WO2016093253A1 - 熱硬化性樹脂組成物 - Google Patents

熱硬化性樹脂組成物 Download PDF

Info

Publication number
WO2016093253A1
WO2016093253A1 PCT/JP2015/084450 JP2015084450W WO2016093253A1 WO 2016093253 A1 WO2016093253 A1 WO 2016093253A1 JP 2015084450 W JP2015084450 W JP 2015084450W WO 2016093253 A1 WO2016093253 A1 WO 2016093253A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
group
compound
resin composition
general formula
Prior art date
Application number
PCT/JP2015/084450
Other languages
English (en)
French (fr)
Inventor
寛樹 坂本
長田 誠之
井上 学
小嶋 一宏
Original Assignee
株式会社スリーボンド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スリーボンド filed Critical 株式会社スリーボンド
Priority to JP2016563698A priority Critical patent/JP6659964B2/ja
Priority to CN201580065282.6A priority patent/CN107001593B/zh
Publication of WO2016093253A1 publication Critical patent/WO2016093253A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a thermosetting resin composition having a fast curing property and suitable for fixing a neodymium magnet.
  • neodymium magnets also called neodymium magnets or neodymium magnets
  • neodymium magnets have been used extensively in various fields such as electric / electronic fields and in-vehicle fields due to their strong magnetic force.
  • electronic equipment it is used in the actuator part of a hard disk drive and in the motor part of a hybrid car for in-vehicle use.
  • a magnet expands when heated and contracts when cooled, whereas a neodymium magnet contracts when heated and expands when cooled.
  • Adhesives and sealants are used to fix the neodymium magnet, but the assembled parts are kept at high temperature (100 ° C atmosphere), low temperature test (0 ° C or -40 ° C atmosphere), heat shock test (0 In an endurance test such as a cycle of 1 hour at 100 ° C. and 1 hour at 100 ° C.) and a heat cycle test (15 minutes at 0 ° C. and 15 minutes at 100 ° C.), a neodymium magnet and an adhesive Problems such as peeling at the interface and cracks in cured products such as adhesives are likely to occur. This is due to the fact that the temperature dependence of expansion and contraction between the neodymium magnet and the adhesive exhibits an opposite behavior. As a prior art, fixing a neodymium magnet with an epoxy resin is known (see Patent Document 1).
  • Patent Document 2 describes a composition of epoxy resin, cyanate ester resin, brainsted acid (catalyst) and polyol.
  • the polyol is used as a stabilizer (reaction inhibitor) of the Bronsted acid.
  • Adding a polyol to a so-called cationic catalyst is a known technique, and the technique is applied to an epoxy resin and a cyanate ester resin.
  • cyanate ester resin is added with an acid component such as phenol, the reaction proceeds even at low temperature storage, and thus there is a problem of storage stability when the acid component is used as a catalyst.
  • JP 2007-68270 A JP-T-11-501075 (equivalent to International Publication No. 96/027640)
  • the present invention is a thermosetting resin composition that has fast curing properties, is excellent in storage stability, peel resistance, and bendability, and can be stably fixed even after a durability test in fixing a neodymium magnet.
  • the purpose is to provide goods.
  • thermosetting resin composition containing the following components (A) to (D), and the present invention has been completed.
  • Thermosetting containing the following (A) to (D) components and 10 to 45 mass% of the following (D) component with respect to the total of the following (A) component, the following (B) component and the following (D) component.
  • Resin composition (A) Component: Epoxy resin (B) component: Cyanate ester resin (C) component: Curing agent (D) component: A polyol compound having a viscosity in an atmosphere of 25 ° C. of 50000 mPa ⁇ s or less.
  • thermosetting resin composition includes the following components (A) to (D), and the total of the following components (A), (B) and (D) below, It contains 10% by mass or more of the following component (D).
  • thermosetting resin composition having such a configuration enables stable fixation even after a durability test in fixing a neodymium magnet.
  • thermosetting resin composition of the present invention is also excellent in fast curability, storage stability, peel resistance, and bendability.
  • thermosetting resin composition of the present invention is unknown, but by containing a predetermined polyol compound as the component (D), flexibility, adhesion, and toughness are obtained. Can improve. As a result, in the fixing of neodymium magnets whose temperature dependence of expansion and contraction due to temperature changes is opposite to that of adhesives etc., the adhesion at the adherend interface is maintained even after the durability test, enabling stable fixing It is thought to do.
  • the present invention is not limited to the above mechanism.
  • the component (A) that can be used in the present invention is a compound having two or more epoxy groups in one molecule, and is a compound generally called an epoxy resin.
  • the component (A) only one type may be used, or two or more types may be mixed and used. From the viewpoint of ease of handling, the component (A) is preferably liquid in an atmosphere at 25 ° C.
  • the epoxy resin include those obtained by condensation of epichlorohydrin with a polyhydric phenol such as bisphenol or a polyhydric alcohol.
  • a polyhydric phenol such as bisphenol or a polyhydric alcohol.
  • bisphenol A type brominated bisphenol A type, hydrogenated bisphenol A type
  • Glycidyl ethers such as bisphenol F type, bisphenol S type, bisphenol AF type, biphenyl type, naphthalene type, fluorene type, novolak type, phenol novolak type, orthocresol novolak type, tris (hydroxyphenyl) methane type, tetraphenylolethane type
  • epoxy resin can be exemplified.
  • glycidyl ester type epoxy resins obtained by condensation of epichlorohydrin with carboxylic acids such as phthalic acid derivatives and fatty acids
  • glycidyl amine type epoxy resins obtained by reaction of epichlorohydrin with amines, cyanuric acids or hydantoins
  • fats examples thereof include epoxy resins having a ring skeleton, and epoxy resins modified by various methods. However, it is not limited to these.
  • Examples of commercially available epoxy resins include EP-4100, EP-4100E, EP-4088S, and EP-4901 manufactured by ADEKA Corporation, 827 and 828EL manufactured by Mitsubishi Chemical Corporation, and EPICLON830 manufactured by Dainippon Ink Industries, Ltd. , EXA-835LV and the like. Further, Etoto YD-128, YDF-170, etc. manufactured by Toto Kasei Co., Ltd. may be mentioned, but not limited thereto. In view of price, an epoxy resin having a bisphenol A skeleton or a bisphenol F skeleton is preferable.
  • the component (B) that can be used in the present invention is a compound having two or more cyanate ester groups in one molecule, and is a compound generally called a cyanate ester resin. Although it does not specifically limit as cyanate ester resin, for example, the compound represented by the following general formula (1) and / or the compound represented by the following general formula (2) is mentioned.
  • a prepolymer in which a part of the cyanate group of the compound represented by the following general formula (1) or the following general formula (2) forms a triazine ring can also be used as the component (B). Examples of the prepolymer include those in which all or part of the compound represented by the following general formula (1) is trimerized.
  • R 1 is a divalent hydrocarbon group that is unsubstituted or substituted with a fluorine atom or a cyanate group, or a sulfur atom
  • R 2 and R 3 are each independently A phenylene group which is unsubstituted or substituted with 1 to 4 alkyl groups.
  • n is an integer of 1 or more
  • R 4 is each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 5 is independently These are groups represented by the following general formulas (B-1) to (B-9).)
  • R 6 and R 7 are each independently a hydrogen atom or a methyl group which is unsubstituted or substituted with a fluorine atom, and m is an integer of 4 to 12.
  • R 6 and R 7 are each independently a hydrogen atom or a methyl group which is unsubstituted or substituted with a fluorine atom, and m is an integer of 4 to 12.
  • R 5 is a group represented by the above general formulas (B-1) to (B-9), and each R 8 is independently a hydrogen atom or unsubstituted or It is a methyl group substituted with a fluorine atom.
  • component (B) more specifically, 4,4′-ethylidenebisphenylene cyanate, 2,2-bis (4-cyanatophenyl) propane, 1,1-bis (4-cyanatophenyl) ethane And bis (4-cyanato-3,5-dimethylphenyl) methane are particularly preferred, but are not limited thereto.
  • the component (B) is 150 to 400 parts by mass with respect to 100 parts by mass of the component (A). More preferably, it is 150 to 350 parts by mass. (B) Sufficient curability will express that a component is 150 mass parts or more. On the other hand, when the component (B) is 400 parts by mass or less, peeling hardly occurs in the durability test.
  • the component (C) that can be used in the present invention is a curing agent for curing the component (A) and the component (B).
  • the first curing agent that can be used in the present invention is a latent curing agent containing a modified amine compound (C1) and a phenol resin.
  • the modified amine compound (C1) is a product obtained by reacting a polyamine compound (C1-A) and an epoxy compound, and the polyamine compound (C1-A) is composed of one or more tertiary amino groups and It refers to a polyamine compound having at least one of one or more primary amino groups and secondary amino groups.
  • the modified amine compound of the component (C1) is obtained by reacting a polyamine compound (C1-A) and an epoxy compound;
  • the polyamine compound (C1-A) is a primary amino group and 2 It is a polyamine compound having at least one of a tertiary amino group and a tertiary amino group.
  • the product is assumed to be a mixture of modified amine compounds having different reaction levels. Therefore, it is difficult to define the mixture of the modified amine compounds by a chemical formula.
  • Examples of the polyamine compound (C1-A) used as a raw material for the component (C1) used in the present invention include compounds represented by the following general formula (I), compounds represented by the following general formula (II), and At least one selected from the group consisting of compounds represented by formula (III) is preferred.
  • R 21 and R 22 are each independently an unsubstituted or alkyl group having 1 to 10 carbon atoms substituted with a hydroxy group, a thiol group, or an amino group. , R 21 and R 22 may be bonded to each other to form a ring, R 23 is a (p + q) -valent hydrocarbon group, p is an integer of 1 or more, and q is 1 or 2. Preferably, p is 1, 2 or 3, and q is 1 or 2.
  • R 24 is a hydrogen atom or an unsubstituted or substituted carbon group having 1 to 1 carbon atoms substituted with a hydroxy group, a thiol group, or an amino group. 10 alkyl groups.
  • R 31 and R 32 are each independently an alkylene group that is unsubstituted or substituted with a hydroxy group, a thiol group, or an amino group.
  • R 33 is independently And an alkyl group having 1 to 10 carbon atoms, r is an integer of 1 or more, and preferably r is an integer of 1 to 10.
  • R 41 , R 42 , R 43 and R 44 each independently represents an alkyl having 1 to 10 carbon atoms which is unsubstituted or substituted with a hydroxy group, a thiol group or an amino group.
  • R 41 and R 42 , or R 43 and R 44 may be bonded to each other to form a ring, and R 45 and R 46 are each independently an unsubstituted or hydroxy group,
  • a thiol group or an alkylene group substituted with an amino group, s is an integer of 1 or more, and preferably s is an integer of 1 to 10.
  • examples of the polyamine compound represented by the general formula (I) include N, N-dimethylaminoethylamine, N, N-diethylaminoethylamine, N, N-diisopropylaminoethylamine, and N, N-diallylaminoethylamine.
  • Examples of the polyamine compound represented by the general formula (II) include N, N- (bisaminopropyl) -N-methylamine, N, N-bisaminopropylethylamine, and N, N-bisaminopropylpropylamine.
  • Examples of the polyamine compound represented by the general formula (III) include bis [3- (N, N-dimethylaminopropyl)] amine, bis [3- (N, N-diethylaminopropyl)] amine, and bis [ Examples include, but are not limited to, 3- (N, N-diisopropylaminopropyl)] amine and bis [3- (N, N-dibutylaminopropyl)] amine.
  • a compound represented by the following general formula (I-1) is particularly preferable.
  • a polyamine compound By using such a polyamine compound, it becomes a thermosetting resin composition excellent in balance between curability and storage stability.
  • R 21 and R 22 are each independently an unsubstituted or alkyl group having 1 to 10 carbon atoms substituted with a hydroxy group, a thiol group, or an amino group, In this case, R 21 and R 22 may combine with each other to form a ring, and R 25 is an alkylene group having 1 to 10 carbon atoms.
  • examples of the polyamine compound represented by the general formula (I-1) include N, N-dimethylaminoethylamine, N, N-diethylaminoethylamine, N, N-diisopropylaminoethylamine, and N, N-diallyl.
  • the polyamine compound (C1-A) may be used alone or in combination of two or more different types of polyamine compounds.
  • the epoxy compound used as a raw material for the component (C1) used in the present invention a compound having an epoxy group can be used without particular limitation, and the epoxy resin exemplified as the component (A) can also be used.
  • the epoxy compound include, for example, phenyl glycidyl ether, allyl glycidyl ether, methyl glycidyl ether, butyl glycidyl ether, sec-butyl glycidyl ether, 2-ethylhexyl glycidyl ether, 2-methyloctyl glycidyl ether, stearyl glycidyl ether and the like.
  • Monoglycidyl ether compounds ; monoglycidyl ester compounds such as versatic acid glycidyl ester; polyglycidyl ether compounds of mononuclear polyhydric phenol compounds such as hydroquinone, resorcin, pyrocatechol and phloroglucinol; dihydroxynaphthalene, biphenol, methylenebisphenol (bisphenol) F), methylenebis (orthocresol), ethylidenebisphenol, isopropylidenebi Phenol (bisphenol A), isopropylidenebis (orthocresol), tetrabromobisphenol A, 1,3-bis (4-hydroxycumylbenzene), 1,4-bis (4-hydroxycumylbenzene), 1,1 , 3-tris (4-hydroxyphenyl) butane, 1,1,2,2-tetra (4-hydroxyphenyl) ethane, thiobisphenol, sulfobisphenol, oxybisphenol,
  • a polyglycidyl ether compound having two or more epoxy groups in the molecule is preferable.
  • polyglycidyl ethers of bisphenol compounds such as methylene bisphenol (bisphenol F), methylene bis (orthocresol), ethylidene bisphenol, isopropylidene bisphenol (bisphenol A), isopropylidene bis (orthocresol) and the like are preferable.
  • the modified polyamine compound of component (C1) is a compound obtained by reacting an epoxy compound in an amount such that the epoxy equivalent is 0.5 to 2.0 equivalents relative to 1 mol of the polyamine compound (C1-A) It is preferable that More preferably, it is a modified polyamine compound obtained by reacting an epoxy compound in an amount such that the epoxy equivalent is 0.8 to 1.5 equivalent.
  • the phenol resin contained in the first curing agent used in the present invention is preferably a phenol resin synthesized from phenols and aldehydes.
  • the phenols include phenol, cresol, ethylphenol, n-propylphenol, isopropylphenol, butylphenol, tert-butylphenol, octylphenol, nonylphenol, dodecylphenol, cyclohexylphenol, chlorophenol, bromophenol, resorcin, catechol, hydroquinone.
  • aldehyde examples include, but are not limited to, formaldehyde.
  • the synthesis method is not particularly limited, and a known condensation reaction using an acid catalyst or an alkali catalyst can be employed.
  • the number average molecular weight of the phenol resin is preferably 750 to 1200. When the number average molecular weight is within this range, a thermosetting resin composition having an excellent balance between storage stability and curability can be obtained.
  • the number average molecular weight of the phenol resin can be measured by gel permeation chromatography (GPC) using polystyrene as a standard substance.
  • the first curing agent it is preferable that 10 to 100 parts by mass of a phenol resin is contained with respect to 100 parts by mass of the modified amine compound as the component (C1). More preferably, the phenol resin content is 20 to 60 parts by mass. If the content of the phenol resin is 10 parts by mass or more, sufficient curability is obtained, and if it is 100 parts by mass or less, sufficient physical properties are expressed in the cured product.
  • the second curing agent that can be used in the present invention is a latent curing agent comprising a modified amine compound (C2) and a phenol resin.
  • the modified amine compound (C2) is a product obtained by reacting a polyamine compound (C2-A) and an epoxy compound, and has at least one amino group having active hydrogen in the molecule.
  • the polyamine compound (C2-A) is a polyamine compound having no tertiary amino group in the molecule and having at least one of two primary amino groups and secondary amino groups having different reactivity, and The structure has no tertiary amino group in the molecule, has at least one of two or more primary amino groups and secondary amino groups in the molecule, and the one amino group reacts with an epoxy group. It refers to at least one of at least one polyamine compound selected from the group consisting of aromatic polyamines, alicyclic polyamines, and aliphatic polyamines in which the reactivity between the remaining amino groups and epoxy groups decreases.
  • polyamine compound which does not have a tertiary amino group in the molecule used as a raw material of the component and has at least one of two primary amino groups and secondary amino groups each having different reactivity
  • Polyamine compounds having the structure Specific examples include, for example, isophorone diamine, p-menthane-1,8-diamine, 2,2,4-trimethylhexamethylene diamine, 1,2-diaminopropane, and the like. Absent.
  • the molecule used in the component (C2) does not have a tertiary amino group in the molecule, has at least one of two or more primary amino groups and secondary amino groups in the molecule, and the one amino group is an epoxy.
  • Aromatic polyamines, alicyclic polyamines, and aliphatic polyamines in which the reactivity between the remaining amino groups and epoxy groups is reduced due to the structure that has reacted with the groups include polyamines having substituents that generate cyclic structures and steric hindrance Compounds. Specific examples include m-xylylenediamine, 1,3-bisaminomethylcyclohexane and the like, but are not limited thereto.
  • the polyamine compound (C2-A) can be used alone or in combination of two or more different types of polyamine compounds.
  • epoxy resin used as a raw material for the phenol resin and the component (C2) contained in the second curing agent are the same as the phenol resin and the epoxy compound described in the first curing agent. Description is omitted.
  • the phenol resin and the epoxy compound may be the same or different in the first curing agent and the second curing agent, respectively.
  • the modified polyamine compound of component (C2) is preferably a compound obtained by reacting an epoxy compound in an amount such that the epoxy equivalent is 0.5 to 2.0 equivalents relative to the amount in which the polyamine compound is 1 mole. . More preferably, it is a modified polyamine compound obtained by reacting an epoxy compound in an amount such that the epoxy equivalent is 0.8 to 1.5 equivalent.
  • the number average molecular weight of the phenol resin contained in the second curing agent is preferably 750 to 1200. When the number average molecular weight is within this range, a thermosetting resin composition having an excellent balance between storage stability and curability can be obtained.
  • the second curing agent it is preferable that 10 to 100 parts by mass of a phenol resin is contained with respect to 100 parts by mass of the modified amine compound as the component (C2). More preferably, the phenol resin content is 20 to 60 parts by mass. If the phenol resin is 10 parts by mass or more, sufficient curability is obtained, and if it is 100 parts by mass or less, sufficient physical properties are expressed in the cured product.
  • a modified amine compound obtained by epoxy-modifying a primary amino group of an imidazole compound can also be used in combination with the component (C2).
  • the component (C) described in the present invention preferably contains a curing agent containing a modified amine compound and a phenol resin.
  • the modified amine compound is obtained by reacting a polyamine compound and an epoxy compound, and is also called an amine epoxy adduct.
  • the addition amount of the component (C) is preferably 10 to 70 parts by mass with respect to a total of 100 parts by mass of the component (A) and the component (B). More preferably, it is 20 to 60 parts by mass.
  • the component (C) is 10 parts by mass or more, curability is sufficiently exhibited.
  • (C) component is 70 mass parts or less, storage stability improves.
  • the component (C) comprises 50 to 90% by mass of the (C1) component and 10 to 50% by mass of the (C2) component.
  • the component (C) comprises 60 to 85% by mass of the (C1) component and 15 to 40% by mass of the (C2) component.
  • the component (D) that can be used in the present invention is a polyol compound having a viscosity in an atmosphere of 25 ° C. of 50000 mPa ⁇ s or less.
  • the polyol compound is a compound having two or more hydroxyl groups in one molecule, and the hydroxyl group does not include a hydroxyl group derived from phenol.
  • Component (D) may be used alone or in combination of two or more. Further preferred viscosity is 20000 mPa ⁇ s or less, more preferred is 15000 mPa ⁇ s or less, and particularly preferred is 1200 mPa ⁇ s or less.
  • the viscosity is higher than 50000 mPa ⁇ s, the peel resistance of the cured product and the bending property of the cured product are lowered.
  • the lower limit of the viscosity is not particularly limited, but is preferably 10 mPa ⁇ s or more and more preferably 100 mPa ⁇ s or more from the viewpoint of suppressing separation from other components and preventing bleeding out. preferable.
  • a polyol compound having a viscosity in an atmosphere of 25 ° C. of 10 to 50000 mPa ⁇ s, preferably 100 to 1200 mPa ⁇ s is used.
  • the said viscosity is a viscosity as the whole polyol compound.
  • Specific polyol compounds include polyether diol, bisphenol A-type propylene oxide diol, propylene glycol propylene oxide ethylene oxide diol, polytetratriol, polyether tetraol, glycerin polypropylene oxide ethylene oxide triol, polycarbonate diol, polycaprolactone Examples thereof include diol, polycaprolactone triol, and polycaprolactone oligomer.
  • Polyether diols such as P-400 (viscosity (25 ° C.): 70 mPa ⁇ s) and P-700 (viscosity (25 ° C.): 110 mPa ⁇ s) manufactured by ADEKA Corporation are stocks as bisphenol A type propylene oxide diol.
  • Examples include BPX-2000 (viscosity (25 ° C.): 500 mPa ⁇ s) manufactured by ADEKA, and PR-5007 (viscosity (25 ° C.): 2000 mPa ⁇ s) manufactured by ADEKA as propylene glycol propylene oxide ethylene oxide diol.
  • BPX-2000 viscosity (25 ° C.): 500 mPa ⁇ s) manufactured by ADEKA
  • PR-5007 viscosity (25 ° C.): 2000 mPa ⁇ s) manufactured by ADEKA as propylene glycol propylene oxide ethylene oxide diol.
  • G-300 viscosity (25 ° C.): 515 mPa ⁇ s
  • G-400 viscosity (25 ° C.): 350 mPa ⁇ s
  • G-4000 viscosity (25 ° C.)) manufactured by ADEKA Corporation: 660 mPa ⁇ s
  • AM-702 viscosity (25 ° C.): 1400 mPa ⁇ s) manufactured by ADEKA Co., Ltd. is not limited thereto.
  • polyether tetraol examples include EDP-450 (viscosity (25 ° C.): 6250 mPa ⁇ s) and EDP-1100 (viscosity (25 ° C.): 750 mPa ⁇ s) manufactured by ADEKA Corporation, but are not limited thereto. It is not something.
  • polycarbonate diol examples include, but are not limited to, Duranol (registered trademark) series T5650J (viscosity (25 ° C.): 4000 mPa ⁇ s) manufactured by Asahi Kasei Chemical Corporation.
  • polycaprolactone diol examples include Plaxel series 205 (viscosity (25 ° C.): 1000 mPa ⁇ s) manufactured by Daicel Corporation.
  • polycaprolactone diols examples include Plaxel series 303 (viscosity (25 ° C.): 1300 mPa ⁇ s. ), 305 (viscosity (25 ° C.): 1100 mPa ⁇ s), 308 (viscosity (25 ° C.): 1300 mPa ⁇ s), etc.
  • L212AL viscosity (25 ° C.) of Placel series manufactured by Daicel Corporation : 2700 mPa ⁇ s
  • L220AL viscosity (25 ° C.): 8000 mPa ⁇ s
  • L320AL viscosity (25 ° C.): 10000 mPa ⁇ s
  • the component (D) when the total of the component (A), the component (B) and the component (D) is 100% by mass, it is essential that the component (D) is contained in an amount of 10 to 45% by mass.
  • the component (D) is less than 10% by mass, there is a possibility that the retention of the tensile shear adhesive force may not be maintained.
  • the sclerosis hardenability in 90 degreeC atmosphere cannot be maintained as it exceeds 45 mass%.
  • the component (E) that can be used in the present invention is an organic filler.
  • the organic filler may be an organic powder composed of rubber, elastomer, plastic, polymer (or copolymer), and the like.
  • An organic filler having a multilayer structure such as a core-shell type may also be used.
  • the average particle size of the organic filler is preferably in the range of 0.05 to 50 ⁇ m. From the viewpoint of improving the characteristics in the durability test, a filler or a polymer or copolymer of a styrene compound and / or a polymer or copolymer of an acrylic ester and / or a methacrylic ester ((meth) acrylic ester) It is preferable that the filler which consists of coalescence is included.
  • Specific examples of the component (E) include the following products, but are not limited thereto.
  • Specific examples of the butadiene rubber filler include Metablene (registered trademark) E series and Metabrene (registered trademark) C series manufactured by Mitsubishi Rayon Co., Ltd.
  • Specific examples of the acrylic rubber filler include MX series manufactured by Soken Chemical Co., Ltd., Metabrene (registered trademark) W series manufactured by Mitsubishi Rayon Co., Ltd., and Zefiac series manufactured by Aika Industry Co., Ltd.
  • styrene (polystyrene) fillers include SX series and SGP series manufactured by Soken Chemical Co., Ltd., Thermo Fisher Scientific ChromoSphere-T series, Merck Chimie Estapor (registered trademark) series, and Fine made by Matsuura Corporation. Pearl (registered trademark) and the like can be mentioned.
  • an organic filler dispersed in advance in the (A) component epoxy resin may be used.
  • rubber particles dispersed in an epoxy resin by a mixing and stirring device such as hyper or homogenizer, and organic fillers synthesized by emulsion polymerization in an epoxy resin correspond to this.
  • the average particle diameter of the organic filler finally formed by the emulsion polymerization method is preferably in the range of 0.05 to 50 ⁇ m.
  • the component (E) is preferably contained in an amount of 5 to 50 parts by mass with respect to a total of 100 parts by mass of the components (A), (B) and (D). More preferably, it is 10 to 40 parts by mass.
  • the component (E) is less than 5 parts by mass, the durability against the durability test may be reduced.
  • the amount of the component (E) is more than 50 parts by mass, the viscosity becomes too high, and applicability problems such as stringing may occur.
  • the method for producing the thermosetting resin composition of the present invention is not particularly limited, and examples thereof include a method of mixing each component at once and a method of sequentially adding and mixing each component. Above all, from the viewpoint of performing subsequent curing more uniformly, after mixing (A) component, (B) component and (D), adding and mixing in order of (C) component and (E) component Is preferred.
  • thermosetting resin composition of the present invention includes monomers such as monofunctional epoxy compounds (reactive diluents), colorants such as pigments and dyes, metal powder, calcium carbonate, Inorganic fillers such as fumed silica and aluminum hydroxide, flame retardants, plasticizers, antioxidants, antifoaming agents, silane coupling agents, leveling agents, rheology control agents, etc. may be added in appropriate amounts. . By adding these, a composition having at least one of resin strength, adhesive strength, workability, storage stability and the like and a cured product thereof can be obtained.
  • monomers such as monofunctional epoxy compounds (reactive diluents), colorants such as pigments and dyes, metal powder, calcium carbonate, Inorganic fillers such as fumed silica and aluminum hydroxide, flame retardants, plasticizers, antioxidants, antifoaming agents, silane coupling agents, leveling agents, rheology control agents, etc.
  • thermosetting resin composition of the present invention has the above-described configuration, thereby having fast curability and excellent storage stability. Moreover, the thermosetting resin composition of this invention is excellent also in adhesiveness and toughness. In particular, since the neodymium magnet can be stably fixed even after the durability test, it is particularly suitable for use in fixing a neodymium magnet in various fields such as the electric / electronic field and the in-vehicle field.
  • One embodiment of the present invention is a method for fixing a neodymium magnet using the thermosetting resin composition described above. According to this method, the neodymium magnet can be stably fixed even in various temperature environments.
  • the neodymium magnet is a rare-earth magnet mainly composed of neodymium, iron, and boron, that is, a magnet having Nd 2 Fe 14 B as a main phase.
  • neodymium magnets those generally used in electric / electronic devices, motors and the like can be used.
  • the shape of the magnet is not particularly limited, and can be appropriately selected according to the purpose, such as a columnar shape, a cylindrical shape, a plate shape, a ring shape, and a granular shape.
  • the magnet may be plated with Ni, Cu or the like.
  • thermosetting resin composition is applied to the surface of an neodymium magnet or an adherend so that the cured product has a desired thickness, and conventionally known means (for example, And heat curing using a hot air drying furnace or the like.
  • the heating conditions are not particularly limited, but for example, in an atmosphere of 50 to 120 ° C. for 0.1 to 10 hours.
  • Embodiments of the present invention are exemplified below.
  • Thermosetting containing the following (A) to (D) components and 10 to 45 mass% of the following (D) component with respect to the total of the following (A) component, the following (B) component and the following (D) component.
  • Resin composition (A) Component: Epoxy resin (B) component: Cyanate ester resin (C) component: Curing agent (D) component: A polyol compound having a viscosity in an atmosphere of 25 ° C. of 50000 mPa ⁇ s or less.
  • thermosetting resin composition according to 1 further comprising an organic filler as a component.
  • component (C) includes a curing agent containing a modified amine compound and a phenol resin as the following component (C1) and a curing agent containing a modified amine compound and a phenol resin as the component (C2) 2 thermosetting resin composition;
  • Component (C1) a modified amine obtained by reacting an epoxy compound with a polyamine compound (C1-A) having one or more tertiary amino groups and at least one of one or more primary amino groups and secondary amino groups
  • Compound (C2) component a polyamine compound (C2-A) having no tertiary amino group in the molecule and having at least one of two primary amino groups and secondary amino groups having different reactivity, and The structure has no tertiary amino group in the molecule, has at least one of two or more primary amino groups and secondary amino groups in the molecule, and the one amino group reacts with an epoxy group.
  • At least one polyamine compound (C2-A) selected from the group consisting of aromatic polyamines, alicyclic polyamines, and aliphatic polyamines that reduce the reactivity between the remaining amino groups and epoxy groups At least one, obtained by reacting an epoxy compound, modified amine compound having at least one amino group having active hydrogen in the molecule.
  • the cyanate ester resin of the component (B) is at least one selected from the group consisting of the compound represented by the general formula (1), the compound represented by the general formula (2), and these prepolymers.
  • the thermosetting resin composition as described in any one of 1 to 3 above.
  • thermosetting resin composition according to 4 wherein the cyanate ester resin as the component (B) is at least one selected from the group consisting of a compound represented by the general formula (3) and a prepolymer thereof. object.
  • the polyamine compound (C1-A) that is a raw material of the component (C1) is represented by the compound represented by the general formula (I), the compound represented by the general formula (II), and the general formula (III). 4.
  • the polyamine compound (C2-A) used as the raw material for the component (C2) is isophoronediamine, p-menthane-1,8-diamine, 2,2,4-trimethylhexamethylenediamine, 1,2-diaminopropane, m 4.
  • thermosetting resin composition according to 3 above wherein the epoxy compound serving as a raw material for the component (C1) or the component (C2) is a polyglycidyl ether compound having two or more epoxy groups in the molecule.
  • the modified amine compound of the component (C1) or the component (C2) has an epoxy equivalent of 0.5 to 2. with respect to the amount in which the polyamine compound (C1-A) or (C2-A) is 1 mol, respectively. 4.
  • thermosetting resin composition as described in 3 above, wherein the phenol resin contained in the component (C) has a number average molecular weight of 750 to 1200.
  • the said (E) component is a thermosetting resin composition of said 2 containing the filler which consists of a polymer or copolymer of a (meth) acrylic acid ester, or a polymer or copolymer of a styrene compound.
  • thermosetting resin composition according to any one of 1 to 13, which is used for fixing a neodymium magnet.
  • thermosetting resin composition according to any one of 1 to 14 above.
  • thermosetting resin composition is also simply referred to as a composition.
  • first curing agent containing modified amine compound of component (C1) and phenol resin 130 g of N, N-dimethylaminopropylamine was charged into a flask at 80 ° C. While maintaining 213 g of bisphenol A type epoxy resin (EP-4100E manufactured by ADEKA Corporation, epoxy equivalent 190) (epoxy equivalent of bisphenol A type epoxy resin to 1 mol of [N, N-dimethylaminopropylamine]) Added one by one. After adding the bisphenol A type epoxy resin, the temperature inside the system was raised to 140 ° C. and reacted for 1.5 hours to obtain a modified amine compound.
  • bisphenol A type epoxy resin EP-4100E manufactured by ADEKA Corporation, epoxy equivalent 190
  • Second curing agent containing modified amine compound and phenol resin as component (C2) 128 g of 1,2-diaminopropane was charged into a flask and heated to 60 ° C., and then bisphenol A type epoxy 213 g of resin (EP-4100E manufactured by ADEKA Corporation, epoxy equivalent 190) ([epoxy equivalent 1.12 of bisphenol A type epoxy resin with respect to 1 mol of 1,2-diaminopropane)] was brought to a system temperature of 100 to 110 ° C. I added it little by little to keep it. After all of the bisphenol A type epoxy resin was added, the temperature was raised to 140 ° C. and reacted for 1.5 hours to obtain a modified polyamine.
  • a latent curing agent (second curing agent) (hereinafter referred to as EH-2).
  • component (C) was added and stirred for 30 minutes.
  • Detailed preparation amounts are in accordance with Table 1, and numerical values are all expressed in parts by mass, unless otherwise specified.
  • the viscosity of (D) component was measured using the cone plate type
  • thermosetting resin compositions of Examples 1 to 6 and Comparative Examples 1 to 4 were subjected to storage stability confirmation, 90 ° C. curing time measurement, tensile shear adhesive force measurement, and heat cycle resistance confirmation. The results are summarized in Table 2 below.
  • the adherend is made of SPCC-SD (cold rolled steel plate dull finish) material with a width of 25 mm, a length of 100 mm and a thickness of 1.6 mm, and the two materials are bonded together with a composition with a bonding area of 25 mm ⁇ 10 mm. Combined and fixed with clips. Thereafter, the composition was cured by leaving it in a hot air drying oven at 90 ° C. for 1 hour to prepare a test piece. By pulling at a pulling speed of 10 mm / min, the maximum strength was measured and “tensile shear adhesive strength (MPa)” was calculated. Details follow JIS K 6850: 1999. Judgment was made based on the following criteria. In order to maintain a stable adhesive force, the initial adhesive force is preferably 8 MPa or more. Judgment criteria 8MPa or more: ⁇ Less than 8 MPa: x.
  • SPCC-SD cold rolled steel plate dull finish
  • the heat cycle resistance was confirmed by measuring the tensile shear adhesive force.
  • the adherend consists of SPCC-SD (cold rolled steel plate dull finish) 25 mm wide x 100 mm long x 1.6 mm thick and neodymium magnet (Ni plating) 25 mm wide x 100 mm long x 1.6 mm thick.
  • the two materials were bonded together with a composition with an adhesive area of 25 mm ⁇ 10 mm and fixed with clips. Thereafter, the composition was allowed to stand for 1 hour in a hot air drying oven at 90 ° C. to prepare 10 test pieces.
  • the adhesive strength of five test pieces was measured under the same conditions as the tensile shear adhesive strength measurement described above, and the remaining five test pieces were put into a heat cycle tester. As the heat cycle conditions, one cycle is 15 minutes in a ⁇ 40 ° C. atmosphere and 15 minutes in a 100 ° C. atmosphere, and 100 cycles are continuously performed. After completion, the adhesive strength was measured. “Retention ratio (%)” was calculated from (average adhesive strength after heat cycle) / (average initial adhesive strength) ⁇ 100. Judgment was made based on the following evaluation criteria. For stable fixing of the neodymium magnet, the retention is preferably 50% or more. Judgment criteria Retention rate is 80% or more: ⁇ Retention rate is 50% or more and less than 80%: ⁇ Retention rate is 10% or more and less than 50%: ⁇ Retention rate is less than 10%: x.
  • the retention rate decreases when the amount of component (D) added is small. Since the temperature dependence of expansion and contraction between a neodymium magnet and an adhesive shows an opposite behavior, it is presumed that the adhesive force cannot be maintained at the adherend interface if the cured product has little flexibility. . In terms of flexibility, the component (D) needs to be contained in an amount of 10 to 45% by mass with respect to the total of the components (A), (B) and (D). Moreover, although the comparative example 2 is a composition which does not contain (A) component, the tendency for the tensile shear adhesive force to become weak is seen.
  • Examples 7 to 13, Comparative Example 5 In order to prepare the compositions of Examples 7 to 13 and Comparative Example 5, the components (A), (B) and (D) (or (D ′)) were stirred for 15 minutes, The component E) was added and stirred for an additional 15 minutes. Finally, component (C) was added and stirred for 30 minutes. Detailed preparation amounts are in accordance with Table 3, and all numerical values are expressed in parts by mass.
  • the composition was applied onto an aluminum plate (A1050P) having a width of 25 mm, a length of 100 mm, and a thickness of 0.5 mm so that the width was 10 mm, the length was 30 mm, and the thickness was 1 mm. Thereafter, the composition was cured by leaving it in a hot air drying oven at 90 ° C. for 1 hour to prepare a test piece. When the test piece returned to room temperature, it was bent at 90 ° with the center of the test piece as a base point, and the peel resistance was confirmed from the following evaluation criteria. Evaluation criteria ⁇ : The cured product does not peel ⁇ : The cured product peels off.
  • Comparative Example 5 the component (D) of Examples 1 and 7 to 13 was changed to a component (D ′) which is a polyol having a viscosity in an atmosphere at 25 ° C. larger than 50000 mPa ⁇ s. Due to the difference in the components, the characteristics greatly differed between peel resistance and cured product bendability. Further, Comparative Example 5 and Comparative Example 4 to which no polyol was added exhibited only the same level of peeling resistance and cured product bendability.
  • Neodymium magnets are widely used in various fields such as the electric / electronic field and the in-vehicle field. As a result, demand for adhesives and sealants that stably fix neodymium magnets will increase, so that neodymium magnets can be stably fixed even after a durability test (heat cycle resistance test) as in the present invention. There is also a possibility that the thermosetting resin composition that can be used for various applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】速硬化性を有すると共に保存安定性、耐剥離性、折り曲げ性に優れ、かつネオジムマグネットの固定において、耐久試験後でも安定した固定を可能にする熱硬化性樹脂組成物を提供する。 【解決手段】下記(A)~(D)成分を含み、下記(A)成分、下記(B)成分および下記(D)成分の合計に対して、下記(D)成分を10~45質量%含む熱硬化性樹脂組成物。 (A)成分:エポキシ樹脂 (B)成分:シアネートエステル樹脂 (C)成分:硬化剤 (D)成分:25℃雰囲気下の粘度が50000mPa・s以下のポリオール化合物。

Description

熱硬化性樹脂組成物
 本発明は、速硬化性を有すると共に、ネオジムマグネットの固定に適した熱硬化性樹脂組成物に関するものである。
 近年、ネオジムマグネット(ネオジマグネット、ネオジウムマグネットとも呼ばれる)は磁力が強いという特性から、電気・電子分野、車載分野など様々な分野で多用されている。電子機器においては、ハードディスクドライブのアクチュエーター部分に、車載用としてはハイブリットカーのモーター部分にも使用されている。一般的に、マグネットは加熱されると膨張し冷却されると収縮するものだが、ネオジムマグネットはその逆で、加熱されると収縮し、冷却されると膨張する。ネオジムマグネットを固定するために接着剤やシール剤等が使用されるが、組立てた部品の高温放置試験(100℃雰囲気)、低温放置試験(0℃または-40℃雰囲気)、ヒートショック試験(0℃雰囲気で1時間と100℃雰囲気で1時間のサイクル)やヒートサイクル試験等(0℃雰囲気で15分と100℃雰囲気で15分のサイクル)の耐久試験において、ネオジウムマグネットと接着剤等との界面において剥離が生じたり、接着剤等の硬化物において亀裂が入るなどの不具合が発生しやすい。これは、ネオジムマグネットと接着剤等との膨張収縮の温度依存性が逆の挙動を示すことに原因がある。従来技術として、エポキシ樹脂でネオジムマグネットを固定することは知られている(特許文献1参照)。
 特許文献2には、エポキシ樹脂、シアネートエステル樹脂、ブレーンステッド酸(触媒)とポリオールの組成物について記載がある。ここで、ポリオールはブレーンステッド酸の安定化剤(反応抑制剤)として使用されている。いわゆるカチオン系触媒にポリオールを添加することは公知技術であり、その手法をエポキシ樹脂とシアネートエステル樹脂に応用したものである。しかしながら、シアネートエステル樹脂は、フェノールなどの酸成分を加えると低温保管でも反応が進行するため、酸成分を触媒として使用する場合などは保存安定性の問題が存在していた。
特開2007-68270号公報 特表平11-501075号公報(国際公開第96/027640号相当)
 近年の部品等の信頼性向上に対する要求が高まる中、ネオジムマグネット接着剤等についても各種耐久試験における性能の向上が求められている。しかしながら、上記特許文献1に記載の技術では、耐久試験後において安定してネオジムマグネットの固定をすることが困難であった。また、ネオジムマグネットの固定において、エポキシ樹脂と同等以上の速硬化性や保存安定性、耐剥離性、折り曲げ性に優れる熱硬化性樹脂組成物が求められていた。
 そこで、本発明は、速硬化性を有すると共に保存安定性、耐剥離性、および折り曲げ性に優れ、かつネオジムマグネットの固定においては、耐久試験後でも安定した固定を可能にする熱硬化性樹脂組成物を提供することを目的とする。
 本発明者らは、上記課題を解決するべく鋭意検討した。その結果、下記(A)~(D)成分を含む熱硬化性樹脂組成物により、上記課題が解決されることを見出し、本発明を完成させるに至った。
 本発明の要旨を次に説明する。
 下記(A)~(D)成分を含み、下記(A)成分、下記(B)成分および下記(D)成分の合計に対して、下記(D)成分を10~45質量%含む熱硬化性樹脂組成物。
(A)成分:エポキシ樹脂
(B)成分:シアネートエステル樹脂
(C)成分:硬化剤
(D)成分:25℃雰囲気下の粘度が50000mPa・s以下のポリオール化合物。
 本発明の一形態に係る熱硬化性樹脂組成物は、下記(A)~(D)成分を含み、下記(A)成分、下記(B)成分および下記(D)成分の合計に対して、下記(D)成分を10質量%以上含むことを特徴とする。
(A)成分:エポキシ樹脂
(B)成分:シアネートエステル樹脂
(C)成分:硬化剤
(D)成分:25℃雰囲気下の粘度が50000mPa・s以下のポリオール化合物。
 かような構成を有する熱硬化性樹脂組成物は、ネオジムマグネットの固定においては、耐久試験後でも安定した固定を可能にする。また、本発明の熱硬化性樹脂組成物は、速硬化性や保存安定性、耐剥離性、および折り曲げ性にも優れる。
 本発明の熱硬化性樹脂組成物により、上記効果が得られる詳細な理由は不明であるが、(D)成分として所定のポリオール化合物を含有することにより、可撓性、密着性、強靭性が向上しうる。これにより、温度変化による膨張収縮の温度依存性が接着剤等と逆の挙動を示すネオジムマグネットの固定において、耐久試験後でも被着体界面での接着性が保持され、安定した固定を可能とするものと考えられる。なお、本発明は、上記メカニズムに何ら拘泥されるものではない。
 本発明の詳細を次に説明する。
 本発明に使用することができる(A)成分は、1分子内に2個以上のエポキシ基を有する化合物であり、一般的にエポキシ樹脂と呼ばれている化合物である。(A)成分は、1種類だけ使用しても2種類以上を混合して使用してもよい。取扱容易性の観点から、(A)成分は、25℃雰囲気において液状であることが好ましい。
 エポキシ樹脂の具体例としては、エピクロルヒドリンと、ビスフェノールなどの多価フェノールや多価アルコールとの縮合によって得られるものが挙げられ、例えば、ビスフェノールA型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールF型、ビスフェノールS型、ビスフェノールAF型、ビフェニル型、ナフタレン型、フルオレン型、ノボラック型、フェノールノボラック型、オルソクレゾールノボラック型、トリス(ヒドロキシフェニル)メタン型、テトラフェニロールエタン型などのグリシジルエーテル型エポキシ樹脂を例示することができる。その他に、エピクロルヒドリンとフタル酸誘導体や脂肪酸などのカルボン酸との縮合によって得られるグリシジルエステル型エポキシ樹脂、エピクロルヒドリンとアミン類、シアヌル酸類、またはヒダントイン類との反応によって得られるグリシジルアミン型エポキシ樹脂、脂環骨格を有するエポキシ樹脂、さらには様々な方法で変性したエポキシ樹脂が挙げられる。しかしながら、これらに限定されるものではない。
 市販されているエポキシ樹脂としては、例えば、株式会社ADEKA製EP-4100、EP-4100E、EP-4088S、EP-4901等、三菱化学株式会社製827、828EL等、大日本インキ工業株式会社製EPICLON830、EXA-835LV等が挙げられる。また、東都化成株式会社製エポトートYD-128、YDF-170等も挙げられるが、これらに限定されるものではない。価格面を考慮すると、ビスフェノールA骨格、またはビスフェノールF骨格を有するエポキシ樹脂が好ましい。
 本発明に使用することができる(B)成分は、1分子内に2個以上のシアン酸エステル基を有する化合物であり、一般的にシアネートエステル樹脂と呼ばれている化合物である。シアネートエステル樹脂としては、特に限定されないが、例えば、下記一般式(1)で表される化合物および/または下記一般式(2)で表される化合物が挙げられる。また、下記一般式(1)または下記一般式(2)で表される化合物のシアネート基の一部がトリアジン環を形成しているプレポリマーも(B)成分として使用することができる。プレポリマーとしては、例えば下記一般式(1)で表される化合物の全部または一部が3量化したものが挙げられる。
Figure JPOXMLDOC01-appb-C000009
(上記一般式(1)中、Rは、非置換、もしくはフッ素原子もしくはシアネート基で置換された2価の炭化水素基、または硫黄原子であり、RおよびRは、それぞれ独立して、非置換または1~4個のアルキル基で置換されたフェニレン基である。)
Figure JPOXMLDOC01-appb-C000010
(上記一般式(2)中、nは1以上の整数であり、Rは、それぞれ独立して、水素原子または炭素数1~4のアルキル基であり、Rは、それぞれ独立して、下記一般式(B-1)~(B-9)で表される基である。)
Figure JPOXMLDOC01-appb-C000011
(ここで、RおよびRは、それぞれ独立して、水素原子、または非置換もしくはフッ素原子で置換されたメチル基であり、mは4~12の整数である。)
 上記一般式(1)で表される化合物のうち、より好ましい化合物は、下記一般式(3)で表される化合物、およびこれらのプレポリマーである。
Figure JPOXMLDOC01-appb-C000012
(上記一般式(3)中、Rは、上記一般式(B-1)~(B-9)で表される基であり、Rは、それぞれ独立して、水素原子または非置換もしくはフッ素原子で置換されたメチル基である。)
 (B)成分としては、さらに具体的には、4,4’-エチリデンビスフェニレンシアネート、2,2-ビス(4-シアナトフェニル)プロパン、1,1-ビス(4-シアナトフェニル)エタン、およびビス(4-シアナト-3,5-ジメチルフェニル)メタンなどが特に好ましいが、これらに限定されるものではない。
 (A)成分100質量部に対して、(B)成分が150~400質量部であることが好ましい。さらに好ましくは、150~350質量部である。(B)成分が150質量部以上であると、十分な硬化性が発現する。一方、(B)成分が400質量部以下であると、耐久試験において剥離が発生しにくい。
 本発明に使用することができる(C)成分としては、(A)成分と(B)成分とを硬化させるための硬化剤である。特に、次の2種類の硬化剤を含むことが好ましい。
 本発明に使用することができる第1の硬化剤は、(C1)成分の変性アミン化合物とフェノール樹脂とを含有してなる潜在性硬化剤である。(C1)成分の変性アミン化合物とは、ポリアミン化合物(C1-A)とエポキシ化合物とを反応させたものであり、当該ポリアミン化合物(C1-A)とは、1個以上の3級アミノ基ならびに1個以上の1級アミノ基および2級アミノ基の少なくとも一方を有するポリアミン化合物を指す。 すなわち、前記(C1)成分の変性アミン化合物とは、ポリアミン化合物(C1-A)とエポキシ化合物とを反応させたものであり;前記ポリアミン化合物(C1-A)とは、1級アミノ基および2級アミノ基の少なくとも一方、ならびに3級アミノ基を有するポリアミン化合物である。
 また、ポリアミン化合物(C1-A)とエポキシ化合物とを反応させて、前記(C1)成分の変性アミン化合物を生成する際には、生成物は反応程度の異なる変性アミン化合物の混合物になると想定されるため、その変性アミン化合物の混合物を化学式で規定することは困難である。
 本発明で使用される(C1)成分の原料となるポリアミン化合物(C1-A)としては、下記一般式(I)で表される化合物、下記一般式(II)で表される化合物、および下記一般式(III)で表される化合物からなる群より選択される少なくとも1種が好ましい。
Figure JPOXMLDOC01-appb-C000013
(上記一般式(I)中、R21およびR22は、それぞれ独立して、非置換またはヒドロキシ基、チオール基、もしくはアミノ基で置換された炭素数1~10のアルキル基であり、この際、R21およびR22は互いに結合して環を形成してもよい。R23は(p+q)価の炭化水素基である。pは1以上の整数であり、qは1または2である。好ましくは、pは1、2または3であり、qは1または2である。R24は、水素原子、または、非置換またはヒドロキシ基、チオール基、もしくはアミノ基で置換された炭素数1~10のアルキル基である。)
Figure JPOXMLDOC01-appb-C000014
(上記一般式(II)中、R31およびR32は、それぞれ独立して、非置換またはヒドロキシ基、チオール基、もしくはアミノ基で置換されたアルキレン基である。R33は、それぞれ独立して、炭素数1~10のアルキル基である。rは1以上の整数である。好ましくは、rは1~10の整数である。)
Figure JPOXMLDOC01-appb-C000015
(上記一般式(III)中、R41、R42、R43およびR44は、それぞれ独立して、非置換またはヒドロキシ基、チオール基、もしくはアミノ基で置換された炭素数1~10のアルキル基であり、この際、R41およびR42、またはR43およびR44は互いに結合して環を形成してもよい。R45およびR46は、それぞれ独立して、非置換またはヒドロキシ基、チオール基、もしくはアミノ基で置換されたアルキレン基である。sは1以上の整数である。好ましくは、sは1~10の整数である。)
 ここで、上記一般式(I)で表されるポリアミン化合物としては、例えば、N,N-ジメチルアミノエチルアミン、N,N-ジエチルアミノエチルアミン、N,N-ジイソプロピルアミノエチルアミン、N,N-ジアリルアミノエチルアミン、N,N-ベンジルメチルアミノエチルアミン、N,N-ジベンジルアミノエチルアミン、N,N-シクロヘキシルメチルアミノエチルアミン、N,N-ジシクロヘキシルアミノエチルアミン、N-(2-アミノエチル)ピロリジン、N-(2-アミノエチル)ピペリジン、N-(2-アミノエチル)モルホリン、N-(2-アミノエチル)ピペラジン、N-(2-アミノエチル)-N’-メチルピペラジン、N,N-ジメチルアミノプロピルアミン、N,N-ジエチルアミノプロピルアミン、N,N-ジイソプロピルアミノプロピルアミン、N,N-ジアリルアミノプロピルアミン、N,N-ベンジルメチルアミノプロピルアミン、N,N-ジベンジルアミノプロピルアミン、N,N-シクロヘキシルメチルアミノプロピルアミン、N,N-ジシクロヘキシルアミノプロピルアミン、N-(3-アミノプロピル)ピロリジン、N-(3-アミノプロピル)ピペリジン、N-(3-アミノプロピル)モルホリン、N-(3-アミノプロピル)ピペラジン、N-(3-アミノプロピル)-N’-メチルピペリジン、4-(N,N-ジメチルアミノ)ベンジルアミン、4-(N,N-ジエチルアミノ)ベンジルアミン、4-(N,N-ジイソプロピルアミノ)ベンジルアミン、N,N-ジメチルイソホロンジアミン、N,N-ジメチルビスアミノシクロヘキサン、N,N,N’-トリメチルエチレンジアミン、N’-エチル-N,N-ジメチルエチレンジアミン、N,N,N’-トリメチルエチレンジアミン、N’-エチル-N,N-ジメチルプロパンジアミン、N’-エチル-N,N-ジベンジルアミノプロピルアミンなどが挙げられるが、これらに限定されるものではない。
 上記一般式(II)で表されるポリアミン化合物としては、例えば、N,N-(ビスアミノプロピル)-N-メチルアミン、N,N-ビスアミノプロピルエチルアミン、N,N-ビスアミノプロピルプロピルアミン、N,N-ビスアミノプロピルブチルアミン、N,N-ビスアミノプロピルペンチルアミン、N,N-ビスアミノプロピルヘキシルアミン、N,N-ビスアミノプロピル-2-エチルヘキシルアミン、N,N-ビスアミノプロピルシクロヘキシルアミン、N,N-ビスアミノプロピルベンジルアミン、N,N-ビスアミノプロピルアリルアミンなどが挙げられるが、これらに限定されるものではない。
 上記一般式(III)で表されるポリアミン化合物としては、例えば、ビス〔3-(N,N-ジメチルアミノプロピル)〕アミン、ビス〔3-(N,N-ジエチルアミノプロピル)〕アミン、ビス〔3-(N,N-ジイソプロピルアミノプロピル)〕アミン、ビス〔3-(N,N-ジブチルアミノプロピル)〕アミンなどが挙げられるが、これらに限定されるものではない。
 上記一般式(I)で表されるポリアミン化合物の中でも、特に好ましくは、下記一般式(I-1)で表される化合物である。このようなポリアミン化合物を使用することで、硬化性や保存性のバランスに優れる熱硬化性樹脂組成物となる。
Figure JPOXMLDOC01-appb-C000016
(上記一般式(I-1)中、R21およびR22は、それぞれ独立して、非置換またはヒドロキシ基、チオール基、もしくはアミノ基で置換された炭素数1~10のアルキル基であり、この際、R21およびR22は互いに結合して環を形成してもよい。R25は炭素数1~10のアルキレン基である。)
 ここで、上記一般式(I-1)で表されるポリアミン化合物としては、例えば、N,N-ジメチルアミノエチルアミン、N,N-ジエチルアミノエチルアミン、N,N-ジイソプロピルアミノエチルアミン、N,N-ジアリルアミノエチルアミン、N,N-ベンジルメチルアミノエチルアミン、N,N-ジベンジルアミノエチルアミン、N,N-シクロヘキシルメチルアミノエチルアミン、N,N-ジシクロヘキシルアミノエチルアミン、N-(2-アミノエチル)ピロリジン、N-(2-アミノエチル)ピペリジン、N-(2-アミノエチル)モルホリン、N-(2-アミノエチル)ピペラジン、N-(2-アミノエチル)-N’-メチルピペラジン、N,N-ジメチルアミノプロピルアミン、N,N-ジエチルアミノプロピルアミン、N,N-ジイソプロピルアミノプロピルアミン、N,N-ジアリルアミノプロピルアミン、N,N-ベンジルメチルアミノプロピルアミン、N,N-ジベンジルアミノプロピルアミン、N,N-シクロヘキシルメチルアミノプロピルアミン、N,N-ジシクロヘキシルアミノプロピルアミン、N-(3-アミノプロピル)ピロリジン、N-(3-アミノプロピル)ピペリジン、N-(3-アミノプロピル)モルホリン、N-(3-アミノプロピル)ピペラジン、N-(3-アミノプロピル)-N’-メチルピペリジンなどが挙げられるが、これらに限定されるものではない。最も好ましくは、N,N-ジメチルアミノプロピルアミン、N,N-ジエチルアミノプロピルアミンが挙げられる。
 なお、ポリアミン化合物(C1-A)としては、単独でもまたは異なる種類のポリアミン化合物を2種以上組み合わせても使用することができる。
 本発明に使用される(C1)成分の原料となるエポキシ化合物としては、エポキシ基を有する化合物が特に制限なく使用でき、(A)成分として例示したエポキシ樹脂も使用することができる。エポキシ化合物の具体例としては、例えば、フェニルグリシジルエーテル、アリルグリシジルエーテル、メチルグリシジルエーテル、ブチルグリシジルエーテル、第二ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、2-メチルオクチルグリシジルエーテル、ステアリルグリシジルエーテル等のモノグリシジルエーテル化合物;バーサティック酸グリシジルエステル等のモノグリシジルエステル化合物;ハイドロキノン、レゾルシン、ピロカテコール、フロログルシノールなどの単核多価フェノール化合物のポリグリシジルエーテル化合物;ジヒドロキシナフタレン、ビフェノール、メチレンビスフェノール(ビスフェノールF)、メチレンビス(オルトクレゾール)、エチリデンビスフェノール、イソプロピリデンビスフェノール(ビスフェノールA)、イソプロピリデンビス(オルトクレゾール)、テトラブロモビスフェノールA、1,3-ビス(4-ヒドロキシクミルベンゼン)、1,4-ビス(4-ヒドロキシクミルベンゼン)、1,1,3-トリス(4-ヒドロキシフェニル)ブタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、チオビスフェノール、スルホビスフェノール、オキシビスフェノール、フェノールノボラック、オルソクレゾールノボラック、エチルフェノールノボラック、ブチルフェノールノボラック、オクチルフェノールノボラック、レゾルシンノボラック、テルペンフェノールなどの多核多価フェノール化合物のポリグリジルエーテル化合物;エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキサンジオール、ポリグリコール、チオジグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ビスフェノールA-エチレンオキサイド付加物などの多価アルコール類のポリグリシジルエーテル;マレイン酸、フマル酸、イタコン酸、コハク酸、グルタル酸、スベリン酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸、トリマー酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、トリメシン酸、ピロメリット酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸等の脂肪族、芳香族または脂環族多塩基酸のグリシジルエステル類およびグリシジルメタクリレートの単独重合体または共重合体;N,N-ジグリシジルアニリン、ビス(4-(N-メチル-N-グリシジルアミノ)フェニル)メタン、ジグリシジルオルトトルイジン等のグリシジルアミノ基を有するエポキシ化合物;ビニルシクロヘキセンジエポキサイド、ジシクロペンタンジエンジエポキサイド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-6-メチルシクロヘキサンカルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート等の環状オレフィン化合物のエポキシ化物;エポキシ化ポリブタジエン、エポキシ化スチレン-ブタジエン共重合体等のエポキシ化共役ジエン(共)重合体、トリグリシジルイソシアヌレート等の複素環化合物が挙げられるが、これらに限定されるものではない。特に、分子内にエポキシ基を2個以上有するポリグリシジルエーテル化合物が好ましい。とりわけ、メチレンビスフェノール(ビスフェノールF)、メチレンビス(オルトクレゾール)、エチリデンビスフェノール、イソプロピリデンビスフェノール(ビスフェノールA)、イソプロピリデンビス(オルトクレゾール)等のビスフェノール化合物のポリグリシジルエーテルが好ましい。
 (C1)成分の変性ポリアミン化合物は、ポリアミン化合物(C1-A)が1モルとなる量に対し、エポキシ当量が0.5~2.0当量となる量でエポキシ化合物を反応させて得られる化合物であることが好ましい。より好ましくは、エポキシ当量が0.8~1.5当量となる量でエポキシ化合物を反応させて得られる変性ポリアミン化合物である。
 本発明に使用される第1の硬化剤に含まれるフェノール樹脂としては、フェノール類とアルデヒド類とから合成されるフェノール樹脂が好ましい。該フェノール類としては、例えば、フェノール、クレゾール、エチルフェノール、n-プロピルフェノール、イソプロピルフェノール、ブチルフェノール、第三ブチルフェノール、オクチルフェノール、ノニルフェノール、ドデシルフェノール、シクロヘキシルフェノール、クロロフェノール、ブロモフェノール、レゾルシン、カテコール、ハイドロキノン、2,2-ビス(4-ヒドロキシフェニル)プロパン、4,4’-チオジフェノール、ジヒドロキシジフェニルメタン、ナフトール、テルペンフェノール、フェノール化ジシクロペンタジエン等の1種または2種以上が挙げられ、該アルデヒド類としてはホルムアルデヒドが挙げられるが、これらに限定されるものではない。合成方法は特に制限されず、酸触媒またはアルカリ触媒を用いた公知の縮合反応を採用することができる。
 上記フェノール樹脂の数平均分子量は、750~1200であることが好ましい。この範囲の数平均分子量であれば、貯蔵安定性と硬化性とのバランスに優れた熱硬化性樹脂組成物が得られる。なお、フェノール樹脂の数平均分子量は、ポリスチレンを標準物質としたゲル浸透クロマトグラフィ(GPC)により測定することができる。
 第1の硬化剤中、(C1)成分の変性アミン化合物100質量部に対して、フェノール樹脂が10~100質量部含まれていることが好ましい。より好ましくは、フェノール樹脂の含有量は20~60質量部である。フェノール樹脂の含有量が10質量部以上であれば十分な硬化性が得られ、100質量部以下であれば硬化物において十分な物性を発現する。
 本発明に使用することができる第2の硬化剤は、(C2)成分の変性アミン化合物とフェノール樹脂とを含有してなる潜在性硬化剤である。(C2)成分の変性アミン化合物とは、ポリアミン化合物(C2-A)とエポキシ化合物とを反応させたものであり、分子内に活性水素を有するアミノ基を1個以上有する。当該ポリアミン化合物(C2-A)とは、分子内に3級アミノ基を有さず、反応性を異にする2個の1級アミノ基および2級アミノ基の少なくとも一方を有するポリアミン化合物、ならびに分子内に3級アミノ基を有さず、分子内に2個以上の1級アミノ基および2級アミノ基の少なくとも一方を有し、当該1個のアミノ基がエポキシ基と反応した構造により、残りのアミノ基とエポキシ基との反応性が低下する芳香族ポリアミン、脂環式ポリアミン、および脂肪族ポリアミンからなる群より選択される少なくとも1種のポリアミン化合物の少なくとも一方を指す。
 また、ポリアミン化合物(C2-A)とエポキシ化合物とを反応させて、前記(C2)成分の変性アミン化合物を生成する際には、生成物は反応程度の異なる変性アミン化合物の混合物になると想定されるため、その変性アミン化合物の混合物を化学式で規定することは困難である。
 (C2)成分の原料となる分子内に3級アミノ基を有さず、それぞれ反応性を異にする2個の1級アミノ基および2級アミノ基の少なくとも一方を有するポリアミン化合物としては、非対称の構造を有するポリアミン化合物が挙げられる。具体例としては、例えば、イソホロンジアミン、p-メンタン-1,8-ジアミン、2,2,4-トリメチルヘキサメチレンジアミン、1,2-ジアミノプロパンなどが挙げられるが、これらに限定されるものではない。
 (C2)成分で用いられる分子内に3級アミノ基を有さず、分子内に2個以上の1級アミノ基および2級アミノ基の少なくとも一方を有し、当該1個のアミノ基がエポキシ基と反応した構造により、残りのアミノ基とエポキシ基との反応性が低下する芳香族ポリアミン、脂環式ポリアミン、および脂肪族ポリアミンとしては、環状構造や立体障害を発生させる置換基を有するポリアミン化合物が挙げられる。具体例としては、例えば、m-キシリレンジアミン、1,3-ビスアミノメチルシクロヘキサンなどが挙げられるが、これらに限定されるものではない。
 なお、ポリアミン化合物(C2-A)としては、単独でもまたは2種以上の異なる種類のポリアミン化合物を組み合わせても使用することもできる。
 第2の硬化剤に含まれる、フェノール樹脂および(C2)成分の原料となるエポキシ化合物の具体例としては、上記第1の硬化剤で記載したフェノール樹脂およびエポキシ化合物と同様であるため、ここでは説明を省略する。フェノール樹脂およびエポキシ化合物は、第1の硬化剤と第2の硬化剤とで、それぞれ同じでもよいし異なっていてもよい。
 (C2)成分の変性ポリアミン化合物は、ポリアミン化合物が1モルとなる量に対し、エポキシ当量が0.5~2.0当量となる量でエポキシ化合物を反応させて得られる化合物であることが好ましい。より好ましくは、エポキシ当量が0.8~1.5当量となる量でエポキシ化合物を反応させて得られる変性ポリアミン化合物である。
 第2の硬化剤に含まれるフェノール樹脂の数平均分子量は、750~1200であることが好ましい。この範囲の数平均分子量であれば、貯蔵安定性と硬化性とのバランスの優れた熱硬化性樹脂組成物が得られる。
 第2の硬化剤中、(C2)成分の変性アミン化合物100質量部に対して、フェノール樹脂が10~100質量部含まれていることが好ましい。より好ましくは、フェノール樹脂の含有量は20~60質量部である。フェノール樹脂が10質量部以上であれば十分な硬化性が得られ、100質量部以下であれば硬化物において十分な物性を発現する。
 イミダゾール化合物の1級アミノ基をエポキシ変性した変性アミン化合物を、(C2)成分と組み合わせて使用することもできる。
 すなわち、本発明に記載の(C)成分は、変性アミン化合物とフェノール樹脂を含有する硬化剤を含むことが好ましい。また、前記変性アミン化合物は、ポリアミン化合物とエポキシ化合物とを反応させたものであり、アミンエポキシアダクトとも呼ばれる。
 (C)成分の添加量としては、(A)成分と(B)成分との合計100質量部に対して、10~70質量部であることが好ましい。より好ましくは20~60質量部である。(C)成分が10質量部以上の場合、硬化性が十分に発現する。一方、(C)成分が70質量部以下の場合、保存安定性が向上する。
 本発明の一実施形態では、(C)成分は、50~90質量%の(C1)成分と、10~50質量%の(C2)成分とからなる。好ましくは、(C)成分は、60~85質量%の(C1)成分と、15~40質量%の(C2)成分とからなる。
 本発明で使用することができる(D)成分は、25℃雰囲気下の粘度が50000mPa・s以下のポリオール化合物である。ポリオール化合物とは、1分子中に水酸基を2以上有する化合物であり、当該水酸基はフェノールに由来する水酸基は含まない。(D)成分は単体で使用しても2以上を混合して使用しても良い。さらに好ましい粘度は20000mPa・s以下であり、さらに好ましくは15000mPa・s以下であり、特に好ましくは1200mPa・s以下である。50000mPa・sより高い粘度では硬化物の耐剥離性、硬化物折り曲げ性が低下する。なお、粘度の下限値は特に制限されないが、他の成分との分離を抑制したり、ブリードアウトを防止するといった観点から10mPa・s以上であることが好ましく、100mPa・s以上であることがより好ましい。一実施形態では、(D)成分として、25℃雰囲気下の粘度が10~50000mPa・sの、好ましくは100~1200mPa・sのポリオール化合物が用いられる。なお、(D)成分は2以上のポリオールを混合して用いる場合、上記粘度はポリオール化合物全体としての粘度である。
 具体的なポリオール化合物としては、ポリエーテルジオール、ビスフェノールA型ポロピレンオキサイドジオール、プロピレングリコールプロピレンオキサイドエチレンオキサイドジオール、ポリテトラトリオール、ポリエーテルテトラオール、グリセリンポロピレンオキサイドエチレンオキサイドトリオール、ポリカーボネートジオール、ポリカプロラクトンジオール、ポリカプロラクトントリオール、ポリカプロラクトンオリゴマー等が挙げられる。ポリエーテルジオールとしては株式会社ADEKA製のP-400(粘度(25℃):70mPa・s)、P-700(粘度(25℃):110mPa・s)などが、ビスフェノールA型プロピレンオキサイドジオールとして株式会社ADEKA製のBPX-2000(粘度(25℃):500mPa・s)など、プロピレングリコールプロピレンオキサイドエチレンオキサイドジオールとして株式会社ADEKA製のPR-5007(粘度(25℃):2000mPa・s)などが挙げられるが、これらに限定されるものではない。
 ポリエーテルトリオールとしては株式会社ADEKA製のG-300(粘度(25℃):515mPa・s)、G-400(粘度(25℃):350mPa・s)、G-4000(粘度(25℃):660mPa・s)などが、グリセリンプロピレンオキサイドエチレンオキサイドトリオールとして株式会社ADEKA製のAM-702(粘度(25℃):1400mPa・s)などが挙げられるが、これらに限定されるものではない。
 ポリエーテルテトラオールとしては株式会社ADEKA製のEDP-450(粘度(25℃):6250mPa・s)、EDP-1100(粘度(25℃):750mPa・s)などが挙げられるが、これらに限定されるものではない。
 ポリカーボネートジオールとしては、旭化成ケミカル株式会社製のデュラノール(登録商標)シリーズのT5650J(粘度(25℃):4000mPa・s)などが挙げられるが、これらに限定されるものではない。
 ポリカプロラクトンジオールとしては、株式会社ダイセル製のプラクセルシリーズの205(粘度(25℃):1000mPa・s)など、ポリカプロラクトントリオールとしては、プラクセルシリーズの303(粘度(25℃):1300mPa・s)、305(粘度(25℃):1100mPa・s)、308(粘度(25℃):1300mPa・s)など、ポリカプロラクトンオリゴマーとしては株式会社ダイセル製のプラクセルシリーズのL212AL(粘度(25℃):2700mPa・s)、L220AL(粘度(25℃):8000mPa・s)、L320AL(粘度(25℃):10000mPa・s)などが挙げられるが、これらに限定されるものではない。
 本発明では、(A)成分、(B)成分および(D)成分の合計を100質量%としたときに、(D)成分が10~45質量%含まれることを必須とする。(D)成分が10質量%未満であると、引張剪断接着力の保持力が維持されないおそれがある。また、45質量%超であると、90℃雰囲気における硬化性が維持できないおそれがある。
 本発明で使用することができる(E)成分は、有機フィラーである。有機フィラーとは、ゴム、エラストマー、プラスチック、重合体(または共重合体)などから構成される有機物の粉体であればよい。また、コアシェル型などの多層構造を有する有機フィラーでもよい。有機フィラーの平均粒径としては、0.05~50μmの範囲が好ましい。耐久試験における特性を向上させるという観点から、アクリル酸エステルおよび/もしくはメタアクリル酸エステル((メタ)アクリル酸エステル))の重合体もしくは共重合体からなるフィラー、またはスチレン化合物の重合体もしくは共重合体からなるフィラーを含むことが好ましい。
 (E)成分の具体例としては、次のような商品が挙げられるが、これらに限定されるものではない。ブタジエンゴムフィラーの具体例としては、三菱レイヨン株式会社製のメタブレン(登録商標)Eシリーズ、メタブレン(登録商標)Cシリーズなどが挙げられる。上記アクリルゴムフィラーの具体例としては、綜研化学株式会社製のMXシリーズ、三菱レイヨン株式会社製のメタブレン(登録商標)Wシリーズ、アイカ工業株式会社製のゼフィアックシリーズなどが挙げられる。スチレン(ポリスチレン)フィラーの具体例としては、綜研化学株式会社製のSXシリーズとSGPシリーズ、Thermo Fisher Scientific製のChromoSphere-Tシリーズ、Merck Chimie製のEstapor(登録商標)シリーズ、松浦株式会社製のファインパール(登録商標)などが挙げられる。
 また、事前に(A)成分のエポキシ樹脂内に分散された有機フィラーを使用してもよい。具体的には、エポキシ樹脂内にハイパーやホモジナイザーなどの混合撹拌装置により分散されたゴム粒子や、エポキシ樹脂内で乳化重合により合成された有機フィラーがこれに相当する。乳化重合による手法で最終的に形成された有機フィラーの平均粒径は、0.05~50μmの範囲が好ましい。エポキシ樹脂に事前に分散された有機フィラーを使用することにより、熱硬化性樹脂組成物の製造時に成分の取扱いが簡単になるという利点がある。また、エポキシ樹脂が充分に有機フィラーになじむため、時間が経過した時の粘度変化が少なくなる傾向がある。
 (A)成分、(B)成分および(D)成分の合計100質量部に対して、(E)成分は5~50質量部含まれることが好ましい。より好ましくは、10~40質量部である。(E)成分が5質量部より少ないと、耐久試験に対する耐久性が低下する虞がある。一方、(E)成分が50質量部より多いと、粘性が高くなりすぎて、糸引きなどの塗布性の問題が発生する虞がある。
 本発明の熱硬化性樹脂組成物の製造方法は、特に制限されず、例えば各成分を一括で混合する方法や、各成分を順次添加・混合する方法等が挙げられる。中でも、後の硬化をより均一に行うという観点から、(A)成分、(B)成分および(D)とを混合した後、(C)成分、(E)成分の順で添加・混合することが好ましい。
 本発明の熱硬化性樹脂組成物には、本発明の特性を損なわない範囲において、1官能エポキシ化合物(反応性希釈剤)等のモノマー、顔料、染料等の着色剤、金属粉、炭酸カルシウム、ヒュームドシリカ、水酸化アルミニウム等の無機充填剤、難燃剤、可塑剤、酸化防止剤、消泡剤、シラン系カップリング剤、レベリング剤、レオロジーコントロール剤等の添加剤を適量配合してもよい。これらを添加することにより、樹脂強度、接着強さ、作業性、および保存性等の少なくとも1つがより良好な組成物およびその硬化物が得られる。
 本発明の熱硬化性樹脂組成物は、上記構成を有することにより、速硬化性を有すると共に保存安定性に優れる。また、本発明の熱硬化性樹脂組成物は、密着性や強靭性にも優れる。特に、ネオジムマグネットの固定においては、耐久試験後でも安定した固定を可能としていることから、電気・電子分野、車載分野など様々な分野におけるネオジムマグネットの固定の用途に特に好適である。
 本発明の一実施形態は、上記の熱硬化性樹脂組成物を用いたネオジムマグネットの固定方法である。当該方法によれば、様々な温度環境においても安定してネオジムマグネットを固定することができる。
 上記のネオジムマグネットは、ネオジム、鉄、ホウ素を主成分とする希土類マグネット、すなわち、NdFe14Bを主相として有するマグネットである。かようなネオジムマグネットは、電気・電子機器、モーター等において一般的に使用されているものが使用可能である。マグネットの形状も特に制限されず、柱状、筒状、板状、リング状、粒状など、目的に応じて適宜選択することができる。また、上記マグネットは、Ni、Cu等によりメッキ処理されたものであってもよい。
 本発明に係るネオジムマグネットの固定方法では、硬化物が所望の厚さがになるように上記の熱硬化性樹脂組成物をネオジムマグネットの表面または被着体に塗布し、従来公知の手段(例えば、熱風乾燥炉等)を用いて熱硬化させればよい。加熱の条件も特に制限されないが、例えば、50~120℃雰囲気で0.1~10時間である。
 [実施形態]
 本発明の実施形態を以下に例示する。
 1.下記(A)~(D)成分を含み、下記(A)成分、下記(B)成分および下記(D)成分の合計に対して、下記(D)成分を10~45質量%含む熱硬化性樹脂組成物。
(A)成分:エポキシ樹脂
(B)成分:シアネートエステル樹脂
(C)成分:硬化剤
(D)成分:25℃雰囲気下の粘度が50000mPa・s以下のポリオール化合物。
 2.(E)成分として有機フィラーをさらに含む、前記1に記載の熱硬化性樹脂組成物。
 3.前記(C)成分が、下記(C1)成分の変性アミン化合物およびフェノール樹脂を含有してなる硬化剤ならびに(C2)成分の変性アミン化合物およびフェノール樹脂を含有してなる硬化剤を含む前記1または2に記載の熱硬化性樹脂組成物;
(C1)成分:1個以上の3級アミノ基ならびに1個以上の1級アミノ基および2級アミノ基の少なくとも一方を有するポリアミン化合物(C1-A)とエポキシ化合物とを反応させてなる変性アミン化合物
(C2)成分:分子内に3級アミノ基を有さず、反応性を異にする2個の1級アミノ基および2級アミノ基の少なくとも一方を有するポリアミン化合物(C2-A)、ならびに分子内に3級アミノ基を有さず、分子内に2個以上の1級アミノ基および2級アミノ基の少なくとも一方を有し、当該1個のアミノ基がエポキシ基と反応した構造により、残りのアミノ基とエポキシ基との反応性が低下する芳香族ポリアミン、脂環式ポリアミンおよび脂肪族ポリアミンからなる群より選択される少なくとも1種のポリアミン化合物(C2-A)の少なくとも一方と、エポキシ化合物とを反応させてなる、分子内に活性水素を有するアミノ基を1個以上有する変性アミン化合物。
 4.前記(B)成分のシアネートエステル樹脂が、一般式(1)で表される化合物および一般式(2)で表される化合物、ならびにこれらのプレポリマーからなる群より選択される少なくとも1種である、前記1~3のいずれかに記載の熱硬化性樹脂組成物。
 5.前記(B)成分のシアネートエステル樹脂が、一般式(3)で表される化合物、およびこれらのプレポリマーからなる群より選択される少なくとも1種である、前記4に記載の熱硬化性樹脂組成物。
 6.前記(C1)成分の原料となるポリアミン化合物(C1-A)が、一般式(I)で表される化合物、一般式(II)で表される化合物、および一般式(III)で表される化合物からなる群より選択される少なくとも1種である、前記3に記載の熱硬化性樹脂組成物。
 7.前記ポリアミン化合物(C1-A)が、一般式(I-1)で表されるポリアミン化合物である、前記6に記載の熱硬化性樹脂組成物。
 8.前記(C2)成分の原料となるポリアミン化合物(C2-A)が、イソホロンジアミン、p-メンタン-1,8-ジアミン、2,2,4-トリメチルヘキサメチレンジアミン、1,2-ジアミノプロパン、m-キシリレンジアミン、および1,3-ビスアミノメチルシクロヘキサンからなる群より選択される少なくとも1種である、前記3に記載の熱硬化性樹脂組成物。
 9.前記(C1)成分または前記(C2)成分の原料となる前記エポキシ化合物が、分子内にエポキシ基を2個以上有するポリグリシジルエーテル化合物である、前記3に記載の熱硬化性樹脂組成物。
 10.前記(C1)成分または(C2)成分の変性アミン化合物が、それぞれ、前記ポリアミン化合物(C1-A)または(C2-A)が1モルとなる量に対し、エポキシ当量が0.5~2.0当量となる量で前記エポキシ化合物を反応させて得られるものである、前記3に記載の熱硬化性樹脂組成物。
 11.前記(C)成分に含まれるフェノール樹脂の数平均分子量が750~1200である、前記3に記載の熱硬化性樹脂組成物。
 12.前記(C)成分において、前記(C1)成分または前記(C2)成分の変性アミン化合物100質量部に対して、それぞれ、前記フェノール樹脂の使用量が10~100質量部である、前記3に記載の熱硬化性樹脂組成物。
 13.前記(E)成分は、(メタ)アクリル酸エステルの重合体もしくは共重合体、またはスチレン化合物の重合体もしくは共重合体からなるフィラーを含む、前記2に記載の熱硬化性樹脂組成物。
 14.ネオジムマグネットを固定するために使用される前記1~13のいずれか1項に記載の熱硬化性樹脂組成物。
 15.前記1~14のいずれか1項に記載の熱硬化性樹脂組成物を用いたネオジムマグネットの固定方法。
 次に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
 [実施例1~13、比較例1~5]
 実施例1~13および比較例1~5の熱硬化性樹脂組成物を調製するために、下記成分を準備した(以下、熱硬化性樹脂組成物を単に組成物とも呼ぶ)。
(A)成分:エポキシ樹脂
・ビスフェノールA型とF型混合エポキシ樹脂(EXA-835LV DIC株式会社製)(以下、EPと呼ぶ。)
(B)成分:シアネートエステル樹脂
・1,1-ビス(4-シアナトフェニル)エタン(以下、CYと呼ぶ。)
(C)成分:硬化剤
・(C1)成分の変性アミン化合物およびフェノール樹脂を含有してなる第1の硬化剤の調製:フラスコに、N,N-ジメチルアミノプロピルアミン130gを仕込んで80℃に保ちながら、ビスフェノールA型エポキシ樹脂(株式会社ADEKA製 EP-4100E、エポキシ当量190)213g(〔N,N-ジメチルアミノプロピルアミン1モルに対するビスフェノールA型エポキシ樹脂のエポキシ当量1.12〕)を少しずつ加えた。ビスフェノールA型エポキシ樹脂を添加した後、系内を140℃に昇温し、1.5時間反応させて変性アミン化合物を得た。得られた変性アミン化合物100gに対してフェノール樹脂(フェノールとホルマリンとから酸触媒を用いた縮合反応により得られたもの、数平均分子量:800)30gを仕込み、180~190℃、4.0~5.3kPa(30~40Torr)で1時間かけて脱溶媒を行い、潜在性硬化剤(第1の硬化剤)を得た(以下、EH-1と呼ぶ)。
・(C2)成分の変性アミン化合物およびフェノール樹脂を含有してなる第2の硬化剤の調製:フラスコに、1,2-ジアミノプロパン128gを仕込んで60℃に加温した後、ビスフェノールA型エポキシ樹脂(株式会社ADEKA製 EP-4100E、エポキシ当量190)213g(〔1,2-ジアミノプロパン1モルに対するビスフェノールA型エポキシ樹脂のエポキシ当量1.12〕)を、系内温度が100~110℃に保たれるように少しずつ加えた。ビスフェノールA型エポキシ樹脂を全て添加した後、140℃に昇温し、1.5時間反応させて変性ポリアミンを得た。得られた変性ポリアミン100gに対してフェノール樹脂(フェノールとホルマリンとから酸触媒を用いた縮合反応により得られたもの、数平均分子量:800)30gを仕込み、180~190℃、4.0~5.3kPa(30~40Torr)で1時間かけて脱溶媒を行い、潜在性硬化剤(第2の硬化剤)を得た(以下、EH-2と呼ぶ)。
(D)成分:ポリオール化合物
・ポリエーテルジオール(粘度(25℃):70mPa・s、分子量:400)(P-400 株式会社ADEKA製)
・ポリカプロラクトンジオール(粘度(25℃):1000mPa・s、分子量:530)(プラクセル205 株式会社ダイセル製)
・ポリカプロラクトントリオール(粘度(25℃):1300mPa・s、分子量:850)(プラクセル308 株式会社ダイセル製)
・ポリカーボネートジオール(粘度(25℃):4000mPa・s、分子量:800)(デュラノールT5650J 旭化成ケミカルズ株式会社製)
・ビスフェノールA型プロピレンオキサイドジオール(粘度(25℃):500mPa・s、分子量:2000)(BPX-2000 株式会社ADEKA製)
・グリセリンポリプロピレンオキサイドトリオール(粘度(25℃):660mPa・s、分子量:4000)(G-4000 株式会社ADEKA製)
・プロピレングリコールプロピレンオキサイドエチレンオキサイドジオール(粘度(25℃):2000mPa・s、分子量:5000)(PR-5007 株式会社ADEKA製)
・グリセリンプロピレンオキサイドエチレンオキサイドトリオール(粘度(25℃):1400mPa・s、分子量:6800)(AM-702 株式会社ADEKA製)
(D’)成分:(D)成分以外のポリオール化合物
・ポリカーボネートジオール(粘度(25℃):63000mPa・s、分子量:2000)(デュラノールT5652 旭化成ケミカルズ株式会社製)
(E)成分:有機フィラー
・アクリルゴム粒子(平均粒径10μm)(MX-1000 綜研化学株式会社製)
・ポリスチレン粒子(平均粒径6μm)(PB-3006E 松浦株式会社製)
 前記(A)成分、(B)成分および(D)成分を15分間撹拌した後、(E)成分を添加してさらに15分間撹拌した。最後に、(C)成分を添加して30分間撹拌した。詳細な調製量は表1に従い、数値は特記する以外は全て質量部で表記している。また、(D)成分の粘度は、循環恒温槽を用いてカップを25℃に調整したコーンプレート型回転粘度計(E型粘度計)を用いて測定を行った。
Figure JPOXMLDOC01-appb-T000017
 実施例1~6および比較例1~4の熱硬化性樹脂組成物について、保存安定性確認、90℃硬化時間測定、引張剪断接着力測定、および耐ヒートサイクル性確認を実施した。その結果を下記表2にまとめた。
 [保存安定性確認]
 保存安定性は粘度測定により確認を行った。循環恒温槽を用いてカップを25℃に調整したコーンプレート型回転粘度計(E型粘度計)を用いた。初期粘度を測定した後、25℃雰囲気下に放置して5日目に測定を行い、初期粘度の2倍の粘度になるまでの日数を「保存安定性」とした。以下の判断基準から判断を行った。吐出時に安定して使用することができるため、25℃雰囲気において、粘度が2倍に増粘するのが5日以上あることが好ましい。
判断基準
 5日以上:○
 5日未満:×。
 [90℃硬化時間測定]
 90℃に設定したホットプレート上に組成物を塗布し、組成物の表面が硬化するまでの時間を測定した。組成物の表面にタック(べとつき)が無くなる状態になった時間を「90℃硬化時間(秒)」とした。以下の判断基準から判断を行った。硬化時間短縮のため、90℃において10秒未満で硬化することが好ましい。
判断基準
 10秒未満:◎
 10秒以上20秒未満:○
 20秒以上:×。
 [引張剪断接着力測定]
 被着体は、幅25mm×長さ100mm×厚さ1.6mmのSPCC-SD(冷間圧延鋼板 ダル仕上げ)の材料を用いて、2枚の材料を接着面積25mm×10mmで組成物により貼り合わせてクリップで固定した。その後、90℃雰囲気の熱風乾燥炉にて1時間放置して組成物を硬化させてテストピースを作製した。引張速度10mm/minで引っ張って、最大強度を測定して「引張剪断接着力(MPa)」を計算した。詳細は、JIS K 6850:1999に従う。以下の判断基準から判断を行った。安定した接着力を維持するためには、初期接着力として8MPa以上あることが好ましい。
判断基準
 8MPa以上:○
 8MPa未満:×。
 [耐ヒートサイクル性確認]
 耐ヒートサイクル性の確認は、引張剪断接着力測定により行った。被着体は、幅25mm×長さ100mm×厚さ1.6mmのSPCC-SD(冷間圧延鋼板 ダル仕上げ)と幅25mm×長さ100mm×厚さ1.6mmのネオジムマグネット(Niメッキ)を用いて、2枚の材料を接着面積25mm×10mmで組成物により貼り合わせてクリップで固定した。その後、90℃雰囲気の熱風乾燥炉にて1時間放置して組成物を硬化させてテストピースを10個作製した。上記の引張剪断接着力測定と同様の条件で5個のテストピースの接着力を測定し、残りの5個のテストピースをヒートサイクル試験機に投入した。ヒートサイクル条件は、-40℃雰囲気で15分間と100℃雰囲気で15分間を1サイクルとして、100サイクルを連続で行う。終了後に取り出し接着力を測定した。(ヒートサイクル後の接着力平均)/(初期の接着力平均)×100から「保持率(%)」を計算した。以下の評価基準から判断を行った。ネオジムマグネットの安定的な固定に際しては、保持率が50%以上であることが好ましい。
判断基準
 保持率が80%以上:◎
 保持率が50%以上80%未満:○
 保持率が10%以上50%未満:△
 保持率が10%未満:×。
Figure JPOXMLDOC01-appb-T000018
 比較例1、3、4と実施例1~6より、(D)成分の添加量が少ないと保持率が低下する。ネオジムマグネットと接着剤等との膨張収縮の温度依存性が逆の挙動を示すことから、硬化物として可撓性が少ないと、被着体界面で接着力を保持することができないと推測される。可撓性という点では、(A)成分、(B)成分および(D)成分の合計に対して、(D)成分を10~45質量%含む必要がある。また、比較例2は(A)成分を含まない組成物であるが、引張剪断接着力が弱くなる傾向が見られる。
 [実施例7~13、比較例5]
 実施例7~13および比較例5の組成物を調製するために、前記(A)成分、(B)成分および(D)成分(または(D’)成分)とを15分間撹拌した後、(E)成分を添加してさらに15分間撹拌した。最後に、(C)成分を添加して30分間撹拌した。詳細な調製量は表3に従い、数値は全て質量部で表記している。
Figure JPOXMLDOC01-appb-T000019
 実施例1、7~13および比較例4、5の組成物について、90℃硬化時間測定、耐剥離性確認、折り曲げ性確認を実施した。その結果を下記表4にまとめた。
 [耐剥離性確認]
 幅25mm×長さ100mm×厚さ0.5mmのアルミニウム板(A1050P)上に、幅10mm×長さ30mm×厚さ1mmとなるように組成物を塗布した。その後、90℃雰囲気の熱風乾燥炉内にて1時間放置して組成物を硬化させてテストピースを作製した。テストピースが室温に戻ったら、テストピースの中心を基点に90°に湾曲させて、下記の評価基準から耐剥離性を確認した。
評価基準
 ○:硬化物が剥離しない
 ×:硬化物が剥離する。
 [折り曲げ性確認]
 長さ50mm×幅10mm×厚さ1mmの金型に組成物を流し込んで、90℃雰囲気の熱風乾燥炉内にて1時間放置して硬化物を作成した。硬化物を室温に戻してから、硬化物の中心を基点にして180°に折り曲げて変形させた。硬化物に亀裂が発生するまで折り曲げを継続した。下記の評価基準から亀裂が入らなかった回数を評価して「硬化物折り曲げ性」とした。
評価基準
 ◎:11回以上
 ○:4~10回
 ×:1~3回。
Figure JPOXMLDOC01-appb-T000020
 比較例5では、実施例1、7~13の(D)成分を、25℃雰囲気下の粘度が50000mPa・sより大きいポリオールである(D’)成分に変えた。当該成分の違いにより、耐剥離性と硬化物折り曲げ性で大きく特性が異なった。また、比較例5とポリオールを添加していない比較例4は同じレベルの耐剥離性と硬化物折り曲げ性しか発現しなかった。
 ネオジムマグネットは電気・電子分野、車載分野など様々な分野で多用されており、今後も使用用途が広がることが考えられる。それに伴い、安定してネオジムマグネットを固定する接着剤、シール剤の需要が高くなることから、本発明のように耐久試験(耐ヒートサイクル性試験)後においても安定してネオジムマグネットを固定することができる熱硬化性樹脂組成物も、様々な用途に使用される可能性がある。
 なお、本出願は、2014年12月8日に出願された日本特許出願第2014-248363号に基づき、その開示内容は、参照により全体として本開示に引用される。

Claims (15)

  1.  下記(A)~(D)成分を含み、下記(A)成分、下記(B)成分および下記(D)成分の合計に対して、下記(D)成分を10~45質量%含む熱硬化性樹脂組成物。
    (A)成分:エポキシ樹脂
    (B)成分:シアネートエステル樹脂
    (C)成分:硬化剤
    (D)成分:25℃雰囲気下の粘度が50000mPa・s以下のポリオール化合物。
  2.  (E)成分として有機フィラーをさらに含む、請求項1に記載の熱硬化性樹脂組成物。
  3.  前記(C)成分が、下記(C1)成分の変性アミン化合物およびフェノール樹脂を含有してなる硬化剤ならびに(C2)成分の変性アミン化合物およびフェノール樹脂を含有してなる硬化剤を含む請求項1または2のいずれかに記載の熱硬化性樹脂組成物;
    (C1)成分:1個以上の3級アミノ基ならびに1個以上の1級アミノ基および2級アミノ基の少なくとも一方を有するポリアミン化合物(C1-A)とエポキシ化合物とを反応させてなる変性アミン化合物
    (C2)成分:分子内に3級アミノ基を有さず、反応性を異にする2個の1級アミノ基および2級アミノ基の少なくとも一方を有するポリアミン化合物(C2-A)、ならびに分子内に3級アミノ基を有さず、分子内に2個以上の1級アミノ基および2級アミノ基の少なくとも一方を有し、当該1個のアミノ基がエポキシ基と反応した構造により、残りのアミノ基とエポキシ基との反応性が低下する芳香族ポリアミン、脂環式ポリアミンおよび脂肪族ポリアミンからなる群より選択される少なくとも1種のポリアミン化合物(C2-A)の少なくとも一方と、エポキシ化合物とを反応させてなる、分子内に活性水素を有するアミノ基を1個以上有する変性アミン化合物。
  4.  前記(B)成分のシアネートエステル樹脂が、下記一般式(1)で表される化合物および下記一般式(2)で表される化合物、ならびにこれらのプレポリマーからなる群より選択される少なくとも1種である、請求項1~3のいずれか1項に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)中、Rは、非置換、もしくはフッ素原子もしくはシアネート基で置換された2価の炭化水素基、または硫黄原子であり、RおよびRは、それぞれ独立して、非置換または1~4個のアルキル基で置換されたフェニレン基である。)
    Figure JPOXMLDOC01-appb-C000002
    (上記一般式(2)中、nは1以上の整数であり、Rは、それぞれ独立して、水素原子または炭素数1~4のアルキル基であり、Rは、それぞれ独立して、下記一般式(B-1)~(B-9)で表される基である。)
    Figure JPOXMLDOC01-appb-C000003
    (ここで、RおよびRは、それぞれ独立して、水素原子、または非置換もしくはフッ素原子で置換されたメチル基であり、mは4~12の整数である。)
  5.  前記(B)成分のシアネートエステル樹脂が、下記一般式(3)で表される化合物、およびこれらのプレポリマーからなる群より選択される少なくとも1種である、請求項4に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (上記一般式(3)中、Rは、上記一般式(B-1)~(B-9)で表される基であり、Rは、それぞれ独立して、水素原子または非置換もしくはフッ素原子で置換されたメチル基である。)
  6.  前記(C1)成分の原料となるポリアミン化合物(C1-A)が、下記一般式(I)で表される化合物、下記一般式(II)で表される化合物、および下記一般式(III)で表される化合物からなる群より選択される少なくとも1種である、請求項3に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    (上記一般式(I)中、R21およびR22は、それぞれ独立して、非置換またはヒドロキシ基、チオール基、もしくはアミノ基で置換された炭素数1~10のアルキル基であり、この際、R21およびR22は互いに結合して環を形成してもよい。R23は(p+q)価の炭化水素基である。pは1以上の整数であり、qは1または2である。R24は、水素原子、または、非置換またはヒドロキシ基、チオール基、もしくはアミノ基で置換された炭素数1~10のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000006
    (上記一般式(II)中、R31およびR32は、それぞれ独立して、非置換またはヒドロキシ基、チオール基、もしくはアミノ基で置換されたアルキレン基である。R33は、それぞれ独立して、炭素数1~10のアルキル基である。rは1以上の整数である。)
    Figure JPOXMLDOC01-appb-C000007
    (上記一般式(III)中、R41、R42、R43およびR44は、それぞれ独立して、非置換またはヒドロキシ基、チオール基、もしくはアミノ基で置換された炭素数1~10のアルキル基であり、この際、R41およびR42、またはR43およびR44は互いに結合して環を形成してもよい。R45およびR46は、それぞれ独立して、非置換またはヒドロキシ基、チオール基、もしくはアミノ基で置換されたアルキレン基である。sは1以上の整数である。)
  7.  前記ポリアミン化合物(C1-A)が、下記一般式(I-1)で表されるポリアミン化合物である、請求項6に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000008
    (上記一般式(I-1)中、R21およびR22は、それぞれ独立して、非置換またはヒドロキシ基、チオール基、もしくはアミノ基で置換された炭素数1~10のアルキル基であり、この際、R21およびR22は互いに結合して環を形成してもよい。R25は炭素数1~10のアルキレン基である。)
  8.  前記(C2)成分の原料となるポリアミン化合物(C2-A)が、イソホロンジアミン、p-メンタン-1,8-ジアミン、2,2,4-トリメチルヘキサメチレンジアミン、1,2-ジアミノプロパン、m-キシリレンジアミン、および1,3-ビスアミノメチルシクロヘキサンからなる群より選択される少なくとも1種である、請求項3に記載の熱硬化性樹脂組成物。
  9.  前記(C1)成分または前記(C2)成分の原料となる前記エポキシ化合物が、分子内にエポキシ基を2個以上有するポリグリシジルエーテル化合物である、請求項3に記載の熱硬化性樹脂組成物。
  10.  前記(C1)成分または(C2)成分の変性アミン化合物が、それぞれ、前記ポリアミン化合物(C1-A)または(C2-A)が1モルとなる量に対し、エポキシ当量が0.5~2.0当量となる量で前記エポキシ化合物を反応させて得られるものである、請求項3に記載の熱硬化性樹脂組成物。
  11.  前記(C)成分に含まれるフェノール樹脂の数平均分子量が750~1200である、請求項3に記載の熱硬化性樹脂組成物。
  12.  前記(C)成分において、前記(C1)成分または前記(C2)成分の変性アミン化合物100質量部に対して、それぞれ、前記フェノール樹脂の使用量が10~100質量部である、請求項3に記載の熱硬化性樹脂組成物。
  13.  前記(E)成分は、(メタ)アクリル酸エステルの重合体もしくは共重合体、またはスチレン化合物の重合体もしくは共重合体からなるフィラーを含む、請求項2に記載の熱硬化性樹脂組成物。
  14.  ネオジムマグネットを固定するために使用される請求項1~13のいずれか1項に記載の熱硬化性樹脂組成物。
  15.  請求項1~14のいずれか一項に記載の熱硬化性樹脂組成物を用いるネオジムマグネットの固定方法。
PCT/JP2015/084450 2014-12-08 2015-12-08 熱硬化性樹脂組成物 WO2016093253A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016563698A JP6659964B2 (ja) 2014-12-08 2015-12-08 熱硬化性樹脂組成物
CN201580065282.6A CN107001593B (zh) 2014-12-08 2015-12-08 热固化性树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-248363 2014-12-08
JP2014248363 2014-12-08

Publications (1)

Publication Number Publication Date
WO2016093253A1 true WO2016093253A1 (ja) 2016-06-16

Family

ID=56107430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084450 WO2016093253A1 (ja) 2014-12-08 2015-12-08 熱硬化性樹脂組成物

Country Status (3)

Country Link
JP (1) JP6659964B2 (ja)
CN (1) CN107001593B (ja)
WO (1) WO2016093253A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021879A1 (ja) * 2017-07-28 2019-01-31 株式会社カネカ エポキシ樹脂組成物
JPWO2018159267A1 (ja) * 2017-02-28 2019-12-26 株式会社スリーボンド エポキシ樹脂組成物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186693A (ja) * 2005-12-16 2007-07-26 Mitsubishi Gas Chem Co Inc エポキシ樹脂用硬化剤組成物及びエポキシ樹脂組成物
JP2007186547A (ja) * 2006-01-11 2007-07-26 Adeka Corp エポキシ樹脂用硬化剤組成物および一成分系加熱硬化性エポキシ樹脂組成物
WO2009001658A1 (ja) * 2007-06-22 2008-12-31 Adeka Corporation 一液型シアネート-エポキシ複合樹脂組成物
JP2010180352A (ja) * 2009-02-06 2010-08-19 Denso Corp 迅速光硬化性エポキシ系接着剤組成物及び接合方法
WO2011158362A1 (ja) * 2010-06-17 2011-12-22 リケンテクノス株式会社 二液型硬化性エポキシ樹脂組成物および積層体
WO2012081192A1 (ja) * 2010-12-17 2012-06-21 株式会社Adeka マスターバッチ型エポキシ樹脂用潜在性硬化剤及びそれを用いたエポキシ樹脂組成物
JP2015174959A (ja) * 2014-03-17 2015-10-05 株式会社Adeka 熱反応性樹脂組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494981A (en) * 1995-03-03 1996-02-27 Minnesota Mining And Manufacturing Company Epoxy-cyanate ester compositions that form interpenetrating networks via a Bronsted acid
JP5426477B2 (ja) * 2010-05-24 2014-02-26 パナソニック株式会社 難燃性樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及びプリント配線板
CN103081301B (zh) * 2010-09-02 2016-10-12 住友电木株式会社 转子中使用的固定用树脂组合物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186693A (ja) * 2005-12-16 2007-07-26 Mitsubishi Gas Chem Co Inc エポキシ樹脂用硬化剤組成物及びエポキシ樹脂組成物
JP2007186547A (ja) * 2006-01-11 2007-07-26 Adeka Corp エポキシ樹脂用硬化剤組成物および一成分系加熱硬化性エポキシ樹脂組成物
WO2009001658A1 (ja) * 2007-06-22 2008-12-31 Adeka Corporation 一液型シアネート-エポキシ複合樹脂組成物
JP2010180352A (ja) * 2009-02-06 2010-08-19 Denso Corp 迅速光硬化性エポキシ系接着剤組成物及び接合方法
WO2011158362A1 (ja) * 2010-06-17 2011-12-22 リケンテクノス株式会社 二液型硬化性エポキシ樹脂組成物および積層体
WO2012081192A1 (ja) * 2010-12-17 2012-06-21 株式会社Adeka マスターバッチ型エポキシ樹脂用潜在性硬化剤及びそれを用いたエポキシ樹脂組成物
JP2015174959A (ja) * 2014-03-17 2015-10-05 株式会社Adeka 熱反応性樹脂組成物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018159267A1 (ja) * 2017-02-28 2019-12-26 株式会社スリーボンド エポキシ樹脂組成物
JP7152671B2 (ja) 2017-02-28 2022-10-13 株式会社スリーボンド エポキシ樹脂組成物
WO2019021879A1 (ja) * 2017-07-28 2019-01-31 株式会社カネカ エポキシ樹脂組成物
JPWO2019021879A1 (ja) * 2017-07-28 2020-06-11 株式会社カネカ エポキシ樹脂組成物
JP7199354B2 (ja) 2017-07-28 2023-01-05 株式会社カネカ エポキシ樹脂組成物

Also Published As

Publication number Publication date
JPWO2016093253A1 (ja) 2017-09-14
JP6659964B2 (ja) 2020-03-04
CN107001593A (zh) 2017-08-01
CN107001593B (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
JP5415947B2 (ja) 一液型シアネート−エポキシ複合樹脂組成物
JP5475223B2 (ja) 一液型シアネート−エポキシ複合樹脂組成物、その硬化物及びその製造方法、並びにそれを用いた封止用材料及び接着剤
JP5603610B2 (ja) 無溶剤一液型シアン酸エステル−エポキシ複合樹脂組成物
TWI465477B (zh) A liquid cyanate ester - epoxy composite resin composition
JP5355113B2 (ja) 一液型シアン酸エステル−エポキシ複合樹脂組成物
EP2826801B1 (en) Amines and polymeric phenols and usage thereof as curing agents in one component epoxy resin compositions
JP5876414B2 (ja) 潜在性硬化剤組成物及び一液硬化性エポキシ樹脂組成物
JP2009013205A (ja) 一液型シアネート−エポキシ複合樹脂組成物
JP6659964B2 (ja) 熱硬化性樹脂組成物
JP2018009048A (ja) 一液型シアン酸エステル−エポキシ複合樹脂組成物
JP6536407B2 (ja) 熱硬化性樹脂組成物
JP2017186453A (ja) エポキシ化合物、エポキシ化合物含有組成物及びその硬化物
JP2022515712A (ja) 低い硬化温度及び良好な貯蔵安定性を有する熱硬化性エポキシ樹脂組成物
JP2011006499A (ja) エポキシ樹脂硬化剤及びエポキシ樹脂組成物
WO2018047799A1 (ja) エポキシ化合物、エポキシ化合物の製造方法、エポキシ化合物含有組成物、塗料及び硬化物
JP2024011763A (ja) エポキシ樹脂組成物、硬化性樹脂組成物、硬化性樹脂組成物の硬化物、接着構造体、及び接着性付与剤
TWI425021B (zh) A liquid cyanide-epoxy composite resin composition, a hardened product thereof and a method for producing the same, and a sealing material and an adhesive
JPH11166107A (ja) エポキシ樹脂組成物
JPWO2019058970A1 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JPWO2020116467A1 (ja) 熱硬化性樹脂組成物及びシート
JP2011074288A (ja) 熱硬化性樹脂、及びそれを含む熱硬化性樹脂組成物、並びにそれらから得られる成形体、硬化体
Reynolds et al. High T g epoxy systems for composite applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563698

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867307

Country of ref document: EP

Kind code of ref document: A1