WO2016096979A1 - 2,3,4,5-tetrahydropyridin-6-amine and 3,4-dihydro-2h-pyrrol-5-amine compound inhibitors of beta-secretase - Google Patents

2,3,4,5-tetrahydropyridin-6-amine and 3,4-dihydro-2h-pyrrol-5-amine compound inhibitors of beta-secretase Download PDF

Info

Publication number
WO2016096979A1
WO2016096979A1 PCT/EP2015/079981 EP2015079981W WO2016096979A1 WO 2016096979 A1 WO2016096979 A1 WO 2016096979A1 EP 2015079981 W EP2015079981 W EP 2015079981W WO 2016096979 A1 WO2016096979 A1 WO 2016096979A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
dementia
acid
compounds
Prior art date
Application number
PCT/EP2015/079981
Other languages
English (en)
French (fr)
Inventor
Andrés Avelino TRABANCO-SUÁREZ
Óscar DELGADO-GONZÁLEZ
Henricus Jacobus Maria Gijsen
Michiel Luc Maria Van Gool
Sven Franciscus Anna Van Brandt
Michel Anna Jozef De Cleyn
Santos FUSTERO LARDIÉS
Natalia MATEU SANCHÍS
Original Assignee
Janssen Pharmaceutica Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2017008083A priority Critical patent/MX2017008083A/es
Application filed by Janssen Pharmaceutica Nv filed Critical Janssen Pharmaceutica Nv
Priority to CA2967164A priority patent/CA2967164A1/en
Priority to KR1020177016868A priority patent/KR20170095881A/ko
Priority to EP15820456.0A priority patent/EP3233834B1/en
Priority to ES15820456T priority patent/ES2768823T3/es
Priority to JP2017532941A priority patent/JP2017538753A/ja
Priority to EA201791367A priority patent/EA031041B1/ru
Priority to AU2015367594A priority patent/AU2015367594C1/en
Priority to CN201580069749.4A priority patent/CN107108582B/zh
Priority to US15/536,474 priority patent/US10106524B2/en
Publication of WO2016096979A1 publication Critical patent/WO2016096979A1/en
Priority to IL252863A priority patent/IL252863A0/en
Priority to ZA2017/04116A priority patent/ZA201704116B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • A61K31/497Non-condensed pyrazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to 2,3,4,5-tetrahydropyridin-6-amine and
  • radicals are as defined in the specification.
  • the invention is also directed to pharmaceutical compositions comprising such compounds, to processes for preparing such compounds and compositions, and to the use of such compounds and
  • compositions for the prevention and treatment of disorders in which beta-secretase is involved such as Alzheimer's disease (AD), mild cognitive impairment, senility, dementia, dementia with Lewy bodies, Down's syndrome, dementia associated with stroke, dementia associated with Parkinson's disease, dementia associated with beta- amyloid, age-related macular degeneration, type 2 diabetes and other metabolic disorders.
  • AD Alzheimer's disease
  • mild cognitive impairment dementia
  • dementia with Lewy bodies dementia
  • Down's syndrome dementia associated with stroke
  • dementia associated with Parkinson's disease dementia associated with beta- amyloid
  • age-related macular degeneration type 2 diabetes and other metabolic disorders.
  • AD Alzheimer's Disease
  • AD patients suffer from cognition deficits and memory loss as well as behavioral problems such as anxiety. Over 90% of those afflicted with AD have a sporadic form of the disorder while less than 10% of the cases are familial or hereditary. In the United States, about one in ten people at age 65 have AD while at age 85, one out of every two individuals are afflicted by AD. The average life expectancy from the initial diagnosis is 7-10 years, and AD patients require extensive care either in an assisted living facility or by family members. With the increasing number of elderly in the population, AD is a growing medical concern. Currently available therapies for AD merely treat the symptoms of the disease and include acetylcholinesterase inhibitors to improve cognitive properties as well as anxiolytics and antipsychotics to control the behavioral problems associated with this ailment.
  • Abeta 1-42 beta-amyloid 1-42 (Abeta 1-42) peptide.
  • Abeta 1-42 forms oligomers and then fibrils, and ultimately amyloid plaques. The oligomers and fibrils are believed to be especially neurotoxic and may cause most of the neurological damage associated with AD.
  • Agents that prevent the formation of Abeta 1-42 have the potential to be disease-modifying agents for the treatment of AD.
  • Abeta 1-42 is generated from the amyloid precursor protein (APP), comprised of 770 amino acids.
  • APP amyloid precursor protein
  • Abeta 1-42 The N-terminus of Abeta 1-42 is cleaved by beta-secretase (BACE1), and then gamma-secretase cleaves the C-terminal end. In addition to Abeta 1-42, gamma- secretase also liberates Abeta 1-40 which is the predominant cleavage product as well as Abeta 1-38 and Abeta 1-43. These Abeta forms can also aggregate to form oligomers and fibrils. Thus, inhibitors of BACE1 would be expected to prevent the formation of Abeta 1-42 as well as Abeta 1-40, Abeta 1-38 and Abeta 1-43 and would be potential therapeutic agents in the treatment of AD.
  • BACE1 beta-secretase
  • Type 2 diabetes is caused by insulin resistance and inadequate insulin secretion from pancreatic beta-cells leading to poor blood-glucose control and hyperglycemia.
  • Patients with T2D have an increased risk of microvascular and macrovascular disease and a range of related complications including diabetic nephropathy, retinopathy and cardiovascular disease.
  • the rise in prevalence of T2D is associated with an increasingly sedentary lifestyle and high-energy food intake of the world's population.
  • Tmem27 has been identified as a protein promoting beta-cell proliferation and insulin secretion.
  • Tmem27 is a 42 kDa membrane glycoprotein which is constitutively shed from the surface of beta-cells, resulting from a degradation of the full-length cellular Tmem27.
  • Overexpression of Tmem27 in a transgenic mouse increases beta-cell mass and improves glucose tolerance in a diet-induced obesity DIO model of diabetes.
  • siRNA knockout of Tmem27 in a rodent beta-cell proliferation assay reduces the proliferation rate, indicating a role for Tmem27 in control of beta-cell mass.
  • BACE2 is the protease responsible for the degradation of Tmem27. It is a membrane-bound aspartyl protease and is co-localized with Tmem27 in human pancreatic beta-cells. It is also known to be capable of degrading APP, IL-1R2 and ACE2. The capability to degrade ACE2 indicates a possible role of BACE2 in the control of hypertension.
  • Inhibitors of BACE1 and/or BACE2 can in addition be used for the therapeutic and/or prophylactic treatment of amyotrophic lateral sclerosis (ALS), arterial thrombosis, autoimmune/inflammatory diseases, cancer such as breast cancer, cardiovascular diseases such as myocardial infarction and stroke, dermatomyositis, Down's Syndrome, gastrointestinal diseases, Glioblastoma multiforme, Graves Disease, Huntington's Disease, inclusion body myositis (IBM), inflammatory reactions, Kaposi Sarcoma, Kostmann Disease, lupus erythematosus, macrophagic myofasciitis, juvenile idiopathic arthritis, granulomatous arthritis, malignant melanoma, multiple myeloma, rheumatoid arthritis, Sjogren syndrome, Spinocerebellar Ataxia 1, Spinocerebellar Ataxia 7, Whipple's Disease or Wilson's Disease.
  • ALS amyotrophic
  • the present invention is directed to compounds of Formula (I)
  • n 0 or 1 ;
  • R 1 is hydrogen, Ci_ 3 alkyl, cyclopropyl, mono- and polyhalo-Ci_ 3 alkyl;
  • R is hydrogen or fluoro
  • L is a bond or -NHCO-
  • Ar is homoaryl or heteroaryl; wherein homoaryl is phenyl or phenyl substituted with one, two or three substituents selected from the group consisting of halo, cyano, Ci_ 3 alkyl, Ci_ 3 alkyloxy, mono- and polyhalo-Ci_ 3 alkyl, mono-and polyhalo-Ci_ 3 alkyloxy;
  • heteroaryl is selected from the group consisting of pyridyl, pyrimidyl, pyrazyl, pyridazyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxazolyl, isoxazolyl, and oxadiazolyl, each optionally substituted with one, two or three substituents selected from the group consisting of halo, cyano, Ci_ 3 alkyl, C2_ 3 alkynyl, Ci_ 3 alkyloxy, mono- and polyhalo- Ci_ 3 alkyl, mono- and polyhalo-Ci_ 3 alkyloxy, and Ci_ 3 alkyloxyCi_ 3 alkyloxy;
  • Illustrative of the invention is a pharmaceutical composition comprising a pharmaceutically acceptable carrier and any of the compounds described above.
  • An illustration of the invention is a pharmaceutical composition made by mixing any of the compounds described above and a pharmaceutically acceptable carrier.
  • Illustrating the invention is a process for making a pharmaceutical composition comprising mixing any of the compounds described above and a pharmaceutically acceptable carrier.
  • Exemplifying the invention are methods of treating a disorder mediated by the beta-secretase enzyme, comprising administering to a subject in need thereof a therapeutically effective amount of any of the compounds or pharmaceutical compositions described above.
  • An example of the invention is a method of treating a disorder selected from the group consisting of Alzheimer's disease, mild cognitive impairment, senility, dementia, dementia with Lewy bodies, Down's syndrome, dementia associated with stroke, dementia associated with Parkinson's disease, dementia associated with beta-amyloid, and age-related macular degeneration, preferably Alzheimer's disease, type 2 diabetes and other metabolic disorders, comprising administering to a subject in need thereof, a therapeutically effective amount of any of the compounds or pharmaceutical compositions described above.
  • Another example of the invention is any of the compounds described above for use in treating: (a) Alzheimer's Disease, (b) mild cognitive impairment, (c) senility, (d) dementia, (e) dementia with Lewy bodies, (f) Down's syndrome, (g) dementia associated with stroke, (h) dementia associated with Parkinson's disease, (i) dementia associated with beta-amyloid or j) age-related macular degeneration, (k) type 2 diabetes and (1) other metabolic disorders in a subject in need thereof.
  • the present invention is directed to compounds of formula (I) as defined hereinbefore, and pharmaceutically acceptable salts and solvates thereof.
  • the compounds of formula (I) are inhibitors of the beta-secretase enzyme (also known as beta-site cleaving enzyme, BACE, BACEl , Asp2 or memapsin 2, or BACE2), and are useful in the treatment of Alzheimer's disease, mild cognitive impairment, senility, dementia, dementia associated with stroke, dementia with Lewy bodies, Down's syndrome, dementia associated with Parkinson's disease, dementia associated with beta-amyloid, and age-related mamcular degeneration, preferably Alzheimer's disease, mild cognitive impairment or dementia, more preferably Alzheimer's disease, type 2 diabetes and other metabolic disorders.
  • the beta-secretase enzyme also known as beta-site cleaving enzyme, BACE, BACEl , Asp2 or memapsin 2, or BACE2
  • R 1 is methyl
  • R is hydrogen
  • Ar is pyridinyl or pyrazinyl substituted with one or two halo atoms or Ci_ 3 alkyloxy.
  • R 1 is methyl
  • R 2 is hydrogen
  • Ar is pyridinyl or pyrazinyl substituted with one or two halo atoms or Ci_ 3 alkyloxy.
  • R 1 is methyl
  • R 2 is hydrogen
  • Ar is
  • the carbon atom substituted with trifluoromethyl has the R configuration.
  • R is fluoro
  • n 1
  • R is methyl
  • R is fluoro
  • n is 1
  • Ar is 5-methoxypyrazin-2-yl, 5-chloro-pyridin-2-yl, 5-fluoro-pyridin-2-yl, 5-cyano-pyridin- 2-yl, 5-chloro-3-fluoro-pyridin-2-yl or l-difluoromethyl-pyrazol-3-yl.
  • the present invention relates to compounds of Formula (I) as defined hereinbefore wherein the quaternary carbon atom substituted with R 1 has a configuration as depicted in the structure ( ⁇ ) below wherein the 2,3,4,5- tetrahydropyridinyl or the 3,4-dihydro-2H-pyrrolyl core is in the plane of the drawing, R 1 is projected below the plane of the drawing (with the bond shown with a wedge of parallel lines " 1 1 ' ) and Ar is projected above the plane of the drawing (with the bond shown with a bold wedge ).
  • R 1 is methyl
  • the quaternary carbon atom has the S-configuration.
  • Halo shall denote fluoro, chloro and bromo;
  • Ci_ 3 alkyl shall denote a straight or branched saturated alkyl group having 1, 2 or 3 carbon atoms, e.g. methyl, ethyl,
  • Ci_ 3 alkyloxy shall denote an ether radical wherein Ci_ 3 alkyl is as defined before;
  • mono- and polyhaloCi_ 3 alkyl shall denote Ci_ 3 alkyl as defined before, substituted with 1, 2, 3 or where possible with more halo atoms as defined before;
  • mono- and polyhaloCi_ 3 alkyloxy shall denote an ether radical wherein mono- and polyhaloCi_ 3 alkyl is as defined before.
  • subject refers to an animal, preferably a mammal, most preferably a human, who is or has been the object of treatment, observation or experiment.
  • terapéuticaally effective amount means that amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician, which includes alleviation of the symptoms of the disease or disorder being treated.
  • composition is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combinations of the specified ingredients in the specified amounts.
  • compound of formula (I) is meant to include the addition salts, the solvates and the stereoisomers thereof.
  • stereoisomers or “stereochemically isomeric forms” hereinbefore or hereinafter are used interchangeably.
  • the invention includes all stereoisomers of the compound of Formula (I) either as a pure stereoisomer or as a mixture of two or more stereoisomers.
  • Enantiomers are stereoisomers that are non-superimposable mirror images of each other.
  • a 1 : 1 mixture of a pair of enantiomers is a racemate or racemic mixture.
  • Diastereomers or diastereoisomers are stereoisomers that are not enantiomers, i.e. they are not related as mirror images. If a compound contains a double bond, the substituents may be in the E or the Z configuration. If a compound contains a disubstituted cycloalkyl group, the substituents may be in the cis or trans configuration. Therefore, the invention includes enantiomers, diastereomers, racemates, E isomers, Z isomers, cis isomers, trans isomers and mixtures thereof.
  • the absolute configuration is specified according to the Cahn-Ingold-Prelog system.
  • the configuration at an asymmetric atom is specified by either R or S.
  • Resolved compounds whose absolute configuration is not known can be designated by (+) or (-) depending on the direction in which they rotate plane polarized light.
  • stereoisomer When a specific stereoisomer is identified, this means that said stereoisomer is substantially free, i.e. associated with less than 50%, preferably less than 20%, more preferably less than 10%, even more preferably less than 5%, in particular less than 2% and most preferably less than 1%, of the other isomers.
  • a compound of formula (I) is for instance specified as (R), this means that the compound is
  • the salts of the compounds of this invention refer to nontoxic "pharmaceutically acceptable salts".
  • Other salts may, however, be useful in the preparation of compounds according to this invention or of their pharmaceutically acceptable salts.
  • Suitable pharmaceutically acceptable salts of the compounds include acid addition salts which may, for example, be formed by mixing a solution of the compound with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulfuric acid, fumaric acid, maleic acid, succinic acid, acetic acid, benzoic acid, citric acid, tartaric acid, carbonic acid or phosphoric acid.
  • suitable pharmaceutically acceptable salts thereof may include alkali metal salts, e.g., sodium or potassium salts; alkaline earth metal salts, e.g., calcium or magnesium salts; and salts formed with suitable organic ligands, e.g., quaternary ammonium salts.
  • alkali metal salts e.g., sodium or potassium salts
  • alkaline earth metal salts e.g., calcium or magnesium salts
  • suitable organic ligands e.g., quaternary ammonium salts.
  • acids which may be used in the preparation of pharmaceutically acceptable salts include, but are not limited to, the following: acetic acid, 2,2- dichloroactic acid, acylated amino acids, adipic acid, alginic acid, ascorbic acid, L-aspartic acid, benzenesulfonic acid, benzoic acid, 4- acetamidobenzoic acid, (+)- camphoric acid, camphorsulfonic acid, capric acid, caproic acid, caprylic acid, cinnamic acid, citric acid, cyclamic acid, ethane- 1, 2 -disulfonic acid, ethanesulfonic acid, 2-hydroxy-ethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, D-gluconic acid, D-glucoronic acid, L-glutamic acid, beta- oxo-glutaric acid, glycolic acid, hippuric acid
  • Representative bases which may be used in the preparation of pharmaceutically acceptable salts include, but are not limited to, the following: ammonia, L-arginine, benethamine, benzathine, calcium hydroxide, choline, dimethylethanolamine, diethanolamine, diethylamine, 2-(diethylamino)-ethanol, ethanolamine, ethylene- diamine, N-methyl-glucamine, hydrabamine, lH-imidazole, L-lysine, magnesium hydroxide, 4-(2-hydroxyethyl)-morpholine, piperazine, potassium hydroxide, l-(2-hydroxyethyl)-pyrrolidine, secondary amine, sodium hydroxide, triethanolamine, tromethamine and zinc hydroxide.
  • the final compounds according to Formula (I-a) can be prepared by reacting an intermediate compound of Formula (II) with a compound of Formula (III) according to reaction scheme (1), a reaction that is performed in a suitable reaction-inert solvent, such as, for example, N,N-dimethylformamide, in the presence of a suitable base, such as, for example, K 3 PO 4 , a copper catalyst such as, for example, Cul and a diamine such as for example (li?,2i?)-(-)-l,2-diaminocyclohexane, under thermal conditions such as, for example, heating the reaction mixture at 180 °C, for example for 135 minutes under microwave irradiation.
  • a suitable reaction-inert solvent such as, for example, N,N-dimethylformamide
  • a suitable base such as, for example, K 3 PO 4
  • a copper catalyst such as, for example, Cul
  • a diamine such as for example (li?,2i?)-(-)-
  • the final compounds according to Formula (I-a) can be prepared by reacting an intermediate compound of Formula (V) with a compound of Formula (IV) according to reaction scheme (2), a reaction that is performed in a suitable reaction-inert solvent, such as, for example, dichloromethane, in the presence of a suitable base, such as, for example, triethylamine, in the presence of a condensation agent such as for example 0-(7azabenzotriazol-l-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate [HATU, CAS 148893-10-1] or 4-(4,6-dimethoxy-l,3,5-triazin-2- yl)-4-methylmorpholinium chloride [DMTMM, CAS 3945-69-5], under thermal conditions such as, for example, heating the reaction mixture at 25 °C, for example for 2 hours.
  • a suitable reaction-inert solvent such as, for example, dichloromethane
  • the final compounds according to Formula (I-a) can be prepared by reacting an intermediate compound of Formula (V) with a compound of Formula (VI) according to reaction scheme (3), a reaction that is performed in a suitable reaction-inert solvent, such as, for example, dichloromethane, in the presence of a suitable base, such as, for example, pyridine, at room temperature for 2 hours.
  • a suitable reaction-inert solvent such as, for example, dichloromethane
  • a suitable base such as, for example, pyridine
  • the final compounds according to Formula (I-b) can be prepared by reacting an intermediate compound of Formula (II) with a compound of Formula (VII) according to reaction scheme (4), a reaction that is performed in a suitable reaction-inert solvent, such as, for example, 1,4-dioxane, ethanol or mixtures of inert solvents such as, for example, 1,2-dimethoxyethane/water/ethanol or 1 ,4-dioxane/water, in the presence of a suitable base, such as, for example, aqueous K 3 PO 4 , NaHC0 3 or Cs 2 C0 3 , a Pd-complex catalyst such as, for example, [l,l '-bis(diphenylphosphino)ferrocene]
  • a suitable reaction-inert solvent such as, for example, 1,4-dioxane, ethanol or mixtures of inert solvents such as, for example, 1,2-dimethoxyethane/water/ethanol or 1
  • dichloropalladium(II) [CAS 72287-26-4] or tetrakis(triphenylphosphine) palladium(O) or trans-bisdicyclohexylamine)palladium diacetate [DAPCy, CAS 628339-96-8] under thermal conditions such as, for example, heating the reaction mixture at 80 °C, until completion of the reaction, typically 2-20 hours or for example , heating the reaction mixture at 130 °C, for example for 10 minutes under microwave irradiation.
  • reaction scheme (4) all variables are defined as in Formula (I) and W is halo.
  • R 3 and R 4 may be hydrogen or alkyl, or may be taken together to form for example a bivalent radical of formula -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, or -C(CH 3 ) 2 C(CH 3 ) 2 -.
  • the intermediate compounds of Formula (V) and (II) can generally be prepared following the reaction steps shown in the reaction scheme (5) below.
  • Intermediate compounds of Formula (V) in the above reaction scheme (5) can be prepared from the corresponding intermediate compounds of Formula (II) following art-known copper catalyzed type coupling procedure (reaction step A).
  • Said coupling may be conducted by treatment of said intermediate compounds of Formula (II) with sodium azide in a suitable reaction-inert solvent, such as, for example, DMSO, in the presence of a mixture of suitable bases, such as, for example, dimethylethylenediamme and Na 2 C0 3 , and a copper catalyst such as, Cul, under thermal conditions such as, for example, heating the reaction mixture at 110 °C, until completion of the reaction, for example 1 hour.
  • a suitable reaction-inert solvent such as, for example, DMSO
  • suitable bases such as, for example, dimethylethylenediamme and Na 2 C0 3
  • a copper catalyst such as, Cul
  • Intermediate compounds of Formula (II) in the above reaction scheme (5) can be prepared from the corresponding intermediate compounds of Formula (VIII) following art-known thioamide-to-amidine conversion procedures (reaction step B). Said conversion may conveniently be conducted by treatment of intermediate compounds of Formula (VIII) with an ammonia source such as, for example, ammonium chloride or aqueous ammonia, in a suitable reaction-inert solvent such as, for example, water or methanol and the like, under thermal conditions such as, for example, heating the reaction mixture at 60 °C, for example for 6 hours.
  • an ammonia source such as, for example, ammonium chloride or aqueous ammonia
  • a suitable reaction-inert solvent such as, for example, water or methanol and the like
  • Intermediate compounds of Formula (VIII) in the above reaction scheme (5) can be prepared from the corresponding intermediate compounds of Formula (IX) following art-known thionation procedures (reaction step C). Said conversion may conveniently be conducted by treatment of intermediate compounds of Formula (IX) with a thionation agent such as, for example, phosphorous pentasulfide or 2,4-bis-(4- methoxyphenyl)-l,3-dithia-2,4-diphosphetane 2,4-disulfide [Lawesson's reagent, CAS 19172-47-5], in a reaction inert solvent such as, for example, tetrahydrofuran or 1,4- dioxane and the like, under thermal conditions such as, for example, heating the reaction mixture at 50 °C, for example for 50 minutes.
  • a thionation agent such as, for example, phosphorous pentasulfide or 2,4-bis-(4- methoxyphenyl)-l,3
  • the intermediate compounds of Formula (IX) can generally be prepared following the reaction steps shown in the reaction scheme (6) below.
  • Intermediate compound of Formula (IX) in the above reaction scheme (6) can be prepared from intermediate compounds of Formula (X), wherein R 5 is Ci_ 4 alkyl, by removal of the sulfmyl group followed by intramolecular lactamization (reaction step D).
  • Said conversion can be conducted by treatment of the intermediate of Formula (X) with a suitable acid, such as, for example, hydrochloric acid, in a suitable inert solvent, such as, for example, 1 ,4-dioxane, at a suitable temperature, for example room temperature for the required time to achieve completion of the reaction, for example 10 minutes.
  • intramolecular cyclization is performed by addition of an aqueous base, such as, for example, sodium bicarbonate at a suitable temperature, typically at room temperature until completion of the reaction, for example 30 minutes.
  • Intermediate compound of Formula (X) wherein R 5 is Ci_ 4 alkyl in the above reaction scheme (6) can be prepared from intermediate compounds of Formula (XI), wherein R 5 is Ci_ 4 alkyl by Grignard addition (reaction step E). Said conversion may be conducted by treatment of an intermediate compound of Formula (XI) with an appropriate Grignard reagent, such as, for example, methylmagnesium bromide, in the presence of a Lewis acid additive, such as, for example, boron trifluoride etherate, in a reaction-inert solvent, such as for example, THF. The reaction mixture is stirred at suitable temperature, for example -78 °C until completion of the reaction, for example 30 minutes.
  • an appropriate Grignard reagent such as, for example, methylmagnesium bromide
  • a Lewis acid additive such as, for example, boron trifluoride etherate
  • reaction-inert solvent such as for example, THF.
  • Intermediate compound of Formula (XI), wherein R 5 is Ci_ 4 alkyl in the above reaction scheme (6), can be prepared from intermediate compounds of Formula (XII) by Michael addition (reaction step F). Said conversion may be conducted by treatment of an intermediate compound of Formula (XII) with an appropriate Michael acceptor, such as, for example, ethyl (2E)-4,4,4-trifluorobut-2-enoate, and a suitable base, such as, for example, potassium tert-butoxide, in a reaction-inert solvent, such as for example, THF. The reaction mixture is stirred at suitable temperature, for example -30 °C until completion of the reaction, for example one hour.
  • an appropriate Michael acceptor such as, for example, ethyl (2E)-4,4,4-trifluorobut-2-enoate
  • a suitable base such as, for example, potassium tert-butoxide
  • Intermediate compounds of Formula (XII) in the above reaction scheme (6) can be prepared by the reaction between an intermediate compound of Formula (XIII) and tert-butylsulfinamide (reaction step G), in a suitable reaction-inert solvent, such as, for example, heptane or THF in the presence of a suitable Lewis acid, such as, for example, titanium tetraethoxide, under thermal conditions such as, for example, heating the reaction mixture at 70 °C, for example for a period of 16 hours.
  • a suitable reaction-inert solvent such as, for example, heptane or THF
  • a suitable Lewis acid such as, for example, titanium tetraethoxide
  • reaction scheme (6) all variables are defined as in Formula (I), R 5 is Ci_ 4 alkyl and W is halo.
  • the intermediate compounds of Formula (XIV) can generally be prepared following the reaction steps shown in the reaction scheme (7) below.
  • Intermediate compounds of Formula (XlV-a or b) in the above reaction scheme (7) can be prepared from the corresponding intermediate compounds of Formula (XV) following art-known thioamide-to-amidine conversion procedures (reaction step B).
  • Said conversion may conveniently be conducted by treatment of intermediate compounds of Formula (XV) with an ammonia source such as, for example, ammonium chloride or aqueous ammonia, in a suitable reaction-inert solvent such as, for example, water or methanol and the like, under thermal conditions such as, for example, heating the reaction mixture at 60 °C, for example for 6 hours, or heating the reaction under microwave irradiation at 120 °C during 1 hour.
  • an ammonia source such as, for example, ammonium chloride or aqueous ammonia
  • a suitable reaction-inert solvent such as, for example, water or methanol and the like
  • Intermediate compounds of Formula (XV) in the above reaction scheme (7) can be prepared from the corresponding intermediate compounds of Formula (XVI) following art-known thionation procedures (reaction step C). Said conversion may conveniently be conducted by treatment of intermediate compounds of Formula (XVI) with a thionation agent such as, for example, phosphorous pentasulfide or 2,4-bis-(4- methoxyphenyl)-l,3-dithia-2,4-diphosphetane 2,4-disulfide [Lawesson's reagent, CAS 19172-47-5], in a reaction inert solvent such as, for example, tetrahydrofuran or 1,4- dioxane and the like, under thermal conditions such as, for example, heating the reaction mixture at 50 °C, for example for 2 hours.
  • a thionation agent such as, for example, phosphorous pentasulfide or 2,4-bis-(4- methoxyphenyl)-l,3
  • reaction scheme (7) all variables are defined as in Formula (I) and W is halo or hydrogen.
  • the intermediate compounds of Formula (XVII) can generally be prepared following the reaction steps shown in the reaction scheme (8) below.
  • Intermediate compounds of Formula (XVII) in the above reaction scheme (8) can be prepared from the corresponding intermediate compounds of Formula (XVIII) following art-known thioamide-to-amidine conversion procedures (reaction step B). Said conversion may conveniently be conducted by treatment of intermediate compounds of Formula (XVIII) with an ammonia source such as, for example, ammonium chloride or aqueous ammonia, in a suitable reaction-inert solvent such as, for example, water or methanol and the like, under thermal conditions such as, for example, heating the reaction mixture at 60 °C, for example for 6 hours, or heating the reaction under microwave irradiation at 120 °C during 1 hour.
  • an ammonia source such as, for example, ammonium chloride or aqueous ammonia
  • a suitable reaction-inert solvent such as, for example, water or methanol and the like
  • Intermediate compounds of Formula (XVIII) in the above reaction scheme (8) can be prepared from the corresponding intermediate compounds of Formula (XIX) following art-known thionation procedures (reaction step C). Said conversion may conveniently be conducted by treatment of intermediate compounds of Formula (XIX) with a thionation agent such as, for example, phosphorous pentasulfide or 2,4-bis-(4- methoxyphenyl)-l,3-dithia-2,4-diphosphetane 2,4-disulfide [Lawesson's reagent, CAS 19172-47-5], in a reaction inert solvent such as, for example, tetrahydrofuran or 1,4- dioxane and the like, under thermal conditions such as, for example, heating the reaction mixture at 50 °C, for example for 2 hours.
  • a thionation agent such as, for example, phosphorous pentasulfide or 2,4-bis-(4- methoxyphenyl)-
  • Intermediate compounds of Formula (XIX) can be prepared from the corresponding intermediates of Formula (XX) following art-known nitro-to-amino reduction procedures (reaction step G) according to reaction scheme (8).
  • Said reduction may conveniently be conducted following art-known catalytic hydrogenation procedures.
  • said reduction may be carried out by stirring the intermediate compounds of Formula (XX) under a hydrogen atmosphere and in the presence of an appropriate catalyst such as, for example, palladium-on-charcoal, platinum-on- charcoal, Raney-nickel and the like catalysts.
  • Suitable solvents are, for example, water, alkanols, e.g. methanol, ethanol and the like, esters, e.g. ethyl acetate and the like.
  • Intermediates compounds of Formula (XX) can be prepared from the corresponding intermediates of Formula (XXI) following art-known nitration procedures (reaction step H) according to reaction scheme (8). Said nitration may conveniently be conducted by treatment of the corresponding intermediate compounds of Formula (XXI) with a nitrating agent such as, for example, nitric acid in the presence of a suitable protonating agent such as, for example, sulfuric acid at moderate temperature such as, for example, 25 °C, for example for 2 hours.
  • a nitrating agent such as, for example, nitric acid
  • a suitable protonating agent such as, for example, sulfuric acid at moderate temperature such as, for example, 25 °C, for example for 2 hours.
  • reaction scheme (8) all variables are defined as in Formula (I).
  • the intermediate compounds of Formula (XXII) can generally be prepared following the reaction steps shown in the reaction scheme (9) below.
  • Intermediate compounds of Formula (XXII) in the above reaction scheme (9) can be prepared from the corresponding intermediate compounds of Formula (XXIII) following art-known mesylate-to-methyl conversion procedures (reaction step I). Said conversion may conveniently be conducted by treatment of intermediate compounds of Formula (XXIII) with a reducing agent such as, for example, sodium borohydride or lithium aluminium hydride, in a reaction inert solvent such as, for example, dimethylformamide or tetrahydrofuran and the like, under thermal conditions such as, for example, heating the reaction mixture at 70 °C, for example for 4 hours.
  • a reducing agent such as, for example, sodium borohydride or lithium aluminium hydride
  • a reaction inert solvent such as, for example, dimethylformamide or tetrahydrofuran and the like
  • Intermediate compounds of Formula (XXIII) in the above reaction scheme (9) can be prepared from the corresponding intermediate compounds of Formula (XXIV) following art-known alcohol-to-mesylate conversion procedures (reaction step J). Said conversion may conveniently be conducted by treatment of intermediate compounds of Formula (XXIV) with a suitable reagent such as, for example, methanesulfonyl chloride, in a reaction inert solvent such as, for example, dichloromethane, in the presence of a suitable base, such as, triethylamine, at a moderate temperature such as, for example, 0 °C, for 2 hours.
  • a suitable reagent such as, for example, methanesulfonyl chloride
  • a reaction inert solvent such as, for example, dichloromethane
  • a suitable base such as, triethylamine
  • Intermediate compounds of Formula (XXIV) can be prepared from the corresponding intermediates of Formula (XXV) following art-known ester-to-alcohol reduction procedures (reaction step K) according to reaction scheme (9).
  • Said reduction may conveniently be conducted by treatment of intermediate compounds of Formula (XXV) with a suitable reducing agent such as, for example, sodium borohydride, in a suitable solvent such as, for example, tetrahydrofuran and the like, or mixtures of solvents such as, for example tetrahydrofuran and water.
  • Reaction may be carried out at a moderate temperature such as, for example 0 °C for 2 hours.
  • Intermediate compound of Formula (XXV) in the above reaction scheme (9), can be prepared from intermediate compounds of Formula (XXVI) by Michael addition followed by intramolecular lactamization (reaction step L). Said conversion may be conducted by treatment of an intermediate compound of Formula (XXVI) with an appropriate Michael acceptor, such as, for example, ethyl (2E)-4,4,4-trifluorobut-2- enoate, and a suitable base, such as, for example, sodium hydride, in a reaction-inert solvent, such as for example, THF. The reaction mixture is stirred at suitable temperature, for example 0 °C until completion of the reaction, for example 6 hours.
  • an appropriate Michael acceptor such as, for example, ethyl (2E)-4,4,4-trifluorobut-2- enoate
  • a suitable base such as, for example, sodium hydride
  • reaction scheme (9) all variables are defined as in Formula (I), Y is halo or hydrogen and R6 is methyl or ethyl.
  • intermediate compounds of Formula (XVII) can be prepared following the reaction steps shown in the reaction scheme (10) below.
  • Intermediate compounds of Formula (XVII) can be prepared from the corresponding intermediates of Formula (XXVII) following art-known nitro-to-amino reduction procedures (reaction step G) according to reaction scheme (10).
  • Said reduction may conveniently be conducted following art-known catalytic hydrogenation procedures.
  • said reduction may be carried out by stirring the intermediate compounds of Formula (XXVII) under a hydrogen atmosphere and in the presence of an appropriate catalyst such as, for example, palladium-on-charcoal, platinum-on- charcoal, Raney-nickel and the like catalysts.
  • Suitable solvents are, for example, water, alkanols, e.g. methanol, ethanol and the like, esters, e.g. ethyl acetate and the like.
  • Intermediates compounds of Formula (XXVII) can be prepared from the corresponding intermediates of Formula (XlV-b) following art-known nitration procedures (reaction step H) according to reaction scheme (10). Said nitration may conveniently be conducted by treatment of the corresponding intermediate compounds of Formula (XIV -b) with a nitrating agent such as, for example, nitric acid in the presence of a suitable protonating agent such as, for example, sulfuric acid at moderate temperature such as, for example, 0 °C, for example for 30 minutes.
  • a nitrating agent such as, for example, nitric acid
  • a suitable protonating agent such as, for example, sulfuric acid at moderate temperature such as, for example, 0 °C, for example for 30 minutes.
  • the compounds of the present invention and the pharmaceutically acceptable compositions thereof inhibit BACE and therefore may be useful in the treatment or prevention of Alzheimer's Disease (AD), mild cognitive impairment (MCI), senility, dementia, dementia with Lewy bodies, cerebral amyloid angiopathy, multi-infarct dementia, Down's syndrome, dementia associated with Parkinson's disease, dementia of the Alzheimer's type, vascular dementia, dementia due to HIV disease, dementia due to head trauma, dementia due to Huntington's disease, dementia due to Pick's disease, dementia due to Creutzfeldt- Jakob disease, frontotemporal dementia, dementia pugilistica, dementia associated with beta-amyloid and age-related and age-related macular degeneration, type 2 diabetes and other metabolic disorders.
  • AD Alzheimer's Disease
  • MCI mild cognitive impairment
  • senility dementia
  • dementia with Lewy bodies dementia with Lewy bodies
  • cerebral amyloid angiopathy dementia with multi-infarct dementia
  • Down's syndrome dementia associated with Parkinson's disease
  • treatment is intended to refer to all processes, wherein there may be a slowing, interrupting, arresting or stopping of the progression of a disease or an alleviation of symptoms, but does not necessarily indicate a total elimination of all symptoms.
  • the invention also relates to a compound according to the general Formula (I), a stereoisomeric form thereof or a the pharmaceutically acceptable acid or base addition salt thereof, for use in the treatment or prevention of diseases or conditions selected from the group consisting of AD, MCI, senility, dementia, dementia with Lewy bodies, cerebral amyloid angiopathy, multi-infarct dementia, Down's syndrome, dementia associated with Parkinson's disease, dementia of the Alzheimer's type, dementia associated with beta-amyloid and age-related macular degeneration, type 2 diabetes and other metabolic disorders.
  • diseases or conditions selected from the group consisting of AD, MCI, senility, dementia, dementia with Lewy bodies, cerebral amyloid angiopathy, multi-infarct dementia, Down's syndrome, dementia associated with Parkinson's disease, dementia of the Alzheimer's type, dementia associated with beta-amyloid and age-related macular degeneration, type 2 diabetes and other metabolic disorders.
  • the invention also relates to a compound according to the general Formula (I), a stereoisomeric form thereof or a the pharmaceutically acceptable acid or base addition salt thereof, for use in the treatment, prevention, amelioration, control or reduction of the risk of diseases or conditions selected from the group consisting of AD, MCI, senility, dementia, dementia with Lewy bodies, cerebral amyloid angiopathy, multi-infarct dementia, Down's syndrome, dementia associated with Parkinson's disease, dementia of the Alzheimer's type, dementia associated with beta- amyloid and age-related macular degeneration, type 2 diabetes and other metabolic disorders.
  • AD Alzheimer's type
  • dementia associated with beta- amyloid and age-related macular degeneration type 2 diabetes and other metabolic disorders.
  • treatment does not necessarily indicate a total elimination of all symptoms, but may also refer to symptomatic treatment in any of the disorders mentioned above.
  • a method of treating subjects such as warm-blooded animals, including humans, suffering from or a method of preventing subjects such as warm-blooded animals, including humans, suffering from any one of the diseases mentioned hereinbefore.
  • Said methods comprise the administration, i.e. the systemic or topical administration, preferably oral administration, of a therapeutically effective amount of a compound of Formula (I), a stereoisomeric form thereof, a pharmaceutically acceptable addition salt or solvate thereof, to a subject such as a warm-blooded animal, including a human.
  • the invention also relates to a method for the prevention and/or treatment of any of the diseases mentioned hereinbefore comprising administering a therapeutically effective amount of a compound according to the invention to a subject in need thereof.
  • a method for modulating beta-site amyloid cleaving enzyme activity comprising administering to a subject in need thereof, a therapeutically effective amount of a compound according to claim 1 or a pharmaceutical composition according to claim 10.
  • a method of treatment may also include administering the active ingredient on a regimen of between one and four intakes per day.
  • the compounds according to the invention are preferably formulated prior to
  • suitable pharmaceutical formulations are prepared by known procedures using well known and readily available ingredients.
  • the compounds of the present invention may be administered alone or in combination with one or more additional therapeutic agents.
  • Combination therapy includes administration of a single pharmaceutical dosage formulation which contains a compound of Formula (I) and one or more additional therapeutic agents, as well as administration of the compound of Formula (I) and each additional therapeutic agents in its own separate pharmaceutical dosage formulation.
  • a compound of Formula (I) and a therapeutic agent may be administered to the patient together in a single oral dosage composition such as a tablet or capsule, or each agent may be administered in separate oral dosage formulations.
  • DSM-5TM Diagnostic & Statistical Manual of Mental Disorders
  • NBDs neurocognitive disorders
  • TBI traumatic brain injury
  • Lewy body disease due to Lewy body disease
  • Parkinson's disease due to Parkinson's disease or to vascular NCD (such as vascular NCD present with multiple infarctions).
  • vascular NCD such as vascular NCD present with multiple infarctions.
  • the present invention also provides compositions for preventing or treating diseases in which inhibition of beta-secretase is beneficial, such as Alzheimer's disease (AD), mild cognitive impairment, senility, dementia, dementia with Lewy bodies, Down's syndrome, dementia associated with stroke, dementia associated with AD
  • AD Alzheimer's disease
  • compositions comprising a therapeutically effective amount of a compound according to formula (I) and a pharmaceutically acceptable carrier or diluent.
  • the present invention further provides a pharmaceutical composition comprising a compound according to the present invention, together with a pharmaceutically acceptable carrier or diluent.
  • a pharmaceutically acceptable carrier or diluent must be "acceptable" in the sense of being compatible with the other ingredients of the composition and not deleterious to the recipients thereof.
  • compositions of this invention may be prepared by any methods well known in the art of pharmacy.
  • a therapeutically effective amount of the particular compound, in base form or addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which may take a wide variety of forms depending on the form of preparation desired for administration.
  • a pharmaceutically acceptable carrier which may take a wide variety of forms depending on the form of preparation desired for administration.
  • These pharmaceutical compositions are desirably in unitary dosage form suitable, preferably, for systemic administration such as oral, percutaneous or parenteral administration; or topical administration such as via inhalation, a nose spray, eye drops or via a cream, gel, shampoo or the like.
  • any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs and solutions; or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed.
  • the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be included.
  • Injectable solutions may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed.
  • the carrier optionally comprises a penetration enhancing agent and/or a suitable wettable agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not cause any significant deleterious effects on the skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired compositions.
  • transdermal patch e.g., as a transdermal patch, as a spot-on or as an ointment.
  • Dosage unit form as used in the specification and claims herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
  • dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, injectable solutions or suspensions, teaspoonfuls, tablespoonfuls and the like, and segregated multiples thereof.
  • the exact dosage and frequency of administration depends on the particular compound of formula (I) used, the particular condition being treated, the severity of the condition being treated, the age, weight, sex, extent of disorder and general physical condition of the particular patient as well as other medication the individual may be taking, as is well known to those skilled in the art. Furthermore, it is evident that said effective daily amount may be lowered or increased depending on the response of the treated subject and/or depending on the evaluation of the physician prescribing the compounds of the instant invention.
  • the pharmaceutical composition will comprise from 0.05 to 99% by weight, preferably from 0.1 to 70% by weight, more preferably from 0.1 to 50% by weight of the active ingredient, and, from 1 to 99.95% by weight, preferably from 30 to 99.9% by weight, more preferably from 50 to 99.9% by weight of a pharmaceutically acceptable carrier, all percentages being based on the total weight of the composition.
  • the present compounds can be used for systemic administration such as oral, percutaneous or parenteral administration; or topical administration such as via inhalation, a nose spray, eye drops or via a cream, gel, shampoo or the like.
  • the compounds are preferably orally administered.
  • the exact dosage and frequency of administration depends on the particular compound according to formula (I) used, the particular condition being treated, the severity of the condition being treated, the age, weight, sex, extent of disorder and general physical condition of the particular patient as well as other medication the individual may be taking, as is well known to those skilled in the art. Furthermore, it is evident that said effective daily amount may be lowered or increased depending on the response of the treated subject and/or depending on the evaluation of the physician prescribing the compounds of the instant invention.
  • suitable unit doses for the compounds of the present invention can, for example, preferably contain between 0.1 mg to about 1000 mg of the active compound.
  • a preferred unit dose is between 1 mg to about 500 mg.
  • a more preferred unit dose is between 1 mg to about 300 mg.
  • Even more preferred unit dose is between 1 mg to about 100 mg.
  • Such unit doses can be administered more than once a day, for example, 2, 3, 4, 5 or 6 times a day, but preferably 1 or 2 times per day, so that the total dosage for a 70 kg adult is in the range of 0.001 to about 15 mg per kg weight of subject per administration.
  • a preferred dosage is 0.01 to about 1.5 mg per kg weight of subject per administration, and such therapy can extend for a number of weeks or months, and in some cases, years.
  • the specific dose level for any particular patient will depend on a variety of factors including the activity of the specific compound employed; the age, body weight, general health, sex and diet of the individual being treated; the time and route of administration; the rate of excretion; other drugs that have previously been administered; and the severity of the particular disease undergoing therapy, as is well understood by those of skill in the area.
  • a typical dosage can be one 1 mg to about 100 mg tablet or 1 mg to about 300 mg taken once a day, or, multiple times per day, or one time -release capsule or tablet taken once a day and containing a proportionally higher content of active ingredient.
  • the time-release effect can be obtained by capsule materials that dissolve at different pH values, by capsules that release slowly by osmotic pressure, or by any other known means of controlled release. It can be necessary to use dosages outside these ranges in some cases as will be apparent to those skilled in the art. Further, it is noted that the clinician or treating physician will know how and when to start, interrupt, adjust, or terminate therapy in conjunction with individual patient response.
  • compositions, methods and kits provided above one of skill in the art will understand that preferred compounds for use in each are those compounds that are noted as preferred above. Still further preferred compounds for the compositions, methods and kits are those compounds provided in the non-limiting Examples below.
  • m.p. means melting point
  • min means minutes
  • aq. means aqueous
  • r.m. means reaction mixture
  • r.t. room temperature
  • THF means tetrahydrofuran
  • DMF dimethylformamide
  • DCM means dimethylformamide
  • LC-MS liquid chromatography/mass spectrometry
  • GCMS gas chromatography/mass spectrometry
  • HPLC high-performance liquid chromatography
  • RP reversed phase
  • UPLC ultra-performance liquid chromatography
  • R t means retention time (in minutes)
  • [M+H] + means the protonated mass of the free base of the compound
  • DTMM means 4-(4,6-dimethoxy-l,3,5-triazin-2-yl)-4-methylmorpholinium chloride
  • Et 2 0 means diethylether
  • DMSO means dimethylsulfoxide
  • NMR nuclear magnetic resonance
  • LDA lithium diisopropylamide
  • NH 4 CI means ammonium chloride
  • MgS0 4 means magnesium sulfate
  • NaHCCV means ammonium bicarbonate
  • HQ means hydrochloric acid
  • Titanium(IV) isopropoxide (65 g, 286 mmol) was added to a stirred mixture of 3- bromoacetophenone [(CAS 2142-63-4), 30 g, 150 mmol] and (R)-2-methyl-2- propanesulfinamide (21.9 g, 181 mmol) in THF (600 mL). The mixture was stirred at 80 °C for 16 hours. The mixture was cooled to r.t, and water was added. The resulting mixture was filtered over a diatomaceous earth pad. The filtrate was extracted with EtOAc (3x). The combined organic layers were dried (MgS0 4 ), filtered and
  • Titanium(IV) isopropoxide (126 g, 552.99 mmol) was added to a stirred mixture of 5- bromo-2-fiuoroacetophenone [(CAS 198477-89-3), 120 g, 552.99 mmol] and (R)-2- methyl-2-propanesulfinamide (67 g, 552.99 mmol) in THF (600 mL). The mixture was stirred at 80 °C for 16 hours. The mixture was cooled down to r.t, and water was added. The resulting mixture was filtered over a diatomaceous earth pad. The filtrate was extracted with EtOAc (3x). The combined organic layers were dried (MgS0 4 ), filtered and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel; eluent: petroleum ether/EtOAc 51/0 to 50/1). The desired fractions were collected and concentrated in vacuo to yield intermediate 8 (100 g, 57% yield).
  • Intermediate 10 was prepared following a synthetic procedure similar to the one reported for the synthesis of intermediate 3. Starting from intermediate 9 (120 g, 245.9 mmol) intermediate 10 was obtained and used as such in the next step (100 g, 80% yield).
  • Intermediate 11 was prepared following a synthetic procedure similar to the one reported for the synthesis of intermediate 4. Starting from intermediate 10 (100 g, 198.4 mmol) intermediate 11 was obtained (8.1 g, 12% yield).
  • Intermediate 14 was prepared following a synthetic procedure similar to the one reported for the synthesis of intermediate 7. Starting from intermediate 13 (5.073 g, 14.37 mmol) intermediate 14 was obtained as a light brown oil.
  • intermediate 16 and intermediate 17, intermediate 17 may be as well obtained in two steps starting from commercially available methyl 2-amino-2-(5-bromo-2- fluorophenyl)acetate (CAS : 1218158-22-5).
  • Methanesulfonyl chloride (0.39 mL, 5.1 mmol) and triethylamine (0.71 mL, 5.1 mmol) were added to a solution of intermediate 23 (470 mg, 1.69 mmol) in DCM (17 mL) cooled at 0 °C and the mixture was stirred for 2 hours. The mixture was diluted with sat. aq. NH 4 CI solution and the aq. layer was extracted with EtOAc (3x). The organic layer was separated, dried over Na 2 S04, filtered and the solvents concentrated in vacuo.
  • Nitric acid (fuming 90%, 0.2 mL) was added to a solution of intermediate 24 (500 mg, 1.91 mmol) in sulfuric acid (3.8 mL) and the mixture was stirred for 2 hours. The mixture was cooled down at 0 °C, diluted with water and the aq. layer was extracted with EtOAc (3x). The organic layer was separated, dried over Na 2 S0 4 , filtered and the solvents concentrated in vacuo. The crude product was purified by column
  • intermediate 27 can also be obtained starting from intermediate 24 by following a synthetic sequence similar to the one used for the synthesis of (in the order) intermediate 27, intermediate 25 and intermediate 26.
  • compound 3 compound 4 5-Methoxypyrazine-2-carboxylic acid (0.064 g, 0.417 mmol) was dissolved in MeOH (15 mL) and DMTMM (0.147 g, 0.5 mmol) was added. After stirring the mixture for 5 min, a solution of intermediate 7 (0.113 g, 0.417 mmol) in MeOH (5 mL) was added at 0 °C, and the mixture was stirred for an additional 4 hours. The solvent was evaporated in vacuo. The crude product was purified by flash column chromatography (silica gel; eluent: DCM/7M solution of ammonia in MeOH 100/0 to 90/10). The desired fractions were collected and concentrated in vacuo.
  • Tetrakis(triphenylphosphine)palladium (16 mg, 0.014 mmol) and 5-pyrimidinylboronic acid (35 mg, 0.28 mmol) were added to a solution of rac-intermediate 19 (48 mg, 0.14 mmol) in a mixture of sat. aq. NaHC0 3 solution and dioxane (2.8:2.4 mL) and the mixture was heated at 80 °C for 2 hours. The mixture was diluted with water and extracted with DCM (3x). The organic layer was separated, dried over Na 2 S0 4 , filtered and the solvents concentrated in vacuo. The crude product was purified by column chromatography (silica gel; eluent: DCM/7M ammonia in MeOH 100/0 to 85/15) to afford compound 14 (33 mg, 69% yield, racemic mixture, cis).
  • Example B7
  • compound 19 N-r3-r(26',3i?)-5-amino-2-methyl-3-(trifluoromethyl)-3,4- dihvdropyrrol-2-yl1-4-fluoro-phenyl1-5-chloro-pyridine-2-carboxamide and compound 20: N-r3-r(2i? ⁇ -5-amino-2-methyl-3-(trifluoromethvn-3.4-dihvdropyrrol-2-yl1-4- fluoro-phenyll-5-chloro-pyridine-2-carboxamide
  • compound 15 starting from 2-methyloxazole-4-carboxylic acid compound 16 (70 mg, 28% yield) was obtained after purification by preparative HPLC on CI 8 Xbridge (30 x 100 mm, 5 ⁇ ; mobile phase: gradient from 74% 10 mM NH 4 CO 3 H pH 9 solution in water, 26% MeCN to 58% 10 mM NH 4 CO 3 H pH 9 solution in water, 42% MeCN). Subsequent separation by chiral SFC on Chiralpak® AD-H Daicel (20 x 250 mm, 5 ⁇ ; mobile phase: 80% C0 2 , 20% iPrOH with 0.3% iPrNH 2 ) afforded compound 35 (24 mg, 10% yield) and compound 36 (29 mg, 12% yield).
  • compound 15 starting from 5-cyano-2-carboxylic acid compound 18 (80 mg, 30% yield) was obtained after purification by preparative HPLC on CI 8 Xbridge (30 x 100 mm, 5 ⁇ ; mobile phase; gradient from 74% 10 mM NH 4 CO 3 H pH 9 solution in water, 26% MeCN to 58% 10 mM NH 4 CO 3 H pH 9 solution in water, 42% MeCN).
  • compound 15 starting from 5-(2,2,2-trifluoroethoxy)pyrazine-2-carboxylic acid compound 24 (27 mg, 18% yield) was obtained after purification by RP HPLC on CI 8 XBridge (30 x 100 mm 5 ⁇ ; mobile phase: gradient from 67% lOmM NH 4 CO 3 H pH 9 solution in water, 33% MeCN to 50% lOmM NH 4 CO 3 H pH 9 solution in water, 50% MeCN). Further separation by chiral SFC on Chiralcel® OD-H (5 ⁇ 250 x 20 mm; mobile phase: 70% C0 2 , 30% EtOH with 0.3% iPrNH 2 ) yielded compound 31 (9 mg, 6%> yield) and compound 32 (10 mg, 6% yield).
  • compound 15 starting from 5-(2,2,2-trifluoroethoxy)pyrazine-2-carboxylic acid compound 40 (140 mg, 21% yield) was obtained after purification by RP HPLC on CI 8 XBridge (30 x 100 mm 5 ⁇ ; mobile phase: gradient from 67% lOmM NH 4 CO 3 H pH 9 solution in water, 33% MeCN to 50% lOmM NH 4 CO 3 H pH 9 solution in water, 50% MeCN). Further separation by chiral SFC on Chiralcel® OD-H (5 ⁇ 250 x 20 mm; mobile phase: 60% C0 2 , 40% EtOH with 0.3% iPrNH 2 ) yielded compound 33 (54 mg, 8%) yield) and compound 41 (57 mg, 8% yield).
  • HPLC High Performance Liquid Chromatography
  • MS Mass Spectrometer
  • UPLC Ultra Performance Liquid Chromatography
  • DAD Diode Array Detector
  • SQD Single Quadrupole Detector
  • QTOF Quadrupole-Time of Flight
  • RT room temperature
  • BEH bridged ethylsiloxane/silica hybrid
  • CSH charged surface hybrid
  • Values are either peak values or melt ranges, and are obtained with
  • n.d. means not determined, b.r. means broad range
  • [a] 3 ⁇ 4 T (100a) / (/ x c) : where / is the path length in dm and c is the concentration in g/100 ml for a sample at a temperature T (°C) and a wavelength ⁇ (in nm). If the wavelength of light used is 589 nm (the sodium D line), then the symbol D might be used instead.
  • T temperature
  • in nm
  • T temperature in °C
  • Pressure in bars
  • A means first eluting isomer; B means second eluting isomer.
  • the compounds provided in the present invention are inhibitors of the beta-site APP-cleaving enzyme 1 (BACEl).
  • BACEl an aspartic protease
  • AD Alzheimer's Disease
  • BACEl an aspartic protease
  • Abeta beta-amyloid peptides
  • APP beta-amyloid precursor protein
  • APP amyloid precursor protein
  • Compounds of Formula (I) are expected to have their effect substantially at BACEl by virtue of their ability to inhibit the enzymatic activity.
  • the behaviour of such inhibitors tested using a biochemical Fluorescence Resonance Energy Transfer (FRET) based assay and a cellular aLisa assay in SK BE2 cells described below and which are suitable for the identification of such compounds, and more particularly the compounds according to Formula (I), are shown in Table 8 and Table 9.
  • FRET Fluorescence Resonance Energy Transfer
  • This assay is a Fluorescence Resonance Energy Transfer Assay (FRET) based assay.
  • the substrate for this assay is an APP derived 13 amino acids peptide that contains the 'Swedish' Lys-Met/Asn-Leu mutation of the amyloid precursor protein (APP) beta-secretase cleavage site.
  • This substrate also contains two fluorophores: (7- methoxycoumarin-4-yl) acetic acid (Mca) is a fluorescent donor with excitation wavelength at 320 nm and emission at 405 nm and 2,4-Dinitrophenyl (Dnp) is a proprietary quencher acceptor.
  • the distance between those two groups has been selected so that upon light excitation, the donor fluorescence energy is significantly quenched by the acceptor, through resonance energy transfer.
  • the fluorophore Mca Upon cleavage by BACEl, the fluorophore Mca is separated from the quenching group Dnp, restoring the full fluorescence yield of the donor.
  • the increase in fluorescence is linearly related to the rate of proteolysis.
  • a best- fit curve is fitted by a minimum sum of squares method to the plot of %Controlmin versus compound concentration. From this an IC 50 value (inhibitory concentration causing 50% inhibition of activity) can be obtained.
  • aLisa assays In two aLisa assays the levels of Abeta total and Abeta 1-42 produced and secreted into the medium of human neuroblastoma SK BE2 cells are quantified.
  • the assay is based on the human neuroblastoma SK BE2 expressing the wild type Amyloid Precursor Protein (hAPP695).
  • the compounds are diluted and added to these cells, incubated for 18 hours and then measurements of Abeta 1-42 and Abeta total are taken.
  • Abeta total and Abeta 1-42 are measured by sandwich aLisa.
  • aLisa is a sandwich assay using biotinylated antibody AbN/25 attached to streptavidin coated beads and antibody Ab4G8 or cAb42/26 conjugated acceptor beads for the detection of Abeta total and Abeta 1-42 respectively.
  • the beads come into close proximity.
  • the excitation of the donor beads provokes the release of singlet oxygen molecules that trigger a cascade of energy transfer in the acceptor beads, resulting in light emission.
  • Light emission is measured after 1 hour incubation (excitation at 650 nm and emission at 615 nm).
  • a best- fit curve is fitted by a minimum sum of squares method to the plot of
  • This assay is a Fluorescence Resonance Energy Transfer Assay (FRET) based assay.
  • the substrate for this assay contains the 'Swedish' Lys-Met/Asn-Leu mutation of the amyloid precursor protein (APP) beta-secretase cleavage site.
  • This substrate also contains two fluorophores: (7-methoxycoumarin-4-yl) acetic acid (Mca) is a fluorescent donor with excitation wavelength at 320 nm and emission at 405 nm and 2,4- Dinitrophenyl (Dnp) is a proprietary quencher acceptor. The distance between those two groups has been selected so that upon light excitation, the donor fluorescence energy is significantly quenched by the acceptor, through resonance energy transfer.
  • FRET Fluorescence Resonance Energy Transfer Assay
  • the fluorophore Mca Upon cleavage by the beta-secretase, the fluorophore Mca is separated from the quenching group Dnp, restoring the full fluorescence yield of the donor.
  • the increase in fluorescence is linearly related to the rate of proteolysis.
  • a best- fit curve is fitted by a minimum sum of squares method to the plot of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Endocrinology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Emergency Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
PCT/EP2015/079981 2014-12-18 2015-12-16 2,3,4,5-tetrahydropyridin-6-amine and 3,4-dihydro-2h-pyrrol-5-amine compound inhibitors of beta-secretase WO2016096979A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2017532941A JP2017538753A (ja) 2014-12-18 2015-12-16 2,3,4,5−テトラヒドロピリジン−6−アミンおよび3,4−ジヒドロ−2H−ピロール−5−アミンの化合物のβセクレターゼ阻害剤
CA2967164A CA2967164A1 (en) 2014-12-18 2015-12-16 2,3,4,5-tetrahydropyridin-6-amine and 3,4-dihydro-2h-pyrrol-5-amine compound inhibitors of beta-secretase
KR1020177016868A KR20170095881A (ko) 2014-12-18 2015-12-16 베타―세크레타제의 2,3,4,5―테트라히드로피리딘―6―아민 및 3,4―디히드로―2h―피롤―5―아민 화합물 억제제
EP15820456.0A EP3233834B1 (en) 2014-12-18 2015-12-16 2,3,4,5-tetrahydropyridin-6-amine and 3,4-dihydro-2h-pyrrol-5-amine derivatives useful as inhibitors of beta-secretase
ES15820456T ES2768823T3 (es) 2014-12-18 2015-12-16 Derivados de 2,3,4,5-tetrahidropiridin-6-amina y 3,4-dihidro-2H-pirrol-5-amina útiles como inhibidores de beta-secretasa
MX2017008083A MX2017008083A (es) 2014-12-18 2015-12-16 Compuestos 2,3,4,5-tetrahidropiridin-6-amina y 3,4-dihidro-2h-pirrol-5-amina inhibidores de beta-secretasa.
EA201791367A EA031041B1 (ru) 2014-12-18 2015-12-16 Соединения 2,3,4,5-тетрагидропиридин-6-амин и 3,4-дигидро-2h-пиррол-5-амин - ингибиторы бета-секретазы
US15/536,474 US10106524B2 (en) 2014-12-18 2015-12-16 2,3,4,5-tetrahydropyridin-6-amine and 3,4-dihydro-2H-pyrrol-5-amine compound inhibitors of beta-secretase
CN201580069749.4A CN107108582B (zh) 2014-12-18 2015-12-16 β-分泌酶的2,3,4,5-四氢吡啶-6-胺化合物抑制剂
AU2015367594A AU2015367594C1 (en) 2014-12-18 2015-12-16 2,3,4,5-tetrahydropyridin-6-amine and 3,4-dihydro-2H-pyrrol-5-amine compound inhibitors of beta-secretase
IL252863A IL252863A0 (en) 2014-12-18 2017-06-13 Compounds 5,4,3,2-tetrahydropyridine-6-amine and 4,3-dihydro-h2-pyrrole-5-amine beta-secretase inhibitors
ZA2017/04116A ZA201704116B (en) 2014-12-18 2017-06-15 2,3,4,5-tetrahydropyridin-6-amine and 3,4-dihydro-2h-pyrrol-5-amine compound inhibitors of beta-secretase

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP14198977 2014-12-18
EP14198977.2 2014-12-18
EP15164704 2015-04-22
EP15164704.7 2015-04-22

Publications (1)

Publication Number Publication Date
WO2016096979A1 true WO2016096979A1 (en) 2016-06-23

Family

ID=55070992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/079981 WO2016096979A1 (en) 2014-12-18 2015-12-16 2,3,4,5-tetrahydropyridin-6-amine and 3,4-dihydro-2h-pyrrol-5-amine compound inhibitors of beta-secretase

Country Status (13)

Country Link
US (1) US10106524B2 (ja)
EP (1) EP3233834B1 (ja)
JP (1) JP2017538753A (ja)
KR (1) KR20170095881A (ja)
CN (1) CN107108582B (ja)
AU (1) AU2015367594C1 (ja)
CA (1) CA2967164A1 (ja)
EA (1) EA031041B1 (ja)
ES (1) ES2768823T3 (ja)
IL (1) IL252863A0 (ja)
MX (1) MX2017008083A (ja)
WO (1) WO2016096979A1 (ja)
ZA (1) ZA201704116B (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9751886B2 (en) 2013-06-12 2017-09-05 Janssen Pharmaceutica Nv 4-amino-6-phenyl-6,7-dihydro[1,2,3]triazolo[1,5-A]pyrazine derivatives as inhibitors of beta-secretase (BACE)
US9828350B2 (en) 2010-06-09 2017-11-28 Janssen Pharmaceutica Nv 5,6-dihydro-2H-[1,4]oxazin-3-yl-amine derivatives useful as inhibitors of beta-secretase (BACE)
US9834559B2 (en) 2013-06-12 2017-12-05 Janssen Pharmaceutica Nv 4-Amino-6-phenyl-5,6-dihydroimidazo[1,5-a]pyrazin-3(2H)-one derivatives as inhibitors of beta-secretase (BACE)
US9840507B2 (en) 2010-12-22 2017-12-12 Janssen Pharmaceutica, Nv 5,6-dihydro-imidazo[1,2-a]pyrazin-8-ylamine derivatives useful as inhibitors of beta-secretase (BACE)
US9845326B2 (en) 2011-03-09 2017-12-19 Janssen Pharmaceutica Nv Substituted 3,4-dihydropyrrolo[1,2-A]pyrazines as beta-secretase (BACE) inhibitors
WO2018083247A1 (en) 2016-11-04 2018-05-11 Janssen Pharmaceutica Nv 4,4a,5,7-tetrahydro-3h-furo[3,4-b]pyridinyl compounds
US10106524B2 (en) 2014-12-18 2018-10-23 Janssen Pharmaceutica Nv 2,3,4,5-tetrahydropyridin-6-amine and 3,4-dihydro-2H-pyrrol-5-amine compound inhibitors of beta-secretase
CN113549007A (zh) * 2021-07-23 2021-10-26 清华大学 一种哌啶乙酸酯类化合物的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2518059A1 (en) * 2009-12-24 2012-10-31 Shionogi & Co., Ltd. 4-amino-1,3-thiazine or oxazine derivative

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188389A (en) 1978-11-03 1980-02-12 Ayerst Mckenna & Harrison, Inc. 1,2,3,4-Tetrahydropyrrolo(1,2-A)pyrazines
TW224974B (ja) 1991-07-02 1994-06-11 Hoffmann La Roche
JP2002505684A (ja) 1997-06-18 2002-02-19 メルク エンド カンパニー インコーポレーテッド α1aアドレナリン受容体拮抗薬
KR20050008691A (ko) 2002-04-19 2005-01-21 셀룰러 지노믹스 아이엔씨 이미다조[1,2-a]피라진-8-일 아민, 그의 제조방법 및사용방법
DE60317353T2 (de) 2002-09-23 2008-08-28 Schering Corp. Imidazopyrazine als cdk-inhibitoren
RU2005119173A (ru) 2002-12-20 2006-02-27 Фармация Корпорейшн (Us) Ациклические пиразольные соединения
PT1678172E (pt) 2003-10-15 2010-03-03 Targacept Inc Composições farmacêuticas e métodos para alívio da dor e tratamento de perturbações do sistema nervoso central
JP2007533741A (ja) 2004-04-22 2007-11-22 イーライ リリー アンド カンパニー Bace阻害剤
JP2008503459A (ja) 2004-06-16 2008-02-07 ワイス β−セクレターゼを阻害するためのアミノ−5,5−ジフェニルイミダゾロン誘導体
TW200624426A (en) 2004-09-21 2006-07-16 Lilly Co Eli BACE inhibitors
AU2006205127A1 (en) 2005-01-14 2006-07-20 Wyeth Amino-imidazolones for the inhibition of beta-secretase
US20070005404A1 (en) 2005-06-09 2007-01-04 Drive Diagnostics Ltd. System and method for providing driving insurance
JP4896972B2 (ja) 2005-06-14 2012-03-14 シェーリング コーポレイション 複素環式アスパルチルプロテアーゼ阻害剤、その調製及び使用
BRPI0613578A2 (pt) 2005-06-30 2012-01-17 Wyeth Corp composito da fórmula i; uso de um composto de fórmula i; e composição farmacêutica
EP2597087B1 (en) 2005-10-25 2016-03-30 Shionogi&Co., Ltd. Dihydrooxazine and tetrahydropyrimidine derivatives as BACE 1 inhibitors
TW200804290A (en) 2005-11-15 2008-01-16 Astrazeneca Ab Compounds and uses thereof
CN101460480A (zh) 2006-04-05 2009-06-17 阿斯利康(瑞典)有限公司 2-氨基嘧啶-4-酮类化合物及其用于治疗或预防Aβ相关病理的用途
US20080051420A1 (en) 2006-06-14 2008-02-28 Astrazeneca Ab New Compounds 317
EP2147914B1 (en) 2007-04-24 2014-06-04 Shionogi&Co., Ltd. Aminodihydrothiazine derivatives substituted with cyclic groups
TW200902499A (en) 2007-05-15 2009-01-16 Astrazeneca Ab New compounds
JP2011502122A (ja) 2007-10-30 2011-01-20 アリーナ ファーマシューティカルズ, インコーポレイテッド ヒスタミンh3関連障害の治療のために有用なヒスタミンh3−レセプターの調節因子としてのビフェニル誘導体
JP2011510989A (ja) 2008-01-28 2011-04-07 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ β−セクレターゼ(BACE)の阻害物質として有用な6−置換−チオ−2−アミノ−キノリン誘導体
NZ587039A (en) 2008-02-13 2013-01-25 Gilead Connecticut Inc 6-aryl-imidazo[1, 2-a]pyrazine derivatives, method of making, and method of use thereof
TWI431004B (zh) 2008-05-02 2014-03-21 Lilly Co Eli Bace抑制劑
PA8854101A1 (es) 2008-12-18 2010-07-27 Ortho Mcneil Janssen Pharm Derivados de imidazol bicíclicos sustituidos como moduladores de gamma secretasa
WO2011002409A1 (en) 2009-07-02 2011-01-06 Astrazeneca Ab 5h-pyrrolo[3,4-£>]pyrazin-7-amine derivatives inhibitors of beta-secretase
AR077277A1 (es) 2009-07-09 2011-08-17 Lilly Co Eli Compuestos de biciclo (1,3)tiazin-2-amina formulacion farmaceutica que lo comprende y su uso para la manufactura de un medicamento util para el tratamiento de la enfermedad de alzheimer
UY32799A (es) 2009-07-24 2011-02-28 Novartis Ag Derivados de oxazina y su uso en el tratamiento de trastornos neurológicos
US8188079B2 (en) 2009-08-19 2012-05-29 Hoffman-La Roche Inc. 3-amino-5-phenyl-5,6-dihydro-2H-[1,4]oxazines
WO2011058763A1 (ja) 2009-11-13 2011-05-19 塩野義製薬株式会社 アミノリンカーを有するアミノチアジンまたはアミノオキサジン誘導体
ES2590038T5 (es) 2009-12-11 2021-10-19 Shionogi & Co Derivado de oxazina
UA103272C2 (uk) 2009-12-11 2013-09-25 Ф. Хоффманн-Ля Рош Аг 2-аміно-5,5-дифтор-5,6-дигідро-4h-оксазини як інгібітори bace1 і/або bace2
BR112012015916A2 (pt) 2009-12-31 2017-04-25 Novartis Ag derivados de pirazina e seu uso no tratamento de distúrbios neurológicos
US20130109683A1 (en) 2010-06-09 2013-05-02 Janssen Pharmaceutica Nv 5,6-dihydro-2h-[1,4]oxazin-3-yl-amine derivatives useful as inhibitors of beta-secretase (bace)
JP2013531644A (ja) 2010-06-09 2013-08-08 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ βセクレターゼ(BACE)の阻害剤として有用な5−アミノ−3,6−ジヒドロ−1H−ピラジン−2−オン誘導体
SG186408A1 (en) 2010-06-28 2013-01-30 Janssen Pharmaceutica Nv 3-amino-5, 6-dihydro-1h-pyrazin-2-one derivatives useful for the treatment of alzheimer's disease and other forms of dementia
SG188338A1 (en) 2010-09-22 2013-04-30 Janssen Pharmaceutica Nv 4,7-DIHYDRO-PYRAZOLO[1,5-a]PYRAZIN-6-YLAMINE DERIVATIVES USEFUL AS INHIBITORS OF BETA-SECRETASE (BACE)
JP5766198B2 (ja) 2010-10-29 2015-08-19 塩野義製薬株式会社 縮合アミノジヒドロピリミジン誘導体
JP5834091B2 (ja) 2010-12-22 2015-12-16 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプJanssen Pharmaceutica Naamloze Vennootschap ベータ−セクレターゼ(BACE)の阻害剤として有用な5,6−ジヒドロ−イミダゾ[1,2−a]ピラジン−8−イルアミン誘導体
US20130281449A1 (en) 2011-01-12 2013-10-24 Novartis Ag Oxazine Derivatives and their Use in the Treatment of Neurological Disorders
MX2013008192A (es) 2011-01-13 2013-12-16 Novartis Ag Inhibidores de bace-2 para tratamiento de transtornos metabolicos.
JP2012147763A (ja) 2011-01-17 2012-08-09 Toshitaka Kobayashi 乾物穿孔具
US9242943B2 (en) 2011-01-18 2016-01-26 Siena Biotech S.P.A. 1,4 oxazines as BACE1 and/or BACE2 inhibitors
MY161407A (en) 2011-03-01 2017-04-14 Janssen Pharmaceutica Nv 6,7-DIHYDRO-PYRAZOLO[1,5-a]PYRAZIN-4-YLAMINE DERIVATIVES USEFUL AS INHIBITORS OF BETA-SECRETASE (BACE)
KR102012675B1 (ko) 2011-03-09 2019-08-21 얀센 파마슈티카 엔.브이. 베타-세크레타제(BACE)의 억제제로서 유용한 3,4-디하이드로-피롤로[1,2-a]피라진-1-일아민 유도체
TW201247635A (en) 2011-04-26 2012-12-01 Shionogi & Co Oxazine derivatives and a pharmaceutical composition for inhibiting BAC1 containing them
EP2766358B1 (en) 2011-10-13 2016-06-22 Novartis AG Novel oxazine derivatives and their use in the treatment of disease
UA111749C2 (uk) 2011-12-05 2016-06-10 Янссен Фармацевтика Нв Похідні 6-дифторметил-5,6-дигідро-2h-[1,4]оксазин-3-аміну
CA2853891C (en) 2011-12-06 2020-03-10 Janssen Pharmaceutica Nv 5-(3-aminophenyl)-5-alkyl-5,6-dihydro-2h-[1,4]oxazin-3-amine derivatives
EP2934539B1 (en) 2012-12-20 2019-03-27 Merck Sharp & Dohme Corp. C5, c6 oxacyclic-fused iminothiazine dioxide compounds as bace inhibitors
WO2014198854A1 (en) 2013-06-12 2014-12-18 Janssen Pharmaceutica Nv 4-amino-6-phenyl-6,7-dihydro[1,2,3]triazolo[1,5-a]pyrazine derivatives as inhibitors of beta-secretase (bace)
BR112015030678A8 (pt) 2013-06-12 2020-01-07 Janssen Pharmaceutica Nv derivados 4-amino-6-fenil-5,6-di-hidroimidazo [1,5-a] pirazina como inibidores de beta-secretase (bace), composição farmacêutica, processo para preparação da mesma, e usos na fabricação de medicamentos
MX368326B (es) 2013-06-12 2019-09-27 Janssen Pharmaceutica Nv Derivados de 4-amino-6-fenil-5,6-dihidroimidazo[1,5-a]pirazin-3(2h )-ona como inhibidores de beta-secretasa (bace).
ES2768823T3 (es) 2014-12-18 2020-06-23 Janssen Pharmaceutica Nv Derivados de 2,3,4,5-tetrahidropiridin-6-amina y 3,4-dihidro-2H-pirrol-5-amina útiles como inhibidores de beta-secretasa

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2518059A1 (en) * 2009-12-24 2012-10-31 Shionogi & Co., Ltd. 4-amino-1,3-thiazine or oxazine derivative

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HANS HILPERT ET AL: "[beta]-Secretase (BACE1) Inhibitors with High in Vivo Efficacy Suitable for Clinical Evaluation in Alzheimer's Disease", JOURNAL OF MEDICINAL CHEMISTRY, vol. 56, no. 10, 23 May 2013 (2013-05-23), pages 3980 - 3995, XP055113495, ISSN: 0022-2623, DOI: 10.1021/jm400225m *
NATALIA MATEU ET AL: "A Versatile Approach to CF 3 -Containing 2-Pyrrolidones by Tandem Michael Addition-Cyclization: Exemplification in the Synthesis of Amidine Class BACE1 Inhibitors", CHEMISTRY - A EUROPEAN JOURNAL., vol. 21, no. 33, 3 July 2015 (2015-07-03), WEINHEIM, DE, pages 11719 - 11726, XP055247351, ISSN: 0947-6539, DOI: 10.1002/chem.201501662 *
TOBIAS GINMAN ET AL: "Core Refinement toward Permeable [beta]-Secretase (BACE-1) Inhibitors with Low hERG Activity", JOURNAL OF MEDICINAL CHEMISTRY, vol. 56, no. 11, 13 June 2013 (2013-06-13), pages 4181 - 4205, XP055090564, ISSN: 0022-2623, DOI: 10.1021/jm3011349 *
WOLTERING THOMAS J ET AL: "BACE1 inhibitors: A head group scan on a series of amides", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, PERGAMON, AMSTERDAM, NL, vol. 23, no. 14, 18 May 2013 (2013-05-18), pages 4239 - 4243, XP028573309, ISSN: 0960-894X, DOI: 10.1016/J.BMCL.2013.05.003 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9828350B2 (en) 2010-06-09 2017-11-28 Janssen Pharmaceutica Nv 5,6-dihydro-2H-[1,4]oxazin-3-yl-amine derivatives useful as inhibitors of beta-secretase (BACE)
US9840507B2 (en) 2010-12-22 2017-12-12 Janssen Pharmaceutica, Nv 5,6-dihydro-imidazo[1,2-a]pyrazin-8-ylamine derivatives useful as inhibitors of beta-secretase (BACE)
US9845326B2 (en) 2011-03-09 2017-12-19 Janssen Pharmaceutica Nv Substituted 3,4-dihydropyrrolo[1,2-A]pyrazines as beta-secretase (BACE) inhibitors
US9751886B2 (en) 2013-06-12 2017-09-05 Janssen Pharmaceutica Nv 4-amino-6-phenyl-6,7-dihydro[1,2,3]triazolo[1,5-A]pyrazine derivatives as inhibitors of beta-secretase (BACE)
US9834559B2 (en) 2013-06-12 2017-12-05 Janssen Pharmaceutica Nv 4-Amino-6-phenyl-5,6-dihydroimidazo[1,5-a]pyrazin-3(2H)-one derivatives as inhibitors of beta-secretase (BACE)
US10106524B2 (en) 2014-12-18 2018-10-23 Janssen Pharmaceutica Nv 2,3,4,5-tetrahydropyridin-6-amine and 3,4-dihydro-2H-pyrrol-5-amine compound inhibitors of beta-secretase
WO2018083247A1 (en) 2016-11-04 2018-05-11 Janssen Pharmaceutica Nv 4,4a,5,7-tetrahydro-3h-furo[3,4-b]pyridinyl compounds
CN109890828A (zh) * 2016-11-04 2019-06-14 詹森药业有限公司 4,4a,5,7-四氢-3H-呋喃并[3,4-b]吡啶基化合物
CN113549007A (zh) * 2021-07-23 2021-10-26 清华大学 一种哌啶乙酸酯类化合物的制备方法

Also Published As

Publication number Publication date
CA2967164A1 (en) 2016-06-23
EA201791367A1 (ru) 2017-10-31
EA031041B1 (ru) 2018-11-30
CN107108582B (zh) 2019-10-18
MX2017008083A (es) 2017-10-31
ZA201704116B (en) 2019-12-18
JP2017538753A (ja) 2017-12-28
EP3233834B1 (en) 2019-11-13
US10106524B2 (en) 2018-10-23
AU2015367594A1 (en) 2017-06-01
IL252863A0 (en) 2017-08-31
AU2015367594C1 (en) 2019-10-31
KR20170095881A (ko) 2017-08-23
EP3233834A1 (en) 2017-10-25
ES2768823T3 (es) 2020-06-23
US20170362198A1 (en) 2017-12-21
AU2015367594B2 (en) 2019-07-18
CN107108582A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
AU2015367594C1 (en) 2,3,4,5-tetrahydropyridin-6-amine and 3,4-dihydro-2H-pyrrol-5-amine compound inhibitors of beta-secretase
AU2012347396B2 (en) 5-(3-aminophenyl)-5-alkyl-5,6-dihydro-2H-[1,4]oxazin-3-amine derivatives
EP2588466B1 (en) 5-Amino-3,6-dihydro-1H-pyrazin-2-one derivatives useful as inhibitors of beta-secretase (BACE)
WO2012000933A1 (en) 3-amino-5,6-dihydro-1h-pyrazin-2-one derivatives useful for the treatement of alzheimer's disease and other forms of dementia
AU2012347397B2 (en) 6-difluoromethyl-5,6-dihydro-2H-[1,4]oxazin-3-amine derivatives
EP3353163A1 (en) 2,3,4,5-tetrahydropyridin-6-amine derivatives
AU2018229722A1 (en) Inhibitors of beta secretase
AU2018229723A1 (en) Inhibitors of beta secretase
WO2018162444A1 (en) Inhibitors of beta secretase
WO2018162445A1 (en) Inhibitors of beta secretase
AU2018229721A1 (en) Inhibitors of beta secretase
NZ623858B2 (en) 5-(3-aminophenyl)-5-alkyl-5,6-dihydro-2h-[1,4]oxazin-3-amine derivatives
AU2011263836A1 (en) 5-amino-3,6-dihydro-1H-pyrazin-2-one derivatives useful as inhibitors of beta-secretase (BACE)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15820456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2967164

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015367594

Country of ref document: AU

Date of ref document: 20151216

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 252863

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 15536474

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017532941

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/008083

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20177016868

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015820456

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201791367

Country of ref document: EA