WO2016088381A1 - Electromagnetic wave shielding film - Google Patents

Electromagnetic wave shielding film Download PDF

Info

Publication number
WO2016088381A1
WO2016088381A1 PCT/JP2015/006013 JP2015006013W WO2016088381A1 WO 2016088381 A1 WO2016088381 A1 WO 2016088381A1 JP 2015006013 W JP2015006013 W JP 2015006013W WO 2016088381 A1 WO2016088381 A1 WO 2016088381A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electromagnetic wave
shielding film
wave shielding
protective layer
Prior art date
Application number
PCT/JP2015/006013
Other languages
French (fr)
Japanese (ja)
Inventor
岩井 靖
善治 柳
茂樹 竹下
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to JP2016562314A priority Critical patent/JP6511473B2/en
Priority to KR1020177004356A priority patent/KR101956091B1/en
Priority to CN201580063071.9A priority patent/CN107079611A/en
Publication of WO2016088381A1 publication Critical patent/WO2016088381A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/16Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the structure of the carrier layer

Definitions

  • the present disclosure relates to an electromagnetic wave shielding film, a manufacturing method thereof, and a shield printed wiring board.
  • the conductive adhesive layer is overlapped with the opening provided in the insulating layer covering the ground circuit of the printed wiring board, heated and pressed, and the opening is filled with the conductive adhesive.
  • the shield layer and the ground circuit of the printed wiring board are connected via the conductive adhesive, and the printed wiring board is shielded.
  • This disclosure is intended to realize an electromagnetic wave shielding film having good shielding characteristics, a method for manufacturing the same, and a shield printed wiring board even when conductive particles are not used in the adhesive layer.
  • An aspect of the electromagnetic wave shielding film of the present disclosure includes a conductive shield layer having unevenness and an adhesive layer that covers the unevenness, and the maximum peak height of the unevenness is larger than the thickness of the adhesive layer.
  • the maximum peak height of the unevenness may be 20 ⁇ m or less.
  • the maximum peak height of the unevenness may be 4 ⁇ m or more.
  • One aspect of the electromagnetic wave shielding film may include a protective layer on the surface of the shielding layer opposite to the adhesive layer.
  • the protective layer may have a maximum peak height value on the surface on the shield layer side that is not less than the thickness of the adhesive layer and not more than 20 ⁇ m.
  • the protective layer may contain particles having a particle size of 1 ⁇ m or more and 20 ⁇ m or less.
  • the adhesive layer may be insulative.
  • One aspect of the method for producing an electromagnetic wave shielding film includes a step of preparing a protective layer, a step of forming a conductive shield layer having irregularities on the protective layer, and a thickness higher than the maximum peak height of the shield layer. And a step of forming an adhesive layer covering the unevenness.
  • the step of preparing the protective layer can be a step of forming a protective layer having irregularities having a maximum peak height of 4 ⁇ m or more and 20 ⁇ m or less on the surface.
  • the step of preparing a protective layer is a step of applying and curing a protective layer composition containing a resin composition and particles on a supporting substrate, and particles 1 ⁇ m or more and 20 ⁇ m or less may be used.
  • the step of preparing the protective layer may include a step of forming a resin layer on the support substrate and a step of forming irregularities on the resin layer.
  • the step of forming the unevenness may include a step of embossing the resin layer.
  • the step of forming the unevenness may include a step of blasting the resin layer.
  • the step of preparing the protective layer may include a step of forming a resin layer on a support substrate having irregularities on the surface.
  • the step of forming the adhesive layer may be a step of applying an adhesive composition on the shield layer.
  • a shield printed wiring board of the present disclosure includes the electromagnetic wave shielding film of the present disclosure, a base layer provided with a signal circuit and a ground circuit, and an insulating layer provided with an opening exposing at least a part of the ground circuit.
  • the electromagnetic wave shielding film and the printed wiring board are bonded with the adhesive layer and the insulating layer facing each other, and the convex portion of the shielding layer penetrates the adhesive layer and is exposed from the opening. It is in contact with the ground circuit.
  • the electromagnetic wave shielding film of the present disclosure it is possible to provide an electromagnetic wave shielding film with good shielding characteristics even when conductive particles are not used in the adhesive layer.
  • the electromagnetic wave shielding film 100 As shown in FIG. 1, the electromagnetic wave shielding film 100 according to one embodiment is provided in contact with a conductive shield layer 110 having projections and depressions 110 a and depressions 110 b and a first surface of the shield layer 110. And an adhesive layer 120. The convex portion 110 a of the shield layer 110 is covered with the adhesive layer 120. At least a part of the convex portion 110a of the shield layer 110 penetrates the adhesive layer 120 when the electromagnetic wave shielding film 100 is pressed and attached to the printed wiring board.
  • the maximum peak height of the unevenness of the shield layer may be larger than the thickness (t) of the adhesive layer 120.
  • the value of the maximum peak height (Rp) may be larger than the thickness (t) of the adhesive layer 120, but is preferably 4 ⁇ m or more.
  • the convex portion 110a can easily penetrate the adhesive layer 120 when the shield film is pressed and attached to the printed wiring board. Thereby, the resistance value between the electromagnetic wave shielding film 100 and the ground circuit can be reduced, and good shielding characteristics can be obtained. Further, it is possible to provide an adhesive layer 120 having a sufficient thickness for good adhesion to the printed wiring board.
  • Rp is not particularly limited, but is preferably 20 ⁇ m or less. By setting Rp to 20 ⁇ m or less, the thickness of the electromagnetic wave shielding film 100 can be reduced. Moreover, it becomes easy to ensure the flatness of the surface of the adhesive layer 120, and when the electromagnetic wave shielding film 100 is pressed and attached to the printed wiring board, the adhesive force between the electromagnetic wave shielding film 100 and the printed wiring board is good. Become.
  • the value of the maximum peak height (Rp) in the present invention is a value measured according to JIS B0651: 2001 shown in the examples.
  • the thickness of the adhesive layer 120 is preferably as thin as possible as long as the projection 110a of the shield layer 110 can be covered, but is preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more, and preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less.
  • the thickness of the adhesive layer 120 is 3 ⁇ m or more, even if the Rp value of the unevenness of the shield layer 110 is large, before the electromagnetic wave shielding film 100 is attached to the printed wiring board, the convex portion of the shield layer 110 110a may not protrude from the adhesive layer 120. For this reason, it can suppress that air mixes between the adhesive bond layer 120 and a printed wiring board, and favorable adhesive force is obtained.
  • the thickness is 10 ⁇ m or less, the electromagnetic wave shielding film 100 can be thinned, and the convex portion 110a of the shield layer 110 can be reliably connected to the ground circuit of the printed wiring board.
  • a protective layer 130 can be provided on the second surface of the shield layer 110 opposite to the adhesive layer 120 as necessary.
  • the protective layer 130 can be formed of an insulating resin material or the like.
  • the convex portion 110 a can be easily formed on the first surface of the shield layer 110 by providing irregularities on the surface of the protective layer 130 on the shield layer 110 side.
  • the Rp on the surface of the protective layer 130 may be equal to or greater than the thickness of the adhesive layer, preferably 4 ⁇ m to 20 ⁇ m. By setting it as such a structure, Rp of the 1st surface of the shield layer 110 can be easily 4 micrometers or more and 20 micrometers or less.
  • the shield layer 110 can be a metal film or a conductive film made of conductive particles.
  • the metal film can be formed of, for example, nickel, copper, silver, tin, gold, palladium, aluminum, chromium, titanium, zinc, or an alloy containing any one or more of these.
  • a method for forming the metal film for example, a rolling method, an electrolytic plating method, an electroless plating method, a sputtering method, an electron beam evaporation method, a vacuum evaporation method, a CVD method, a metal organic method, or the like can be used.
  • the conductive particles can be, for example, carbon, silver, copper, nickel, solder, or silver-coated copper particles obtained by performing silver plating on copper powder.
  • particles obtained by performing metal plating on insulating particles such as resin balls or glass beads can be used. These conductive particles can be used alone or in combination of two or more.
  • the shape of the conductive particles may be spherical, needle-like, fibrous, flaky, or dendritic, and is preferably flaky from the viewpoint of layering.
  • the particle diameter of the conductive particles is not particularly limited, but can be 0.1 ⁇ m or more and 10 ⁇ m or less from the viewpoint of thinning the shield layer 110.
  • the thickness of the shield layer 110 may be appropriately selected according to the required electromagnetic shielding characteristics and repeated bending / sliding resistance, but may be about 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the adhesive layer 120 may be insulative or conductive. From the viewpoint of filling into a small-diameter opening, it is preferable to make the adhesive layer 120 insulative. By making the adhesive layer 120 a layer that does not contain conductive fillers such as metal particles, there is also an advantage that the thickness of the adhesive layer 120 can be made thinner.
  • the adhesive layer 120 is not particularly limited, but a styrene resin composition, a vinyl acetate resin composition, a polyester resin composition, a polyethylene resin composition, a polypropylene resin composition, an imide resin composition, an amide resin.
  • Thermoplastic resin compositions such as resin compositions or acrylic resin compositions, or phenolic resin compositions, epoxy resin compositions, urethane resin compositions, melamine resin compositions, alkyd resin compositions, etc.
  • a thermosetting resin composition or the like can be used. These may be used alone or in combination of two or more.
  • a curing accelerator In the adhesive layer 120, a curing accelerator, tackifier, antioxidant, pigment, dye, plasticizer, ultraviolet absorber, antifoaming agent, leveling agent, filler, flame retardant, and At least one of a viscosity modifier and the like may be included.
  • the thickness of the adhesive layer 120 is not particularly limited and may be appropriately set as necessary, but may be 3 ⁇ m or more, preferably 4 ⁇ m or more, 10 ⁇ m or less, preferably 7 ⁇ m or less.
  • the thickness of the adhesive layer 120 is not particularly limited and may be appropriately set as necessary, but may be 3 ⁇ m or more, preferably 4 ⁇ m or more, 10 ⁇ m or less, preferably 7 ⁇ m or less.
  • the electromagnetic wave shielding film of this embodiment may have a protective layer 130.
  • the protective layer 130 only needs to satisfy predetermined mechanical strength, chemical resistance, heat resistance, and the like that can protect the shield layer 110.
  • the protective layer 130 is not particularly limited as long as it has sufficient insulating properties and can protect the adhesive layer 120 and the shield layer 110.
  • the protective layer 130 is a thermoplastic resin composition, a thermosetting resin composition, or an active energy ray curable. A composition or the like can be used.
  • the thermoplastic resin composition is not particularly limited, but a styrene resin composition, a vinyl acetate resin composition, a polyester resin composition, a polyethylene resin composition, a polypropylene resin composition, an imide resin composition, Alternatively, an acrylic resin composition or the like can be used.
  • a thermosetting resin composition A phenol-type resin composition, an epoxy-type resin composition, a urethane-type resin composition, a melamine-type resin composition, or an alkyd-type resin composition etc. can be used.
  • an active energy ray curable composition For example, the polymeric compound etc. which have at least 2 (meth) acryloyloxy group in a molecule
  • the protective layer 130 may be formed of a single material or may be formed of two or more kinds of materials.
  • a curing accelerator for the protective layer 130, a curing accelerator, a tackifier, an antioxidant, a pigment, a dye, a plasticizer, an ultraviolet absorber, an antifoaming agent, a leveling agent, a filler, a flame retardant, and a viscosity adjuster as necessary. At least one of an agent, an anti-blocking agent and the like may be included.
  • the protective layer 130 may be a laminate of two or more layers having different materials, physical properties such as hardness or elastic modulus. For example, if a laminate of an outer layer having a low hardness and an inner layer having a high hardness is used, the outer layer has a cushioning effect, so that the pressure applied to the shield layer 110 is reduced in the process of heating and pressing the electromagnetic wave shielding film 100 to the printed wiring board. it can. For this reason, it can suppress that the shield layer 110 is destroyed by the level
  • the thickness of the protective layer 130 is not particularly limited and can be appropriately set as necessary. However, the thickness is 1 ⁇ m or more, preferably 4 ⁇ m or more, and 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less. Can do. By setting the thickness of the protective layer 130 to 1 ⁇ m or more, the adhesive layer 120 and the shield layer 110 can be sufficiently protected. By setting the thickness of the protective layer 130 to 20 ⁇ m or less, the flexibility of the electromagnetic wave shielding film 100 can be ensured, and it becomes easy to apply the electromagnetic wave shielding film 100 to a member that requires flexibility.
  • Rp on the surface of the protective layer 130 on the shield layer 110 side is preferably not less than the thickness of the adhesive layer, preferably not less than 4 ⁇ m and not more than 20 ⁇ m.
  • the protective layer 130 can be a layer containing particles. Unevenness can be easily formed on the surface of the protective layer 130 by adding particles.
  • the particles added to the protective layer 130 are not particularly limited, and known particles can be used.
  • inorganic particles such as silica or alumina, or resin particles can be used.
  • the average particle diameter of the particles added to the protective layer 130 can be determined according to the size of the irregularities formed on the surface, but is 1 ⁇ m or more, preferably 4 ⁇ m or more, and 20 ⁇ m or less, preferably 15 ⁇ m or less, more preferably Can be 10 ⁇ m or less.
  • the average particle diameter of the particles can be 1 ⁇ m or more, unevenness on the surface of the protective layer 130 can be increased, and the shield layer 110 can easily penetrate the adhesive layer 120 in the heating and pressing step.
  • By setting the average particle size of the particles to 20 ⁇ m or less there is an advantage that the thickness of the protective layer 130 can be reduced.
  • the amount of the fine particles added to the protective layer 130 can be determined according to the thickness of the protective layer 130, the size of the irregularities formed on the surface, etc., but the resin composition forming the protective layer 130 and the fine particles
  • the total content can be 1% by mass or more, preferably 5% by mass or more, and 30% by mass or less, preferably 20% by mass or less.
  • the shape of the fine particles added to the protective layer 130 is not particularly limited, and may be any of a spherical shape, a needle shape, a fiber shape, a flake shape, and a dendritic shape, but the shield layer 110 having irregularities on the surface of the protective layer 130. From the viewpoint of easily forming the film, it is preferably spherical.
  • blasting As a method of providing irregularities on the surface of the protective layer 130, blasting, plasma irradiation, electron beam irradiation, chemical treatment, embossing, or the like can be used.
  • a protective layer composition is formed by applying a protective layer composition on a support substrate 140.
  • the protective layer composition can be prepared by adding appropriate amounts of particles 133, a solvent, and other compounding agents to the resin composition 132.
  • the particles 133 are not particularly limited, and known fine particles can be used. Examples of such particles include inorganic particles such as silica or alumina, or resin fine particles.
  • the average particle diameter of the particles 133 can be 1 ⁇ m or more, preferably 4 ⁇ m or more, and 20 ⁇ m or less, preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the blending amount of the particles 133 can be 1% by mass or more, preferably 5% by mass or more, and 30% by mass or less, preferably 20% by mass or less with respect to the total of the resin composition 132 and the particles 133.
  • the solvent can be, for example, toluene, acetone, methyl ethyl ketone, methanol, ethanol, propanol, dimethylformamide, and the like.
  • a crosslinking agent, a polymerization catalyst, a curing accelerator, a colorant, and the like can be added. Other compounding agents may be added if necessary, and may not be added.
  • the protective layer composition prepared above is applied to one side of the support substrate 140.
  • the method for applying the protective layer composition to one side of the support substrate 140 is not particularly limited, and known techniques such as lip coating, comma coating, gravure coating, and slot die coating can be employed.
  • the support substrate 140 can be formed into a film, for example.
  • the support substrate 140 is not particularly limited, and can be formed of, for example, a polyolefin-based material, a polyester-based material, a polyimide-based material, a polyphenylene sulfide-based material, or the like.
  • a release agent layer may be provided between the support substrate 140 and the protective layer composition.
  • the solvent is removed by heating and drying, whereby the protective layer 130 having an uneven shape on the surface is formed.
  • the support substrate 140 can be peeled from the protective layer 130.
  • the support substrate 140 can be peeled after the electromagnetic wave shielding film 100 is attached to the printed wiring board. In this way, the electromagnetic shielding film 100 can be protected by the support substrate 140.
  • an uneven shape may be formed on the surface of the protective layer after forming a protective layer having a flat surface using a support base having a flat surface.
  • the concavo-convex shape can be formed by blasting, dry etching by plasma irradiation or electron beam irradiation, wet etching by chemical treatment, embossing, or the like.
  • an uneven shape by spraying dry ice or the like on the surface of the support substrate.
  • an uneven shape can be imparted by pressing a mold having an uneven shape onto the surface of the support substrate.
  • a protective layer having a concavo-convex shape on the surface may be formed by applying and drying the composition for the protective layer on the surface of the support substrate having the concavo-convex shape on the surface.
  • a shield layer 110 having a convex portion 110a on the surface is formed.
  • the shield layer 110 having the convex portions 110a on the surface can be easily formed by forming a metal film having a thickness of about 0.1 ⁇ m to 10 ⁇ m on the surface of the protective layer 130 having an uneven shape.
  • the metal film can be formed by an electrolytic plating method, an electroless plating method, a sputtering method, an electron beam evaporation method, a vacuum evaporation method, a CVD method, a metal organic method, or the like.
  • the shield layer may be formed by coating a conductive paste containing conductive particles on the surface of the protective layer having irregularities. In this case, the coating layer can be baked as necessary.
  • the shield layer having irregularities can be formed by roughening the surface of the metal film.
  • corrugation can also be formed by processing a copper foil into an uneven
  • the composition for an adhesive layer includes a resin composition and a solvent.
  • the resin composition is not particularly limited, but a styrene resin composition, a vinyl acetate resin composition, a polyester resin composition, a polyethylene resin composition, a polypropylene resin composition, an imide resin composition, an amide resin.
  • Compositions, or thermoplastic resin compositions such as acrylic resin compositions, or phenolic resin compositions, epoxy resin compositions, urethane resin compositions, melamine resin compositions, alkyd resin compositions, etc. It can be set as a thermosetting resin composition or the like.
  • the solvent can be, for example, toluene, acetone, methyl ethyl ketone, methanol, ethanol, propanol, dimethylformamide, and the like.
  • the composition for the adhesive layer is cured accelerator, tackifier, antioxidant, pigment, dye, plasticizer, ultraviolet absorber, antifoaming agent, leveling agent, filler, flame retardant, and At least one of a viscosity modifier and the like may be included. What is necessary is just to set the ratio of the resin composition in the composition for adhesive bond layers suitably according to the thickness etc. of the adhesive bond layer 120.
  • an adhesive layer composition is applied on the shield layer 110.
  • the method for applying the adhesive layer composition on the shield layer 110 is not particularly limited, and lip coating, comma coating, gravure coating, slot die coating, or the like can be used.
  • the solvent is removed by heating and drying to form the adhesive layer 120.
  • the manufacturing method of the electromagnetic wave shielding film is not limited to the above method. For example, after preparing a first support base and a second support base, applying a protective layer composition on the surface of the first support base in the same manner as described above to form a protective layer, Further, a shield layer is formed. Further, the adhesive layer 120 is formed on the surface of the second support substrate by applying the adhesive layer composition in the same manner as described above. Subsequently, an electromagnetic wave shielding film can also be produced by bonding the shield layer formed on the first support substrate and the adhesive layer formed on the second support substrate while facing each other.
  • the electromagnetic wave shielding film 100 of the present embodiment can make the adhesive layer 120 insulative.
  • the adhesive layer 120 may be conductive, and in this case, a conductive filler can be added to the adhesive layer composition.
  • a conductive filler can be added to the adhesive layer composition.
  • the shield layer 110 is directly connected to the ground circuit, the shielding characteristics are improved as compared with the conventional electromagnetic wave shielding film.
  • the amount of the conductive filler can be reduced as compared with the conventional conductive adhesive layer, and the cost can be reduced. Furthermore, even if the diameter of the opening formed in the insulating layer covering the ground circuit is small, the connection between the ground circuit and the shield layer is good.
  • the electromagnetic wave shielding film 100 of this embodiment can be used for the following shield printed wiring boards.
  • the shield printed wiring board 300 includes a printed wiring board 200 and an electromagnetic wave shielding film 100.
  • the printed wiring board 200 covers the base layer 210, the printed circuit 220 including the signal circuit 220A and the ground circuit 220B formed on the base layer 210, and the base layer 210 so as to expose at least part of the ground circuit 220B. And an insulating layer 230.
  • the base layer 210 and the insulating layer 230 may be any material, but may be a resin film, for example. In this case, it can be formed of a resin such as polypropylene, cross-linked polyethylene, polyester, polybenzimidazole, polyimide, polyimide amide, polyether imide, or polyphenylene sulfide.
  • the printed circuit 220 may be a copper wiring pattern formed on the base layer 210, for example.
  • the electromagnetic wave shielding film 100 is bonded to the printed wiring board 200 with the adhesive layer 120 on the insulating layer 230 side.
  • a part of the projection 110 a of the shield layer 110 penetrates the adhesive layer 120 and is in contact with the ground circuit 220 ⁇ / b> B exposed from the insulating layer 230.
  • the shield layer 110 and the ground circuit 220 ⁇ / b> B can be electrically connected to exhibit excellent shielding characteristics.
  • the adhesive layer 120 does not include a conductive filler, there is no conductive filler between the ground circuit 220B and the shield layer 110, and thus there is no need to consider resistance due to the conductive filler.
  • the resistance value between the ground circuit 220B and the shield layer 110 is not significantly reduced, and thus excellent shield characteristics are exhibited. Furthermore, when the adhesive layer 120 does not contain a conductive filler, the adhesive layer 120 can be made thinner, and the thickness of the shield printed wiring board 300 can be made thinner than before.
  • the electromagnetic wave shielding film 100 is placed on the printed wiring board 200 and pressed while being heated by a press. A part of the adhesive layer 120 softened by heating flows into the opening of the insulating layer 230 by pressurization. Further, at least a part of the convex portion 110 a of the shield layer 110 penetrates the adhesive layer 120 by pressurization. Thereby, the shield layer 110 and the ground circuit 220B are connected. Since there is a sufficient amount of adhesive layer 120 between the shield layer 110 and the printed wiring board 200 in the concave portion of the shield layer 110, the electromagnetic wave shielding film 100 and the printed wiring board 200 have sufficient strength. Glued with.
  • a PET film having a thickness of 60 ⁇ m and a surface subjected to a release treatment was used as a supporting substrate.
  • a protective layer is formed by applying a composition for a protective layer (solid content 30% by mass) containing silica particles having a predetermined particle size, bisphenol A type epoxy resin and methyl ethyl ketone on a support substrate and drying by heating. did.
  • a shield layer was formed by depositing silver having a thickness of 0.5 ⁇ m on the surface of the protective layer.
  • an adhesive made of an epoxy resin was applied to the surface of the shield layer to form an adhesive layer having a predetermined thickness.
  • ⁇ Method for measuring thickness of adhesive layer The value obtained by subtracting the thickness of the laminate of the protective layer and the shield layer before forming the adhesive layer from the thickness of the electromagnetic wave shielding film after forming the adhesive layer was taken as the thickness of the adhesive layer. Each thickness was measured according to JIS C 2151 using a micrometer (MDH-25 manufactured by Mitutoyo Corporation).
  • the maximum peak height (Rp) of the shield layer surface was measured according to JIS B0651: 2001 using a confocal microscope manufactured by Lasertec.
  • An electromagnetic wave shielding film was temporarily attached to the surface of the printed wiring board (120 ° C., 0.5 MPa, 5 seconds), and then heated and pressurized (170 ° C., 3 MPa, 30 minutes) to form a shield printed wiring board.
  • the printed wiring board one having two copper foil patterns extending in parallel at an interval and an insulating layer made of polyimide having a thickness of 25 ⁇ m covering the copper foil pattern was used.
  • the insulating layer was provided with an opening for exposing each copper foil pattern. The diameter of the opening was 1 mm.
  • the connectivity between the copper foil pattern and the electromagnetic wave shielding film was evaluated by measuring the electrical resistance value between the two copper foil patterns with a resistance meter. When the electrical resistance is less than 0.4 ⁇ , the connectivity is considered good.
  • Example 1 Particles added to the protective layer composition were silica having a particle diameter of 4 ⁇ m (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-5SDC), and the silica content was 15% by mass with respect to the total of the resin composition and silica. .
  • the thickness of the obtained protective layer was 6 ⁇ m.
  • the maximum peak height on the shield layer surface was 4.5 ⁇ m.
  • the thickness of the adhesive layer was 3 ⁇ m.
  • the resistance value was 0.1 ⁇ .
  • Example 2 The particles added to the protective layer composition were silica having a particle size of 9 ⁇ m (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-12D), and the silica content was 5% by mass with respect to the total of the resin composition and silica. .
  • the thickness of the obtained protective layer was 7 ⁇ m.
  • the maximum peak height on the shield layer surface was 5.2 ⁇ m.
  • the thickness of the adhesive layer was 3 ⁇ m.
  • the resistance value was 0.2 ⁇ .
  • Example 3 The procedure was the same as Example 2 except that the thickness of the adhesive layer was 5 ⁇ m. The resistance value was 0.2 ⁇ .
  • Example 4 The particles added to the protective layer composition were silica having a particle size of 9 ⁇ m (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-12D), and the silica content was 15% by mass with respect to the total of the resin composition and silica. .
  • the thickness of the obtained protective layer was 11 ⁇ m.
  • the maximum peak height on the shield layer surface was 9.1 ⁇ m.
  • the thickness of the adhesive layer was 3 ⁇ m.
  • the resistance value was 0.1 ⁇ .
  • Example 5 The same operation as in Example 4 was conducted except that the thickness of the adhesive layer was changed to 5 ⁇ m. The resistance value was 0.1 ⁇ .
  • Example 6 The same operation as in Example 4 was conducted except that the thickness of the adhesive layer was 8 ⁇ m. The resistance value was 0.1 ⁇ .
  • Example 7 The particles added to the protective layer composition were silica having a particle diameter of 14 ⁇ m (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-940), and the silica content was 5% by mass with respect to the total of the resin composition and silica. .
  • the thickness of the protective layer obtained was 16 ⁇ m.
  • the maximum peak height on the shield layer surface was 8.7 ⁇ m.
  • the thickness of the adhesive layer was 3 ⁇ m.
  • the resistance value was 0.2 ⁇ .
  • Example 7 Example 7 was repeated except that the thickness of the adhesive layer was 5 ⁇ m. The resistance value was 0.2 ⁇ .
  • Example 9 The procedure was the same as Example 7 except that the thickness of the adhesive layer was 8 ⁇ m. The resistance value was 0.1 ⁇ .
  • Example 10 Particles added to the protective layer composition were silica having a particle size of 14 ⁇ m (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-940), and the content of silica was 15% by mass with respect to the total of the resin composition and silica. .
  • the thickness of the obtained protective layer was 20 ⁇ m.
  • the maximum peak height on the shield layer surface was 16.3 ⁇ m.
  • the thickness of the adhesive layer was 3 ⁇ m.
  • the resistance value was 0.1 ⁇ .
  • Example 11 Example 10 was repeated except that the thickness of the adhesive layer was 5 ⁇ m. The resistance value was 0.1 ⁇ .
  • Example 12 The procedure was the same as Example 10 except that the thickness of the adhesive layer was 8 ⁇ m. The resistance value was 0.1 ⁇ .
  • the particles added to the protective layer composition were silica having a particle size of 14 ⁇ m (FB-940, manufactured by Denki Kagaku Kogyo Co., Ltd.), and the silica content was 25% by mass with respect to the total of the resin composition and silica. did.
  • the thickness of the obtained protective layer was 20 ⁇ m.
  • the maximum peak height on the shield layer surface was 14.6 ⁇ m.
  • the thickness of the adhesive layer was 3 ⁇ m.
  • the resistance value was 0.2 ⁇ .
  • Example 14 Example 13 was repeated except that the thickness of the adhesive layer was 5 ⁇ m. The resistance value was 0.2 ⁇ .
  • Example 15 Example 13 was repeated except that the thickness of the adhesive layer was 8 ⁇ m. The resistance value was 0.2 ⁇ .
  • Particles added to the protective layer composition were silica having a particle size of 4 ⁇ m (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-5SDC), and the silica content was 5% by mass with respect to the total of the resin composition and silica. .
  • the thickness of the obtained protective layer was 5 ⁇ m.
  • the maximum peak height on the shield layer surface was 2.2 ⁇ m.
  • the thickness of the adhesive layer was 3 ⁇ m.
  • the resistance value was 0.6 ⁇ .
  • Comparative Example 2 Comparative Example 1 was performed except that the thickness of the adhesive layer was changed to 5 ⁇ m. The resistance value was 1.4 ⁇ .
  • Comparative Example 3 Comparative Example 1 was performed except that the thickness of the adhesive layer was 8 ⁇ m. The resistance value was 1.8 ⁇ .
  • Example 4 The procedure was the same as Example 1 except that the thickness of the adhesive layer was 5 ⁇ m. The resistance value was 0.5 ⁇ .
  • Example 5 The procedure was the same as Example 1 except that the thickness of the adhesive layer was 8 ⁇ m. The resistance value was 1.3 ⁇ .
  • Example 6 The procedure was the same as Example 2 except that the thickness of the adhesive layer was 8 ⁇ m. The resistance value was 0.5 ⁇ .
  • Table 1 summarizes each example and comparative example.
  • the present invention is not limited to the above-described embodiment, and can be applied with appropriate modifications within a range that does not change the gist of the present invention.
  • the electromagnetic shielding film of the present disclosure is useful as an electromagnetic shielding film used for a printed wiring board and the like because the high-frequency transmission efficiency is unlikely to decrease.
  • Electromagnetic wave shield film 110 Shield layer 110a Protrusion part 120 Adhesive layer 130 Protective layer 132 Resin composition 133 Particle 140 Support base material 200 Printed wiring board 210 Base layer 220 Printed circuit 220A Signal circuit 220B Ground circuit 230 Insulating layer 300 Shield printed wiring Board

Abstract

An electromagnetic wave shielding film is provided with an electroconductive shield layer 110 having protrusions and recesses, and an adhesive layer 120 for coating the protrusions and recesses. The maximum peak height of the protrusions and recesses is greater than the thickness of the adhesive layer 120.

Description

電磁波シールドフィルムElectromagnetic shielding film
 本開示は、電磁波シールドフィルム及びその製造方法、シールドプリント配線板に関する。 The present disclosure relates to an electromagnetic wave shielding film, a manufacturing method thereof, and a shield printed wiring board.
 近年、スマートフォンやタブレット型情報端末には、大容量のデータを高速に伝送する性能が求められている。大容量のデータを高速伝送するためには高周波信号を用いる必要がある。しかし、高周波信号を用いると、プリント配線板に設けられた信号回路から電磁波ノイズが発生し、周辺機器が誤動作しやすくなる。このような誤動作を防止するために、プリント配線板を電磁波からシールドすることが重要となる。 In recent years, smartphones and tablet-type information terminals are required to have a capability of transmitting a large amount of data at high speed. In order to transmit a large amount of data at high speed, it is necessary to use a high-frequency signal. However, when a high-frequency signal is used, electromagnetic noise is generated from the signal circuit provided on the printed wiring board, and peripheral devices are liable to malfunction. In order to prevent such a malfunction, it is important to shield the printed wiring board from electromagnetic waves.
 プリント配線板をシールドする方法として、シールド層と導電性接着剤層とを有する電磁波シールドフィルムを使用することが検討されている(例えば、特許文献1~3を参照。)。 As a method for shielding a printed wiring board, use of an electromagnetic wave shielding film having a shield layer and a conductive adhesive layer has been studied (see, for example, Patent Documents 1 to 3).
 これら電磁波シールドフィルムは、導電性接着剤層を、プリント配線板のグランド回路を被覆する絶縁層に設けられた開口部と重ねあわせて、加熱加圧し、開口部に導電性接着剤を充填する。これにより、シールド層とプリント配線板のグランド回路とが、導電性接着剤を介して接続され、プリント配線板がシールドされる。 In these electromagnetic wave shielding films, the conductive adhesive layer is overlapped with the opening provided in the insulating layer covering the ground circuit of the printed wiring board, heated and pressed, and the opening is filled with the conductive adhesive. Thereby, the shield layer and the ground circuit of the printed wiring board are connected via the conductive adhesive, and the printed wiring board is shielded.
特開2004-095566号公報JP 2004-095566 A WO2006/088127号パンフレットWO2006 / 088127 pamphlet WO2009/019963号パンフレットWO2009 / 019963 pamphlet
 しかしながら、導電性接着剤層に含まれる導電性粒子の導電率が低い場合には、シールド層とグランド回路との間の接続抵抗が増大し、シールド特性を低下させる要因になる。そのため、シールドフィルムの導電性接着剤層には、銀粉や銀コート銅粉等の導電率の高い導電性粒子が使用されているが、銀等を使用するため原材料コストが増加するという問題を有する。また、プリント配線板の実装密度が高まるにつれて、グランド回路を被覆する絶縁層に設けられた開口部の径も小さくなる傾向にある。開口部の径が小さくなると、導電性粒子が大量に含まれた導電性接着剤層が開口部に充填されにくくなるという問題も有する。 However, when the conductivity of the conductive particles contained in the conductive adhesive layer is low, the connection resistance between the shield layer and the ground circuit increases, which causes a decrease in shield characteristics. Therefore, conductive particles with high conductivity such as silver powder or silver-coated copper powder are used for the conductive adhesive layer of the shield film. However, since silver or the like is used, there is a problem that raw material costs increase. . Further, as the mounting density of the printed wiring board increases, the diameter of the opening provided in the insulating layer covering the ground circuit tends to decrease. When the diameter of the opening is reduced, there is also a problem that it is difficult to fill the opening with a conductive adhesive layer containing a large amount of conductive particles.
 また、スマートフォンやタブレット型情報端末には薄型化軽量化の要求が高まっており、電磁波シールドフィルムをさらに薄くすることが求められている。しかしながら、導電性接着剤層を有する場合には、電磁波シールドフィルムをさらに薄くすることが困難である。 In addition, there is an increasing demand for thinner and lighter smartphones and tablet-type information terminals, and it is required to make the electromagnetic shielding film thinner. However, when it has a conductive adhesive layer, it is difficult to make the electromagnetic wave shielding film thinner.
 本開示は、接着剤層に導電性粒子を使用しない場合であってもシールド特性が良好な電磁波シールドフィルム及びその製造方法並びにシールドプリント配線板を実現できるようにすることを目的とする。 This disclosure is intended to realize an electromagnetic wave shielding film having good shielding characteristics, a method for manufacturing the same, and a shield printed wiring board even when conductive particles are not used in the adhesive layer.
 本開示の電磁波シールドフィルムの一態様は、凹凸を有する導電性のシールド層と、凹凸を被覆する接着剤層とを備え、凹凸の最大山高さの値は、接着剤層の厚さよりも大きい。 An aspect of the electromagnetic wave shielding film of the present disclosure includes a conductive shield layer having unevenness and an adhesive layer that covers the unevenness, and the maximum peak height of the unevenness is larger than the thickness of the adhesive layer.
 電磁波シールドフィルムの一態様において、凹凸の最大山高さは、20μm以下としてもよい。 In one aspect of the electromagnetic wave shielding film, the maximum peak height of the unevenness may be 20 μm or less.
 電磁波シールドフィルムの一態様において、凹凸の最大山高さは、4μm以上としてもよい。 In one aspect of the electromagnetic wave shielding film, the maximum peak height of the unevenness may be 4 μm or more.
 電磁波シールドフィルムの一態様は、シールド層における接着剤層と反対側の面に保護層を備えていてもよい。 One aspect of the electromagnetic wave shielding film may include a protective layer on the surface of the shielding layer opposite to the adhesive layer.
 電磁波シールドフィルムの一態様において、保護層は、シールド層側の面の最大山高さの値が、接着剤層の厚さ以上、20μm以下であってもよい。 In one aspect of the electromagnetic wave shielding film, the protective layer may have a maximum peak height value on the surface on the shield layer side that is not less than the thickness of the adhesive layer and not more than 20 μm.
 電磁波シールドフィルムの一態様において保護層は、粒径が1μm以上、20μm以下の粒子を含有していてもよい。 In one embodiment of the electromagnetic wave shielding film, the protective layer may contain particles having a particle size of 1 μm or more and 20 μm or less.
 電磁波シールドフィルムの一態様において、接着剤層は絶縁性であってもよい。 In one embodiment of the electromagnetic wave shielding film, the adhesive layer may be insulative.
 電磁波シールドフィルムの製造方法の一態様は、保護層を準備する工程と、保護層の上に凹凸を有する導電性のシールド層を形成する工程と、シールド層の最大山高さの値よりも厚さが薄く、且つ、凹凸を被覆する接着剤層を形成する工程とを備えている。 One aspect of the method for producing an electromagnetic wave shielding film includes a step of preparing a protective layer, a step of forming a conductive shield layer having irregularities on the protective layer, and a thickness higher than the maximum peak height of the shield layer. And a step of forming an adhesive layer covering the unevenness.
 電磁波シールドフィルムの製造方法の一態様において、保護層を準備する工程は、最大山高さが4μm以上、20μm以下の凹凸を表面に有する保護層を形成する工程とすることができる。 In one embodiment of the method for producing an electromagnetic wave shielding film, the step of preparing the protective layer can be a step of forming a protective layer having irregularities having a maximum peak height of 4 μm or more and 20 μm or less on the surface.
 電磁波シールドフィルムの製造方法の一態様において、保護層を準備する工程は、支持基材の上に、樹脂組成物と粒子とを含む保護層用組成物を塗布して硬化させる工程であり、粒子の粒径は、1μm以上、20μm以下であってもよい。 In one embodiment of the method for producing an electromagnetic wave shielding film, the step of preparing a protective layer is a step of applying and curing a protective layer composition containing a resin composition and particles on a supporting substrate, and particles 1 μm or more and 20 μm or less may be used.
 電磁波シールドフィルムの製造方法の一態様において、保護層を準備する工程は、支持基材の上に樹脂層を形成する工程と、樹脂層に凹凸を形成する工程とを含んでいてもよい。 In one aspect of the method for producing an electromagnetic wave shielding film, the step of preparing the protective layer may include a step of forming a resin layer on the support substrate and a step of forming irregularities on the resin layer.
 電磁波シールドフィルムの製造方法の一態様において、凹凸を形成する工程は、樹脂層をエンボス加工処理する工程を含んでいてもよい。 In one aspect of the method for producing an electromagnetic wave shielding film, the step of forming the unevenness may include a step of embossing the resin layer.
 電磁波シールドフィルムの製造方法の一態様において、凹凸を形成する工程は、樹脂層をブラスト処理する工程を含んでいてもよい。 In one aspect of the method for producing an electromagnetic wave shielding film, the step of forming the unevenness may include a step of blasting the resin layer.
 電磁波シールドフィルムの製造方法の一態様において、保護層を準備する工程は、表面に凹凸を有する支持基材の上に樹脂層を形成する工程を含んでいてもよい。 In one aspect of the method for producing an electromagnetic wave shielding film, the step of preparing the protective layer may include a step of forming a resin layer on a support substrate having irregularities on the surface.
 電磁波シールドフィルムの製造方法の一態様において、接着剤層を形成する工程は、シールド層の上に、接着剤用組成物を塗布する工程であってもよい。 In one aspect of the method for producing an electromagnetic wave shielding film, the step of forming the adhesive layer may be a step of applying an adhesive composition on the shield layer.
 本開示のシールドプリント配線板は、本開示の電磁波シールドフィルムと、信号回路及びグランド回路が設けられたベース層と、グランド回路の少なくとも一部を露出する開口部が設けられた絶縁層とを有するプリント配線板とを備え、電磁波シールドフィルムと、プリント配線板とは、接着剤層と絶縁層とを対向させて接着され、シールド層の凸部は、接着剤層を突き抜けて、開口部から露出したグランド回路と接している。 A shield printed wiring board of the present disclosure includes the electromagnetic wave shielding film of the present disclosure, a base layer provided with a signal circuit and a ground circuit, and an insulating layer provided with an opening exposing at least a part of the ground circuit. The electromagnetic wave shielding film and the printed wiring board are bonded with the adhesive layer and the insulating layer facing each other, and the convex portion of the shielding layer penetrates the adhesive layer and is exposed from the opening. It is in contact with the ground circuit.
 本開示の電磁波シールドフィルムによれば、接着剤層に導電性粒子を使用しない場合であってもシールド特性が良好な電磁波シールドフィルムを提供することができる。 According to the electromagnetic wave shielding film of the present disclosure, it is possible to provide an electromagnetic wave shielding film with good shielding characteristics even when conductive particles are not used in the adhesive layer.
一実施形態に係る電磁波シールドフィルムを示す断面図である。It is sectional drawing which shows the electromagnetic wave shielding film which concerns on one Embodiment. (a)~(c)は、一実施形態に係る電磁波シールドフィルムの製造方法を工程順に示す断面図である。(A)-(c) is sectional drawing which shows the manufacturing method of the electromagnetic wave shielding film which concerns on one Embodiment to process order. 一実施形態に係るシールドプリント配線板を示す断面図である。It is sectional drawing which shows the shield printed wiring board concerning one Embodiment.
 (電磁波シールドフィルム)
 図1に示すように、一実施形態の電磁波シールドフィルム100は、凸部110a及び凹部110bからなる凹凸を有する導電性のシールド層110と、シールド層110の第1の面に接して設けられた接着剤層120とを備えている。シールド層110の凸部110aは、接着剤層120により被覆されている。シールド層110の凸部110aの少なくとも一部は、電磁波シールドフィルム100をプリント配線板に加圧して貼り付けた際に、接着剤層120を突き抜ける。
(Electromagnetic wave shielding film)
As shown in FIG. 1, the electromagnetic wave shielding film 100 according to one embodiment is provided in contact with a conductive shield layer 110 having projections and depressions 110 a and depressions 110 b and a first surface of the shield layer 110. And an adhesive layer 120. The convex portion 110 a of the shield layer 110 is covered with the adhesive layer 120. At least a part of the convex portion 110a of the shield layer 110 penetrates the adhesive layer 120 when the electromagnetic wave shielding film 100 is pressed and attached to the printed wiring board.
 このような構成とすることにより、電磁波シールドフィルム100をプリント配線板に加圧して貼り付けることにより、シールド層110の凸部110aの少なくとも一部とプリント配線板のグランド回路とを接続することができる。電磁波シールドフィルム100をプリント配線板に貼り付ける前には、シールド層110の凸部110aが接着剤層120から突出していないため、電磁波シールドフィルム100をプリント配線板に容易に仮貼りすることができる。また、接着剤層120とプリント配線板との間に気泡が発生することを抑えることもできる。さらに、プリント配線板に貼り付ける前には、シールド層110の凸部110aが接着剤層120に被覆されているため、凸部110aの表面は酸化されにくく、導電性が低下しにくい。 With such a configuration, it is possible to connect at least a part of the convex portion 110a of the shield layer 110 and the ground circuit of the printed wiring board by applying the electromagnetic wave shielding film 100 to the printed wiring board by applying pressure. it can. Before the electromagnetic wave shielding film 100 is attached to the printed wiring board, since the convex portion 110a of the shielding layer 110 does not protrude from the adhesive layer 120, the electromagnetic wave shielding film 100 can be easily temporarily attached to the printed wiring board. . It is also possible to suppress the generation of bubbles between the adhesive layer 120 and the printed wiring board. Further, since the convex portion 110a of the shield layer 110 is covered with the adhesive layer 120 before being attached to the printed wiring board, the surface of the convex portion 110a is hardly oxidized and the conductivity is not easily lowered.
 電磁波シールドフィルム100をプリント配線板に加圧して貼り付けた際に、シールド層110の凸部110aの少なくとも一部が接着剤層120を突き抜けるようにするには、シールド層の凹凸の最大山高さ(Rp)の値を接着剤層120の厚さ(t)よりも大きくすればよい。t<Rpとすることにより、凸部110aが接着剤層120を十分に突き抜け、凸部110aとグランド回路とを良好に接続することが可能となる。これによりシールドフィルムとグランド回路との間の抵抗値が小さくなり、良好なシールド性が得られる。 In order that at least a part of the convex portion 110a of the shield layer 110 penetrates the adhesive layer 120 when the electromagnetic wave shielding film 100 is pressed and applied to the printed wiring board, the maximum peak height of the unevenness of the shield layer The value of (Rp) may be larger than the thickness (t) of the adhesive layer 120. By setting t <Rp, the convex portion 110a can sufficiently penetrate the adhesive layer 120, and the convex portion 110a and the ground circuit can be satisfactorily connected. Thereby, the resistance value between a shield film and a ground circuit becomes small, and favorable shielding property is obtained.
 最大山高さ(Rp)の値は、接着剤層120の厚さ(t)よりも大きければよいが、4μm以上とすることが好ましい。Rpの値を4μm以上とすることにより、シールドフィルムをプリント配線板に加圧して貼り付けた際に、凸部110aが接着剤層120突き抜けやすくすることができる。これにより、電磁波シールドフィルム100とグランド回路との間の抵抗値を小さくし、良好なシールド特性を得ることができる。また、プリント配線板との良好な接着を行うために十分な厚さの接着剤層120を設けることが可能となる。 The value of the maximum peak height (Rp) may be larger than the thickness (t) of the adhesive layer 120, but is preferably 4 μm or more. By setting the value of Rp to 4 μm or more, the convex portion 110a can easily penetrate the adhesive layer 120 when the shield film is pressed and attached to the printed wiring board. Thereby, the resistance value between the electromagnetic wave shielding film 100 and the ground circuit can be reduced, and good shielding characteristics can be obtained. Further, it is possible to provide an adhesive layer 120 having a sufficient thickness for good adhesion to the printed wiring board.
 Rpは特に限定されないが、20μm以下であることが好ましい。Rpを20μm以下とすることにより、電磁波シールドフィルム100の厚さを薄くすることができる。また、接着剤層120の表面の平坦性を確保しやすくなり、電磁波シールドフィルム100をプリント配線板に加圧して貼り付けた際に、電磁波シールドフィルム100とプリント配線板との接着力が良好となる。なお、本発明における最大山高さ(Rp)の値は、実施例に示すJIS B0651:2001に準拠して測定した値である。 Rp is not particularly limited, but is preferably 20 μm or less. By setting Rp to 20 μm or less, the thickness of the electromagnetic wave shielding film 100 can be reduced. Moreover, it becomes easy to ensure the flatness of the surface of the adhesive layer 120, and when the electromagnetic wave shielding film 100 is pressed and attached to the printed wiring board, the adhesive force between the electromagnetic wave shielding film 100 and the printed wiring board is good. Become. In addition, the value of the maximum peak height (Rp) in the present invention is a value measured according to JIS B0651: 2001 shown in the examples.
 接着剤層120の厚さは、シールド層110の凸部110aを被覆できる限りにおいて、できるだけ薄くすることが好ましいが、好ましくは3μm以上、より好ましくは4μm以上、そして好ましくは10μm以下、より好ましくは7μm以下である。接着剤層120の厚みが3μm以上であると、シールド層110の凹凸のRpの値が大きい場合であっても、電磁波シールドフィルム100をプリント配線板に貼り付ける前に、シールド層110の凸部110aが接着剤層120から突出しないようにすることができる。このため、接着剤層120とプリント配線板との間に空気が混入することを抑えることができ、良好な接着力が得られる。また、10μm以下であると電磁波シールドフィルム100を薄くできるとともに、シールド層110の凸部110aを確実にプリント配線板のグランド回路と接続させることができる。 The thickness of the adhesive layer 120 is preferably as thin as possible as long as the projection 110a of the shield layer 110 can be covered, but is preferably 3 μm or more, more preferably 4 μm or more, and preferably 10 μm or less, more preferably 7 μm or less. When the thickness of the adhesive layer 120 is 3 μm or more, even if the Rp value of the unevenness of the shield layer 110 is large, before the electromagnetic wave shielding film 100 is attached to the printed wiring board, the convex portion of the shield layer 110 110a may not protrude from the adhesive layer 120. For this reason, it can suppress that air mixes between the adhesive bond layer 120 and a printed wiring board, and favorable adhesive force is obtained. In addition, when the thickness is 10 μm or less, the electromagnetic wave shielding film 100 can be thinned, and the convex portion 110a of the shield layer 110 can be reliably connected to the ground circuit of the printed wiring board.
 シールド層110の接着剤層120と反対側の第2の面には、必要に応じて保護層130を設けることができる。保護層130は絶縁性の樹脂材料等により形成することができる。保護層130を設ける場合には、保護層130のシールド層110側の面に凹凸を設けることにより、シールド層110の第1の面に容易に凸部110aを形成することができる。保護層130の表面に凹凸を設ける場合には、保護層130の表面のRpを接着剤層の厚さ以上、好ましくは4μm以上、そして20μm以下とすればよい。このような構成とすることにより、シールド層110の第1の面のRpを容易に4μm以上、20μm以下とすることができる。 A protective layer 130 can be provided on the second surface of the shield layer 110 opposite to the adhesive layer 120 as necessary. The protective layer 130 can be formed of an insulating resin material or the like. When the protective layer 130 is provided, the convex portion 110 a can be easily formed on the first surface of the shield layer 110 by providing irregularities on the surface of the protective layer 130 on the shield layer 110 side. When unevenness is provided on the surface of the protective layer 130, the Rp on the surface of the protective layer 130 may be equal to or greater than the thickness of the adhesive layer, preferably 4 μm to 20 μm. By setting it as such a structure, Rp of the 1st surface of the shield layer 110 can be easily 4 micrometers or more and 20 micrometers or less.
 <シールド層>
 シールド層110は、金属膜又は導電性粒子からなる導電膜等とすることができる。金属膜は、例えば、ニッケル、銅、銀、錫、金、パラジウム、アルミニウム、クロム、チタン若しくは亜鉛又はこれらのいずれか1つ以上を含む合金等により形成することができる。金属膜を形成する方法としては、例えば、圧延法、電解めっき法、無電解めっき法、スパッタリング法、電子ビーム蒸着法、真空蒸着法、CVD法、又はメタルオーガニック法等を用いることができる。
<Shield layer>
The shield layer 110 can be a metal film or a conductive film made of conductive particles. The metal film can be formed of, for example, nickel, copper, silver, tin, gold, palladium, aluminum, chromium, titanium, zinc, or an alloy containing any one or more of these. As a method for forming the metal film, for example, a rolling method, an electrolytic plating method, an electroless plating method, a sputtering method, an electron beam evaporation method, a vacuum evaporation method, a CVD method, a metal organic method, or the like can be used.
 導電性粒子は、例えば、カーボン、銀、銅、ニッケル、ハンダ、又は銅粉に銀めっきを施した銀コート銅粒子等とすることができる。また、樹脂ボール若しくはガラスビーズ等の絶縁性の粒子に金属めっきを施した粒子を用いることもできる。これらの導電性粒子は単独で用いることも、2つ以上を混合して用いることもできる。 The conductive particles can be, for example, carbon, silver, copper, nickel, solder, or silver-coated copper particles obtained by performing silver plating on copper powder. Alternatively, particles obtained by performing metal plating on insulating particles such as resin balls or glass beads can be used. These conductive particles can be used alone or in combination of two or more.
 導電性粒子の形状は、球状、針状、繊維状、フレーク状、又は樹枝状のいずれであってもよく、層状とする観点からはフレーク状が好ましい。 The shape of the conductive particles may be spherical, needle-like, fibrous, flaky, or dendritic, and is preferably flaky from the viewpoint of layering.
 導電性粒子の粒径は特に限定されないが、シールド層110を薄くする観点から、0.1μm以上、10μm以下とすることができる。 The particle diameter of the conductive particles is not particularly limited, but can be 0.1 μm or more and 10 μm or less from the viewpoint of thinning the shield layer 110.
 シールド層110の厚さは、求められる電磁波シールド特性及び繰り返し屈曲・摺動耐性に応じて適宜選択すればよいが、0.1μm以上、10μm以下程度の厚さとすることができる。 The thickness of the shield layer 110 may be appropriately selected according to the required electromagnetic shielding characteristics and repeated bending / sliding resistance, but may be about 0.1 μm or more and 10 μm or less.
 <接着剤層>
 接着剤層120は、絶縁性としても導電性としてもよい。小径の開口部への充填性の観点からは、接着剤層120を絶縁性とすることが好ましい。接着剤層120を金属粒子等の導電性フィラーを含まない層とすることにより、接着剤層120の厚さをより薄くすることが可能となるという利点も得られる。
<Adhesive layer>
The adhesive layer 120 may be insulative or conductive. From the viewpoint of filling into a small-diameter opening, it is preferable to make the adhesive layer 120 insulative. By making the adhesive layer 120 a layer that does not contain conductive fillers such as metal particles, there is also an advantage that the thickness of the adhesive layer 120 can be made thinner.
 接着剤層120は、特に限定されないが、スチレン系樹脂組成物、酢酸ビニル系樹脂組成物、ポリエステル系樹脂組成物、ポリエチレン系樹脂組成物、ポリプロピレン系樹脂組成物、イミド系樹脂組成物、アミド系樹脂組成物、若しくはアクリル系樹脂組成物等の熱可塑性樹脂組成物、又はフェノール系樹脂組成物、エポキシ系樹脂組成物、ウレタン系樹脂組成物、メラミン系樹脂組成物、若しくはアルキッド系樹脂組成物等の熱硬化性樹脂組成物等を用いることができる。これらは単独で用いてもよく、2種以上を併用してもよい。 The adhesive layer 120 is not particularly limited, but a styrene resin composition, a vinyl acetate resin composition, a polyester resin composition, a polyethylene resin composition, a polypropylene resin composition, an imide resin composition, an amide resin. Thermoplastic resin compositions such as resin compositions or acrylic resin compositions, or phenolic resin compositions, epoxy resin compositions, urethane resin compositions, melamine resin compositions, alkyd resin compositions, etc. A thermosetting resin composition or the like can be used. These may be used alone or in combination of two or more.
 接着剤層120には、必要に応じて、硬化促進剤、粘着性付与剤、酸化防止剤、顔料、染料、可塑剤、紫外線吸収剤、消泡剤、レベリング剤、充填剤、難燃剤、及び粘度調節剤等の少なくとも1つが含まれていてもよい。 In the adhesive layer 120, a curing accelerator, tackifier, antioxidant, pigment, dye, plasticizer, ultraviolet absorber, antifoaming agent, leveling agent, filler, flame retardant, and At least one of a viscosity modifier and the like may be included.
 接着剤層120の厚さは、特に限定されず、必要に応じて適宜設定することができるが、3μm以上、好ましくは4μm以上、10μm以下、好ましくは7μm以下とすることができる。接着剤層120の厚さを3μm以上とすることにより、電磁波シールドフィルム100をプリント配線板に貼り付ける前に、シールド層110の凸部110aが接着剤層120から突出しないようにすることができ、プリント配線板との間に空気が混入することを抑えることができる。また、接着剤層120の厚さを10μm以下とすることにより、シールドフィルムを薄くできるとともにシールド層の凸部を確実にプリント配線板のグランド回路と接続させることができる。 The thickness of the adhesive layer 120 is not particularly limited and may be appropriately set as necessary, but may be 3 μm or more, preferably 4 μm or more, 10 μm or less, preferably 7 μm or less. By setting the thickness of the adhesive layer 120 to 3 μm or more, it is possible to prevent the protrusion 110a of the shield layer 110 from protruding from the adhesive layer 120 before the electromagnetic wave shielding film 100 is attached to the printed wiring board. The air can be prevented from being mixed with the printed wiring board. Further, by setting the thickness of the adhesive layer 120 to 10 μm or less, the shield film can be thinned and the convex portion of the shield layer can be reliably connected to the ground circuit of the printed wiring board.
 <保護層>
 本実施形態の電磁波シールドフィルムは、保護層130を有していてもよい。保護層130は、シールド層110を保護できる所定の機械的強度、耐薬品性及び耐熱性等を満たしていればよい。保護層130は、充分な絶縁性を有し、接着剤層120及びシールド層110を保護できれば特に限定されないが、例えば、熱可塑性樹脂組成物、熱硬化性樹脂組成物、又は活性エネルギー線硬化性組成物等を用いることができる。
<Protective layer>
The electromagnetic wave shielding film of this embodiment may have a protective layer 130. The protective layer 130 only needs to satisfy predetermined mechanical strength, chemical resistance, heat resistance, and the like that can protect the shield layer 110. The protective layer 130 is not particularly limited as long as it has sufficient insulating properties and can protect the adhesive layer 120 and the shield layer 110. For example, the protective layer 130 is a thermoplastic resin composition, a thermosetting resin composition, or an active energy ray curable. A composition or the like can be used.
 熱可塑性樹脂組成物としては、特に限定されないが、スチレン系樹脂組成物、酢酸ビニル系樹脂組成物、ポリエステル系樹脂組成物、ポリエチレン系樹脂組成物、ポリプロピレン系樹脂組成物、イミド系樹脂組成物、又はアクリル系樹脂組成物等を用いることができる。熱硬化性樹脂組成物としては、特に限定されないが、フェノール系樹脂組成物、エポキシ系樹脂組成物、ウレタン系樹脂組成物、メラミン系樹脂組成物、又はアルキッド系樹脂組成物等を用いることができる。活性エネルギー線硬化性組成物としては、特に限定されないが、例えば、分子中に少なくとも2個の(メタ)アクリロイルオキシ基を有する重合性化合物等を用いることができる。保護層130は、単独の材料により形成されていても、2種以上の材料から形成されていてもよい。 The thermoplastic resin composition is not particularly limited, but a styrene resin composition, a vinyl acetate resin composition, a polyester resin composition, a polyethylene resin composition, a polypropylene resin composition, an imide resin composition, Alternatively, an acrylic resin composition or the like can be used. Although it does not specifically limit as a thermosetting resin composition, A phenol-type resin composition, an epoxy-type resin composition, a urethane-type resin composition, a melamine-type resin composition, or an alkyd-type resin composition etc. can be used. . Although it does not specifically limit as an active energy ray curable composition, For example, the polymeric compound etc. which have at least 2 (meth) acryloyloxy group in a molecule | numerator can be used. The protective layer 130 may be formed of a single material or may be formed of two or more kinds of materials.
 保護層130には、必要に応じて、硬化促進剤、粘着性付与剤、酸化防止剤、顔料、染料、可塑剤、紫外線吸収剤、消泡剤、レベリング剤、充填剤、難燃剤、粘度調節剤、及びブロッキング防止剤等の少なくとも1つが含まれていてもよい。 For the protective layer 130, a curing accelerator, a tackifier, an antioxidant, a pigment, a dye, a plasticizer, an ultraviolet absorber, an antifoaming agent, a leveling agent, a filler, a flame retardant, and a viscosity adjuster as necessary. At least one of an agent, an anti-blocking agent and the like may be included.
 保護層130は、材質又は硬度若しくは弾性率等の物性が異なる2層以上の積層体であってもよい。例えば、硬度が低い外層と、硬度が高い内層との積層体とすれば、外層がクッション効果を有するため、電磁波シールドフィルム100をプリント配線板に加熱加圧する工程においてシールド層110に加わる圧力を緩和できる。このため、プリント配線板に設けられた段差によってシールド層110が破壊されることを抑えることができる。 The protective layer 130 may be a laminate of two or more layers having different materials, physical properties such as hardness or elastic modulus. For example, if a laminate of an outer layer having a low hardness and an inner layer having a high hardness is used, the outer layer has a cushioning effect, so that the pressure applied to the shield layer 110 is reduced in the process of heating and pressing the electromagnetic wave shielding film 100 to the printed wiring board. it can. For this reason, it can suppress that the shield layer 110 is destroyed by the level | step difference provided in the printed wiring board.
 保護層130の厚さは、特に限定されず、必要に応じて適宜設定することができるが、1μm以上、好ましくは4μm以上、そして20μm以下、好ましくは10μm以下、より好ましくは5μm以下とすることができる。保護層130の厚さを1μm以上とすることにより接着剤層120及びシールド層110を充分に保護することができる。保護層130の厚さを20μm以下とすることにより、電磁波シールドフィルム100の屈曲性を確保することができ、屈曲性が要求される部材へ電磁波シールドフィルム100を適用することが容易となる。 The thickness of the protective layer 130 is not particularly limited and can be appropriately set as necessary. However, the thickness is 1 μm or more, preferably 4 μm or more, and 20 μm or less, preferably 10 μm or less, more preferably 5 μm or less. Can do. By setting the thickness of the protective layer 130 to 1 μm or more, the adhesive layer 120 and the shield layer 110 can be sufficiently protected. By setting the thickness of the protective layer 130 to 20 μm or less, the flexibility of the electromagnetic wave shielding film 100 can be ensured, and it becomes easy to apply the electromagnetic wave shielding film 100 to a member that requires flexibility.
 保護層130のシールド層110側の表面に凹凸を設けることにより、シールド層110の表面に容易に凸部110aを形成することができる。この場合、保護層130のシールド層110側の表面のRpは、接着剤層の厚さ以上、好ましくは4μm以上、そして20μm以下とすることが好ましい。 By providing irregularities on the surface of the protective layer 130 on the shield layer 110 side, the convex portions 110 a can be easily formed on the surface of the shield layer 110. In this case, Rp on the surface of the protective layer 130 on the shield layer 110 side is preferably not less than the thickness of the adhesive layer, preferably not less than 4 μm and not more than 20 μm.
 保護層130の表面に凹凸を設ける場合には、保護層130を、粒子を含む層とすることができる。粒子を添加することにより保護層130の表面に凹凸を容易に形成することができる。 When unevenness is provided on the surface of the protective layer 130, the protective layer 130 can be a layer containing particles. Unevenness can be easily formed on the surface of the protective layer 130 by adding particles.
 保護層130に添加する粒子は特に限定されず、公知の粒子を用いることができる。例えば、シリカ若しくはアルミナ等の無機粒子、又は樹脂粒子等を用いることができる。 The particles added to the protective layer 130 are not particularly limited, and known particles can be used. For example, inorganic particles such as silica or alumina, or resin particles can be used.
 保護層130に添加する粒子の平均粒径は、表面に形成する凹凸の大きさに応じて決定することができるが、1μm以上、好ましくは4μm以上、そして20μm以下、好ましくは15μm以下、より好ましくは10μm以下とすることができる。粒子の平均粒径を1μm以上とすることにより、保護層130の表面の凹凸を大きくし、加熱加圧工程においてシールド層110が接着剤層120を容易に突き抜けるようにできる。粒子の平均粒径を20μm以下とすることにより、保護層130の厚みを薄くできるという利点が得られる。 The average particle diameter of the particles added to the protective layer 130 can be determined according to the size of the irregularities formed on the surface, but is 1 μm or more, preferably 4 μm or more, and 20 μm or less, preferably 15 μm or less, more preferably Can be 10 μm or less. By setting the average particle diameter of the particles to 1 μm or more, unevenness on the surface of the protective layer 130 can be increased, and the shield layer 110 can easily penetrate the adhesive layer 120 in the heating and pressing step. By setting the average particle size of the particles to 20 μm or less, there is an advantage that the thickness of the protective layer 130 can be reduced.
 保護層130に添加する微粒子の量は、保護層130の厚さ、表面に形成する凹凸の大きさ等に応じて決定することができるが、保護層130を形成する樹脂組成物と微粒子との合計に対して1質量%以上、好ましくは5質量%以上、そして30質量%以下、好ましくは20質量%以下とすることができる。微粒子を1質量%以上とすることにより、保護層130の表面に十分な数の凸部を形成することができる。微粒子を30質量%以下とすることにより、凸部同士が連なって凹凸がなだらかになることを抑えることができる。 The amount of the fine particles added to the protective layer 130 can be determined according to the thickness of the protective layer 130, the size of the irregularities formed on the surface, etc., but the resin composition forming the protective layer 130 and the fine particles The total content can be 1% by mass or more, preferably 5% by mass or more, and 30% by mass or less, preferably 20% by mass or less. By setting the fine particles to 1% by mass or more, a sufficient number of convex portions can be formed on the surface of the protective layer 130. By setting the fine particles to 30% by mass or less, it is possible to prevent the convex portions from being connected to each other so that the irregularities become gentle.
 保護層130に添加する微粒子の形状は特に限定されず、球状、針状、繊維状、フレーク状、及び樹枝状のいずれであってもよいが、保護層130の表面に凹凸を有するシールド層110を容易に形成する観点からは、球状であることが好ましい。 The shape of the fine particles added to the protective layer 130 is not particularly limited, and may be any of a spherical shape, a needle shape, a fiber shape, a flake shape, and a dendritic shape, but the shield layer 110 having irregularities on the surface of the protective layer 130. From the viewpoint of easily forming the film, it is preferably spherical.
 保護層130の表面に凹凸を設ける方法として、ブラスト加工、プラズマ照射、電子線照射、薬剤処理又はエンボス加工等を用いることもできる。 As a method of providing irregularities on the surface of the protective layer 130, blasting, plasma irradiation, electron beam irradiation, chemical treatment, embossing, or the like can be used.
 (電磁波シールドフィルムの製造方法)
 以下に、電磁波シールドフィルム100の製造方法の一例について説明する。本実施形態の電磁波シールドフィルム100の製造方法は以下の方法に限定されない。
(Method for producing electromagnetic shielding film)
Below, an example of the manufacturing method of the electromagnetic wave shielding film 100 is demonstrated. The manufacturing method of the electromagnetic wave shielding film 100 of this embodiment is not limited to the following method.
 <保護層の形成>
 まず、図2(a)に示すように、支持基材140の上に保護層用組成物を塗布して保護層130を形成する。保護層用組成物は、樹脂組成物132に粒子133、溶剤及びその他の配合剤を適量加えて調製することができる。粒子133は、特に限定されず、公知の微粒子を用いることができる。このような粒子としては、例えば、シリカ若しくはアルミナ等の無機粒子、又は樹脂微粒子等とすることができる。粒子133の平均粒径は、1μm以上、好ましくは4μm以上、そして20μm以下、好ましくは15μm以下、より好ましくは10μm以下とすることができる。粒子133の配合量は、樹脂組成物132と粒子133との合計に対して1質量%以上、好ましくは5質量%以上、そして30質量%以下、好ましくは20質量%以下とすることができる。溶剤は、例えば、トルエン、アセトン、メチルエチルケトン、メタノール、エタノール、プロパノール及びジメチルホルムアミド等とすることができる。その他の配合剤としては、架橋剤や重合用触媒、硬化促進
剤、及び着色剤等を加えることができる。その他の配合剤は必要に応じて加えればよく、加えなくてもよい。
<Formation of protective layer>
First, as shown in FIG. 2A, a protective layer composition is formed by applying a protective layer composition on a support substrate 140. The protective layer composition can be prepared by adding appropriate amounts of particles 133, a solvent, and other compounding agents to the resin composition 132. The particles 133 are not particularly limited, and known fine particles can be used. Examples of such particles include inorganic particles such as silica or alumina, or resin fine particles. The average particle diameter of the particles 133 can be 1 μm or more, preferably 4 μm or more, and 20 μm or less, preferably 15 μm or less, more preferably 10 μm or less. The blending amount of the particles 133 can be 1% by mass or more, preferably 5% by mass or more, and 30% by mass or less, preferably 20% by mass or less with respect to the total of the resin composition 132 and the particles 133. The solvent can be, for example, toluene, acetone, methyl ethyl ketone, methanol, ethanol, propanol, dimethylformamide, and the like. As other compounding agents, a crosslinking agent, a polymerization catalyst, a curing accelerator, a colorant, and the like can be added. Other compounding agents may be added if necessary, and may not be added.
 次に、支持基材140の片面に、上記で調製した保護層用組成物を塗布する。支持基材140の片面に保護層用組成物を塗布する方法としては、特に限定されず、リップコーティング、コンマコーティング、グラビアコーティング、スロットダイコーティング等、公知の技術を採用することができる。 Next, the protective layer composition prepared above is applied to one side of the support substrate 140. The method for applying the protective layer composition to one side of the support substrate 140 is not particularly limited, and known techniques such as lip coating, comma coating, gravure coating, and slot die coating can be employed.
 支持基材140は例えばフィルム状とすることができる。支持基材140は、特に限定されず、例えばポリオレフィン系、ポリエステル系、ポリイミド系、ポリフェニレンサルファイド系等の材料により形成することができる。
支持基材140と保護層用組成物との間に、離型剤層を設けてもよい。
The support substrate 140 can be formed into a film, for example. The support substrate 140 is not particularly limited, and can be formed of, for example, a polyolefin-based material, a polyester-based material, a polyimide-based material, a polyphenylene sulfide-based material, or the like.
A release agent layer may be provided between the support substrate 140 and the protective layer composition.
 支持基材140に保護層用組成物を塗布した後、加熱乾燥して溶剤を除去することにより、表面に凹凸形状を有する保護層130が形成される。支持基材140は、保護層130から剥離することができる。支持基材140の剥離は、電磁波シールドフィルム100をプリント配線板に貼り付けた後に行うことができる。このようにすれば、支持基材140により電磁波シールドフィルム100を保護することができる。 After the protective layer composition is applied to the support substrate 140, the solvent is removed by heating and drying, whereby the protective layer 130 having an uneven shape on the surface is formed. The support substrate 140 can be peeled from the protective layer 130. The support substrate 140 can be peeled after the electromagnetic wave shielding film 100 is attached to the printed wiring board. In this way, the electromagnetic shielding film 100 can be protected by the support substrate 140.
 以上の方法に代えて、表面が平坦な形状の支持基材を用いて、表面が平坦な保護層を形成した後、保護層の表面に凹凸形状を形成してもよい。凹凸形状は、ブラスト処理、プラズマ照射若しくは電子線照射等によるドライエッチング処理、薬剤処理等によるウエットエッチング処理又はエンボス加工等により行うことができる。 Instead of the above method, an uneven shape may be formed on the surface of the protective layer after forming a protective layer having a flat surface using a support base having a flat surface. The concavo-convex shape can be formed by blasting, dry etching by plasma irradiation or electron beam irradiation, wet etching by chemical treatment, embossing, or the like.
 例えば、ブラスト処理では、支持基材の表面にドライアイス等を吹き付けて凹凸形状を付与することができる。エンボス加工では、支持基材の表面に、凹凸形状を有する鋳型を押し付けて凹凸形状を付与することができる。 For example, in the blast treatment, it is possible to impart an uneven shape by spraying dry ice or the like on the surface of the support substrate. In the embossing, an uneven shape can be imparted by pressing a mold having an uneven shape onto the surface of the support substrate.
 また、以上の方法に代えて、表面に凹凸形状を有する支持基材の表面に保護層用組成物を塗布、乾燥することで、表面に凹凸形状を有する保護層を形成してもよい。 Further, instead of the above method, a protective layer having a concavo-convex shape on the surface may be formed by applying and drying the composition for the protective layer on the surface of the support substrate having the concavo-convex shape on the surface.
 <シールド層の形成>
 次に、図2(b)に示すように、表面に凸部110aを有するシールド層110を形成する。表面に凸部110aを有するシールド層110は、凹凸形状を有する保護層130の表面に、厚さが0.1μm~10μm程度の金属膜を形成することにより容易に形成できる。金属膜の形成は、電解めっき法、無電解めっき法、スパッタリング法、電子ビーム蒸着法、真空蒸着法、CVD法、又はメタルオーガニック法等により行うことができる。
<Formation of shield layer>
Next, as shown in FIG. 2B, a shield layer 110 having a convex portion 110a on the surface is formed. The shield layer 110 having the convex portions 110a on the surface can be easily formed by forming a metal film having a thickness of about 0.1 μm to 10 μm on the surface of the protective layer 130 having an uneven shape. The metal film can be formed by an electrolytic plating method, an electroless plating method, a sputtering method, an electron beam evaporation method, a vacuum evaporation method, a CVD method, a metal organic method, or the like.
 なお、電解めっき法や無電解めっき法により金属膜を形成した場合には、金属膜の表面に、樹枝状の微小な凹凸を形成することができる。このため、シールド層110とプリント配線板のグランド回路との接続をより確実にすることができる。 In addition, when a metal film is formed by an electrolytic plating method or an electroless plating method, dendritic minute irregularities can be formed on the surface of the metal film. For this reason, the connection between the shield layer 110 and the ground circuit of the printed wiring board can be made more reliable.
 シールド層は、導電性粒子を含む導電性ペーストを、凹凸を有する保護層の表面にコーティングすることにより形成してもよい。この場合、必要に応じて、コーティング層の焼成等を行うことができる。 The shield layer may be formed by coating a conductive paste containing conductive particles on the surface of the protective layer having irregularities. In this case, the coating layer can be baked as necessary.
 平坦な保護層の上に、金属膜を形成した後、金属膜の表面を荒らすことにより、凹凸を有するシールド層を形成することもできる。また、エンボス加工により銅箔を凹凸形状に加工することにより、凹凸を有するシールド層を形成することもできる。この場合、保護層がない電磁波シールドフィルムを形成することも可能である。 After forming a metal film on the flat protective layer, the shield layer having irregularities can be formed by roughening the surface of the metal film. Moreover, the shield layer which has an unevenness | corrugation can also be formed by processing a copper foil into an uneven | corrugated shape by embossing. In this case, it is also possible to form an electromagnetic wave shielding film without a protective layer.
 <接着剤層の形成>
 次に、図2(c)に示すように、シールド層110の上に接着剤層用組成物を塗布して、接着剤層120を形成する。接着剤層用組成物は、樹脂組成物と溶剤とを含む。樹脂組成物は、特に限定されないが、スチレン系樹脂組成物、酢酸ビニル系樹脂組成物、ポリエステル系樹脂組成物、ポリエチレン系樹脂組成物、ポリプロピレン系樹脂組成物、イミド系樹脂組成物、アミド系樹脂組成物、若しくはアクリル系樹脂組成物等の熱可塑性樹脂組成物、又はフェノール系樹脂組成物、エポキシ系樹脂組成物、ウレタン系樹脂組成物、メラミン系樹脂組成物、若しくはアルキッド系樹脂組成物等の熱硬化性樹脂組成物等とすることができる。これらは単独で用いてもよく、2種以上を併用してもよい。溶剤は、例えば、トルエン、アセトン、メチルエチルケトン、メタノール、エタノール、プロパノール及びジメチルホルムアミド等とすることができる。必要に応じて、接着剤層用組成物に硬化促進剤、粘着性付与剤、酸化防止剤、顔料、染料、可塑剤、紫外線吸収剤、消泡剤、レベリング剤、充填剤、難燃剤、及び粘度調節剤等の少なくとも1つが含まれていてもよい。接着剤層用組成物中における樹脂組成物の比率は、接着剤層120の厚さ等に応じて適宜設定すればよい。
<Formation of adhesive layer>
Next, as shown in FIG. 2C, the adhesive layer composition is applied on the shield layer 110 to form the adhesive layer 120. The composition for an adhesive layer includes a resin composition and a solvent. The resin composition is not particularly limited, but a styrene resin composition, a vinyl acetate resin composition, a polyester resin composition, a polyethylene resin composition, a polypropylene resin composition, an imide resin composition, an amide resin. Compositions, or thermoplastic resin compositions such as acrylic resin compositions, or phenolic resin compositions, epoxy resin compositions, urethane resin compositions, melamine resin compositions, alkyd resin compositions, etc. It can be set as a thermosetting resin composition or the like. These may be used alone or in combination of two or more. The solvent can be, for example, toluene, acetone, methyl ethyl ketone, methanol, ethanol, propanol, dimethylformamide, and the like. If necessary, the composition for the adhesive layer is cured accelerator, tackifier, antioxidant, pigment, dye, plasticizer, ultraviolet absorber, antifoaming agent, leveling agent, filler, flame retardant, and At least one of a viscosity modifier and the like may be included. What is necessary is just to set the ratio of the resin composition in the composition for adhesive bond layers suitably according to the thickness etc. of the adhesive bond layer 120. FIG.
 次に、シールド層110の上に、接着剤層用組成物を塗布する。シールド層110の上に接着剤層用組成物を塗布する方法としては、特に限定されず、リップコーティング、コンマコーティング、グラビアコーティング、又はスロットダイコーティング等を用いることができる。 Next, an adhesive layer composition is applied on the shield layer 110. The method for applying the adhesive layer composition on the shield layer 110 is not particularly limited, and lip coating, comma coating, gravure coating, slot die coating, or the like can be used.
 シールド層110の上に接着剤層用組成物を塗布した後、加熱乾燥して溶剤を除去し、接着剤層120を形成する。なお、必要に応じて、接着剤層120の表面に離型フィルムを貼りあわせてもよい。 After applying the adhesive layer composition on the shield layer 110, the solvent is removed by heating and drying to form the adhesive layer 120. In addition, you may stick a release film on the surface of the adhesive bond layer 120 as needed.
 電磁波シールドフィルムの製造方法は上述の方法に限られない。例えば、第一支持基材と第二支持基材とを準備し、第一支持基材の表面に、上述の方法と同様にして保護層用組成物を塗布して保護層を形成した後、さらにシールド層を形成する。また、第二支持基材の表面に、上述の方法と同様にして接着剤層用組成物を塗布して接着剤層120を形成する。次いで、第一支持基材上に形成されたシールド層と第二支持基材上に形成された接着剤層とを対向させつつ貼り合わせることで、電磁波シールドフィルムを作製することもできる。 The manufacturing method of the electromagnetic wave shielding film is not limited to the above method. For example, after preparing a first support base and a second support base, applying a protective layer composition on the surface of the first support base in the same manner as described above to form a protective layer, Further, a shield layer is formed. Further, the adhesive layer 120 is formed on the surface of the second support substrate by applying the adhesive layer composition in the same manner as described above. Subsequently, an electromagnetic wave shielding film can also be produced by bonding the shield layer formed on the first support substrate and the adhesive layer formed on the second support substrate while facing each other.
 本実施形態の電磁波シールドフィルム100は、接着剤層120を絶縁性とすることができる。この場合には、接着剤層用組成物に導電性フィラーを加えなくてよい。但し、接着剤層120は導電性であってもよく、この場合には接着剤層用組成物に導電性フィラーを加えることができる。導電性フィラーを加える場合においても、シールド層110がグランド回路と直接接続されるため、従来の電磁波シールドフィルムと比べてシールド特性が良好になる。また、従来の導電性接着剤層よりも導電性フィラーの量を低減することができ、コストを低減することもできる。さらに、グランド回路を被覆する絶縁層に形成された開口部の径が小さくても、グランド回路とシールド層との接続が良好になる。 The electromagnetic wave shielding film 100 of the present embodiment can make the adhesive layer 120 insulative. In this case, it is not necessary to add a conductive filler to the adhesive layer composition. However, the adhesive layer 120 may be conductive, and in this case, a conductive filler can be added to the adhesive layer composition. Even when a conductive filler is added, since the shield layer 110 is directly connected to the ground circuit, the shielding characteristics are improved as compared with the conventional electromagnetic wave shielding film. Further, the amount of the conductive filler can be reduced as compared with the conventional conductive adhesive layer, and the cost can be reduced. Furthermore, even if the diameter of the opening formed in the insulating layer covering the ground circuit is small, the connection between the ground circuit and the shield layer is good.
 (シールドプリント配線板)
 本実施形態の電磁波シールドフィルム100は、以下のようなシールドプリント配線板に用いることができる。図3に示すように、シールドプリント配線板300は、プリント配線板200と、電磁波シールドフィルム100とを有している。
(Shield printed wiring board)
The electromagnetic wave shielding film 100 of this embodiment can be used for the following shield printed wiring boards. As shown in FIG. 3, the shield printed wiring board 300 includes a printed wiring board 200 and an electromagnetic wave shielding film 100.
 プリント配線板200は、ベース層210と、ベース層210上に形成された信号回路220A及びグランド回路220Bを含むプリント回路220と、グランド回路220Bの少なくとも一部を露出するようにベース層210を覆う絶縁層230とを有している。 The printed wiring board 200 covers the base layer 210, the printed circuit 220 including the signal circuit 220A and the ground circuit 220B formed on the base layer 210, and the base layer 210 so as to expose at least part of the ground circuit 220B. And an insulating layer 230.
 ベース層210及び絶縁層230は、どのようなものであってもよいが、例えば樹脂フィルム等とすることができる。この場合、ポリプロピレン、架橋ポリエチレン、ポリエステル、ポリベンゾイミダゾール、ポリイミド、ポリイミドアミド、ポリエーテルイミド、又はポリフェニレンサルファイド等の樹脂により形成することができる。プリント回路220は、例えばベース層210の上に形成された銅配線パターン等とすることができる。 The base layer 210 and the insulating layer 230 may be any material, but may be a resin film, for example. In this case, it can be formed of a resin such as polypropylene, cross-linked polyethylene, polyester, polybenzimidazole, polyimide, polyimide amide, polyether imide, or polyphenylene sulfide. The printed circuit 220 may be a copper wiring pattern formed on the base layer 210, for example.
 電磁波シールドフィルム100は、接着剤層120を絶縁層230側にしてプリント配線板200と接着されている。シールド層110の凸部110aの一部は、接着剤層120を突き抜け、絶縁層230から露出したグランド回路220Bと接している。このため、接着剤層120が導電性フィラーを含んでいなくても、シールド層110とグランド回路220Bとを導通させ、優れたシールド特性を発揮させることができる。接着剤層120に導電性フィラーが含まれていない場合には、グランド回路220Bとシールド層110との間に導電性フィラーが存在しないため、導電性フィラーによる抵抗を考慮する必要がない。したがって、グランド回路220Bとシールド層110との間の抵抗値が大幅に低下しないため、良好なシールド特性を示す。さらに、接着剤層120が導電性フィラーを含まない場合には、接着剤層120を薄くすることができ、シールドプリント配線板300の厚さを従来よりも薄くすることができる。 The electromagnetic wave shielding film 100 is bonded to the printed wiring board 200 with the adhesive layer 120 on the insulating layer 230 side. A part of the projection 110 a of the shield layer 110 penetrates the adhesive layer 120 and is in contact with the ground circuit 220 </ b> B exposed from the insulating layer 230. For this reason, even if the adhesive layer 120 does not contain a conductive filler, the shield layer 110 and the ground circuit 220 </ b> B can be electrically connected to exhibit excellent shielding characteristics. When the adhesive layer 120 does not include a conductive filler, there is no conductive filler between the ground circuit 220B and the shield layer 110, and thus there is no need to consider resistance due to the conductive filler. Accordingly, the resistance value between the ground circuit 220B and the shield layer 110 is not significantly reduced, and thus excellent shield characteristics are exhibited. Furthermore, when the adhesive layer 120 does not contain a conductive filler, the adhesive layer 120 can be made thinner, and the thickness of the shield printed wiring board 300 can be made thinner than before.
 次に、シールドプリント配線板300の製造方法について説明する。プリント配線板200の上に、電磁波シールドフィルム100を載置し、プレス機で加熱しつつ加圧する。加熱により柔らかくなった接着剤層120の一部は加圧により絶縁層230の開口部に流れ込む。また、加圧により、シールド層110の凸部110aの少なくとも一部が、接着剤層120を突き抜ける。これにより、シールド層110とグランド回路220Bとが接続される。シールド層110の凹部においては、シールド層110とプリント配線板200との間に十分な量の接着剤層120が存在しているため、電磁波シールドフィルム100とプリント配線板200とは、十分な強度で接着される。 Next, a method for manufacturing the shield printed wiring board 300 will be described. The electromagnetic wave shielding film 100 is placed on the printed wiring board 200 and pressed while being heated by a press. A part of the adhesive layer 120 softened by heating flows into the opening of the insulating layer 230 by pressurization. Further, at least a part of the convex portion 110 a of the shield layer 110 penetrates the adhesive layer 120 by pressurization. Thereby, the shield layer 110 and the ground circuit 220B are connected. Since there is a sufficient amount of adhesive layer 120 between the shield layer 110 and the printed wiring board 200 in the concave portion of the shield layer 110, the electromagnetic wave shielding film 100 and the printed wiring board 200 have sufficient strength. Glued with.
 <電磁波シールドフィルムの形成>
 支持基材として、厚さが60μmで、表面に離型処理を施したPETフィルムを用いた。支持基材の上に、所定の粒径のシリカ粒子、ビスフェノールA型エポキシ系樹脂及びメチルエチルケトンを含む保護層用組成物(固形分量30質量%)を塗布し、加熱乾燥することにより保護層を形成した。次いで、保護層の表面に厚さが0.5μmの銀を蒸着することにより、シールド層を形成した。次いで、シールド層の表面にエポキシ系樹脂からなる接着剤を塗布して所定の厚さの接着剤層を形成した。
<Formation of electromagnetic shielding film>
As a supporting substrate, a PET film having a thickness of 60 μm and a surface subjected to a release treatment was used. A protective layer is formed by applying a composition for a protective layer (solid content 30% by mass) containing silica particles having a predetermined particle size, bisphenol A type epoxy resin and methyl ethyl ketone on a support substrate and drying by heating. did. Next, a shield layer was formed by depositing silver having a thickness of 0.5 μm on the surface of the protective layer. Next, an adhesive made of an epoxy resin was applied to the surface of the shield layer to form an adhesive layer having a predetermined thickness.
 <接着剤層の厚みの測定方法>
 接着剤層を形成した後の電磁波シールドフィルムの厚みから接着剤層を形成する前の保護層とシールド層との積層体の厚みを引いた値を、接着剤層の厚みとした。なお、それぞれの厚みは、マイクロメーター((株)ミツトヨ製、MDH-25)を用い、JIS C 2151に準拠して測定した。
<Method for measuring thickness of adhesive layer>
The value obtained by subtracting the thickness of the laminate of the protective layer and the shield layer before forming the adhesive layer from the thickness of the electromagnetic wave shielding film after forming the adhesive layer was taken as the thickness of the adhesive layer. Each thickness was measured according to JIS C 2151 using a micrometer (MDH-25 manufactured by Mitutoyo Corporation).
 <最大山高さの測定方法>
 シールド層表面の最大山高さ(Rp)は、Lasertec社製の共焦点顕微鏡を用い、JIS B0651:2001に準拠して測定した。
<Measurement method of maximum peak height>
The maximum peak height (Rp) of the shield layer surface was measured according to JIS B0651: 2001 using a confocal microscope manufactured by Lasertec.
 <接続性の評価>
 プリント配線板の表面に電磁波シールドフィルムを仮貼り(120℃、0.5MPa、5秒)した後、加熱加圧(170℃、3MPa、30分)してシールドプリント配線板を形成した。プリント配線板には、互いに間隔をおいて平行に延びる2本の銅箔パターンと、銅箔パターンを覆う厚さが25μmのポリイミドからなる絶縁層を有するものを用いた。絶縁層には、それぞれの銅箔パターンを露出する開口部を設けた。開口部の直径は1mmとした。2本の銅箔パターンの間の電気抵抗値を抵抗計により測定することにより、銅箔パターンと電磁波シールドフィルムとの接続性を評価した。電気抵抗が0.4Ω未満の場合を接続性が良好であるとした。
<Evaluation of connectivity>
An electromagnetic wave shielding film was temporarily attached to the surface of the printed wiring board (120 ° C., 0.5 MPa, 5 seconds), and then heated and pressurized (170 ° C., 3 MPa, 30 minutes) to form a shield printed wiring board. As the printed wiring board, one having two copper foil patterns extending in parallel at an interval and an insulating layer made of polyimide having a thickness of 25 μm covering the copper foil pattern was used. The insulating layer was provided with an opening for exposing each copper foil pattern. The diameter of the opening was 1 mm. The connectivity between the copper foil pattern and the electromagnetic wave shielding film was evaluated by measuring the electrical resistance value between the two copper foil patterns with a resistance meter. When the electrical resistance is less than 0.4Ω, the connectivity is considered good.
 (実施例1)
 保護層用組成物に加える粒子を粒径4μmのシリカ(電気化学工業(株)製、FB-5SDC)とし、シリカの含有量は樹脂組成物とシリカとの合計に対して15質量%とした。得られた保護層の厚さは6μmであった。シールド層表面の最大山高さは4.5μmであった。接着剤層の厚さは3μmとした。抵抗値は0.1Ωであった。
(Example 1)
Particles added to the protective layer composition were silica having a particle diameter of 4 μm (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-5SDC), and the silica content was 15% by mass with respect to the total of the resin composition and silica. . The thickness of the obtained protective layer was 6 μm. The maximum peak height on the shield layer surface was 4.5 μm. The thickness of the adhesive layer was 3 μm. The resistance value was 0.1Ω.
 (実施例2)
 保護層用組成物に加える粒子を粒径9μmのシリカ(電気化学工業(株)製、FB-12D)とし、シリカの含有量は樹脂組成物とシリカとの合計に対して5質量%とした。得られた保護層の厚さは7μmであった。シールド層表面の最大山高さは5.2μmであった。接着剤層の厚さは3μmとした。抵抗値は0.2Ωであった。
(Example 2)
The particles added to the protective layer composition were silica having a particle size of 9 μm (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-12D), and the silica content was 5% by mass with respect to the total of the resin composition and silica. . The thickness of the obtained protective layer was 7 μm. The maximum peak height on the shield layer surface was 5.2 μm. The thickness of the adhesive layer was 3 μm. The resistance value was 0.2Ω.
 (実施例3)
 接着剤層の厚さを5μmとした以外は実施例2と同様にした。抵抗値は0.2Ωであった。
(Example 3)
The procedure was the same as Example 2 except that the thickness of the adhesive layer was 5 μm. The resistance value was 0.2Ω.
 (実施例4)
 保護層用組成物に加える粒子を粒径9μmのシリカ(電気化学工業(株)製、FB-12D)とし、シリカの含有量は樹脂組成物とシリカとの合計に対して15質量%とした。得られた保護層の厚さは11μmであった。シールド層表面の最大山高さは9.1μmであった。接着剤層の厚さは3μmとした。抵抗値は0.1Ωであった。
Example 4
The particles added to the protective layer composition were silica having a particle size of 9 μm (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-12D), and the silica content was 15% by mass with respect to the total of the resin composition and silica. . The thickness of the obtained protective layer was 11 μm. The maximum peak height on the shield layer surface was 9.1 μm. The thickness of the adhesive layer was 3 μm. The resistance value was 0.1Ω.
 (実施例5)
 接着剤層の厚さを5μmとした以外は実施例4と同様にした。抵抗値は0.1Ωであった。
(Example 5)
The same operation as in Example 4 was conducted except that the thickness of the adhesive layer was changed to 5 μm. The resistance value was 0.1Ω.
 (実施例6)
 接着剤層の厚さを8μmとした以外は実施例4と同様にした。抵抗値は0.1Ωであった。
(Example 6)
The same operation as in Example 4 was conducted except that the thickness of the adhesive layer was 8 μm. The resistance value was 0.1Ω.
 (実施例7)
 保護層用組成物に加える粒子を粒径14μmのシリカ(電気化学工業(株)製、FB-940)とし、シリカの含有量は樹脂組成物とシリカとの合計に対して5質量%とした。得られた保護層の厚さは16μmであった。シールド層表面の最大山高さは8.7μmであった。接着剤層の厚さは3μmとした。抵抗値は0.2Ωであった。
(Example 7)
The particles added to the protective layer composition were silica having a particle diameter of 14 μm (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-940), and the silica content was 5% by mass with respect to the total of the resin composition and silica. . The thickness of the protective layer obtained was 16 μm. The maximum peak height on the shield layer surface was 8.7 μm. The thickness of the adhesive layer was 3 μm. The resistance value was 0.2Ω.
 (実施例8)
 接着剤層の厚さを5μmとした以外は実施例7と同様にした。抵抗値は0.2Ωであった。
(Example 8)
Example 7 was repeated except that the thickness of the adhesive layer was 5 μm. The resistance value was 0.2Ω.
 (実施例9)
 接着剤層の厚さを8μmとした以外は実施例7と同様にした。抵抗値は0.1Ωであった。
Example 9
The procedure was the same as Example 7 except that the thickness of the adhesive layer was 8 μm. The resistance value was 0.1Ω.
 (実施例10)
 保護層用組成物に加える粒子を粒径14μmのシリカ(電気化学工業(株)製、FB-940)とし、シリカの含有量は樹脂組成物とシリカとの合計に対して15質量%とした。得られた保護層の厚さは20μmであった。シールド層表面の最大山高さは16.3μmであった。接着剤層の厚さは3μmとした。抵抗値は0.1Ωであった。
(Example 10)
Particles added to the protective layer composition were silica having a particle size of 14 μm (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-940), and the content of silica was 15% by mass with respect to the total of the resin composition and silica. . The thickness of the obtained protective layer was 20 μm. The maximum peak height on the shield layer surface was 16.3 μm. The thickness of the adhesive layer was 3 μm. The resistance value was 0.1Ω.
 (実施例11)
 接着剤層の厚さを5μmとした以外は実施例10と同様にした。抵抗値は0.1Ωであった。
(Example 11)
Example 10 was repeated except that the thickness of the adhesive layer was 5 μm. The resistance value was 0.1Ω.
 (実施例12)
 接着剤層の厚さを8μmとした以外は実施例10と同様にした。抵抗値は0.1Ωであった。
Example 12
The procedure was the same as Example 10 except that the thickness of the adhesive layer was 8 μm. The resistance value was 0.1Ω.
 (実施例13)
 保護層用組成物に加える粒子を粒径14μmのシリカ(電気化学工業(株)社製、FB-940)とし、シリカの含有量は樹脂組成物とシリカとの合計に対して25質量%とした。得られた保護層の厚さは20μmであった。シールド層表面の最大山高さは14.6μmであった。接着剤層の厚さは3μmとした。抵抗値は0.2Ωであった。
(Example 13)
The particles added to the protective layer composition were silica having a particle size of 14 μm (FB-940, manufactured by Denki Kagaku Kogyo Co., Ltd.), and the silica content was 25% by mass with respect to the total of the resin composition and silica. did. The thickness of the obtained protective layer was 20 μm. The maximum peak height on the shield layer surface was 14.6 μm. The thickness of the adhesive layer was 3 μm. The resistance value was 0.2Ω.
 (実施例14)
 接着剤層の厚さを5μmとした以外は実施例13と同様にした。抵抗値は0.2Ωであった。
(Example 14)
Example 13 was repeated except that the thickness of the adhesive layer was 5 μm. The resistance value was 0.2Ω.
 (実施例15)
 接着剤層の厚さを8μmとした以外は実施例13と同様にした。抵抗値は0.2Ωであった。
(Example 15)
Example 13 was repeated except that the thickness of the adhesive layer was 8 μm. The resistance value was 0.2Ω.
 (比較例1)
 保護層用組成物に加える粒子を粒径4μmのシリカ(電気化学工業(株)製、FB-5SDC)とし、シリカの含有量は樹脂組成物とシリカとの合計に対して5質量%とした。得られた保護層の厚さは5μmであった。シールド層表面の最大山高さは2.2μmであった。接着剤層の厚さは3μmとした。抵抗値は0.6Ωであった。
(Comparative Example 1)
Particles added to the protective layer composition were silica having a particle size of 4 μm (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-5SDC), and the silica content was 5% by mass with respect to the total of the resin composition and silica. . The thickness of the obtained protective layer was 5 μm. The maximum peak height on the shield layer surface was 2.2 μm. The thickness of the adhesive layer was 3 μm. The resistance value was 0.6Ω.
 (比較例2)
 接着剤層の厚さを5μmとした以外は比較例1と同様にした。抵抗値は1.4Ωであった。
(Comparative Example 2)
Comparative Example 1 was performed except that the thickness of the adhesive layer was changed to 5 μm. The resistance value was 1.4Ω.
 (比較例3)
 接着剤層の厚さを8μmとした以外は比較例1と同様にした。抵抗値は1.8Ωであった。
(Comparative Example 3)
Comparative Example 1 was performed except that the thickness of the adhesive layer was 8 μm. The resistance value was 1.8Ω.
 (比較例4)
 接着剤層の厚さを5μmとした以外は実施例1と同様にした。抵抗値は0.5Ωであった。
(Comparative Example 4)
The procedure was the same as Example 1 except that the thickness of the adhesive layer was 5 μm. The resistance value was 0.5Ω.
 (比較例5)
 接着剤層の厚さを8μmとした以外は実施例1と同様にした。抵抗値は1.3Ωであった。
(Comparative Example 5)
The procedure was the same as Example 1 except that the thickness of the adhesive layer was 8 μm. The resistance value was 1.3Ω.
 (比較例6)
 接着剤層の厚さを8μmとした以外は実施例2と同様にした。抵抗値は0.5Ωであった。
(Comparative Example 6)
The procedure was the same as Example 2 except that the thickness of the adhesive layer was 8 μm. The resistance value was 0.5Ω.
 表1に各実施例及び比較例についてまとめて示す。 Table 1 summarizes each example and comparative example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明は、以上の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。 The present invention is not limited to the above-described embodiment, and can be applied with appropriate modifications within a range that does not change the gist of the present invention.
 本開示の電磁波シールドフィルムは、高周波伝送効率が低下しにくく、プリント配線板等に用いる電磁波シールドフィルム等として有用である。 The electromagnetic shielding film of the present disclosure is useful as an electromagnetic shielding film used for a printed wiring board and the like because the high-frequency transmission efficiency is unlikely to decrease.
100   電磁波シールドフィルム
110   シールド層
110a  凸部
120   接着剤層
130   保護層
132   樹脂組成物
133   粒子
140   支持基材
200   プリント配線板
210   ベース層
220   プリント回路
220A  信号回路
220B  グランド回路
230   絶縁層
300   シールドプリント配線板
DESCRIPTION OF SYMBOLS 100 Electromagnetic wave shield film 110 Shield layer 110a Protrusion part 120 Adhesive layer 130 Protective layer 132 Resin composition 133 Particle 140 Support base material 200 Printed wiring board 210 Base layer 220 Printed circuit 220A Signal circuit 220B Ground circuit 230 Insulating layer 300 Shield printed wiring Board

Claims (16)

  1.  凹凸を有する導電性のシールド層と、
     前記凹凸を被覆する接着剤層とを備え、
     前記凹凸の最大山高さの値は、前記接着剤層の厚さよりも大きい、電磁波シールドフィルム。
    A conductive shield layer having irregularities;
    An adhesive layer covering the unevenness,
    The electromagnetic wave shielding film, wherein the maximum peak height of the unevenness is larger than the thickness of the adhesive layer.
  2.  前記凹凸の最大山高さは、20μm以下である、請求項1に記載の電磁波シールドフィルム。 The electromagnetic wave shielding film according to claim 1, wherein the maximum peak height of the unevenness is 20 μm or less.
  3.  前記凹凸の最大山高さは、4μm以上である、請求項1又は2に記載の電磁波シールドフィルム。 The electromagnetic wave shielding film according to claim 1 or 2, wherein a maximum peak height of the unevenness is 4 µm or more.
  4.  前記シールド層の前記接着剤層と反対側の面に保護層を備えている、
    請求項1~3のいずれか1項に記載の電磁波シールドフィルム。
    A protective layer is provided on the surface of the shield layer opposite to the adhesive layer,
    The electromagnetic wave shielding film according to any one of claims 1 to 3.
  5.  前記保護層は、前記シールド層側の面の最大山高さの値が、前記接着剤層の厚さ以上、20μm以下である、請求項4に記載の電磁波シールドフィルム。 5. The electromagnetic wave shielding film according to claim 4, wherein the protective layer has a maximum peak height value on the surface on the shield layer side which is not less than the thickness of the adhesive layer and not more than 20 μm.
  6.  前記保護層は、粒径が1μm以上、20μm以下の粒子を含有する、請求項4又は5に記載の電磁波シールドフィルム。 The electromagnetic wave shielding film according to claim 4 or 5, wherein the protective layer contains particles having a particle size of 1 µm or more and 20 µm or less.
  7.  前記接着剤層は絶縁性である、請求項1~6のいずれか1項に記載の電磁波シールドフィルム。 The electromagnetic wave shielding film according to any one of claims 1 to 6, wherein the adhesive layer is insulative.
  8.  保護層を準備する工程と、
     前記保護層の上に凹凸を有する導電性のシールド層を形成する工程と、
     前記シールド層の最大山高さの値よりも厚さが薄く、且つ、前記凹凸を被覆する接着剤層を形成する工程とを備えている、電磁波シールドフィルムの製造方法。
    Preparing a protective layer;
    Forming a conductive shield layer having irregularities on the protective layer;
    And a step of forming an adhesive layer covering the unevenness, wherein the thickness is smaller than the maximum peak height value of the shield layer.
  9.  前記保護層を準備する工程は、最大山高さが4μm以上、20μm以下の凹凸を表面に有する保護層を形成する工程である、請求項8に記載の電磁波シールドフィルムの製造方法。 The method for producing an electromagnetic wave shielding film according to claim 8, wherein the step of preparing the protective layer is a step of forming a protective layer having irregularities having a maximum peak height of 4 μm or more and 20 μm or less on the surface.
  10.  前記保護層を準備する工程は、支持基材の上に、樹脂組成物と粒子とを含む保護層用組成物を塗布して硬化させる工程であり、
     前記粒子の粒径は、1μm以上、20μm以下である、請求項8又は9に記載の電磁波シールドフィルムの製造方法。
    The step of preparing the protective layer is a step of applying and curing a protective layer composition containing a resin composition and particles on a supporting substrate,
    The method for producing an electromagnetic wave shielding film according to claim 8 or 9, wherein a particle diameter of the particles is 1 µm or more and 20 µm or less.
  11.  前記保護層を準備する工程は、支持基材の上に樹脂層を形成する工程と、前記樹脂層に凹凸を形成する工程とを含む、請求項8又は9に記載の電磁波シールドフィルムの製造方法。 The method for producing an electromagnetic wave shielding film according to claim 8 or 9, wherein the step of preparing the protective layer includes a step of forming a resin layer on a support substrate and a step of forming irregularities on the resin layer. .
  12.  前記凹凸を形成する工程は、前記樹脂層をエンボス加工処理する工程を含む、請求項11に記載の電磁波シールドフィルムの製造方法。 The method for producing an electromagnetic wave shielding film according to claim 11, wherein the step of forming the unevenness includes a step of embossing the resin layer.
  13.  前記凹凸を形成する工程は、前記樹脂層をブラスト処理する工程を含む、請求項11に記載の電磁波シールドフィルムの製造方法。 The method for producing an electromagnetic wave shielding film according to claim 11, wherein the step of forming the unevenness includes a step of blasting the resin layer.
  14.  前記保護層を準備する工程は、表面に凹凸を有する支持基材の上に樹脂層を形成する工程を含む、請求項8又は9に記載の電磁波シールドフィルムの製造方法。 The method for producing an electromagnetic wave shielding film according to claim 8 or 9, wherein the step of preparing the protective layer includes a step of forming a resin layer on a support substrate having an uneven surface.
  15.  前記接着剤層を形成する工程は、前記シールド層の上に、接着剤用組成物を塗布する工程である、請求項8~14のいずれか1項に記載の電磁波シールドフィルムの製造方法。 The method for producing an electromagnetic wave shielding film according to any one of claims 8 to 14, wherein the step of forming the adhesive layer is a step of applying an adhesive composition on the shield layer.
  16.  請求項1~7のいずれか1項に記載の電磁波シールドフィルムと、
     信号回路及びグランド回路が設けられたベース層と、前記グランド回路の少なくとも一部を露出する開口部が設けられた絶縁層とを有するプリント配線板とを備え、
     前記電磁波シールドフィルムと、前記プリント配線板とは、前記接着剤層と前記絶縁層とを対向させて接着され、
     前記シールド層の凸部は、前記接着剤層を突き抜けて前記開口部から露出した前記グランド回路と接している、シールドプリント配線板。
     
    The electromagnetic wave shielding film according to any one of claims 1 to 7,
    A printed wiring board having a base layer provided with a signal circuit and a ground circuit, and an insulating layer provided with an opening exposing at least a part of the ground circuit;
    The electromagnetic wave shielding film and the printed wiring board are bonded with the adhesive layer and the insulating layer facing each other,
    The convex part of the said shield layer is a shield printed wiring board which has penetrated the said adhesive bond layer and is in contact with the said ground circuit exposed from the said opening part.
PCT/JP2015/006013 2014-12-05 2015-12-03 Electromagnetic wave shielding film WO2016088381A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016562314A JP6511473B2 (en) 2014-12-05 2015-12-03 Electromagnetic shielding film
KR1020177004356A KR101956091B1 (en) 2014-12-05 2015-12-03 Electromagnetic wave shielding film
CN201580063071.9A CN107079611A (en) 2014-12-05 2015-12-03 Electromagnetic shielding film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014246778 2014-12-05
JP2014-246778 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016088381A1 true WO2016088381A1 (en) 2016-06-09

Family

ID=56091343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006013 WO2016088381A1 (en) 2014-12-05 2015-12-03 Electromagnetic wave shielding film

Country Status (5)

Country Link
JP (1) JP6511473B2 (en)
KR (1) KR101956091B1 (en)
CN (1) CN107079611A (en)
TW (1) TW201640998A (en)
WO (1) WO2016088381A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019046871A (en) * 2017-08-30 2019-03-22 タツタ電線株式会社 Electromagnetic wave shield film, shield printed wiring board, and method for manufacturing shield printed wiring board
JP2019121731A (en) * 2018-01-10 2019-07-22 タツタ電線株式会社 Electromagnetic wave shielding film
CN110691501A (en) * 2018-07-06 2020-01-14 广州方邦电子股份有限公司 Electromagnetic shielding film, circuit board and preparation method of electromagnetic shielding film
JP2020516052A (en) * 2018-03-14 2020-05-28 グアンジョウ ファン バン エレクトロニクス カンパニー,リミテッドGuangzhou Fang Bang Electronics Co., Ltd. Electromagnetic shield film, circuit board, and method for manufacturing electromagnetic shield film
JP2020202183A (en) * 2020-08-11 2020-12-17 旭化成株式会社 Dispersion and substrate for the production of printed wiring board
CN112534974A (en) * 2018-10-29 2021-03-19 拓自达电线株式会社 Electromagnetic wave shielding film, method for manufacturing shielded printed wiring board, and shielded printed wiring board
WO2022181570A1 (en) * 2021-02-24 2022-09-01 タツタ電線株式会社 Electromagentic wave shield film

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107506102A (en) * 2017-10-18 2017-12-22 曾胜 A kind of touch-screen circuit junction protection against oxidation solves technique
JP6731393B2 (en) * 2017-11-21 2020-07-29 タツタ電線株式会社 Electromagnetic wave shielding film
JP6839669B2 (en) * 2018-01-09 2021-03-10 タツタ電線株式会社 Electromagnetic wave shield film
JP6426865B1 (en) * 2018-02-20 2018-11-21 タツタ電線株式会社 Electromagnetic shielding film
CN108323143B (en) * 2018-03-14 2020-05-05 广州方邦电子股份有限公司 Electromagnetic shielding film, circuit board and preparation method of electromagnetic shielding film
CN110769664B (en) * 2018-07-27 2024-02-06 广州方邦电子股份有限公司 Electromagnetic shielding film, circuit board and preparation method of electromagnetic shielding film
CN110769665B (en) * 2018-07-27 2023-12-05 广州方邦电子股份有限公司 Electromagnetic shielding film, circuit board and preparation method of electromagnetic shielding film
JP6624331B1 (en) * 2019-08-01 2019-12-25 東洋インキScホールディングス株式会社 Electromagnetic wave shielding sheet and electromagnetic wave shielding wiring circuit board
CN110519980B (en) * 2019-09-16 2020-12-22 深圳市丰正昌精密科技有限公司 Electromagnetic shielding conductive foam and preparation method thereof
CN112969357B (en) * 2021-02-02 2023-02-07 深圳市欣横纵技术股份有限公司 Anti-strong electromagnetic pulse reinforcement method for nuclear security system and nuclear security system
CN114650649B (en) * 2021-02-09 2024-03-26 广州方邦电子股份有限公司 Electromagnetic shielding film and circuit board
CN113913120A (en) * 2021-11-25 2022-01-11 广东兆盈合成新材有限公司 Novel flexible decorative material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4751798B1 (en) * 1967-08-22 1972-12-26
JPH036438U (en) * 1989-06-02 1991-01-22
JP2005311039A (en) * 2004-04-21 2005-11-04 Komatsu Seiren Co Ltd Electromagnetic shielding material and method for manufacturing the same
JP2009038278A (en) * 2007-08-03 2009-02-19 Tatsuta System Electronics Kk Shielding film for printed wiring board and printed wiring board
JP2014049498A (en) * 2012-08-29 2014-03-17 Shin Etsu Polymer Co Ltd Electromagnetic wave shield film, production method of electromagnetic wave shield film, flexible printed wiring board, and manufacturing method of flexible printed wiring board
CN103763893A (en) * 2014-01-14 2014-04-30 广州方邦电子有限公司 Electromagnetic wave shielding film and method for manufacturing circuit board with same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4201548B2 (en) 2002-07-08 2008-12-24 タツタ電線株式会社 SHIELD FILM, SHIELD FLEXIBLE PRINTED WIRING BOARD AND METHOD FOR PRODUCING THEM
KR100874302B1 (en) 2005-02-18 2008-12-18 도요 잉키 세이조 가부시끼가이샤 Electromagnetic shielding adhesive film, manufacturing method thereof and electromagnetic shielding method of adherend
JP5042555B2 (en) * 2006-08-03 2012-10-03 新日本製鐵株式会社 Zinc-based plated steel sheet having a thin film primary anticorrosive coating layer with excellent surface conductivity and method for producing the same
JP2014112576A (en) * 2012-11-28 2014-06-19 Tatsuta Electric Wire & Cable Co Ltd Shield film
TWI777221B (en) * 2013-05-29 2022-09-11 日商大自達電線股份有限公司 Method for electromagnetic shielding film
CN203722915U (en) * 2014-01-14 2014-07-16 广州方邦电子有限公司 Electromagnetic wave shielding film used for printed circuit board and printed circuit board containing shielding film
CN203859982U (en) * 2014-05-06 2014-10-01 昆山雅森电子材料科技有限公司 High-transmission thin electromagnetic interference shielding film and printed circuit board having same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4751798B1 (en) * 1967-08-22 1972-12-26
JPH036438U (en) * 1989-06-02 1991-01-22
JP2005311039A (en) * 2004-04-21 2005-11-04 Komatsu Seiren Co Ltd Electromagnetic shielding material and method for manufacturing the same
JP2009038278A (en) * 2007-08-03 2009-02-19 Tatsuta System Electronics Kk Shielding film for printed wiring board and printed wiring board
JP2014049498A (en) * 2012-08-29 2014-03-17 Shin Etsu Polymer Co Ltd Electromagnetic wave shield film, production method of electromagnetic wave shield film, flexible printed wiring board, and manufacturing method of flexible printed wiring board
CN103763893A (en) * 2014-01-14 2014-04-30 广州方邦电子有限公司 Electromagnetic wave shielding film and method for manufacturing circuit board with same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019046871A (en) * 2017-08-30 2019-03-22 タツタ電線株式会社 Electromagnetic wave shield film, shield printed wiring board, and method for manufacturing shield printed wiring board
JP2019121731A (en) * 2018-01-10 2019-07-22 タツタ電線株式会社 Electromagnetic wave shielding film
JP2020516052A (en) * 2018-03-14 2020-05-28 グアンジョウ ファン バン エレクトロニクス カンパニー,リミテッドGuangzhou Fang Bang Electronics Co., Ltd. Electromagnetic shield film, circuit board, and method for manufacturing electromagnetic shield film
US11272646B2 (en) 2018-03-14 2022-03-08 Guangzhou Fang Bang Electronic Co., Ltd. Electromagnetic interference (EMI) shielding film, circuit board, and preparation method for EMI shielding film
CN110691501A (en) * 2018-07-06 2020-01-14 广州方邦电子股份有限公司 Electromagnetic shielding film, circuit board and preparation method of electromagnetic shielding film
CN112534974A (en) * 2018-10-29 2021-03-19 拓自达电线株式会社 Electromagnetic wave shielding film, method for manufacturing shielded printed wiring board, and shielded printed wiring board
JP7005709B2 (en) 2020-08-11 2022-01-24 旭化成株式会社 Substrates for manufacturing dispersions and printed wiring boards
JP2020202183A (en) * 2020-08-11 2020-12-17 旭化成株式会社 Dispersion and substrate for the production of printed wiring board
WO2022181570A1 (en) * 2021-02-24 2022-09-01 タツタ電線株式会社 Electromagentic wave shield film
KR20220123474A (en) 2021-02-24 2022-09-06 타츠타 전선 주식회사 electromagnetic shielding film
CN115486215A (en) * 2021-02-24 2022-12-16 拓自达电线株式会社 Electromagnetic wave shielding film
JP7206441B1 (en) * 2021-02-24 2023-01-17 タツタ電線株式会社 electromagnetic wave shielding film
CN115486215B (en) * 2021-02-24 2023-08-11 拓自达电线株式会社 Electromagnetic wave shielding film

Also Published As

Publication number Publication date
TW201640998A (en) 2016-11-16
CN107079611A (en) 2017-08-18
KR20170091576A (en) 2017-08-09
JPWO2016088381A1 (en) 2017-09-14
JP6511473B2 (en) 2019-05-15
KR101956091B1 (en) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2016088381A1 (en) Electromagnetic wave shielding film
JP6467701B2 (en) Electromagnetic wave shielding film, flexible printed wiring board with electromagnetic wave shielding film, and manufacturing method thereof
TWI776943B (en) Electromagnetic wave shielding film
JP6184025B2 (en) Electromagnetic wave shielding film and method for producing flexible printed wiring board with electromagnetic wave shielding film
JP6722370B2 (en) Adhesive film for printed wiring boards
JP2016063117A (en) Electromagnetic wave shield film, electromagnetic wave shield film-attached flexible printed wiring board, and manufacturing methods thereof
JP2017195278A (en) Electromagnetic wave shielding film and printed wiring board with the same
JP7244535B2 (en) EMI SHIELDING FILM, METHOD FOR MANUFACTURING SHIELD PRINTED WIRING BOARD, AND SHIELD PRINTED WIRING BOARD
JP6949724B2 (en) Electromagnetic wave shield film and its manufacturing method
CN109874286B (en) Electromagnetic wave shielding film
JP6329314B1 (en) Conductive adhesive sheet
WO2019012590A1 (en) Electromagnetic wave shield film, and shielded printed wiring board equipped with same
WO2017164174A1 (en) Electromagnetic shielding film
JP2019145769A (en) Electromagnetic wave shield film
WO2020090726A1 (en) Electromagnetic shielding film, method for producing shielded printed wiring board, and shielded printed wiring board
JP2017212274A (en) Electromagnetic wave shielding film and shielded printed wiring board including the same
JP2019121707A (en) Electromagnetic wave shield film
JP6706655B2 (en) Electromagnetic wave shield film, flexible printed wiring board with electromagnetic wave shield film, and methods for manufacturing the same
JP6706654B2 (en) Electromagnetic wave shield film, flexible printed wiring board with electromagnetic wave shield film, and methods for manufacturing the same
KR102443614B1 (en) Electroconductive adhesive film and electromagnetic wave shield film using same
JP6731393B2 (en) Electromagnetic wave shielding film
JP2021052083A (en) Electromagnetic wave-shield film and circuit board
TW202402154A (en) Electromagnetic shielding film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562314

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177004356

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866277

Country of ref document: EP

Kind code of ref document: A1