WO2016101523A1 - 一种氯化氢催化氧化制备氯气的方法 - Google Patents

一种氯化氢催化氧化制备氯气的方法 Download PDF

Info

Publication number
WO2016101523A1
WO2016101523A1 PCT/CN2015/079486 CN2015079486W WO2016101523A1 WO 2016101523 A1 WO2016101523 A1 WO 2016101523A1 CN 2015079486 W CN2015079486 W CN 2015079486W WO 2016101523 A1 WO2016101523 A1 WO 2016101523A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas stream
hydrogen chloride
reactor
containing gas
oxygen
Prior art date
Application number
PCT/CN2015/079486
Other languages
English (en)
French (fr)
Inventor
王农跃
瞿雄伟
李国华
赵全忠
邵建明
闻国强
Original Assignee
上海方纶新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海方纶新材料科技有限公司 filed Critical 上海方纶新材料科技有限公司
Priority to ES15871599T priority Critical patent/ES2898851T3/es
Priority to EP15871599.5A priority patent/EP3239098B1/en
Priority to JP2017531773A priority patent/JP6463482B2/ja
Priority to RU2017126138A priority patent/RU2670301C1/ru
Priority to KR1020177020246A priority patent/KR102315161B1/ko
Publication of WO2016101523A1 publication Critical patent/WO2016101523A1/zh
Priority to IL253046A priority patent/IL253046B/en
Priority to US15/629,569 priority patent/US10239755B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/165Natural alumino-silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0743Purification ; Separation of gaseous or dissolved chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/027Beds

Definitions

  • the invention relates to a method for preparing chlorine gas by catalytic oxidation of hydrogen chloride, in particular to a multi-stage introduction of hydrogen chloride and/or a single-stage introduction of hydrogen chloride into a single reactor (providing a hydrogen chloride-containing gas stream to a first reactor and for oxidizing the said An oxygen-containing gas stream comprising a hydrogen chloride gas stream, a hydrogen chloride-containing gas stream supplied to the downstream reactor and/or an oxygen-containing gas stream for oxidizing the hydrogen chloride-containing gas stream, and a portion of the unseparated product gas stream returned to the used hydrogen chloride A method of catalytically oxidizing chlorine.
  • the method of the present application can significantly prolong the life of the catalyst by further introducing hydrogen chloride into the oxygen and/or one-stage multi-stage hydrogen chloride, the product gas stream without separation and optional heat insulation, and further reduce the catalytic oxidation of hydrogen chloride. Preparation costs.
  • Chlorine is a very important chemical product and raw material, widely used in metallurgy, textile, pharmaceutical, petrochemical and other industries.
  • chlorine gas When two chlorine atoms in the chlorine gas react, only one chlorine atom can be effectively utilized, so the effective utilization rate of chlorine gas does not exceed 50%, that is, 1 mole of by-product hydrogen chloride is generated for every mole of chlorine gas consumed. Therefore, the amount of hydrogen chloride produced as a by-product in various industries is enormous. How to deal with a large amount of hydrogen chloride has become an urgent problem to be solved.
  • the industrialized method of making hydrogen chloride into chlorine has been continuously concerned by related industries. Because the by-product hydrogen chloride is directly formed into chlorine gas, not only the closed loop of chlorine but also the zero discharge of the reaction process can be achieved. So far, the methods for preparing chlorine gas from hydrogen chloride can be mainly divided into three categories: electrolysis, direct oxidation and catalytic oxidation. However, The energy consumption of the electrolysis process is too large, and the ion membrane needs to be replaced frequently.
  • the cost is very high, and the recovery cost per ton of chlorine gas is >4000 yuan; the yield of the direct oxidation method is low, and it cannot be industrialized; compared with the electrolysis method and the direct oxidation method, Catalytic oxidation processes have the greatest industrial potential, especially catalytic oxidation processes via the Deacon reaction.
  • the Deacon reaction (Dikon reaction) is a reaction in which hydrogen chloride is oxidized to chlorine in the case of a catalyst-supported carrier.
  • the Deacon reaction equation is:
  • the performance of the catalyst has a great influence on the effect of the Deacon reaction. Therefore, in order to realize the industrialization of the Deacon reaction, researchers at home and abroad have done a lot of research to find a suitable catalyst. But so far, the Deacon method still has the following disadvantages: for example, the catalyst activity needs to be further improved; in the fixed-bed reactor, the hot temperature in the bed is too high, which often leads to a decrease in catalyst activity and a shortened life, so that the catalyst needs to be frequently replaced; the fluidized bed In the reactor, the catalyst is severely worn and needs to be continuously added.
  • the Deacon fluidized bed reactor disclosed in CN87104744 and US Pat. No. 4,994,256 all require that the catalyst have sufficient hardness and wear resistance and that the reactor wall also has strong wear resistance.
  • the Deacon fixed bed reactors disclosed in US2004115118, JP2001199710 and US5084264 all use a complicated heat dissipating device to reduce the damage of the reaction overheating to the catalyst life.
  • CN101448734 discloses a reactor system which can be either a fixed bed or a fluidized bed, but the invention does not disclose the useful life of its catalyst.
  • the favorable reaction temperature in the Deacon method is in the range of 150 to 600 °C.
  • the present application provides a method for catalytically oxidizing hydrogen chloride to produce chlorine gas, which significantly prolongs the life of the catalyst by effectively controlling and utilizing the heat of reaction, thereby reducing the cost of treating hydrogen chloride. This makes the method an industrial method.
  • the present application relates to a method for catalytically oxidizing hydrogen chloride to produce chlorine gas, comprising the steps of: providing one or more reactors loaded with a catalyst in series or in parallel; and reacting to the first reaction in the one or more reactors Providing a hydrogen chloride-containing gas stream and an oxygen-containing gas stream for oxidizing the hydrogen chloride-containing gas stream, providing a downstream stream reactor with a hydrogen chloride-containing gas stream and/or an oxygen-containing gas stream for oxidizing the hydrogen chloride-containing gas stream, Performing a catalytic oxidation of hydrogen chloride; returning a portion of the catalytic oxidation-derived product gas stream from the last reactor directly to any one or any of the plurality of reactors without separation; leaving the remaining product gas from the last reactor The stream is partially separated to obtain chlorine.
  • the non-separated product gas stream can be passed through either the heat carried by the unseparated product gas stream itself to the hydrogen chloride containing gas stream and/or the oxygen used to oxidize the hydrogen chloride containing gas stream.
  • the body stream is heated to reduce the cost of fuel for preheating the hydrogen chloride containing gas stream and/or the oxygen containing gas stream, and further control the temperature of the Deacon reaction.
  • the method prolongs the life of the catalyst, on the other hand, it reduces the difficulty of providing a device for heat removal in the reactor and reduces the difficulty of the separation operation, thereby saving the cost of industrialization.
  • Embodiment 1 is a process flow diagram of Embodiment 1 of the present invention.
  • Embodiment 2 is a process flow diagram of Embodiment 2 of the present invention.
  • Embodiment 3 is a process flow diagram of Embodiment 3 of the present invention.
  • 17- comprising a mixed gas stream comprising a hydrogen chloride gas stream and an oxygen-containing gas stream;
  • a heat-mixed mixed gas stream comprising a hydrogen chloride-containing gas stream and an oxygen-containing gas stream
  • 19', 33', 34'- are respectively oxygen-containing gas streams to be supplied to the reactors 1, 2, 3 (Fig. 2);
  • the inventors have found through research that the main reason for the deactivation of the catalyst in the prior art Deacon method is that the heat generation of the reaction system is out of control, thereby causing permanent damage to the catalyst.
  • the process of the present application can significantly extend the life of the catalyst by means of a product gas stream without separation and optional adiabatic, and can further reduce the cost of catalytic oxidation of hydrogen chloride.
  • the present application relates, in one aspect, to a method for catalytically oxidizing hydrogen chloride to produce chlorine gas, comprising The following steps:
  • the reactor provides a hydrogen chloride containing gas stream and/or an oxygen containing gas stream for oxidizing the hydrogen chloride containing gas stream for catalytic oxidation of hydrogen chloride;
  • the present application is directed to a method for catalytically oxidizing hydrogen chloride to produce chlorine gas, the method comprising:
  • the reactor provides a hydrogen chloride containing gas stream and/or an oxygen containing gas stream for oxidizing the hydrogen chloride containing gas stream for catalytic oxidation of hydrogen chloride;
  • a first hydrogen chloride gas stream and an oxygen-containing gas stream for oxidizing the hydrogen chloride-containing gas stream are supplied to a first reactor of the one or more reactors, A downstream reactor in one or more reactors is provided for oxidation
  • An oxygen-containing gas stream comprising a hydrogen chloride gas stream; the oxygen-containing gas stream supplied to each reactor for oxidizing the hydrogen chloride-containing gas stream is as desired in accordance with the desired oxygen-containing gas stream for oxidizing the hydrogen chloride-containing gas stream.
  • the portion of the oxygen-containing gas stream used to oxidize the hydrogen chloride-containing gas stream is preferably distributed to the corresponding fractions, preferably in portions distributed between the reactors, depending on the number of reactors.
  • the oxygen-containing gas stream entering each reactor has an oxygen content greater than the theoretical oxygen amount required to oxidize the hydrogen chloride-containing gas stream entering each reactor.
  • This particularly preferred embodiment can be carried out, for example, by providing a first reactor in the one or more reactors with an oxygen-containing gas stream for oxidizing a hydrogen chloride-containing gas stream and a hydrogen chloride-containing gas stream,
  • the downstream reactor in the one or more reactors provides a hydrogen chloride containing gas stream; the hydrogen chloride containing gas stream provided to each reactor is as needed
  • the hydrogen chloride-containing gas stream to be oxidized is distributed in an arbitrary ratio between the portions of each reactor, preferably, the hydrogen chloride-containing gas stream to be oxidized is equally distributed to the corresponding number of parts in accordance with the number of reactors.
  • a portion of the product gas stream from the last reactor is preferably Returning to each of the reactors provided without separation; more preferably, before returning to each reactor feed port, mixing with the hydrogen chloride-containing gas stream and/or the oxygen-containing gas stream for oxidizing the hydrogen chloride-containing gas stream, The reactor is then introduced to carry out the catalytic oxidation reaction.
  • the process of the present invention can dilute the concentration of the feed gas to each reactor to prevent violent reactions at the reactor inlet from avoiding causing too many hot spots; on the other hand, after the mixing, the process of the invention
  • the feed temperature of the raw material reaction gas is increased, and it is basically unnecessary to preheat the raw material reaction gas.
  • the returned product gas stream may be in each reactor at any ratio Inter-distribution, for example, can be based on each reactor
  • the operating conditions are reasonably distributed; preferably, the returned product gas stream is evenly distributed to the corresponding fractions according to the number of reactors and returned to each reactor separately.
  • the reactor described herein is preferably an adiabatic reactor.
  • a heat exchanger can be connected between the reactors to remove the heat of reaction, that is, the heat exchanger is optionally disposed after each reactor.
  • the heat exchanger installed after the last reactor is a gas heat exchanger
  • the heat exchangers installed after the rest of the reactor may be heat exchangers well known to those skilled in the art, such as tube bundle heat exchangers, plate exchange Heaters, or gas heat exchangers, etc.
  • the present application preferably passes the remainder of the product gas stream (high temperature) after the catalytic oxidation reaction (or all parts after the end of the reaction, those skilled in the art will understand that the last part of the product gas stream may not return) through gas heat exchange.
  • the separation is further carried out after the heat exchange, and the heat exchange is preferably carried out in a gas heat exchanger with a hydrogen chloride-containing gas stream that needs to enter the first reactor and/or an oxygen-containing gas stream for oxidizing the hydrogen chloride-containing gas stream as a cooling medium.
  • the heat exchanged hydrogen chloride-containing gas stream and/or the oxygen-containing gas stream for oxidizing the hydrogen chloride-containing gas stream is supplied to the first reactor before being returned to the third stage reactor A portion of the product gas stream is combined and then passed to the first reactor for catalytic oxidation of hydrogen chloride.
  • the product gas stream is reduced in temperature after heat exchange.
  • the hydrogen chloride-containing gas stream used as the cooling medium and/or the oxygen-containing gas stream for oxidizing the hydrogen chloride-containing gas stream is heated by heat exchange, and then the heat-exchanged hydrogen chloride-containing gas stream is used and/or used for oxidation.
  • An oxygen-containing gas stream comprising a hydrogen chloride gas stream is supplied to the first reactor for catalytic oxidation of hydrogen chloride.
  • the chlorine gas obtained by the separation according to the present invention is obtained by dehydrating and removing residual hydrogen chloride and oxygen by a part or all of the product gas stream by a conventional separation treatment operation steps such as condensation and adsorption to obtain chlorine gas.
  • the present application may provide (unreacted) hydrogen chloride and/or oxygen separated from the product gas stream to the catalytic oxidation reaction; the separated hydrogen chloride (or hydrogen chloride produced by vaporization of hydrochloric acid) and/or oxygen may also be Can be returned to one or more reactors.
  • the portion of the product gas stream (returned product gas stream) that is not separated back to the reactor and the remainder of the product gas stream (remaining product gas stream portion) is from 0.25:0.75 to 0.75:0.25, preferably from 0.35:0.65 to 0.45:0.55.
  • the feed volume ratio of the hydrogen chloride-containing gas stream (calculated as pure hydrogen chloride) to the oxygen-containing gas stream (calculated as pure oxygen) for the oxidation of the hydrogen chloride gas stream is 1:2. ⁇ 5:1, preferably from 1:1.2 to 3.5:1, more preferably from 1:1 to 3:1.
  • the feed volume ratio of the hydrogen chloride containing gas stream (calculated as pure hydrogen chloride) to the oxygen containing stream (calculated as pure oxygen) for the oxidation of the hydrogen chloride gas stream is 2: 1 to 5:1.
  • the feed volume ratio of said hydrogen chloride-containing gas stream (calculated as pure hydrogen chloride) to said oxygen-containing gas stream (calculated as pure oxygen) for oxidizing a hydrogen chloride gas stream It is from 1:2 to 2:1, preferably from 0.9:1.1 to 1.1:0.9.
  • the pressure in the reactor is from 0.1 to 1 MPa.
  • the feed gas temperature of the reactor is from 250 to 450 ° C, preferably from 300 to 380 ° C.
  • the catalyst described herein is a conventional catalyst capable of oxidizing hydrogen chloride gas and oxygen to form chlorine gas and water.
  • Suitable catalysts include copper compounds or/and ruthenium compounds, preferably copper compounds or/and ruthenium compounds supported on supported alumina, or titania or the like.
  • alumina supported with copper chloride or barium chloride is preferably a barium compound.
  • Suitable catalysts described herein may also contain other promoters, such as metals, metals such as gold, palladium, platinum, rhodium, iridium, nickel or chromium, alkali metals, alkaline earth metals and rare earth metals.
  • Suitable catalysts can have different shapes, such as rings, cylinders or spheres, and the like, preferably a suitable catalyst has similar outer dimensions.
  • the reactors described herein are conventional reaction units, such as fixed bed or fluidized bed reactors, preferably fixed bed reactors, in which the desired catalyst can be charged.
  • the reactor described in the present application can be selected from any material that meets the reaction requirements.
  • a reactor of pure nickel or nickel alloy or quartz or ceramic is preferred. If a plurality of reactors are selected, they may be connected in series or in parallel, preferably in series, so that the oxidation reaction of hydrogen chloride can be carried out in multiple stages.
  • the present application preferably employs 2, 3, 4, 5, 6, 7, 8, 9, 10, more preferably 3 or 4 reactors.
  • some of the feed gases e.g., a hydrogen chloride containing gas stream and an oxygenated gas stream for oxidizing hydrogen chloride
  • a gas stream and/or an oxygen-containing gas stream for oxidizing hydrogen chloride are preferably provided.
  • the reactors connected in parallel and connected in series can also be combined with each other.
  • the process according to the invention particularly preferably has a reactor which is only connected in series. If it is preferred to use reactors connected in parallel, in particular up to five, preferably three, particularly preferably up to two production lines (optionally comprising reactors consisting of reactors connected in series) are connected in parallel.
  • the methods described herein can operate, for example, up to 60 reactors
  • the process of the present application can be carried out in a continuous or batch manner, preferably in a continuous reaction mode.
  • the hydrogen chloride containing gas stream described herein includes a fresh hydrogen chloride containing gas stream and a hydrogen chloride gas stream comprising or recovered from the hydrogen chloride recovered by the process of the present invention.
  • the fresh hydrogen chloride-containing gas stream is derived from a hydrogen chloride-containing gas stream in the form of a by-product of the production of, for example, isocyanate production, acid chloride production, aromatic chlorination, and the like.
  • the hydrogen chloride-containing gas stream in the form of a by-product may be a hydrogen chloride-containing gas stream in the form of a preliminary treated by-product or a hydrogen chloride-containing gas stream in the form of a by-product directly from the related industry without any treatment.
  • the hydrogen chloride-containing gas stream in the form of by-products may contain, depending on the source, little or no other impurity gases derived from the relevant industries that have no effect on the catalytic oxidation of hydrogen chloride.
  • the amount of other impurity gases is determined by the nature of the production in the relevant industry.
  • exhaust hydrogen chloride produced in the relevant industries may be an appropriate raw material for the present application.
  • the unreacted hydrogen chloride-containing gas stream described herein is not referred to by the present application.
  • the reactor is subjected to a hydrogen chloride-containing gas stream for catalytic oxidation.
  • the oxygen-containing gas stream described herein includes a fresh oxygen-containing gas stream and a gas stream containing oxygen recovered by the process of the present invention.
  • the fresh oxygen-containing gas stream may be pure oxygen or other oxygen-containing gas (eg, air)
  • the product gas stream as referred to herein refers to a mixed gas comprising hydrogen chloride, oxygen, water vapor and chlorine obtained from a catalytic oxidation reaction from a reactor.
  • the product gas stream returned by the present invention is a mixed gas from the last reactor.
  • the removal of residual hydrogen chloride as described herein may be, for example, removal of residual hydrogen chloride with water, in particular, when the hydrogen chloride of the reaction is substantially oxidized and the amount of residual hydrogen chloride is small, the water in the product gas stream may be condensed after the product gas stream is condensed.
  • the residual hydrogen chloride is completely absorbed and combined to form hydrochloric acid for separation.
  • the dehydration described herein may be dehydration with, for example, concentrated sulfuric acid or a dewatering adsorbent that is characteristic of the present system.
  • the separation of chlorine gas as described in the present application means that part or all of the product gas stream after the catalytic oxidation reaction is separated and processed by a conventional separation treatment operation step such as condensation or adsorption to obtain chlorine gas.
  • the specific separation method for separating and obtaining chlorine gas according to the present invention may be an existing separation technique, including, for example, (1) removing residual hydrogen chloride with water, drying, and then separating chlorine and oxygen by adsorption, or (2) After removing water and part of hydrogen chloride gas by condensation and drying, respectively, the liquid chlorine having a low boiling point is separated by a rectification column, and then water is eluted to remove hydrogen chloride;
  • the method of separating a product gas stream that can be employed in the present application includes the following steps:
  • condensation the catalytic oxidation reaction product gas stream of the present invention is subjected to condensation treatment; the water in the catalytic oxidation reaction product gas stream of the present invention, together with a portion of unreacted hydrogen chloride, is coagulated and precipitated as an aqueous hydrochloric acid solution;
  • Deep dehydration deep dehydration of the gas stream condensed in step a, including deep dehydration by means of concentrated sulfuric acid, molecular sieve, or by techniques such as temperature swing adsorption and pressure swing adsorption to remove residual moisture and reduce Corrosiveness of the gas stream;
  • step b Adsorption: The gas stream after the deep dehydration treatment in step b is adsorbed by the adsorbent to separate chlorine gas and oxygen gas.
  • the adsorption may be selected from adsorbents capable of adsorbing a large amount of oxygen and only a small amount of chlorine gas, such as carbon molecular sieves, silica gel, etc., to remove and remove oxygen by adsorption; after the adsorption treatment of the adsorbent, the main component is chlorine.
  • a chlorine gas stream optionally containing a small amount of hydrogen chloride; the oxygen adsorbed to the adsorbent after the adsorbent is adsorbed and then desorbed to obtain a separated oxygen-containing gas stream; the desorbed adsorbent can continue in the step In c, it is used for adsorption separation to remove oxygen.
  • the adsorption can also select an adsorbent capable of adsorbing a large amount of chlorine gas and adsorbing only a small amount of oxygen, such as fine pore silica gel, activated carbon, etc., to remove and remove chlorine gas by adsorption, and the main component is obtained after adsorption treatment by the above adsorbent.
  • step c further comprising d, liquefying: liquefying the chlorine-containing gas stream obtained in step c, and separating the hydrogen chloride-containing gas stream and the liquefied chlorine-containing gas stream.
  • step d means that when the ratio of hydrogen chloride and oxygen participating in the catalytic oxidation reaction is properly controlled (for example, the ratio of pure hydrogen chloride to pure oxygen is ), the residual unreacted hydrogen chloride is substantially absorbed by the water formed by the reaction during the condensation process, and the amount of hydrogen chloride contained in the chlorine gas obtained after the treatment in the step c is small, and the purity of the chlorine gas is 99.6% (% by volume) or more, which satisfies
  • the requirement of industrial chlorine does not require further liquefaction of chlorine gas to separate hydrogen chloride; and when the ratio of hydrogen chloride to oxygen in the catalytic oxidation reaction is at other ratios, part of the hydrogen chloride remains after the treatment of step ac, which can be in step d.
  • the gas stream containing chlorine gas and hydrogen chloride is liquefied to separate the hydrogen chloride-containing gas stream.
  • the condensation conditions in the step a are: a temperature of -5 to 5 ° C and a pressure of 0.05 to 10 MPa.
  • the drying in the step b is preferably carried out by a temperature swing adsorption drying or a pressure swing adsorption drying process.
  • a composite adsorbent layer of two adsorbents is preferably used, and one adsorption is used.
  • the agent is an alumina dehydrating agent placed on the upper part of the adsorption tower, and the other is a dehydrated and dried adsorbent placed in the lower part of the adsorption tower, and the volume ratio of the upper alumina dehydrating agent and the lower deep dehydrated adsorbent is 20-80%. : 80% to 20%.
  • a composite adsorbent layer of two adsorbents is preferably used, one adsorbent is an alumina dehydrating agent placed on the upper part of the adsorption tower, and the other is a dehydrated and dried adsorption placed in the lower part of the adsorption tower.
  • the volume ratio of the upper alumina dehydrating agent to the lower dehydrated adsorbent is 20-80%:80%-20%.
  • the variable temperature adsorption drying process described in the step b is: passing the gas stream condensed through the step a from the bottom to the composite adsorbent layer, and the gas stream leaves the temperature swing adsorption drying device to reach the drying target; during the temperature-temperature adsorption drying process
  • the adsorption pressure is 0.30 to 0.80 MPa, and the adsorption temperature is 20 to 50 °C.
  • the temperature swing adsorption drying process comprises an alternating process of adsorption and regeneration operations wherein the alternating processes of adsorption and regeneration are achieved by conventional means including pressure reduction, displacement, temperature rise and cooling steps.
  • the regeneration operation includes a desorption and dehydration process.
  • the desorption pressure of the regeneration operation is 0.01 to 0.005 MPa, and the desorption temperature of the regeneration operation is 110 to 180 ° C; the dehydration process for the regeneration operation uses a carrier gas (raw material gas or nitrogen gas) at a temperature of 50 to 180 ° C, and the raw material gas is used as a carrier gas.
  • the raw material gas is dried by the pre-drying tower, heated by the steam heater, and then enters the adsorption drying tower which needs to be heated and regenerated and dehydrated. After the aqueous carrier gas is discharged from the adsorption tower, it is cooled, condensed, separated and returned to the raw material. Gas system recycling.
  • the pressure swing adsorption drying process described in the step b comprises an alternating process of adsorption and desorption processes, wherein: the adsorption pressure is 0.40 to 0.80 MPa, the desorption pressure is 0.02 to -0.07 MPa, the adsorption temperature is normal temperature, and the adsorption and desorption processes are alternated.
  • the process is carried out according to a conventional setting (including pressure equalization, flushing displacement, vacuum suction, etc.); the device required for the pressure swing adsorption drying process is usually set as a four-column process, and the flushing replacement is performed after drying.
  • the product gas stream, the flushing displacement and the vacuum pumped tail gas are both cooled and dehydrated and sent to the product gas stream system for hydrogen chloride removal for recycling.
  • the adsorbent for drying the molecular sieve in step b is zeolite molecular sieve or silica gel.
  • the adsorption in the step c is preferably a variable temperature pressure swing adsorption technology, comprising an adsorption and desorption process, wherein: the adsorption pressure is 0.20-0.7 MPa, and the temperature in the adsorption stage is gradually lowered from 40 to 70 ° C to 20 to 35 ° C;
  • the desorption pressure is -0.07 MPa, the desorption temperature is 40-70 ° C;
  • the gas stream used as a raw material is introduced at a temperature of less than 40 ° C during adsorption, and the adsorption and cooling are started; and the hot chlorine gas replacement system of more than 50 ° C is introduced before the desorption regeneration.
  • the gas, and the temperature rise promotes desorption.
  • the hot chlorine gas is stopped and the vacuum desorption is started. After the desorption regeneration is completed, the replacement before the adsorption is started by using oxygen; the exhaust gas of the hot chlorine gas replacement tail gas and the oxygen replacement is returned to the raw material gas system.
  • the chlorine gas separated in the present application can be reused, for example, as a raw material chlorine gas for chlorinating other raw materials.
  • the hydrogen chloride and/or oxygen and/or hydrochloric acid (after gasification) removed in the process of the invention can be delivered to either reactor.
  • the purity of the chlorine gas separated by the method of the present application can reach 99.6% or more, which can meet the quality requirements of the relevant industries for the raw material chlorine gas.
  • the operation of returning a portion of the catalytic oxidation-reacted product gas stream from the last reactor to the reactor without separation as described herein has the advantage of directly utilizing the thermal energy of the product gas stream portion of the catalytic oxidation to heat the hydrogen chloride-containing gas.
  • Circulating and/or oxidizing the oxygen-containing gas stream comprising the hydrogen chloride gas stream such that the hydrogen chloride-containing gas stream entering the first reactor and/or the oxygen-containing gas stream for oxidizing the hydrogen chloride-containing gas stream is suitably inverted It is not necessary to use an external heat source to heat the hydrogen chloride-containing gas stream and/or the oxygen-containing gas stream for oxidizing the hydrogen chloride-containing gas stream to a suitable reaction temperature; since the unseparated product gas stream passes through the catalyst bed again The reaction heat is no longer released in the layer, that is, these gases become relatively reactive "inert" gases containing only hydrogen chloride, oxygen, chlorine and water vapor without other gas components (it is understood in the art that the hydrogen chloride-containing gas stream may be different depending on the source) Containing little or no other impurity gases from the relevant industries that have no effect on the catalytic oxidation of hydrogen chloride, a hydrogen chloride-containing gas stream blended with a product gas stream and/or an oxygen-containing gas for oxidizing
  • the product gas stream is more easily separated when excess oxygen is selected to ensure that the hydrogen chloride is substantially oxidized. Because of the excess oxygen, the residual amount of hydrogen chloride is small and can even be ignored. Therefore, after the product gas stream is condensed, the water formed by the reaction can substantially absorb hydrogen chloride. After deep removal of moisture, it is only necessary to separate chlorine and oxygen to separate chlorine and oxygen and obtain chlorine.
  • the catalyst life in the process is significantly prolonged by the combined action of the return product gas stream on the heat of reaction, and/or the subsequent supply of a stream comprising a hydrogen chloride gas and/or an oxygen-containing gas stream to the downstream reactor.
  • the process of the present application can initiate the reaction by directly providing a hydrogen chloride containing gas stream and/or an oxygenated gas stream for oxidizing the hydrogen chloride containing gas stream prior to the first return to the product gas stream. It is also known to those skilled in the art that when the catalytic oxidation reaction of the present invention is completed, the entire product gas stream can be separated.
  • the process flow is shown in Figure 1.
  • the recovered oxygen 13 and/or recovered hydrogen chloride 14 separated from the remainder of the product gas stream in this embodiment does not return to participate in the catalytic oxidation reaction.
  • the hydrogen chloride-containing gas stream all enters from the first reactor, and the oxygen-containing gas stream enters each reactor separately.
  • Step 1 Before the start of the reaction, the catalyst is placed in each stage of the reactor and the catalytic reaction bed containing the catalyst is preheated. When the reaction bed of the first reactor 1 reaches a predetermined reaction temperature, fresh hydrogen chloride is contained.
  • the gas stream 8(I) and 19 containing the fresh oxygen-containing gas stream 9(I) are mixed to obtain a mixed gas stream 17 comprising a hydrogen chloride-containing gas stream and an oxygen-containing gas stream, the mixed gas stream 17 passing through the gas heat exchanger 6 and
  • the preheater 7 is preheated to a predetermined temperature and then introduced into the first reactor 1 to start catalytic oxidation of hydrogen chloride.
  • Step 2 After the start of the reaction, the product gas stream 22 from the first reactor 1 passes through the heat exchanger 4 and is mixed with other gas streams to be introduced into the second reactor (other gas streams refer to the return to the reactor).
  • the product gas stream is passed along with the oxygen-containing gas stream and/or the hydrogen chloride-containing gas stream, and then enters the second reactor 2 to continue the reaction; the product gas stream 24 from the second reactor 2 passes through the heat exchanger 5, The other gas streams entering the third reactor are mixed and then passed to the third reactor 3 to continue the reaction.
  • Step 3 Returning a portion of the product gas stream 26 from the third reactor 3 as one third of the returned product gas stream 10 to the first reactor 1 feed port (10a) and from the preheater 7
  • the gas stream is mixed and then supplied to the first reactor 1; one third (10b) of the returned product gas stream 10 is returned to the second reactor 2 feed port before entering the second reactor oxygen-containing gas Stream 33 is mixed and then supplied to the second reactor 2;
  • One-third (10c) of the returned product gas stream 10 is mixed with the oxygen-containing gas stream 34 entering the third reactor before being returned to the third reactor 3 feed port and then supplied to the third reactor 3.
  • the remaining product gas stream portion 11 from the product gas stream 26 of the third reactor 3 is passed through the gas heat exchanger 6 and then passed to a separation unit 20 for separating the product gas stream according to the prior art, separately separated for recovery.
  • Oxygen 13, recovered hydrogen chloride 14, recovered chlorine 15, recovered hydrochloric acid 16; further comprising a mixed gas comprising 19 of fresh oxygen-containing gas stream 9(I) and fresh hydrogen chloride-containing gas stream 8(I) 17 enters the gas heat exchanger 6 as a cooling medium, and after heat exchange with the product gas stream 11 via the gas heat exchanger 6, a heat-exchanged mixed gas stream 18 comprising a hydrogen chloride-containing gas stream and an oxygen-containing gas stream is obtained,
  • the heat exchanged mixed gas stream 18 is passed through a preheater 7 and, with the returned product gas stream 10a, a mixed gas stream 18 comprising a heat exchanged hydrogen chloride containing gas stream and an oxygen containing gas stream and a returned product gas stream 10a.
  • the mixed gas 21 supplies the mixed gas 21 into the first reactor 1, and then sequentially supplies the second and third reactors with the product gas stream from the previous reactor for oxygen Containing gas stream comprising hydrogen chloride gas stream of product gas stream and returning 10b and 10c, start continuous production.
  • the separation device 20 for separating a product gas stream comprises components (not shown) capable of performing conventional separation processing steps of condensation, dehydration, adsorption, liquefaction, and the like.
  • the specific separation comprises the following steps: a.
  • Condensation The product gas stream from the reaction of the present invention is subjected to condensation treatment at a condensation temperature of -5 to 5 ° C and a pressure of 0.05 to 10 MPa.
  • step a deep dehydration: deep dehydration of the gas stream condensed in step a, drying by variable temperature adsorption technology, and composite adsorption using two adsorbent combinations
  • the agent layer, one adsorbent is an alumina dehydrating agent placed on the upper part of the adsorption tower, and the other is a zeolite molecular sieve adsorbent which is deeply dehydrated and dried in the lower part of the adsorption tower, and the upper part of the oxygen
  • the volume ratio of the aluminum dehydrating agent to the lower deep dehydrated adsorbent is 30%:70%.
  • the adsorption pressure during the temperature-dependent adsorption drying process is 0.70 MPa, and the adsorption temperature is 30 ° C; the regeneration operation includes a desorption and dehydration process.
  • the desorption pressure of the regeneration operation was 0.009 MPa, the desorption temperature of the regeneration operation was 160 ° C, and the dehydration process of the regeneration operation employed a carrier gas having a temperature of 180 ° C. c.
  • Adsorption the gas stream after the deep dehydration treatment in step b is passed through the adsorbent carbon molecular sieve to remove and remove oxygen by adsorption, and adopts a variable temperature pressure swing adsorption technology, including adsorption and desorption processes, wherein: the adsorption pressure is 0.5 MPa, and the adsorption phase is The temperature was gradually lowered from 60 ° C to 25 ° C; the decompression pressure was -0.07 MPa, the desorption temperature was 50 ° C, and the separated oxygen-containing gas stream was desorbed.
  • the residual gas after adsorption is a chlorine-containing gas stream whose main component is chlorine. d.
  • the chlorine-containing gas stream obtained in the step c is subjected to liquefaction treatment, the liquefaction temperature is -20 to 20 ° C, and the pressure is 0.05 to 10 MPa, and the chlorine-containing gas stream and the liquefied chlorine-containing gas stream are separated.
  • the recovered oxygen 13 , the recovered hydrogen chloride 14 , the recovered chlorine gas 15 , and the recovered hydrochloric acid 16 are respectively obtained through the separation device 20 .
  • the recovered hydrochloric acid 16 can be used again for the catalytic oxidation reaction after gasification.
  • the fresh oxygen-containing gas stream 9(I) and the fresh hydrogen-containing hydrogen gas stream 8(I) may be preheated separately or mixed together before the start of the reaction.
  • the oxygen-containing gas streams 19, 33, 34 to be supplied to the first reactor 1, the second reactor 2 and the third reactor 3, respectively, are fresh oxygen-containing gas streams 9(I).
  • the ratio between the hydrogen chloride-containing gas stream and the oxygen-containing gas stream in the mixed gas stream 17 comprising the hydrogen chloride-containing gas stream and the oxygen-containing gas stream may be adjusted according to actual conditions.
  • the recovered oxygen 13 is separated from the remainder of the product gas stream. And/or recovered hydrogen chloride 14 returns to continue participating in the catalytic oxidation reaction.
  • the hydrogen chloride-containing gas stream all enters from the first reactor, and the oxygen-containing gas stream enters each reactor separately.
  • Step 1 Before the start of the reaction, the catalyst is placed in each stage of the reactor and the catalytic reaction bed containing the catalyst is preheated. When the reaction bed of the first reactor 1 reaches a predetermined reaction temperature, fresh hydrogen chloride is contained. The gas stream 8 (I) is mixed with a fresh oxygen-containing gas stream 9 (I), and the mixed gas stream 17 is passed through the gas heat exchanger 6 and preheated to a predetermined temperature by the preheater 7 and then introduced into the first reactor 1 The reaction to catalyze the oxidation of hydrogen chloride begins.
  • Step 2 after the start of the reaction, the product gas stream 22 from the first reactor 1 passes through the heat exchanger 4, mixes with other gas streams to enter the second reactor, and then enters the second reactor 2 to continue the reaction; After the product gas stream 24 of the second reactor 2 passes through the heat exchanger 5, it is mixed with other gas streams to be passed to the third reactor, and then proceeds to the third reactor 3 to continue the reaction.
  • Step 3 Returning a portion of the product gas stream 26 from the third reactor 3 as one third (10a) of the returned product gas stream 10 to the first reactor 1 feed port and from the preheater 7
  • the gas stream is mixed and then supplied to the first reactor 1; one third (10b) of the returned product gas stream 10 is returned to the second reactor 2 feed port before entering the second reactor oxygen-containing gas Stream 33' is mixed and then supplied to second reactor 2; one third (10c) of returned product gas stream 10 is returned to the third reactor 3 feed port before entering the third reactor with oxygen
  • the body stream 34' is mixed and then supplied to the third reactor 3.
  • the remaining product gas stream portion 11 from the product gas stream 26 of the third reactor 3 is passed through the gas heat exchanger 6 and then passed to a separation unit 20 for separating the product gas stream according to the prior art, separately separated for recovery.
  • the fresh hydrogen chloride-containing gas stream 8 (I) can be mixed with the recovered hydrogen chloride 14 to form a hydrogen chloride-containing gas stream 8 (II);
  • the fresh oxygen-containing gas stream 9 (I) ) can be mixed with the recovered oxygen 13 to form an oxygen-containing gas stream 19', 33', 34' to be supplied to the reactors 1, 2, 3, respectively, in the case of unrecovered oxygen 13, to be supplied
  • the oxygen-containing gas streams 19', 33', 34' of the reactors 1, 2, 3 are fresh oxygen-containing gas streams 9 (I).
  • the 19', 33', 34' may be controlled to be a gas stream comprising recovered oxygen 13 via a valve (not shown) on the pipeline, or a fresh oxygen-containing gas stream 9 containing any ratio. (I) and the oxygen-containing gas stream of recovered oxygen 13 or just containing fresh oxygen-containing gas stream 9(I).
  • the mixed gas 17 comprising the oxygen-containing gas stream 19' and the hydrogen chloride-containing gas stream 8 (II) enters the gas heat exchanger 6 as a cooling medium, and is heat-exchanged with the product gas stream 11 via the gas heat exchanger 6,
  • the heat exchange comprises a mixed gas stream 18 comprising a hydrogen chloride gas stream and an oxygen containing gas stream, the heat exchanged mixed gas stream 18 being passed through a preheater 7 and formed with the returned product gas stream 10a comprising heat exchanged
  • a mixed gas stream 18 comprising a hydrogen chloride gas stream and an oxygen-containing gas stream and a mixed gas 21 of the returned product gas stream 10a, the mixed gas 21 is supplied to the first reactor 1, and then supplied to the second and third reactors in sequence.
  • the product gas stream of the previous reactor, the oxygen-containing gas stream for oxidizing the hydrogen chloride-containing gas stream, and the returned product gas streams 10b and 10c begin to be continuously produced.
  • the separation device 20 for separating a product gas stream comprises components (not shown) capable of performing conventional separation processing operations such as condensation, adsorption, and the like.
  • the recovered oxygen 13 , the recovered hydrogen chloride 14 , the recovered chlorine gas 15 , and the recovered hydrochloric acid 16 are respectively obtained through the separation device 20 .
  • the recovered hydrochloric acid 16 can be used again for the catalytic oxidation reaction after gasification.
  • the fresh oxygen-containing gas stream 9(I) and the fresh hydrogen-containing hydrogen gas stream 8(I) may be preheated separately or mixed together before the start of the reaction.
  • the fresh hydrogen chloride-containing gas stream 8(I), the recovered hydrogen chloride 14, the fresh oxygen-containing gas stream 9(I) and the mixed gas stream 17 comprising the hydrogen chloride-containing gas stream and the oxygen-containing gas stream may be adjusted according to actual conditions.
  • the ratio between the recovered oxygen 13 is.
  • the recovered oxygen 13 and/or recovered hydrogen chloride 14 separated from the remainder of the product gas stream is returned to continue participating in the catalytic oxidation reaction.
  • the oxygen-containing gas stream all enters from the first reactor, and the hydrogen chloride-containing gas stream enters each reactor separately.
  • Step 1 Before the reaction starts, the catalyst is placed in each stage of the reactor and the catalytic reaction bed containing the catalyst is preheated. When the reaction bed of the first reactor 1 reaches a predetermined reaction temperature, fresh oxygen is contained.
  • the body stream 9 (I) is mixed with a fresh hydrogen chloride-containing gas stream 8 (I), and the mixed gas stream is passed through the gas heat exchanger 6 and preheated to a predetermined temperature by the preheater 7 and then introduced into the first reactor 1 to start. Catalytic oxidation of hydrogen chloride.
  • Step 2 after the start of the reaction, the product gas stream 22 from the first reactor 1 passes through the heat exchanger 4, mixes with other gas streams to enter the second reactor, and then enters the second reactor 2 to continue the reaction; After the product gas stream 24 of the second reactor 2 passes through the heat exchanger 5, it is mixed with other gas streams to be passed to the third reactor, and then proceeds to the third reactor 3 to continue the reaction.
  • Step 3 Returning a portion of the product gas stream 26 from the third reactor 3 as a return One third (10a) of the product gas stream 10 is mixed with the gas stream from the preheater 7 before being returned to the first reactor 1 feed port, and then supplied to the first reactor 1; the returned product gas One-third (10b) of stream 10 is mixed with the chlorine-containing gas stream 33" entering the second reactor before being returned to the second reactor 2 feed port, and then supplied to the second reactor 2; the returned product One-third (10c) of the gas stream 10 is mixed with the chlorine-containing gas stream 34" entering the third reactor before being returned to the third reactor 3 feed port and then supplied to the third reactor 3.
  • Another portion of the product gas stream 11 from the product gas stream 26 of the third reactor 3 is passed through the gas heat exchanger 6 and then passed to a separation unit 20 for separating the product gas stream according to the prior art, separately separated for recovery.
  • the hydrogen chloride-containing gas stream 8(I) can be combined with the recovered hydrogen chloride 14 to form a hydrogen chloride-containing gas stream 19", 33", 34" to be supplied to the reactors 1, 2, 3, respectively, in the unrecovered hydrogen chloride 14
  • the hydrogen chloride-containing gas stream 19", 33", 34" to be supplied to the reactors 1, 2, 3 is a fresh hydrogen chloride-containing gas stream 8 (I).
  • the 19", 33", 34" can be controlled to be a gas stream comprising recovered hydrogen chloride 14 via a valve (not shown) on the pipeline, or a fresh hydrogen chloride containing gas stream 8 comprising any ratio. (I) and a hydrogen chloride-containing gas stream of recovered hydrogen chloride 14, or only a fresh hydrogen chloride-containing gas stream 8(I).
  • the mixed gas 17 comprising the oxygen-containing gas stream 9 (II) and the hydrogen chloride-containing gas stream 19" enters the gas heat exchanger 6 as a cooling medium, and is exchanged with the product gas stream 11 via the gas heat exchanger 6 to obtain a
  • the heat exchange comprises a mixed gas stream 18 comprising a hydrogen chloride gas stream and an oxygen-containing gas stream, the heat exchanged mixed gas stream 18 being passed through a preheater 7 and then formed with the returned product gas stream 10a comprising heat exchanged Hydrogen chloride gas stream and oxygen-containing gas
  • the mixed gas stream 18 of the stream and the mixed gas 21 of the returned product gas stream 10a provide the mixed gas 21 to the first reactor 1, and then sequentially supply the product gas stream from the previous reactor to the second and third reactors.
  • the hydrogen chloride containing gas stream and the returned product gas streams 10b and 10c begin to be continuously produced.
  • the separation device 20 for separating a product gas stream comprises components (not shown) capable of performing conventional separation processing steps such as condensation, dehydration, adsorption, and the like.
  • the specific separation comprises the following steps: a, condensation: condensation treatment of the product gas stream from the reaction of the invention, condensation temperature of -5 to 5 ° C, pressure of 0.05 to 10 MPa, water together with part of unreacted hydrogen chloride, in the form of aqueous hydrochloric acid Condensation and precipitation; b, deep dehydration: deep dehydration of the gas stream condensed in step a, drying by pressure swing adsorption technology, and using a composite adsorbent layer of two adsorbents, one adsorbent is placed in the adsorption tower
  • the upper alumina dehydrating agent, the other is a zeolite molecular sieve adsorbent which is deeply dehydrated and dried in the lower part of the adsorption tower, and the volume ratio of the upper alumina de
  • the adsorption pressure is 0.40 MPa
  • the desorption pressure is 0.02 MPa
  • the adsorption temperature is normal temperature.
  • Adsorption the gas stream after the deep dehydration treatment in step b is passed through the adsorbent carbon molecular sieve to remove and remove oxygen by adsorption, and adopts a variable temperature pressure swing adsorption technology, including adsorption and desorption processes, wherein: the adsorption pressure is 0.20 MPa, and the adsorption phase is The temperature was gradually lowered from 40 ° C to 20 ° C; the vacuum desorption pressure was -0.07 MPa, the desorption temperature was 40 ° C, and the separated oxygen-containing gas stream was desorbed.
  • the residual gas after adsorption is a chlorine-containing gas stream whose main component is chlorine. Since the feed volume ratio of hydrogen chloride to oxygen is 1:1, residual unreacted hydrogen chloride is substantially absorbed by the water formed by the reaction during the condensation process. There is no need to separate the chlorine gas from the treatment of chlorine.
  • the recovered oxygen 13, the recovered chlorine gas 15 and the recovered hydrochloric acid 16 are respectively obtained by the separation device 20.
  • the recovered hydrochloric acid 16 can be used again for the catalytic oxidation reaction after gasification.
  • the fresh oxygen-containing gas stream 9(I) and the fresh hydrogen-containing hydrogen gas stream 8(I) may be preheated separately or mixed together before the start of the reaction.
  • the fresh hydrogen chloride-containing gas stream 8(I), the recovered hydrogen chloride 14, and the fresh oxygen-containing gas stream 9 in the mixed gas 17 containing the mixed gas stream containing the hydrogen chloride gas stream and the oxygen-containing gas stream may be adjusted according to actual conditions ( The ratio between I) and recovered oxygen 13.
  • the specific process flow of the embodiment 4 is the same as that of the embodiment 3.
  • the specific process parameters of Example 4 and the specific process parameters of Example 3 are respectively shown in the following table.
  • Comparative Examples 1, 2, 3, and 4 were substantially the same as those of Examples 1, 2, 3, and 4, respectively, except that the return of the product-free gas stream in Comparative Examples 1, 2, 3, and 4 was obtained from The product gas stream 26 of the third reactor all directly enters the separation unit for separating the product gas stream according to the prior art.
  • ⁇ Copper composite catalyst 1 Copper accounts for 5.2% by weight of the catalyst, potassium accounts for 0.5% by weight of the catalyst, rare earth metal ruthenium accounts for 0.4% by weight of the catalyst, ruthenium accounts for 2.5% by weight of the catalyst, and the rest is a carrier.
  • ⁇ Copper composite catalyst 2 copper accounts for 9.2% by weight of the catalyst, potassium accounts for 0.6% by weight of the catalyst, rare earth metal ruthenium accounts for 0.5% by weight of the catalyst, ruthenium accounts for 5.0% by weight of the catalyst, and the balance is a carrier.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种氯化氢催化氧化制备氯气的方法,具体涉及通过一次进氯化氢多段进氧和\或一次进氧多段进氯化氢、产物气体物流不经分离返回以及可选择的绝热等手段制备氯气的方法。本发明不会造成反应热的过度集中,因此是一种可工业化的Deacon催化氧化氯化氢回收氯气的方法。

Description

一种氯化氢催化氧化制备氯气的方法 技术领域
本发明涉及一种氯化氢催化氧化制备氯气的方法,尤其涉及一种在一次进氯化氢多段进氧和\或一次进氧多段进氯化氢(向第一反应器提供含氯化氢气体物流以及用于氧化所述含氯化氢气体物流的含氧气体物流,向下游反应器提供含氯化氢气体物流和/或用于氧化所述含氯化氢气体物流的含氧气体物流)、部分不经分离的产物气体物流返回使用的氯化氢催化氧化制备氯气的方法。本申请的方法通过一次进氯化氢多段进氧和\或一次进氧多段进氯化氢、产物气体物流不经分离返回以及可选择的绝热等手段,能够显著延长催化剂的寿命,并进一步可以降低催化氧化氯化氢的制备成本。
背景技术
氯气是一种非常重要的化工产品和原料,广泛应用于冶金、纺织、医药、石油化工等多种行业。氯气分子中的两个氯原子在发生反应时仅有一个氯原子能被有效利用,所以氯气的有效利用率不超过50%,即每消耗1摩尔氯气就会产生1摩尔副产物氯化氢。因此各行业中,以副产物形式所产生氯化氢的量是巨大的。如何处理大量的氯化氢,已经成为一个亟待解决的问题。目前工业上实际采用的主要处理措施是用水吸收氯化氢后制成质低价廉的盐酸出售;由于盐酸价格低廉且市场需求容量有限,将氯化氢制成盐酸实际上已经成为一种负担而不是变废为宝。还有一些采用的处理措施是用碱中和氯化氢后直接排放;然而随着环保法律法规日趋完善,各种排放方式的环保标准已经非常严格。
因此,可工业化的将氯化氢制成氯气的方法已经受到相关行业的持续关注。因为将副产物氯化氢直接制成氯气的方法,不仅能实现氯元素的闭路循环,还能实现反应过程的零排放。到目前为止,氯化氢制备氯气的方法主要可以分为三类:电解法,直接氧化法和催化氧化法。但是, 电解法工艺的能源消耗太大,且离子膜也需要经常更换,成本非常高,每吨氯气回收成本>4000元;直接氧化法的收率低,不可工业化;与电解法、直接氧化法相比,催化氧化法尤其是经由Deacon反应的催化氧化法最具工业化潜力。
Deacon反应(迪康反应)是在负载有催化剂的载体的情况下将氯化氢氧化成氯气的反应。Deacon反应方程式为:
Figure PCTCN2015079486-appb-000001
催化剂的性能对Deacon反应的效果影响很大。因此,为了实现Deacon反应的工业化,国内外研究者做了大量的研究来找寻合适的催化剂。但迄今为止,Deacon法仍存在以下不足:例如,催化剂活性有待进一步提高;固定床反应器中,床内热点温度过高常常导致催化剂活性降低、寿命缩短,因而需要频繁地更换催化剂;流化床反应器中,催化剂磨损严重,需要不断补加。
CN87104744、US4994256公开的Deacon法流化床反应器均要求催化剂要有足够的硬度和耐磨性并且要求反应器壁也要具有较强的耐磨损性。US2004115118、JP2001199710以及US5084264公开的Deacon法固定床反应器均通过结构复杂的散热装置来减少反应过热对于催化剂寿命的伤害。CN101448734公开了一种反应器体系,其既可以采用固定床也可以采用流化床,但是该发明并未公开其催化剂的有效寿命。
鉴于氯化氢催化氧化反应是放热反应并且很多催化剂容易因高温而失活,所以在Deacon法中移除和利用反应热是十分必要的。600-900℃的反应温度一方面会导致催化剂的永久性失活,另一方面会导致反应平衡在高温下不利于向原料方向移动,从而影响转化率。因此,Deacon法中有利的反应温度是在150-600℃的范围。
发明内容
为了克服上述缺点,发明人完成了本申请。本申请提供一种氯化氢催化氧化制备氯气的方法,该方法通过有效控制和利用反应热,显著延长了催化剂寿命,从而降低了处理氯化氢的成本。这就使得本方法成为一种可工业化的方法。
本申请在一个方面涉及一种氯化氢催化氧化制备氯气的方法,包含以下步骤:提供一个或多个串联或并联的装填有催化剂的反应器;向所述一个或多个反应器中的第一反应器提供含氯化氢气体物流以及用于氧化所述含氯化氢气体物流的含氧气体物流,向下游反应器提供含氯化氢气体物流和/或用于氧化所述含氯化氢气体物流的含氧气体物流,以进行催化氧化氯化氢的反应;将来自最后一个反应器的经过催化氧化反应的产物气体物流的一部分不经分离直接返回至任意一个或任意多个反应器;将来自最后一个反应器的剩余的产物气体物流部分分离以获得氯气。
本申请的有益效果在于:返回不经分离的产物气体物流既可以通过该不经分离的产物气体物流自身携带的热量对含氯化氢气体物流和/或用于氧化所述含氯化氢气体物流的含氧气体物流进行加热从而减少了对含氯化氢气体物流和/或含氧气体物流预热的燃料费用,又进一步可控制Deacon反应的温度。本方法一方面延长了催化剂的寿命,另一方面减少了在反应器中配备用于排热的装置并降低了分离操作的难度,从而节省了工业化的成本。
附图说明
图1为本发明实施例1的工艺流程图。
图2为本发明实施例2的工艺流程图。
图3为本发明实施例3的工艺流程图。
附图标记含义:
1-第一反应器;  2-第二反应器;  3-第三反应器;
4、5-换热器;  6-气体换热器;  7-预热器;
8(I)-新鲜的含氯化氢气体物流;
8(II)-包含新鲜的含氯化氢气体物流和回收的氯化氢的含氯化氢气体物流;
9(I)-新鲜的含氧气体物流;
9(II)-包含新鲜的含氧气体物流和回收的氧气的含氧气体物流;
10-返回的产物气体物流;
10a、10b、10c-分别进入各反应器的返回的产物气体物流;
11-剩余的产物气体物流部分;
12-通过气体换热器6冷却后的产物气体物流;
13-回收的氧气(分离自产物气体物流);
14-回收的氯化氢(分离自产物气体物流);
15-回收的氯气(分离自产物气体物流);
16-回收的盐酸(分离自产物气体物流);
17-包含含氯化氢气体物流和含氧气体物流的混合气体物流;
18-经换热的包含含氯化氢气体物流和含氧气体物流的混合气体物流;
19、33、34-分别为要被提供给反应器1、2、3的含氧气体物流(图1);
19’、33’、34’-分别为要被提供给反应器1、2、3的含氧气体物流(图2);
19”、33”、34”-分别为要被提供给反应器1、2、3的含氯化氢气体物流(图3)
20-根据现有技术用于分离产物气体物流的分离装置;
21-包含经换热的含氯化氢气体物流和含氧气体物流的混合气体物流18与返回的产物气体物流10的混合气体;
22、24、26-各级反应器产物气体物流;
23-通过换热器4冷却后进入第二反应器的气体物流;
25-通过换热器5冷却后进入第三反应器的气体物流;
27-加热或冷却介质输入;  28-加热或冷却介质输出;
29、31——冷却介质输入;  30、32-冷却介质输出;
发明详述
发明人经过研究发现,现有技术Deacon法中催化剂失活的主要原因是反应体系产热失控,从而对催化剂造成永久性损伤。本申请的方法通过产物气体物流不经分离返回以及可选择的绝热等手段,能够显著延长催化剂的寿命,并进一步可以降低催化氧化氯化氢的成本。
本申请在一个方面涉及一种氯化氢催化氧化制备氯气的方法,包含 以下步骤:
1)提供一个或多个串联或并联的装填有催化剂的反应器;
2)向所述一个或多个反应器中的第一反应器提供含氯化氢气体物流以及用于氧化所述含氯化氢气体物流的含氧气体物流,向所述一个或多个反应器中的下游反应器提供含氯化氢气体物流和/或用于氧化所述含氯化氢气体物流的含氧气体物流,以进行催化氧化氯化氢的反应;
3)将来自最后一个反应器的经过催化氧化反应的产物气体物流的一部分不经分离直接返回至任意一个或任意多个反应器;
4)将来自最后一个反应器的剩余的产物气体物流部分分离以获得氯气。
在另一个方面,本申请涉及一种氯化氢催化氧化制备氯气的方法,该方法包括:
1)提供一个或多个串联或并联的装填有催化剂的反应器;
2)向所述一个或多个反应器中的第一反应器提供含氯化氢气体物流以及用于氧化所述含氯化氢气体物流的含氧气体物流,向所述一个或多个反应器中的下游反应器提供含氯化氢气体物流和/或用于氧化所述含氯化氢气体物流的含氧气体物流,以进行催化氧化氯化氢的反应;
3)将来自最后一个反应器的产物气体物流的一部分不经分离直接返回至任意一个或任意多个反应器,优选返回至任意一个或任意多个反应器进料口之前,与要进入所述的任意一个或任意多个反应器的含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流混合,然后进入反应器以进行该催化氧化反应;
4)分离来自最后一个反应器的剩余的产物气体物流部分分离以获得氯气。
在本发明方法的一个优选实施方案中,向所述一个或多个反应器中的第一反应器提供含氯化氢气体物流以及用于氧化所述含氯化氢气体物流的含氧气体物流,向所述一个或多个反应器中的下游反应器提供用于氧化 含氯化氢气体物流的含氧气体物流;向各反应器提供的用于氧化含氯化氢气体物流的含氧气体物流是根据需要将所需的用于氧化含氯化氢气体物流的含氧气体物流按照任意比例在各反应器之间分配的部分,优选地按照反应器的个数将所需的用于氧化含氯化氢气体物流的含氧气体物流平均分配为相应的份数。
该优选实施方案进一步优选包括以下步骤的方法:
1)提供一个或多个串联或并联的装填有催化剂的反应器;
2a)向所述一个或多个反应器中的第一反应器提供含氯化氢气体物流以及用于氧化所述含氯化氢气体物流的含氧气体物流,以进行催化氧化氯化氢的反应;
2b)将来自所述第一反应器的产物气体物流通过换热器后提供进入下游反应器,向所述下游反应器提供用于氧化所述含氯化氢气体物流的含氧气体物流,依次向各剩余下游反应器提供来自前一反应器的产物气体物流以及用于氧化含氯化氢气体物流的含氧气体物流;
3)将来自最后一个反应器的产物气体物流的一部分不经分离返回至任意一个或任意多个反应器,优选返回至所述任意一个或任意多个反应器进料口之前,与所述进入任意一个或任意多个反应器的含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流混合,然后进入反应器以进行该催化氧化反应;
4)将来自最后一个反应器的剩余的产物气体物流部分分离以获得氯气。
在本发明方法的另一特别优选的实施方案中,进入每个反应器的含氧气体物流的含氧量大于氧化进入每个反应器的含氯化氢气体物流所需的理论用氧量。
该特别优选的实施方案,可以通过例如下述方法实施:向所述一个或多个反应器中的第一反应器提供用于氧化含氯化氢气体物流的含氧气体物流以及含氯化氢气体物流,向所述一个或多个反应器中的下游反应器提供含氯化氢气体物流;向各反应器提供的含氯化氢气体物流是根据需要将 待氧化的含氯化氢气体物流按照任意比例在每个反应器之间分配的部分,优选地按照反应器的个数将待氧化的含氯化氢气体物流平均分配为相应的份数。
该特别优选的实施方案进一步优选包括以下步骤的方法:
1)提供一个或多个串联或并联的装填有催化剂的反应器;
2a)向所述一个或多个反应器中的第一反应器提供用于氧化氯化氢的含氧气体物流以及含氯化氢气体物流,以进行催化氧化氯化氢的反应;
2b)将来自所述第一反应器的产物气体物流通过换热器后提供进入下游反应器,向所述下游反应器提供含氯化氢气体物流,依次向各剩余下游反应器提供来自前一反应器的产物气体物流以及含氯化氢气体物流;
3)将来自最后一个反应器的产物气体物流的一部分不经分离返回至任意一个或任意多个反应器,优选返回至所述任意一个或任意多个应器进料口之前,与所述进入任意一个或任意多个反应器的含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流混合,然后进入反应器以进行该催化氧化反应;
4)分离来自最后一个反应器的剩余的产物气体物流部分分离以获得氯气。
进一步地,进行所述的将来自最后一个反应器的产物气体物流的一部分不经分离返回至任意一个或任意多个反应器的步骤时,是优选将来自最后一个反应器的产物气体物流的一部分不经分离返回至所提供的每一个反应器;更优选返回至每一个反应器进料口之前,与所述含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流混合,然后进入反应器进行该催化氧化反应。一方面,本发明方法可以稀释进入每一个反应器的原料反应气的浓度,防止在反应器入口发生剧烈的反应,避免造成太多的热点;另一方面,经所述混合后,本发明方法提高了原料反应气的进料温度,基本上不需要对原料反应气再进行预热。
进一步地,进行所述的将来自最后一个反应器的产物气体物流的一部分不经分离返回至所提供的每一个反应器的步骤时,返回的产物气体物流可以按照任意比例在每个反应器之间分配,例如,可以根据各个反应器的 运行状况进行合理分配;优选地按照反应器的个数将返回的产物气体物流平均分配为相应的份数后分别返回至每一个反应器。
本申请所述反应器优选为绝热反应器。本发明可在反应器之间连接有换热器而去除反应热,即每一反应器之后任选配置换热器。优选地,最后一个反应器后安装的换热器为气体换热器,其余反应器后面安装的换热器可以是本领域技术人员所熟知的换热器,例如管束式换热器,板式换热器、或气体换热器等。
本申请优选将所述经过催化氧化反应后的产物气体物流(高温)的剩余部分(或反应结束后的全部部分,本领域技术人员能理解最后一部分产物气体物流可以不返回)先通过气体换热器换热后再进行分离,所述换热优选是以需要进入第一反应器的含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流作为冷却介质在气体换热器内进行换热;优选所述经换热后的含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流被提供至第一反应器之前与被返回的从第三级反应器流出的产物气体物流的一部分混合,然后再进入第一反应器以进行催化氧化氯化氢的反应。所述产物气体物流经换热后温度降低。用作冷却介质的含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流经换热后温度升高,然后再将经换热后的含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流提供至第一反应器以进行催化氧化氯化氢的反应。
本发明所述分离获得氯气是将产物气体物流的一部分或全部通过冷凝、吸附等常规分离处理操作步骤来脱水、脱除残余氯化氢和氧气、从而得到氯气。
本申请优选可以将从产物气体物流中分离得到的(未反应的)氯化氢和/或氧气再次提供到该催化氧化反应中;分离的氯化氢(或盐酸经汽化后产生的氯化氢)和/或氧气也可以被返回至一个或多个反应器。
在本发明的全部实施方式中,优选所述不经分离返回至反应器的产物气体物流的部分(返回的产物气体物流)与该产物气体物流的剩余部分(剩余的产物气体物流部分)的体积比为0.25∶0.75~0.75∶0.25,优选0.35∶0.65~0.45∶0.55。
在本发明的全部实施方式中,优选所述含氯化氢气体物流(按照纯氯化氢计算)与所述用于氧化氯化氢气体物流的含氧气物流(按照纯氧计算)的进料体积比为1∶2~5∶1,优选为1∶1.2~3.5∶1,更优选为1∶1~3∶1。
在本发明方法的一个优选实施方案中,所述含氯化氢气体物流(按照纯氯化氢计算)与所述用于氧化氯化氢气体物流的含氧气物流(按照纯氧计算)的进料体积比为2∶1~5∶1。
在本发明方法的另一特别优选的实施方案中,所述含氯化氢气体物流(按照纯氯化氢计算)与所述用于氧化氯化氢气体物流的含氧气物流(按照纯氧计算)的进料体积比为1∶2~2∶1,优选0.9∶1.1~1.1∶0.9。
在本发明的全部实施方式中,优选地,反应器内压力为:0.1-1MPa。
在本发明的全部实施方式中,优选地,反应器的进料气体温度为250~450℃,优选为300~380℃。
本申请所述的催化剂是能将氯化氢气体和氧气经氧化反应生成氯气和水的常规催化剂。合适的催化剂包括铜化合物或/和钌化合物,优选负载在载体氧化铝、或二氧化钛等上的铜化合物或/和钌化合物。例如负载有氯化铜或氯化钌的氧化铝,优选钌化合物。本申请所述合适的催化剂还可以含有其他助催化剂,例如金、钯、铂、锇、铱、镍或铬等金属的化合物,碱金属,碱土金属和稀土金属等。合适的催化剂可以具有不同的形状,例如环状物、圆柱体或球状物等,优选合适的催化剂具有相似的外部尺寸。
本申请所述反应器是常规反应装置,例如固定床或流化床反应器,优选固定床反应器,其中可以装填有所需催化剂。
本申请所述的反应器可以选用符合反应要求的任何材质的反应器, 优选纯镍或镍合金或石英或陶瓷的反应器。如选用多个反应器,它们之间可以采用串联或并联的方式,优选采用串联的方式从而使得氯化氢的氧化反应可以在多个阶段进行。本申请优选采用2、3、4、5、6、7、8、9、10个、更优选3或4个反应器。有利地,本领域技术人员能理解作为Deacon反应的一些原料气体(例如含氯化氢气体物流和用于氧化氯化氢的含氧气体物流等)将依次通过各个反应器,然后逐一向下游反应器提供含氯化氢气体物流和/或用于氧化氯化氢的含氧气体物流。在本发明的全部实施方式中,优选地提供2、3、4、5、6、7、8、9、10个、特别优选3或4个串联的绝热反应器。
特别地,并联连接和串联连接的反应器还可以彼此结合。然而本发明方法特别优选具有仅仅串联连接的反应器。如果优选使用并联连接的反应器,那么特别是至多五条、优选三条、特别优选至多两条生产线(任选地包含由串联连接的反应器组成的反应器组)是并联连接的。因此,本申请所述方法可以以例如高达60个反应器操作
本申请方法可以采用连续或者间歇方式进行,优选采用连续反应方式。
本申请所述的含氯化氢气体物流包括新鲜的含氯化氢气体物流和包含经本发明所述方法回收氯化氢或者从盐酸中气化回收的氯化氢气体物流。所述新鲜的含氯化氢气体物流来自相关行业生产例如异氰酸酯的生产、酰氯的生产、芳族化合物氯化等的副产物形式的含氯化氢气体物流。所述副产物形式的含氯化氢气体物流可以是经过初步处理的副产物形式的含氯化氢气体物流或者是未经任何处理的直接来自相关行业的副产物形式的含氯化氢气体物流。所述副产物形式的含氯化氢气体物流依照来源不同,可以含有少量或不含有对催化氧化氯化氢反应没有影响的也是来源于相关行业生产的其他杂质气体。其他杂质气体的量是由相关行业生产的性质决定。本领域技术人员能理解,相关行业中产生的所谓废气氯化氢对本申请而言可以是恰当的原料。
本申请所述未经反应的含氯化氢气体物流是指未通过本申请所述 反应器进行催化氧化反应的含氯化氢气体物流。
本申请所述的含氧气体物流包括新鲜的含氧气体物流和含有经本发明所述方法回收氧气的气体物流。所述新鲜的含氧气体物流可以是纯氧气或者是其他含氧气体(例如空气)
本申请所述的产物气体物流是指来自反应器的、经催化氧化反应后得到的包含氯化氢、氧气、水蒸汽和氯气的混合气体。优选地,本发明返回的产物气体物流是来自最后一个反应器的混合气体。
本申请所述的除去残余氯化氢可以是例如用水除去残余氯化氢,特别地,当反应的氯化氢基本上被氧化,残余氯化氢量很少时,将产物气体物流冷凝后,产物气体物流中的水即可以将残余的氯化氢全部吸收,结合形成盐酸分离出来。本申请所述的脱水可以是用例如浓硫酸脱水或者符合本系统特征的除水吸附剂脱水。
本申请所述的分离得到氯气是指部分或全部经过催化氧化反应后的产物气体物流通过冷凝、吸附等常规分离处理操作步骤分离处理后得到氯气。
本发明所述分离获得氯气的具体分离方法,可以是现有的分离技术,包含例如(1)用水除去残余氯化氢,再干燥,然后再通过吸附法进行氯气和氧气的分离,或者是(2)分别通过冷凝和干燥去除水和部分氯化氢气体后,再通过精馏塔分离出低沸点的液氯,再水洗脱除氯化氢;
本申请可以采用的产物气体物流的分离方法包括以下步骤:
a、冷凝:对本发明催化氧化反应产物气体物流进行冷凝处理;本发明催化氧化反应产物气体物流中的水连同部分未反应的氯化氢,以盐酸水溶液形式凝结析出;
b、深度脱水:将经过步骤a冷凝后的气体物流进行深度脱水,所述的深度脱水包括例如通过浓硫酸、分子筛,或者通过变温吸附、变压吸附等技术进行深度脱水,去除残余水分,减少气体物流的腐蚀性;
c、吸附:将经过步骤b深度脱水处理后的气体物流通过吸附剂进行吸附,分离氯气和氧气。
一方面,所述的吸附可以选用能够大量吸附氧气而仅少量吸附氯气的吸附剂,例如碳分子筛、硅胶等,以吸附分离去除氧气;经过上述吸附剂吸附处理后得到主要组分为氯气的含氯气体物流,其中任选含有少量氯化氢;将上述吸附剂吸附处理后被吸附到吸附剂的氧气再经过解吸处理,可以得到分离的含氧气体物流;经解吸处理后的吸附剂可继续在步骤c中用于吸附分离去除氧气。
另一方面,所述的吸附也可以选择能够大量吸附氯气而仅少量吸附氧气的吸附剂,例如细孔硅胶、活性炭等,以吸附分离去除氯气,经过上述吸附剂吸附处理后得到主要组分为氧气的含氧气体物流;将上述吸附剂吸附处理后被吸附到吸附剂的氯气再经过解吸处理,可以得到分离的含氯气体物流,其中任选含有少量氯化氢;经解吸处理后的吸附剂可继续在步骤c中用于吸附分离去除氯气。
任选地进一步包括d、液化:将步骤c中所得到的含氯气体物流进行液化处理,分离得到含氯化氢气体物流和液化处理后的含氯气体物流。
所述任选地包含步骤d是指:当参与催化氧化反应的氯化氢和氧气的比例控制适当的时候(例如,以纯氯化氢和纯氧计的比例为
Figure PCTCN2015079486-appb-000002
),残余的未反应的氯化氢基本被反应生成的水在冷凝过程中吸收,当经过步骤c处理后得到的氯气中所含的氯化氢量很小,氯气纯度达到99.6%(体积%)以上,满足工业用氯的要求,无需对氯气进行进一步地液化处理以分离氯化氢;而当催化氧化反应的氯化氢和氧气的比例处于其他比例时,经步骤a-c处理后仍然残留部分氯化氢,此时可在步骤d中通过液化处理 含氯气和氯化氢的气体物流以分离出含氯化氢气体物流。
所述步骤a中的冷凝条件为:温度为-5~5℃,压力为0.05~10MPa。
所述步骤b的变温吸附干燥和变压吸附干燥去除残余水分的具体操作过程,以及步骤c所述的变温变压吸附技术分离氯气和氧气的具体操作过程可参见公开号为CN103752270A的专利申请,简述如下:所述步骤b中的干燥,优选采用变温吸附干燥或变压吸附干燥过程进行干燥,所述的变温吸附干燥过程中优选采用两种吸附剂組合的复合吸附剂层,一种吸附剂是放置在吸附塔上部的氧化铝脫水剂,另一种是放置在吸附塔下部脱水干燥的吸附剂,上部氧化铝脫水剂和下部深度脱水干燥的吸附剂的体积配比为20~80%∶80%~20%。所述变压吸附干燥过程中优选采用两种吸附剂组合的复合吸附剂层,一种吸附剂是放置在吸附塔上部的氧化铝脫水剂,另一种是放置在吸附塔下部脱水干燥的吸附剂,上部氧化铝脫水剂和下部脱水干燥的吸附剂的体积配比为20~80%∶80%~20%。
步骤b中所述的变温吸附干燥过程为:将经过步骤a冷凝后的气体物流从下而上经过复合吸附剂层,所述气体物流离开变温吸附干燥装置即达到干燥目标;变温吸附干燥过程中:吸附压力为0.30~0.80MPa、吸附温度为20~50℃。所述变温吸附干燥过程包含吸附和再生操作的交替过程,其中吸附和再生的交替过程是通过常规设置(包含降压、置换、升温和冷却步骤)而实现。所述再生操作包含解吸和脱水工艺。再生操作的解吸压力为0.01~0.005MPa、再生操作的解吸温度为110~180℃;再生操作的脱水工艺采用温度为50~180℃的载气(原料气或氮气),用原料气作载气再生时,原料气经预干燥塔干燥、再进蒸汽加热器加热后进入需升温再生脱水的吸附干燥塔,含水的载气出吸附塔后经冷却、冷凝、分离水后送回原料 气系统回收利用。
步骤b中所述的变压吸附干燥过程包含吸附和解吸工艺的交替过程,其中:吸附压力为0.40~0.80MPa、解吸压力为0.02~-0.07MPa、吸附温度为常温;吸附和解吸工艺的交替过程是按常规设置(包含均压、冲洗置换、真空抽吸等步骤)来实现;所述变压吸附干燥过程所需装置通常按常规设置为四塔流程,此过程中冲洗置换使用干燥后的产物气体物流,冲洗置换和真空抽吸的尾气均在冷却脱水后送入脱除氯化氢的产物气体物流系统回收利用。
步骤b中所述分子筛干燥的吸附剂为沸石分子筛或硅胶。
所述步骤c中的吸附优选采用变温变压吸附技术,包含吸附和解吸工艺,其中:吸附压力为0.20~0.7MPa、吸附阶段的温度由40~70℃逐渐降到20~35℃;减压解吸压力为-0.07MPa、解吸温度为40~70℃;吸附时通入小于40℃的用作原料的所述气流,开始吸附并降温;解吸再生前通入大于50℃的热氯气置换系统内气体,并且升温促进解吸,达40~70℃时停送热氯气并开始真空解吸;完成解吸再生后采用氧气开始吸附前的置换;热氯气置换尾气和氧气置换的尾气均送回原料气系统。
本申请所述分离得到的氯气,可以被重新使用,例如作为原料气氯气用于氯化其他的原料。
本发明方法中脱除掉的氯化氢和/或氧气和/或盐酸(气化后)可被输送到任一反应器中。
本申请方法分离得到的氯气的纯度可达99.6%以上,能够满足相关行业对于原料气氯气的质量要求。
本申请所述将来自最后一个反应器的经过催化氧化反应的产物气体物流的一部分不经分离返回至反应器这一操作具有下列优点:直接利用催化氧化后产物气体物流部分的热能加热含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流,从而使得进入第一反应器的含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流达到适宜的反 应温度,而不必全部使用外部热源对含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流体进行加热到适宜的反应温度;由于未经分离的产物气体物流再次经过催化剂床层时不再释放反应热,也即这些气体成为只含氯化氢、氧、氯气和水蒸气的不含其他气体成分的相对反应“惰性”气体(本领域能理解,含氯化氢气体物流依照来源不同可以含有少量或不含有对催化氧化氯化氢反应没有影响的也是来源于相关行业生产的其他杂质气体),掺混有产物气体物流的含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流在经过反应器时,反应器中的催化剂床层温度比现有技术具有更好的可控性;而且,所返回的只含氯化氢、氧、氯气和水蒸气的不含其他气体成分的产物气体物流与经所述催化氧化反应得到的产物气体物流成分相同,这大大降低了分离操作的难度和对设备的要求,此外本发明方法中催化氧化反应的总体效率并未显著降低。
特别地,本发明中,当选择氧气过量至能够保证氯化氢基本被氧化时,产物气体物流更易于分离。因为氧气过量,使得氯化氢残余量小,甚至可以忽略。因此产物气体物流通过冷凝后,反应形成的水即可以将氯化氢基本吸收。深度脱除水份后,只需要分离氯气和氧气,即可将氯气和氧气分离并得到氯气。
在返回产物气体物流对反应热的控制作用,和/或依次向下游反应器提供含氯化氢气体物流和/或含氧气体物流的等方式的共同作用下,本方法中的催化剂寿命得到显著延长。
本领域技术人员知道,本申请方法在第一次返回所述产物气体物流之前可以通过直接提供含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流以启动该反应。本领域技术人员还知道,当本发明的催化氧化反应结束后,可以分离全部的产物气体物流。
本方法使用绝热反应器的优点在于不必在反应器内配备排热装置,这带来了可观的结构和成本的简化。
下面,本申请将以具体实施方式进行说明。这些具体实施方式都是示例性的,而不是限制性的。通过这些实施例与对比实施例之间的比较, 本领域技术人员能够认识到本发明具有预料不到的技术效果。
具体实施方式
实施例1
工艺流程如图1。本实施例中从产物气体物流剩余部分分离得到的回收的氧气13和/或回收的氯化氢14不返回参与该催化氧化反应。含氯化氢气体物流全部从第一反应器进入,含氧气体物流是分别进入各反应器。
步骤一、反应开始前,将催化剂置于各级反应器内并对含催化剂的催化反应床层进行预热,待第一反应器1的反应床层达到预定反应温度时,将新鲜的含氯化氢气体物流8(I)和含新鲜的含氧气体物流9(I)的19混合得到包含含氯化氢气体物流和含氧气体物流的混合气体物流17,混合气体物流17经过气体换热器6和经预热器7预热到预定温度后通入第一反应器1内,开始催化氧化氯化氢的反应。
步骤二、反应开始后,来自第一反应器1的产物气体物流22通过换热器4后,与要进入第二反应器的其他气体物流混合(其他气体物流是指进入所述反应器的返回的产物气体物流与含氧气体物流和/或含氯化氢气体物流,下同),然后进入第二反应器2继续反应;来自第二反应器2的产物气体物流24通过换热器5后,与要进入第三反应器的其他气体物流混合,然后进入第三反应器3继续反应。
步骤三、将来自第三反应器3的产物气体物流26的一部分作为返回的产物气体物流10的三分之一返回至第一反应器1进料口之前(10a)与来自预热器7的气体物流混合,然后被提供进入第一反应器1;将返回的产物气体物流10的三分之一(10b)返回至第二反应器2进料口之前与进入第二反应器的含氧气体物流33混合,然后被提供进入第二反应器2;将 返回的产物气体物流10的三分之一(10c)返回至第三反应器3进料口之前与进入第三反应器的含氧气体物流34混合,然后被提供进入第三反应器3。将来自第三反应器3的产物气体物流26的剩余的产物气体物流部分11通过气体换热器6后,再提供进入根据现有技术用于分离产物气体物流的分离装置20,分别分离得到回收的氧气13、回收的氯化氢14、回收的氯气15、回收的盐酸16;进一步地,包含含新鲜的含氧气体物流9(I)的19与新鲜的含氯化氢气体物流8(I)的混合气体17作为冷却介质进入气体换热器6,与产物气体物流11经气体换热器6进行热交换后,得到经换热的包含含氯化氢气体物流和含氧气体物流的混合气体物流18,所述经换热的混合气体物流18经预热器7,再与返回的产物气体物流10a形成包含经换热的含氯化氢气体物流和含氧气体物流的混合气体物流18与返回的产物气体物流10a的混合气体21,将混合气体21提供进入第一反应器1,随后依次向第二、第三反应器提供来自前一反应器的产物气体物流、用于氧化含氯化氢气体物流的含氧气体物流以及返回的产物气体物流10b和10c,开始连续生产。
所述根据现有技术用于分离产物气体物流的分离装置20包含能进行冷凝、脱水、吸附、液化等常规分离处理操作步骤的部件(图中未示出)。具体分离包括如下步骤:a、冷凝:对来自本发明反应的产物气体物流进行冷凝处理,冷凝温度为-5~5℃,压力为0.05~10MPa。,水连同部分未反应的氯化氢,以盐酸水溶液形式凝结析出;b、深度脱水:将经过步骤a冷凝后的气体物流进行深度脱水,采用变温吸附技术干燥,并采用两种吸附剂組合的复合吸附剂层,一种吸附剂是放置在吸附塔上部的氧化铝脫水剂,另一种是放置在吸附塔下部深度脱水干燥的沸石分子筛吸附剂,上部氧 化铝脫水剂和下部深度脱水的吸附剂的体积配比为30%∶70%。变温吸附干燥过程中吸附压力为0.70MPa、吸附温度为30℃;再生操作包含解吸和脱水工艺。再生操作的解吸压力为0.009MPa、再生操作的解吸温度为160℃;再生操作的脱水工艺采用温度为180℃的载气。c、吸附:将经过步骤b深度脱水处理后的气体物流通过吸附剂碳分子筛以吸附分离去除氧气,采用变温变压吸附技术,包含吸附和解吸工艺,其中:吸附压力为0.5MPa、吸附阶段的温度由60℃逐渐降到25℃;减压解吸压力为-0.07MPa、解吸温度为50℃,解吸得到分离的含氧气体物流。吸附后的剩余气体是主要组分为氯气的含氯气体物流。d、液化:将步骤c中所得到的含氯气体物流进行液化处理,液化温度为-20~20℃,压力为0.05~10MPa,分离得到含氯化氢气体物流和液化处理后的含氯气体物流。
经分离装置20分别得到回收的氧气13、回收的氯化氢14、回收的氯气15和回收的盐酸16。任选地,其中所述回收的盐酸16可以经气化后再次用于该催化氧化反应。
所述新鲜的含氧气体物流9(I)和新鲜的含氯化氢气体物流8(I)在反应开始前既可以分别预热也可以混合后一起预热。
所述分别要被提供给第一反应器1、第二反应器2和第三反应器3的含氧气体物流19、33、34为新鲜的含氧气体物流9(I)。可以根据实际情况调整所述包含含氯化氢气体物流和含氧气体物流的混合气体物流17中含氯化氢气体物流与含氧气体物流之间的配比。
实施例2的具体工艺流程如图2
在本实施例中,将从产物气体物流剩余部分分离得到的回收的氧气13 和/或回收的氯化氢14返回继续参与该催化氧化反应。含氯化氢气体物流全部从第一反应器进入,含氧气体物流是分别进入各反应器。
具体步骤如下:
步骤一、反应开始前,将催化剂置于各级反应器内并对含催化剂的催化反应床层进行预热,待第一反应器1的反应床层达到预定反应温度时,将新鲜的含氯化氢气体物流8(I)和新鲜的含氧气体物流9(I)混合,混合气体物流17经过气体换热器6和经预热器7预热到预定温度后通入第一反应器1内,开始催化氧化氯化氢的反应。
步骤二、反应开始后,来自第一反应器1的产物气体物流22通过换热器4后,与要进入第二反应器的其他气体物流混合,然后进入第二反应器2继续反应;来自第二反应器2的产物气体物流24通过换热器5后,与要进入第三反应器的其他气体物流混合,然后进入第三反应器3继续反应。
步骤三、将来自第三反应器3的产物气体物流26的一部分作为返回的产物气体物流10的三分之一(10a)返回至第一反应器1进料口之前与来自预热器7的气体物流混合,然后被提供进入第一反应器1;将返回的产物气体物流10的三分之一(10b)返回至第二反应器2进料口之前与进入第二反应器的含氧气体物流33’混合,然后被提供进入第二反应器2;将返回的产物气体物流10的三分之一(10c)返回至第三反应器3进料口之前与进入第三反应器的含氧气体物流34’混合,然后被提供进入第三反应器3。将来自第三反应器3的产物气体物流26的剩余的产物气体物流部分11通过气体换热器6后,再提供进入根据现有技术用于分离产物气体物流的分离装置20,分别分离得到回收的氧气13、回收的氯化氢14、回 收的氯气15、回收的盐酸16;所述新鲜的含氯化氢气体物流8(I)可以与回收的氯化氢14混合后形成的含氯化氢气体物流8(II);新鲜的含氧气体物流9(I)可以与回收的氧气13混合后形成分别要被提供给反应器1、2、3的含氧气体物流19’、33’、34’,在无回收的氧气13的情况下,要被提供给反应器1、2、3的含氧气体物流19’、33’、34’即为新鲜的含氧气体物流9(I)。具体地,可经由管道上的阀门(图中未示出)控制所述19’、33’、34’为包含回收的氧气13的气体物流,或者为包含任意比例的新鲜的含氧气体物流9(I)和回收的氧气13的含氧气体物流,或者为仅包含新鲜的含氧气体物流9(I)。
进一步地,包含含氧气体物流19’与含氯化氢气体物流8(II)的混合气体17作为冷却介质进入气体换热器6,与产物气体物流11经气体换热器6进行热交换后,得到经换热的包含含氯化氢气体物流和含氧气体物流的混合气体物流18,所述经换热的混合气体物流18经预热器7,再与返回的产物气体物流10a形成包含经换热的含氯化氢气体物流和含氧气体物流的混合气体物流18与返回的产物气体物流10a的混合气体21,将混合气体21提供进入第一反应器1,随后依次向第二、第三反应器提供来自前一反应器的产物气体物流、用于氧化含氯化氢气体物流的含氧气体物流以及返回的产物气体物流10b和10c,开始连续生产。
所述根据现有技术用于分离产物气体物流的分离装置20包含能进行冷凝、吸附等常规分离处理操作步骤的部件(图中未示出)。经分离装置20分别得到回收的氧气13、回收的氯化氢14、回收的氯气15和回收的盐酸16。任选地,其中所述回收的盐酸16可以经气化后再次用于该催化氧化反应。
所述新鲜的含氧气体物流9(I)和新鲜的含氯化氢气体物流8(I)在反应开始前既可以分别预热也可以混合后一起预热。可以根据实际情况调整所述包含含氯化氢气体物流和含氧气体物流的混合气体物流17中新鲜的含氯化氢气体物流8(I)、回收的氯化氢14、新鲜的含氧气体物流9(I)和回收的氧气13之间的配比。
实施例3
工艺流程如图3。
在本实施例中,将从产物气体物流剩余部分分离得到的回收的氧气13和/或回收的氯化氢14返回继续参与该催化氧化反应。含氧气体物流全部从第一反应器进入,含氯化氢气体物流分别进入各反应器。
具体步骤如下:
步骤一、反应开始前,将催化剂置于各级反应器内并对含催化剂的催化反应床层进行预热,待第一反应器1的反应床层达到预定反应温度时,将新鲜的含氧气体物流9(I)和新鲜的含氯化氢气体物流8(I)混合,混合气体物流经过气体换热器6和经预热器7预热到预定温度后通入第一反应器1内,开始催化氧化氯化氢的反应。
步骤二、反应开始后,来自第一反应器1的产物气体物流22通过换热器4后,与要进入第二反应器的其他气体物流混合,然后进入第二反应器2继续反应;来自第二反应器2的产物气体物流24通过换热器5后,与要进入第三反应器的其他气体物流混合,然后进入第三反应器3继续反应。
步骤三、将来自第三反应器3的产物气体物流26的一部分作为返回 的产物气体物流10的三分之一(10a)返回至第一反应器1进料口之前与来自预热器7的气体物流混合,然后被提供进入第一反应器1;将返回的产物气体物流10的三分之一(10b)返回至第二反应器2进料口之前与进入第二反应器的含氯气体物流33”混合,然后被提供进入第二反应器2;将返回的产物气体物流10的三分之一(10c)返回至第三反应器3进料口之前与进入第三反应器的含氯气体物流34”混合,然后被提供进入第三反应器3。将来自第三反应器3的产物气体物流26的另一部分产物气体物流11通过气体换热器6后,再提供进入根据现有技术用于分离产物气体物流的分离装置20,分别分离得到回收的氧气13、回收的氯化氢14、回收的氯气15、回收的盐酸16;所述新鲜的含氧气体物流9(I)可以与回收的氧气13混合后形成的含氧气体物流9(II);新鲜的含氯化氢气体物流8(I)可以与回收的氯化氢14混合后形成分别要被提供给反应器1、2、3的含氯化氢气体物流19”、33”、34”,在无回收的氯化氢14的情况下,要被提供给反应器1、2、3的含氯化氢气体物流19”、33”、34”即为新鲜的含氯化氢气体物流8(I)。具体地,可经由管道上的阀门(图中未示出)控制所述19”、33”、34”为包含回收的氯化氢14的气体物流,或者为包含任意比例的新鲜的含氯化氢气体物流8(I)和回收的氯化氢14的含氯化氢气体物流,或者为仅包含新鲜的含氯化氢气体物流8(I)。
进一步地,包含含氧气体物流9(II)与含氯化氢气体物流19”的混合气体17作为冷却介质进入气体换热器6,与产物气体物流11经气体换热器6进行热交换后得到经换热的包含含氯化氢气体物流和含氧气体物流的混合气体物流18,所述经换热的混合气体物流18经预热器7,再与返回的产物气体物流10a形成包含经换热的含氯化氢气体物流和含氧气体物 流的混合气体物流18与返回的产物气体物流10a的混合气体21,将混合气体21提供进入第一反应器1,随后依次向第二、第三反应器提供来自前一反应器的产物气体物流、含氯化氢气体物流以及返回的产物气体物流10b和10c,开始连续生产。
所述根据现有技术用于分离产物气体物流的分离装置20包含能进行冷凝、脱水、吸附等常规分离处理操作步骤的部件(图中未示出)。具体分离包括如下步骤:a、冷凝:对来自本发明反应的产物气体物流进行冷凝处理,冷凝温度为-5~5℃,压力为0.05~10MPa,水连同部分未反应的氯化氢,以盐酸水溶液形式凝结析出;b、深度脱水:将经过步骤a冷凝后的气体物流进行深度脱水,采用变压吸附技术干燥,并采用两种吸附剂組合的复合吸附剂层,一种吸附剂是放置在吸附塔上部的氧化铝脫水剂,另一种是放置在吸附塔下部深度脱水干燥的沸石分子筛吸附剂,上部氧化铝脫水剂和下部深度脱水干燥的吸附剂的体积配比为40%∶60%。变压吸附干燥过程中吸附压力为0.40MPa、解吸压力为0.02MPa、吸附温度为常温。c、吸附:将经过步骤b深度脱水处理后的气体物流通过吸附剂碳分子筛以吸附分离去除氧气,采用变温变压吸附技术,包含吸附和解吸工艺,其中:吸附压力为0.20MPa、吸附阶段的温度由40℃逐渐降到20℃;真空解吸压力为-0.07MPa、解吸温度为40℃,解吸得到分离的含氧气体物流。吸附后的剩余气体是主要组分为氯气的含氯气体物流。因为氯化氢与氧气的进料体积比为1∶1,残余的未反应的氯化氢基本被反应生成的水在冷凝过程中吸收。不需要再对氯气进行分离氯化氢的处理。
经分离装置20分别得到回收的氧气13、回收的氯气15和回收的盐酸16。任选地,其中所述回收的盐酸16可以经气化后再次用于该催化氧化反应。
所述新鲜的含氧气体物流9(I)和新鲜的含氯化氢气体物流8(I)在反应开始前既可以分别预热也可以混合后一起预热。
可以根据实际情况调整所述包含含氯化氢气体物流和含氧气体物流的混合气体物流的混合气体17中新鲜的含氯化氢气体物流8(I)、回收的氯化氢14、新鲜的含氧气体物流9(I)和回收的氧气13之间的配比。
实施例4的具体工艺流程与实施例3的工艺流程相同。实施例4的具体工艺参数与实施例3的具体工艺参数分别见下表。
对比实施例1、2、3、4的工艺条件分别与实施例1、2、3、4基本相同,其区别仅在于对比实施例1、2、3、4中无产物气体物流返回,即来自第三反应器的产物气体物流26全部直接进入根据现有技术的用于分离产物气体物流的分离装置。
实施例1、2、3、4以及对比实施例1、2、3、4的具体工艺条件如下表所示。
表中所指的催化剂如下:
钌\铜复合催化剂1:催化剂中铜占催化剂重量的5.2%,钾占催化剂重量的0.5%,稀土金属铈占催化剂重量的0.4%,钌占催化剂重量的2.5%,其余为载体。
钌\铜复合催化剂2:催化剂中铜占催化剂重量的9.2%,钾占催化剂重量的0.6%,稀土金属铈占催化剂重量的0.5%,钌占催化剂重量的5.0%,其余为载体。
Figure PCTCN2015079486-appb-000003
Figure PCTCN2015079486-appb-000004
实施例1-4以及对比实施例1-4结果如下表所示:
Figure PCTCN2015079486-appb-000005

Claims (26)

  1. 一种氯化氢催化氧化制备氯气的方法,包含以下步骤:
    1)提供一个或多个串联或并联的装填有催化剂的反应器(优选绝热反应器);
    2)向所述一个或多个反应器中的第一反应器提供含氯化氢气体物流以及用于氧化所述含氯化氢气体物流的含氧气体物流,向所述一个或多个反应器中的下游反应器提供含氯化氢气体物流和/或用于氧化所述含氯化氢气体物流的含氧气体物流,以进行催化氧化氯化氢的反应;
    3)将来自最后一个反应器的经过催化氧化反应的产物气体物流的一部分不经分离直接返回至任意一个或任意多个反应器;
    4)将来自最后一个反应器的剩余的产物气体物流部分分离以获得氯气。
  2. 根据权利要求1的方法,其特征在于:
    所述步骤3)中将来自最后一个反应器的产物气体物流的一部分不经分离直接返回至任意一个或任意多个反应器进料口之前,与要进入所述任意一个或任意多个反应器的含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流混合,然后进入反应器以进行该催化氧化反应。
  3. 根据权利要求1-2任一项的方法,其特征在于:向所述一个或多个反应器中的第一反应器提供含氯化氢气体物流以及用于氧化 所述含氯化氢气体物流的含氧气体物流,向所述一个或多个反应器中的下游反应器提供用于氧化含氯化氢气体物流的含氧气体物流。
  4. 根据权利要求3的方法,其特征在于:向各反应器提供的用于氧化含氯化氢气体物流的含氧气体物流是根据需要将所需的用于氧化含氯化氢气体物流的含氧气体物流按照任意比例在各反应器之间分配的部分,优选地按照反应器的个数将所需的用于氧化含氯化氢气体物流的含氧气体物流平均分配为相应的份数。
  5. 根据权利要求1-2任一项的方法,其特征在于:向所述一个或多个反应器中的第一反应器提供用于氧化含氯化氢气体物流的含氧气体物流以及含氯化氢气体物流,向所述一个或多个反应器中的下游反应器提供含氯化氢气体物流;优选进入每个反应器的含氧气体物流中的含氧量大于氧化进入每个反应器的含氯化氢气体物流所需的理论用氧量。
  6. 根据权利要求5的方法,其特征在于:向各反应器提供的含氯化氢气体物流是根据需要将待氧化的含氯化氢气体物流按照任意比例在各反应器之间分配的部分,优选地按照反应器的个数将待氧化的含氯化氢气体物流平均分配为相应的份数。
  7. 根据权利要求1-6任一项的方法,其特征在于包含以下步骤:
    1)提供一个或多个串联或并联的装填有催化剂的反应器;
    2a)向所述一个或多个反应器中的第一反应器提供含氯化氢气 体物流以及用于氧化所述含氯化氢气体物流的含氧气体物流,以进行催化氧化氯化氢的反应;
    2b)将来自所述第一反应器的产物气体物流通过换热器后提供进入下游反应器,向所述下游反应器提供用于氧化所述含氯化氢气体物流的含氧气体物流,依次向各剩余下游反应器提供来自前一反应器的产物气体物流以及用于氧化含氯化氢气体物流的含氧气体物流;
    3)将来自最后一个反应器的产物气体物流的一部分不经分离返回至任意一个或任意多个反应器,优选返回至所述的任意一个或任意多个反应器进料口之前,与要进入所述的任意一个或任意多个反应器的含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流混合,然后进入反应器以进行该催化氧化反应;
    4)将来自最后一个反应器的剩余的产物气体物流部分分离以获得氯气。
  8. 根据权利要求1-6任一项的方法,其特征在于包含以下步骤:
    1)提供一个或多个串联或并联的装填有催化剂的反应器;
    2a)向所述一个或多个反应器中的第一反应器提供用于氧化氯化氢的含氧气体物流以及含氯化氢气体物流,以进行催化氧化氯化氢的反应;
    2b)将来自所述第一反应器的产物气体物流通过换热器后提供进入下游反应器,向所述下游反应器提供含氯化氢气体物流, 依次向各剩余下游反应器提供来自前一反应器的产物气体物流以及含氯化氢气体物流;
    3)将来自最后一个反应器的产物气体物流的一部分不经分离返回至任意一个或任意多个反应器,优选返回至所述的任意一个或任意多个反应器进料口之前,与要进入所述的任意一个或任意多个反应器的含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流混合,然后进入反应器以进行该催化氧化反应;
    4)将来自最后一个反应器的剩余的产物气体物流部分分离以获得氯气。
  9. 根据权利要求1-8任一项所述的方法,其特征在于:步骤3)中将来自最后一个反应器的产物气体物流的一部分不经分离返回至所提供的每一个反应器。
  10. 根据权利要求9所述的方法,其特征在于:进行所述的将来自最后一个反应器的产物气体物流的一部分不经分离返回至所提供的每一个反应器的步骤时,返回的产物气体物流可以按照任意比例在每个反应器之间分配;优选地按照反应器的个数将返回的产物气体物流平均分配为相应的份数后分别返回至每一个反应器。
  11. 根据权利要求1-10任一项所述的方法,其特征在于所述分离获得氯气是指部分或全部经过催化氧化反应后的产物气体物流通过冷凝、吸附等常规分离处理操作步骤分离处理后得到氯气。
  12. 根据权利要求11所述的方法,其特征在于:所述分离获得氯 气的具体分离方法包含例如用水除去残余氯化氢,再干燥,然后再通过吸附法进行氯气和氧气的分离,或者分别通过冷凝和干燥去除水和部分氯化氢气体后,再通过精馏塔分离出低沸点的液氯,再水洗脱除氯化氢;优选采用的产物气体物流的分离方法包括以下步骤:
    a、冷凝:对来自本发明所述反应的产物气体物流进行冷凝处理;来自本发明所述反应的产物气体物流中的水连同部分未反应的氯化氢,以盐酸水溶液形式凝结析出;
    b、深度脱水:将经过步骤a冷凝后的气体物流进行深度脱水,所述的深度脱水包括例如通过浓硫酸、分子筛,或者通过变温吸附、变压吸附等技术进行深度脱水,去除残余水分;
    c、吸附:将经过步骤b深度脱水处理后的气体物流通过吸附剂进行吸附,分离氯气和氧气;
    任选地,进一步包括d、液化:将步骤c中所得到的含氯气体物流进行液化处理,分离得到含氯化氢气体物流和液化处理后的含氯气体物流。
  13. 根据权利要求1-12任一项的方法,其特征在于:每一反应器之后任选配置换热器用以去除反应热,位于反应器之后的换热器可以是本领域技术人员所熟知的换热器,例如管束式换热器,板式换热器或气体换热器等;优选在最后一个反应器之后配置气体换热器。
  14. 根据权利要求13的方法,其特征在于:来自最后一个反应器的经过催化氧化反应的剩余的产物气体物流部分先通过气体换热器换热后再进行分离,所述换热优选是以要进入第一反应器的含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流作为冷却介质在气体换热器内进行换热;优选所述经换热后的含氯化氢气体物流和/或用于氧化含氯化氢气体物流的含氧气体物流被提供至第一反应器之前与被返回的从第三级反应器流出的产物气体物流的一部分混合,然后再进入第一反应器以进行催化氧化氯化氢的反应。
  15. 根据权利要求1-14任一项的方法,其特征在于:所述分离获得氯气是将该产物气体物流通过脱水、脱除残余氯化氢和脱除氧气从而得到氯气。
  16. 根据权利要求15的方法,其特征在于:脱除掉的氯化氢和/或氧气可被输送到任一反应器中。
  17. 根据权利要求1-16任一项的方法,其特征在于:所述来自最后一个反应器的不经分离直接返回至反应器的产物气体物流与来自最后一个反应器的剩余部分产物气体物流的体积比为0.25∶0.75~0.75∶0.25,优选0.35∶0.65~0.45∶0.55。
  18. 根据权利要求1-17任一项的方法,其特征在于:所述含氯化氢气体物流(按照纯氯化氢计算)与所述含氧气体物流(按照纯氧计算)的进料体积比为1∶2~5∶1,优选为1∶1.2~3.5∶1,更优选为 1∶1~3∶1。
  19. 根据权利要求1-18任一项的方法,其特征在于:所述含氯化氢气体物流(按照纯氯化氢计算)与所述含氧气体物流(按照纯氧计算)的进料体积比为2∶1~5∶1。
  20. 根据权利要求1-18任一项的方法,其特征在于:所述含氯化氢气体物流(按照纯氯化氢计算)与所述含氧气体物流(按照纯氧计算)的进料体积比为1∶2~2∶1,优选1.1∶0.9~0.9∶1.1。
  21. 根据权利要求1-20任一项的方法,其特征在于提供2、3、4、5、6、7、8、9或10个、优选3或4个串联的绝热反应器。
  22. 根据权利要求1-21任一项的方法,其特征在于所述催化剂为钌催化剂、铜催化剂或铜钌复合催化剂,优选掺杂有金、钯、铂、锇、铱、镍或铬等助催化剂,更优选的是负载在载体上的催化剂。
  23. 根据权利要求1-22任一项的方法,其特征在于反应器内压力为:0.1-1MPa。
  24. 根据权利要求1-23任一项的方法,其特征在于每一反应器的进料温度为250~450℃,优选为300~380℃。
  25. 根据权利要求1-24任一项的方法,其特征在于反应器可以是采用固定床、流化床,优选固定床。
  26. 根据权利要求1-25任一项的方法,其特征在于反应器的材质为纯镍或镍合金或石英或陶瓷。
PCT/CN2015/079486 2014-12-22 2015-05-21 一种氯化氢催化氧化制备氯气的方法 WO2016101523A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES15871599T ES2898851T3 (es) 2014-12-22 2015-05-21 Método para oxidar catalíticamente cloruro de hidrógeno para preparar gas cloro
EP15871599.5A EP3239098B1 (en) 2014-12-22 2015-05-21 Method for catalytically oxidizing hydrogen chloride to prepare chlorine gas
JP2017531773A JP6463482B2 (ja) 2014-12-22 2015-05-21 塩化水素を触媒酸化して塩素ガスを調製するための方法
RU2017126138A RU2670301C1 (ru) 2014-12-22 2015-05-21 Способ получения газообразного хлора путем каталитического окисления хлороводорода
KR1020177020246A KR102315161B1 (ko) 2014-12-22 2015-05-21 염화수소 촉매성 산화를 통한 염소 가스 제조 방법
IL253046A IL253046B (en) 2014-12-22 2017-06-20 Method for catalytic oxidation of hydrogen chloride to prepare chlorine gas
US15/629,569 US10239755B2 (en) 2014-12-22 2017-06-21 Method for preparing chlorine gas through catalytic oxidation of hydrogen chloride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410814972.4 2014-12-22
CN201410814972.4A CN104591090B (zh) 2014-12-22 2014-12-22 一种氯化氢催化氧化制备氯气的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/629,569 Continuation US10239755B2 (en) 2014-12-22 2017-06-21 Method for preparing chlorine gas through catalytic oxidation of hydrogen chloride

Publications (1)

Publication Number Publication Date
WO2016101523A1 true WO2016101523A1 (zh) 2016-06-30

Family

ID=53117215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079486 WO2016101523A1 (zh) 2014-12-22 2015-05-21 一种氯化氢催化氧化制备氯气的方法

Country Status (9)

Country Link
US (1) US10239755B2 (zh)
EP (1) EP3239098B1 (zh)
JP (1) JP6463482B2 (zh)
KR (1) KR102315161B1 (zh)
CN (1) CN104591090B (zh)
ES (1) ES2898851T3 (zh)
IL (1) IL253046B (zh)
RU (1) RU2670301C1 (zh)
WO (1) WO2016101523A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591090B (zh) * 2014-12-22 2016-09-07 上海方纶新材料科技有限公司 一种氯化氢催化氧化制备氯气的方法
KR102467394B1 (ko) * 2016-05-24 2022-11-15 에스케이이노베이션 주식회사 단열 반응기를 이용하여 2,3-부탄디올로부터 1,3-부타디엔 및 메틸에틸케톤을 제조하는 방법
CN108928803B (zh) * 2017-05-27 2022-03-04 中国石油化工股份有限公司 一种氯化氢氧化生产氯气的方法
US11072528B2 (en) * 2019-04-22 2021-07-27 Fei Company Halogen generator
CN113353958B (zh) * 2021-07-29 2023-05-02 上海绿麟达新材料科技有限公司 一种六氟磷酸盐的清洁生产工艺
KR102461248B1 (ko) * 2021-11-05 2022-11-01 서승훈 반응조를 직병렬 연결하는 이산화염소가스 연속 발생장치 및 그 운용방법
WO2023174923A1 (en) * 2022-03-14 2023-09-21 Basf Se Continuous process for preparing chlorine and a catalyst for preparing chlorine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1417107A (zh) * 2002-11-08 2003-05-14 巨化集团公司 氯化氢催化氧化生产氯气的工艺方法及装置
CN1656014A (zh) * 2002-05-15 2005-08-17 巴斯福股份公司 由氯化氢制备氯气的方法
CN101687160A (zh) * 2007-07-13 2010-03-31 拜尔技术服务有限责任公司 通过多阶段绝热气相氧化制备氯的方法
CN104591090A (zh) * 2014-12-22 2015-05-06 上海方纶新材料科技有限公司 一种氯化氢催化氧化制备氯气的方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774070A (en) * 1986-02-19 1988-09-27 Mitsui Toatsu Chemicals, Incorporated Production process of chlorine
JPS63139760U (zh) 1987-03-06 1988-09-14
US4994256A (en) 1989-05-31 1991-02-19 Medalert, Inc. Recovery of chlorine from hydrogen chloride by carrier catalyst process
US5084264A (en) 1989-12-12 1992-01-28 Battelle Memorial Institute Process for oxidation of hydrogen halides to elemental halogens
EP0518553B1 (en) * 1991-06-06 1996-09-04 MITSUI TOATSU CHEMICALS, Inc. Method and apparatus for industrially preparing chlorine
DE19533660A1 (de) * 1995-09-12 1997-03-13 Basf Ag Verfahren zur Herstellung von Chlor
JP2003016825A (ja) 2001-06-29 2003-01-17 Toshiba Lighting & Technology Corp 制光体ホルダ及び照明器具
DE10242400A1 (de) * 2002-09-12 2004-03-18 Basf Ag Festbettverfahren zur Herstellung von Chlor durch katalytische Gasphasen-Oxidation von Chlorwasserstoff
DE10258153A1 (de) 2002-12-12 2004-06-24 Basf Ag Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff
DE102005008612A1 (de) * 2005-02-23 2006-08-24 Basf Ag Verfahren zur Herstellung von Chlor
DE102007020140A1 (de) * 2006-05-23 2007-11-29 Bayer Materialscience Ag Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
DE102006024506A1 (de) 2006-05-23 2007-11-29 Bayer Materialscience Ag Verfahren zur Herstellung von Chlor aus Chlorwasserstoff und Sauerstoff
ITMI20061033A1 (it) 2006-05-26 2007-11-27 Engitec Technologies S P A Processo per il recupero di zolfo elementare da residui prodotti in processi idrometallurgici
RU2320534C1 (ru) * 2006-06-20 2008-03-27 Общество с ограниченной ответственностью "КСМ-Инжиниринг" Способ получения хлора
CN101130428B (zh) * 2007-02-02 2010-09-01 清华大学 一种氯化氢催化氧化制氯气的工艺方法
DE102007013964A1 (de) * 2007-03-23 2008-09-25 Bayer Materialscience Ag Prozess zur Entfernung und Rückführung kondensierbarer Komponenten aus chlorhaltigen Gasströmen
DE102008052012A1 (de) * 2008-10-17 2010-04-22 Bayer Materialscience Ag Katalysator und Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
WO2011118386A1 (ja) * 2010-03-25 2011-09-29 三井化学株式会社 塩素の製造方法
DE102010039735A1 (de) 2010-08-25 2012-03-01 Bayer Materialscience Aktiengesellschaft Katalysator und Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
JP2014105128A (ja) * 2012-11-28 2014-06-09 Sumitomo Chemical Co Ltd 塩素の製造方法
CN103043611A (zh) * 2013-01-04 2013-04-17 甘肃银光聚银化工有限公司 在两段循环流化床中采用Cu基催化剂氧化氯化氢生产氯气的装置和方法
CN103752270B (zh) 2014-01-24 2015-08-05 上海方纶新材料科技有限公司 用于氯气与氧气吸附分离的专用活性炭

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1656014A (zh) * 2002-05-15 2005-08-17 巴斯福股份公司 由氯化氢制备氯气的方法
CN1417107A (zh) * 2002-11-08 2003-05-14 巨化集团公司 氯化氢催化氧化生产氯气的工艺方法及装置
CN101687160A (zh) * 2007-07-13 2010-03-31 拜尔技术服务有限责任公司 通过多阶段绝热气相氧化制备氯的方法
CN104591090A (zh) * 2014-12-22 2015-05-06 上海方纶新材料科技有限公司 一种氯化氢催化氧化制备氯气的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3239098A4 *

Also Published As

Publication number Publication date
IL253046B (en) 2021-04-29
EP3239098B1 (en) 2021-09-01
CN104591090A (zh) 2015-05-06
KR102315161B1 (ko) 2021-10-19
US20170283260A1 (en) 2017-10-05
EP3239098A4 (en) 2017-12-27
RU2670301C1 (ru) 2018-10-22
CN104591090B (zh) 2016-09-07
ES2898851T3 (es) 2022-03-09
KR20170120569A (ko) 2017-10-31
JP6463482B2 (ja) 2019-02-06
JP2017537870A (ja) 2017-12-21
US10239755B2 (en) 2019-03-26
IL253046A0 (en) 2017-08-31
EP3239098A1 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
WO2016101523A1 (zh) 一种氯化氢催化氧化制备氯气的方法
JP6615205B2 (ja) クロロホルミル置換ベンゼンを調製するクリーンなプロセス
NL8203252A (nl) Werkwijze ter bereiding van ammoniak.
WO2012003806A1 (zh) 一种费托合成方法及系统
CN110237650B (zh) 一种乙烯直接氧化制环氧乙烷中反应循环气的FTrPSA分离方法
CN110092518A (zh) 吸附法处理含有机物的废水并制备碳纳米材料的系统与方法
JPH024753A (ja) ニトリルおよびオキシドの製造法
JPH021449A (ja) ニトリル類及び酸化物類の製造法
CN108530260A (zh) 一种甲烷氯化物回收和进料的工艺及装置
WO2007066810A1 (ja) 塩素の製造方法
JP5036862B2 (ja) ガスストリームから有機化合物を除去する再生式吸着方法
WO2014092510A1 (ko) 새로운 열교환 시스템을 이용한 온도 압력 변동 이동상 흡착 공정 시스템
JPH08291086A (ja) 1,2−ジクロルエタンの製造方法
CN105480948B (zh) 一种脂肪酸或脂肪酰氯氯化生产过程中副产物氯化氢循环利用方法及系统
WO2011074524A1 (ja) アンモニアの合成方法
CN114408860B (zh) 一种高效节能的氨裂解制氢方法
WO2010130214A1 (zh) 两段式二甲醚生产方法
RU2719425C1 (ru) Способ производства аммиака
TWI565687B (zh) 用於製造包含環己醇及環己酮之混合物的方法
CN210001582U (zh) 低水分含量氯化氢合成系统
CN103193251B (zh) 一种联合生产硫酸铵和一氯甲烷的工艺
CN105566054A (zh) 一种芳烃氯化生产过程中副产物氯化氢循环利用方法和系统
CN214936089U (zh) 一种煤制合成氨尾气提纯食品级co2的脱烃装置
CN110385018B (zh) 一种甲烷法制氯甲烷中的后置循环反应气无损干燥方法
CN216171201U (zh) 一种变压吸附解析气回收利用装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871599

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017531773

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 253046

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177020246

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015871599

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017126138

Country of ref document: RU

Kind code of ref document: A