end side of the magnet housing 21 and the pole piece top 25 (see, for example, Patent Document 1).
  • FIG. 2 is a block diagram showing the functional configuration of the servo accelerometer having the above configuration.
  • the pendulum 11 When the acceleration acts on the pendulum 11, the pendulum 11 is displaced, and the pendulum displacement detection unit 12 electrically detects the displacement of the pendulum 11.
  • the servo circuit is configured by using an amplifier 13 ′ that amplifies the output of the pendulum displacement detection unit 12 and flows a torquer current to the torquer coil 15.
  • a Lorentz force is generated in the torquer coil 15 located in the magnetic gap by the torquer current, and thereby a torque is generated so as to return the pendulum 11 to the original position (origin position).
  • the ToruCa current is proportional to the acceleration applied to the pendulum 11, and an acceleration output is obtained by converting the ToruCa current into a voltage by the reading resistor 27.
  • quartz is used as the constituent material of the pendulum 11
  • a soft magnetic material such as Invar is used as the constituent material of the magnet housing 21, and these quartz and invar
  • quartz and invar By using a material having a small thermal expansion coefficient, a good temperature characteristic has been obtained.
  • the pole piece bottom 23 and the pole piece top 25 are made of a soft magnetic material such as pure iron.
  • servo accelerometers used for oilfield drilling may be exposed to a high temperature of about 200 ° C.
  • the invar constituting the magnet housing 21 is exposed.
  • the relative magnetic permeability is considerably lower than that at room temperature, and the magnetic resistance of the magnetic circuit is increased, so that the magnetic flux interlinking the torquer coil 15 is reduced.
  • the torque for returning the pendulum 11 to the origin decreases, and the control error of the negative feedback increases, that is, the acceleration sensitivity changes due to the temperature change.
  • An object of the present invention is to provide a servo accelerometer that has a very small change in acceleration sensitivity even when the temperature changes and has excellent temperature characteristics.
  • torquer coils are attached to both sides of the pendulum, and the torquer coils are located in the magnetic gaps of the magnetic circuit, respectively, and include a servo circuit that generates a torquer current that flows through the torquer coil in accordance with the displacement of the pendulum caused by acceleration input.
  • the servo accelerometer has a temperature sensor for detecting the temperature of the magnetic circuit, a compensation coil wound around the magnetic circuit, and an electric circuit for passing a current through the compensation coil based on the output of the temperature sensor. Magnetic flux generated by the current flowing through the coil is added to the magnetic circuit magnetic flux.
  • the present invention it is possible to compensate for a decrease in magnetic flux accompanying a temperature change, and therefore, a change in acceleration sensitivity is extremely small even when the temperature changes, and a servo accelerometer having excellent temperature characteristics can be obtained.
  • FIG. 1 is a cross-sectional view showing the structure of a conventional servo accelerometer.
  • FIG. 2 is a block diagram showing a functional configuration of a conventional servo accelerometer.
  • FIG. 3 is a sectional view showing the structure of the first embodiment of the servo accelerometer according to the present invention.
  • FIG. 4 is a block diagram showing a functional configuration of the first embodiment of the servo accelerometer according to the present invention.
  • FIG. 5 is a circuit diagram for compensating for magnetic flux in the first embodiment of the servo accelerometer according to the present invention.
  • FIG. 6 is a circuit diagram for compensating for the magnetic flux in the second embodiment of the servo accelerometer according to the present invention.
  • FIG. 1 is a cross-sectional view showing the structure of a conventional servo accelerometer.
  • FIG. 2 is a block diagram showing a functional configuration of a conventional servo accelerometer.
  • FIG. 3 is a sectional view showing the structure of the first embodiment of the servo acceler
  • FIG. 7 is a sectional view showing the structure of a first modification of the servo accelerometer according to the present invention.
  • FIG. 8A is a sectional view showing the structure of a second modification of the servo accelerometer according to the present invention, and
  • FIG. 8B is a sectional view taken along the line CC in FIG. 8A.
  • FIG. 3 shows the structure of one embodiment of the servo accelerometer according to the present invention. The parts corresponding to those in FIG.
  • a temperature sensor 31 for detecting the temperature of the magnetic circuit, a compensation coil 32, and an electric circuit for supplying a current to the compensation coil 32 based on the output of the temperature sensor 31 are provided.
  • a compensation coil (hereinafter referred to as an SFC (Scale Factor Compensation) coil) 32 is wound around a pole piece bottom 23 which is a component of a magnetic circuit in this example, and a temperature sensor 31 is provided on the upper magnet housing 21. It is adhered and attached to the outer surface of the bottom plate portion 21a.
  • illustration of an electric circuit is abbreviate
  • FIG. 4 is a block diagram showing the functional configuration of the servo accelerometer shown in FIG. 3.
  • the temperature sensor 31 the SFC coil 32, and the temperature sensor are shown.
  • an amplifier 33 is provided as an electric circuit for supplying a current to the SFC coil 32.
  • the output of the temperature sensor 31 is input to the amplifier 33 and amplified, and a current flows from the amplifier 33 to the SFC coil 32. That is, when the temperature rises, it functions to flow a current through the SFC coil 32.
  • an arrow b indicates the flow of magnetic flux generated by the SFC coil 32.
  • FIG. 5 specifically shows a circuit configuration for compensating for the magnetic flux when a temperature sensor IC is used as the temperature sensor.
  • the output of the operational amplifier 33 ′ is generated when the output voltage Vt output from the temperature sensor IC 31 ′ becomes larger than the reference voltage Vref output from the reference voltage generation circuit 34, and current flows through the SFC coil 32. It has become.
  • reference numerals 35 to 38 denote resistors.
  • Vref is equal to the output voltage Vt of the temperature sensor IC at 150 ° C.
  • the operational amplifier 33 operates with a single power source. At a temperature lower than 150 ° C., Vt is smaller than Vref, so that the output of the operational amplifier 33 ′ is 0V. When the temperature sensor IC 31 ′ becomes 150 ° C. or higher, Vt becomes larger than Vref, the output of the operational amplifier 33 ′ becomes a positive voltage, and a current flows through the SFC coil 32. Since Vt is proportional to temperature, the current flowing through the SFC coil 32 increases as the temperature increases.
  • FIG. 6 shows a circuit configuration in the case where a thermistor whose resistance value decreases as the temperature rises is used as a temperature sensor, and the amplification factor increases as the resistance value of the thermistor 31 ′′ decreases. ing. Since the resistance value of the thermistor 31 ′′ changes nonlinearly with respect to temperature change, the thermistor 31 ′′ that changes greatly in the temperature range to be compensated is selected and used.
  • reference numeral 39 denotes a resistor.
  • the operational amplifier 33 ′ operates so as to amplify the reference voltage Vref output from the reference voltage generation circuit 34 and to pass a current through the SFC coil 32.
  • the resistance value of the thermistor 31 ′′ is large and the amplification factor is small, so that the current flowing through the SFC coil 32 is small.
  • the resistance value of the thermistor 31 ′′ decreases and the amplification factor increases, so that the current flowing through the SFC coil 32 increases. Therefore, the operation similar to that of the circuit shown in FIG. 5 can be performed, and the influence of the decrease in the number of magnetic fluxes accompanying the temperature increase can be compensated.
  • a positive temperature coefficient thermistor may be used instead of the thermistor 31 ′′.
  • the SFC coil 32 is wound around the pole piece bottom 23.
  • the present invention is not limited to this, and the SFC coil 32 can be wound around other components of the magnetic circuit.
  • FIG. 7 shows an example in which the SFC coil 32 is wound around the magnet 24
  • FIGS. 8A and 8B show examples in which the SFC coil 32 is provided in the magnet housing 21.
  • FIG. 8A and 8B show examples in which the SFC coil 32 is provided in the magnet housing 21.
  • the annular recess 41 is formed in the magnet housing 21 as shown in FIG. 8B, and the SFC coil 32 is wound around the shaft portion 42 surrounded by the annular recess 41. 8B, four annular recesses 41 are formed at 90 ° intervals on the outer peripheral portion of the bottom plate portion 21a of the magnet housing 21, and four SFC coils 32 are wound. Note that the number of SFC coils 32 is not limited to four as in this example, and may be more than four or less than four, for example, one.
  • a small and lightweight servo accelerometer can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

 振子11の両面にトルカコイル15が取り付けられ、それらトルカコイル15は磁気回路の磁気空隙26にそれぞれ位置し、加速度入力による振子11の変位に応じてトルカコイル15に流すトルカ電流を発生するサーボ回路13を具備するサーボ加速度計において、磁気回路の温度を検出する温度センサ31と、磁気回路に巻かれた補償用コイル(SFCコイル)32と、温度センサ31の出力に基づき、補償用コイル32に電流を流す電気回路とを有し、補償用コイル32に電流が流れることによって発生する磁束が磁気回路の磁束に加算される。温度が変化しても加速度感度の変化が極めて小さいサーボ加速度計を得ることができる。

Description

サーボ加速度計
 この発明は振子の両面に取り付けられたトルカコイルが磁気回路の磁気空隙にそれぞれ位置され、それらトルカコイルに加速度入力による振子の変位に応じてトルカ電流が流されて、振子が原点位置で平衡する構成とされたサーボ加速度計に関する。
 この種のサーボ加速度計の従来構造の一例を図1に示す。
 加速度を検知する振子11はヒンジ11aを介して枠体11bに支持されている。振子11は加速度入力により上下に変位する。振子変位検出部12は振子11の変位を静電容量の変化によって検出する。サーボ回路13は振子変位検出部12の出力に応じてトルカ電流を発生する。サーボ回路13は配線基板14に実装されている。トルカ電流が流れるトルカコイル15は円筒状のボビン16に巻かれている。ボビン16は振子11の両面にそれぞれ取り付けられている。
 サーボ加速度計のハウジング17は、上蓋17a,底板17b及び胴体部17cの3つの部分によって構成されている。ハウジング17は上端及び下端が閉塞された円筒状とされている。Cリング18,19は上,下のマグネットハウジング21の周りにそれぞれ装着されている。端子22は配線基板14より外部に導出されている。
 マグネットハウジング21は円筒状をなし、その一端側は開放され、他端側には底板部21aが設けられている。各マグネットハウジング21内の底板部21a上には、それぞれ円板状をなすポールピースボトム23、マグネット24及びポールピーストップ25が順次接合されて配置されている。サーボ加速度計の磁気回路はこれらマグネットハウジング21、ポールピースボトム23、マグネット24及びポールピーストップ25によって構成されている。図1中、矢印aは磁束の流れを示す。トルカコイル15はマグネットハウジング21の開放端側とポールピーストップ25との間に構成されている磁気空隙26に位置されている(例えば、特許文献1参照)。
 図2は上記のような構成を有するサーボ加速度計の機能構成をブロック図で示したものである。加速度が振子11に作用することにより振子11が変位し、振子変位検出部12は振子11の変位を電気的に検出する。サーボ回路は振子変位検出部12の出力を増幅してトルカコイル15にトルカ電流を流す増幅器13’を用いて構成されている。トルカ電流によって磁気空隙に位置するトルカコイル15にはローレンツ力が発生し、これにより振子11を元の位置(原点位置)に戻すようにトルクが発生する。トルカ電流は振子11に加わった加速度に比例し、トルカ電流を読取抵抗器27で電圧に変換することにより加速度出力が得られるものとなっている。
特開平11-281670号公報
 上記のような構成を有するサーボ加速度計においては、振子11の構成材料には例えばクオーツが用いられ、またマグネットハウジング21の構成材料にはインバーのような軟磁性材料が用いられ、これらクオーツやインバーといった熱膨張係数の小さい材料を用いることで、良好な温度特性を得るものとなっていた。なお、ポールピースボトム23及びポールピーストップ25には純鉄のような軟磁性材料が用いられる。
 しかしながら、例えば油田掘削に使用されるようなサーボ加速度計においては、200℃程度の高温にさらされることがあり、このように200℃程度まで高温になると、マグネットハウジング21を構成しているインバーの比透磁率は常温に比べてかなり低下し、磁気回路の磁気抵抗が大きくなるため、トルカコイル15を鎖交する磁束が減少してしまう。この結果、振子11を原点復帰させるためのトルクが減少し、負帰還の制御誤差が大きくなり、つまり温度変化によって加速度感度が変化することになる。
 この発明の目的は、温度が変化しても加速度感度の変化が極めて小さく、優れた温度特性を有するサーボ加速度計を提供することにある。
 この発明によれば、振子の両面にトルカコイルが取り付けられ、それらトルカコイルは磁気回路の磁気空隙にそれぞれ位置し、加速度入力による振子の変位に応じてトルカコイルに流すトルカ電流を発生するサーボ回路を具備するサーボ加速度計は、磁気回路の温度を検出する温度センサと、磁気回路に巻かれた補償用コイルと、温度センサの出力に基づき、補償用コイルに電流を流す電気回路とを有し、補償用コイルに電流が流れることによって発生する磁束が磁気回路の磁束に加算される。
 この発明によれば、温度変化に伴う磁束の減少を補償することができ、よって温度が変化しても加速度感度の変化が極めて小さく、優れた温度特性を有するサーボ加速度計を得ることができる。
図1は従来のサーボ加速度計の構造を示す断面図である。 図2は従来のサーボ加速度計の機能構成を示すブロック図である。 図3はこの発明によるサーボ加速度計の第1の実施例の構造を示す断面図である。 図4はこの発明によるサーボ加速度計の第1の実施例の機能構成を示すブロック図である。 図5はこの発明によるサーボ加速度計の第1の実施例における磁束を補償するための回路図である。 図6はこの発明によるサーボ加速度計の第2の実施例における磁束を補償するための回路図である。 図7はこの発明によるサーボ加速度計の第1の変形例の構造を示す断面図である。 図8Aはこの発明によるサーボ加速度計の第2の変形例の構造を示す断面図であり、図8Bは図8AのCC線断面図である。
 以下にこの発明の実施例を説明する。
 図3はこの発明によるサーボ加速度計の一実施例の構造を示したものであり、図1と対応する部分には同一符号を付し、その説明を省略する。
 この例では磁気回路の温度を検出する温度センサ31と、補償用コイル32と、温度センサ31の出力に基づき、補償用コイル32に電流を流す電気回路とが設けられる。補償用コイル(以下、SFC(Scale Factor Compensation)コイルと言う)32はこの例では磁気回路の構成要素であるポールピースボトム23の周りに巻かれており、温度センサ31は上側のマグネットハウジング21の底板部21aの外面に接着されて取り付けられている。なお、電気回路の図示は図3では省略している。
 図4は図3に示したサーボ加速度計の機能構成をブロック図で示したものであり、図2に示した従来のサーボ加速度計の機能構成に加え、温度センサ31とSFCコイル32と温度センサ31の出力に基づき、SFCコイル32に電流を流す電気回路として増幅器33とを具備するものとなっている。
 温度センサ31の出力は増幅器33に入力されて増幅され、増幅器33からSFCコイル32に電流が流される。つまり、温度が上昇すると、SFCコイル32に電流を流すように機能する。
 SFCコイル32に電流が流れると、SFCコイル32が巻かれているポールピースボトム23にはSFCコイル32に流れる電流による磁束が発生し、この磁束はマグネット24によって発生する磁束と同様、磁気回路を流れ、つまりマグネット24によって発生する磁束に加算される。従って、磁束密度が増大し、トルカコイル15を鎖交する磁束が増加する。このように作用するため、この例では温度上昇により減少した磁束を補償することができる。なお、図3中、矢印bはSFCコイル32により発生する磁束の流れを示す。
 図5は温度センサとして温度センサICを用いた場合の磁束を補償する回路構成を具体的に示したものである。この例では温度センサIC31’から出力される出力電圧Vtが基準電圧発生回路34から出力される基準電圧Vrefより大きくなったときにオペアンプ33’の出力が発生し、SFCコイル32に電流が流れる構成となっている。なお、図5中、35~38は抵抗器を示す。
 以下、一例として、Vrefが150℃における温度センサICの出力電圧Vtと等しい場合を説明する。
 オペアンプ33’は単電源で動作する。150℃より低い温度では、VtはVrefより小さいからオペアンプ33’の出力は0Vである。温度センサIC31’が150℃以上になると、VtはVrefより大きくなり、オペアンプ33’の出力が正の電圧となり、SFCコイル32に電流が流れる。Vtは温度に比例するので、温度が高くなるほどSFCコイル32に流れる電流は増加する。
 このようにSFCコイル32に電流を流すことで、ポールピースボトム23に発生する磁束数を大きくし、トルカコイル15を鎖交する磁束数を大きくすることにより、温度上昇に伴う磁束数低下の影響を補償する。これにより、温度が変化してもサーボ加速度計の負帰還トルクが一定に保たれるので加速度感度が一定に保たれる。なお、温度センサIC31’の代わりに熱電対などの温度センサを用いることもできる。
 一方、図6は温度センサとして、温度上昇により抵抗値が小さくなるサーミスタを利用した場合の回路構成を示したものであり、サーミスタ31''の抵抗値が小さくなると増幅率が大きくなる回路となっている。サーミスタ31''の抵抗値は温度変化に対して非線形な変化をするので、補償する温度範囲で大きく変化するようなサーミスタ31''を選定して用いる。図6中、39は抵抗器を示す。
 オペアンプ33’は基準電圧発生回路34から出力される基準電圧Vrefを増幅してSFCコイル32に電流を流すように動作する。温度が低い範囲ではサーミスタ31''の抵抗値が大きくなり、増幅率が小さいので、SFCコイル32に流れる電流はわずかとなる。温度が上昇し、高温になると、サーミスタ31''の抵抗値が小さくなり、増幅率が大きくなるため、SFCコイル32に流れる電流が増加する。従って、図5に示した回路と同様の動作をし、温度上昇に伴う磁束数低下の影響を補償することができる。なお、サーミスタ31''の代わりに正特性サーミスタを用いることもできる。
 上述した例では、SFCコイル32をポールピースボトム23の周りに巻く構成としているが、これに限らず、SFCコイル32は磁気回路の他の構成要素に巻くこともできる。
 図7はマグネット24の周りにSFCコイル32を巻いた例を示したものであり、図8A,8Bはマグネットハウジング21にSFCコイル32を設けた例を示したものである。
 マグネットハウジング21にSFCコイル32を設ける場合は図8Bに示したようにマグネットハウジング21に環状凹部41を形成し、その環状凹部41で囲まれた軸部42にSFCコイル32を巻くようにする。図8Bではマグネットハウジング21の底板部21aの外周部分に90°間隔で4箇所、環状凹部41を形成し、SFCコイル32を4個巻いた構成となっている。なお、SFCコイル32の数はこの例のように4個に限るものではなく、4個より多くてもよく、あるいは4個より少なくてもよく、例えば1個でもよい。
 以上、この発明によるサーボ加速度計の各種構成例について説明したが、この発明によるサーボ加速度計によれば、温度が変化しても加速度感度の変化が非常に小さく、高精度な加速度出力を得ることができる。
 なお、温度上昇に伴うインバーの比透磁率の低下、それに伴う磁気回路の磁気抵抗の増大の影響を低減すべく、磁気回路の断面積を十分大きくすることも考えられるが、この場合はサーボ加速度計の大型化を免れえない。これに対し、この発明によれば、小型軽量のサーボ加速度計を提供することができる。

Claims (6)

  1.  振子の両面にトルカコイルが取り付けられ、それらトルカコイルは磁気回路の磁気空隙にそれぞれ位置し、加速度入力による振子の変位に応じてトルカコイルに流すトルカ電流を発生するサーボ回路を具備するサーボ加速度計であって、
     前記磁気回路の温度を検出する温度センサと、
     前記磁気回路に巻かれた補償用コイルと、
     前記温度センサの出力に基づき、前記補償用コイルに電流を流す電気回路とを有し、
     前記補償用コイルに電流が流れることによって発生する磁束が前記磁気回路の磁束に加算されるサーボ加速度計。
  2.  請求項1のサーボ加速度計において、
     前記磁気回路は筒状のマグネットハウジングと、そのマグネットハウジング内に順次配置されたポールピースボトム、マグネット、ポールピーストップとよりなり、
     前記補償用コイルは前記ポールピースボトムの周りに巻かれている。
  3.  請求項1のサーボ加速度計において、
     前記磁気回路は筒状のマグネットハウジングと、そのマグネットハウジング内に順次配置されたポールピースボトム、マグネット、ポールピーストップとよりなり、
     前記補償用コイルは前記マグネットの周りに巻かれている。
  4.  請求項1のサーボ加速度計において、
     前記磁気回路は筒状のマグネットハウジングと、そのマグネットハウジング内に順次配置されたポールピースボトム、マグネット、ポールピーストップとよりなり、
     前記マグネットハウジングに環状凹部が形成され、その環状凹部で囲まれた軸部に前記補償用コイルが巻かれている。
  5.  請求項1乃至4のいずれかのサーボ加速度計において、
     前記温度センサに温度センサICを用いる。
  6.  請求項1乃至4のいずれかのサーボ加速度計において、
     前記温度センサにサーミスタを用いる。
PCT/JP2012/068084 2011-11-14 2012-07-17 サーボ加速度計 WO2013073232A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011248237A JP2013104764A (ja) 2011-11-14 2011-11-14 サーボ加速度計
JP2011-248237 2011-11-14

Publications (1)

Publication Number Publication Date
WO2013073232A1 true WO2013073232A1 (ja) 2013-05-23

Family

ID=48429315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068084 WO2013073232A1 (ja) 2011-11-14 2012-07-17 サーボ加速度計

Country Status (2)

Country Link
JP (1) JP2013104764A (ja)
WO (1) WO2013073232A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545029A (zh) * 2022-02-21 2022-05-27 陕西华燕航空仪表有限公司 一种小型加速度计

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109186638B (zh) * 2018-10-17 2020-06-30 西安微电子技术研究所 一种电流标度因数可控的加速度计伺服电路及其制造工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126625B2 (ja) * 1977-09-21 1986-06-21 Honeywell Inc
JPS61171040A (ja) * 1985-01-23 1986-08-01 Sony Corp 電磁フオ−カス温度補償装置
JPH05209893A (ja) * 1991-07-31 1993-08-20 Sundstrand Corp 温度補償装置
JPH07333245A (ja) * 1994-06-07 1995-12-22 Tokimec Inc 加速度計
JP2008070356A (ja) * 2006-08-16 2008-03-27 Japan Aviation Electronics Industry Ltd サーボ型加速度計

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126625B2 (ja) * 1977-09-21 1986-06-21 Honeywell Inc
JPS61171040A (ja) * 1985-01-23 1986-08-01 Sony Corp 電磁フオ−カス温度補償装置
JPH05209893A (ja) * 1991-07-31 1993-08-20 Sundstrand Corp 温度補償装置
JPH07333245A (ja) * 1994-06-07 1995-12-22 Tokimec Inc 加速度計
JP2008070356A (ja) * 2006-08-16 2008-03-27 Japan Aviation Electronics Industry Ltd サーボ型加速度計

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545029A (zh) * 2022-02-21 2022-05-27 陕西华燕航空仪表有限公司 一种小型加速度计
CN114545029B (zh) * 2022-02-21 2024-01-19 陕西华燕航空仪表有限公司 一种小型加速度计

Also Published As

Publication number Publication date
JP2013104764A (ja) 2013-05-30

Similar Documents

Publication Publication Date Title
CN110494760B (zh) 磁传感器
US20080053249A1 (en) Force-measuring device and reference unit
US7406868B2 (en) Compensating accelerometer with optical angle sensing
US20070204693A1 (en) Servo compensating accelerometer
JP2008215970A (ja) バスバー一体型電流センサ
JP4398911B2 (ja) 変位センサ
WO2013073232A1 (ja) サーボ加速度計
JPS6126625B2 (ja)
JP5126536B2 (ja) 磁気比例式電流センサのゲイン調整方法
JP2007033222A (ja) 電流センサ
WO2018159776A1 (ja) 磁気センサ
WO2013105451A1 (ja) 電流センサ
US11553132B2 (en) Method of correcting position detecting signal and position detecting device
JP2006003209A (ja) 電流検出器
JP7286932B2 (ja) 磁気センサ
JP2007040758A (ja) 電流センサ
JP6564395B2 (ja) 定励磁磁束方式電流センサ
JP7119695B2 (ja) 磁気センサ
JP2010175453A (ja) サーボ加速度計
JP2019174436A (ja) 磁気センサ
JP2005345267A (ja) 電流センサ
JPH10197209A (ja) スロットルバルブ開度センサ
JP2005221492A (ja) 電流センサおよび電力監視システム
JP2021150569A (ja) 半導体装置
JP2005010145A (ja) サーボ型振動検出器及びサーボ型振動検出器の零点補正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849656

Country of ref document: EP

Kind code of ref document: A1