WO2016088731A1 - マイクロ・ナノバブルによる洗浄方法及び洗浄装置 - Google Patents

マイクロ・ナノバブルによる洗浄方法及び洗浄装置 Download PDF

Info

Publication number
WO2016088731A1
WO2016088731A1 PCT/JP2015/083678 JP2015083678W WO2016088731A1 WO 2016088731 A1 WO2016088731 A1 WO 2016088731A1 JP 2015083678 W JP2015083678 W JP 2015083678W WO 2016088731 A1 WO2016088731 A1 WO 2016088731A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
gas
substrate
nano
cleaning
Prior art date
Application number
PCT/JP2015/083678
Other languages
English (en)
French (fr)
Inventor
良昭 橘
Original Assignee
シグマテクノロジー有限会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シグマテクノロジー有限会社 filed Critical シグマテクノロジー有限会社
Priority to US15/319,041 priority Critical patent/US10632506B2/en
Priority to JP2016562624A priority patent/JP6501191B2/ja
Priority to KR1020167035300A priority patent/KR101934627B1/ko
Priority to EP15865774.2A priority patent/EP3144962A4/en
Priority to CN201580033097.9A priority patent/CN106463387B/zh
Publication of WO2016088731A1 publication Critical patent/WO2016088731A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0221Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts
    • B05B13/0228Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts the movement of the objects being rotative
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/02Methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
    • B01F25/212Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers the injectors being movable, e.g. rotating
    • B01F25/2122Rotating during jetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/26Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets
    • B05B1/262Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors
    • B05B1/265Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors the liquid or other fluent material being symmetrically deflected about the axis of the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/166Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the material to be sprayed being heated in a container
    • B05B7/1666Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the material to be sprayed being heated in a container fixed to the discharge device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • B05B7/26Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device
    • B05B7/28Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device in which one liquid or other fluent material is fed or drawn through an orifice into a stream of a carrying fluid
    • B05B7/32Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device in which one liquid or other fluent material is fed or drawn through an orifice into a stream of a carrying fluid the fed liquid or other fluent material being under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/028Net structure, e.g. spaced apart filaments bonded at the crossing points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/58Seat coverings
    • B60N2/5891Seat coverings characterised by the manufacturing process; manufacturing seat coverings not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/64Back-rests or cushions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • G03F7/423Stripping or agents therefor using liquids only containing mineral acids or salts thereof, containing mineral oxidizing substances, e.g. peroxy compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/427Stripping or agents therefor using plasma means only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/428Stripping or agents therefor using ultrasonic means only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0331Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers for lift-off processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B16/00Spray booths
    • B05B16/60Ventilation arrangements specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects
    • B05B5/082Plant for applying liquids or other fluent materials to objects characterised by means for supporting, holding or conveying the objects
    • B05B5/084Plant for applying liquids or other fluent materials to objects characterised by means for supporting, holding or conveying the objects the objects lying on, or being supported above conveying means, e.g. conveyor belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/166Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the material to be sprayed being heated in a container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1693Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed with means for heating the material to be sprayed or an atomizing fluid in a supply hose or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • B32B2307/722Non-uniform density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/003Interior finishings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars

Definitions

  • contaminants such as a resist film or metal or metal compound adhering to a substrate such as a glass substrate or a semiconductor wafer are peeled off or removed by a processing solution containing micro-nano bubbles of a gas having an average particle diameter of 100 nm or less.
  • the present invention relates to a cleaning method and apparatus using micro / nano bubbles to be removed.
  • the micro / nano bubble is (a) small in bubble system, (b) slow in rising speed, (c) reducing frictional resistance, (d)) bubble High internal pressure, (e) large gas-liquid interface, (f) large amount of dissolved gas, (g) accompanied by dissolution and contraction, and (h) negatively charged surface of bubble Since it has various characteristics such as being, it is expected that it will be applied to a wide range of fields such as food, cosmetics, medicines, semiconductor cleaning, plant cultivation and the like utilizing these characteristics.
  • micro and nano bubbles have a very small buoyancy compared to the viscous force as the particle size becomes smaller, they can stay in the liquid as superfine bubbles for a long time without floating on the upper surface, and the sphere diameter of the bubbles is very large. It is known that a liquid containing nanobubbles can not be visually confirmed and becomes colorless and transparent.
  • Non-Patent Document 1 In order to generate micro-nano bubbles, there are roughly divided into a method of entraining a gas by fluidizing the liquid and a method of blowing the gas in a stationary state. Specifically, as described in Non-Patent Document 1, various micro / nano bubble generation methods are proposed by the swirling liquid flow type, static mixer type, Bencher type, pressure dissolution type, pore type, etc. It is done.
  • the pressure of the second stripping solution L2 by the high-pressure pump is used to crush the nanobubbles contained in the first stripping solution L1 as a second stripping process. Is a method of peeling the resist film.
  • the peeling method of the resist film described in Patent Document 1 needs to go through two steps of a first peeling step and a second peeling step, and in some cases, it comprises a rinsing step for removing the resist film. In some cases, the peeling process is complicated.
  • the patent document 1 does not specifically describe the bubble generation method and bubble diameter and density of nanobubbles contained in the peeling solution L1 used in the first peeling step, and only the first peeling step is described. It is considered difficult to obtain a sufficient peeling effect even if
  • Patent Document 2 Although the pure water containing the ozone micro nano bubble described in patent document 2 and 3 is used as a lift-off method or an etching method, it is thought that it can be applied also to the use of a cleaning method.
  • Patent Document 2 only describes water mixed with microbubbles as a peeling solution, and there is no specific description or suggestion about the use of nanobubbles.
  • the diameter of the micro-nano bubbles to be used is 0.01 to 50 ⁇ m, and the density thereof is 1000 or more and 100000 or less per 1 ml.
  • the temperature of the micro-nano bubbles is also 15 ° C. or more and 50 ° C. or less.
  • microbubbles having a bubble diameter of 1 ⁇ m or more contained in the stripping solution are sufficient for stripping of resist residue adhesion on the substrate or removal of contamination by metal or metal compound. It turned out that it shows no effect. Furthermore, it is found that the effect of exfoliation or removal is greatly influenced by the density of bubbles contained in the treatment liquid, and if the density is low, sufficient effect of exfoliation or removal can be obtained even when using nanobubbles. It was not.
  • Patent Document 4 described above, the properties and characteristics of bubbles necessary to obtain a great effect on the removal of resist residue adhesion on a substrate or the removal of contaminants by a metal or a metal compound, and the use conditions of the treatment liquid was not sufficiently considered. Therefore, a cleaning method that can easily and efficiently realize removal of a resist film or removal of a contaminant by a metal or a metal compound while using a stripping solution with the least possible impact on the environment is strongly desired. It has been demanded.
  • the present invention has been made in view of the above-described conventional problems, and includes the average particle diameter of the micro / nano bubbles contained in the stripping solution such as pure water, and further preferably the density of the micro / nano bubbles.
  • the stripping solution such as pure water
  • the density of the micro / nano bubbles By defining and optimizing the temperature of the stripping solution, the load on the environment can be reduced while reducing the load on the environment by a simple method of spraying the processing solution containing the micro / nano bubbles to the substrate to be processed. It is an object of the present invention to provide a micro / nano bubble cleaning method and cleaning apparatus capable of performing peeling of resist residue adhesion or removal of contamination by metal or metal compound more efficiently and reliably than the conventional method.
  • the average particle diameter of the micro / nano bubbles contained in the stripping solution such as pure water is reduced to the nano level, and preferably, the density of the micro / nano bubbles is preferably increased. It has been found that the above problems can be solved by setting the temperature to a high temperature, particularly a temperature as close as possible to 100 ° C., which is the boiling point of pure water, to reach the present invention.
  • the constitution of the present invention is as follows.
  • a substrate to be treated with a resist film deposited on the substrate or a substrate to be treated with the surface contaminated with a metal or a metal compound is measured by an ice embedding method using a cryotransmission electron microscope Peeling of the resist film or the metal or metal compound by spraying a treatment liquid containing micro-nano bubbles of gas having an average particle diameter of 100 nm or less and kept at a temperature of 30 to 90 ° C. to provide a cleaning method by micro-nanobubbles and performs removal.
  • the present invention is characterized in that the micro-nano bubbles of the gas have an average particle size of 30 nm or less when measured by a cryo-transmission electron microscope by an ice embedding method. Provides a cleaning method by micro and nano bubbles.
  • the present invention is characterized in that the micro / nano bubbles of the gas contained in the treatment liquid have a density of 10 8 or more per 1 ml as measured by a cryotransmission electron microscope by an ice embedding method. said to provide a cleaning method by the micro-nano bubbles according to [1] or [2].
  • the treatment liquid containing the gas micro / nano bubbles is a solution having a dissolved gas, from the outside of a cylinder having two or more through small holes in the circumferential direction, the pressure above atmospheric pressure through the small through holes.
  • the dissolved liquid jetted from the respective openings of the two or more small through holes disposed opposite to each other on the same plane parallel to the radial cross section of the cylinder is made water hammer to the center of the cylinder
  • the processing method according to any one of the above [1] to [3], which is a processing liquid containing gas micro / nano bubbles generated by causing collisions to concentrate. provide.
  • the present invention is any of the above-mentioned [1] to [4], wherein the gas is ozone or oxygen, and the treatment liquid is pure water containing micro-nano bubbles of ozone or oxygen. Provided is a method for cleaning with the micro / nano bubbles described above.
  • the present invention is any of the above-mentioned [1] to [5], wherein the gas is a gas containing at least one of carbon dioxide and hydrogen peroxide in addition to ozone or oxygen. Provided is a method of cleaning with the described micro / nano bubbles.
  • the present invention includes the step of drying water droplets and moisture on the untreated substrate before spraying the treatment liquid, according to any one of the above [1] to [6].
  • the present invention is characterized in that the treatment liquid containing the micro-nano bubbles of the gas is ejected while applying ultrasonic vibration to the substrate to be treated which is an object to be cleaned. ] provides a cleaning method by the micro-nano bubbles according to any one of. [9] The present invention is characterized in that a voltage is applied between the non-treated substrate and an electrode disposed in the vicinity of a nozzle header for jetting the treatment liquid.
  • the present invention provides a method of cleaning with micro / nano bubbles as described in [10]
  • the present invention is the method for cleaning with micro / nano bubbles according to any one of the above [1] to [9], wherein the temperature of the treatment liquid is more than 50 ° C. and 85 ° C. or less.
  • the present invention is to mix means for sucking gas and liquid, means for simultaneously pressurizing and transporting the gas and liquid, and mixing the liquid containing the transported gas with a new gas. And a hollow cylinder, and two or more penetrations in the circumferential direction of the cylinder to generate micro / nano bubbles by using a gas-liquid mixing tank for enriching the dissolved gas by using the dissolved liquid heated by the heating device.
  • the two or more through small holes disposed so as to face each other in the same plane parallel to the radial cross section of the cylinder, and the micro / nano bubble discharge port at at least one end of the cylinder.
  • the through small hole is a spray nozzle disposed so that all extension lines passing through the center of the cross section of the through small hole intersect at the center of the cylinder, and a treatment liquid containing the micro / nano bubbles of the gas.
  • a micro / nano bubble generator having a nozzle header connected to the spray nozzle to spray a treated substrate having a resist film on its surface or a sprayed substrate on which the surface is contaminated with a metal compound;
  • a holder provided opposite to the nozzle header for supporting a substrate to be processed, and a heating means for heating the processing solution containing the micro-nano bubbles of the gas to 30 to 90 ° C.
  • the heating device is a heating device provided for heating the dissolved liquid in the state of the gas-liquid mixture immediately after being sent out from the gas-liquid mixing tank.
  • the cleaning apparatus by the micro nano bubble as described in 11] is provided.
  • the present invention is characterized in that the heating device is provided as a heater at at least one of the bottom and the side of the gas-liquid mixing tank as the heater according to the above [12].
  • a cleaning device according to [14] The present invention provides that the micro / nano bubble cleaning apparatus according to any one of the above [11] to [13] further has a drying means for drying water droplets and moisture on the non-treated substrate.
  • the present invention provides a micro / nano bubble cleaning apparatus characterized by the features.
  • the present invention is characterized in that the holder is connected to an ultrasonic wave generator capable of applying ultrasonic vibration to the substrate to be treated. Provided is a micro / nano bubble cleaning apparatus as described.
  • the present invention is characterized by comprising voltage application means for applying a voltage between the holder for supporting the non-treated substrate and the electrode disposed near the nozzle header for jetting the treatment liquid.
  • the heating device further comprises a heating device or a hot air generator for heating at least one of the nozzle header and the holder. 16] to provide a cleaning apparatus by the micro-nano bubbles according to any one of.
  • the present invention is characterized in that the heating device further includes an air conditioner for surrounding the nozzle header and the holder as one room, and controlling the inside of the room to a temperature of 30 to 90 ° C.
  • the apparatus for cleaning with micro / nano bubbles according to any one of the above [11] to [17] is provided.
  • the present invention provides the micro-nano bubble cleaning apparatus according to any one of the above [11] to [18], wherein the heating temperature is 50 to 85 ° C.
  • the cleaning method according to the present invention performs stripping of resist residue adhesion on a substrate or removal of metal or metal compound contamination more efficiently and reliably than the conventional method while reducing the load on the environment. Can. Furthermore, the cleaning effect can be further improved by applying ultrasonic vibration or applying a voltage when drying the substrate to be treated or spraying the treatment liquid containing the gas micro / nano bubbles.
  • the cleaning apparatus according to the present invention can be achieved by simply combining a conventional micro / nano bubble generator with an apparatus for heating the gas micro / nano bubbles, a nozzle header having a jet nozzle, and a holder for supporting the substrate to be treated. It is possible to construct a cleaning device having a simple and compact configuration. Further, by adding a drying means, an ultrasonic wave generation device or a voltage application means to these apparatus configurations, the cleaning time can be shortened and the efficiency of the cleaning can be improved.
  • FIG. 2 is a front view and a perspective view showing a micro / nano bubble generator included in the cleaning apparatus shown in FIG. 1;
  • FIG. 4 is a view showing one shape of the liquid collision nozzle 16 shown in FIG.
  • cleaning apparatus by micro nano bubbles of this invention it is a figure which shows the modification of a heating means.
  • FIG. 7 is a view showing another modified example of the heating means in the micro / nano bubble cleaning apparatus of the present invention.
  • FIG. 6 is a view showing an example of an apparatus provided with a voltage application means of a substrate to be processed in the cleaning apparatus using micro / nano bubbles of the present invention. It is a figure which shows the particle size distribution of the nano bubble of the photograph of the electron microscope image of those amorphous ice about the air nano bubble water of Example 1, and the water which does not contain a nano bubble. It is a figure which shows the photograph of the electron microscope image of the amorphous ice about the ozone nano bubble water of Example 2, and the particle size distribution of a nano bubble.
  • the generation amount of gas micro / nano bubbles depends on the dissolved amount of the gas contained in the treatment liquid for cleaning, and when the temperature of the treatment liquid becomes high, the solubility constant of the gas in the liquid tends to be small, so it tends to be small. It is in. Therefore, when used at high temperature, gas micro / nano bubbles are considered to cause a decrease in the cleaning ability, and have not been implemented until now.
  • the temperature of the micro / nano bubble is 15 ° C. or more and 50 ° C. or less, the solution containing the gas micro / nano bubble is generally used at a lower temperature. there were.
  • Patent Document 1 describes that, as the first peeling step, heating the first peeling solution L1 mixed with nanobubbles at a low temperature of about 40 to 60 ° C. It is considerable that it is understood to be heated in order to maintain high permeability to the resist film in the state of nanobubbles, and a treatment liquid containing gaseous nanobubbles is directly jetted to the substrate to be treated, It is not suitable for the processing method which performs resist stripping.
  • the particle size of the gas micro / nano bubbles Also, by peeling directly from the residual film on the resist film or contaminating the metal or metal compound by direct spraying the processing solution containing the gas micro / nano bubbles at a high temperature to the substrate to be treated. It has been found that the removal of material can be performed more efficiently and reliably in a shorter time than in the conventional method.
  • the size of the micro / nano bubbles contained in the treatment liquid used in the present invention can be defined by the average particle diameter.
  • the size of the micro / nano bubble is also affected by the particle size distribution (standard deviation of particle size), but the effect is small, and the micro / nano bubble contained in the treatment liquid has an average particle size on the order of nano level, It is necessary to have an average particle size as small as possible.
  • the gas micro / nano bubbles have an average particle diameter of 100 nm or less, preferably 30 nm or less, as measured by a cryotransmission electron microscope by ice embedding method.
  • the average particle diameter of the micro / nano bubbles is 100 nm or less and the temperature of the stripping solution is jetted in a heated state at high temperature, stripping of residual deposits on the resist film and removal of contaminants consisting of metal or metal compound, It can be done reliably at a high rate in a short time. Furthermore, if it is 30 nm or less, a remarkable big effect can be acquired.
  • Various methods are conventionally known as methods of measuring the particle size of micro / nano bubbles.
  • a light scattering method using Mie scattered light, a laser diffraction / scattering method, and Brownian motion of bubble particles in liquid are observed.
  • a nanoparticle tracking analysis method, a pore electrical resistance method (Cole-counter method), a dynamic light scattering method, a resonance type mass measurement method using a beam of MEMS (Micro Electro-Mechanical Systems), and the like have been proposed.
  • a method of determining the particle diameter of nanobubbles by zeta potential measurement and a method of confirming the presence of nanobubbles by electron spon resonance (ESR) using a spin trapping agent have been proposed.
  • the present invention proposes a method of measuring with a cryo-transmission electron microscope by ice embedding method as micro / nano bubble measuring method other than the above (see Japanese Patent Application No. 2014-230407).
  • This method is contained in a liquid by making the liquid into an amorphous solid state and observing the ultrafine bubbles contained in the liquid in the amorphous solid state using a transmission electron microscope.
  • the hyperfine bubbles and their distribution can be directly observed and analyzed as an image. Therefore, ultrafine bubbles having a particle size of less than 10 ⁇ m can be measured with high accuracy.
  • the average particle diameter of the gas micro-nano bubbles specified in the present invention is determined by measurement using this method.
  • the method of measuring with a cryo-transmission electron microscope by ice embedding method uses a liquid held on a micro grid or a micro mesh as a sample and observes it by a transmission electron microscope with an energy of 10 to 300 kiloelectron volts (keV).
  • the measurement is performed by setting the number of electron beams used sometimes to 1 to 10 5 electrons / ⁇ 2 .
  • the temperature of the treatment liquid used in the present invention is the washing effect of peeling or removal, handling of the sample during washing process, temperature control, ability and durability of washing apparatus, energy saving, environmental load, and safety point of view Therefore, it is necessary to optimize at room temperature or more and less than 100 ° C.
  • the temperature of the treatment liquid needs to be set in the range of 30 to 90 ° C., which is lower than the boiling point of water, and preferably in the range of 50 to 85 ° C.
  • the temperature of the treatment system is less than 30 ° C., the treatment time tends to be long even when using a treatment liquid containing micro-nano bubbles of a gas having an average particle diameter of 100 nm or less.
  • the effects of the present invention can not be sufficiently obtained.
  • peeling off of residual deposits on the resist film and removal of contaminants consisting of metal or metal compound can be performed in a short time and efficiently, but if it exceeds 90 ° C., the temperature Management becomes difficult.
  • the temperature of the processing solution is set in the range of 50 to 85 ° C., a high cleaning effect can be stably obtained.
  • a high cleaning effect can be achieved by specifying not only the average particle diameter of the micro / nano bubbles but also the number contained in 1 ml of the treatment liquid, that is, the density of the micro / nano bubbles to a high value.
  • the density of the micro / nano bubbles contained in the treatment liquid used in the present invention needs to be 10 8 or more per 1 ml of the treatment liquid, as measured by a cryotransmission electron microscope by ice embedding method. preferably 10 12 / ml or more, more preferably 10 to 16 / ml or more.
  • the micro / nano bubbles used in the present invention have an extremely small average particle diameter, and if the density is less than 10 8 , the concentration of the gas contained in the bubbles becomes low, so residue deposits on the resist film And removal of contaminants consisting of metals or metal compounds.
  • the higher the ozone concentration the greater the cleaning effect can be obtained, but if the density of the micro / nano bubbles is less than 10 8 , the ozone concentration contained in the treatment liquid is small. And the cleaning effect is limited.
  • the gas is ozone or oxygen
  • the treatment liquid is pure water containing ozone or oxygen micro / nano bubbles.
  • the gas micro / nano bubbles used in the present invention are preferably such that the gas is at least ozone or oxygen, and further contains at least one of carbon dioxide and hydrogen peroxide.
  • a treatment liquid containing ozone or oxygen and carbon dioxide as the gas may induce ozone or oxygen to be cleaned due to adsorption of carbon dioxide on deposits or contaminants on the substrate to be treated, and carbon dioxide
  • the acidifying action of can provide more efficient cleaning.
  • hydroxyl radicals OH.
  • the cleaning method of the present invention can enhance the cleaning effect by jetting the processing solution having gas micro / nano bubbles, but can increase the cleaning speed by combining the following three methods: The time for cleaning can be shortened and the cleaning efficiency can be greatly improved.
  • the first method it is preferable to adopt a step of drying water droplets and moisture on the untreated substrate before spraying the treatment liquid having the gas micro / nano bubbles. If water droplets and moisture remain on the non-treated substrate, the remaining water lowers the density of the gas micro-nano bubbles even if the treatment liquid having the gas micro-nano bubbles is jetted. It may cause a decrease in the cleaning effect.
  • the micro-nano bubble has a zeta potential on the particle surface, periphery OH - it is known that is surrounded by a negative charge. Although the details are unknown, it is believed that this OH - is a component that promotes the decomposition and removal of the deposit or contaminant on the substrate to be treated through various reactions.
  • the cleaning effect can be improved by adopting the step of drying the water droplets and moisture on the non-treated substrate and eliminating as much as possible the factors that inhibit the effects of the gas micro / nano bubbles.
  • the above-mentioned drying step can be performed using, for example, a drying means such as a spin drier, an isopropanol (IPA) vapor drying device, or a spin etcher used in a general semiconductor wafer cleaning step.
  • a spin drier is a device for draining a substrate to be cleaned cleanly to dry water droplets and moisture by centrifugal force due to rotation and the flow of clean air drawn through a filter such as a ULPA filter.
  • a method of removing water droplets and moisture while using a centrifugal force by rotating a substrate to be processed installed in a holder at high speed in advance before injecting micro and nano bubbles of gas It can be adopted.
  • a method of removing water droplets and moisture by blowing dry air or high temperature air (in place of air, nitrogen gas which is an inert gas may be used) to the substrate during high speed rotation. May be adopted.
  • a highly volatile liquid such as alcohol or water containing the volatile liquid may be sprayed onto the substrate to be processed.
  • ultrasonic vibration may be applied to the substrate to be cleaned, peeling of residue deposits on the resist film from the substrate, or metal or metal compound. Can have a great effect on the removal of contaminants.
  • ultrasonic vibration helps uniform collapse of micro-nano bubbles which are hard to break with the fine particle size contained in the treatment solution, and gases present in micro-nano bubbles, for example, It is thought that it has a function to promote the release of ozone.
  • the micro / nano bubbles have an ultrafine particle diameter, so It has stayed.
  • the release of the gas in the micro / nano bubbles is uniformly applied to the minute space or the minute space by applying ultrasonic vibration. It can be realized to a great extent, and we believe it will greatly contribute to the cleaning effect.
  • the vibration frequency when applying the ultrasonic vibration is 10 kHz to 3 MHz, the effects of the present invention can be sufficiently achieved.
  • the vibration frequency is high, chipping, cracking or damage of the substrate to be treated may be observed, which may adversely affect the number of vibration weeks is more preferably 10 kHz to 1 MHz.
  • a voltage is applied between the non-treated substrate and the electrode disposed near the nozzle header for jetting the treatment liquid, whereby the resist from the non-treated substrate is removed. It has been found that a great effect can be obtained on the removal of residual deposits on the film or on the removal of contaminants consisting of metals or metal compounds.
  • an electrode is disposed near a nozzle header for injecting the processing solution, and a continuous DC voltage or pulse voltage is applied between the electrode and the untreated substrate by a DC power supply or a pulse power supply.
  • the micro / nano bubbles are jetted onto the substrate to be treated, and they are made based on the new finding that they play a synergistic role in improving the cleaning effect.
  • OH in the micro-nano bubble surface included in the processing liquid - for ions are present, a phenomenon similar to electrolysis by applying a voltage, there is a possibility of promoting the disintegration of micro-nano bubbles having unbreakable and fine particle size. It is also considered that this promotes the release of the gas present in the micro / nano bubbles, such as ozone and carbon dioxide, but the details are unknown.
  • the substrate to be treated when the temperature of the processing liquid is 30 to 90 ° C., preferably 50 to 85 ° C., and sprayed onto the substrate to be treated which is the object to be cleaned, the substrate to be treated is rotated uniformly. Can be performed.
  • FIG. 1 is a view showing an example of the cleaning apparatus using micro / nano bubbles of the present invention
  • FIG. 1 comprises a bellows pump 2, a gas-liquid mixing tank 3, a heating device 4 and micro / nano bubble means having micro / nano bubble generation nozzles (not shown) and contains gas micro / nano bubbles.
  • It comprises a nozzle header 5 having an injection nozzle (not shown) for injecting liquid.
  • the processing liquid heated by the heating device 4 is jetted from the nozzle header 5 toward the target substrate 7 supported by the holder 6 to generate micro / nano bubbles and perform cleaning.
  • the holder 6 for supporting the processing target substrate 7 doubles as a rotation table having a rotation mechanism. Further, the holder 6 is connected to the ultrasonic wave transmitting device 8 and has a mechanism capable of applying an ultrasonic wave to the substrate 7 to be processed as required.
  • FIG. 2 is a bellows cylinder pump
  • 9 is a pump controller
  • 3 is a gas-liquid mixing tank
  • 10 is a pressure sensor
  • 11 is a micro / nano valve generating nozzle attachment
  • 12 is a liquid suction pipe
  • 13 is a gas suction port
  • 14 is a gas suction control valve.
  • the fluid contact part 2 is made of a fluorocarbon resin.
  • the amount of gas is adjusted by using a fluid suction pipe 12 and a gas suction control valve 14 by a bellows cylinder pump 2, and the liquid and gas are mixed in the inside of the pump Stir, dissolve and compress the gas inside the bellows at the inside of the bellows.
  • the bellows cylinder pump 2 may be metal free, and plastics other than fluoroplastics, for example, general purpose plastics such as polyethylene, polypropylene and polyethylene terephthalate, engineering plastics such as polyacetal, polyamide, polycarbonate and modified polyphenylene ether, At least one kind of super engineering such as polyether sulfone, polyphenylene sulfide, polyether ether ketone and liquid crystal polymer may be used.
  • a highly reliable and clean micro-nano bubble generating device can be obtained by using not only the pump but also the above-described various types of plastics, including fluoroplastics, in the liquid installation part.
  • plastics other than fluoroplastics for example, general purpose plastics such as polyethylene, polypropylene and polyethylene terephthalate, engineering plastics such as polyacetal, polyamide, polycarbonate and modified polyphenylene ether, At least one kind of super engineering such as polyether sulfone, polyphenylene sulfide
  • the pump 2 mainly uses a compressed air driven bellows cylinder pump, but may be an electric pump.
  • the gas and liquid of the gas-liquid mixing tank 3 receive the pressure from the pump 2 and the gas is easily dissolved. That is, the pressure at which the gas and liquid are pumped from the pump 2 is checked by a pressure sensor 10. By this method, preparation is made to increase the amount of dissolved gas and increase the generation amount of micro / nano bubbles.
  • the micro-nano valve generation system of the present invention but depending on the application, the reciprocating motion such as piston pump, plunger pump or diaphragm conventionally known as liquid feed pump A pump, a gear pump, an eccentric pump or a screw pump, a cascade pump, a rotary pump such as a vane pump, or the like can be applied.
  • the reciprocating motion such as piston pump, plunger pump or diaphragm conventionally known as liquid feed pump A pump, a gear pump, an eccentric pump or a screw pump, a cascade pump, a rotary pump such as a vane pump, or the like can be applied.
  • the liquid that is pumped and enters the gas-liquid mixing tank 3 is mixed with the gas, and the gas is dissolved in the liquid and then sent to the micro / nano valve generating nozzle attachment unit 11.
  • the micro / nano valve generating nozzle attachment portion 11 is a portion for connecting the dissolved gas to a nozzle for producing a large amount of micro / nano valves having a diameter of 100 ⁇ m or less, preferably 30 ⁇ m or less.
  • the pressure sensor 10 monitors the variation in liquid pressure between the nozzle 11 and the gas-liquid mixing tank 2 to monitor the dissolved state of the gas-liquid. In this way, a stable pressure condition required for a stable micro / nano valve generator nozzle is realized.
  • the steps performed using the micro-nano valve generator used in the present invention shown in (a) and (b) of FIG. 2 are as follows. What is performed using the liquid suction pipe 12, the gas suction port 13 and the gas suction adjusting bubble 14 is a gas / liquid suction step. The pressure is adjusted by the pressure sensor 10. Next, the step of pressurizing the liquid containing gas using the bellows cylinder pump 2 is the gas / liquid pressurization step. Subsequently, a process performed using the pump controller 9 and the gas-liquid mixing tank 3 to mix the pressurized liquid containing the gas with a new gas is a dissolved gas enrichment process.
  • the generation nozzle of the present invention to be described later is connected to the micro / nano valve generation nozzle attachment portion 11, and then micro / nano bubbles are generated.
  • This process is called the dissolved gas refining process, but the micro / nano bubbles are injected from the outside of a cylinder having two or more small through holes through the small through holes at a pressure higher than atmospheric pressure and collided at one point inside the above cylinder Can be generated by
  • FIG. 3 shows an example of a nozzle shape for generating gas micro / nano bubbles in the cleaning apparatus of FIG. 1 and an example of a nozzle header for ejecting a processing solution.
  • (a) and (b) are a sectional view and a top view of the nozzle header 5, respectively.
  • (A) of FIG. 3 shows a DD cross section of (b).
  • the nozzle header 5 is composed of a jet nozzle 15 for jetting the treatment liquid, a micro / nano bubble discharge nozzle 16 and a platform 17, and the liquid collision nozzle One or two or more of sixteen are mounted and arranged on a table of seventeen.
  • the liquid collision nozzle 16 is an example of a nozzle shape that generates gas micro / nano bubbles.
  • the treatment liquid (Q) jetted from the liquid collision nozzle 16 is jetted from the jet port 15 a of the jet nozzle 15 toward the substrate 7 to be cleaned.
  • the temperature of the treatment liquid is adjusted to 30 to 90 ° C., preferably 50 to 85 ° C.
  • the nozzle header 5 It is preferable to adjust this temperature with the treatment liquid passing through the portion of the nozzle header 5. This is because the correlation between the cleaning ability and the temperature of the processing liquid passing through the portion of the nozzle header 5 is good. Therefore, it is preferable to provide the nozzle header 5 with a temperature sensor for measuring the temperature of the processing liquid.
  • FIG. 4 is an enlarged view of a portion where the liquid collision nozzle 16 of the nozzle header 5 shown in (a) of FIG. 3 is disposed.
  • the small holes 16a are open towards the center of the sixteen. Through this small hole 16a, the liquid entered under high pressure is made to collide at the central portion of the liquid collision nozzle 16 to generate micro / nano bubbles, which are jetted in the direction indicated by the arrow Q.
  • the liquid velocity V was controlled, the amount of micro-nano bubbles generated was large and the bubble life was extended.
  • the velocity V when the velocity exceeds 25 m / sec, it becomes a stable micro / nano bubble generation nozzle.
  • FIG. 5 is a view showing a modification of the heating means in the micro / nano bubble cleaning apparatus of the present invention.
  • the heating device 4 shown in FIG. 1 is not disposed downstream of the gas-liquid mixing tank 3, and the heater 19 is installed at the bottom of the gas-liquid mixing tank 3 as heating means.
  • the configuration is different from the cleaning device 1 shown in FIG. 1 in that the heating means is disposed on the downstream side of the gas-liquid mixing tank 3.
  • the position where the heater 19 is provided is not limited to the bottom of the gas-liquid mixing tank 3, and may be provided on the side of the gas-liquid mixing tank 3. It can also be provided on both the bottom and the side of the gas-liquid mixing tank 3.
  • FIG. 6 is a view showing another modified example of the heating means in the micro / nano bubble cleaning apparatus of the present invention.
  • the pipe connecting the gas-liquid mixing tank 3 and the nozzle header 5 is heated by the ribbon heater 21, and the nozzle header 5 is heated by the hot air heater 22. Even if this method is adopted, the temperature of the treatment liquid can be set to a predetermined temperature range.
  • the apparatus shown in FIG. 6 has both the ribbon heater 21 and the hot air heater 22, but either system may be installed.
  • FIG. 7 is a view showing still another modified example of the heating means in the micro / nano bubble cleaning apparatus of the present invention.
  • a space including the nozzle header 5 and the holder 6 is further enclosed as one room 24 in the apparatus shown in FIG.
  • the air conditioner 25 of The cleaning apparatus shown in FIG. 7 has an advantage that it is easy to adjust the processing solution to a predetermined temperature and control of the temperature can be made uniform.
  • FIG. 8 is a view showing an example of the apparatus for cleaning with a micro / nano bubble according to the present invention, which is provided with a drying means of a substrate to be processed.
  • the cleaning apparatus 26 shown in FIG. 8 includes, in addition to the cleaning apparatus shown in FIG. 1, a drying means 27 for drying water droplets and moisture remaining on a target substrate such as a semiconductor wafer.
  • a drying means 27 for drying water droplets and moisture remaining on a target substrate such as a semiconductor wafer.
  • a spin drier, isopropanol (IPA) vapor drier, a spin etcher or the like can be used, but an example of a spin drier is shown in FIG.
  • IPA isopropanol
  • the substrate 7 to be processed such as a wafer is inserted into the drying means 27, and drying is performed by a centrifugal force + intake air drying method for taking in environmental air.
  • the substrate to be treated 7 after drying is taken out and supported by the holder 6 having a rotation mechanism, and processing having gas micro / nano bubbles from a nozzle header 5 having a jet nozzle not shown.
  • the liquid is jetted toward the rotating substrate 7 as indicated by ⁇ in the figure.
  • FIG. 9 is a view showing an example of an apparatus provided with voltage application means 31 for a substrate to be processed in the cleaning apparatus using micro / nano bubbles of the present invention.
  • the voltage application means 31 basically connects the electrode 29 disposed near the nozzle header 5 for jetting the treatment liquid, the power source 30, and the holder 6 for supporting the electrode 29 and the substrate 7 to the power source 30. It is an apparatus and parts which are comprised of electrical wiring and which are added to the cleaning apparatus shown in FIG. In the cleaning device 28 shown in FIG. 9, the electrode 29 and the holder 6 are electrically connected to the (+) side and the ( ⁇ ) side of the power source 30, respectively.
  • the processing solution having gas micro / nano bubbles is sprayed toward the substrate to be treated 7 as indicated by ⁇ in the figure while applying a voltage by the power supply 30, and residual deposits of resist film are removed from the non-treated substrate. Stripping or removal of contaminants consisting of metals or metal compounds is performed.
  • a DC voltage in the range of 10 to 100 V or a pulse voltage having a voltage of 10 to 100 V and a frequency of 10 to 50 kHz. It is. In the present invention, it is preferable to use a pulse voltage as compared to a DC voltage.
  • the cleaning apparatus shown in FIGS. 1 and 5 to 7 is a conventional micro / nano bubble generator, a device for heating gas micro / nano bubbles, and a nozzle header having a jet nozzle for jetting onto a substrate to be treated.
  • a simple and compact device configuration can be constructed simply by adding a holder for supporting the substrate to be processed and the substrate to be processed.
  • the cleaning apparatus shown in FIGS. 8 and 9 can be configured by attaching drying means or voltage application means to the substrate to be processed to the cleaning apparatus shown in FIGS. 1 and 5 to 7, respectively. An apparatus suitable for shortening the time and improving the efficiency of cleaning can be obtained.
  • Example 1 According to the method disclosed in the patent document 4, air nanobubble water is produced by nanobubble water production device PMPM-5 (bellows pump type) (manufactured by Sigma Technology Co., Ltd.) and diluted 100 times with pure water to make a measurement sample Using. Moreover, the pure water before nano bubble preparation was used as a sample for reference. Nanobubbles produced before pure water is equivalent to a free water nanobubbles.
  • Vitrobot Mark IV (manufactured by FEI) immediately freezes the air nanobubble water immediately after preparation to prepare a sample in which the nanobubbles are embedded in amorphous ice to prepare a sample for observation.
  • the sample thickness is 200 nm.
  • water (pure water) not containing nanobubbles was also rapidly frozen by the same sample rapid freezing apparatus and used as a reference sample.
  • the sample thickness is 200 nm.
  • a cryo-transmission electron microscope Titan Krios manufactured by FEI having an electron energy of 300 keV, nanobubbles embedded in amorphous ice were directly observed at a sample temperature of about 80K.
  • the electron beam used for observation was about 20 electrons / ⁇ 2 by the low dose technique, and there was almost no rise in the sample temperature during imaging.
  • FIG. 10 shows photographs of electron microscopic images of amorphous ice frozen with pure water containing air nanobubbles and amorphous ice frozen with pure water (water not containing nanobubbles).
  • the particle size distribution of the bubble is shown below the electron micrograph.
  • the photograph of the electron microscope image shown on the left side of FIG. 10 is an air nanobubble immediately observed after preparation by PMPM-5, and a circular contrast observed in the photograph is a nanobubble.
  • the average particle size is 7 nm.
  • the volume of amorphous ice used for the measurement of the histogram is 3.2 ⁇ 10 -14 cc (400 nm ⁇ 400 nm ⁇ 200 nm thickness), in which about 260 bubbles are contained.
  • the concentration of air nanobubbles in this nanobubble water is estimated to be 8.1 ⁇ 10 17 cells / cc (ml) (81 kyocograms / cc (ml)), since nanobubble water diluted 100 times is observed. Ru.
  • Pure water containing air nanobubbles shown on the left side of FIG. 10 was applied to the cleaning apparatus shown in FIG. 1 to clean the residual resist film deposited on the semiconductor wafer substrate.
  • the temperature of the pure water containing air nanobubbles was raised to about 85 ° C. by the heat treatment device 4 capable of instantaneous heat treatment, and the temperature of the pure water containing air nanobubbles passing through the nozzle header 5 was adjusted to 70-75 ° C. .
  • the minimum temperature of the adjustment temperature is specified by the treatment liquid used in the present invention It can be regarded as the heating temperature.
  • the pure water that has been dissolved in air and heat-treated is emitted from the nozzle header 5 to generate micro / nano bubbles for cleaning.
  • the semiconductor wafer substrate to be cleaned was cleaned while rotating the holder 6.
  • cleaning that takes 30 minutes to completely strip off the resist film residue can be accomplished within 15 minutes or about 1/2 time if the temperature is raised to 70 to 75 ° C. I understand.
  • Example 2 After producing ozone nano bubble water by nano bubble water production device PMPM-5 (manufactured by Sigma Technology Co., Ltd.) (manufactured by Sigma Technology Co., Ltd.) according to the method disclosed in the patent document 4, ozone nano bubbles that have passed about half a month are treated with pure water A 100-fold dilution was used as a measurement sample. The sample thickness is 200 nm. After rapidly freezing this sample in the same sample quick freezing apparatus as in Example 1, nanobubbles embedded in amorphous ice were observed directly at a sample temperature of about 80 K by the same cryotransmission electron microscopy as in Example 1. The electron beam used for observation was about 20 electrons / ⁇ 2 by the low dose technique, and there was almost no rise in the sample temperature during imaging.
  • FIG. 11 The photograph of the electron microscope image observed using this sample and the particle size distribution of the bubble (a histogram showing the size dispersion) are shown in FIG. 11 below the photograph.
  • the image shown in FIG. 11 is an observation of an ozone nanobubble about half a month after preparation by ⁇ ⁇ ⁇ ⁇ PM-5.
  • the average particle size is 18 nm, which is slightly larger than the air nanobubbles shown in FIG. 10, and it is considered that the coarsening of the size is also caused by the coalescence.
  • the volume of amorphous ice used for the measurement of the histogram is 3.2 ⁇ 10 -14 cc (400 nm ⁇ 400 nm ⁇ 200 nm thickness), in which about 21 bubbles are contained.
  • the concentration of ozone nanobubbles in this nanobubble water is estimated to be 8.6 ⁇ 10 16 cells / cc (ml) (about 9 kyocatures / cc (ml)) because 100% diluted nanobubble water is observed Be done.
  • the pure water containing ozone nanobubbles shown in FIG. 11 is applied to the cleaning apparatus shown in FIG. 1 to contaminate the metal or metal compound using four semiconductor wafer substrates whose surfaces are contaminated with the metal or metal compound.
  • the temperature of pure water containing ozone nanobubbles was raised to about 80 ° C. by the heat treatment apparatus 4 capable of instantaneous heat treatment, and the temperature of pure water containing air nanobubbles passing through the nozzle header 5 was adjusted to 65 to 70 ° C. .
  • Ozone is dissolved and heat-treated pure water is emitted from the nozzle header 5 to generate micro / nano bubbles for cleaning.
  • the semiconductor wafer substrate to be cleaned was cleaned while rotating the holder 6.
  • the washing time is 5 minutes.
  • the analysis of the contaminants on the semiconductor wafer substrate was performed by elemental analysis (EDX measurement) with a scanning electron microscope.
  • EDX measurement The results of quantitative analysis of elements on the semiconductor wafer substrate are shown in Table 1 below.
  • the unit of each element amount shown in Table 1 is ( ⁇ 10 10 Atom / cm 2 ).
  • the pure water containing ozone nanobubbles of this example was applied to the cleaning apparatus shown in FIG. 1, and the residual resist film adhering to the semiconductor wafer substrate was cleaned in the same manner as in Example 1. .
  • the temperature of pure water containing ozone nanobubbles was raised to about 80 ° C. by the heat treatment apparatus 4 capable of instantaneous heat treatment, and the temperature of pure water containing air nanobubbles passing through the nozzle header 5 was adjusted to 65 to 70 ° C. .
  • Ozone is dissolved and heat-treated pure water is emitted from the nozzle header 5 to generate micro / nano bubbles for cleaning. At this time, the semiconductor wafer substrate to be cleaned was cleaned while rotating the holder 6.
  • Example 3 In addition to nanobubbles containing ozone, pure water further containing carbon dioxide gas (carbon dioxide gas) was used as the treatment liquid.
  • a semiconductor wafer of the same size as that of Embodiment 2 is used as a substrate to be processed, which is applied to the cleaning apparatus shown in FIG. 1 and cleaning of a residual resist film deposited on a semiconductor wafer substrate by the same method as that of Embodiment 2.
  • the pure water having nano bubbles used in the present embodiment introduces ozone and carbon dioxide gas (amount of about 1/5 of the amount of ozone) generated by the ozone generator in the dissolved gas enrichment step, and the dissolved ozone concentration is 200 ppm Using the above prepared, it was manufactured by the nano bubble water manufacturing apparatus ⁇ PM-5.
  • the treatment solution thus prepared is allowed to stand for several days, and the nanobubbles containing ozone and carbon dioxide gas are measured by the same method as in Example 1.
  • the average particle diameter is less than 30 nm and the density per 1 ml of treatment solution is also it was confirmed 10 is 16 / cc (ml) or more. Since the treatment solution was left for a shorter number of days than in Example 2, it had nanobubble particles with a finer particle size than the results shown in FIG. 11, and the density of the nanobubble particles also tended to be higher. .
  • the temperature of the processing solution produced in this manner is raised to about 80 ° C. by the heat treatment apparatus 4 capable of instantaneous heat treatment, and the temperature of pure water containing nanobubbles of ozone and carbon dioxide gas passing through the nozzle header 5
  • the temperature is adjusted to 65 to 70 ° C., and the nozzle header 5 is fired to perform washing while generating micro / nano bubbles.
  • the semiconductor wafer substrate to be cleaned was cleaned while rotating the holder 6.
  • Example 4 Using the processing solution containing nanobubbles of ozone prepared in the second embodiment and a semiconductor wafer of the same size as that of the second embodiment as a substrate to be treated, it is applied to the cleaning apparatus shown in FIG.
  • the residual resist film deposited on the semiconductor wafer substrate was cleaned in the same manner as in Example 2 except that the temperature was changed to 50 to 55 ° C. instead of 65 to 70 ° C.
  • a drying means 27 shown in FIG. 8 a spin dryer of cassette type was used, and after loading the substrate 7 to be processed which is a semiconductor wafer, drying was carried out for 5 minutes by centrifugal force + intake drying method of taking in environmental air.
  • the dried target substrate 7 (semiconductor wafer) was taken out and supported by a holder 6 having a rotation mechanism as shown by a dotted line in the figure. Then, while the substrate 7 to be treated is rotated by the holder 6, the treatment liquid having ozone micro / nano bubbles is ejected from the nozzle header 5 as indicated by ⁇ in the drawing, and cleaning is performed while generating micro / nano bubbles.
  • the heating of the processing solution containing ozone nanobubbles was carried out by raising the temperature to about 60 ° C. by the heating device 4 capable of instantaneous heat treatment, and the temperature of the processing solution passing through the nozzle header 5 was adjusted to 50-55 ° C.
  • the semiconductor wafer is adhered on the semiconductor wafer substrate under the same cleaning conditions using a semiconductor wafer not dried beforehand.
  • the residual resist film was washed.
  • the temperature of the treatment solution was adjusted to 50 to 55 ° C. as in the case of washing after the drying step.
  • the drying process of the substrate 7 may be simplified by using, for example, the cleaning apparatus shown in FIG. 6 in addition to the drying means 27 shown in FIG.
  • the centrifugal force can be increased by rotating the substrate to be processed mounted on the holder 6 at a high speed in advance without performing the drying process before injecting the micro / nano bubbles of ozone. Remove water droplets and moisture while using. At this time, dry air or high-temperature air may be sprayed from the hot air device 22 onto the substrate in order to more reliably remove water droplets and moisture.
  • the processing solution having micro-nano bubbles of ozone and heated to 30 to 90 ° C., preferably 50 to 85 ° C. is sprayed toward the surface of the substrate 7 to be processed Do. Thereby, the residue of the resist film can be completely peeled off.
  • Example 5 Using the processing solution using pure water containing ozone nanobubbles prepared in the second embodiment and a semiconductor wafer of the same size as the second embodiment as a substrate to be treated, as shown in FIG. It applied to the cleaning device which it has.
  • the residual resist film deposited on the semiconductor wafer substrate was cleaned in the same manner as in Example 2 except that the temperature condition of the processing solution was changed to 50 to 55 ° C. instead of 65 to 70 ° C. .
  • the present embodiment differs from the cleaning method shown in the second embodiment in that the processing solution containing nanobubbles of ozone is jetted while the ultrasonic wave generator 8 applies ultrasonic vibration to the substrate 7 to be processed.
  • the frequency of ultrasonic vibration was 50 kHz.
  • the time for completely peeling off the residue of the resist film was less than 5 minutes. This time is shorter than within 10 minutes of the case where the ultrasonic vibration examined in the fourth embodiment is not applied (substrate 7 to be processed which has not been previously dried). Thus, the cleaning time could be shortened to about 1/2 or less by applying ultrasonic vibration when cleaning the substrate 7 to be processed.
  • Example 6 It applied to the washing
  • the residual resist film deposited on the semiconductor wafer substrate was cleaned in the same manner as in Example 2 except that the temperature condition of the processing solution was changed to 50 to 55 ° C. instead of 65 to 70 ° C. .
  • the present embodiment is different from the cleaning method shown in the second embodiment in that the treatment liquid containing ozone nanobubbles is sprayed while applying a voltage to the substrate 7 by the voltage application means 31 in the cleaning of the substrate 7. .
  • an inductive pulse power source is used as the power source 30, and the electrode 29 disposed near the nozzle header and the holder 6 for supporting the processing substrate 7 are on the (+) side of Washing was carried out while applying a pulse voltage with the voltage and frequency set to 32 V and 20 kHz, respectively.
  • the time for completely removing the residue of the resist film was less than 3 minutes. This time is shorter than within 10 minutes in the case where the ultrasonic vibration examined in the fourth embodiment is not applied (the target substrate 7 which has not been previously dried), and a voltage is applied when the target substrate 7 is cleaned. As a result, the cleaning time could be reduced to less than about 1/3.
  • the voltage application method applied in this embodiment may be used in combination with at least one of the above-described method of drying the non-treated substrate in advance and the method of applying ultrasonic vibration. As a result, the cleaning time can be further shortened.
  • the cleaning method according to the present invention is effective in removing the deposition of the resist residue on the substrate or removing the contaminant due to the metal or the metal compound in a shorter time than the conventional method while reducing the load on the environment. And can be done reliably.
  • the cleaning apparatus according to the present invention comprises an apparatus for heating the gas micro-nano bubbles and a jet nozzle for injecting a processing solution containing micro-nano bubbles onto a substrate to be processed, to a conventional micro-nano bubble generating apparatus.
  • the cleaning method of the present invention can be applied not only to glass substrates and semiconductor wafer substrates but also to other fields, for example, metal cleaning at metal processing, agricultural product cleaning, soil cleaning, etc. .

Abstract

 被処理基板に対してマイクロ・ナノバブルを含有する処理液の噴射という簡便な方法だけで、環境への負荷を低減しつつ、基板上のレジスト残渣付着の剥離若しくは汚染物の除去を、効率的に、且つ、確実に行うことができるマイクロ・ナノバブルによる洗浄方法及び洗浄装置を提供する。本発明の洗浄方法は、基板上にレジスト膜が付着した被処理基板若しくは表面が金属又は金属化合物で汚染された被処理基板に対して、氷包埋法によってクライオ透過型電子顕微鏡で測定したときの平均粒径が100nm以下、好ましくは30nm以下であり、さらに好ましくは、その密度が1mlあたり10個以上である気体のマイクロ・ナノバブルを含有し、且つ、温度が30~90℃に保たれている処理液を噴射することにより、前記レジスト膜の剥離若しくは前記金属又は金属化合物の除去を行うことを特徴とする。

Description

マイクロ・ナノバブルによる洗浄方法及び洗浄装置
 本発明は、ガラス基板や半導体ウエハ等の基板に付着残留するレジスト膜若しくは金属又は金属化合物等の汚染物を、平均粒径が100nm以下である気体のマイクロ・ナノバブルを含有する処理液によって剥離又は除去するマイクロ・ナノバブルによる洗浄方法及び洗浄装置に関する。
 マイクロ・ナノバブルは、非特許文献1に記載されているように、(a)気泡系が小さいこと、(b)上昇速度が遅いこと、(c)摩擦抵抗を低減すること、(d))気泡内圧力が高いこと、(e)気液界面が大きいこと、(f)ガスの溶解量が大きいこと、(g)溶解、収縮を伴うことと、及び(h)気泡表面が負に帯電していること、等の様々な特徴を有するため、これらの特徴を利用した食品、化粧品、薬品、半導体洗浄、植物育成等の幅広い分野への応用が期待されている。マイクロ・ナノバブルは、粒子径が小さくなるほど浮力が粘性力に比べて非常に小さくなるため、上面に浮上しないで液体中に超微細バブルのままで長期間存在できること、また、バブルの球径が非常に小さくなり、ナノバブルを含む液体は目視では確認できず無色透明になることが知られている。
 マイクロ・ナノバブルを発生するには、液を流動化させることにより気体を同伴させる方法と、液は静止した状態で気体を吹き込む方法とに大別される。具体的には、前記非特許文献1に記載されているように、旋回液流式、スタティックミキサー式、ベンチェリー式、加圧溶解式、細孔式などによる各種のマイクロ・ナノバブル発生方法が提案されている。
 前記のようにマイクロ・ナノバブルは従来にない特徴を有するため、近年になってガラス基板や半導体ウエハ等の基板に付着残留するレジスト膜の剥離、若しくは金属又は金属化合物等の汚染物の除去を行うための洗浄方法として適用が検討されている(例えば、特許文献1を参照)。前記特許文献1に記載の発明は、第1の剥離工程として、ナノバブルを混合させた第1の剥離液L1を40~60℃程度の低温度で加熱し、ナノバブルが圧壊しない程度で基板に供給することで、レジスト膜に対する高い浸透性を維持した後、第2の剥離工程として、高圧ポンプによる第2の剥離液L2の加圧力を、第1の剥離液L1に含まれるナノバブルの圧壊に利用することによって、レジスト膜の剥離を行う方法である。
 また、半導体装置を製造するときにレジスト上の金属膜を剥離するために行うリフトオフ方法又はレジスト膜のエッチング方法の代替として、オゾンのマイクロバブル又はマイクロナノバブルを含有する純水を基板に噴射する方法が提案されている(特許文献2及び3を参照)。それ以外にも、本発明者等は、特許文献4において、高圧送液により気液混合液を加圧し、水撃法で効率的に、且つ、大量のマイクロ・ナノバブルを生成する新しい方法とその装置を開発し、半導体ウエハー等の清浄な洗浄への適用を提案している。
特開2009-129976号公報 特開2010-238992号公報 特開2014-90031号公報 特許第5555892号公報
柘植 秀樹、「マイクロバブル・ナノバブルの基礎」、Bull.Soc.Sea Water Sci.,Jpn.、2010年、第64巻、p4-10
 従来から、ガラス基板や半導体基板等の洗浄には、アルカリ水溶液や有機溶媒等を含む剥離液によって100℃以上の高温で除去する方法が採用されており、環境に対する負荷の低減、省エネルギー及び安全性の点から、純水を用いて、100℃未満の比較的低温で洗浄処理できる方法が強く望まれている。その意味で、気体のマイクロ・ナノバブルを含有する処理液用いて洗浄を行う方法は有効であると考えられる。
 特許文献1に記載されているレジスト膜の剥離方法は、第1の剥離工程及び第2の剥離工程の2工程を経由する必要があり、場合によってはレジスト膜を除去するためのリンス工程を備える場合があり、剥離処理工程が煩雑なものとなっている。前記特許文献1には、第1の剥離工程で使用する剥離液L1に含まれるナノバブルについて、バブルの発生方法及びバブルの直径及び密度が具体的に記載されておらず、第1の剥離工程だけを採用しても十分な剥離効果を得ることが難しいと考えられる。
 特許文献2及び3に記載されているオゾンマイクロナノバブルを含有する純水は、リフトオフ法又はエッチング方法として使用されるものであるが、洗浄方法の用途にも適用することができると考えられる。しかしながら、前記特許文献2には剥離液としてマイクロバブルが混合された水が記載されているだけで、ナノバブルの使用については具体的な記載や示唆がない。また、前記特許文献3に記載のエッチング方法は、使用するマイクロナノバブルの直径が0.01~50μmで、且つ、その密度が1mlあたり1000個以上100000個以下である。また、マイクロナノバブルの温度も15℃以上50℃以下とすることが記載されているだけである。
 しかしながら、本発明者等の検討によると、剥離液に含有されるバブルの直径が1μm以上のマイクロバブルでは、基板上のレジスト残渣付着の剥離若しくは金属又は金属化合物による汚染物の除去には十分な効果を示さないことが分かった。さらに、剥離又は除去の効果は処理液に含まれるバブルの密度にも大きく影響を受けることが分かり、その密度が小さいと、ナノバブルを使用する場合でも十分な剥離又は除去の効果を得ることができなかった。
 また、前記特許文献4においても、基板上のレジスト残渣付着の剥離若しくは金属又は金属化合物による汚染物の除去に対して大きな効果を得るために必要なバブルの性状及び特性、並びに処理液の使用条件については十分な検討がなされていなかった。したがって、環境に対する負荷が極力小さな剥離液を使用しつつ、レジスト膜の剥離若しくは金属又は金属化合物による汚染物の除去を簡便に、且つ、効率的に実現できる洗浄方法及びそれに適した剥離装置が強く求められている。
 本発明は、上記した従来の問題点に鑑みてなされたものであって、純水等の剥離液に含まれるマイクロ・ナノバブルの平均粒径、さらに、好ましくはマイクロ・ナノバブルの密度をも含めて規定し、且つ、前記剥離液の温度を最適化することによって、被処理基板に対してマイクロ・ナノバブルを含有する処理液の噴射という簡便な方法で、環境への負荷を低減しつつ、基板上のレジスト残渣付着の剥離若しくは金属又は金属化合物による汚染物の除去を、従来方法よりも効率的に、且つ、確実に行うことができるマイクロ・ナノバブルによる洗浄方法及び洗浄装置を提供することにある。
 本発明は、純水等の剥離液に含まれるマイクロ・ナノバブルの平均粒径をナノレベルまで小さくし、さらに、好ましくはマイクロ・ナノバブルの密度を高くする方向で規定し、且つ、前記剥離液の温度を高温、特に純水の沸点である100℃にできるだけ近い温度に設定することによって上記の課題を解決できることを見出して本発明に到った。
 すなわち、本発明の構成は以下の通りである。
[1]本発明は、基板上にレジスト膜が付着した被処理基板若しくは表面が金属又は金属化合物で汚染された被処理基板に対して、氷包埋法によってクライオ透過型電子顕微鏡で測定したときの平均粒径が100nm以下である気体のマイクロ・ナノバブルを含有し、且つ、温度が30~90℃に保たれている処理液を噴射することにより、前記レジスト膜の剥離若しくは前記金属又は金属化合物の除去を行うことを特徴とするマイクロ・ナノバブルによる洗浄方法を提供する。
[2]本発明は、前記気体のマイクロ・ナノバブルが、氷包埋法によってクライオ透過型電子顕微鏡で測定したときの平均粒径が30nm以下であることを特徴とする前記[1]に記載のマイクロ・ナノバブルによる洗浄方法を提供する。
[3]本発明は、前記処理液に含まれる気体のマイクロ・ナノバブルにおいて、氷包埋法によってクライオ透過型電子顕微鏡で測定したときの密度が1mlあたり10個以上であることを特徴とする前記[1]又は[2]に記載のマイクロ・ナノバブルによる洗浄方法を提供する。
[4]本発明は、前記気体のマイクロ・ナノバブルを含有する処理液が、溶存気体を含む溶液を、2以上の貫通小穴を周方向に有する筒の外部から該貫通小穴を通して大気圧以上の圧力で噴射させるときに、前記筒の径方向断面と平行な同一平面上で対向するように配置された前記2以上の貫通小穴のそれぞれの開口部から噴射した溶存液を前記筒の中心に水撃が集中するように衝突させることによって発生させた気体のマイクロ・ナノバブルを含有した処理液であることを特徴とする前記[1]~[3]の何れかに記載のマイクロ・ナノバブルによる洗浄方法を提供する。
[5]本発明は、前記気体がオゾン又は酸素であり、前記処理液が、オゾン又は酸素のマイクロ・ナノバブルを含有する純水であることを特徴とする前記[1]~[4]の何れかに記載のマイクロ・ナノバブルによる洗浄方法を提供する。
[6]本発明は、前記気体が、オゾン又は酸素に加えて、二酸化炭素及び過酸化水素の少なくとも何れかを含む気体であることを特徴とする前記[1]~[5]の何れかに記載のマイクロ・ナノバブルによる洗浄方法を提供する。
[7]本発明は、前記処理液を噴霧する前に、前記非処理基板の上の水滴及び水分を乾燥させる工程を有することを特徴とする前記[1]~[6]の何れかに記載のマイクロ・ナノバブルによる洗浄方法を提供する。
[8]本発明は、前記気体のマイクロ・ナノバブルを含有する処理液を、洗浄対象物である前記被処理基板に超音波振動を与えながら噴射させることを特徴とする前記[1]~[7]の何れかに記載のマイクロ・ナノバブルによる洗浄方法を提供する。
[9]本発明は、前記非処理基板と前記処理液を噴射するノズルヘッダーの近くに配置する電極との間に電圧を印加することを特徴とする前記[1]~[7]の何れかに記載のマイクロ・ナノバブルによる洗浄方法を提供する。
[10]本発明は、前記処理液の温度が、50℃を超え85℃以下であることを特徴とする前記[1]~[9]の何れかに記載のマイクロ・ナノバブルによる洗浄方法。
[11]本発明は、気体及び液体をそれぞれ吸引する手段と、前記気体及び前記液体を同時に加圧して搬送する手段と、該搬送された前記気体を含む前記液体を新たな気体と混合させることによって溶存気体を富化させるための気液混合槽と、該加熱装置によって加熱された溶存液を用いてマイクロ・ナノバブルを発生させるために、空洞の筒、該筒の周方向に2以上の貫通小穴のそれぞれの開口部が前記筒の径方向断面と平行な同一平面上で対向するように配置された前記2以上の貫通小穴、及び前記筒の少なくとも片端部にマイクロ・ナノバブル吐出口を有し、前記貫通小穴は該貫通小穴の断面中心部を通る延長線のすべてが前記筒の中心で交差するように配置される噴射ノズルと、前記気体のマイクロ・ナノバブルを含有する処理液を、表面にレジスト膜が付着した被処理基板又は表面が金属化合物で汚染された被処理基板に噴射するために前記噴射ノズルに接続されたノズルヘッダーと、を有するマイクロ・ナノバブル発生装置を備え、さらに、被処理基板支持を支持するために前記ノズルヘッダーに対向して設けるホルダー、及び前記気体のマイクロ・ナノバブルを含有する処理液を30~90℃に加熱するための加熱手段を備えることを特徴とするマイクロ・ナノバブルによる洗浄装置を提供する。
[12]本発明は、前記加熱装置が、前記気液混合槽から送出された直後の前記気液混合の状態にある溶存液を加熱するために備える加熱装置であることと特徴とする前記[11]に記載のマイクロ・ナノバブルによる洗浄装置を提供する。
[13]本発明は、前記加熱装置が、前記気液混合槽の底部及び側部の少なくとも何れかの場所にヒータとして具備されていることを特徴とする前記[12]に記載のマイクロ・ナノバブルによる洗浄装置を提供する。
[14]本発明は、前記[11]~[13]の何れかに記載のマイクロ・ナノバブルによる洗浄装置が、さらに、前記非処理基板の上の水滴及び水分を乾燥させる乾燥手段を有することを特徴とするマイクロ・ナノバブルによる洗浄装置を提供する。
[15]本発明は、前記ホルダーが、前記被処理基板に超音波振動を与えることができる超音波発生装置と接続していることを特徴とする前記[11]~[14]の何れかに記載のマイクロ・ナノバブルによる洗浄装置を提供する。
[16]本発明は、前記非処理基板を支持するホルダーと前記処理液を噴射するノズルヘッダーの近くに配置する電極との間に電圧を印加する電圧印加手段を有することを特徴とする前記[11]~[14]の何れかに記載のマイクロ・ナノバブルによる洗浄装置を提供する。
[17]本発明は、前記加熱装置が、さらに、前記ノズルヘッダー及び前記ホルダーの少なくとも何れかを加熱するための加熱装置又は温風発生装置を具備することを特徴とする前記[11]~[16]の何れかに記載のマイクロ・ナノバブルによる洗浄装置を提供する。
[18]本発明は、前記加熱装置が、さらに、前記ノズルヘッダー及び前記ホルダーを一つの部屋として囲み、前記部屋の内部を30~90℃の温度に制御するための空調機を備えることを特徴とする前記[11]~[17]の何れかに記載のマイクロ・ナノバブルによる洗浄装置を提供する。
[19]本発明は、前記加熱するときの温度が50~85℃であることを特徴とする前記[11]~[18]の何れかに記載のマイクロ・ナノバブルによる洗浄装置を提供する。
 本発明による洗浄方法は、環境への負荷を低減しつつ、基板上のレジスト残渣付着の剥離若しくは金属又は金属化合物による汚染物の除去を、従来方法よりも効率的に、且つ、確実に行うことができる。さらに、被処理基板の乾燥、又は前記気体のマイクロ・ナノバブルを含む処理液を噴射するときに超音波振動を加えたり、若しくは電圧印加を行うことにより洗浄効果の一層の向上を図ることができる。
 本発明による洗浄装置は、従来のマイクロ・ナノバブル発生装置に、前記気体のマイクロ・ナノバブルの加熱するための装置、噴射ノズルを有するノズルヘッダー、及び前記被処理基板を支持するホルダーを組み合わるだけで、シンプルかつコンパクトな構成を有する洗浄装置を構築することができる。また、これらの装置構成に、乾燥手段、超音波発生装置、又は電圧印加手段を追加し具備させるだけで、洗浄時間の短縮化及び洗浄の効率化を図ることができる。
本発明のマイクロ・ナノバブルによる洗浄装置の一例を示す正面図及び斜視図である。 図1に示す洗浄装置に具備されるマイクロ・ナノバブル発生装置を示す正面図及び斜視図である。 図1に示す洗浄装置において、気体のマイクロ・ナノバブルを発生させるノズル形状及び処理液を噴射するノズルヘッダーの例をそれぞれ示す図である。 図4は、図3に示す液衝突ノズル16の1個の形状を示す図である。 本発明のマイクロ・ナノバブルによる洗浄装置において、加熱手段の変形例を示す図である。 本発明のマイクロ・ナノバブルによる洗浄装置において、加熱手段の別の変形例を示す図である。 本発明のマイクロ・ナノバブルによる洗浄装置において、加熱手段のさらに別の変形例を示す図である。 本発明のマイクロ・ナノバブルによる洗浄装置において、被処理基板の乾燥手段を備える装置例を示す図である。 本発明のマイクロ・ナノバブルによる洗浄装置において、被処理基板の電圧印加手段を備える装置例を示す図である。 実施例1の空気ナノバブル水及びナノバブルを含まない水について、それらアモルファス氷の電子顕微鏡像の写真及びナノバブルの粒度分布を示す図である。 実施例2のオゾンナノバブル水について、そのアモルファス氷の電子顕微鏡像の写真及びナノバブルの粒度分布を示す図である。
 気体のマイクロ・ナノバブルの発生量は、洗浄用の処理液に含まれる気体の溶存量に依存しており、前記処理液の温度が高くなると液体に対する気体の溶解度定数が小さくするため、少なくなる傾向にある。そのため、気体のマイクロ・ナノバブルは高温で使用する場合は、洗浄能力の低下を招くと考えられており、今まで実施されていなかった。前記特許文献3にもマイクロ・ナノバブルの温度を15℃以上50℃以下とすることが記載されているように、気体のマイクロ・ナノバブルを含む溶液は、低めの温度で使用するのが一般的であった。また、前記特許文献1には、第1の剥離工程として、ナノバブルを混合させた第1の剥離液L1を40~60℃程度の低温度で加熱することが記載されているが、これは、ナノバブルの状態でレジスト膜に対する高い浸透性を維持するために加熱されるものであると解するのが相当であり、気体のナノバブルを含む処理液を、被処理基板に直接的に噴射して、レジスト剥離を行う処理方法には適しない。
 それに対して、本発明は、従来の一般常識にとらわれないで、洗浄として最適のマイクロ・ナノバブルの性状及び特性、並びに処理方法を詳細に検討した結果、気体のマイクロ・ナノバブルの粒径が従来よりも小さいことを利用し、気体のマイクロ・ナノバブルを含む処理液を高温にした状態で被処理基板に対して直接噴射する方法によって、レジスト膜の残渣付着物の剥離や金属又は金属化合物からなる汚染物の除去が従来方法に比べてより短時間で効率的に、且つ、確実にできることを見出してなされたものである。
 本発明において使用する処理液に含まれるマイクロ・ナノバブルの大きさは、平均粒径で規定することができる。平均粒径が小さいものほど、ナノレベルで含まれるバブルの量が多く、マイクロオーダーのバブルの量が少なくなる傾向にある。マイクロ・ナノバブルの大きさは、粒度分布(粒径の標準偏差)によっても影響を受けるが、その影響は小さく、処理液に含まれるマイクロ・ナノバブルは、平均粒径がナノレベルのオーダーであり、できるだけ小さい平均粒径を有することが必要である。
 本発明において、気体のマイクロ・ナノバブルは、氷包埋法によってクライオ透過型電子顕微鏡で測定したときの平均粒径が100nm以下であり、好ましくは30nm以下である。マイクロ・ナノバブルの平均粒径が100nm以下であるときに、剥離液の温度を高温で加熱した状態で噴射すると、レジスト膜の残渣付着物の剥離や金属又は金属化合物からなる汚染物の除去を、短時間に高い比率で確実に行うことができる。さらに、30nm以下であれば、著しく大きな効果を得ることができる。
 マイクロ・ナノバブルの粒径の測定方法としては、従来から様々な方法が知られている。それらの中で、ナノバブルの計測法は、光学的な観察が困難であるため、例えば、ミー散乱光を利用する光散乱法、レーザ回折・散乱法、液中のバブル粒子のブラウン運動を観測するナノ粒子トラッキング解析法、細孔電気抵抗法(コール・カウンター法)、動的光散乱法、MEMS(Micro Electro-Mechanical Systems)の梁を利用する共振式質量測定法等が提案されている。これらの方法以外にも、ゼータ電位測定によるナノバブルの粒子径を求める方法やスピントラップ剤を用いて電子スポン共鳴法(ESR)によるナノバブルの存在を確認する方法が提案されている。
 本発明等は、上記以外のマイクロ・ナノバブル計測法として、氷包埋法によってクライオ透過型電子顕微鏡で測定する方法を提案している(特願2014-230407号を参照)。この方法は、液体を非晶質の固相状態にし、前記非晶質の固相状態にある液体に含まれる超微細バブルを透過型電子顕微鏡を用いて観察することによって、液中に含まれる超微細バブル及びその分布状態を直接的に画像として観測し解析できる。そのため、10μm未満の粒径を有する超微細バブルを高精度に測定することができる。本発明において規定する気体のマイクロ・ナノバブルの平均粒径は、この方法で測定して求めたものである。
 氷包埋法によってクライオ透過型電子顕微鏡で測定する方法は、マイクログリッド又はマイクロメッシュに保持した液体を試料として用い、エネルギーが10~300キロエレクトロンボルト(keV)の透過型電子顕微鏡によって、観察のときに用いる電子線の数を1~10電子/Åに設定して測定が行われる。
 本発明で使用する処理液の温度は、剥離又は除去の洗浄効果、洗浄工程時の試料の取扱い、温度の管理、洗浄装置の能力と耐久性、省エネルギー、環境への負荷、及び安全性の観点から、室温以上100℃未満で最適化する必要がある。特に、本発明においては、環境への負荷を低減するため、処理液として純水を使用するのが好ましい。そこで、処理液の温度は、水の沸点以下である30~90℃の範囲に設定する必要があり、好ましくは50~85℃の範囲である。処理系の温度が30℃未満では、平均粒径が100nm以下である気体のマイクロ・ナノバブルを含有する処理液を用いても、処理時間が長くなる傾向にあるため。本発明の効果が十分に得られない。処理液の温度を高くすると、レジスト膜の残渣付着物の剥離や金属又は金属化合物からなる汚染物の除去を短時間で、且つ、効率的に行うことができるが、90℃を超えると、温度の管理が難しくなる。また、90℃を超える場合は、処理液の揮発とともにマイクロ・ナノバブルの解放速度が速くなるため、剥離又は除去効果が飽和する傾向にあるだけで、処理液の温度をより高温にする利点が失われる。処理液の温度が50~85℃の範囲に設定するときに、高い洗浄効果を安定的に得ることができる。
 本発明においては、マイクロ・ナノバブルの平均粒径だけでなく、処理液1ml中に含まれる個数、すなわち、マイクロ・ナノバブルの密度を高い値に規定することによって、高い洗浄効果を達成することができる。本発明で使用する処理液に含まれるマイクロ・ナノバブルの密度は、氷包埋法によってクライオ透過型電子顕微鏡で測定したときの密度が処理液1mlあたり10個以上であることが必要であり、好ましくは1012個/ml以上、より好ましくは1016個/ml以上である。本発明で利用するマイクロ・ナノバブルは、そもそも平均粒径が非常に小さいため、その密度が10個未満であると、バブル中に含まれる気体の濃度が薄くなるため、レジスト膜の残渣付着物の剥離や金属又は金属化合物からなる汚染物の除去を十分に行うことができない。例えば、気体として洗浄効果の高いオゾンを使用する場合、オゾン濃度が高いほど大きな洗浄効果が得られるが、マイクロ・ナノバブルの密度が10個未満であると、処理液に含まれるオゾン濃度が少なくなり、洗浄効果が限定的になる。
 本発明で使用する気体のマイクロ・ナノバブルと処理液との組合せとしては、前記気体がオゾン又は酸素であり、前記処理液が、オゾン又は酸素のマイクロ・ナノバブルを含有する純水であることが好ましい。オゾンと純水、又は酸素と純水の組合せによって、環境への負荷の低減及び洗浄工程の簡略化と高効率化の両者を実現でき、且つ、高い洗浄効果を得ることができる。その中で、オゾンと純水の組合せによるオゾンマイクロ・ナノバブルが、洗浄効果の一層の向上を図ることができるため、より好ましい。
 本発明で使用する気体のマイクロ・ナノバブルは、前記気体が少なくともオゾン又は酸素であり、さらに、二酸化炭素及び過酸化水素の少なくとも何れかを含むことが好ましい。例えば、前記気体としてオゾン又は酸素と二酸化炭素とを含む処理液は、被処理基板上の付着物又は汚染物に二酸化炭素が吸着することに起因するオゾン又は酸素の洗浄物への誘導及び二酸化炭素の酸性化作用によって、より効率的な洗浄を行うことができる。また、オゾン又は酸素と過酸化水素とを含む場合は、酸素又はオゾンと過酸化水素との反応によりヒドロキシルラジカル(OH・)が生成する場合があり、このヒドロキシルラジカルの強い酸化力を利用することができる。その中で、特に、オゾンと二酸化炭素を組み合わせて作製する気体のマイクロ・ナノバブルは、取扱いが容易であるだけでなく、従来の方法と比べて非常に大きな効果が得られることが分かった。
 以上のように、本発明の洗浄方法は、気体のマイクロ・ナノバブルを有する処理液の噴射により洗浄効果を高めることができるが、次に示す3つの方法を組合わせることにより、洗浄スピードを高め、洗浄時間の時間短縮及び洗浄効率の大幅な向上を図ることができる。
 まず、第1の方法として、前記気体のマイクロ・ナノバブルを有する処理液を噴霧する前に、前記非処理基板の上の水滴及び水分を乾燥させる工程を採用することが好適である。仮に、前記非処理基板の上に水滴及び水分が残存する場合は、前記気体のマイクロ・ナノバブルを有する処理液を噴射しても、残存する水が気体のマイクロ・ナノバブルの密度を低下させるため、洗浄効果の低下を招くことがある。また、マイクロ・ナノバブルは、粒子表面にゼータ電位を有し、周囲がOHの負電荷によって囲まれていることが知られている。詳細は不明であるが、このOHが様々な反応を経由して被処理基板上の付着物又は汚染物の分解除去を促進する成分であると考えられる。しかしながら、前記非処理基板の上に残存する水は、OHイオンが前記付着物又は汚染物に接近し作用するときの障壁として働き、OHイオンを利用した洗浄作用を弱めることが考えられる。したがって、前記非処理基板の上の水滴及び水分を乾燥させる工程を採用し、気体のマイクロ・ナノバブルの効果を阻害する要因をできるだけ排除することにより、洗浄効果の向上を図ることができる。
 上記の乾燥工程は、例えば、通常の半導体ウエハの洗浄工程で使用されるスピンドライヤー、イソプロパノール(IPA)蒸気乾燥装置、スピンエッチェー等の乾燥手段を利用して行うことができる。スピンドライヤーとは、回転による遠心力とULPAフィルタ等のフィルタを介して吸引される清浄なエアの流れにより被処理基板をクリーンに水切りして水滴及び水分を乾燥させる装置である。また、前記乾燥工程の簡略化を図る場合は、気体のマイクロ・ナノバブル噴射する前に、ホルダーに据付けた被処理基板をあらかじめ高速回転させ、遠心力を利用しながら水滴及び水分を除去する方法を採用することができる。その場合、高速回転中に乾燥エア又は高温エア(エアの代わりに、不活性ガスである窒素ガスを使用することもできる。)を前記被処理基板に吹き付けることにより、水滴及び水分を除去する方法を採用してもよい。さらに、水滴及び水分の乾燥を速めるため、アルコール等の揮発性の高い液体又は該揮発性液体を含む水を被処理基板に噴霧してもよい。これらの乾燥工程は、本発明の洗浄方法で構築する一連の工程の一つの工程として組み入れることができるが、バッチ式の分離した工程で行ってもよい。
 本発明においては、洗浄効果を上げるための第2の方法として、洗浄対象物である基板に超音波振動を与えることが、前記基板からレジスト膜の残渣付着物の剥離、又は金属又は金属化合物からなる汚染物の除去に対して大きな効果を得ることができる。そのメカニズムは詳細には不明であるが、超音波振動は、前記処理液に含まれる微細粒径で、壊れにくいマイクロ・ナノバブルの均一な崩壊を助け、マイクロ・ナノバブル中に存在する気体、例えば、オゾンの解放を助長する機能を有するのではないかと考えられる。すなわち、本発明の洗浄方法においては、前記処理液が30~90℃、好ましくは50~85℃の高温に保持されても、マイクロ・ナノバブルは超微細の粒径を有するため前記処理液中に留まっている。そのマイクロ・ナノバブルが被処理基板への噴射によって被処理基板上で開放されるときに、超音波振動を与えることによってマイクロ・ナノバブル中の気体の開放が、均一に、且つ微小空間又は微小空隙にまで実現できるため、洗浄効果に大きく寄与するものと考えている。
 前記超音波振動を印加するときの振動周波数は10kHz~3MHzであれば、本発明の効果を十分に奏することができる。ただし、振動周波数が高い場合は、被処理基板の欠け、割れ、又は損傷が見られ、悪影響を及ぼす場合があるため、振動週者数は10kHz~1MHzがより好ましい。
 また、洗浄効果を上げるための第3の方法として、前記非処理基板と前記処理液を噴射するノズルヘッダーの近くに配置する電極との間に電圧を印加することによって、前記非処理基板からレジスト膜の残渣付着物の剥離、又は金属又は金属化合物からなる汚染物の除去に対して大きな効果を得ることができることが分かった。この方法は、前記処理液を噴射するノズルヘッダーの近くに電極を配置し、その電極と前記非処理基板との間に直流電源又はパルス電源等により連続的な直流電圧又はパルス状の電圧を印加しながら、マイクロ・ナノバブルを被処理基板へ噴射を行うものであり、洗浄効果の向上に対して相乗的な役割を担うという新たな知見に基づいてなされたものである。処理液に含まれるマイクロ・ナノバブルは表面にOHイオンが存在するため、電圧印加により電気分解と似た現象で、壊れにくい微細粒径を有するマイクロ・ナノバブルの崩壊を促進する可能性がある。それにより、前記マイクロ・ナノバブル中に存在する気体、例えば、オゾン及び二酸化炭素等の解放が助長されるとも考えられるが、詳細は不明である。
 この方法を利用するときは、電圧印加を被処理基板へ直に行うよりも、前記非処理基板を支持するホルダーを用いて、前記ホルダーと前記ノズルヘッダーの近くに配置する電極との間で行うことが操作を容易に行うことができ、また、安全性の点からも実用的である。また、印加電圧としては、高電圧が容易に得られること、エネルギー効率が高いこと等の理由から、直流電圧よりもパルス電圧を使用することが好ましい。
 上記のように、電圧を印加しながら気体のマイクロ・ナノバブルによって洗浄を行うとき、非処理基板として回路パターン形成後の半導体ウエハを使用する場合は、電圧印加がウエハから得られる半導体素子の電気的な誤動作等の要因となり、悪影響を及ぼすことがある。その場合は、例えば、イオナイザー発生装置等によって電荷を打ち消すようなイオンを前記処理基板の裏側から常時発射し、ウエハに対して電圧印加による悪影響を低減する方法を採用してもよい。一方、回路パターンが形成される前のウエハの洗浄に適用する場合は、そのような悪影響を考慮する必要がないため、非常に大きな洗浄効果が得られる。
 本発明においては、前記処理液の温度を30~90℃、好ましくは50~85℃の状態で、洗浄対象物である被処理基板に噴射するとき、前記被処理基板を回転することによって、均一な洗浄を行うことができる。
 次に、本発明の洗浄方法を実施するための洗浄装置について図面を用いて説明する。
 図1は本発明のマイクロ・ナノバブルによる洗浄装置の一例を示す図であり、図1において(a)及び(b)は、それぞれ洗浄装置の正面図及び斜視図である。図1に示す洗浄装置1は、ベローズポンプ2、気液混合槽3、加熱装置4及び不図示のマイクロ・ナノバブル発生ノズルを有するマイクロ・ナノバブル手段とからなり、気体のマイクロ・ナノバブルを含有する処理液を噴射するための不図示の噴射ノズルを有するノズルヘッダー5から構成される。加熱装置4によって加熱された処理液は、ノズルヘッダー5からホルダー6に支持された被処理基板7に向けて噴射され、マイクロ・ナノバブルを発生させ洗浄を行う。被処理基板7を支持するホルダー6は、回転機構を有する回転台を兼ねている。また、ホルダー6は、超音波発信装置8と接続されており、必要に応じて、被処理基板7に超音波を印加できるような機構になっている。
 図1に示す洗浄装置に具備されるマイクロ・ナノバブル発生装置の部分だけを抜き出して、図2に装置構成を示す。図2において、(a)及び(b)はそれぞれマイクロ・ナノバブル発生装置の正面図と斜視図である。図2において、2がベローズシリンダポンプ、9がポンプコントローラ、3が気液混合槽、10が圧力センサ、11がマイクロ・ナノバルブ発生用ノズル取付部、12が液吸引管、13が気体吸引口、14が気体吸引調整バルブである。
 これらは、図2の(b)に示す斜視図のように配置する。2の接液部をフッ素樹脂で作成したベローズシリンダポンプ2で12の液吸引管、14の気体吸引調整バルブを使用して気体量を調整してポンプ内部に液と気体を混ぜた状態で吸い込んでベローズ内部で撹拌、溶存させて、圧縮し液の中に気体を溶存させる。本発明においては、ベローズシリンダポンプ2はメタルフリーであれば良く、フッ素樹脂以外のプラスチック、例えば、ポリエチレン、ポリプロピレン及びポリエチレンテレフタレート等の汎用プラスチック、ポリアセタール、ポリアミド、ポリカーボネート及び変性ポリフェニレンエーテル等のエンジニアリングプラスチック、ポリエーテルサルフォン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン及び液晶ポリマー等のスーパーエンジニアリング等の少なくとも1種を使用しても良い。その場合、ポンプだけでなく、液設部にもフッ素樹脂を始め、前記の各種プラスチックを用いることによって、信頼性の高い清浄なマイクロ・ナノバブル発生装置とすることができる。また、本発明において、厳密なメタルフリー化による洗浄や殺菌が要求されない場合には、上記のプラスチックだけでなく、金属やセラミックスを使用しても良い。
 次に、気液混合槽3に気体と液をポンプ2で撹拌して圧送する。ポンプ2は、主に圧縮空気起動式ベローズシリンダポンプを使用するが、電動式のものであっても良い。気液混合槽3の気体と液とは、ポンプ2からの圧力を受けており、気体が溶存しやすくなる。つまり気体と液体とをポンプ2から圧送する圧力を10の圧力センサでチェックしている。この方法によって溶存気体の量を多くしてマイクロ・ナノバブルの発生量を増やす準備を行う。本発明のマイクロ・ナノバルブ発生システムはポンプ2としてベローズシリンダポンプを用いるのが実用的であるが、用途に応じて、従来から送液ポンプとして公知のピストンポンプ、プランジャーポンプ又はダイヤフラム等の往復動ポンプや、ギヤーポンプ、偏心ポンプ又はネジポンプ、カスケードポンプ、ベーンポンプ等の回転ポンプ等を適用することができる。
 圧送されて気液混合槽3に入った液は気体と混合して、気体を液の内部に溶存させてからマイクロ・ナノバルブ発生用ノズル取り付け部11に送る。マイクロ・ナノバルブ発生用ノズル取り付け部11は、溶存した気体を直径が100μm以下、好ましくは30μm以下の大きさのマイクロ・ナノバルブを大量に作成するノズルと接続する部分である。
 このとき、10の圧力センサでノズル11と気液混合槽2との間の液圧力の変動をみて気液の溶存状態を監視する。こうすることで安定したマイクロ・ナノバルブ用発生ノズルに必要な一定した圧力状態を実現する。
 図2の(a)及び(b)に示す本発明で使用するマイクロ・ナノバルブ発生装置を用いて実施する工程は次の通りである。液吸引管12、気体吸引口13及び気体吸引調整バブル14を用いて行うのが気体・液体吸引工程である。圧力は、圧力センサ10で調整する。次に、ベローズシリンダポンプ2を用いて気体を含む液体を加圧する工程が気体・液体加圧工程である。引き続き、加圧された前記の気体を含む液体を新たな気体と混合させるために、ポンプコントローラ9及び気液混合槽3を用いて行う工程が溶存気体富化工程である。その後、後述する本発明の発生ノズルをマイクロ・ナノバルブ発生用ノズル取付部11に接続してからマイクロ・ナノバブルを発生させる。この工程を溶存気体微細化工程と呼ぶが、マイクロ・ナノバブルは、2以上の貫通小穴を有する筒の外部から該貫通小穴を通して大気圧以上の圧力で噴射し、前記筒の内部の一点で衝突させることによって発生させることができる。
 図3に、図1の洗浄装置において気体のマイクロ・ナノバブルを発生させるノズル形状及び処理液を噴射するノズルヘッダーの例をそれぞれ示す。図3において、(a)及び(b)は、それぞれノズルヘッダー5の断面図及び上面図である。図3の(a)は、(b)のD-D断面を示している。
 図3の(a)及び(b)に示すように、ノズルヘッダー5は、処理液を噴射するための噴射ノズル15及びマイクロ・ナノバブル吐出ノズル16と台17とから構成されており、液衝突ノズル16の1個又は2個以上を17の台上に取り付け配置する。ここで、液衝突ノズル16が、気体のマイクロ・ナノバブルを発生させるノズル形状の例である。液衝突ノズル16から噴射した処理液(Q)は、噴射ノズル15の噴射口15aから被処理基板7に向って噴射されて洗浄が行われる。本発明においては、処理液の温度を30~90℃、好ましくは50~85℃に調整するが、この温度の調整はノズルヘッダー5の部分を通過する処理液で行うことが好ましい。洗浄能力とノズルヘッダー5の部分を通過する処理液の温度との相関性が良いからである。そのため、ノズルヘッダー5には、処理液の温度を測定するための温度センサーを設けることが好ましい。
 また、図4は、図3の(a)に示すノズルヘッダー5の液衝突ノズル16を配置した部分の拡大図である。図4に示すように、16の液衝突ノズルの1個の形状において、16aの小さな穴は16の中心に向かって空いている。この小さな穴16aを通り、高圧で入った液を液衝突ノズル16の中心部分で衝突させてマイクロ・ナノバブルを発生させ、矢印Qで示す方向に噴射する。実験の結果、液の速度Vをコントロールすれば、発生したマイクロ・ナノバブルの量が多く、かつバブルの寿命が長くなることがわかった。速度Vの目安として、25m/秒を超える速度になると安定したマイクロ・ナノバブル発生ノズルになる。
 図5は、本発明のマイクロ・ナノバブルによる洗浄装置において、加熱手段の変形例を示す図である。図5に示す洗浄装置18は、図1に示す加熱装置4が気液混合槽3の下流側に配置されておらず、気液混合槽3の底部に加熱手段としてヒータ19が設置されており、加熱手段が気液混合槽3の下流側に配置されている点で、図1に示す洗浄装置1とは構成が異なる。ヒータ19を設ける位置は気液混合槽3の底部に限定されず、気液混合槽3の側部に設けてもよい。また、気液混合槽3の底部及び側部の両方に設けることもできる。
 図6は、本発明のマイクロ・ナノバブルによる洗浄装置において、加熱手段の別の変形例を示す図である。図6に示す洗浄装置20は、気液混合槽3とノズルヘッダー5とを接続する配管がリボンヒータ21で加熱され、また、ノズルヘッダー5が温風ヒータ22で加熱される。この方式を採用しても、処理液の温度を所定の温度範囲に設定することができる。図6に示す装置は、リボンヒータ21及び温風ヒータ22の両者を有するが、両者のどちらかを設置する方式でもよい。
 図7は、本発明のマイクロ・ナノバブルによる洗浄装置において、加熱手段のさらに別の変形例を示す図である。図7に示す洗浄装置23は、図1に示す装置に、さらにノズルヘッダー5及びホルダー6が含まれる空間を一つの部屋24として囲み、部屋23の内部を30~90℃の温度に制御するための空調機25を備える。図7に示す洗浄装置は、処理液を所定の温度に調整することが容易であり、温度の制御が均一にできるという利点を有する。
 図8は、本発明のマイクロ・ナノバブルによる洗浄装置において、被処理基板の乾燥手段を備える装置例を示す図である。図8に示す洗浄装置26は、図1に示す洗浄装置に、半導体ウエハ等の被処理基板上に残存する水滴及び水分を乾燥するための乾燥手段27を備える。乾燥手段27としては、上記で述べたように、スピンドライヤー、イソプロパノール(IPA)蒸気乾燥装置、スピンエッチェー等を使用できるが、図8にはスピンドライヤーの例を示している。洗浄装置26において、まず、ウエハ等の被処理基板7を乾燥手段27に挿入し、環境エアを取り込む遠心力+吸気乾燥方式で乾燥を行う。その後、図中の点線矢印に示すように乾燥後の被処理基板7を取出して回転機構を有するホルダー6に支持し、不図示の噴射ノズルを有するノズルヘッダー5から気体のマイクロ・ナノバブルを有する処理液を回転している被処理基板7に向けて、図中の↓で示すように噴射する。
 図9は、本発明のマイクロ・ナノバブルによる洗浄装置において、被処理基板の電圧印加手段31を備える装置例を示す図である。電圧印加手段31は、基本的に、処理液を噴射するノズルヘッダー5の近くに配置される電極29と、電源30と、電極29及び被処理基板7を支持するホルダー6を電源30に接続する電気配線とから構成され、図1に示す洗浄装置に追加される装置及び部品である。図9に示す洗浄装置28において、電極29とホルダー6とは、それぞれ電源30の(+)側及び(-)側に電気的に接続される。気体のマイクロ・ナノバブルを有する処理液は、電源30によって電圧を印加しながら、図中の↓で示すように被処理基板7に向けて噴射され、前記非処理基板からレジスト膜の残渣付着物の剥離、又は金属又は金属化合物からなる汚染物の除去が行われる。電源6による印加電圧値の範囲としては特に制限はないが、10~100Vの範囲にある直流電圧、又は電圧が10~100Vで、10~50kHzの周波数を有するパルス電圧を印加するのが実用的である。本発明においては、直流電圧に比べて、パルス電圧を使用することが好ましい。
 図1及び図5~図7に示す洗浄装置は、従来のマイクロ・ナノバブル発生装置に、気体のマイクロ・ナノバブルを加熱するための装置、及び被処理基板に噴射するための噴射ノズルを有するノズルヘッダーと前記被処理基板を支持するホルダーとを付加するだけで、シンプルかつコンパクトな装置構成を構築することができる。また、図8及び図9に示す洗浄装置は、図1及び図5~図7に示す洗浄装置に、それぞれ被処理基板の乾燥手段又は電圧印加手段を付属させることにより構成することができ、洗浄時間の短縮化及び洗浄の効率化を図る上で好適な装置とすることができる。
 以下において、本発明に基づく実施例を具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
<実施例1>
 前記特許文献4に開示された方法に従ってナノバブル水作製装置ΣPM-5(ベローズポンプ式) (シグマテクノロジー有限会社製)により空気ナノバブル水を作製し、純水によって100倍に希釈して測定用試料として用いた。また、参考用試料としてナノバブル作製前の純水を用いた。ナノバブル作製前の純水は、ナノバブルを含まない水に相当する。
 試料急速凍結装置Vitrobot Mark IV (FEI社製)により作製直後の前記空気ナノバブル水を急速凍結してナノバブルをアモルファス氷中に包埋した試料を作製し、観察用試料とした。試料厚さは200nmである。一方、ナノバブルを含まない水(純水)についても同じ試料急速凍結装置により急速凍結して参考用試料とした。試料厚さは200nmである。300keVの電子エネルギーを有するクライオ透過型電子顕微鏡Titan Krios (FEI社製)を用いて、試料温度約80Kにおいてアモルファス氷中に包埋されたナノバブルを直接観察した。観察に用いる電子線は、Low dose技術によって20 電子/Å2程度であり、撮影中の試料温度の上昇はほとんどなかった。
 図10に、空気ナノバブルを含む純水を凍結したアモルファス氷及び純水(ナノバブルを含まない水)を凍結したアモルファス氷について電子顕微鏡像の写真を示す。また、空気ナノバブル水については、電子顕微鏡写真の下にバブルの粒度分布(サイズ分散を示すヒストグラム)を示す。
 図10の左側に示す電子顕微鏡像の写真は、ΣPM-5によって作製後、ただちに観察された空気ナノバブルであり、写真中に観察される円形のコントラストがナノバブルである。画像処理の結果、平均粒径は7nmである。ヒストグラムの測定に用いたアモルファス氷の体積は3.2×10-14 cc(400 nm×400 nm×200 nm厚さ)であり、その中にバブルは約260個含まれている。100倍に希釈したナノバブル水を観察していることから、このナノバブル水の空気ナノバブルの濃度は、8.1×1017個/cc (ml)(81京個/cc (ml))であると評価される。それに対して、図10の右側に示す電子顕微鏡像の写真はアモルファス氷でありコントラストの変化はなく、バブルが含まれない水であることが確認できる。このように、本発明による測定方法及び測定装置によって、水に含まれるナノバブルの存在を直接的に画像として確認することができるだけでなく、ナノバブルの粒子径、個数、粒度分布及び形態に関する情報を取得することができる。
 図10の左側に示す空気ナノバブルを含む純水を、図1に示す洗浄装置に適用して、半導体のウェハ基板上に付着している残渣レジスト膜の洗浄を行った。空気ナノバブルを含む純水は、瞬間的に加熱処理ができる加熱処理装置4によって約85℃まで温度を上げ、ノズルヘッダー5を通過する空気ナノバブルを含む純水の温度を70~75℃に調整した。ここで、空気ナノバブルを含む純水の温度を一つの温度で厳密に設定することは量産性を考慮した場合に実用的でないため、調整温度の最低温度が本発明で使用する処理液で規定する加熱温度とみなすことができる。空気を溶存させ加熱処理した純水を、ノズルヘッダー5から発射してマイクロ・ナノバブルを発生させ洗浄を行う。このとき、洗浄対象物である半導体ウエハ基板は、ホルダー6を回転させて回転しながら洗浄を行った。その結果、常温でのマイクロ・ナノバブル発生装置では、レジスト膜の残渣を完全に剥離する時間が30分かかる洗浄を、70~75℃の高温にすると15分以内と約1/2の時間でできることが分かった。
 また、純水に溶存させる気体として、空気の代わりに、酸素を用いて、前記と同様の方法によって酸素ナノバブルを洗浄用処理液として使用した場合は、レジスト膜の残渣を完全に剥離する時間が10分となり、洗浄時間を1/3にまで短縮できることが確認できた。
<実施例2>
 前記特許文献4に開示された方法に従ってナノバブル水作製装置ΣPM-5 (べローズポンプ式) (シグマテクノロジー有限会社製)によりオゾンナノバブル水を作製した後、半月程度時間を経たオゾンナノバブルを純水によって100倍に希釈したものを測定試料として用いた。試料厚さは200nmである。この試料を実施例1と同じ試料急速凍結装置で急速凍結させた後、実施例1と同じクライオ透過型電子顕微によって試料温度約80Kにおいてアモルファス氷中に包埋されたナノバブルを直接観察した。観察に用いる電子線は、Low dose技術によって20電子/Å2程度であり、撮影中の試料温度の上昇はほとんどなかった。
 この試料を用いて観察した電子顕微鏡像の写真及びその写真の下にバブルの粒度分布(サイズ分散を示すヒストグラム)を図11に示す。図11に示す画像は、ΣPM-5によって作製後、半月程度経たオゾンナノバブルを観察したものである。平均粒径は18nmであり、図10に示す空気ナノバブルと比べてやや大きく、合体したことによりサイズの粗大化も起こっていると考えられる。ヒストグラムの測定に用いたアモルファス氷の体積は3.2×10-14 cc(400 nm×400 nm×200 nm厚さ)であり、その中にバブルは約21個含まれている。100倍に希釈したナノバブル水を観察していることから、このナノバブル水のオゾンナノバブルの濃度は、8.6×1016個/cc (ml)(約9京個/cc (ml))であると評価される。
 図11に示すオゾンナノバブルを含む純水を、図1に示す洗浄装置に適用して、表面が金属又は金属化合物で汚染している半導体のウェハ基板4枚を用いて、金属又は金属化合物による汚染物の洗浄を行った。オゾンナノバブルを含む純水は、瞬間的に加熱処理ができる加熱処理装置4によって約80℃まで温度を上げ、ノズルヘッダー5を通過する空気ナノバブルを含む純水の温度を65~70℃に調整した。オゾンを溶存させ加熱処理した純水を、ノズルヘッダー5から発射してマイクロ・ナノバブルを発生させ洗浄を行う。このとき、洗浄対象物である半導体ウエハ基板は、ホルダー6を回転させて回転しながら洗浄を行った。洗浄時間は5分である。半導体ウエハ基板上の汚染物の分析は、走査型電子顕微鏡による元素分析(EDX測定)を行った。半導体ウエハ基板上の元素の定量分析結果を下記の表1に示す。表1に示す各元素量の単位は、(×1010Atom/cm)である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、オゾンナノバブルを含む純水を高温の状態で処理液として使用することによって、半導体ウエハ基板上の金属又は金属化合物による汚染物を、短時間で効率的に、且つ、ほぼ完全に洗浄できることが確認できた。
 本実施例のオゾンナノバブルを含む純水を、図1に示す洗浄装置に適用して、実施例1と同様の方法で、半導体のウェハ基板上に付着している残渣レジスト膜の洗浄を行った。オゾンナノバブルを含む純水は、瞬間的に加熱処理ができる加熱処理装置4によって約80℃まで温度を上げ、ノズルヘッダー5を通過する空気ナノバブルを含む純水の温度を65~70℃に調整した。オゾンを溶存させ加熱処理した純水を、ノズルヘッダー5から発射してマイクロ・ナノバブルを発生させ洗浄を行う。このとき、洗浄対象物である半導体ウエハ基板は、ホルダー6を回転させて回転しながら洗浄を行った。その結果、常温でのマイクロ・ナノバブル発生装置では、オゾンナノバブルを含む純水を使用したときにレジスト膜の残渣を完全に剥離する時間が20分かかる洗浄を、65~70℃の高温にすると3分以内と短時間でできることが分かった。
<実施例3>
 オゾンを含むナノバブルに加え、さらに二酸化炭素の気体(炭酸ガス)を含ませた純水を処理液として使用した。被処理基板として実施例2と同じサイズの半導体ウエハを用いて、図1に示す洗浄装置に適用し、実施例2と同様の方法で半導体のウェハ基板上に付着している残渣レジスト膜の洗浄を行った。本実施例で使用するナノバブルを有する純水は、溶存気体富化工程においてオゾン発生器によって発生させたオゾンと炭酸ガス(オゾン量の約1/5の量)を導入し、溶存オゾン濃度を200ppm以上に調製したものを用いて、前記ナノバブル水作製装置ΣPM-5によって作製した。このようにして作製した処理液を数日間放置した後、オゾンと炭酸ガスとを含むナノバブルを実施例1と同じ方法で測定した結果、平均粒径が30nm未満で、処理液1mlあたりの密度も1016個/cc (ml)以上であることが確認された。この処理液は放置日数が前記実施例2に比べて短いため、図11に示す結果と比べてより微細粒径のナノバブル粒子を有し、また、ナノバブル粒子の密度もより高くなる傾向にあった。
 このようにして作製した処理液を、瞬間的に加熱処理ができる加熱処理装置4によって約80℃まで温度を上げ、ノズルヘッダー5を通過するオゾンと炭酸ガスとのナノバブルを含む純水の温度を65~70℃に調整し、ノズルヘッダー5から発射してマイクロ・ナノバブルを発生させながら洗浄を行う。このとき、洗浄対象物である半導体ウエハ基板は、ホルダー6を回転させて回転しながら洗浄を行った。その結果、オゾンナノバブルを含む純水を使用したとき(前記実施例2)にはレジスト膜の残渣を完全に剥離する時間が65~70℃の条件で3分以内であったのに対して、オゾンと二酸化炭素とのナノバブルを使用する本実施例では同じ温度条件で2分以内とより短時間で剥離することができた。
<実施例4>
 前記実施例2で作製したオゾンのナノバブルを含む処理液と、被処理基板として実施例2と同じサイズの半導体ウエハとを用いて、図8に示す洗浄装置に適用し、前記処理液の温度条件を65~70℃に代えて50~55℃に変更したこと以外は、実施例2と同様の方法で半導体のウェハ基板上に付着している残渣レジスト膜の洗浄を行った。図8に示す乾燥手段27としては、カセット方式のスピンドライヤーを使用し、半導体ウエハーである被処理基板7を投入した後、環境エアを取り込む遠心力+吸気乾燥方式で乾燥を5分間行った。次いで、乾燥後の被処理基板7(半導体ウエハー)を取出して、図中の点線で示すように、回転機構を有するホルダー6に支持した。そして、ホルダー6により被処理基板7は回転させながらノズルヘッダー5からオゾンマイクロ・ナノバブルを有する処理液を図中の↓で示すように発射し、マイクロ・ナノバブルを発生させながら洗浄を行った。オゾンナノバブルを含む処理液の加熱は、瞬間的に加熱処理ができる加熱処理装置4によって約60℃まで温度を上げ、ノズルヘッダー5を通過する前記処理液の温度を50~55℃に調整した。
 本実施例においては、被処理基板7の乾燥工程の有無による洗浄効果の差異を調べるため、事前に乾燥を行わない半導体ウエハを用いて、同様の洗浄条件で半導体ウェハ基板上に付着している残渣レジスト膜の洗浄を行った。前記処理液の温度は、乾燥工程を経てから洗浄を行う場合と同じように50~55℃に調整した。
 その結果、オゾンナノバブルを含む純水を使用した処理液を使用し、被処理基板7を乾燥しない場合は、レジスト膜の残渣を完全に剥離する時間が10分以内であった。それに対して、被処理基板7を乾燥手段27によって乾燥を行った場合は剥離時間が7分以内となり、洗浄時間を短くできることが分かった。
 このように、被処理基板7の乾燥工程を採用することにより洗浄時間の短縮化を図ることができる。本発発明においては、図8に示す乾燥手段27の他にも、例えば、図6に示す洗浄装置を使用することにより、被処理基板7の乾燥工程の簡略化を図ってもよい。図6に示す洗浄装置20を使用する場合は、オゾンのマイクロ・ナノバブルを噴射する前に、乾燥処理を行わない状態でホルダー6に据付けた被処理基板をあらかじめ高速回転させることにより、遠心力を利用しながら水滴及び水分を除去する。そのとき、水滴及び水分の除去をより確実に行うため、温風装置22から乾燥エア又は高温エアを前記被処理基板に吹き付けてもよい。その後、ホルダー6の回転数を調製しながら、オゾンのマイクロ・ナノバブルを有し、30~90℃、好ましくは50~85℃に加温された処理液を被処理基板7の表面に向けて噴射する。それによりレジスト膜の残渣を完全に剥離することができる。
<実施例5>
 前記実施例2で作製したオゾンナノバブルを含む純水を使用した処理液と、被処理基板として実施例2と同じサイズの半導体ウエハとを用いて、図1に示すように超音波発生装置8を有する洗浄装置に適用した。処理液の温度条件を65~70℃に代えて50~55℃に変更したこと以外は、実施例2と同様の方法で半導体のウェハ基板上に付着している残渣レジスト膜の洗浄を行った。本実施例は、超音波発生装置8によって被処理基板7に超音波振動を与えながらオゾンのナノバブルを含む処理液を噴射させる点で、前記実施例2に示す洗浄方法とは異なる。超音波振動の周波数は50kHzとした。
 その結果、本実施例は、実施レジスト膜の残渣を完全に剥離する時間が5分以内であった。この時間は、前記実施例4で検討した超音波振動を加えない場合(事前の乾燥を行っていない被処理基板7)の10分以内よりも短い。このように、被処理基板7の洗浄時に超音波振動を加えることにより、洗浄時間を約1/2以下に短縮化することができた。
<実施例6>
 前記実施例2で作製したオゾンナノバブルを含む純水を使用した処理液と、被処理基板として実施例2と同じサイズの半導体ウエハとを用いて、図9に示す洗浄装置に適用した。処理液の温度条件を65~70℃に代えて50~55℃に変更したこと以外は、実施例2と同様の方法で半導体のウェハ基板上に付着している残渣レジスト膜の洗浄を行った。本実施例は、被処理基板7の洗浄において電圧印加手段31によって被処理基板7に電圧を印加しながらオゾンナノバブルを含む処理液を噴射させる点で、前記実施例2に示す洗浄方法とは異なる。図9に示す洗浄装置において、電源30として誘導性パルスパワー電源を使用し、ノズルヘッダーの近くに配置する電極29と被処理基板7を支持するホルダー6とを電源30の(+)側及び(-)側にそれぞれ接続し、電圧及び周波数をそれぞれ32V及び20kHzに設定したパルス電圧を印加しながら洗浄を行った。
 その結果、本実施例は、実施レジスト膜の残渣を完全に剥離する時間が3分以内であった。この時間は、前記実施例4で検討した超音波振動を加えない場合(事前の乾燥を行っていない被処理基板7)の10分以内よりも短く、被処理基板7の洗浄時に電圧を印加することにより、洗浄時間を約1/3未満に短縮化することができた。
 本実施例で適用した電圧印加方法は、前記の非処理基板を事前に乾燥する方法及び超音波振動を加える方法の少なくとも何れかと併用してもよい。それにより、洗浄時間の一層の短縮化を図ることができる。
 以上のように、本発明による洗浄方法は、環境への負荷を低減しつつ、基板上のレジスト残渣付着の剥離若しくは金属又は金属化合物による汚染物の除去を、従来方法よりも短時間で効率的に、且つ、確実に行うことができる。また、本発明による洗浄装置は、従来のマイクロ・ナノバブル発生装置に、前記気体のマイクロ・ナノバブルの加熱するための装置、及び被処理基板にマイクロ・ナノバブを含む処理液を噴射するために噴射ノズルを有するノズルヘッダーと前記被処理基板を支持するホルダーとを組み合わせるだけで、シンプルかつコンパクトな構成を有する洗浄装置を構築することができる、さらに、被処理基板の乾燥、又は前記気体のマイクロ・ナノバブルの処理液を噴射するときに超音波振動若しくは電圧印加を行うことにより洗浄効果の一層の向上を図ることができる。
 本発明の洗浄方法は、ガラス基板や半導体ウエハ基板だけでなく、他の分野、例えば、金属加工時の金属洗浄、農産物の洗浄、土壌の洗浄等にも適用できるため、その有用性は極めて広い。
1・・・洗浄装置、2・・・べローズポンプ、3・・・気液混合槽、4・・・加熱装置ステージ、5・・・ノズルヘッダー、6・・ホルダー、7・・・被処理基板、8・・・超音波発生装置、9・・・ポンプコントローラ、10・・・圧力センサ、11・・・マイクロ・ナノバブル用ノズル取付部、12・・・液吸引缶、13・・・気体吸引口、14・・・気体吸引調整バルブ、15・・・噴射ノズル、16液衝突ノズル、17・・・台、18・・・洗浄装置、19・・・ヒータ、20・・・洗浄装置、21・・・リボンヒータ、22・・・温風装置、23・・・洗浄装置、24・・・部屋、25・・・空調機、26・・・洗浄装置、27・・・乾燥手段、28・・・洗浄装置、29・・・電極、30・・・電源、31・・・電圧印加装置。

Claims (19)

  1.  基板上にレジスト膜が付着した被処理基板若しくは表面が金属又は金属化合物で汚染された被処理基板に対して、氷包埋法によってクライオ透過型電子顕微鏡で測定したときの平均粒径が100nm以下である気体のマイクロ・ナノバブルを含有し、且つ、温度が30~90℃に保たれている処理液を噴射することにより、前記レジスト膜の剥離若しくは前記金属又は金属化合物の除去を行うことを特徴とするマイクロ・ナノバブルによる洗浄方法。
  2.  前記気体のマイクロ・ナノバブルが、氷包埋法によってクライオ透過型電子顕微鏡で測定したときの平均粒径が30nm以下であることを特徴とする請求項1に記載のマイクロ・ナノバブルによる洗浄方法。
  3.  前記処理液に含まれる気体のマイクロ・ナノバブルは、氷包埋法によってクライオ透過型電子顕微鏡で測定したときの密度が1mlあたり10個以上であることを特徴とする請求項1又は2に記載のマイクロ・ナノバブルによる洗浄方法。
  4.  前記気体のマイクロ・ナノバブルを含有する処理液が、溶存気体を含む溶液を、2以上の貫通小穴を周方向に有する筒の外部から該貫通小穴を通して大気圧以上の圧力で噴射させるときに、前記筒の径方向断面と平行な同一平面上で対向するように配置された前記2以上の貫通小穴のそれぞれの開口部から噴射した溶存液を前記筒の中心に水撃が集中するように衝突させることによって発生させた気体のマイクロ・ナノバブルを含有した処理液であることを特徴とする請求項1~3の何れかに記載のマイクロ・ナノバブルによる洗浄方法。
  5.  前記気体がオゾン又は酸素であり、前記処理液が、前記オゾン又は酸素のマイクロ・ナノバブルを含有する純水であることを特徴とする請求項1~4の何れかに記載のマイクロ・ナノバブルによる洗浄方法。
  6.  前記気体が、オゾン又は酸素に加えて、二酸化炭素及び過酸化水素の少なくとも何れかを含む気体であることを特徴とする請求項1~5の何れかに記載のマイクロ・ナノバブルによる洗浄方法。
  7.  前記処理液を噴霧する前に、前記非処理基板上の水滴及び水分を乾燥させる工程を有することを特徴とする請求項1~6の何れかに記載のマイクロ・ナノバブルによる洗浄方法
  8.  前記気体のマイクロ・ナノバブルを含有する処理液を、洗浄対象物である前記被処理基板に超音波振動を与えながら噴射させることを特徴とする請求項1~7の何れかに記載のマイクロ・ナノバブルによる洗浄方法。
  9.  前記非処理基板と前記処理液を噴射するノズルヘッダーの近くに配置する電極との間に電圧を印加することを特徴とする請求項1~7の何れかに記載のマイクロ・ナノバブルによる洗浄方法。
  10.  前記処理液の温度が、50℃を超え85℃以下であることを特徴とする請求項1~9の何れかに記載のマイクロ・ナノバブルによる洗浄方法。
  11.  気体及び液体をそれぞれ吸引する手段と、前記気体及び前記液体を同時に加圧して搬送する手段と、
     該搬送された前記気体を含む前記液体を新たな気体と混合させることによって溶存気体を富化させるための気液混合槽と、
     該加熱装置によって加熱された溶存液を用いてマイクロ・ナノバブルを発生させるために、空洞の筒、該筒の周方向に2以上の貫通小穴のそれぞれの開口部が前記筒の径方向断面と平行な同一平面上で対向するように配置された前記2以上の貫通小穴、及び前記筒の少なくとも片端部にマイクロ・ナノバブル吐出口を有し、前記貫通小穴は該貫通小穴の断面中心部を通る延長線のすべてが前記筒の中心で交差するように配置される噴射ノズルと、
     前記気体のマイクロ・バブルを含有する処理液を、基板上にレジスト膜が付着した被処理基板又は表面が金属化合物で汚染された被処理基板に噴射するため噴射ノズルに接続されたノズルヘッダーと、を有するマイクロ・ナノバブル装置を備え、さらに、
     被処理基板を支持するために前記ノズルヘッダーに対向して設けるホルダー、及び前記気体のマイクロ・バブルを含有する処理液を30~90℃に加熱するための加熱手段を備えることを特徴とするマイクロ・ナノバブルによる洗浄装置。
  12.  前記加熱装置が、前記気液混合槽から送出された直後の前記気液混合の状態にある溶存液を加熱するために備える加熱装置であることと特徴とする請求項11に記載のマイクロ・ナノバブルによる洗浄装置。
  13.  前記加熱装置が、前記気液混合槽の底部及び側部の少なくとも何れかの場所にヒータとして具備されていることを特徴とする請求項12に記載のマイクロ・ナノバブルによる洗浄装置。
  14.  請求項11~13の何れかに記載のマイクロ・ナノバブルによる洗浄装置が、さらに、前記非処理基板の上の水滴及び水分を乾燥させる乾燥手段を有することを特徴とするマイクロ・ナノバブルによる洗浄装置。
  15.  前記ホルダーは、前記被処理基板に超音波振動を与えることができる超音波発生装置と接続していることを特徴とする請求項11~14の何れかに記載のマイクロ・ナノバブルによる洗浄装置。
  16.  前記非処理基板を支持するホルダーと前記処理液を噴射するノズルヘッダーの近くに配置する電極との間に、電圧を印加する電圧印加手段を有することを特徴とする請求項11~14の何れかに記載のマイクロ・ナノバブルによる洗浄装置。
  17.  前記加熱装置が、さらに、前記ノズルヘッダー及び前記ホルダーの少なくとも何れかを加熱するための加熱装置又は温風発生装置を具備することを特徴とする請求項11~16の何れかに記載のマイクロ・ナノバブルによる洗浄装置。
  18.  前記加熱装置が、さらに、前記ノズルヘッダー及び前記ホルダーを一つの部屋として囲み、前記部屋の内部を30~90℃の温度に制御するための空調機を備えることを特徴とする請求項11~17の何れかに記載のマイクロ・ナノバブルによる洗浄装置。
  19.  前記加熱するときの温度が50~85℃であることを特徴とする請求項11~18の何れかに記載のマイクロ・ナノバブルによる洗浄装置。
PCT/JP2015/083678 2014-12-02 2015-12-01 マイクロ・ナノバブルによる洗浄方法及び洗浄装置 WO2016088731A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/319,041 US10632506B2 (en) 2014-12-02 2015-12-01 Cleaning method and cleaning device using micro/nano-bubbles
JP2016562624A JP6501191B2 (ja) 2014-12-02 2015-12-01 マイクロ・ナノバブルによる洗浄方法及び洗浄装置
KR1020167035300A KR101934627B1 (ko) 2014-12-02 2015-12-01 마이크로·나노 버블에 의한 세정 방법 및 세정 장치
EP15865774.2A EP3144962A4 (en) 2014-12-02 2015-12-01 Cleaning method and cleaning device using micro/nano-bubbles
CN201580033097.9A CN106463387B (zh) 2014-12-02 2015-12-01 采用微型纳米气泡的清洗方法和清洗装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014244538 2014-12-02
JP2014-244538 2014-12-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/319,041 A-371-Of-International US10632506B2 (en) 2014-12-02 2015-12-01 Cleaning method and cleaning device using micro/nano-bubbles
US16/510,226 Division US20200238654A9 (en) 2014-12-02 2019-07-12 Cleaning device using micro/nano-bubbles

Publications (1)

Publication Number Publication Date
WO2016088731A1 true WO2016088731A1 (ja) 2016-06-09

Family

ID=56091673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083678 WO2016088731A1 (ja) 2014-12-02 2015-12-01 マイクロ・ナノバブルによる洗浄方法及び洗浄装置

Country Status (6)

Country Link
US (2) US10632506B2 (ja)
EP (1) EP3144962A4 (ja)
JP (1) JP6501191B2 (ja)
KR (1) KR101934627B1 (ja)
CN (1) CN106463387B (ja)
WO (1) WO2016088731A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018202592A (ja) * 2017-06-09 2018-12-27 Towa株式会社 研削装置および研削方法
JP2019201014A (ja) * 2018-05-14 2019-11-21 東京エレクトロン株式会社 基板処理方法、基板処理装置および基板処理システム
JP2020155721A (ja) * 2019-03-22 2020-09-24 株式会社Screenホールディングス 基板処理方法
WO2021039357A1 (ja) * 2019-08-29 2021-03-04 株式会社Screenホールディングス 基板処理方法
JP2021068834A (ja) * 2019-10-25 2021-04-30 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP2021097120A (ja) * 2019-12-17 2021-06-24 株式会社荏原製作所 レジスト除去システムおよびレジスト除去方法
JP2021097117A (ja) * 2019-12-17 2021-06-24 株式会社荏原製作所 レジスト除去システムおよびレジスト除去方法
RU2759202C2 (ru) * 2017-08-31 2021-11-10 Кэнон Кабусики Кайся Способ генерирования ультрамелких пузырьков, устройство для производства и способ производства содержащей ультрамелкие пузырьки жидкости и содержащая ультрамелкие пузырьки жидкость
JP7000517B1 (ja) 2020-08-24 2022-02-04 株式会社御池鐵工所 消毒剤生成装置及び消毒剤生成方法
JP7413891B2 (ja) 2020-03-30 2024-01-16 コニカミノルタ株式会社 残留トナーの除去方法、トナー容器のリユース方法およびトナー容器のリサイクル方法
JP7467184B2 (ja) 2020-03-19 2024-04-15 株式会社レゾナック・ガスプロダクツ 洗浄装置及び洗浄方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164977A (ja) * 2015-02-27 2016-09-08 キヤノン株式会社 ナノインプリント用液体材料、ナノインプリント用液体材料の製造方法、硬化物パターンの製造方法、光学部品の製造方法、回路基板の製造方法、および電子部品の製造方法
CN109415686B (zh) * 2016-05-13 2023-02-21 株式会社希古玛科技 可给药到活体的水溶液及其制备方法
JP6653620B2 (ja) * 2016-05-24 2020-02-26 大同メタル工業株式会社 洗浄装置
JP7086547B2 (ja) * 2017-08-31 2022-06-20 キヤノン株式会社 ウルトラファインバブル含有液の製造装置および製造方法
GB2573012A (en) * 2018-04-20 2019-10-23 Zeeko Innovations Ltd Fluid jet processing
US20190363018A1 (en) * 2018-05-24 2019-11-28 Semiconductor Components Industries, Llc Die cleaning systems and related methods
CN108905663A (zh) * 2018-09-19 2018-11-30 佛山市通海卫浴设备有限公司 可自动排污防堵塞的高效微纳米气泡发生装置及发生方法
CN111610698A (zh) * 2019-02-22 2020-09-01 北京北方华创微电子装备有限公司 光刻胶去除装置和去除光刻胶的方法
JP7277176B2 (ja) 2019-02-28 2023-05-18 キヤノン株式会社 ウルトラファインバブル生成方法、およびウルトラファインバブル生成装置
US11904366B2 (en) 2019-03-08 2024-02-20 En Solución, Inc. Systems and methods of controlling a concentration of microbubbles and nanobubbles of a solution for treatment of a product
CN109987726A (zh) * 2019-03-19 2019-07-09 深圳源域生态科创中心有限公司 一种多级旋切破碎式微纳米气泡发生方法及装置
KR102215207B1 (ko) * 2019-07-22 2021-02-15 주식회사 싸이노스 반도체장비 부품용 세정장치
CN111022105B (zh) * 2019-12-11 2021-10-26 江西维尔安石环保科技有限公司 生物液膜综合矿山抑尘系统及装置
CN111105996B (zh) * 2020-01-03 2021-11-09 长江存储科技有限责任公司 待清洗工件的清洗方法及清洗设备
CN112058752A (zh) * 2020-08-13 2020-12-11 刘雄 一种用于热处理工件的清洗装置
CN112345434B (zh) * 2020-10-23 2022-02-15 大连理工大学 一种微纳米气泡内部压力计算方法
DE112021005594T5 (de) * 2020-10-23 2023-08-03 Sumco Corporation Verfahren zum Reinigen einer Rohrleitung einer Einzelwaferverarbeitungs-Waferreinigungsvorrichtung
CN112537823B (zh) * 2020-11-09 2023-03-28 济南大学 一种微纳米气泡技术强化化学清洗控制超滤膜老化的方法
KR102437879B1 (ko) * 2020-11-10 2022-09-01 주식회사 어썸리드 나노-마이크로 버블 세정장치 및나노-마이크로 버블 세정방법
CN112723565A (zh) * 2020-12-11 2021-04-30 纳美智创(杭州)科技有限责任公司 一种用于水体净化的微纳米曝气系统
KR102424693B1 (ko) 2021-02-04 2022-07-27 윤태열 나노버블을 이용하는 세정액 재생장치 및 이를 이용하는 기판 처리 장치
CN113071022B (zh) * 2021-03-20 2021-11-19 惠州市纵胜电子材料有限公司 一种热固性树脂浸胶系统
CN113293099B (zh) * 2021-06-01 2023-12-22 中国科学院重庆绿色智能技术研究院 研究微纳米气泡与细胞相互作用的方法
CN113244816B (zh) * 2021-07-13 2021-10-01 东营金昱技术开发有限公司 一种油井缓蚀清垢防垢剂生产用配料装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170709A (ja) * 2008-01-17 2009-07-30 Shibaura Mechatronics Corp 基板の処理装置及び処理方法
JP2011088979A (ja) * 2009-10-21 2011-05-06 Panasonic Electric Works Co Ltd 洗浄液、洗浄方法、洗浄液製造装置
JP2011129743A (ja) * 2009-12-18 2011-06-30 Shibaura Mechatronics Corp 基板処理方法および基板処理装置
WO2012090815A1 (ja) * 2010-12-28 2012-07-05 シャープ株式会社 レジスト除去装置及びレジスト除去方法
JP2013146714A (ja) * 2012-01-23 2013-08-01 Idec Corp 微細気泡生成装置
JP2013532629A (ja) * 2010-07-16 2013-08-19 テクニカル ユニバーシティ オブ デンマーク ナノ粒子誘導放射線治療

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW294821B (ja) * 1994-09-09 1997-01-01 Tokyo Electron Co Ltd
JP2008192630A (ja) * 2006-03-20 2008-08-21 Eiji Matsumura 電子・機械部品洗浄方法及び電子・機械部品洗浄装置
JP2008300429A (ja) * 2007-05-29 2008-12-11 Toshiba Corp 半導体基板洗浄方法、半導体基板洗浄装置、及び液中気泡混合装置
JP2009072649A (ja) * 2007-09-18 2009-04-09 Univ Of Tokyo ナノバブル溶液、ナノバブル溶液を製造する方法及び装置、ナノバブル溶液の利用方法
JP2009111093A (ja) * 2007-10-29 2009-05-21 Covalent Materials Corp 半導体基板の製造方法
JP5153305B2 (ja) 2007-11-20 2013-02-27 芝浦メカトロニクス株式会社 レジスト膜の剥離装置及び剥離方法
JP5448385B2 (ja) * 2008-07-30 2014-03-19 芝浦メカトロニクス株式会社 基板処理装置および基板処理方法
JP5342220B2 (ja) * 2008-12-05 2013-11-13 芝浦メカトロニクス株式会社 基板処理装置
JP2010238992A (ja) 2009-03-31 2010-10-21 Sharp Corp リフトオフ方法及び薄膜トランジスタの製造方法
US20120312782A1 (en) * 2010-02-18 2012-12-13 Sharp Kabushiki Kaisha Etching method and etching device
KR101207384B1 (ko) 2011-03-25 2012-12-04 (주) 엠에스피 마이크로 나노버블을 이용한 반도체 세정방법 및 그 장치
JP5555892B2 (ja) * 2012-01-18 2014-07-23 シグマテクノロジー有限会社 マイクロ・ナノバブルの発生方法、発生ノズル及び発生装置
JP6232212B2 (ja) * 2012-08-09 2017-11-15 芝浦メカトロニクス株式会社 洗浄液生成装置及び基板洗浄装置
JP2014090031A (ja) 2012-10-29 2014-05-15 Sharp Corp エッチング方法及びエッチング装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170709A (ja) * 2008-01-17 2009-07-30 Shibaura Mechatronics Corp 基板の処理装置及び処理方法
JP2011088979A (ja) * 2009-10-21 2011-05-06 Panasonic Electric Works Co Ltd 洗浄液、洗浄方法、洗浄液製造装置
JP2011129743A (ja) * 2009-12-18 2011-06-30 Shibaura Mechatronics Corp 基板処理方法および基板処理装置
JP2013532629A (ja) * 2010-07-16 2013-08-19 テクニカル ユニバーシティ オブ デンマーク ナノ粒子誘導放射線治療
WO2012090815A1 (ja) * 2010-12-28 2012-07-05 シャープ株式会社 レジスト除去装置及びレジスト除去方法
JP2013146714A (ja) * 2012-01-23 2013-08-01 Idec Corp 微細気泡生成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3144962A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018202592A (ja) * 2017-06-09 2018-12-27 Towa株式会社 研削装置および研削方法
US11766685B2 (en) 2017-08-31 2023-09-26 Canon Kabushiki Kaisha Ultrafine bubble generating method, ultrafine bubble-containing liquid manufacturing apparatus and manufacturing method, and ultrafine bubble-containing liquid
RU2759202C2 (ru) * 2017-08-31 2021-11-10 Кэнон Кабусики Кайся Способ генерирования ультрамелких пузырьков, устройство для производства и способ производства содержащей ультрамелкие пузырьки жидкости и содержащая ультрамелкие пузырьки жидкость
JP7142461B2 (ja) 2018-05-14 2022-09-27 東京エレクトロン株式会社 基板処理方法、基板処理装置および基板処理システム
JP2019201014A (ja) * 2018-05-14 2019-11-21 東京エレクトロン株式会社 基板処理方法、基板処理装置および基板処理システム
TWI796479B (zh) * 2018-05-14 2023-03-21 日商東京威力科創股份有限公司 基板處理方法、基板處理裝置及基板處理系統
JP2020155721A (ja) * 2019-03-22 2020-09-24 株式会社Screenホールディングス 基板処理方法
WO2020195176A1 (ja) * 2019-03-22 2020-10-01 株式会社Screenホールディングス 基板処理方法
TWI783211B (zh) * 2019-03-22 2022-11-11 日商斯庫林集團股份有限公司 基板處理方法
WO2021039357A1 (ja) * 2019-08-29 2021-03-04 株式会社Screenホールディングス 基板処理方法
JP7441620B2 (ja) 2019-08-29 2024-03-01 株式会社Screenホールディングス 基板処理方法
JP7341850B2 (ja) 2019-10-25 2023-09-11 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP2021068834A (ja) * 2019-10-25 2021-04-30 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP7265466B2 (ja) 2019-12-17 2023-04-26 株式会社荏原製作所 レジスト除去システムおよびレジスト除去方法
JP2021097117A (ja) * 2019-12-17 2021-06-24 株式会社荏原製作所 レジスト除去システムおよびレジスト除去方法
JP2021097120A (ja) * 2019-12-17 2021-06-24 株式会社荏原製作所 レジスト除去システムおよびレジスト除去方法
JP7467184B2 (ja) 2020-03-19 2024-04-15 株式会社レゾナック・ガスプロダクツ 洗浄装置及び洗浄方法
JP7413891B2 (ja) 2020-03-30 2024-01-16 コニカミノルタ株式会社 残留トナーの除去方法、トナー容器のリユース方法およびトナー容器のリサイクル方法
JP2022036815A (ja) * 2020-08-24 2022-03-08 株式会社御池鐵工所 消毒剤生成装置及び消毒剤生成方法
JP7000517B1 (ja) 2020-08-24 2022-02-04 株式会社御池鐵工所 消毒剤生成装置及び消毒剤生成方法

Also Published As

Publication number Publication date
JP6501191B2 (ja) 2019-04-17
US10632506B2 (en) 2020-04-28
CN106463387A (zh) 2017-02-22
US20180161737A1 (en) 2018-06-14
US20200238654A9 (en) 2020-07-30
EP3144962A4 (en) 2018-01-10
KR101934627B1 (ko) 2019-03-25
KR20170008813A (ko) 2017-01-24
EP3144962A1 (en) 2017-03-22
JPWO2016088731A1 (ja) 2017-10-05
CN106463387B (zh) 2019-06-28
US20190329520A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP6501191B2 (ja) マイクロ・ナノバブルによる洗浄方法及び洗浄装置
KR101819246B1 (ko) 개선된 초음파 클리닝 유체, 방법 및 장치
TW200903603A (en) Semiconductor substrate cleaning method using bubble/chemical mixed cleaning liquid
KR100397455B1 (ko) 반도체의초미립자세정기
KR101790449B1 (ko) 기판 처리 장치 및 기판 처리 방법
US20060249182A1 (en) Cleaning method and cleaning apparatus
JP2008080230A (ja) 基板処理装置および基板処理方法
US7837805B2 (en) Methods for treating surfaces
JP2006223995A (ja) 洗浄方法及び洗浄装置
KR101271302B1 (ko) 세정 방법 및 세정 장치
JP2012236151A (ja) マイクロ・ナノバブル発生装置とノズル構造
WO2007063987A1 (ja) 超純水プラズマ泡による加工・洗浄方法及びその装置
JP6536884B2 (ja) マイクロ・ナノバブルを利用した金属表面の改質方法及び金属と樹脂との接着方法
EP3502062A1 (en) Hydrogencarbonate water and cleaning method using same
CN112742227A (zh) 含超微泡液体生产设备和含超微泡液体生产方法
JP2012000580A (ja) バブル含有液生成装置及び処理装置
CN113118104A (zh) 一种多通超声驱动控制微液滴集群清洗系统
WO2010097896A1 (ja) 洗浄用ノズル及び洗浄方法
TW201343263A (zh) 對象物洗淨系統及對象物洗淨方法
CN113118132B (zh) 一种超声驱动控制的微液滴集群清洗方法
KR101987709B1 (ko) 사류체 노즐
WO2020075844A1 (ja) 微細気泡洗浄装置及び微細気泡洗浄方法
CN113118103A (zh) 一种共混超声驱动控制微液滴集群清洗系统
JP2007136444A (ja) 液体製造装置、処理装置および表面加工装置
JPS62204531A (ja) 有機物被膜の除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865774

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015865774

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15319041

Country of ref document: US

Ref document number: 2015865774

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167035300

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016562624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE