WO2016092725A1 - 透明樹脂組成物、該組成物からなる接着剤、該組成物からなるダイボンド材、該組成物を用いた導電接続方法、及び該方法によって得られた光半導体装置 - Google Patents

透明樹脂組成物、該組成物からなる接着剤、該組成物からなるダイボンド材、該組成物を用いた導電接続方法、及び該方法によって得られた光半導体装置 Download PDF

Info

Publication number
WO2016092725A1
WO2016092725A1 PCT/JP2015/005189 JP2015005189W WO2016092725A1 WO 2016092725 A1 WO2016092725 A1 WO 2016092725A1 JP 2015005189 W JP2015005189 W JP 2015005189W WO 2016092725 A1 WO2016092725 A1 WO 2016092725A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
transparent resin
component
composition
optical semiconductor
Prior art date
Application number
PCT/JP2015/005189
Other languages
English (en)
French (fr)
Inventor
諭 小内
利之 小材
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN201580066759.2A priority Critical patent/CN107001546B/zh
Priority to KR1020177009396A priority patent/KR102340593B1/ko
Publication of WO2016092725A1 publication Critical patent/WO2016092725A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/068Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/148Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/76Apparatus for connecting with build-up interconnects
    • H01L2224/7625Means for applying energy, e.g. heating means
    • H01L2224/76264Means for applying energy, e.g. heating means by induction heating, i.e. coils
    • H01L2224/76265Means for applying energy, e.g. heating means by induction heating, i.e. coils in the lower part of the bonding apparatus, e.g. in the apparatus chuck

Definitions

  • the present invention relates to a transparent resin composition, an adhesive made of the composition, a die bond material made of the composition, a conductive connection method using the composition, and an optical semiconductor device obtained by the method.
  • an optical semiconductor element such as a light emitting diode (LED) has an excellent characteristic of low power consumption, it is increasingly applied to an optical semiconductor device for outdoor lighting or automobile use.
  • an optical semiconductor device light emitted from an optical semiconductor light emitting element that generally emits blue light, near ultraviolet light, or ultraviolet light is wavelength-converted by a phosphor that is a wavelength conversion material so that a pseudo white color can be obtained.
  • a light emitting device is a light emitting diode
  • the vertical type optical semiconductor element has electrodes arranged in a vertical structure, and is also simply called a vertical type LED chip.
  • the vertical LED chip allows a current to flow uniformly in the light emitting layer, and can pass a current several tens of times higher than a horizontal LED chip of the same size, which has a structure in which electrodes are horizontally arranged.
  • the temperature rise of the light emitting layer can be suppressed and the light emission efficiency can be increased.
  • it since it has excellent features such as suppressing an increase in local current density seen in horizontal LED chips and making it possible to increase the current of the LED, its practical use is progressing.
  • the vertical LED chip has electrodes arranged in a vertical structure as described above, when the vertical LED chip is mounted on a wiring board, one electrode is wire-bonded as before.
  • the other electrode needs to be electrically connected using a method such as eutectic solder or a conductive adhesive.
  • a conductive adhesive in which conductive particles are blended with a eutectic solder or an epoxy resin composition has been widely used.
  • the method using eutectic solder is not preferable because the solder necessary for die bonding is melted and the light emitting layer of the optical semiconductor is damaged by heat.
  • conductive adhesives in which conductive particles are blended with the eutectic solder or epoxy resin composition described above have a problem in that light reflection is not sufficient and light extraction efficiency is poor.
  • the die bond material is required to have high transparency from the viewpoint of the degree of freedom of design when an optical semiconductor device is used.
  • a conductive adhesive for example, in Patent Document 1, a bisphenol A type epoxy resin or a bisphenol F type epoxy resin and an alicyclic epoxy resin are used in combination, and a benzotriazole derivative is added as an ultraviolet absorber.
  • a conductive adhesive having improved light resistance to light in the vicinity of 450 to 500 nm has been proposed.
  • the composition in this invention contains many white titanium oxides and colored electroconductive particles, it does not become a highly transparent adhesive.
  • Patent Document 2 discloses specific conductive powder, organopolysiloxane having (3,5-diglycidyl isocyanuryl) alkyl group, and a curing catalyst that reacts with glycidyl group (amine curing agent, phenol curing agent, acid A die bond material for an optical semiconductor element containing an anhydride-based curing agent) has been proposed.
  • a curing catalyst that reacts with glycidyl group
  • a die bond material for an optical semiconductor element containing an anhydride-based curing agent has been proposed.
  • an organic group typified by an isocyanuryl group is deteriorated by light of a short wavelength and discolors and decomposes with time.
  • 350 to 800 parts by mass of conductive particles are added to 100 parts by mass of the resin components in total, so that the adhesive is not highly transparent.
  • Patent Document 3 includes (a) (meth) acrylic acid alkyl ester-butadiene-styrene copolymer or composite, and at least selected from the group consisting of silicone- (meth) acrylic acid copolymer or composite.
  • An organic fine particle containing one kind, (b) a radical polymerizable compound, (c) a radical polymerization initiator, and (h) conductive particles, and (h) the content of the conductive particles is an adhesive.
  • An adhesive composition that is 0.1 to 30% by volume based on the total solid content of the composition, and a film adhesive made of the adhesive composition have been proposed.
  • the radically polymerizable compound (b) contains an organic group typified by a glycidyl group, which is deteriorated by light of a short wavelength, causing a problem of discoloration and decomposition over time.
  • the conductive particles are contained in an amount of 0.1 to 30% by volume based on the total solid content of the adhesive composition, but no description of the light transmittance and transparency of the cured product is found, and As a result of verification by the present inventors, a highly transparent material is not obtained with an addition amount in this range.
  • the average particle diameter of the conductive particles is preferably 1 to 18 ⁇ m from the viewpoint of obtaining good dispersibility and conductivity.
  • the conductive resin material has a thick BLT (bond line thickness) when the optical semiconductor element is die-bonded (conductively connected) to the wiring board, resulting in poor heat dissipation and is not a useful highly transparent die-bond material.
  • the present invention has been made in view of the above problems, and has an object to provide a transparent resin composition that provides a cured product that is highly transparent, has excellent adhesive strength and workability, and has heat resistance and light resistance. To do. Another object of the present invention is to provide an adhesive made of the composition, a die bond material made of the composition, a conductive connection method using the composition, and an optical semiconductor device obtained by the method.
  • a transparent resin composition comprising: (A) (A-1) Organopolysiloxane having at least one structure represented by the following general formula (1) in the molecule: 100 parts by mass [Wherein, m is any one of 0, 1, 2; R 1 is a hydrogen atom, a phenyl group or a halogenated phenyl group; R 2 is a hydrogen atom or a methyl group; and R 3 is substituted or unsubstituted and is the same or A monovalent organic group having 1 to 12 carbon atoms which may be different, Z 1 is —R 4 —, —R 4 —O—, —R 4 (CH 3 ) 2 Si—O— (R 4 is substituted or non-substituted) Z 2 is an oxygen atom or a substituted or unsubstituted divalent organic group having 1 to 10 carbon atoms that may be the same or different.
  • A-2) Organic peroxide: a silicone composition containing 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the component (A-1); (B) contains conductive particles having an average particle size of 1 ⁇ m or less, The content of the component (B) is greater than 0% by volume and less than 0.1% by volume based on the solid content of the component (A),
  • the transparent resin composition is characterized in that the 2 mm-thick cured product obtained by curing the transparent resin composition has a total light transmittance of 70% or more and a haze value of 60% or less.
  • Such a transparent resin composition can give a cured product that is highly transparent, excellent in adhesive strength and workability, and excellent in heat resistance and light resistance.
  • Z 1 is preferably —R 4 —, and Z 2 is preferably an oxygen atom.
  • Z 1 is —R 4 —O— or —R 4 (CH 3 ) 2 Si—O—, and the Z 2 is substituted or unsubstituted and is the same Or it is preferably a divalent organic group having 1 to 10 carbon atoms which may be different.
  • the (A-1) component and the free radicals generated when the (A-2) component decomposes effectively react, and have excellent adhesive strength and workability.
  • a cured product having excellent heat resistance and light resistance can be obtained.
  • the organopolysiloxane as the component (A-1) preferably has at least one structure represented by the following general formula (2) in the molecule. (In the formula, m, R 1 , R 2 , R 3 and R 4 are the same as above.)
  • a cured product having excellent heat resistance and light resistance can be obtained.
  • the organopolysiloxane of the component (A-1) preferably has 0.1 mol% or more of (SiO 2 ) units.
  • a cured product having excellent heat resistance and light resistance can be obtained.
  • the present invention further provides an adhesive comprising the transparent resin composition of the present invention.
  • Such an adhesive can be suitably used as an adhesive for mounting the LED chip on the wiring board.
  • the present invention provides a die bond material characterized by comprising the transparent resin composition of the present invention.
  • Such a die bond material can be suitably used as a die bond material for mounting an LED chip on a wiring board.
  • a cured product obtained by curing the die bond material is used when a BLT (Bond line thickness) is 5 ⁇ m or less.
  • Such a die-bonding material can reliably achieve conductive connection between the optical semiconductor element and the substrate.
  • the present invention provides a conductive connection method characterized by conductively connecting an optical semiconductor element and a substrate with a BLT of 5 ⁇ m or less using the transparent resin composition of the present invention.
  • Such a conductive connection method can reliably achieve a conductive connection between the optical semiconductor element and the substrate.
  • the present invention provides an optical semiconductor device characterized in that the optical semiconductor element and the substrate are conductively connected by the conductive connection method of the present invention.
  • the transparent resin composition of the present invention is highly transparent, has excellent adhesive strength and workability, and can give a cured product having excellent heat resistance and light resistance. Moreover, according to the conductive connection method of the present invention, the conductive connection between the optical semiconductor element and the substrate can be reliably achieved. Therefore, the optical semiconductor device obtained by the conductive connection method of the present invention has high light extraction efficiency, heat resistance and light resistance, and the conductive connection is reliably achieved.
  • the transparent resin composition of the present invention is highly transparent, has excellent adhesive strength and workability, and can give a cured product having heat resistance and light resistance. Therefore, the transparent resin composition of the present invention can be suitably used as an adhesive and a die bond material. Such an adhesive and a die bond material can be suitably used as an adhesive for mounting an LED chip, particularly a vertical LED chip, on a wiring board. Moreover, according to the conductive connection method of the present invention, the conductive connection between the optical semiconductor element and the substrate can be reliably achieved. Therefore, the optical semiconductor device obtained by the conductive connection method of the present invention has high light extraction efficiency, heat resistance and light resistance, and the conductive connection is reliably achieved. Moreover, the transparent resin composition of this invention can function also as a highly transparent anisotropic conductive composition.
  • a transparent resin composition containing the following components (A) to (B), wherein the content of the component (B) is greater than 0% by volume based on the solid content of the component (A), In addition, it is a range of less than 0.1% by volume, and the 2 mm-thick cured product obtained by curing the transparent resin composition has a total light transmittance of 70% or more and a haze value of 60% or less.
  • the present inventors have found that a resin composition can solve the above problems and have completed the present invention.
  • the transparent resin composition of the present invention is (A) (A-1) Organopolysiloxane having at least one structure represented by the following general formula (1) in the molecule: 100 parts by mass [Wherein, m is any one of 0, 1, 2; R 1 is a hydrogen atom, a phenyl group or a halogenated phenyl group; R 2 is a hydrogen atom or a methyl group; and R 3 is substituted or unsubstituted and is the same or A monovalent organic group having 1 to 12 carbon atoms which may be different, Z 1 is —R 4 —, —R 4 —O—, —R 4 (CH 3 ) 2 Si—O— (R 4 is substituted or non-substituted) Z 2 is an oxygen atom or a substituted or unsubstituted divalent organic group having 1 to 10 carbon atoms that may be the same or different.
  • R 1 is a hydrogen atom, a phenyl group or a halogenated phen
  • A-2) Organic peroxide: a silicone composition containing 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the component (A-1); (B) contains conductive particles having an average particle size of 1 ⁇ m or less, The content of the component (B) is greater than 0% by volume and less than 0.1% by volume based on the solid content of the component (A), The 2 mm thick cured product obtained by curing the transparent resin composition has a total light transmittance of 70% or more and a haze value of 60% or less.
  • the transparent resin composition of the present invention has a total light transmittance of 70% or more, preferably 80% or more when the composition is a cured product having a thickness of 2 mm.
  • the total light transmittance is 70% or more
  • the transparent resin composition after curing can maintain a highly transparent state.
  • the total light transmittance is less than 70%, it means that the cured transparent resin composition is colored or turbid, and the cured product is not highly transparent.
  • the upper limit of the total light transmittance is not particularly limited, and a larger value is preferable because the cured product becomes transparent and does not hinder the extraction of light from the LED device.
  • the transparent resin composition of the present invention has a haze value of 60% or less when the composition is a cured product having a thickness of 2 mm, which means that the cured product has a transparent to translucent haze. means.
  • the haze value is preferably 40% or less. When the haze value exceeds 60%, the cured product is cloudy and there are many fine particles that scatter light, and it is not highly transparent. A haze value of 60% or less is preferable because it does not hinder the extraction of light from the LED device.
  • the lower limit of the haze value is not particularly limited. A smaller haze value is preferable because the cured product is less cloudy, that is, transparent and does not hinder the extraction of light from the LED device.
  • the silicone composition comprises 0.1 to 10 parts by weight of the above component (A-1) with respect to 100 parts by weight and the above (A-2) with respect to 100 parts by weight of the total amount of the component (A-1). Including mass parts.
  • the organopolysiloxane as component (A-1) is an organopolysiloxane having at least one structure represented by the following general formula (1) in the molecule.
  • m is any one of 0, 1, 2;
  • R 1 is a hydrogen atom, a phenyl group or a halogenated phenyl group;
  • R 2 is a hydrogen atom or a methyl group; and
  • R 3 is substituted or unsubstituted and is the same or
  • Z 1 is —R 4 —, —R 4 —O—, —R 4 (CH 3 ) 2 Si—O— (R 4 is substituted or non-substituted)
  • Z 2 is an oxygen atom or a substituted or unsubstituted divalent organic group having 1 to 10 carbon atoms that may be the same or different.
  • Organic group.
  • the combination of Z 1 and Z 2 in the organopolysiloxane of component (A-1) includes those in which Z 1 is —R 4 — and Z 2 is an oxygen atom, or Z 1 is —R 4 —.
  • Preferred is O— or —R 4 (CH 3 ) 2 Si—O—, wherein Z 2 is a substituted or unsubstituted divalent organic group having 1 to 10 carbon atoms which may be the same or different.
  • the component (A-1) and free radicals generated when the component (A-2) decomposes effectively react A cured product having excellent adhesive strength and workability and excellent heat resistance and light resistance can be obtained.
  • the organopolysiloxane as the component (A-1) preferably has 0.1 mol% or more of (SiO 2 ) units.
  • the component (A-1) reacts more effectively with free radicals generated when the component (A-2) is decomposed. Further, a cured product having excellent adhesive strength and workability, and excellent heat resistance and light resistance can be obtained.
  • the organopolysiloxane as the component (A-1) preferably has at least one structure represented by the following general formula (2) in the molecule.
  • the component (A-1) reacts more effectively with free radicals generated when the component (A-2) is decomposed. Further, a cured product having excellent adhesive strength and workability, and excellent heat resistance and light resistance can be obtained.
  • m, R 1 , R 2 , R 3 and R 4 are the same as above.
  • the component (A-1) organopolysiloxane is preferably a liquid or solid branched or three-dimensional networked organopolysiloxane having a viscosity at 25 ° C. of 10 mPa ⁇ s or more.
  • the substituted or unsubstituted monovalent organic group which may be the same or different and bonded to the silicon atom represented by R 3 usually has 1 to 12 carbon atoms, preferably about 1 to 8 carbon atoms.
  • the divalent organic group which may be the same or different in substituted or unsubstituted represented by R 4 is specifically carbon such as methylene group, ethylene group, propylene group and butylene group.
  • Examples thereof include divalent hydrocarbon groups such as an alkylene group having 1 to 10 atoms, and an alkylene group having 1 to 3 carbon atoms is preferable.
  • component (A-1) organopolysiloxane examples are shown below.
  • Me represents a methyl group.
  • This component may be a single component or may be used in combination with other components.
  • the group corresponding to R 3 in the above formula (1) exemplifies the case of a methyl group, but other groups (substituted or unsubstituted, the same or different carbon number 1 To a monovalent organic group of ⁇ 12).
  • a reactive diluent containing silicone or a reactive diluent not containing silicone as shown below is added to the component (A-1). I can do it.
  • the reactive diluent containing silicone include organopolysiloxanes represented by the following formulas (3) to (7). (In the following formula, Me represents a methyl group.) This component may be a single component or a combination of other components.
  • organohydrogensilane shown below, (In the formula, m, R 1 , R 2 , R 3 and Z 1 are the same as above.)
  • Siloxane may be hydrosilylated in the presence of a chloroplatinic acid catalyst, and a method suitable for the present invention can be produced by this method, but the synthesis method is not limited to the above.
  • the organopolysiloxane containing an aliphatic unsaturated group can be produced by a known method such as (co) hydrolysis condensation of an alkoxysilane containing an organoalkoxysilane having an aliphatic unsaturated group. It may be used.
  • Reactive diluents that do not contain silicone include (meth) acrylates as represented by H 2 C ⁇ CGCO 2 R 5 , where G is hydrogen, halogen, 1 to 4 carbon atoms R 5 is any one of an alkyl group having 1 to 16 carbon atoms, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkaryl group, an aralkyl group, and an aryl group; Any of these can be optionally substituted with silicon, oxygen, halogen, carbonyl, hydroxyl, ester, carboxylic acid, urea, urethane, carbamate, amine, amide, sulfur, sulfonate, sulfone, and the like.
  • Particularly desirable (meth) acrylates as reactive diluents include bisphenol-A di (meth) acrylates such as polyethylene glycol di (meth) acrylate, ethoxylated bisphenol-A (meth) acrylate ("EBIPA” or "EBIPMA”).
  • bisphenol-A di (meth) acrylates such as polyethylene glycol di (meth) acrylate, ethoxylated bisphenol-A (meth) acrylate (“EBIPA” or "EBIPMA”).
  • the addition amount is preferably in the range of 0.01 to 30% by mass, and more preferably in the range of 0.05 to 10% by mass.
  • the transparent resin composition of the present invention may also include other components that modify the cured or uncured properties as desired in a particular application.
  • it may contain an adhesion promoter such as (meth) acryloxypropyltrimethoxysilane, trialkyl- or triallyl-isocyanurate, glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane and the like, about 20% by weight It is preferable to include the amount up to.
  • Other optional ingredients include non- (meth) acrylic silicone diluents or plasticizers, preferably including up to about 30% by weight.
  • Non- (meth) acryl silicones include trimethylsilyl-terminated oil having a viscosity of 100 to 500 mPa ⁇ s, and silicone rubber.
  • Non- (meth) acryl silicones may contain co-curable groups such as vinyl groups.
  • the organic peroxide as component (A-2) is a component that is blended to form a transparent resin composition of the present invention into a desired shape and then cure it by a crosslinking reaction by applying a heat treatment.
  • the connection temperature, connection time, pot life, etc. are appropriately selected.
  • the organic peroxide preferably has a half-life of 10 hours at a temperature of 40 ° C or higher and a half-life of 1 minute at a temperature of 180 ° C or lower. It is more preferable that the temperature for 10 hours is 60 ° C. or higher and the temperature for half-life of 1 minute is 170 ° C. or lower. Further, the organic peroxide preferably has a chlorine ion or organic acid content of 5000 ppm or less in order to prevent corrosion of circuit electrodes (connection terminals) of the circuit member, and further, organic peroxide generated after thermal decomposition. Those with less acid are more preferred.
  • hydrocarbon groups bonded to silicon atoms in the component (A-1) or vinyl groups and allyl groups in the component (A-1) by free radicals generated by thermal decomposition of the organic peroxide bondsing reaction between alkenyl groups such as the above occurs to form a crosslinked cured product.
  • organic peroxide all known ones used for radical polymerization reactions and the like can be used. Specifically, diacyl peroxide, dialkyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, One or more selected from the group consisting of hydroperoxide and silyl peroxide is preferably used. Among these, one or more selected from the group consisting of peroxyesters, dialkyl peroxides, and hydroperoxides are preferable in order to further suppress corrosion of the connection structure of the circuit member and the connection terminals in the semiconductor device.
  • diacyl peroxide examples include isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic peroxide , Benzoylperoxytoluene and benzoyl peroxide. These are used singly or in combination of two or more.
  • dialkyl peroxide examples include ⁇ , ⁇ ′-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane and t -Butylcumyl peroxide. These are used singly or in combination of two or more.
  • peroxydicarbonate examples include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, di-2-ethoxymethoxyperoxydicarbonate, Bis (2-ethylhexylperoxy) dicarbonate, dimethoxybutylperoxydicarbonate and bis (3-methyl-3-methoxybutylperoxy) dicarbonate can be mentioned. These are used singly or in combination of two or more.
  • peroxyesters examples include cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t -Hexylperoxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis ( 2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethyl Hexanoate, t-butylperoxyisobutyrate, 1,1-bis (t-butylperoxy) cycle Hexane
  • peroxyketals examples include 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis ( t-Butylperoxy) -3,3,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane and 2,2-bis (t-butylperoxy) decane. These are used singly or in combination of two or more.
  • hydroperoxide examples include diisopropylbenzene hydroperoxide and cumene hydroperoxide. These are used singly or in combination of two or more.
  • silyl peroxide examples include t-butyltrimethylsilyl peroxide, bis (t-butyl) dimethylsilyl peroxide, t-butyltrivinylsilyl peroxide, bis (t-butyl) divinylsilyl peroxide, tris (t- Examples include butyl) vinylsilyl peroxide, t-butyltriallylsilyl peroxide, bis (t-butyl) diallylsilyl peroxide, and tris (t-butyl) allylsilyl peroxide. These are used singly or in combination of two or more.
  • the amount of component (A-2) added is 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the total amount of organopolysiloxane of component (A-1).
  • the addition amount is less than 0.1 parts by mass, the reaction may not proceed sufficiently.
  • the amount exceeds 10 parts by mass desired physical properties after curing, that is, sufficient heat resistance and light resistance may not be obtained.
  • the component (B) constituting the transparent resin composition of the present invention is conductive particles having an average particle size of 1 ⁇ m or less.
  • the conductive particles are preferably conductive nanoparticles having a primary particle size of 100 nm or less.
  • the average particle diameter exceeds 1 ⁇ m, the BLT described later does not become 5 ⁇ m or less due to the influence of coarse particles, and it is difficult to obtain stable conductivity.
  • metal particles such as a metal nanoparticle, electroconductive inorganic oxide, etc. can be used, and it can use individually or in mixture of 2 or more types. Examples of the preferable shape of the particles include a spherical shape, a flake shape, a needle shape, and an amorphous shape, but are not limited thereto.
  • the average particle diameter in the present invention is the median diameter (D 50 ) in the volume-based particle size distribution, and the D 50 value is obtained from the particle size distribution obtained by the laser diffraction / scattering method, and is also a scanning electron microscope (SEM) or the like. Can be calculated from the observed particle image.
  • metal particles examples include gold, nickel, copper, silver, solder, palladium, aluminum, alloys thereof, multilayered products thereof (for example, nickel plating / gold flash plating products), and the like.
  • silver is preferable because it is less affected by coloring due to conductive particles.
  • inorganic particles such as an inorganic oxide
  • a conductive inorganic oxide can be used.
  • inorganic particles imparted with conductivity include ITO (indium-tin oxide), ATO (tin-antimony oxide), titanium oxide (TiO 2 ), and boron nitride (BN).
  • Zinc oxide (ZnO) Zinc oxide
  • inorganic particles such as inorganic glass provided with conductivity (for example, coated with a metal material).
  • ITO, ATO, and silicon oxide imparted with conductivity which are easily transparent when dispersed in the resin composition, are preferable.
  • the conductive inorganic oxide coating layer only needs to have conductivity, and may be one in which inorganic particles such as inorganic oxide are coated with a metal material such as silver, or tin oxide is doped with antimony. Alternatively, a conductive coating layer such as indium oxide doped with tin may be provided. Examples of the shape of the inorganic particles include amorphous, spherical, scale-like, and needle-like shapes.
  • the content of the component (B) is in the range of greater than 0% by volume and less than 0.1% by volume based on the solid content (solid content volume) of the component (A).
  • the range is preferably 0.001 to 0.08% by volume, more preferably 0.01 to 0.05% by volume.
  • the content of the component (B) is 0.1% by volume or more, the high transparency of the transparent resin composition of the present invention is impaired, leading to a decrease in total light transmittance and an increase in haze value. It cannot be made into a conductive cured product. Furthermore, it becomes a cause of reducing the light extraction efficiency from the LED device.
  • antioxidants such as 2,6-di-t-butyl-4-methylphenol are used in the present invention.
  • the transparent resin composition can be blended.
  • light stabilizers such as a hindered amine stabilizer, can also be mix
  • inorganic fillers such as fumed silica and nano alumina may be further blended. As needed, you may mix
  • a solvent or the like for the purpose of improving workability.
  • the type of the solvent is not particularly limited, and a solvent that can dissolve the resin composition before curing, disperse the conductive particles well, and provide a uniform die-bonding material or an adhesive can be used. What is necessary is just to adjust suitably the mixture ratio of this solvent according to the working conditions, environment, use time, etc. which use a die-bonding material.
  • Two or more solvents may be used in combination. Examples of such a solvent include butyl carbitol acetate, carbitol acetate, methyl ethyl ketone, ⁇ -terpineol, and cellosolve acetate.
  • the transparent resin composition of the present invention may contain an adhesion-imparting agent for improving the adhesion.
  • the adhesion-imparting agent include silane coupling agents and hydrolysis condensates thereof.
  • silane coupling agents epoxy group-containing silane coupling agents, (meth) acrylic group-containing silane coupling agents, isocyanate group-containing silane coupling agents, isocyanurate group-containing silane coupling agents, amino group-containing silane coupling agents
  • known ones such as mercapto group-containing silane coupling agents are used, preferably 0.1 to 20 parts by weight, more preferably 0.3 to 10 parts by weight, based on 100 parts by weight of component (A). Can do.
  • the transparent resin composition of the present invention can be produced by mixing each of the above components using a known mixing method, for example, a mixer, a roll or the like.
  • the transparent resin composition of the present invention preferably has a viscosity measured at 25 ° C. using a rotational viscometer, for example, an E-type viscometer, preferably 10 to 1,000,000 mPa ⁇ s, more preferably 100 to 1, 000,000 mPa ⁇ s, particularly preferably 100 to 20,000 mPa ⁇ s.
  • the transparent resin composition of the present invention can be cured by a known curing method under known curing conditions. Specifically, the composition can be cured by heating usually at 80 to 200 ° C., preferably 100 to 160 ° C. The heating time may be about 0.5 minutes to 5 hours, particularly about 1 minute to 3 hours. It can be selected as appropriate from the balance of working conditions, productivity, light emitting element and housing heat resistance.
  • the transparent resin composition of the present invention can be suitably used for fixing a vertical LED chip to a package. Moreover, it can be used suitably also for optical semiconductor elements, such as a light emitting diode (LED), an organic electroluminescent element (organic EL), a laser diode, and an LED array.
  • optical semiconductor elements such as a light emitting diode (LED), an organic electroluminescent element (organic EL), a laser diode, and an LED array.
  • the present invention provides an adhesive comprising the transparent resin composition of the present invention.
  • the die-bonding material which consists of the said transparent resin composition of this invention and can be used in order to carry out conductive connection of the semiconductor element to a wiring board is provided.
  • the transparent resin composition of the present invention is highly transparent, has excellent adhesive strength and workability, and can give a cured product having excellent heat resistance and light resistance. Therefore, if it is an adhesive agent and die-bonding material which consist of the said transparent resin composition, it can use suitably, without impairing the extraction efficiency of light, as an adhesive agent for mounting an LED chip on a wiring board.
  • the cured product obtained by curing the die bonding material of the present invention is preferably used when the BLT is 5 ⁇ m or less.
  • BLT means the distance between members that conduct conductive connection, and can be understood as the thickness of the conductive cured product layer.
  • the BLT is 5 ⁇ m or less, even when only a very small amount of the conductive particles (conductive fine particles) of the component (B) is added, the members can be effectively electrically connected. If there is little content of the said electroconductive particle, a highly transparent hardened
  • a smaller BLT is preferable because the distance between the electrodes becomes narrower. Furthermore, since the thermal resistance is reduced when the BLT is a small value, it is advantageous for heat radiation generated by light emission of the optical semiconductor element.
  • a method for applying the die bond material is not particularly limited, and examples thereof include spin coating, printing, and compression molding.
  • the thickness of the die bond material may be appropriately selected and is usually 5 to 50 ⁇ m, particularly 10 to 30 ⁇ m. For example, it can be easily applied by discharging at a temperature of 23 ° C. and a pressure of 0.5 to 5 kgf / cm 2 using a dispensing device. Further, by using a stamping device, a predetermined amount of die bond material can be easily transferred to the substrate.
  • the mounting method of the optical semiconductor element is not particularly limited, and examples thereof include a die bonder.
  • Factors that determine the thickness of the die bond material include the pressure of the optical semiconductor element, the pressure bonding time, and the pressure bonding temperature in addition to the viscosity of the die bond material. These conditions may be appropriately selected according to the outer shape of the optical semiconductor element and the target die bond material thickness, and the pressure bonding load is generally 1 gf or more and 1 kgf or less. Preferably they are 10 gf or more and 100 gf or less. If the pressure bonding load is 1 gf or more, the die bond material can be sufficiently bonded.
  • the crimping time may be appropriately selected in consideration of the productivity of the process, and generally exceeds 0 msec and is 1 sec or less. Preferably, it is 1 msec or more and 30 msec. 1 sec or less is preferable in terms of productivity.
  • compression-bonding temperature Although what is necessary is just to follow the operating temperature range of die-bonding material, Generally it is preferable in it being 15 to 100 degreeC. If there is no heating equipment on the die bonder crimping stage, it can be used in the temperature range near room temperature.
  • the present invention provides a conductive connection method characterized by conductively connecting an optical semiconductor element and a substrate with a BLT of 5 ⁇ m or less using the transparent resin composition of the present invention.
  • a conductive connection method characterized by conductively connecting an optical semiconductor element and a substrate with a BLT of 5 ⁇ m or less using the transparent resin composition of the present invention.
  • the present invention provides an optical semiconductor device characterized in that the optical semiconductor element and the substrate are conductively connected by the conductive connection method of the present invention. Since the optical semiconductor device of the present invention is obtained by the conductive connection method of the present invention, the light extraction efficiency is high, the heat resistance and the light resistance are ensured, and the conductive connection is reliably achieved. .
  • FIG. 1 is a cross-sectional view showing an example of an optical semiconductor device in which an optical semiconductor element and a substrate are conductively connected using the transparent resin composition of the present invention.
  • the lower electrode of the optical semiconductor element 4 and the first lead 2 are electrically connected by the die bonding material 1
  • the upper electrode of the optical semiconductor element 4 and the second lead 3 are electrically connected by the wire 5.
  • the optical semiconductor element 4 is sealed with a sealing material 6.
  • the following method can be exemplified.
  • the die bond material 1 is quantitatively transferred to the first lead 2 on the package substrate, and the optical semiconductor element 4 is mounted thereon.
  • the die bond material 1 is cured by heating, and the lower electrode of the optical semiconductor element 4 and the first lead 2 are electrically connected.
  • the BLT is set to 5 ⁇ m or less.
  • Examples of the method for adjusting the BLT to 5 ⁇ m or less include a method for adjusting the viscosity of the composition, a method for adjusting the coating amount of the composition on the substrate, a method for controlling the pressure when the optical semiconductor element is die-bonded to the substrate, and the like. Can be mentioned.
  • the package substrate on which the optical semiconductor element 4 is mounted is electrically connected to the upper electrode of the optical semiconductor element 4 and the second lead 3 using the wire 5. Get the substrate.
  • a fixed amount of the sealing material 6 is applied, and the sealing material 6 is heated and cured.
  • the BLT of the cured product obtained by curing the transparent resin composition of the present invention exceeds 5 ⁇ m, the electrical connection effect by the conductive particles of the component (B) is lost, and it can be used as a conductive cured product. In other words, the semiconductor element and the substrate cannot be conductively connected.
  • the content of the component (B) is 0.1% by volume or more based on the solid content of the component (A)
  • the conductivity is recovered, but the decrease in the total light transmittance and the increase in the haze value are achieved. Therefore, a highly transparent cured product cannot be obtained. Furthermore, it causes an increase in thermal resistance, which is not preferable.
  • Table 1 shows the amount of each component in Preparation Examples 1 to 4.
  • Example 1 100 parts by mass of the silicone composition (I) obtained in Preparation Example 1 as the component (A), and Sb dopant having an average particle size (average particle size of primary particles) of 0.02 ⁇ m as the conductive particles of the component (B) SnO 2 powder (ATO, product name SN-100P, manufactured by Ishihara Sangyo Co., Ltd.) 0.1 parts by mass (0.015% by volume based on the solid content of the silicone composition (I)), as an additive, fumed silica ( 5 parts by mass of product name Reosirol DM-30S (manufactured by Tokuyama Co., Ltd.) was mixed, further kneaded with three rolls and degassed under reduced pressure to prepare a paste-like composition.
  • Sb dopant having an average particle size (average particle size of primary particles) of 0.02 ⁇ m as the conductive particles of the component (B) SnO 2 powder (ATO, product name SN-100P, manufactured by Ishihara Sangyo Co.
  • Example 2 100 parts by mass of the silicone composition (II) obtained in Preparation Example 2 as the component (A), and Sb doped SnO 2 powder (ATO, product name) having an average particle size of 0.02 ⁇ m as the conductive particles of the component (B) SN-100P, manufactured by Ishihara Sangyo Co., Ltd., 0.1 parts by mass (0.015% by volume based on the solid content of the silicone composition (II)), and as an additive, fumed silica (product name Reosilol DM-30S, Tokuyama 5 parts by mass) were mixed, further kneaded with three rolls, and degassed under reduced pressure to prepare a paste-like composition.
  • Sb doped SnO 2 powder ATO, product name
  • Example 3 100 parts by weight of the silicone composition (III) obtained in Preparation Example 3 as the component (A), and Sb doped SnO 2 powder (ATO, product name) having an average particle size of 0.02 ⁇ m as the conductive particles of the component (B) SN-100P (manufactured by Ishihara Sangyo Co., Ltd.) 0.1 part by mass (0.015% by volume based on the solid content of the silicone composition (III)), as an additive, fumed silica (product name Reosilol DM-30S, Tokuyama 5 parts by mass) were mixed, further kneaded with three rolls, degassed under reduced pressure, and 10 parts by mass of xylene as a diluent was added and mixed well to prepare a paste-like composition.
  • Sb doped SnO 2 powder ATO, product name
  • Example 4 100 parts by weight of the silicone composition (I) obtained in Preparation Example 1 as the component (A), and Sb-doped SnO 2 coated silica powder having an average particle size of 0.35 ⁇ m as the conductive particles of the component (B) (product name) ES-650E, specific gravity 4.1, manufactured by Titanium Industry Co., Ltd. 0.1 parts by mass (0.024% by volume based on the solid content of the silicone composition (I)), as additive, fumed silica (product name Leosilol) DM-30S (manufactured by Tokuyama Co., Ltd.) was mixed with 5 parts by mass, kneaded with three rolls, and degassed under reduced pressure to prepare a paste-like composition.
  • Sb-doped SnO 2 coated silica powder having an average particle size of 0.35 ⁇ m as the conductive particles of the component (B) (product name) ES-650E, specific gravity 4.1, manufactured by Titanium Industry Co., Ltd. 0.1 parts by mass
  • Example 5 100 parts by weight of the silicone composition (I) obtained in Preparation Example 1 as the component (A), and Sb doped SnO 2 powder (ATO, product name) having an average particle size of 0.02 ⁇ m as the conductive particles of the component (B) SN-100P (manufactured by Ishihara Sangyo Co., Ltd.) 0.01 parts by mass (0.0015% by volume based on the solid content of the silicone composition (I)), as an additive, fumed silica (product name Reosilol DM-30S, Tokuyama 5 parts by mass) were mixed, further kneaded with three rolls, and degassed under reduced pressure to prepare a paste-like composition.
  • Sb doped SnO 2 powder ATO, product name
  • Example 6 100 parts by mass of the silicone composition (IV) obtained in Preparation Example 4 as the component (A), and silver powder having an average particle size of 0.05 ⁇ m as the conductive particles of the component (B) (product name: Sylbest C-34, specific gravity 10. 5, 0.01 part by mass (produced by Tokushi Scientific Research Institute Co., Ltd.) (0.001% by volume based on the solid content of the silicone composition (IV)), 5 parts by mass of xylene as a solvent, and kneaded with three rolls Treatment was performed and degassed under reduced pressure to prepare a paste-like composition.
  • Comparative Example 1 100 parts by weight of the silicone composition (I) obtained in Preparation Example 1 as the component (A), and Sb doped SnO 2 powder (ATO, product name) having an average particle size of 0.02 ⁇ m as the conductive particles of the component (B) SN-100P (manufactured by Ishihara Sangyo Co., Ltd.) 1.0 part by mass (0.15% by volume based on the solid content of the silicone composition (I)), as an additive, fumed silica (product name Reosilol DM-30S, Tokuyama 5 parts by mass) were mixed, further kneaded with three rolls, and degassed under reduced pressure to prepare a paste-like composition.
  • Sb doped SnO 2 powder ATO, product name
  • Comparative Example 2 100 parts by mass of the silicone composition (I) obtained in Preparation Example 1 as the component (A), and silver powder having an average particle size of 6.9 ⁇ m as the conductive particles of the component (B) (product name: Sylbest TCG-7, specific gravity 10. 5, 0.1 part by mass (produced by Tokushi Scientific Research Institute Co., Ltd.) (0.001% by volume based on the solid content of the silicone composition (I)), and as an additive, fumed silica (product name Reosirol DM-30S, Tokuyama) 5 parts by mass) were mixed, further kneaded with three rolls, and degassed under reduced pressure to prepare a paste-like composition.
  • fumed silica product name Reosirol DM-30S, Tokuyama
  • Comparative Example 3 100 parts by weight of the silicone composition (V) obtained in Comparative Preparation Example 1 as the component (A), and Sb doped SnO 2 powder (ATO, product) having an average particle size of 0.02 ⁇ m as the conductive particles of the component (B) No. SN-100P, manufactured by Ishihara Sangyo Co., Ltd.) 0.1 parts by mass (0.015% by volume based on the solid content of the silicone composition (V)) is mixed, further kneaded with three rolls, and depressurized. A foamy paste-like composition was prepared.
  • An LED package substrate having an indentation for mounting an optical semiconductor element as the LED package substrate and having a silver-plated first lead and a second lead provided on the bottom thereof [SMD5050 (I-CHIUN PRECISION INDUSTRY CO., Ltd., resin part PPA (polyphthalamide))]
  • vertical LEDs (EV-B35A manufactured by SemiLEDs) having a main emission peak of 450 nm were prepared as optical semiconductor elements.
  • each die bond material shown in Examples and Comparative Examples is quantitatively transferred by stamping to the silver-plated first lead of the package substrate, and an optical semiconductor element is placed thereon. equipped.
  • the mounting conditions of the optical semiconductor element at this time were a pressure bonding time of 13 msec and a pressure bonding load of 60 gf, and were performed in an environment at room temperature of 25 ° C. without using a heating device.
  • the package substrate is put into an oven, and each die bond material is heated and cured (Examples 1 to 6, Comparative Examples 1 to 3 are 150 ° C. for 1 hour, Comparative Example 4 is 170 ° C.
  • the LED package substrate on which the optical semiconductor element is mounted is applied to the upper electrode of the optical semiconductor element and the second lead using a gold wire (FA 25 ⁇ m, Tanaka Denshi Kogyo Co., Ltd.). Electrical connection was made to obtain one LED package substrate (120 in number of packages) on which an optical semiconductor element was mounted.
  • a silicone sealing material product name KER2500, Shin-Etsu Chemical Co., Ltd.
  • a dispensing device Super ⁇ CM II manufactured by Musashi Engineering
  • optical semiconductor packages having different die-bonding materials were produced and used for the following tests.
  • the optical semiconductor package filled with the sealing material obtained by the above method is embedded in a commercially available room temperature curable epoxy resin, cut and polished so that the direct underside of the optical semiconductor element can be observed, and BLT can be observed.
  • Sample was prepared. The obtained sample was observed with a laser microscope (VK-8700, manufactured by Keyence Corporation), and the distance between the optical semiconductor element and the substrate was measured at three points to obtain an average value.
  • the transparent resin composition did not change in appearance even in the high-temperature energization test (high-temperature lighting test), and lighting was possible in all packages. From these results, it was found that the conductive connection method of the present invention can produce an optical semiconductor device with high light extraction efficiency and high reliability.
  • Comparative Example 1 which is a silicone resin composition in which the component (B) is 0.1% by volume or more based on the solid content of the component (A), the range of the present invention is not satisfied. Further, a package having a high total luminous flux value was not obtained because the total light transmittance did not satisfy the range of 70% or more and the haze value was 60 or less.
  • Comparative Example 2 which is a composition that does not satisfy the range of the present invention, the average particle diameter of the component (B) exceeds 1 ⁇ m, but transparency was obtained, but because the BLT exceeds 5 ⁇ m, the conductivity is inferior. Out of 120 packages, non-lighting packages were generated. Moreover, it was inferior also in the durability in a high temperature lighting test.
  • Comparative Example 4 which is a general conductive composition having no transparency is a package having a high total luminous flux value in which the average particle size and addition amount of component (B) are out of the scope of the present invention. Was not obtained.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Led Devices (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Die Bonding (AREA)
  • Led Device Packages (AREA)

Abstract

 本発明は、透明樹脂組成物であって、(A)(A-1)下記一般式(1)で表される構造を分子中に少なくとも1つ有するオルガノポリシロキサン:100質量部、 (A-2)有機過酸化物:前記(A-1)成分の合計量100質量部に対して、0.1~10質量部を含むシリコーン組成物と、(B)平均粒径が1μm以下の導電性粒子とを含有するものであり、前記(B)成分の含有量が、前記(A)成分の固形分を基準として0体積%より大きく、かつ0.1体積%未満の範囲であり、前記透明樹脂組成物を硬化して得られる2mm厚の硬化物の全光線透過率が70%以上であり、かつヘイズ値が60%以下である透明樹脂組成物である。これにより、高透明であり、かつ接着強度及び作業性に優れ、耐熱性及び耐光性を有する硬化物を与える透明樹脂組成物が提供される。

Description

透明樹脂組成物、該組成物からなる接着剤、該組成物からなるダイボンド材、該組成物を用いた導電接続方法、及び該方法によって得られた光半導体装置
 本発明は、透明樹脂組成物、該組成物からなる接着剤、該組成物からなるダイボンド材、該組成物を用いた導電接続方法、及び該方法によって得られた光半導体装置に関する。
 発光ダイオード(LED)などの光半導体素子は電力消費量が少ないという優れた特性を有するため、屋外照明用途や自動車用途の光半導体デバイスへの適用が増えてきている。このような光半導体デバイスは、一般に青色光、近紫外光あるいは紫外光を発光する光半導体発光素子から発する光を、波長変換材料である蛍光体によって波長変換して疑似白色が得られるようにした発光装置である。
 近年、光半導体素子の更なる発光効率の向上を目的として、垂直型光半導体素子の開発がなされている。垂直型(Vertical)光半導体素子は電極を垂直構造で配置したものであり、単に垂直型LEDチップとも呼ばれる。垂直型LEDチップは、発光層に均一に電流が流れることにより、電極を水平配置した構造である同サイズの水平型(lateral)LEDチップに比べ、数十倍の電流を流すことが可能であり、発光層の温度上昇を抑え、発光効率を高めることができる。更に、水平型LEDチップに見られた局所的な電流密度の増加が抑制され、LEDの大電流化が可能となるなど、優れた特長を持つため、その実用が進んでいる。
 一方で、垂直型LEDチップは、前述のとおり電極を垂直構造で配置していることから理解されるように、垂直型LEDチップを配線板に搭載する場合、一方の電極は従来と同様ワイヤーボンドなどの方法を用いて電気的に接続し、もう一方の電極は共晶半田や導電性接着剤などを用いて電気的に接続する必要がある。
 従来、垂直型LEDチップを配線板に搭載するための接着剤として、共晶半田やエポキシ樹脂組成物に導電性粒子を配合した導電性接着剤が広く用いられている。しかしながら、共晶半田を用いる方法では、ダイボンド時に必要な半田を溶融するため熱により、光半導体の発光層にダメージを与えるため好ましくない。また、近年では、前述の共晶半田やエポキシ樹脂組成物に導電性粒子を配合した導電性接着剤では、光の反射が十分ではなく、光の取り出し効率に劣ることが問題となっている。更に、光半導体デバイスとしたときの設計の自由度の面からも、ダイボンド材には高透明性が求められている。
 一方、導電性接着剤を用いた例として、例えば、特許文献1では、ビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂と脂環式エポキシ樹脂を併用し、さらに紫外線吸収剤としてベンゾトリアゾール誘導体を添加することで450~500nm付近の光に対する耐光性を改善した導電性接着剤が提案されている。しかしながら、この発明における組成物は、白色の酸化チタンや、有色の導電性粒子を多く含有するため、高透明な接着剤とはならない。
 特許文献2には、特定の導電性粉末、(3,5-ジグリシジルイソシアヌリル)アルキル基を有するオルガノポリシロキサン及びグリシジル基と反応する硬化触媒(アミン系硬化剤、フェノール系硬化剤、酸無水物系硬化剤)を含有する、光半導体素子用のダイボンド材が提案されている。しかしながら、イソシアヌリル基に代表される有機基が、短波長の光により劣化を受け、経時で変色、分解するという問題が生じている。更に、該発明では樹脂成分の合計100質量部に対し350~800質量部の導電性粒子を添加するため、高透明な接着剤とはならない。
 特許文献3には、(a)(メタ)アクリル酸アルキルエステル-ブタジエン-スチレン共重合体又は複合体、及び、シリコーン-(メタ)アクリル酸共重合体又は複合体からなる群より選択される少なくとも1種を含む有機微粒子と、(b)ラジカル重合性化合物と、(c)ラジカル重合開始剤と、(h)導電性粒子とを含有し、(h)導電性粒子の含有量が、接着剤組成物の固形分全体積を基準として0.1~30体積%である、接着剤組成物、及び該接着剤組成物からなるフィルム状接着剤が提案されている。しかしながら、上記と同様に、(b)ラジカル重合性化合物にはグリシジル基に代表される有機基が含まれており、短波長の光により劣化を受け、経時で変色、分解するという問題が生じている。また、導電性粒子は接着剤組成物の固形分全体積を基準として0.1~30体積%含有されるとあるが、硬化物の光透過率、透明性に関する記述は見られず、かつ、本発明者らが検証した結果、この範囲の添加量では高透明な材料とはならない。更に、該発明では、導電性粒子の平均粒径は、良好な分散性及び導電性を得る観点から、1~18μmであることが好ましい、との記載があるが、この範囲の平均粒径を有する導電性樹脂材料では、光半導体素子を配線板にダイボンド(導電接続)した際のBLT(Bond line thickness)が厚くなり、放熱性にも劣る結果となり、有用な高透明ダイボンド材とはならない。
特許3769152号公報 特開2012-52029号公報 特開2012-149274号公報
 本発明は上記問題点に鑑みてなされたもので、高透明であり、かつ接着強度及び作業性に優れ、耐熱性及び耐光性を有する硬化物を与える透明樹脂組成物を提供することを目的とする。また、該組成物からなる接着剤、該組成物からなるダイボンド材、該組成物を用いた導電接続方法、及び該方法によって得られた光半導体装置を提供することを目的とする。
 上記目的を達成するために、本発明では、透明樹脂組成物であって、
(A)(A-1) 下記一般式(1)で表される構造を分子中に少なくとも1つ有するオルガノポリシロキサン:100質量部、
Figure JPOXMLDOC01-appb-C000001
[式中、mは0,1,2のいずれかであり、Rは水素原子、フェニル基又はハロゲン化フェニル基、Rは水素原子又はメチル基、Rは置換又は非置換で同一又は異なってもよい炭素数1~12の1価の有機基、Zは-R-、-R-O-、-R(CHSi-O-(Rは置換又は非置換で同一又は異なってもよい炭素数1~10の2価の有機基)のいずれか、Zは酸素原子又は置換若しくは非置換で同一若しくは異なってもよい炭素数1~10の2価の有機基である。]
(A-2)有機過酸化物:前記(A-1)成分の合計量100質量部に対して、0.1~10質量部を含むシリコーン組成物と、
(B)平均粒径が1μm以下の導電性粒子と
を含有するものであり、
 前記(B)成分の含有量が、前記(A)成分の固形分を基準として0体積%より大きく、かつ0.1体積%未満の範囲であり、
 前記透明樹脂組成物を硬化して得られる2mm厚の硬化物の全光線透過率が70%以上であり、かつヘイズ値が60%以下であることを特徴とする透明樹脂組成物を提供する。
 このような透明樹脂組成物であれば、高透明であり、かつ接着強度及び作業性に優れ、かつ耐熱性及び耐光性に優れた硬化物を与えることができる。
 また、前記(A-1)成分のオルガノポリシロキサンのZが-R-であり、前記Zが酸素原子であることが好ましい。
 また、前記(A-1)成分のオルガノポリシロキサンのZが-R-O-又は、-R(CHSi-O-であり、前記Zが置換又は非置換で同一又は異なってもよい炭素数1~10の2価の有機基であることが好ましい。
 このような透明樹脂組成物であれば、(A-1)成分と、(A-2)成分が分解する際に発生するフリーラジカルとが効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性及び耐光性に優れた硬化物を得ることができる。
 また、前記(A-1)成分のオルガノポリシロキサンが、下記一般式(2)で表される構造を分子中に少なくとも1つ有するものであることが好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中、m、R、R、R、Rは上記と同様である。)
 このような透明樹脂組成物であれば、(A-1)成分と、(A-2)成分が分解する際に発生するフリーラジカルとがより効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性及び耐光性に優れた硬化物を得ることができる。
 また、前記(A-1)成分のオルガノポリシロキサン中に、0.1mol%以上の(SiO)単位を有することが好ましい。
 このような透明樹脂組成物であれば、(A-1)成分と、(A-2)成分が分解する際に発生するフリーラジカルとが更に効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性及び耐光性に優れた硬化物を得ることができる。
 更に本発明では、上記本発明の透明樹脂組成物からなるものであることを特徴とする接着剤を提供する。
 このような接着剤であれば、LEDチップを配線板に搭載するための接着剤として好適に用いることができる。
 更に本発明では、上記本発明の透明樹脂組成物からなるものであることを特徴とするダイボンド材を提供する。
 このようなダイボンド材であれば、LEDチップを配線板に搭載するためのダイボンド材として好適に用いることができる。
 この場合、前記ダイボンド材を硬化して得られる硬化物はBLT(Bond line thickness)が5μm以下の場合において使用されるものであることが好ましい。
 このようなダイボンド材であれば、光半導体素子と基板との導電接続を確実に達成することができる。
 更に本発明では、上記本発明の透明樹脂組成物を用いて、BLTを5μm以下として光半導体素子と基板とを導電接続することを特徴とする導電接続方法を提供する。
 このような導電接続方法であれば、光半導体素子と基板との導電接続を確実に達成することができる。
 更に本発明では、上記本発明の導電接続方法によって光半導体素子と基板とが導電接続されたものであることを特徴とする光半導体装置を提供する。
 本発明の透明樹脂組成物は、高透明であり、かつ接着強度及び作業性に優れ、耐熱性及び耐光性に優れた硬化物を与えることができる。また、本発明の導電接続方法であれば、光半導体素子と基板との導電接続を確実に達成することができる。そのため、本発明の導電接続方法によって得られた光半導体装置は、光取り出し効率が高く、耐熱性及び耐光性を有するものとなり、導電接続が確実に達成されたものとなる。
 本発明の透明樹脂組成物は、高透明であり、かつ接着強度及び作業性に優れ、耐熱性及び耐光性を有する硬化物を与えることができる。そのため、本発明の透明樹脂組成物は、接着剤及びダイボンド材として好適に用いることができる。このような接着剤及びダイボンド材は、LEDチップ、特に垂直型LEDチップを配線板に搭載するための接着剤として好適に用いることができる。また、本発明の導電接続方法であれば、光半導体素子と基板との導電接続を確実に達成することができる。従って、本発明の導電接続方法によって得られた光半導体装置は、光取り出し効率が高く、耐熱性及び耐光性を有するものとなり、導電接続が確実に達成されたものとなる。また、本発明の透明樹脂組成物は、高透明な異方導電性組成物としても機能することができる。
本発明の透明樹脂組成物を用いて光半導体素子と基板とが導電接続された光半導体装置の一例を示す断面図である。
 以下、本発明をより詳細に説明する。
 上記のように、高透明であり、かつ接着強度及び作業性に優れ、耐熱性及び耐光性を有する硬化物を与える透明樹脂組成物が求められている。
 本発明者らは、上記目的を達成するために鋭意検討を行った。その結果、下記(A)~(B)成分を含有する透明樹脂組成物であって、前記(B)成分の含有量が、前記(A)成分の固形分を基準として0体積%より大きく、かつ0.1体積%未満の範囲であり、前記透明樹脂組成物を硬化して得られる2mm厚の硬化物の全光線透過率が70%以上であり、かつヘイズ値が60%以下である透明樹脂組成物が、上記課題を解決できることを見出し、本発明を完成させた。
 以下、本発明についてより具体的に説明するが、本発明はこれに限定されるものではない。
 本発明の透明樹脂組成物は、
(A)(A-1) 下記一般式(1)で表される構造を分子中に少なくとも1つ有するオルガノポリシロキサン:100質量部、
Figure JPOXMLDOC01-appb-C000003
[式中、mは0,1,2のいずれかであり、Rは水素原子、フェニル基又はハロゲン化フェニル基、Rは水素原子又はメチル基、Rは置換又は非置換で同一又は異なってもよい炭素数1~12の1価の有機基、Zは-R-、-R-O-、-R(CHSi-O-(Rは置換又は非置換で同一又は異なってもよい炭素数1~10の2価の有機基)のいずれか、Zは酸素原子又は置換若しくは非置換で同一若しくは異なってもよい炭素数1~10の2価の有機基である。]
(A-2)有機過酸化物:前記(A-1)成分の合計量100質量部に対して、0.1~10質量部を含むシリコーン組成物と、
(B)平均粒径が1μm以下の導電性粒子と
を含有するものであり、
 前記(B)成分の含有量が、前記(A)成分の固形分を基準として0体積%より大きく、かつ0.1体積%未満の範囲であり、
 前記透明樹脂組成物を硬化して得られる2mm厚の硬化物の全光線透過率が70%以上であり、かつヘイズ値が60%以下である透明樹脂組成物である。
 上記のように本発明の透明樹脂組成物は該組成物を2mm厚の硬化物とした時の全光線透過率が70%以上であり、好ましくは80%以上である。全光線透過率が70%以上であると、硬化後の透明樹脂組成物は高透明な状態を維持できる。全光線透過率が70%未満となると、硬化後の透明樹脂組成物は着色、あるいは濁りが生じていることを意味し、硬化物が高透明とはならない。全光線透過率の上限は特に制限はなく、より大きければ硬化物は透明になり、LEDデバイスからの光の取り出しの妨げになることもないため好ましい。
 また、(ヘイズ値(%))=(拡散光透過率)/(全光線透過率)×100で定義されることから理解されるように、拡散光成分の増大及び全光線透過率の減少に伴いヘイズ値は増大し、硬化物は半透明から微濁、さらには白濁に至る。
 本発明の透明樹脂組成物は該組成物を2mm厚の硬化物とした時のヘイズ値が60%以下であり、このことは、硬化物が透明から半透明の曇りを有する状態であることを意味する。上記ヘイズ値は好ましくは40%以下である。ヘイズ値が60%を超えると、硬化物は曇り、光を散乱させる微粒子が多く存在し、高透明ではない。ヘイズ値が60%以下であれば、LEDデバイスからの光の取り出しの妨げになることもないため好ましい。ヘイズ値の下限は特に制限はなく、より小さければ硬化物の曇りが少なくなり、すなわち、透明になり、LEDデバイスからの光の取り出しの妨げになることもないため好ましい。
[(A)シリコーン組成物]
 (A)シリコーン組成物は、上記の(A-1)成分を100質量部、上記の(A-2)を(A-1)成分の合計量100質量部に対して、0.1~10質量部を含むものである。
[(A-1)オルガノポリシロキサン]
 (A-1)成分のオルガノポリシロキサンは、下記一般式(1)で表される構造を分子中に少なくとも1つ有するオルガノポリシロキサンである。
Figure JPOXMLDOC01-appb-C000004
[式中、mは0,1,2のいずれかであり、Rは水素原子、フェニル基又はハロゲン化フェニル基、Rは水素原子又はメチル基、Rは置換又は非置換で同一又は異なってもよい炭素数1~12の1価の有機基、Zは-R-、-R-O-、-R(CHSi-O-(Rは置換又は非置換で同一又は異なってもよい炭素数1~10の2価の有機基)のいずれか、Zは酸素原子又は置換若しくは非置換で同一若しくは異なってもよい炭素数1~10の2価の有機基である。]
 (A-1)成分のオルガノポリシロキサン中の、Z、Zの組み合わせとしては、Zが-R-であり、Zが酸素原子であるものや、Zが-R-O-又は、-R(CHSi-O-であり、Zが置換又は非置換で同一又は異なってもよい炭素数1~10の2価の有機基であるものが好ましい。このような(A-1)成分を含む透明樹脂組成物であれば、(A-1)成分と、(A-2)成分が分解する際に発生するフリーラジカルとが効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性及び耐光性に優れた硬化物を得ることができる。
 また、(A-1)成分のオルガノポリシロキサン中に、0.1mol%以上の(SiO)単位を有することが好ましい。このような(A-1)成分を含む透明樹脂組成物であれば、(A-1)成分と、(A-2)成分が分解する際に発生するフリーラジカルとが更に効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性及び耐光性に優れた硬化物を得ることができる。
 更に、(A-1)成分のオルガノポリシロキサンが、下記一般式(2)で表される構造を分子中に少なくとも1つ有するものであることが好ましい。このような(A-1)成分を含む透明樹脂組成物であれば、(A-1)成分と、(A-2)成分が分解する際に発生するフリーラジカルとがより効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性及び耐光性に優れた硬化物を得ることができる。
Figure JPOXMLDOC01-appb-C000005
(式中、m、R、R、R、Rは上記と同様である。)
 (A-1)成分のオルガノポリシロキサンは、25℃での粘度が10mPa・s以上の液状又は固体の分岐状又は三次元網状構造のオルガノポリシロキサンであることが好ましい。
 上記式(1)において、Rで示されるケイ素原子に結合した置換又は非置換で同一又は異なってもよい1価の有機基としては、通常、炭素数1~12、好ましくは1~8程度の炭化水素基が挙げられ、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、オクテニル基等のアルケニル基や、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基やシアノエチル基等が挙げられる。
 上記式(1)において、Rで示される置換又は非置換で同一又は異なってもよい2価の有機基としては、具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基等の炭素原子数1~10のアルキレン基などの2価炭化水素基が例示され、炭素原子数1~3のアルキレン基が好ましい。
 以下に(A-1)成分のオルガノポリシロキサンを例示する。(下記式において、Meはメチル基を示す。)この成分は単一成分でも、他の成分と併用でも良い。また、下記式において、上記式(1)中のRに相当する基が、メチル基の場合を例示しているが、その他の基(置換又は非置換で同一又は異なってもよい炭素数1~12の1価の有機基)にも変更できる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 下記式に示す、MA単位、M単位、Q単位が、MA:M:Q=1:4:6の割合で含まれ、分子量がポリスチレン換算の重量平均分子量で、5000であるオルガノポリシロキサン。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 下記式に示す、MA-D単位、D単位、T単位が、MA-D:D:T=2:6:7の割合で含まれ、分子量がポリスチレン換算の重量平均分子量で、3500であるオルガノポリシロキサン。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 (A-1)成分には、組成物の粘度や硬化物の硬度を調整する等の目的で、以下に示すようなシリコーンを含む反応性希釈剤や、シリコーンを含まない反応性希釈剤を添加することが出来る。
 シリコーンを含む反応性希釈剤の具体的な例としては、下記式(3)~(7)で示されるオルガノポリシロキサンが挙げられる。(下記式において、Meはメチル基を示す。)この成分は単一でも、他の成分と併用でも良い。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
(式中、pは18、qは180である。)
Figure JPOXMLDOC01-appb-C000017
(式中、p’は20、qは180である。)
Figure JPOXMLDOC01-appb-C000018
(式中、pは18、qは180である。)
 このような(A-1)成分の合成方法としては、例えば下記に示すオルガノハイドロジェンシラン、
Figure JPOXMLDOC01-appb-C000019
(式中、m、R、R、R、Zは上記と同様である。)
好ましくは下式に示す化合物、
Figure JPOXMLDOC01-appb-C000020
(式中、m、R、R、R、Z、Zは上記と同様である。)
より具体的には、1,3-ビス(3-メタクリロキシプロピル)テトラメチルジシロキサンと1,1,3,3-テトラメチルジシロキサンを酸触媒存在下で平衡化反応する事によって得られる(3-メタクリロキシプロピル)-1,1,3,3-テトラメチルジシロキサンと、脂肪族不飽和基(例えば、エチレン性不飽和基、及びアセチレン性不飽和基が挙げられる。)を含むオルガノポリシロキサンとを、塩化白金酸触媒存在下でヒドロシリル化反応させるとよく、この方法で本発明に好適なものを製造することができるが、前記の合成方法に制限されるものではない。また、脂肪族不飽和基を含むオルガノポリシロキサンは、脂肪族不飽和基を有するオルガノアルコキシシランを含むアルコキシシランの(共)加水分解縮合など公知の方法で製造することができ、市販のものを用いても良い。
 シリコーンを含まない反応性希釈剤としては、HC=CGCOによって示されるような(メタ)アクリレート類があり、上記式中、Gは、水素、ハロゲン、炭素原子1~4個のアルキル基のいずれかであり;Rは、1~16個の炭素原子を有するアルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルカリル基、アラルキル基、アリール基のいずれかから選ばれ、これらのいずれかは、必要に応じ、ケイ素、酸素、ハロゲン、カルボニル、ヒドロキシル、エステル、カルボン酸、尿素、ウレタン、カルバメート、アミン、アミド、イオウ、スルホネート、スルホン等で置換し得る。
 反応性希釈剤としてとりわけ望ましい(メタ)アクリレート類としては、ポリエチレングリコールジ(メタ)アクリレート、エトキシ化ビスフェノール-A(メタ)アクリレート(″EBIPA″又は″EBIPMA″)のようなビスフェノール-Aジ(メタ)アクリレート、テトラヒドロフラン(メタ)アクリレート及びジ(メタ)アクリレート、シトロネリルアクリレート及びシトロネリルメタクリレート、ヒドロキシプロピル(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート(″HDDA″又は″HDDMA″)、トリメチロールプロパントリ(メタ)アクリレート、テトラヒドロジシクロペンタジエニル(メタ)アクリレート、エトキシ化トリメチロールプロパントリアクリレート(″ETTA″)、トリエチレングリコールジアクリレート及びトリエチレングリコールジメタクリレート(″TRIEGMA″)、イソボルニルアクリレート及びイソボルニルメタクリレート、に相応するアクリレートエステルがある。もちろん、これらの(メタ)アクリレート類の組合せも反応性希釈剤として使用できる。
 反応性希釈剤を添加する場合の添加量としては、0.01~30質量%の範囲が好ましく、0.05~10質量%の範囲がより好ましい。
 本発明の透明樹脂組成物は、特定の用途において所望されるような硬化又は未硬化特性を改変させる他の成分も含ませ得る。例えば、(メタ)アクリロキシプロピルトリメトキシシラン、トリアルキル-又はトリアリル-イソシアヌレート、グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等のような接着促進剤を含むことができ、約20質量%までの量含むことが好ましい。他の任意成分は、非(メタ)アクリルシリコーン希釈剤又は可塑剤が挙げられ、約30質量%までの量含むことが好ましい。非(メタ)アクリルシリコーン類としては、100~500mPa・sの粘度を有するトリメチルシリル末端化オイル、及びシリコーンゴムが挙げられる。非(メタ)アクリルシリコーン類は、ビニル基のような共硬化性基を含み得る。
[(A-2)有機過酸化物]
 (A-2)成分の有機過酸化物は、本発明の透明樹脂組成物を所望の形状に成形した後に、加熱処理を加えて架橋反応により硬化させるために配合される成分であり、目的とする接続温度、接続時間、ポットライフ等により適宜選択する。
 有機過酸化物は、高い反応性と長いポットライフを両立する観点から、半減期10時間の温度が40℃以上、かつ、半減期1分の温度が180℃以下であることが好ましく、半減期10時間の温度が60℃以上、かつ、半減期1分の温度が170℃以下であることがより好ましい。また、有機過酸化物は、回路部材の回路電極(接続端子)の腐食を防止するために、塩素イオンや有機酸の含有量が5000ppm以下であることが好ましく、さらに、加熱分解後に発生する有機酸が少ないものがより好ましい。
 この場合、有機過酸化物の熱分解によって生じるフリーラジカルによって、上記(A-1)成分中のケイ素原子に結合した炭化水素基同士、又は上記(A-1)成分中のビニル基、アリル基等のアルケニル基同士の結合反応が生じて架橋硬化物とすることができる。
 有機過酸化物としては、ラジカル重合反応等に用いられる公知のものを全て用いることができ、具体的には、ジアシルパーオキサイド、ジアルキルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ハイドロパーオキサイド及びシリルパーオキサイドからなる群より選ばれる1種以上が好適に用いられる。これらの中では、回路部材の接続構造や半導体装置における接続端子の腐食を更に抑制するために、パーオキシエステル、ジアルキルパーオキサイド及びハイドロパーオキサイドからなる群より選ばれる1種以上が好ましい。
 ジアシルパーオキサイドとしては、例えば、イソブチルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキシトルエン及びベンゾイルパーオキサイドが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 ジアルキルパーオキサイドとしては、例えば、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン及びt-ブチルクミルパーオキサイドが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 パーオキシジカーボネートとしては、例えば、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシメトキシパーオキシジカーボネート、ビス(2-エチルヘキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート及びビス(3-メチル-3-メトキシブチルパーオキシ)ジカーボネートが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 パーオキシエステルとしては、例えば、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノネート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ビス(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシアセテート及びビス(t-ブチルパーオキシ)ヘキサヒドロテレフタレートが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 パーオキシケタールとしては、例えば、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-(t-ブチルパーオキシ)シクロドデカン及び2,2-ビス(t-ブチルパーオキシ)デカンが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 ハイドロパーオキサイドとしては、例えば、ジイソプロピルベンゼンハイドロパーオキサイド及びクメンハイドロパーオキサイドが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 シリルパーオキサイドとしては、例えば、t-ブチルトリメチルシリルパーオキサイド、ビス(t-ブチル)ジメチルシリルパーオキサイド、t-ブチルトリビニルシリルパーオキサイド、ビス(t-ブチル)ジビニルシリルパーオキサイド、トリス(t-ブチル)ビニルシリルパーオキサイド、t-ブチルトリアリルシリルパーオキサイド、ビス(t-ブチル)ジアリルシリルパーオキサイド及びトリス(t-ブチル)アリルシリルパーオキサイドが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 (A-2)成分の添加量は、(A-1)成分のオルガノポリシロキサン合計量100質量部に対して、0.1~10質量部、好ましくは0.5~5質量部である。添加量が、0.1質量部未満の場合、反応が十分に進行しない恐れがある。10質量部を超える場合、所望とする硬化後の物性、すなわち十分な耐熱性、耐光性が得られない恐れがある。
[(B)導電性粒子]
 本発明の透明樹脂組成物を構成する(B)成分は、平均粒径1μm以下の導電性粒子である。上記導電性粒子は、一次粒径で100nm以下の導電性ナノ粒子であることが好ましい。平均粒径が1μmを超えると、粗大粒子の影響で、後に述べるBLTが5μm以下とはならず、安定した導電性を得ることが難しい。平均粒径の下限に特に制限はない。このような導電性粒子としては、金属ナノ粒子等の金属粒子、導電性無機酸化物等を用いることができ、単独又は2種以上を混合して使用することができる。粒子の好ましい形状として、球状、フレーク状、針状、無定型等が挙げられるが、この限りではない。
 本発明における平均粒径は体積基準粒度分布におけるメジアン径(D50)であり、D50値は、レーザー回折・散乱法により得られた粒度分布から求められるほか、走査型電子顕微鏡(SEM)等を用いて観測された粒子像から算出することができる。
 金属粒子としては、例えば、金、ニッケル、銅、銀、半田、パラジウム、アルミニウム、それらの合金、それらの多層化物(例えば、ニッケルメッキ/金フラッシュメッキ物)等、を挙げることができる。中でも、導電性粒子による着色の影響が小さい、銀が好ましい。
 また、導電性無機酸化物として、無機酸化物等の無機粒子に導電性を付与したものを使用することができる。このような導電性を付与した無機粒子としては、ITO(インジウム-スズ系酸化物)、ATO(スズ-アンチモン系酸化物)が挙げられ、また、酸化チタン(TiO)、窒化ホウ素(BN)、酸化亜鉛(ZnO)、酸化ケイ素(SiO)、酸化アルミニウム(Al)、無機ガラス等の無機粒子に導電性を付与(例えば、金属材料を被覆)したもの等が挙げられる。中でも、樹脂組成物中に分散した時に、透明となりやすいITO、ATO、導電性を付与した酸化ケイ素が好ましい。導電性無機酸化物の被覆層は、導電性を付与されておれば良く、無機酸化物等の無機粒子を銀などの金属材料で被覆したものであっても良いし、酸化錫にアンチモンをドープ、酸化インジウムに錫をドープするなど、導電性の被覆層を設けても良い。無機粒子の形状としては無定型、球状、鱗片状、針状等を挙げることができる。
 本発明の透明樹脂組成物において、(B)成分の含有量は、(A)成分の固形分(固形分体積)を基準として0体積%より大きく、かつ0.1体積%未満の範囲であり、好ましくは0.001~0.08体積%、より好ましくは0.01~0.05体積%の範囲である。(B)成分の含有量が0.1体積%以上となると、本発明の透明樹脂組成物の高透明性が損なわれ、全光線透過率の低下及びヘイズ値の上昇を招くため、高透明な導電性の硬化物とすることができない。更に、LEDデバイスからの光取り出し効率を低下させる原因となる。
[(C)その他の成分]
 組成物の透明性を更に維持し、硬化物の着色、酸化劣化等の発生を抑えるために、2,6-ジ-t-ブチル-4-メチルフェノール等の従来公知の酸化防止剤を本発明の透明樹脂組成物に配合することができる。また、光劣化に対する抵抗性を付与するために、ヒンダードアミン系安定剤等の光安定剤を本発明の透明樹脂組成物に配合することもできる。
 本発明の透明樹脂組成物の強度を向上させ、チキソ性を付与するために、更に、ヒュームドシリカ、ナノアルミナ等の無機質充填剤を配合してもよい。必要に応じて、本発明の透明樹脂組成物に、染料、顔料、難燃剤等を配合してもよい。
 また、作業性を改善する目的で溶剤等を添加して使用することも可能である。溶剤の種類は特に制限されるものでなく、硬化前の樹脂組成物を溶解し、導電性粒子を良好に分散させ、均一なダイボンド材あるいは接着剤等を提供できる溶剤を使用することができる。該溶剤の配合割合はダイボンド材等を使用する作業条件、環境、使用時間等に応じて適宜調整すればよい。溶剤は2種以上を併用してもよい。このような溶剤としては、ブチルカルビトールアセテート、カルビトールアセテート、メチルエチルケトン、α-テルピネオール、及びセロソルブアセテート等が挙げられる。
 また、本発明の透明樹脂組成物は、その接着性を向上させるための接着付与剤を含有してもよい。この接着付与剤としては、シランカップリング剤やその加水分解縮合物等が例示される。シランカップリング剤としては、エポキシ基含有シランカップリング剤、(メタ)アクリル基含有シランカップリング剤、イソシアネート基含有シランカップリング剤、イソシアヌレート基含有シランカップリング剤、アミノ基含有シランカップリング剤、メルカプト基含有シランカップリング剤等公知のものが例示され、(A)成分の合計100質量部に対して好ましくは0.1~20質量部、より好ましくは0.3~10質量部用いることができる。
 本発明の透明樹脂組成物は、上記各成分を、公知の混合方法、例えば、ミキサー、ロール等を用いて混合することによって製造することができる。また、本発明の透明樹脂組成物は、回転粘度計、例えば、E型粘度計を用いて25℃で測定した粘度が好ましくは10~1,000,000mPa・s、より好ましくは100~1,000,000mPa・s、特に好ましくは100~20,000mPa・sである。
 本発明の透明樹脂組成物は、公知の硬化条件下で公知の硬化方法により硬化させることができる。具体的には、通常80~200℃、好ましくは100~160℃で加熱することにより、該組成物を硬化させることができる。加熱時間は、0.5分~5時間程度、特に1分~3時間程度でよい。作業条件、生産性、発光素子及び筐体耐熱性とのバランスから適宜選定することができる。
 本発明の透明樹脂組成物は、垂直型LEDチップをパッケージに固定するために好適に用いることができる。また、その他発光ダイオード(LED)、有機電界発光素子(有機EL)、レーザーダイオード、及びLEDアレイ等の光半導体素子にも好適に用いることができる。
 更に本発明では、上記本発明の透明樹脂組成物からなる接着剤を提供する。また、上記本発明の透明樹脂組成物からなり、半導体素子を配線板に導電接続するために使用することができるダイボンド材を提供する。
 本発明の透明樹脂組成物は、高透明であり、かつ接着強度及び作業性に優れ、耐熱性及び耐光性に優れた硬化物を与えることができる。従って、上記透明樹脂組成物からなる接着剤及びダイボンド材であれば、LEDチップを配線板に搭載するための接着剤として光の取り出し効率を損なうことなく好適に用いることができる。
 更に、本発明のダイボンド材を硬化して得られる硬化物はBLTが5μm以下の場合において使用されるものであることが好ましい。BLTは導電接続を行う部材間の距離を意味し、導電性硬化物層の厚さと理解できる。BLTが5μm以下であると、(B)成分の導電性粒子(導電性微粒子)が極微量しか添加されていない場合であっても、部材間を有効に電気的に接続することができる。上記導電性粒子の含有量が少なければ、より高透明な硬化物を得ることができ、また、経済的にも有用である。BLTは小さい値をとる方が電極間距離が狭くなるため好ましい。更に、BLTは小さい値をとる方が熱抵抗が低減されることから、光半導体素子の発光によって発せられた熱の放熱にも有利である。
 ダイボンド材を塗布する方法は特に制限されず、例えば、スピンコーティング、印刷、及び圧縮成形等が挙げられる。ダイボンド材の厚みは、適宜選択すればよく、通常5~50μm、特には10~30μmである。例えば、ディスペンス装置を用いて23℃の温度、0.5~5kgf/cmの圧力で吐出することで容易に塗布ができる。また、スタンピング装置を用いることで、所定の量のダイボンド材を基板に転写することでも容易にできる。
 光半導体素子の搭載方法は特に制限されず、例えば、ダイボンダーが挙げられる。ダイボンド材の厚みを決定する要素は、前述のダイボンド材の粘度に加え、光半導体素子の圧着荷重、圧着時間、圧着温度が挙げられる。これら条件は、光半導体素子の外形形状、目的とするダイボンド材厚みに応じて適宜選択すればよく、圧着荷重は一般的に1gf以上1kgf以下である。好ましくは10gf以上100gf以下である。1gf以上の圧着荷重であれば、ダイボンド材を十分に圧着することができる。また1kgf以下の圧着荷重を用いれば、光半導体素子表面の発光層にダメージを与えることがない。圧着時間は工程の生産性との兼ね合いで適宜選択すればよく、一般的に0msecを超え1sec以下である。好ましくは1msec以上30msecである。1sec以下であれば生産性の点で好ましい。圧着温度は特に制限はなく、ダイボンド材の使用温度範囲に従えばよいが、一般的に15℃以上100℃以下であると好ましい。ダイボンダーの圧着ステージに加温設備が無い場合は室温付近での温度帯で使用すればよい。15℃以上であれば、ダイボンド材の粘度が高くなりすぎないため十分に圧着することができる。100℃以下であれば、ダイボンド材の硬化が始まることがないため、目的とするダイボンド材の厚さに到達することができる。
 更に本発明では、上記本発明の透明樹脂組成物を用いて、BLTを5μm以下として光半導体素子と基板とを導電接続することを特徴とする導電接続方法を提供する。このような導電接続方法であれば、光半導体素子と基板との導電接続を確実に達成することができる。
 更に本発明では、上記本発明の導電接続方法によって光半導体素子と基板とが導電接続されたものであることを特徴とする光半導体装置を提供する。本発明の光半導体装置は、本発明の導電接続方法によって得られたものであるため、光取り出し効率が高く、耐熱性及び耐光性を有するものとなり、導電接続が確実に達成されたものとなる。
 以下、本発明の光半導体装置の一態様について図面を参照して説明する。図1は、本発明の透明樹脂組成物を用いて光半導体素子と基板とが導電接続された光半導体装置の一例を示す断面図である。この光半導体装置は、光半導体素子4の下部電極と第1のリード2をダイボンド材1により、電気的に接続し、光半導体素子4の上部電極と第2のリード3をワイヤー5により電気的に接続し、光半導体素子4を封止材6で封止したものである。
 図1の光半導体装置の製造方法(本発明の導電接続方法)としては、以下の方法を例示できる。
 パッケージ基板上の第1のリード2に、ダイボンド材1を定量転写し、その上に光半導体素子4を搭載する。次にダイボンド材1を加熱硬化させ、光半導体素子4の下部電極と第1のリード2を電気的に接続する。この際、本発明の導電接続方法では、BLTを5μm以下とする。BLTを5μm以下とする方法としては、例えば、組成物の粘度を調整する方法、組成物の基板への塗布量を調節する方法、光半導体素子を基板にダイボンドする際の圧力を制御する方法等を挙げることができる。次いで、光半導体素子4が搭載されたパッケージ基板を、光半導体素子4の上部電極と第2のリード3に対してワイヤー5を用いて電気的に接続し、光半導体素子4が搭載されたパッケージ基板を得る。次いで、封止材6を定量塗布し、封止材6の加熱硬化を行う。
 本発明の透明樹脂組成物を硬化して得られる硬化物のBLTが5μmを超えると、(B)成分の導電性粒子による電気的な接続効果が失われ、導電性の硬化物として用いることができず、半導体素子と基板とを導電接続することができない。この場合、(B)成分の含有量を(A)成分の固形分を基準として0.1体積%以上とすれば導電性は回復するが、全光線透過率の低下、及びヘイズ値の上昇を招くため、高透明な硬化物とすることができない。更に、熱抵抗の増大の原因となるため、好ましくない。
 以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。(下記式において、Meはメチル基を示す。)
[調製例1~4]
 下記成分を撹拌、混合し、表1に示す組成のシリコーン組成物を調製した。
[(A)成分]
[(A-1)成分]
(a)下記式に示す、MA単位、M単位、Q単位が、MA:M:Q=1:4:6の割合で含まれ、分子量がポリスチレン換算の重量平均分子量で、5000であるオルガノポリシロキサン。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
(b)下記式に示すオルガノポリシロキサン。(下記式において、Meはメチル基を示す。)
Figure JPOXMLDOC01-appb-C000024
(c)下記式に示す、MA-D単位、D単位、T単位が、MA-D:D:T=2:6:7の割合で含まれ、分子量がポリスチレン換算の重量平均分子量で、3500であるオルガノポリシロキサン。(下記式において、Meはメチル基を示す。)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
(d)下記式に示すオルガノポリシロキサン。(下記式において、Meはメチル基を示す。)
Figure JPOXMLDOC01-appb-C000028
[(A-2)成分]
(A-2)1,1-Di(t-butylperoxy)cyclohexane(商品名:パーヘキサC、日本油脂株式会社製)
 調製例1~4の各成分の配合量を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(比較調製例1)
 下記成分を撹拌、混合してシリコーン組成物(V)を調製した。
[(A-1)成分]
((e)成分)平均組成式:MVi300Viのシリコーンオイル:35質量部
((f)成分)M単位とMVi単位とQ単位とから構成され、MVi単位に対するM単位のモル比が6.25であり、Q単位に対するM単位とMVi単位との合計のモル比が0.8であるシリコーンレジン:65質量部
 なお、上記の(e)成分、(f)成分において、各成分の平均組成を示す記号は以下の通りの単位を示す。
  M:(CHSiO1/2
  MVi:(CH=CH)(CHSiO1/2
  D:(CHSiO2/2
  Q:SiO4/2
[(A-2)成分]
(A-2)1,1-Di(t-butylperoxy)cyclohexane(商品名:パーヘキサC、日本油脂株式会社製):2質量部
[実施例1~6]
(実施例1)
 (A)成分として調製例1で得られたシリコーン組成物(I)100質量部、(B)成分の導電性粒子として平均粒径(一次粒子の平均粒子径)0.02μmのSbド―プSnO粉(ATO、製品名SN-100P、石原産業社製)0.1質量部(シリコーン組成物(I)の固形分を基準として0.015体積%)、添加材として、煙霧状シリカ(製品名レオシロールDM-30S、トクヤマ社製)5質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡してペースト状の組成物を調製した。
(実施例2)
 (A)成分として調製例2で得られたシリコーン組成物(II)100質量部、(B)成分の導電性粒子として平均粒径0.02μmのSbド―プSnO粉(ATO、製品名SN-100P、石原産業社製)0.1質量部(シリコーン組成物(II)の固形分を基準として0.015体積%)、添加材として、煙霧状シリカ(製品名レオシロールDM-30S、トクヤマ社製)5質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡してペースト状の組成物を調製した。
(実施例3)
 (A)成分として調製例3で得られたシリコーン組成物(III)100質量部、(B)成分の導電性粒子として平均粒径0.02μmのSbド―プSnO粉(ATO、製品名SN-100P、石原産業社製)0.1質量部(シリコーン組成物(III)の固形分を基準として0.015体積%)、添加材として、煙霧状シリカ(製品名レオシロールDM-30S、トクヤマ社製)5質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡し、希釈剤としてキシレンを10質量部加え良く混合してペースト状の組成物を調製した。
(実施例4)
 (A)成分として調製例1で得られたシリコーン組成物(I)100質量部、(B)成分の導電性粒子として平均粒径0.35μmのSbド―プSnO被覆シリカ粉(製品名ES-650E、比重4.1、チタン工業社製)0.1質量部(シリコーン組成物(I)の固形分を基準として0.024体積%)、添加材として、煙霧状シリカ(製品名レオシロールDM-30S、トクヤマ社製)5質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡してペースト状の組成物を調製した。
(実施例5)
 (A)成分として調製例1で得られたシリコーン組成物(I)100質量部、(B)成分の導電性粒子として平均粒径0.02μmのSbド―プSnO粉(ATO、製品名SN-100P、石原産業社製)0.01質量部(シリコーン組成物(I)の固形分を基準として0.0015体積%)、添加材として、煙霧状シリカ(製品名レオシロールDM-30S、トクヤマ社製)5質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡してペースト状の組成物を調製した。
(実施例6)
 (A)成分として調製例4で得られたシリコーン組成物(IV)100質量部、(B)成分の導電性粒子として平均粒径0.05μmの銀粉(製品名シルベストC-34、比重10.5、徳力科学研究所社製)0.01質量部(シリコーン組成物(IV)の固形分を基準として0.001体積%)、溶剤としてキシレン5質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡してペースト状の組成物を調製した。
[比較例1~4]
(比較例1)
 (A)成分として調製例1で得られたシリコーン組成物(I)100質量部、(B)成分の導電性粒子として平均粒径0.02μmのSbド―プSnO粉(ATO、製品名SN-100P、石原産業社製)1.0質量部(シリコーン組成物(I)の固形分を基準として0.15体積%)、添加材として、煙霧状シリカ(製品名レオシロールDM-30S、トクヤマ社製)5質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡してペースト状の組成物を調製した。
(比較例2)
 (A)成分として調製例1で得られたシリコーン組成物(I)100質量部、(B)成分の導電性粒子として平均粒径6.9μmの銀粉(製品名シルベストTCG-7、比重10.5、徳力科学研究所社製)0.1質量部(シリコーン組成物(I)の固形分を基準として0.001体積%)、添加材として、煙霧状シリカ(製品名レオシロールDM-30S、トクヤマ社製)5質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡してペースト状の組成物を調製した。
(比較例3)
 (A)成分として比較調製例1で得られたシリコーン組成物(V)100質量部、(B)成分の導電性粒子として平均粒径0.02μmのSbド―プSnO粉(ATO、製品名SN-100P、石原産業社製)0.1質量部(シリコーン組成物(V)の固形分を基準として0.015体積%)を混合し、さらに三本ロールで混練処理を行い、減圧脱泡してペースト状の組成物を調製した。
(比較例4)
 (A)成分としてエポキシ組成物(VI)(エポキシダイボンド材、製品名DX-20C、ヘンケル社製)100質量部、(B)成分の導電性粒子として平均粒径6.9μmの銀粉(製品名シルベストTCG-7、比重10.5、徳力科学研究所社製)310質量部(エポキシ組成物(VI)の固形分を基準として29.5体積%)を混合し、さらに三本ロールで混練処理を行い、減圧脱泡してペースト状の組成物を調製した。
 実施例1~6、比較例1~4の組成物について、以下の諸特性を測定した。結果を表2、表3に示す。
[ヘイズ測定、及び全光線透過率の測定]
 日本電色工業社製 ヘイズメーターNDH-5000SPを用いてヘイズ測定、及び全光線透過率の測定を行った。上記の条件で混合した試料を、2mm厚のセルに流し込み、所定の条件(実施例1~6、比較例1~3は150℃、1時間、比較例4は170℃、1時間)で加熱硬化を行い、表面が清浄な2mm厚の硬化物を得、これを測定部にセットし測定した。3度の測定におけるヘイズ値、全光線透過率の平均値を求めた。
[粘度の測定]
 実施例及び比較例に示す組成物からなる各ダイボンド材の粘度をE型粘度計(東機産業株式会社製 RE80U)を用いて25℃、50rpmで測定した。
[光半導体パッケージの作製]
 LED用パッケージ基板として、光半導体素子を載置する凹部を有し、その底部に銀メッキされた第1のリードと第2のリードが設けられたLED用パッケージ基板[SMD5050(I-CHIUN PRECISION INDUSTRY CO.,社製、樹脂部PPA(ポリフタルアミド))]、光半導体素子として、主発光ピークが450nmの垂直型LED(SemiLEDs社製 EV-B35A)を、それぞれ用意した。
 ダイボンダー(ASM社製 AD-830)を用いて、パッケージ基板の銀メッキされた第1のリードに、実施例及び比較例に示す各ダイボンド材をスタンピングにより定量転写し、その上に光半導体素子を搭載した。このときの光半導体素子の搭載条件は、圧着時間13msec、圧着荷重60gfであり、加温装置を用いず室温25℃の環境で行った。次にパッケージ基板をオーブンに投入し各ダイボンド材を加熱硬化させ(実施例1~6、比較例1~3は150℃ 1時間、比較例4は170℃ 1時間)、光半導体素子の下部電極と第1のリードを電気的に接続した。次いでワイヤーボンダーを用いて、該光半導体素子が搭載された該LED用パッケージ基板を、光半導体素子の上部電極と第2のリードに対して金ワイヤー(田中電子工業社製 FA 25μm)を用いて電気的に接続し、光半導体素子が搭載されたLED用パッケージ基板各1枚(パッケージ数にして120個)を得た。
 次いで、上記で得られた光半導体素子が搭載されたLED用パッケージ基板に対し、ディスペンス装置(武蔵エンジニアリング製、SuperΣ CM II)を用いて、シリコーン封止材(製品名KER2500、信越化学工業株式会社製)を定量塗布し、150℃、4時間で封止材の加熱硬化を行った。
 上記のようにして、ダイボンド材の異なる光半導体パッケージを作製し、以下の試験に用いた。
[点灯数の確認]
 上記の方法で得られた封止材が充填された光半導体パッケージ全数(120個)の点灯検査を行い(印加電流IF=20mA)、点灯した光半導体装置の数を数えた。
[BLTの測定]
 上記の方法で得られた封止材が充填された光半導体パッケージを、市販の室温硬化型エポキシ樹脂で埋包し、光半導体素子の直下が観察できるように切断、研磨し、BLTが観察可能な試料を作製した。得られた試料をレーザー顕微鏡(株式会社キーエンス製 VK-8700)で観察し、光半導体素子-基板間の距離を3点測定し、平均値を求めた。
[全光束の測定]
 上記の方法で得られた封止材が充填された光半導体パッケージ10個を、全光束測定システム HM-9100(大塚電子(株)製)を用い、全光束値(Lm)を測定し(印加電流IF=350mA)、平均値を求めた。
[高温通電試験(高温点灯試験)]
 上記の方法で得られた封止材が充填された光半導体パッケージのうち10個を、高温下(85℃)で、350mA通電、1000時間点灯した後、試験後のサンプルの通電試験を行い、点灯した光半導体装置の数を数えた。
 得られた結果を表2、表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、本発明の範囲を満たす透明樹脂組成物をダイボンド材として用いた実施例1~実施例6では、いずれも、(B)成分として平均粒径が1μm以下の導電性粒子を含有し、上記(B)導電性粒子の含有量が、(A)成分の固形分を基準として0体積%より大きく0.1体積%未満の範囲であって、高透明であるため2mm厚の硬化物とした時の全光線透過率が70%以上、かつヘイズ値が60%以下であり、更にBLTが5μm以下であるため、すべてのパッケージで点灯可能であり全光束値も高い値を示した。すなわち、明るいパッケージであった。また、高温通電試験(高温点灯試験)でも透明樹脂組成物に外観の変化はなく、すべてのパッケージで点灯可能であった。これらの結果から、本発明の導電接続方法であれば、光の取り出し効率が高く、信頼性の高い光半導体デバイスを製造できることがわかった。
 一方、表3に示すように、(B)成分が(A)成分の固形分を基準として0.1体積%以上であり、本発明の範囲を満たさないシリコーン樹脂組成物である比較例1では、全光線透過率が70%以上、かつヘイズ値が60以下の範囲を満たせず、全光束値の高いパッケージは得られなかった。
 (B)成分の平均粒径が1μmを超えており、本発明の範囲を満たさない組成物である比較例2では、透明性は得られたが、BLTが5μmを超えるため導電性に劣り、120個のパッケージ中、不点灯のパッケージが発生した。また、高温点灯試験における耐久性にも劣るものであった。
 (A-1)成分が本発明とは異なる(必須官能基である上記一般式(1)で表される構造を有さない)比較例3では、硬化物を得ることができなかった。
 一般的な、透明性を有していない導電性組成物である比較例4は、(B)成分の平均粒径及び添加量が本発明の範囲から外れるものであり、全光束値の高いパッケージは得られなかった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (10)

  1.  透明樹脂組成物であって、
    (A)(A-1) 下記一般式(1)で表される構造を分子中に少なくとも1つ有するオルガノポリシロキサン:100質量部、
    Figure JPOXMLDOC01-appb-C000029
    [式中、mは0,1,2のいずれかであり、Rは水素原子、フェニル基又はハロゲン化フェニル基、Rは水素原子又はメチル基、Rは置換又は非置換で同一又は異なってもよい炭素数1~12の1価の有機基、Zは-R-、-R-O-、-R(CHSi-O-(Rは置換又は非置換で同一又は異なってもよい炭素数1~10の2価の有機基)のいずれか、Zは酸素原子又は置換若しくは非置換で同一若しくは異なってもよい炭素数1~10の2価の有機基である。]
    (A-2)有機過酸化物:前記(A-1)成分の合計量100質量部に対して、0.1~10質量部を含むシリコーン組成物と、
    (B)平均粒径が1μm以下の導電性粒子と
    を含有するものであり、
     前記(B)成分の含有量が、前記(A)成分の固形分を基準として0体積%より大きく、かつ0.1体積%未満の範囲であり、
     前記透明樹脂組成物を硬化して得られる2mm厚の硬化物の全光線透過率が70%以上であり、かつヘイズ値が60%以下であることを特徴とする透明樹脂組成物。
  2.  前記(A-1)成分のオルガノポリシロキサンのZが-R-であり、前記Zが酸素原子であることを特徴とする請求項1に記載の透明樹脂組成物。
  3.  前記(A-1)成分のオルガノポリシロキサンのZが-R-O-又は、-R(CHSi-O-であり、前記Zが置換又は非置換で同一又は異なってもよい炭素数1~10の2価の有機基であることを特徴とする請求項1に記載の透明樹脂組成物。
  4.  前記(A-1)成分のオルガノポリシロキサンが、下記一般式(2)で表される構造を分子中に少なくとも1つ有するものであることを特徴とする請求項1から請求項3のいずれか1項に記載の透明樹脂組成物。
    Figure JPOXMLDOC01-appb-C000030
    (式中、m、R、R、R、Rは上記と同様である。)
  5.  前記(A-1)成分のオルガノポリシロキサン中に、0.1mol%以上の(SiO)単位を有することを特徴とする請求項1から請求項4のいずれか1項に記載の透明樹脂組成物。
  6.  請求項1から請求項5のいずれか1項に記載の透明樹脂組成物からなるものであることを特徴とする接着剤。
  7.  請求項1から請求項5のいずれか1項に記載の透明樹脂組成物からなるものであることを特徴とするダイボンド材。
  8.  前記ダイボンド材を硬化して得られる硬化物はBLT(Bond line thickness)が5μm以下の場合において使用されるものであることを特徴とする請求項7に記載のダイボンド材。
  9.  請求項1から請求項5のいずれか1項に記載の透明樹脂組成物を用いて、BLTを5μm以下として光半導体素子と基板とを導電接続することを特徴とする導電接続方法。
  10.  請求項9に記載の導電接続方法によって光半導体素子と基板とが導電接続されたものであることを特徴とする光半導体装置。
PCT/JP2015/005189 2014-12-08 2015-10-14 透明樹脂組成物、該組成物からなる接着剤、該組成物からなるダイボンド材、該組成物を用いた導電接続方法、及び該方法によって得られた光半導体装置 WO2016092725A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580066759.2A CN107001546B (zh) 2014-12-08 2015-10-14 透明树脂组合物、其粘接剂和固晶材料、用其导电连接方法及由该方法得到的光半导体装置
KR1020177009396A KR102340593B1 (ko) 2014-12-08 2015-10-14 투명수지 조성물, 이 조성물로 이루어진 접착제, 이 조성물로 이루어진 다이본드재, 이 조성물을 이용한 도전접속방법, 및 이 방법에 의해 얻어진 광반도체 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014247534A JP6285346B2 (ja) 2014-12-08 2014-12-08 透明樹脂組成物、該組成物からなる接着剤、該組成物からなるダイボンド材、該組成物を用いた導電接続方法、及び該方法によって得られた光半導体装置
JP2014-247534 2014-12-08

Publications (1)

Publication Number Publication Date
WO2016092725A1 true WO2016092725A1 (ja) 2016-06-16

Family

ID=56106966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005189 WO2016092725A1 (ja) 2014-12-08 2015-10-14 透明樹脂組成物、該組成物からなる接着剤、該組成物からなるダイボンド材、該組成物を用いた導電接続方法、及び該方法によって得られた光半導体装置

Country Status (4)

Country Link
JP (1) JP6285346B2 (ja)
KR (1) KR102340593B1 (ja)
CN (1) CN107001546B (ja)
WO (1) WO2016092725A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108070261A (zh) * 2016-11-08 2018-05-25 信越化学工业株式会社 加热固化型硅氧组合物、固晶材料、以及光半导体装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6962290B2 (ja) * 2018-08-02 2021-11-05 信越化学工業株式会社 光造形用紫外線硬化型シリコーン組成物およびその硬化物
CN109536122A (zh) * 2018-12-12 2019-03-29 烟台德邦科技有限公司 一种光伏叠瓦组件用有机硅改性丙烯酸导电胶
JP2020125390A (ja) * 2019-02-01 2020-08-20 信越化学工業株式会社 画像表示装置用紫外線硬化型液状オルガノポリシロキサン組成物、該組成物を含む画像表示装置用接着剤、該接着剤を用いた画像表示装置及び該接着剤を用いた接着方法
EP4075451A4 (en) * 2019-12-12 2023-12-13 NOK Corporation METHOD FOR PRODUCING A BIOELECTRODE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214543A (ja) * 2006-01-12 2007-08-23 Shin Etsu Chem Co Ltd 発光ダイオード素子用紫外線硬化型シリコーン組成物
JP2008074982A (ja) * 2006-09-22 2008-04-03 Shin Etsu Chem Co Ltd 加熱硬化型シリコーン組成物及びそれを用いた発光ダイオード素子
JP2008518082A (ja) * 2004-10-28 2008-05-29 ダウ・コーニング・コーポレイション 硬化可能な伝導組成物
JP2009102603A (ja) * 2007-10-05 2009-05-14 Hitachi Chem Co Ltd 接着剤組成物及び半導体装置
JP2010275339A (ja) * 2009-05-26 2010-12-09 Mitsubishi Rayon Co Ltd 硬化性組成物、及び物品

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769152B2 (ja) 1999-09-03 2006-04-19 京セラケミカル株式会社 導電性ペースト
TWI437047B (zh) * 2006-01-12 2014-05-11 Shinetsu Chemical Co 用於發光二極體元件的紫外光可固化矽氧組成物
JP2008094877A (ja) * 2006-10-06 2008-04-24 Shin Etsu Chem Co Ltd 紫外線硬化型熱伝導性シリコーン組成物
EP2180026A4 (en) 2007-08-08 2012-05-30 Hitachi Chemical Co Ltd ADHESIVE COMPOSITION, FILM-TYPE LUBRICANT AND CONNECTING STRUCTURE FOR A SWITCHING ELEMENT
JP5557324B2 (ja) 2010-09-01 2014-07-23 信越化学工業株式会社 ダイボンド剤及び光半導体装置
CN103392221B (zh) * 2011-02-15 2016-08-10 Dic株式会社 纳米压印用固化性组合物、纳米压印成形体以及图案形成方法
KR101371102B1 (ko) * 2012-02-10 2014-03-10 도레이첨단소재 주식회사 도전성 점착제 조성물, 그를 이용한 도전성 점착필름 및 회로기판
JP5814175B2 (ja) * 2012-04-16 2015-11-17 信越化学工業株式会社 Ledのリフレクター用熱硬化性シリコーン樹脂組成物並びにこれを用いたled用リフレクター及び光半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518082A (ja) * 2004-10-28 2008-05-29 ダウ・コーニング・コーポレイション 硬化可能な伝導組成物
JP2007214543A (ja) * 2006-01-12 2007-08-23 Shin Etsu Chem Co Ltd 発光ダイオード素子用紫外線硬化型シリコーン組成物
JP2008074982A (ja) * 2006-09-22 2008-04-03 Shin Etsu Chem Co Ltd 加熱硬化型シリコーン組成物及びそれを用いた発光ダイオード素子
JP2009102603A (ja) * 2007-10-05 2009-05-14 Hitachi Chem Co Ltd 接着剤組成物及び半導体装置
JP2010275339A (ja) * 2009-05-26 2010-12-09 Mitsubishi Rayon Co Ltd 硬化性組成物、及び物品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108070261A (zh) * 2016-11-08 2018-05-25 信越化学工业株式会社 加热固化型硅氧组合物、固晶材料、以及光半导体装置

Also Published As

Publication number Publication date
CN107001546A (zh) 2017-08-01
KR102340593B1 (ko) 2021-12-21
JP6285346B2 (ja) 2018-02-28
JP2016108458A (ja) 2016-06-20
CN107001546B (zh) 2019-06-18
KR20170093104A (ko) 2017-08-14

Similar Documents

Publication Publication Date Title
CN105121556B (zh) 可固化有机硅组合物、其固化产物及光学半导体器件
TWI504683B (zh) A hardened silicon oxide composition, a hardened product thereof, and an optical semiconductor device
KR102390737B1 (ko) 가열 경화형 실리콘 조성물, 다이 본드재 및 광반도체 장치
WO2016092725A1 (ja) 透明樹脂組成物、該組成物からなる接着剤、該組成物からなるダイボンド材、該組成物を用いた導電接続方法、及び該方法によって得られた光半導体装置
KR20130105429A (ko) 경화성 실리콘 수지 조성물, 그의 경화물 및 광반도체 디바이스
WO2004076585A1 (ja) 硬化性組成物とその調製方法、遮光ペースト、遮光用樹脂とその形成方法、発光ダイオード用パッケージ及び半導体装置
JP2013004922A (ja) 半導体発光装置用樹脂パッケージ及び該樹脂パッケージを有してなる半導体発光装置
JP6072663B2 (ja) 加熱硬化型導電性シリコーン組成物、該組成物からなる導電性接着剤、該組成物からなる導電性ダイボンド材、該ダイボンド材の硬化物を有する光半導体装置。
JP6272747B2 (ja) 加熱硬化型シリコーン組成物、該組成物からなるダイボンド材及び該ダイボンド材の硬化物を用いた光半導体装置
WO2016092742A1 (ja) 接着剤、該接着剤からなるダイボンド材、該接着剤を用いた導電接続方法、及び該方法によって得られた光半導体装置
JP7296748B2 (ja) ウェハーレベル光半導体デバイス用樹脂組成物、及び光半導体デバイス
WO2022004464A1 (ja) 硬化性シリコーン組成物及びその硬化物
JP2007194268A (ja) 光半導体装置
JP7360910B2 (ja) 硬化性組成物及び該組成物を封止剤として用いた半導体装置。
JP2019163425A (ja) 硬化性組成物及び該組成物を封止剤として用いた光半導体装置。
JP2018044067A (ja) 無機フィラーを含有する硬化性組成物を封止剤として用いてなる光半導体装置
TW201922886A (zh) 透明液狀熱硬化性樹脂組合物、光學材料用接著劑及光半導體裝置
JP2016111210A (ja) ダイボンド材を用いた導電接続方法及び光半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867026

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177009396

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867026

Country of ref document: EP

Kind code of ref document: A1