WO2016088863A1 - ジアザビシクロオクタン誘導体の結晶及び安定な凍結乾燥製剤の製造法 - Google Patents

ジアザビシクロオクタン誘導体の結晶及び安定な凍結乾燥製剤の製造法 Download PDF

Info

Publication number
WO2016088863A1
WO2016088863A1 PCT/JP2015/084094 JP2015084094W WO2016088863A1 WO 2016088863 A1 WO2016088863 A1 WO 2016088863A1 JP 2015084094 W JP2015084094 W JP 2015084094W WO 2016088863 A1 WO2016088863 A1 WO 2016088863A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
inorganic salt
aqueous solution
crystals
crystal
Prior art date
Application number
PCT/JP2015/084094
Other languages
English (en)
French (fr)
Inventor
崇也 小河
拓也 横山
修佑 古山
政人 市來
謙一 節原
Original Assignee
Meiji Seikaファルマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020177018148A priority Critical patent/KR102555657B1/ko
Priority to CA2969192A priority patent/CA2969192C/en
Application filed by Meiji Seikaファルマ株式会社 filed Critical Meiji Seikaファルマ株式会社
Priority to US15/532,281 priority patent/US10294224B2/en
Priority to BR112017010445A priority patent/BR112017010445B8/pt
Priority to NZ732214A priority patent/NZ732214B2/en
Priority to SG11201704576SA priority patent/SG11201704576SA/en
Priority to MYPI2017702007A priority patent/MY190283A/en
Priority to MX2017007191A priority patent/MX2017007191A/es
Priority to EP15866317.9A priority patent/EP3228620B1/en
Priority to RU2017123112A priority patent/RU2732129C2/ru
Priority to ES15866317T priority patent/ES2821826T3/es
Priority to JP2016562689A priority patent/JP6779787B2/ja
Priority to AU2015355970A priority patent/AU2015355970B2/en
Priority to CN201580065691.6A priority patent/CN107001366B/zh
Publication of WO2016088863A1 publication Critical patent/WO2016088863A1/ja
Priority to IL252691A priority patent/IL252691B/en
Priority to ZA2017/04063A priority patent/ZA201704063B/en
Priority to US16/297,550 priority patent/US11117895B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/08Bridged systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/439Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom the ring forming part of a bridged ring system, e.g. quinuclidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to a method for producing a crystal of a diazabicyclooctane derivative represented by the formula (I), a composition of the derivative, a lyophilized preparation, and a method for producing the same.
  • Novel diazabicyclooctane derivatives represented by the following formula (I): (2S, 5R) -N- (2-aminoethoxy) -7-oxo-6- (sulfooxy) -1,6-diazabicyclo [3.2 .1]
  • Octane-2-carboxamide hereinafter also referred to as “compound (I)” is a ⁇ -lactamase inhibitor and is disclosed in WO2013 / 180197 (Patent Document 1).
  • Patent Document 2 discloses a method for obtaining an aqueous drug solution containing 2 to 10% (V / V) alcohol or acetone having 1 to 3 carbon atoms as a crystalline lyophilized composition by a lyophilization method including a heat treatment step.
  • Patent Document 6 discloses a crystal of compound (I) and a production method thereof.
  • Patent Document 4 a heat treatment process is always incorporated, and there is no example in which an inorganic salt is added.
  • the method of Patent Document 5 is not desirable as an industrial production method because of concern about residual solvent.
  • no method has yet been found for obtaining a crystalline lyophilized composition under lyophilization conditions that do not involve a heat treatment step or addition of an organic solvent.
  • Patent Document 6 sufficient crystals cannot be obtained unless the aqueous solution containing the compound (I) is once purified by a column or the like.
  • the present invention relates to a method capable of producing crystals of compound (I), particularly a single crystal form, in particular, stable form I crystals, on an industrial scale, and a stable lyophilized composition of compound (I).
  • the purpose is to provide goods.
  • the present invention relates to a method for producing a crystal of compound (I), which comprises crystallizing compound (I) from an aqueous solution containing compound (I) and an inorganic salt such as sodium chloride. .
  • the present invention also provides a method for producing a lyophilized composition containing compound (I), which comprises crystallizing compound (I) by the method for producing a crystal of compound (I);
  • a freeze-dried composition characterized in that it comprises crystals of compound (I) and an inorganic salt such as sodium chloride.
  • the lyophilized composition of the present invention can be produced by the method for producing the lyophilized composition of the present invention.
  • compound (I) is prepared by a general method such as adding a seed crystal to an aqueous solution containing compound (I) and an inorganic salt such as sodium chloride and then adding a poor solvent as necessary. Is crystallized.
  • the compound (I) is crystallized by freeze-drying an aqueous solution containing the compound (I) and an inorganic salt such as sodium chloride.
  • an inorganic salt such as sodium chloride
  • a crystal of compound (I), particularly the same type I crystal as in Patent Document 6 can be obtained, and the storage stability can be dramatically improved as compared with the amorphous state. it can.
  • the Form I crystal of the present invention is the same as the Form I crystal of Patent Document 6, and has a characteristic powder X-ray diffraction peak pattern as shown in Table 1 or FIG.
  • powder X-ray diffraction is measured by the method described in Test Example 1.
  • an aqueous solution containing compound (I) and an inorganic salt such as sodium chloride is freeze-dried, for example, freeze-dried under general conditions that undergo a freezing step followed by a reduced-pressure drying step. That is, the present invention includes subjecting an aqueous solution containing compound (I) and an inorganic salt such as sodium chloride to a freezing step, and subjecting the frozen product obtained in the freezing step to a vacuum drying step.
  • the present invention also relates to a method for producing a lyophilized composition containing compound (I).
  • a freeze-dried composition in which compound (I) is crystallized can be obtained without including a heat treatment step and a refreezing step between the freezing step and the reduced-pressure drying step. That is, in the method for producing a lyophilized composition of the present invention, the heat treatment and refreezing operation of the frozen product obtained in the freezing step may not be performed.
  • lyophilization is a production method that requires a long time for production.
  • a method for obtaining a crystalline lyophilized composition by including a heat treatment step and a refreezing step between the freezing step and the reduced-pressure drying step is known, but the problem is that the production time is further increased and the productivity is low. It is.
  • a freeze-dried composition in which compound (I) is crystallized can be obtained without including a heat treatment step and a re-freezing step between the freezing step and the reduced-pressure drying step. Can be increased.
  • a heat treatment step and a refreezing step can be incorporated between the freezing step and the vacuum drying step. That is, the present invention is obtained by subjecting the frozen material obtained in the freezing step to a heat treatment step, subjecting the heat treated material obtained in the heat treatment step to a refreezing step, and the refreezing step.
  • the present invention also relates to the above-mentioned method for producing a lyophilized composition containing compound (I), which further comprises subjecting a frozen product to the vacuum drying step.
  • the crystallization efficiency of compound (I) can be further improved.
  • the present invention by crystallizing from an aqueous solution containing compound (I) and an inorganic salt, crystals of compound (I) can be obtained without purifying compound (I) in advance using a column or the like.
  • the present invention provides a freezing characterized in that the compound (I) is a crystal, particularly a single crystal form, particularly a form I crystal, by lyophilization from an aqueous solution containing the compound (I) and an inorganic salt.
  • a dry composition is obtained, and a lyophilized preparation of compound (I) having excellent storage stability can be provided.
  • the powder X-ray diffraction chart of the lyophilized composition obtained in Example 1a is shown.
  • the powder X-ray-diffraction chart of the lyophilized composition obtained in Example 1b is shown.
  • crystallization obtained in Example 2b is shown.
  • the powder X-ray diffraction chart of the freeze-dried composition obtained in Comparative Example 1 is shown.
  • the powder X-ray-diffraction chart of sodium chloride is shown.
  • the inorganic salt used in the present invention is not particularly limited as long as it can be added to an injection.
  • Sodium chloride, magnesium chloride, calcium chloride, potassium chloride, ammonium chloride, sodium bromide, calcium bromide, bromide examples include potassium, tetrabutylammonium bromide, magnesium sulfate, sodium iodide, potassium iodide, sodium hydrogen phosphate, sodium acetate, sodium citrate, sodium tartrate, sodium glutamate, and Rochelle salt (sodium potassium tartrate).
  • sodium chloride, magnesium chloride, magnesium sulfate, sodium citrate, sodium glutamate, and Rochelle salt (potassium sodium tartrate) are preferable.
  • any of these inorganic salts can be used to obtain Form I crystals of Compound (I).
  • Particularly preferred is sodium chloride.
  • the amount of the inorganic salt of the present invention added to the freeze-dried composition or pharmaceutical preparation is not particularly limited, but is preferably 0.1 to 10 molar equivalents, more preferably 1 to 2 moles, relative to compound (I). Is equivalent. This is because the crystallization efficiency is lowered in both cases where the blending amount is small and large, which affects the stability of the preparation.
  • the amount of the inorganic salt added to the aqueous solution is not particularly limited, but is preferably 0.1 to 0.1% relative to compound (I). It is 10 molar equivalents, more preferably 0.5 to 1.5 molar equivalents.
  • the concentration of compound (I) in the aqueous solution before crystallization or before lyophilization is usually 1% (W / W) to 40% (W / W), preferably 2.5% (W / W). W) to 20% (W / W), more preferably 7.5% (W / W) to 10% (W / W). This is because when the concentration is low, the crystallization efficiency is lowered, affecting the stability of the preparation, and when the concentration is high, precipitation from the supersaturated solution is likely to occur.
  • the aqueous solution containing the compound (I) of the present invention and the inorganic salt may be prepared by dissolving the compound (I) and the inorganic salt together in water, or one of them may be dissolved in water first. It is also possible to obtain an aqueous solution and dissolve the remaining one therein to prepare.
  • the compound (I) is crystallized by adding a seed crystal to an aqueous solution containing the compound (I) and an inorganic salt, if necessary, and then adding a poor solvent.
  • the seed crystal the seed crystal of compound (I) can be used.
  • the I-type crystal of Patent Document 6 can be used.
  • a freeze-dried product obtained by freeze-drying an aqueous solution containing compound (I) and an inorganic salt may be used as a seed crystal.
  • the amount of seed crystals is 0 to 20 wt%, preferably 0.01 to 2 wt%.
  • the poor solvent examples include alcohols such as methanol, ethanol, 1-propanol, and isopropanol, acetone, acetonitrile, and tetrahydrofuran, and alcohols such as methanol, ethanol, 1-propanol, and isopropanol are preferable.
  • the amount of the poor solvent is adjusted from the solubility so that the isolation loss is 1% or less.
  • the amount of the poor solvent is preferably 1 to 10 times the initial amount of the aqueous solution containing the compound (I) and the inorganic salt. Is used in an amount of 3 to 7.5 times, more preferably 5 to 7.5 times.
  • the timing of adding the poor solvent is not particularly limited.
  • the mixture is added dropwise after the mixture after inoculation becomes a slurry.
  • the time required for the addition of the poor solvent is not particularly limited, but is, for example, 30 minutes or longer, preferably 1 hour or longer.
  • the compound (I) may be crystallized after adjusting the temperature of the aqueous solution containing the compound (I) and the inorganic salt.
  • the stirring time depends on the deposition rate, but is stirred for 1 to 24 hours, preferably 1 to 15 hours.
  • Crystals of compound (I) can be obtained by subjecting the precipitated crystals to normal filtration, washing, air drying, or vacuum drying. In the case of solvated crystals, overdrying is avoided by management means such as product temperature, loss on drying, humidified vacuum drying, humidified air drying.
  • compound (I) may be crystallized by lyophilizing an aqueous solution containing compound (I) and an inorganic salt.
  • the present invention also relates to a method for producing a freeze-dried composition containing compound (I), wherein the compound (I) is crystallized by freeze-drying an aqueous solution containing compound (I) and an inorganic salt. It also relates to the manufacturing method including.
  • an aqueous solution containing the compound (I) and an inorganic salt is subjected to ordinary freeze-drying including a freezing step and a reduced-pressure drying step.
  • the cooling temperature for freezing the aqueous solution is influenced by the concentration of compound (I) or the concentration of inorganic salt, but is usually ⁇ 60 ° C. to ⁇ 10 ° C., preferably ⁇ 50 ° C. to ⁇ 10 ° C., more preferably -50 ° C to -15 ° C.
  • the speed at the time of cooling and freezing is usually performed over 0.25 hours to 5 hours. Note that the frozen material obtained in the freezing step can be held for a certain period of time at the freezing temperature until the next reduced-pressure drying step after freezing.
  • the vacuum drying step to which the frozen product obtained in the freezing step is attached may be divided into a primary drying (sublimation) step and a secondary drying (dehumidification) step.
  • the primary drying step is carried out under normal reduced pressure, and the temperature is affected by the concentration of compound (I) and the concentration of inorganic salt, but cannot be specified, but the product temperature may be set to a condition that does not exceed the collapse temperature of the frozen material. desirable.
  • the time varies depending on the temperature setting and production scale, it cannot be specified, but it can usually be performed for 2 hours to 7 days, preferably 5 hours to 72 hours while confirming the transition of the product temperature and the degree of vacuum.
  • the secondary drying step is performed under a normal reduced pressure, and the temperature can be, for example, 10 ° C.
  • the time varies depending on the temperature setting and production scale, it cannot be specified, but it can usually be performed for 2 hours to 72 hours, preferably 5 hours to 20 hours while confirming the transition of the product temperature and the degree of vacuum.
  • a heat treatment step and a refreezing step can be incorporated between the freezing step and the vacuum drying step.
  • the temperature during the heat treatment of the frozen material obtained in the freezing step is affected by the concentration of the compound (I) and the concentration of the inorganic salt, but is carried out at a temperature at which the frozen state can be maintained, preferably ⁇ 40 to 0 ° C., More preferably, it is ⁇ 20 to ⁇ 4 ° C.
  • the heat treatment time varies depending on the set temperature and production scale, it cannot be specified, but it can usually be carried out for 0.5 hours to 72 hours, preferably 1 hour to 24 hours.
  • the cooling temperature in the refreezing step to which the heat-treated product obtained in the heat treatment step is applied is usually ⁇ 60 ° C. to ⁇ 10 ° C., preferably ⁇ 50 ° C. to ⁇ 10 ° C., more preferably ⁇ 50 ° C. to ⁇ 15 ° C. It is. There is no particular limitation on the speed at the time of cooling and freezing, but it is usually performed over 0.25 hours to 5 hours.
  • the frozen product obtained in the refreezing step is subjected to the reduced-pressure drying step.
  • the crystal and lyophilized composition of the present invention may be administered per se (as is) or used as a conventional pharmaceutical preparation when used as a medicament.
  • the pharmaceutical preparation contains pharmaceutically acceptable additives such as excipients, lubricants, binders, disintegrants, emulsifiers, stabilizers, flavoring agents, and diluents as long as the effects of the present invention are not impaired. May be included.
  • Such pharmaceutical preparations include tablets, capsules, powders, syrups, granules, fine granules, pills, suspensions, emulsions, transdermal absorption agents, suppositories, ointments, lotions, inhalants, injections, etc. Is exemplified.
  • the crystal and lyophilized composition of the present invention and the pharmaceutical preparation are orally or parenterally (intravenous administration, intramuscular administration, intraperitoneal administration, transdermal administration, airway administration, intradermal administration, subcutaneous administration, etc.) Can be administered.
  • a ⁇ -lactam antibiotic can be added to the pharmaceutical preparation of the present invention.
  • piperacillin, ampicillin, benzylpenicillin, cefoperazone, cefazolin, cephalotin, cefotiam, cefminox, cefmethazole, fromoxef, cefodizime, cefotaxime, ceftriaxone, cefmenoxime, ratamoxef, ceftazimepefemepenecemepefem Biapenem, meropenem, and pharmacologically acceptable salts and solvates thereof can be blended.
  • additives that can be usually added to injections can be appropriately blended.
  • inorganic acids such as hydrochloric acid and phosphoric acid or salts thereof
  • organic acids such as citric acid, malic acid, tartaric acid and succinic acid or salts thereof
  • arginine, alanine, aspartic acid histidine, glycine Etc.
  • alkaline substances such as sodium hydroxide and sodium hydrogen carbonate
  • glucose, mannitol, xylitol, sorbitol, sucrose, lactose, maltose, trehalose, dextran and the like can be blended.
  • surfactants such as polysorbate, sorbitan sesquioleate, polyoxyethylene polyoxypropylene glycol, and polyoxyethylene hydrogenated castor oil are added. It is also possible to do.
  • Example 1 Lyophilized Composition of Compound (I) Example 1a 700 mg of compound (I) and 126.1 mg of sodium chloride were dissolved in distilled water to make a total amount of 7 g. The drug solution was filtered through a membrane filter (MILLEX (registered trademark) LG SLLGH13NH: Merck Millipore) having a pore size of 0.20 ⁇ m, filled in 1 g in a 5 mL glass vial, and then half-plugged with a rubber stopper. The vial filled with the chemical solution was placed in a freeze dryer (DFM-05B-S: ULVAC), the shelf temperature of the freeze dryer was set to 5 ° C., and the vial was cooled under normal pressure for 1 hour.
  • MILLEX registered trademark
  • LG SLLGH13NH Merck Millipore
  • the shelf temperature of the freeze dryer was cooled to ⁇ 40 ° C. over 1 hour to freeze the chemical solution, and this temperature was maintained for 3 hours. Subsequently, the pressure in the freeze dryer was set to about 10 Pa, the shelf temperature of the freeze dryer was raised to ⁇ 10 ° C. over 6 hours, and this state was maintained for 30 hours. Thereafter, the pressure in the freeze dryer was 10 Pa or less, the shelf temperature of the freeze dryer was raised to 25 ° C. over 7 hours, and this state was maintained for 15 hours. After the drying, the inside of the freeze dryer was returned to normal pressure using nitrogen gas and plugged with a rubber stopper.
  • the vial was taken out from the lyophilizer and the aluminum cap was tightened to obtain a lyophilized composition in which Compound (I) was Form I crystals.
  • As sodium chloride reagent-grade sodium chloride manufactured by Nacalai Tesque was used.
  • Example 1b 600 mg of compound (I) and 129.7 mg of sodium chloride were dissolved in distilled water to make a total amount of 6 g.
  • the drug solution was filtered through a membrane filter (MILLEX (registered trademark) LG SLLGH13NH: Merck Millipore) having a pore size of 0.20 ⁇ m, filled in 1 g in a 5 mL glass vial, and then half-plugged with a rubber stopper.
  • the vial filled with the chemical solution was placed in a freeze dryer (console 12-3-ST-CR: Vertis), the shelf temperature of the freeze dryer was set to 5 ° C., and the vial was cooled under normal pressure for 1 hour.
  • the shelf temperature of the freeze dryer was cooled to ⁇ 40 ° C. over 2.5 hours to freeze the drug solution, and this temperature was maintained for 1 hour. Subsequently, the shelf temperature of the freeze dryer was raised to ⁇ 4 ° C. over 0.5 hours, and this temperature was maintained for 15 hours. Thereafter, the shelf temperature of the freeze dryer was cooled to ⁇ 40 ° C. over 2 hours to refreeze the chemical solution, and this temperature was maintained for 0.5 hour. Subsequently, the pressure in the freeze dryer was set to 10 Pa or less, the shelf temperature of the freeze dryer was raised to ⁇ 10 ° C. over 0.5 hours, and this state was maintained for 20 hours. Thereafter, the shelf temperature of the freeze dryer was raised to 25 ° C.
  • Example 2 Form I crystal of compound (I)
  • Example 2a 1.0 g of compound (I) Form III crystals was dissolved in 10 mL of deionized water. To the obtained solution, 0.18 g of sodium chloride was added and dissolved at room temperature. The solution was cooled to 0 ° C. and then microfiltered. After 45 mL of cooled isopropanol was added dropwise over 1 hour, the mixture was stirred overnight. The resulting crystals were separated and dried under reduced pressure at room temperature for 0.5 hours to obtain 0.82 g of compound (I) crystals (yield 82.0%, Form I crystals).
  • Example 2b After 1.71 g of sodium chloride was dissolved in 100 mL of deionized water, 10 g of compound (I) was added and dissolved at room temperature. This solution was cooled to 0 to 5 ° C. and subjected to microfiltration, and then 50 mg (0.5 wt%) of Form I crystals of compound (I) obtained in Example 2a were added, and the mixture was heated at 0 to 5 ° C. for 1 hour. Stir. 500 mL of cooled isopropanol was added dropwise over 1 hour or more and stirred overnight, and then the crystals were separated. The obtained crystals were dried under reduced pressure at room temperature for 0.5 hours to obtain 9.53 g of compound (I) crystals (yield 94.8%, Form I crystals).
  • Comparative Example 1 Lyophilized composition of Compound (I) The same procedure as in Example 1 was performed, except that sodium chloride was not blended. That is, 700 mg of compound (I) was dissolved in distilled water to make the total amount 7 g. The drug solution was filtered through a membrane filter (MILLEX (registered trademark) LG SLLGH13NH: Merck Millipore) having a pore size of 0.20 ⁇ m, filled in 1 g in a 5 mL glass vial, and then half-plugged with a rubber stopper.
  • MILLEX registered trademark
  • LG SLLGH13NH Merck Millipore
  • the vial filled with the chemical solution was placed in a freeze dryer (DFM-05B-S: ULVAC), the shelf temperature of the freeze dryer was set to 5 ° C., and the vial was cooled under normal pressure for 1 hour. Thereafter, the shelf temperature of the freeze dryer was cooled to ⁇ 40 ° C. over 1 hour to freeze the chemical solution, and this temperature was maintained for 3 hours. Subsequently, the pressure in the freeze dryer was set to about 10 Pa, the shelf temperature of the freeze dryer was raised to ⁇ 10 ° C. over 6 hours, and this state was maintained for 30 hours. Thereafter, the pressure in the freeze dryer was set to 10 Pa or less, the shelf temperature of the freeze dryer was raised to 25 ° C. over 7 hours, and this state was maintained for 15 hours.
  • DFM-05B-S ULVAC
  • Comparative Example 2 Form I Crystal of Compound (I) (Production Method Using Octadecyl Silica Gel or Resin Column Purification) Comparative Example 2a 0.5M acetic acid buffer (pH 5.5, 35 mL) is ice-cooled, compound (I) (36 g) and a cooled 5M aqueous sodium hydroxide solution are added alternately to adjust the pH to 5.5, and an octadecyl silica gel column. Chromatography (3.6 L) was eluted with water. The active fractions were collected and concentrated under reduced pressure at a water bath temperature of 35 ° C., and the precipitated crystals were vacuum-dried overnight.
  • the activated carbon was filtered through a membrane filter, and the filtrate was freeze-dried to obtain 4.07 g of amorphous form of Compound (I) (yield 95.7%).
  • Comparative Example 2c Compound (I) (net 2.113 g) and 0.2 M phosphate buffer (pH 6.5, 73 mL) were alternately added to adjust to pH 4.6, and diluted with water (27 mL). The mixture was concentrated to 80 mL under reduced pressure, adjusted to pH 5.4 with 0.2 M phosphate buffer (pH 6.5, 16 mL), and diluted with water (48 mL). The mixture was subjected to resin purification (SP207, 240 mL) and eluted with water (276 mL) and 10% aqueous isopropanol (720 mL).
  • Example 1 Powder X-ray Diffraction Measurement Lyophilized composition obtained in Example 1a, Example 1b and Comparative Example 1, crystals obtained in Example 2a and Example 2b, Comparative Example 2a, Comparative Example 2b and Comparative The crystal obtained in Example 2c and sodium chloride were subjected to powder X-ray diffraction measurement under the conditions shown below using a powder X-ray diffractometer (RINT2200: Rigaku).
  • Example 1a, Example 1b, Example 2b, Comparative Example 1, and sodium chloride are shown in FIG. 1, FIG. 2, FIG. 3, FIG.
  • the lyophilized composition obtained in Example 1a and Example 1b was crystalline, and the lyophilized composition obtained in Comparative Example 1 was amorphous. Further, from the X-ray diffraction chart, it was confirmed that the crystal of Example 2b was a Form I crystal of Compound (I). Similarly, the crystals of Example 2a and Comparative Examples 2a to 2c are not shown in the data, but their X-ray diffraction charts confirmed that they were Form I crystals of Compound (I).
  • Example 2a and 2b and Comparative Examples 2a to 2c the same type I crystals of the compound (I) were obtained.
  • Comparative Examples 2a to 2c were conducted. It was shown that Form I crystals can be produced preferentially without going through the purification by octadecyl silica gel column chromatography or resin.
  • Example 2b a peak that does not exist in Example 2b is observed at 31 to 32 °. Since this peak is observed at 31 to 32 ° on the X-ray diffraction chart of sodium chloride (FIG. 5), it is understood that this peak is derived from sodium chloride contained in the lyophilized composition.
  • the aqueous solution of the compound (I) and the inorganic salt is lyophilized, it can be said that the resulting lyophilized composition contains the inorganic salt.
  • the crystals obtained in Examples 1a and 1b are also I-type crystals. I was able to confirm. On the other hand, when the content of sodium ion and chloride ion of the type I crystal obtained in Example 2b was examined by ion chromatography, it was 0.1% or less.
  • the compound (I) is crystallized from an aqueous solution containing the compound (I) and an inorganic salt, but it is confirmed that the obtained compound (I) crystals do not contain an inorganic salt. did it.
  • Test Example 2 Stability Evaluation About the crystals obtained in Example 1a and Example 1b and the amorphous lyophilized composition obtained in Comparative Example 1, using a thermo-hygrostat (LH20-12M: Nagano Science) A severe test (2 weeks and 1 month) at 60 ° C. was conducted, and related substances were measured by HPLC method under the following conditions. ⁇ Test conditions> Column: Warers Atlantis dC18, 5 ⁇ m, 4.6 ⁇ 250 mm Column temperature: constant temperature around 35 ° C.
  • Detector UV absorption photometer (measurement wavelength: 210 nm)
  • Mobile phase A Dissolve 1.32 g of diammonium hydrogen phosphate in 900 mL of water, add phosphoric acid to adjust the pH to 3.0, and then add water to make 1000 mL.
  • Mobile phase B Acetonitrile gradient program for liquid chromatography: The mixing ratio of mobile phase A and mobile phase B is changed and controlled as follows.
  • the catalyst was filtered and the solid was washed with methanol (25 L).
  • the filtrates were combined and concentrated under reduced pressure to 39 L at a liquid temperature of 10 ° C. or lower.
  • the operation of adding acetonitrile (44 L) to the concentrated liquid and substituting and concentrating to 39 L at a liquid temperature of 10 ° C. or lower was performed twice, and the mixture was cooled to 0 ° C. and stirred overnight.
  • the precipitated crystals were collected by filtration, washed with acetonitrile (24 L), and dried under vacuum to obtain 3.63 kg of the title compound (yield 83%).
  • Reference Example 1e A 0.2M phosphate buffer solution (pH 6.5, 7.2 L) is cooled to 10 ° C. or lower and stirred with (2S, 5R) -N- (2-aminoethoxy) -7-oxo-6- (sulfooxy). -1,6-diazabicyclo [3.2.1] octane-2-carboxamide (Reference Example 1d Crude product of compound (I), net 1.2 kg) and ice-cooled 0.2M phosphate buffer (pH 6.5) 3.5 L) was alternately added in small portions to adjust the pH between 4.2 and 4.8, and finally to pH 4.6.
  • the mixture was diluted with water (19.3 L) (total amount: 30 L), and concentrated under reduced pressure to 24 L at a liquid temperature of 18 ° C. or lower.
  • the pH of the concentrate is adjusted to pH 5.4 with 0.2 M phosphate buffer (pH 6.5, 2.4 L), diluted to 43.2 L with water, subjected to purification of the resin (Separbeads SP207, 75 L), and water ( 83 L) and 10% aqueous isopropanol to collect active fractions.
  • the active fractions were combined (33 L), concentrated to 7.2 L at a liquid temperature of 15 ° C. or lower, activated carbon (24 g) was added, and the mixture was stirred for 30 minutes.
  • the activated carbon was filtered through a membrane filter and washed with water (0.4 L ⁇ 2). The filtrate was combined, the liquid temperature was adjusted to 20 to 25 ° C., and the type III crystal (3.6 g) obtained according to the method described in Example 7a of Patent Document 6 was inoculated. Isopropanol (50.4 L) was added dropwise to the mixture over 1 hour and stirred overnight. The precipitated crystals were collected by filtration, washed with isopropanol (4.8 L), and dried in vacuo until the product temperature of the wet crystals reached 20 ° C. to obtain 1.17 kg of compound III (III) crystals (yield 90%). .
  • a crystal of compound (I), particularly a single crystal form, particularly a stable form I crystal can be easily produced on an industrial scale, and a compound having excellent storage stability. It is also possible to provide a lyophilized composition of (I), in particular its single crystal form, in particular of the I form crystal, thus providing a useful process such as an injection of compound (I).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicinal Preparation (AREA)

Abstract

 本発明は、工業的スケールで、簡便に化合物(I)の結晶を製造することができる方法、及び化合物(I)の安定な凍結乾燥組成物を提供することを目的とする。 化合物(I)と塩化ナトリウムなどの無機塩を含む水溶液を凍結乾燥することで、化合物(I)が結晶である保存安定性に優れた凍結乾燥組成物が得られること、また、凍結乾燥をしなくとも、当該水溶液から化合物(I)の結晶が得られることを見出した。

Description

ジアザビシクロオクタン誘導体の結晶及び安定な凍結乾燥製剤の製造法
 本発明は式(I)で示されるジアザビシクロオクタン誘導体の結晶の製造法、ならびに当該誘導体の組成物、凍結乾燥製剤およびその製造法に関するものである。
 下記式(I)で示される新規なジアザビシクロオクタン誘導体:(2S,5R)-N-(2-アミノエトキシ)-7-オキソ-6-(スルホオキシ)-1,6-ジアザビシクロ[3.2.1]オクタン-2-カルボキサミド(以下「化合物(I)」ともいう)は、β-ラクタマーゼ阻害剤であり、WO2013/180197(特許文献1)に開示されている。
Figure JPOXMLDOC01-appb-C000005
 結晶性の凍結乾燥組成物を得るための方法としては、薬物水溶液を所定温度で凍結後、所定温度まで昇温し一定の温度で保持する方法(以下、熱処理工程と呼ぶ)が開示されている(特許文献2)。
 特許文献3および特許文献4では、熱処理工程を含む凍結乾燥法において、薬液中に無機塩を添加できることが記載されている。
 特許文献5では、炭素数1~3のアルコールもしくはアセトンを2~10%(V/V)含有する薬物水溶液を熱処理工程を含む凍結乾燥法により結晶性の凍結乾燥組成物として得る方法が開示されている。
 特許文献6では、化合物(I)の結晶とその製造法が開示されている。
WO2013/180197 特公平03-74643号公報 特許第2843444号公報 特許第2767171号公報 特公昭60-19759号公報 WO2015/053297
 凍結工程とそれに続く減圧乾燥工程を経る一般的な条件で化合物(I)を凍結乾燥した場合、化合物(I)は非晶質となり、その化学的安定性は結晶状態と比較して著しく低く、保存安定性に優れた凍結乾燥組成物を得ることは困難であることが我々の研究で確認された。製造、流通を考慮すると化合物(I)の安定な凍結乾燥組成物が強く求められていた。
 しかしながら、化合物(I)の水溶液を特許文献2の方法で凍結乾燥しても、結晶性の凍結乾燥組成物を得ることはできなかった。特許文献3の実施例では無機塩添加の有無にかかわらず結晶性の凍結乾燥組成物を得られる事が示されており、結晶化における無機塩の添加は必須となっていない。さらに、熱処理工程を含まない通常の凍結乾燥条件の場合、無機塩の添加は非晶質部分の増加につながり、結晶化に悪影響を及ぼすことが開示されている。また、特許文献4では必ず熱処理工程が組み込まれており、無機塩を添加した実施例はない。特許文献5の方法は残留溶媒の懸念があることから工業的製法としては望ましくない。
 このように、熱処理工程や有機溶媒の添加を含まない凍結乾燥条件で結晶性の凍結乾燥組成物を得る方法はいまだ見出されていない。
 一方、特許文献6の方法では、化合物(I)を含む水溶液を、一旦、カラムなどで精製してからでないと、十分な結晶が得られなかった。
 また、結晶多形をコントロールし、単一の結晶形、とりわけ、安定なI形にて取得することも課題の1つであった。
 そのため、工業的スケールで、簡便に、化合物(I)の結晶を製造できる方法、さらには、化合物(I)の単一の結晶形、とりわけI形結晶を製造できる方法が強く求められていた。
 本発明は、工業的スケールで、簡便に化合物(I)の結晶、特に単一の結晶形、とりわけ安定なI形結晶を製造することができる方法、及び化合物(I)の安定な凍結乾燥組成物を提供することを目的とする。
 そこで、発明者は、保存安定性に優れた化合物(I)の凍結乾燥組成物を開発すべく、鋭意検討した結果、化合物(I)と塩化ナトリウムなどの無機塩を含む水溶液を凍結乾燥することで、化合物(I)が結晶化されて、その結果、化合物(I)が結晶、特に単一の結晶形、とりわけ安定なI形結晶である保存安定性に優れた凍結乾燥組成物が得られることを見出し、また、凍結乾燥をしなくとも、当該水溶液から化合物(I)の結晶、特に単一の結晶形、とりわけ安定なI形結晶が得られることも見出し、本発明を完成するに至った。
 すなわち本発明は、化合物(I)の結晶の製造方法であって、化合物(I)と塩化ナトリウムなどの無機塩とを含む水溶液から、化合物(I)を結晶化させることを含む、製造方法に関する。
 また、本発明は、化合物(I)を含む凍結乾燥組成物の製造方法であって、前記化合物(I)の結晶の製造方法によって化合物(I)を結晶化させることを含む、製造方法;化合物(I)を含む凍結乾燥組成物の製造方法であって、化合物(I)と塩化ナトリウムなどの無機塩とを含む水溶液を凍結乾燥することによって化合物(I)を結晶化させることを含む、製造方法;ならびに化合物(I)の結晶と塩化ナトリウムなどの無機塩を含むことを特徴とする凍結乾燥組成物にも関する。本発明の凍結乾燥組成物は、前記本発明の凍結乾燥組成物の製造方法により製造され得る。
 本発明では、例えば、化合物(I)と塩化ナトリウムなどの無機塩とを含む水溶液に、必要に応じて種晶を加えてから、貧溶媒を加えるなどの一般的な方法により、化合物(I)の結晶化を行う。あるいは、化合物(I)と塩化ナトリウムなどの無機塩とを含む水溶液を凍結乾燥させることにより化合物(I)の結晶化を行う。塩化ナトリウムなどの無機塩を含むことで、化合物(I)の結晶、特に特許文献6と同じI形結晶が得られ、非晶質状態と比較して保存安定性を劇的に向上させることができる。
 本発明のI形結晶は、特許文献6のI形結晶と同じものであり、以下の表1又は図3に示すような特徴的な粉末X線回析のピークパターンを有する。なお、本発明では、粉末X線回析は試験例1に記載された方法で測定される。
Figure JPOXMLDOC01-appb-T000006
 また、本発明では、化合物(I)と塩化ナトリウムなどの無機塩とを含む水溶液を、凍結乾燥、例えば、凍結工程とそれに続く減圧乾燥工程を経る一般的な条件で凍結乾燥する。すなわち、本発明は、化合物(I)と塩化ナトリウムなどの無機塩とを含む水溶液を凍結工程に付すること、そして当該凍結工程で得られた凍結物を減圧乾燥工程に付することを含む、化合物(I)を含む凍結乾燥組成物の製造方法にも関する。塩化ナトリウムなどの無機塩を含むことで、化合物(I)が結晶化した、特にI形結晶に結晶化された凍結乾燥組成物が得られ、非晶質状態と比較して保存安定性を劇的に向上させることができる。
 本発明では、凍結工程と減圧乾燥工程の間に熱処理工程及び再凍結工程を含むことなく、化合物(I)が結晶化した凍結乾燥組成物を得ることができる。すなわち、本発明の凍結乾燥組成物の製造方法において、前記凍結工程で得られた凍結物の熱処理及び再凍結操作を実施しなくてもよい。一般的に、凍結乾燥は製造に長時間を要する製造法である。凍結工程と減圧乾燥工程の間に熱処理工程と再凍結工程を含むことで結晶性の凍結乾燥組成物を得る方法が知られているが、製造時間がさらに長くなり、生産性が低いことが課題である。本発明では、凍結工程と減圧乾燥工程の間に熱処理工程及び再凍結工程を含むことなく、化合物(I)が結晶化した凍結乾燥組成物を得ることができるため、従来の方法よりも生産性を高めることができる。
 本発明では、凍結工程と減圧乾燥工程の間に熱処理工程と再凍結工程を組み込むこともできる。すなわち、本発明は、前記凍結工程で得られた凍結物を熱処理工程に付すること、当該熱処理工程で得られた熱処理物を再凍結工程に付すること、そして当該再凍結工程で得られた凍結物を前記減圧乾燥工程に付することをさらに含む、化合物(I)を含む凍結乾燥組成物の前記製造方法にも関する。熱処理工程を組み込むことで化合物(I)の結晶化効率をさらに向上させることができる。
 本発明は、化合物(I)と無機塩を含む水溶液から結晶化を行うことにより、化合物(I)を事前にカラムなどで精製しなくても、化合物(I)の結晶を得ることができるので、工業的スケールで、簡便に、化合物(I)の結晶を、特に単一の結晶形、とりわけ安定なI形結晶を優位に製造することができる。また、本発明は、化合物(I)と無機塩を含む水溶液から凍結乾燥を行うことにより、化合物(I)が結晶、特に単一の結晶形、とりわけI形結晶であることを特徴とする凍結乾燥組成物が得られ、保存安定性に優れた化合物(I)の凍結乾燥製剤を提供することができる。
実施例1aで得た凍結乾燥組成物の粉末X線回折チャートを示す。 実施例1bで得た凍結乾燥組成物の粉末X線回折チャートを示す。 実施例2bで得た結晶の粉末X線回折チャートを示す。 比較例1で得た凍結乾燥組成物の粉末X線回折チャートを示す。 塩化ナトリウムの粉末X線回折チャートを示す。
 本発明で使用される無機塩は、注射剤に添加可能なものであれば特に制限はなく、塩化ナトリウム、塩化マグネシウム、塩化カルシウム、塩化カリウム、塩化アンモニウム、臭化ナトリウム、臭化カルシウム、臭化カリウム、臭化テトラブチルアンモニウム、硫酸マグネシウム、ヨウ化ナトリウム、ヨウ化カリウム、リン酸水素ナトリウム、酢酸ナトリウム、クエン酸ナトリウム、酒石酸ナトリウム、グルタミン酸ナトリウム、ロッシェル塩(酒石酸ナトリウムカリウム)などが例示される。結晶化効率の点において、好ましくは、塩化ナトリウム、塩化マグネシウム、硫酸マグネシウム、クエン酸ナトリウム、グルタミン酸ナトリウム、ロッシェル塩(酒石酸ナトリウムカリウム)が挙げられる。これら無機塩のいずれを使用しても化合物(I)のI形結晶が得られることを確認している。特に好ましくは塩化ナトリウムである。本発明の無機塩の凍結乾燥組成物や医薬製剤への配合量に特に制限はないが、好ましくは化合物(I)に対して0.1~10モル当量であり、さらに好ましくは1~2モル当量である。この理由としては、配合量が少ない場合も多い場合も結晶化効率が低下し、製剤の安定性に影響を及ぼすためである。
 また、化合物(I)と無機塩を含む水溶液から結晶化を行う場合には、当該水溶液への無機塩の配合量に特に制限はないが、好ましくは化合物(I)に対して0.1~10モル当量であり、さらに好ましくは0.5~1.5モル当量である。
 本発明において、結晶化前又は凍結乾燥前の水溶液中の化合物(I)の濃度は通常1%(W/W)~40%(W/W)であり、好ましくは2.5%(W/W)~20%(W/W)であり、さらに好ましくは7.5%(W/W)~10%(W/W)である。この理由としては、当該濃度が低い場合は結晶化効率が低下し、製剤の安定性に影響を及ぼし、当該濃度が高い場合は過飽和溶液からの析出が生じやすいためである。
 本発明の化合物(I)と無機塩とを含む水溶液は、化合物(I)と無機塩とを水に一緒に溶解させて調製してもよいし、あるいは、どちらか一方を先に水に溶解させて水溶液を得て、そこに残りの一方を溶解させて調製してもよい。
 本発明では、例えば、化合物(I)と無機塩とを含む水溶液に、必要に応じて、種晶を加えてから、貧溶媒を加えることにより、化合物(I)を結晶化させる。
 ここで、種晶は、化合物(I)の種晶を使うことができ、例えば、特許文献6のI形結晶を使用することができる。あるいは、化合物(I)と無機塩とを含む水溶液を凍結乾燥することで得られた凍結乾燥物を種晶として使用してもよい。種晶の量は0~20wt%、好ましくは0.01~2wt%用いられる。
 貧溶媒は、例えば、メタノール、エタノール、1-プロパノール及びイソプロパノールなどのアルコール、アセトン、アセトニトリル、ならびにテトラヒドロフランが挙げられるが、好ましくはアルコール、例えばメタノール、エタノール、1-プロパノール及びイソプロパノールが挙げられる。貧溶媒の量は、単離ロスが1%以下となるように溶解度から調整され、例えば、化合物(I)と無機塩とを含む水溶液の初期の液量に対して1~10倍量、好ましくは、3~7.5倍量、さらに好ましくは5~7.5倍量用いられる。貧溶媒を添加するタイミングは、特に制限はされないが、例えば、I形結晶の場合は接種後の混合物がスラリー状態になってから滴下する。貧溶媒の添加に要する時間は、特に制限はされないが、例えば、30分以上、好ましくは1時間以上である。
 本発明では、化合物(I)と無機塩とを含む水溶液の温度を調節してから、化合物(I)を結晶化させてもよい。
 撹拌時間は析出速度に依存するが、1~24時間、好ましくは1~15時間撹拌する。
 析出した結晶は通常の濾過、洗浄、通気乾燥、又は真空乾燥することにより、化合物(I)の結晶を得ることができる。溶媒和した結晶の場合は、品温、乾燥減量、加湿限定真空乾燥、加湿通気乾燥等の管理手段により過乾燥を回避する。
 本発明では、化合物(I)と無機塩とを含む水溶液を凍結乾燥させることによって化合物(I)を結晶化させてもよい。また、本発明は、化合物(I)を含む凍結乾燥組成物の製造法であって、化合物(I)と無機塩とを含む水溶液を凍結乾燥することによって化合物(I)を結晶化させることを含む製造法にも関する。
 本発明において、例えば、化合物(I)と無機塩を含む水溶液は凍結工程及び減圧乾燥工程を含む通常の凍結乾燥が行われる。当該水溶液を凍結させるための冷却温度は、化合物(I)の濃度または無機塩の濃度によって影響を受けるが、通常-60℃~-10℃、好ましくは-50℃~-10℃、より好ましくは-50℃~-15℃である。冷却凍結させる際の速度に特に制限はないが、通常、0.25時間~5時間かけて行われる。なお、冷凍凍結後、次の減圧乾燥工程に至るまでの間、凍結時の温度にて凍結工程で得られた凍結物を一定時間保持することもできる。
 前記凍結工程で得られた凍結物が付される減圧乾燥工程は一次乾燥(昇華)工程と二次乾燥(脱湿)工程とに分けてもよい。一次乾燥工程は通常の減圧下で行い、温度は化合物(I)の濃度や無機塩の濃度に影響を受けるため特定できないが、品温が凍結物の崩壊温度を超えない条件に設定することが望ましい。時間は温度設定や製造スケールにより変動するため特定できないが、品温や真空度の推移を確認しながら通常2時間~7日間、好ましくは5時間~72時間行うことができる。二次乾燥工程は通常の減圧下で行い、温度は例えば10℃~60℃、好ましくは25℃~60℃で行うことができる。時間は温度設定や製造スケールにより変動するため特定できないが、品温や真空度の推移を確認しながら通常2時間~72時間、好ましくは5時間~20時間行うことができる。
 本発明において、結晶化効率を上げるために、前記凍結工程と減圧乾燥工程の間に熱処理工程と再凍結工程を組み込むことができる。前記凍結工程で得られた凍結物の熱処理時の温度は化合物(I)の濃度や無機塩の濃度に影響を受けるが、凍結状態を維持できる温度で実施し、好ましくは-40~0℃、さらに好ましくは-20~-4℃である。熱処理の時間は設定温度や製造スケールにより変動するため特定できないが、通常0.5時間~72時間、好ましくは1時間~24時間行うことができる。前記熱処理工程で得られた熱処理物が付される再凍結工程での冷却温度は通常-60℃~-10℃、好ましくは-50℃~-10℃、より好ましくは-50℃~-15℃である。冷却凍結させる際の速度に特に制限はないが、通常、0.25時間~5時間かけて行われる。再凍結工程で得られた凍結物は、前記減圧乾燥工程に付される。
 本発明の結晶及び凍結乾燥組成物は、医薬として使用する場合には、それ自体(原末のままで)投与してもよいが、慣用の医薬製剤として投与してもよい。当該医薬製剤は、本発明の効果を損なわない限り、賦形剤、滑沢剤、結合剤、崩壊剤、乳化剤、安定剤、矯味矯臭剤、希釈剤等の薬学的に許容される添加剤を含んでもよい。当該医薬製剤として、錠剤、カプセル剤、散剤、シロップ剤、顆粒剤、細粒剤、丸剤、縣濁剤、乳剤、経皮吸収剤、坐剤、軟膏剤、ローション、吸入剤、注射剤などが例示される。本発明の結晶及び凍結乾燥組成物ならびに当該医薬製剤は、経口又は非経口(静脈内投与、筋肉内投与、腹腔内投与、経皮投与、経気道投与、皮内投与、又は、皮下投与等)で投与することができる。
 本発明の前記医薬製剤にはβ-ラクタマーゼ阻害剤である化合物(I)に加え、β-ラクタム系抗生物質を配合することができる。たとえば、ピペラシリン、アンピシリン、ベンジルペニシリン、セフォペラゾン、セファゾリン、セファロチン、セフォチアム、セフミノクス、セフメタゾール、フロモキセフ、セフォジジム、セフォタキシム、セフトリアキソン、セフメノキシム、ラタモキセフ、セフタジジム、セフェピム、セファゾプラン、セフピロム、アズトレオナム、イミペネム、ドリペネム、パニペネム、ビアペネム、メロペネムならびにその薬理学的に許容される塩および溶媒和物などを配合可能である。
 本発明の前記注射剤には、通常注射剤に加えることが可能な添加剤を適宜配合することができる。たとえば、pH調整の目的であれば、塩酸、リン酸などの無機酸またはその塩類、クエン酸、リンゴ酸、酒石酸、コハク酸などの有機酸またはその塩類、アルギニン、アラニン、アスパラギン酸、ヒスチジン、グリシンなどのアミノ酸類、水酸化ナトリウム、炭酸水素ナトリウムなどのアルカリ性物質などを配合可能である。浸透圧調整が目的であれば、ブドウ糖、マンニトール、キシリトール、ソルビトール、ショ糖、乳糖、マルトース、トレハロース、デキストランなどを配合可能である。また、溶解性改善が目的であれば、ポリエチレングリコール、グリセリンなどのポリオール類の他、ポリソルベート、セスキオレイン酸ソルビタン、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレン硬化ヒマシ油などの界面活性剤を配合することも可能である。
 以下に実施例および比較例をもって、本発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。
実施例1 化合物(I)の凍結乾燥組成物
実施例1a
 700mgの化合物(I)と126.1mgの塩化ナトリウムを蒸留水に溶解し、全量を7gとした。薬液を孔径0.20μmのメンブランフィルター(MILLEX(登録商標)LG SLLGH13NH:Merck Millipore)で濾過し、5mLガラスバイアルに1gを充填した後、ゴム栓で半打栓した。薬液を充填したバイアルを凍結乾燥機(DFM-05B-S:アルバック)に入れ、凍結乾燥機の棚温度を5℃に設定し、常圧下1時間冷却した。その後、1時間かけて凍結乾燥機の棚温度を-40℃に冷却し薬液を凍結させ、3時間この温度を保持させた。続いて、凍結乾燥機内の圧力を約10 Paとし、6時間かけて凍結乾燥機の棚温度を-10℃に昇温させ、この状態を30時間保持させた。その後、凍結乾燥機内の圧力を10Pa以下とし、7時間かけて凍結乾燥機の棚温度を25℃に昇温させ、この状態を15時間保持させた。乾燥終了後、窒素ガスを用いて凍結乾燥機内を常圧に戻し、ゴム栓で打栓した。バイアルを凍結乾燥機内から取り出し、アルミキャップを巻き締めて化合物(I)がI形結晶である凍結乾燥組成物を得た。なお、塩化ナトリウムはナカライテスク社製試薬特級塩化ナトリウムを用いた。
実施例1b
 600mgの化合物(I)と129.7mgの塩化ナトリウムを蒸留水に溶解し、全量を6gとした。薬液を孔径0.20μmのメンブランフィルター(MILLEX(登録商標)LG SLLGH13NH:Merck Millipore)で濾過し、5mLガラスバイアルに1gを充填した後、ゴム栓で半打栓した。薬液を充填したバイアルを凍結乾燥機(コンソール12-3-ST-CR:バーチス)に入れ、凍結乾燥機の棚温度を5℃に設定し、常圧下1時間冷却した。その後、2.5時間かけて凍結乾燥機の棚温度を-40℃に冷却し薬液を凍結させ、1時間この温度を保持させた。続いて、0.5時間かけて凍結乾燥機の棚温度を-4℃に昇温させ、15時間この温度を保持させた。その後、2時間かけて凍結乾燥機の棚温度を-40℃に冷却し薬液を再凍結させ、0.5時間この温度を保持させた。続いて、凍結乾燥機内の圧力を10Pa以下とし、0.5時間かけて凍結乾燥機の棚温度を-10℃に昇温させ、この状態を20時間保持させた。その後、0.5時間かけて凍結乾燥機の棚温度を25℃に昇温させ、この状態を3時間保持させた。乾燥終了後、凍結乾燥機内を常圧に戻し、ゴム栓で打栓した。バイアルを凍結乾燥機内から取り出し、アルミキャップを巻き締めて化合物(I)がI形結晶である凍結乾燥組成物を得た。
実施例2 化合物(I)のI形結晶
実施例2a
 化合物(I)のIII形結晶1.0gを脱イオン水10mLに溶解させた。得られた溶液に、室温で塩化ナトリウム0.18gを加え溶解させた。この溶液を0°Cまで冷却後、精密ろ過した。冷却したイソプロパノール45mLを1時間かけて滴下した後、終夜撹拌した。生じた結晶を分離し、室温で0.5時間減圧乾燥することにより、化合物(I)の結晶0.82g(収率82.0%、I形結晶)を得た。
実施例2b
 塩化ナトリウム1.71gを脱イオン水100mLに溶解させた後、室温で10gの化合物(I)を加え溶解させた。この溶液を0~5°Cに冷却して精密ろ過した後、実施例2aで得た化合物(I)のI形結晶50mg(0.5wt%)を投入し、0~5°Cで1時間撹拌した。冷却したイソプロパノール500mLを1時間以上かけて滴下して終夜撹拌した後、結晶を分離した。得られた結晶を室温下で0.5時間減圧乾燥し、化合物(I)の結晶9.53g(収率94.8%、I形結晶)を得た。
比較例1 化合物(I)の凍結乾燥組成物
 塩化ナトリウムを配合していない点以外は、実施例1と同手順で実施した。すなわち、700mgの化合物(I)を蒸留水に溶解し、全量を7gとした。薬液を孔径0.20μmのメンブランフィルター(MILLEX(登録商標)LG SLLGH13NH:Merck Millipore)で濾過し、5mLガラスバイアルに1gを充填した後、ゴム栓で半打栓した。薬液を充填したバイアルを凍結乾燥機(DFM-05B-S:アルバック)に入れ、凍結乾燥機の棚温度を5℃に設定し、常圧下1時間冷却した。その後、1時間かけて凍結乾燥機の棚温度を-40℃に冷却し薬液を凍結させ、3時間この温度を保持させた。続いて、凍結乾燥機内の圧力を約10 Paとし、6時間かけて凍結乾燥機の棚温度を-10℃に昇温させ、この状態を30時間保持させた。その後、凍結乾燥機内の圧力を10 Pa以下とし、7時間かけて凍結乾燥機の棚温度を25℃に昇温させ、この状態を15時間保持させた。乾燥終了後、窒素ガスを用いて凍結乾燥機内を常圧に戻し、ゴム栓で打栓した。バイアルを凍結乾燥機内から取り出し、アルミキャップを巻き締めて化合物(I)が非晶質である凍結乾燥組成物を得た。
比較例2 化合物(I)のI形結晶(オクタデシルシリカゲルまたはレジンカラム精製を使用した製造法)
比較例2a
 0.5M酢酸緩衝液(pH5.5、35mL)を氷冷し、化合物(I)(36g)と冷却した5M水酸化ナトリウム水溶液を交互に加えてpHを5.5に調整し、オクタデシルシリカゲルカラムクロマトグラフィー(3.6L)に付し、水で溶出した。活性フラクションを集め、水浴温度35℃にて減圧濃縮し、析出した結晶を終夜真空乾燥した。得られた結晶2.10gを粉砕した後、氷冷下にてイソプロパノール/水(19/1、13mL)を加え、0℃にて1時間撹拌した。懸濁液を濾過し、冷イソプロパノール/水(19/1、80mL)にて洗浄し、得られた結晶を真空ポンプして乾燥後、化合物(I)のI形結晶1.68gを得た(収率80%)。DSC吸熱ピーク111℃。60%イソプロパノール水溶液への溶解度;0.44%(10℃)、0.48%(20℃)。
比較例2b
 化合物(I)(正味4.253g)を0.2M燐酸緩衝液(pH6.5、73mL)に溶解しpH5.5とし、水(20mL)で希釈した。混合物を130mLまで濃縮、レジン精製(SP207、260mL)に付し、水(238mL)、10%イソプロパノール水溶液(780mL)にて溶出した。活性フラクションを集め、30mLまで減圧濃縮し、活性炭(精製白鷺、87mg)を投入し室温にて30分撹拌した。活性炭をメンブランフィルターでろ過、ろ液を凍結乾燥に付し、非晶質形態の化合物(I)を4.07g得た(収率95.7%)。本非晶質形態の化合物(I)0.2gを水(0.8mL)に溶解し、室温でイソプロパノール(1.2mL)を加え、I形結晶(比較例2a、1mg)を接種して撹拌子で3時間撹拌、析出結晶を濾過、乾燥し、化合物(I)のI形結晶0.1gを得た(収率50%)。
比較例2c
 化合物(I)(正味2.113g)と0.2M燐酸緩衝液(pH6.5、73mL)を交互に加えpH4.6に調整し、水(27mL)で希釈した。混合物を80mLまで減圧濃縮後、0.2M燐酸緩衝液(pH6.5、16mL)でpH5.4とし、水(48mL)で希釈した。本混合物をレジン精製(SP207、240mL)に付し、水(276mL)、10%イソプロパノール水溶液(720mL)にて溶出した。活性フラクションを集め、12mLまで減圧濃縮し、活性炭(精製白鷺、40mg)を投入し室温にて30分撹拌した。活性炭をメンブランフィルターでろ過、水で14mLに希釈した。水溶液にI形結晶(比較例2b、6mg)を接種し、室温で撹拌子にて撹拌して得られた懸濁液にイソプロパノール(84mL)を1時間かけて滴下した。滴下終了後、3時間撹拌、析出結晶を濾過、乾燥し、化合物(I)のI形結晶1.834gを得た(収率86.8%)。水分:5.37%,脱水物換算含量95.3%,HPLCエリア面積比99.3%。
試験例1 粉末X線回折測定
 実施例1a、実施例1bおよび比較例1で得られた凍結乾燥組成物、実施例2aおよび実施例2bで得られた結晶、比較例2a、比較例2bおよび比較例2cで得られた結晶、ならびに塩化ナトリウムについて、粉末X線回折装置(RINT2200:Rigaku)を用いて、下記に示す条件で粉末X線回折測定を実施した。
<測定条件>
X線         :Cu/40kV/40mA
試料回転数      :60rpm
発散スリット     :0.5°
散乱スリット     :0.5°
受光スリット     :0.3mm
モノクロ受光スリット :0.8mm
サンプリング幅    :0.02°
検出器        :シンチレーションカウンター
スキャンスピード   :1°/min
走査範囲       :5°~40°
 実施例1a、実施例1b、実施例2b、比較例1、及び塩化ナトリウムのX線回折チャートをそれぞれ図1、図2、図3、図4、及び図5に示す。実施例1aおよび実施例1bで得られた凍結乾燥組成物は結晶であり、比較例1で得られた凍結乾燥組成物は非晶質であった。また、実施例2bの結晶は、そのX線回折チャートから、化合物(I)のI形結晶であることが確認できた。同様に、実施例2a及び比較例2a~2cの結晶も、データは示さないが、そのX線回折チャートから、化合物(I)のI形結晶であることが確認できた。
 実施例2a及び2bならびに比較例2a~2cでは、いずれも同じ化合物(I)のI形結晶が得られたことから、塩化ナトリウムを含む水溶液から結晶化させることで、比較例2a~2cで行われたオクタデシルシリカゲルカラムクロマトグラフィーやレジンによる精製を経ることなく、I形結晶を優位に製造できることが示された。
 実施例1a及び1bのX線回折チャートには、31~32°に実施例2bには存在しないピークがみられる。このピークは、塩化ナトリウムのX線回折チャートの31~32°にピークが観測されることから(図5)、凍結乾燥組成物中に含まれる塩化ナトリウムに由来することがわかる。本発明では、化合物(I)と無機塩との水溶液を凍結乾燥させているから、得られた凍結乾燥組成物に無機塩が含まれるのは当然といえる。実施例1a及び1bのX線回折チャートから31~32°のピークを除いたパターンは、実施例2bのパターンと一致することから、実施例1a及び1bで得られた結晶もI形結晶であることが確認できた。一方、実施例2bで得たI形結晶は、イオンクロマトグラフィーでナトリウムイオンと塩化物イオンの含有量を調べたところ、共に0.1%以下であった。本発明では、化合物(I)と無機塩を含む水溶液から化合物(I)の結晶化を行っているが、得られた化合物(I)の結晶には、無機塩は含まれていないことが確認できた。
試験例2 安定性評価
 実施例1aおよび実施例1bで得られた結晶および比較例1で得られた非晶質凍結乾燥組成物について、恒温恒湿槽(LH20-12M:ナガノサイエンス)を用いて60℃での苛酷試験(2週間および1箇月間)を行い、類縁物質を以下の条件にてHPLC法で測定した。
<試験条件>
カラム:Warers Atlantis dC18、5μm、4.6×250mm
カラム温度:35℃付近の一定温度
注入量:5μL
検出器:紫外吸光光度計(測定波長:210nm)
移動相A:リン酸水素二アンモニウム1.32gを水900mLに溶かし、リン酸を加えてpH3.0に調整した後、水を加えて1000mLとする。
移動相B:液体クロマトグラフィー用アセトニトリル
勾配プログラム:移動相A及び移動相Bの混合比を次のように変えて制御する。
 注入後の時間(分)  移動相A(vol%) 移動相B(vol%)
  0~5         100          0
  5~20      100→90        0→10
  20~30       90           10
流量:1.0mL/min
化合物(I)の保持時間:約6.5min
測定時間:30min
 各試料の総類縁物質量の推移を表2に示す。結晶性の凍結乾燥組成物は非晶質の凍結乾燥組成物と比較して開始時の類縁物質量が少なかった。また、非晶質の凍結乾燥組成物では苛酷試験後に著しく類縁物質量が増加したのに対して、結晶性の凍結乾燥組成物は類縁物質量の増加が抑制されていた。以上の結果から、本発明の方法で化合物(I)を結晶性の凍結乾燥組成物とすることで、保存安定性を劇的に改善できることが確認された。
Figure JPOXMLDOC01-appb-T000007
参考例1 化合物(I)の製造方法
参考例1a
 tert-ブチル {2-[({[(2S,5R)-6-ベンジルオキシ-7-オキソ-1,6-ジアザビシクロ[3.2.1]オクト-2-イル]カルボニル}アミノ)オキシ]エチル}カーバメート
Figure JPOXMLDOC01-appb-C000008

 (2S,5R)-6-(ベンジルオキシ)-7-オキソ-1,6-ジアザビシクロ[3.2.1]オクタン-2-カルボン酸(4.80kg、17.373mol)の脱水酢酸エチル(62L)溶液を-30℃に冷却し、クロロギ酸イソブチル(2.52kg)、トリエチルアミン(1.85kg)、を順次滴下し、-30℃にて15分間撹拌した。反応液にtert-ブチル 2-(アミノオキシ)エチルカーバメートの脱水酢酸エチル溶液(15wt%、23.45kg)を30分で加え(洗い込み脱水酢酸エチル2L)、0℃まで1時間かけて昇温した。混合物を8%クエン酸水溶液(65L)、5%重曹水(60L)、水(60L)で順次洗浄し、24Lまで濃縮した。濃縮液に酢酸エチル(24L)を加え24Lまで置換濃縮する操作を2回行い、得られた濃縮液に酢酸エチル(29L)、へキサン(72L)を加え、終夜撹拌した。混合物にヘキサン(82L)を滴下し2時間撹拌した。析出結晶をろ取、ヘキサンで洗浄、真空乾燥して標題化合物5.51kgを得た(収率76%)。
 HPLC:COSMOSIL 5C18 MS-II 4.6×150mm,33.3mM phosphate buffer/MeCN=50/50,1.0mL/min,UV210nm,RT4.4min;HNMR(400MHz,CDCl)δ1.44(s,9H),1.56-1.70(m,1H),1.90-2.09(m,2H),2.25-2.38(m,1H),2.76(d,J=11.6Hz,1H),3.03(br.d.,J=11.6Hz,1H),3.24-3.47(m,3H),3.84-4.01(m,3H),4.90(d,J=11.6Hz,1H),5.05(d,J=11.6Hz,1H),5.44(br.s.,1H),7.34-7.48(m,5H),9.37(br.s.,1H);MS m/z 435[M+H]
参考例1b
 tert-ブチル {2-[({[(2S,5R)-6-ヒドロキシ-7-オキソ-1,6-ジアザビシクロ[3.2.1]オクト-2-イル]カルボニル}アミノ)オキシ]エチル}カーバメート
Figure JPOXMLDOC01-appb-C000009

 tert-ブチル {2-[({[(2S,5R)-6-ベンジルオキシ-7-オキソ-1,6-ジアザビシクロ[3.2.1]オクト-2-イル]カルボニル}アミノ)オキシ]エチル}カーバメート (5.52kg、12.705mol)のメタノール溶液(85L)に、10%パラジウム炭素触媒(50%含水、0.55kg)を加え、水素加圧(0.1MPa)下、1時間撹拌した。触媒を濾過し、固体をメタノール(25L)で洗浄した。ろ液を併せて、液温10℃以下で39Lまで減圧濃縮した。濃縮液にアセトニトリル(44L)を加えて液温10℃以下で39Lまで置換濃縮する操作を2回行い、混合物を0℃に冷却して終夜撹拌した。析出結晶をろ取、アセトニトリル(24L)で洗浄、真空乾燥して標題化合物を3.63kg得た(収率83%)。
 HPLC:COSMOSIL 5C18 MS-II 4.6×150mm,33.3mM phosphate buffer/MeCN=75/25,1.0mL/min,UV210nm,RT3.9min;HNMR(400MHz,CDOD)δ1.44(s,9H),1.73-1.83(m,1H),1.86-1.99(m,1H),2.01-2.12(m,1H),2.22(br.dd.,J=15.0,7.0Hz,1H),3.03(d,J=12.0Hz,1H),3.12(br.d.,J=12.0Hz,1H),3.25-3.35(m,2H),3.68-3.71(m,1H),3.82-3.91(m,3H);MS m/z 345[M+H]
参考例1c
 テトラブチルアンモニウム tert-ブチル {2-[({[(2S,5R)-7-オキソ-6-(スルホオキシ)-1,6-ジアザビシクロ[3.2.1]オクト-2-イル]カルボニル}アミノ)オキシ]エチル}カーバメート 
Figure JPOXMLDOC01-appb-C000010

 アセトニトリル(51L)に、水(51mL)、tert-ブチル {2-[({[(2S,5R)-6-ヒドロキシ-7-オキソ-1,6-ジアザビシクロ[3.2.1]オクト-2-イル]カルボニル}アミノ)オキシ]エチル}カーバメート(3.53kg、10.251mol)、三酸化イオウ-ピリジン錯体(3.95kg)、2,6-ルチジン(2.21kg)を順次加え、35~45℃で終夜撹拌した。混合物をろ過して不溶物を除き、固体をアセトニトリル(11L)で洗浄、ろ液を併せて17Lまで濃縮した。濃縮液を10℃以下に冷却し、9%燐酸二水素ナトリウム水溶液(60L)、酢酸エチル(113L)で分層し、有機層を再度9%燐酸二水素ナトリウム水溶液(11L)で抽出した。得られた水層に酢酸エチル(113L)、30%硫酸水素テトラブチルアンモニウムの水溶液(12.87kg)、37%燐酸二水素ナトリウム水溶液(56.5kg)を加え、15分間撹拌した。有機層を分層し、20%燐酸2水素ナトリウム水溶液(60L)で洗浄、無水硫酸マグネシウム(2.5kg)にて乾燥、濾過後、減圧濃縮した。濃縮液中に析出した標題化合物の結晶は酢酸エチルで溶解して全液量を20Lに調整し、標題化合物の酢酸エチル溶液32.55kgを得た(正味6.25kg、収率92%)。本溶液はさらに精製することなく次工程に付した。
参考例1d 化合物(I)の粗生成物
Figure JPOXMLDOC01-appb-C000011

 テトラブチルアンモニウム tert-ブチル {2-[({[(2S,5R)-7-オキソ-6-(スルホオキシ)-1,6-ジアザビシクロ[3.2.1]オクト-2-イル]カルボニル}アミノ)オキシ]エチル}カーバメート(788g、正味467.1g、0.701mol)のジクロロメタン(934mL)溶液を窒素気流下にて-20℃に冷却し、トリフルオロ酢酸(934mL)を15分間で滴下、0℃に昇温して1時間撹拌した。反応液を-20℃に冷却しジイソプロピルエーテル(4.17L)を滴下し、混合物を-6℃に昇温して1時間撹拌した。沈殿をろ過、ジイソプロピルエーテル(2x1L)にて懸濁洗浄、湿固体を真空乾燥して標題化合物342.08gを得た(正味222.35g、収率98%、HPLCエリア面積比96.1%、CE/TFA27mol%)。
参考例1e 
 0.2M燐酸緩衝液(pH6.5、7.2L)を10℃以下に冷却し、撹拌しながら(2S,5R)-N-(2-アミノエトキシ)-7-オキソ-6-(スルホオキシ)-1,6-ジアザビシクロ[3.2.1]オクタン-2-カルボキサミド (参考例1d 化合物(I)の粗生成物、正味1.2kg)と氷冷した0.2M 燐酸緩衝液(pH6.5、3.5L)を交互に少量ずつ加えてpHが4.2~4.8の間でpHを調整、最終的にpH4.6に調整した。混合物を水(19.3L)で希釈(全量30L)、液温18℃以下で24Lまで減圧濃縮した。濃縮液のpHを0.2M 燐酸緩衝液(pH6.5、2.4L)でpH5.4に調整し、水で43.2Lに希釈、レジン(セパビーズSP207、75L)精製に付し、水(83L)と10%イソプロパノール水溶液で溶出して活性フラクションを集めた。活性フラクションを併せ(33L)、液温15℃以下で7.2Lまで濃縮し、活性炭(24g)を加えて30分間撹拌した。活性炭をメンブランフィルターでろ過、水(0.4Lx2)で洗浄した。ろ液を併せ、液温を20~25℃に調整、特許文献6の実施例7aに記載の方法に従い得たIII形結晶(3.6g)を接種した。混合物にイソプロパノール(50.4L)を1時間かけて滴下し、終夜撹拌した。析出した結晶をろ取、イソプロパノール(4.8L)で洗浄、湿結晶の品温が20℃になるまで真空乾燥し化合物(I)のIII形結晶1.17kgを得た(収率90%)。
 本発明によれば、工業的スケールで、簡便に、化合物(I)の結晶、特に単一の結晶形、とりわけ安定なI形結晶を製造することができ、また、保存安定性に優れた化合物(I)、特にその単一の結晶形、とりわけI形結晶の凍結乾燥組成物を提供することもできるので、化合物(I)の注射剤などの有益な製法を提供する。

Claims (15)

  1.  下記式(I):
    Figure JPOXMLDOC01-appb-C000001

    で表される化合物の結晶の製造方法であって、前記化合物と無機塩とを含む水溶液から、前記化合物を結晶化させることを含む、製造方法。
  2.  粉末X線回析図形において面間隔(d)7.34、5.66、5.53、5.30、5.02、4.66、4.37、4.28、4.06、3.68、3.62、3.47、3.36、3.30、3.16、3.11、3.03、2.99、及び2.50Åに特徴的なピークを有する前記化合物のI形結晶が製造される、請求項1記載の製造方法。
  3.  前記化合物と無機塩とを含む水溶液が、前記化合物の水溶液に前記無機塩を溶解することにより得られる、請求項1又は2記載の製造方法。
  4.  前記化合物と無機塩とを含む水溶液に貧溶媒を加えることにより前記化合物が結晶化される、請求項1~3のいずれか1項記載の製造方法。
  5.  前記貧溶媒がアルコールである、請求項4記載の製造方法。
  6.  前記化合物と無機塩とを含む水溶液を凍結乾燥させることにより前記化合物が結晶化される、請求項1~3のいずれか1項記載の製造方法。
  7.  下記式(I):
    Figure JPOXMLDOC01-appb-C000002

    で表される化合物を含む凍結乾燥組成物の製造方法であって、請求項1記載の方法によって前記化合物を結晶化させることを含む、製造方法。
  8.  下記式(I):
    Figure JPOXMLDOC01-appb-C000003

    で表される化合物を含む凍結乾燥組成物の製造方法であって、前記化合物と無機塩とを含む水溶液を凍結乾燥することによって前記化合物を結晶化させることを含む、製造方法。
  9.  前記化合物が、粉末X線回析図形において面間隔(d)7.34、5.66、5.53、5.30、5.02、4.66、4.37、4.28、4.06、3.68、3.62、3.47、3.36、3.30、3.16、3.11、3.03、2.99、及び2.50Åに特徴的なピークを有するI形結晶に結晶化される、請求項7又は8記載の製造方法。
  10.  前記化合物と無機塩とを含む水溶液が、前記化合物の水溶液に前記無機塩を溶解することにより得られる、請求項7~9のいずれか1項記載の製造方法。
  11.  凍結物の熱処理及び再凍結操作を実施しないことを特徴とする請求項6~10のいずれか1項記載の製造方法。
  12.  前記無機塩が塩化ナトリウムである、請求項1~11のいずれか1項記載の製造方法。
  13.  下記式(I)で表される化合物の結晶と無機塩を含むことを特徴とする凍結乾燥組成物。
    Figure JPOXMLDOC01-appb-C000004
  14.  前記化合物の結晶が、粉末X線回析図形において面間隔(d)7.34、5.66、5.53、5.30、5.02、4.66、4.37、4.28、4.06、3.68、3.62、3.47、3.36、3.30、3.16、3.11、3.03、2.99、及び2.50Åに特徴的なピークを有するI形結晶である、請求項13記載の凍結乾燥組成物。
  15.  前記無機塩が塩化ナトリウムである、請求項13~14のいずれか1項記載の凍結乾燥組成物。
     
     
PCT/JP2015/084094 2014-12-05 2015-12-04 ジアザビシクロオクタン誘導体の結晶及び安定な凍結乾燥製剤の製造法 WO2016088863A1 (ja)

Priority Applications (17)

Application Number Priority Date Filing Date Title
AU2015355970A AU2015355970B2 (en) 2014-12-05 2015-12-04 Method for producing crystals of diazabicyclooctane derivative and stable lyophilized preparation
MX2017007191A MX2017007191A (es) 2014-12-05 2015-12-04 Procedimiento de produccion de cristales de derivado de diazabiciclooctano y preparacion liofilizada estable.
US15/532,281 US10294224B2 (en) 2014-12-05 2015-12-04 Lyophilized composition of a diazabicyclooctane compound and process of producing the same
BR112017010445A BR112017010445B8 (pt) 2014-12-05 2015-12-04 Processo de produção de cristais de derivado de diazabiciclo-octano e preparação liofilizada estável
NZ732214A NZ732214B2 (en) 2014-12-05 2015-12-04 Production process of crystals of diazabicyclooctane derivative and stable lyophilized preparation
SG11201704576SA SG11201704576SA (en) 2014-12-05 2015-12-04 Method for producing crystals of diazabicyclooctane derivative and stable lyophilized preparation
MYPI2017702007A MY190283A (en) 2014-12-05 2015-12-04 Method for producing crystals of diazabicyclooctane derivative and stable lyophilized preparation
KR1020177018148A KR102555657B1 (ko) 2014-12-05 2015-12-04 디아자비시클로옥탄 유도체의 결정 및 안정된 동결 건조 제제의 제조법
EP15866317.9A EP3228620B1 (en) 2014-12-05 2015-12-04 Method for producing crystals of diazabicyclooctane derivative and stable lyophilized preparation
ES15866317T ES2821826T3 (es) 2014-12-05 2015-12-04 Método para producir cristales de derivado de diazabiciclooctano y preparación liofilizada estable
RU2017123112A RU2732129C2 (ru) 2014-12-05 2015-12-04 Способ производства кристаллов производного диазабициклооктана и стабильного лиофилизированного препарата
JP2016562689A JP6779787B2 (ja) 2014-12-05 2015-12-04 ジアザビシクロオクタン誘導体の結晶及び安定な凍結乾燥製剤の製造法
CA2969192A CA2969192C (en) 2014-12-05 2015-12-04 A process for producing crystals of a diazabicylooctane derivative and a stable lyophilized composition thereof
CN201580065691.6A CN107001366B (zh) 2014-12-05 2015-12-04 二氮杂二环辛烷衍生物的结晶以及稳定的冻干制剂的制备方法
IL252691A IL252691B (en) 2014-12-05 2017-06-05 A method of producing crystals of a diazabicyclooctane derivative and a stable lyophilized preparation
ZA2017/04063A ZA201704063B (en) 2014-12-05 2017-06-13 Production process of crystals of diazabicyclooctane derivative and stable lyophilized preparation
US16/297,550 US11117895B2 (en) 2014-12-05 2019-03-08 Process for producing crystals of a diazabicyclooctane derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014246425 2014-12-05
JP2014-246425 2014-12-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/532,281 A-371-Of-International US10294224B2 (en) 2014-12-05 2015-12-04 Lyophilized composition of a diazabicyclooctane compound and process of producing the same
US16/297,550 Division US11117895B2 (en) 2014-12-05 2019-03-08 Process for producing crystals of a diazabicyclooctane derivative

Publications (1)

Publication Number Publication Date
WO2016088863A1 true WO2016088863A1 (ja) 2016-06-09

Family

ID=56091802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084094 WO2016088863A1 (ja) 2014-12-05 2015-12-04 ジアザビシクロオクタン誘導体の結晶及び安定な凍結乾燥製剤の製造法

Country Status (18)

Country Link
US (2) US10294224B2 (ja)
EP (1) EP3228620B1 (ja)
JP (1) JP6779787B2 (ja)
KR (1) KR102555657B1 (ja)
CN (1) CN107001366B (ja)
AR (1) AR102915A1 (ja)
AU (1) AU2015355970B2 (ja)
BR (1) BR112017010445B8 (ja)
CA (1) CA2969192C (ja)
ES (1) ES2821826T3 (ja)
IL (1) IL252691B (ja)
MX (1) MX2017007191A (ja)
MY (1) MY190283A (ja)
RU (1) RU2732129C2 (ja)
SG (1) SG11201704576SA (ja)
TW (1) TWI691499B (ja)
WO (1) WO2016088863A1 (ja)
ZA (1) ZA201704063B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6375463B1 (ja) * 2018-02-28 2018-08-15 日本曹達株式会社 ビス(フルオロスルホニル)アミドアルカリ金属塩粉末の製造方法
WO2019064065A1 (en) * 2017-09-27 2019-04-04 F. Hoffmann-La Roche Ag PHARMACEUTICAL FORMS OF DIAZABICYCLOOCTANE DERIVATIVES AND METHOD FOR THE PRODUCTION THEREOF
US10584123B2 (en) 2017-09-27 2020-03-10 Fedora Pharmaceuticals Inc. Pharmaceutical forms of diazabicyclooctane derivatives and manufacturing method thereof
US10759800B2 (en) 2017-09-27 2020-09-01 Fedora Pharmaceuticals Inc. Crystalline forms of diazabicyclooctane derivatives and production process thereof
WO2022131073A1 (ja) * 2020-12-15 2022-06-23 大阪瓦斯株式会社 ヒドロキシアルカン酸結晶の製造方法及びヒドロキシアルカン酸の結晶多形体

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX366948B (es) 2012-05-30 2019-07-30 Meiji Seika Pharma Co Ltd Nuevo inhibidor de beta-lactamasa y proceso para prepararlo.
JP6617029B2 (ja) 2013-10-08 2019-12-04 Meiji Seikaファルマ株式会社 ジアザビシクロオクタン誘導体の結晶とその製造法
US10294224B2 (en) 2014-12-05 2019-05-21 Meiji Seika Pharma Co., Ltd. Lyophilized composition of a diazabicyclooctane compound and process of producing the same
CN110314163A (zh) * 2018-03-30 2019-10-11 杭州森泽医药科技有限公司 一种拉氧头孢钠药物组合物及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029913A1 (fr) * 1994-05-02 1995-11-09 Shionogi & Co., Ltd. Cristal de derive de pyrrolidylthiocarbapeneme, preparation lyophilisee le contenant et son procede de production
WO2013180197A1 (ja) * 2012-05-30 2013-12-05 Meiji Seikaファルマ株式会社 新規β-ラクタマーゼ阻害剤とその製造法
WO2015053297A1 (ja) * 2013-10-08 2015-04-16 Meiji Seikaファルマ株式会社 ジアザビシクロオクタン誘導体の結晶とその製造法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019759B2 (ja) 1977-11-24 1985-05-17 イ−ライ・リリ−・アンド・カンパニ− 非経口投予用11115152139199東京都中央区京橋2丁目3番13号
GB1589317A (en) * 1977-11-24 1981-05-13 Lilly Co Eli Freeze drying cephalothin sodium
JPS6019759A (ja) 1983-07-15 1985-01-31 Nippon Soda Co Ltd ホルムアミドオキシム誘導体その製造方法及び農園芸用殺菌剤
JPS60255723A (ja) 1984-05-31 1985-12-17 Ono Pharmaceut Co Ltd メシル酸ガベキサートの結晶性凍結乾燥製剤及びその製造方法
JPH07117533B2 (ja) 1985-08-28 1995-12-18 株式会社生体科学研究所 トランスフエリンおよびその用途
PL157979B1 (pl) 1989-02-14 1992-07-31 Sprezyna z dwoma stanami równowagi trwalej PL PL
US20030220521A1 (en) 1989-07-27 2003-11-27 G.D. Searle & Co. Renal-selective prodrugs for control of renal sympathetic nerve activity in the treatment of hypertension
TW264475B (ja) 1991-09-20 1995-12-01 Takeda Pharm Industry Co Ltd
JP2843444B2 (ja) 1994-05-02 1999-01-06 塩野義製薬株式会社 ピロリジルチオカルバペネム誘導体の結晶,該結晶を含む凍結乾燥製剤,およびその製造方法
DE19531874C1 (de) 1995-08-30 1996-10-02 Daimler Benz Ag Seitenwandbaugruppe für eine Kraftfahrzeugkarosserie
TWI233805B (en) * 1999-07-01 2005-06-11 Fujisawa Pharmaceutical Co Stabilized pharmaceutical composition in lyophilized form as antifungal agent
FR2812635B1 (fr) 2000-08-01 2002-10-11 Aventis Pharma Sa Nouveaux composes heterocycliques, preparation et utilisation comme medicaments notamment comme anti- bacteriens
FR2825705B1 (fr) 2001-06-08 2005-05-20 Aventis Pharma Sa Nouveaux composes heterocycliques, leur preparation et leur utilisation comme medicaments, notamment comme anti-bacteriens
FR2835186B1 (fr) 2002-01-28 2006-10-20 Aventis Pharma Sa Nouveaux composes heterocycliques, actifs comme inhibiteurs de beta-lactamases
FR2921060B1 (fr) 2007-09-14 2012-06-15 Novexel Nouveau procede de preparation d'une piperidine disubsituee et nouveaux intermediaires
UA101966C2 (en) 2008-01-18 2013-05-27 Мерк Шарп Енд Доме Корп. Beta-lactamase inhibitors
FR2930553B1 (fr) 2008-04-29 2010-05-21 Novexel Composes azabicycliques, leur preparation et leur utilisation comme medicaments, notamment inhibiteurs de beta-lactamases
FR2936798B1 (fr) 2008-10-03 2012-09-28 Novexel Nouveaux composes heterocycliques azotes, leur preparation et leur utilisation comme medicaments antibacteriens.
WO2010126820A2 (en) 2009-04-30 2010-11-04 Merck Sharp & Dohme Corp. Preparation of alkyl esters of n-protected oxo-azacycloalkylcarboxylic acids
FR2951171A1 (fr) 2009-10-09 2011-04-15 Novexel Nouveau sel de sodium d'un compose azabicyclique sous forme enantiomere cristallisee et nouvelles formes polymorphes et pseudopolymorphes ainsi que leur preparation
US8772490B2 (en) 2010-12-22 2014-07-08 Meiji Seika Pharma Co., Ltd. Optically active diazabicyclooctane derivatives and process for preparing the same
CN103328476B (zh) 2010-12-22 2016-12-28 明治制果药业株式会社 光学活性二氮杂环辛烷衍生物及其制备方法
RU2769076C2 (ru) 2011-06-17 2022-03-28 Пфайзер Анти-Инфективз Аб Способ получения гетероциклических соединений, включая транс-7-оксо-6-(сульфокси)-1,6-диазабицикло[3.2.1]октан-2-карбоксамид и его соли
JP5666743B2 (ja) 2011-08-27 2015-02-12 ウォックハート リミテッド 1,6−ジアザビシクロ[3,2,1]オクタン−7−オン誘導体および細菌感染の処置におけるそれらの使用
WO2013030735A1 (en) 2011-08-30 2013-03-07 Wockhardt Limited 1,6- diazabicyclo [3,2,1] octan- 7 - one derivatives and their use in the treatment of bacterial infections
AU2012310136B2 (en) 2011-09-13 2016-07-07 Wockhardt Limited Nitrogen containing compounds and their use
US8796257B2 (en) 2011-12-02 2014-08-05 Naeja Pharmaceutical Inc. Bicyclic compounds and their use as antibacterial agents and β-lactamase inhibitors
US9505761B2 (en) 2011-12-02 2016-11-29 Fedora Pharmaceuticals Inc. Bicyclic compounds and their use as antibacterial agents and beta-lactamase inhibitors
HUE049027T2 (hu) * 2013-09-24 2020-08-28 Meiji Seika Pharma Co Ltd Diazabiciklooktán-származékok és intermedierek elõállítási eljárása
US10294224B2 (en) 2014-12-05 2019-05-21 Meiji Seika Pharma Co., Ltd. Lyophilized composition of a diazabicyclooctane compound and process of producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029913A1 (fr) * 1994-05-02 1995-11-09 Shionogi & Co., Ltd. Cristal de derive de pyrrolidylthiocarbapeneme, preparation lyophilisee le contenant et son procede de production
WO2013180197A1 (ja) * 2012-05-30 2013-12-05 Meiji Seikaファルマ株式会社 新規β-ラクタマーゼ阻害剤とその製造法
WO2015053297A1 (ja) * 2013-10-08 2015-04-16 Meiji Seikaファルマ株式会社 ジアザビシクロオクタン誘導体の結晶とその製造法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NORIAKI HIRAYAMA, YUKI KAGOBUTSU KESSHO SAKUSEI: "Handbook -Genri to Know How-, Maruzen Co., Ltd", 25 July 2008, pages: 57 - 84, XP008183996 *
See also references of EP3228620A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064065A1 (en) * 2017-09-27 2019-04-04 F. Hoffmann-La Roche Ag PHARMACEUTICAL FORMS OF DIAZABICYCLOOCTANE DERIVATIVES AND METHOD FOR THE PRODUCTION THEREOF
US10584123B2 (en) 2017-09-27 2020-03-10 Fedora Pharmaceuticals Inc. Pharmaceutical forms of diazabicyclooctane derivatives and manufacturing method thereof
US10682413B2 (en) 2017-09-27 2020-06-16 Fedora Pharmaceuticals Inc. Pharmaceutical forms of diazabicyclooctane derivatives and process for producing the same
US10759800B2 (en) 2017-09-27 2020-09-01 Fedora Pharmaceuticals Inc. Crystalline forms of diazabicyclooctane derivatives and production process thereof
JP2020535210A (ja) * 2017-09-27 2020-12-03 フェドラ・ファーマシューティカルズ・インコーポレイテッドFedora Pharmaceuticals Inc. ジアザビシクロオクタン誘導体の剤形およびその製造法
JP2020535213A (ja) * 2017-09-27 2020-12-03 フェドラ・ファーマシューティカルズ・インコーポレイテッドFedora Pharmaceuticals Inc. ジアザビシクロオクタン誘導体の剤形およびその生産プロセス
JP2020535212A (ja) * 2017-09-27 2020-12-03 フェドラ・ファーマシューティカルズ・インコーポレイテッドFedora Pharmaceuticals Inc. ジアザビシクロオクタン誘導体の結晶型及びその生産プロセス
JP7179058B2 (ja) 2017-09-27 2022-11-28 Meiji Seikaファルマ株式会社 ジアザビシクロオクタン誘導体の剤形およびその生産プロセス
JP7200235B2 (ja) 2017-09-27 2023-01-06 Meiji Seikaファルマ株式会社 ジアザビシクロオクタン誘導体の剤形およびその製造法
JP6375463B1 (ja) * 2018-02-28 2018-08-15 日本曹達株式会社 ビス(フルオロスルホニル)アミドアルカリ金属塩粉末の製造方法
JP2019151497A (ja) * 2018-02-28 2019-09-12 日本曹達株式会社 ビス(フルオロスルホニル)アミドアルカリ金属塩粉末の製造方法
WO2022131073A1 (ja) * 2020-12-15 2022-06-23 大阪瓦斯株式会社 ヒドロキシアルカン酸結晶の製造方法及びヒドロキシアルカン酸の結晶多形体

Also Published As

Publication number Publication date
IL252691A0 (en) 2017-08-31
US11117895B2 (en) 2021-09-14
RU2017123112A (ru) 2019-01-09
EP3228620A1 (en) 2017-10-11
RU2732129C2 (ru) 2020-09-11
AU2015355970A1 (en) 2017-06-15
CN107001366A (zh) 2017-08-01
BR112017010445A2 (pt) 2017-12-26
AU2015355970B2 (en) 2020-05-21
NZ732214A (en) 2021-10-29
KR102555657B1 (ko) 2023-07-18
AR102915A1 (es) 2017-04-05
ZA201704063B (en) 2021-10-27
IL252691B (en) 2020-08-31
US10294224B2 (en) 2019-05-21
CN107001366B (zh) 2020-08-28
JPWO2016088863A1 (ja) 2017-09-14
EP3228620B1 (en) 2020-09-02
BR112017010445B8 (pt) 2024-02-27
MX2017007191A (es) 2017-08-28
KR20170094272A (ko) 2017-08-17
CA2969192A1 (en) 2016-06-09
RU2017123112A3 (ja) 2019-06-25
TWI691499B (zh) 2020-04-21
CA2969192C (en) 2023-02-28
EP3228620A4 (en) 2018-05-02
TW201629062A (zh) 2016-08-16
BR112017010445B1 (pt) 2024-01-30
US20190202831A1 (en) 2019-07-04
MY190283A (en) 2022-04-12
US20170327499A1 (en) 2017-11-16
JP6779787B2 (ja) 2020-11-04
SG11201704576SA (en) 2017-07-28
ES2821826T3 (es) 2021-04-27

Similar Documents

Publication Publication Date Title
WO2016088863A1 (ja) ジアザビシクロオクタン誘導体の結晶及び安定な凍結乾燥製剤の製造法
RU2603345C2 (ru) Циклопептидное соединение высокой чистоты, а также способ его получения и его применение
ES2528202T3 (es) Una forma cristalina de tigeciclina y procesos para su preparación
JP3493341B2 (ja) EtO2C−CH2−(R)Cgl−Aze−Pab−OHの結晶形
US11318116B2 (en) Stable amorphous form of sacubitril valsartan trisodium complex and processes for preparation thereof
KR100750552B1 (ko) 결정성 1-메틸카르바페넴 화합물
RU2607083C2 (ru) Кристалл циклопептида высокой чистоты, а также способ его получения и его применение
TW200530186A (en) Crystal form of quinoline compound and process for its production
WO2001081331A1 (fr) Hydrates et cristaux d'un compose d'acide neuraminique
JP2015166347A (ja) チゲサイクリンの単離方法
JP7346485B2 (ja) 結晶性β-ラクタマーゼ阻害剤
HRP20020614A2 (en) Rhombic pseudopolymorph of 9-deoxo-9a-aza-9a-methyl-9a-homoerythromycin a
NZ732214B2 (en) Production process of crystals of diazabicyclooctane derivative and stable lyophilized preparation
JP4060794B2 (ja) テトラペプチド誘導体の結晶
IE902755A1 (en) Method of resolving cis¹3-amino-4-[2-(2-furyl)eth-1-yl]-1-methoxycarbonylmethyl-¹azetidin-2-one
AU2013204129C1 (en) Crystal Form of Quinoline Compound and Process for its Production
JP2003201235A (ja) ノイラミン酸化合物を含有する医薬

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562689

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2969192

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017010445

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15532281

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/007191

Country of ref document: MX

Ref document number: 252691

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11201704576S

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2015355970

Country of ref document: AU

Date of ref document: 20151204

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015866317

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177018148

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017123112

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017010445

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170518