WO2022181570A1 - Electromagentic wave shield film - Google Patents

Electromagentic wave shield film Download PDF

Info

Publication number
WO2022181570A1
WO2022181570A1 PCT/JP2022/007068 JP2022007068W WO2022181570A1 WO 2022181570 A1 WO2022181570 A1 WO 2022181570A1 JP 2022007068 W JP2022007068 W JP 2022007068W WO 2022181570 A1 WO2022181570 A1 WO 2022181570A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
shielding film
wave shielding
protective layer
layer
Prior art date
Application number
PCT/JP2022/007068
Other languages
French (fr)
Japanese (ja)
Inventor
慶彦 青柳
憲治 上農
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to KR1020227028896A priority Critical patent/KR102558231B1/en
Priority to CN202280004051.4A priority patent/CN115486215B/en
Priority to JP2022541965A priority patent/JP7206441B1/en
Publication of WO2022181570A1 publication Critical patent/WO2022181570A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Definitions

  • the present invention relates to an electromagnetic wave shielding film.
  • shield printed wiring also referred to as “plate”
  • the shield layer used in the electromagnetic wave shield film is formed of a thin metal layer formed by vapor deposition, sputtering, plating, or the like, or a conductive paste containing a high content of conductive filler.
  • 5G, etc. will spread in earnest, high frequency and high speed transmission will advance in order to communicate large amounts of data, and noise countermeasures for electronic devices will become even more necessary.
  • an electromagnetic wave shield film consists of a shield layer that serves as a main body that shields electromagnetic waves, and a protective layer (insulating layer) that protects the shield layer from external impacts, chemicals, solvents, water, etc. .
  • Flexibility is required for the electromagnetic shielding film placed on the flexible printed wiring board, and flexibility is also required for the protective layer that is a component thereof.
  • Patent Document 1 discloses a conductive shield layer having unevenness and an adhesive layer covering the unevenness, and the maximum peak height of the unevenness is is greater than the thickness of the adhesive layer.
  • Patent Document 2 discloses an electromagnetic wave shielding film comprising a shield layer and an insulating layer laminated on the shield layer, wherein the insulating layer contains silica fine particles, and the silica fine particles in the insulating layer
  • An electromagnetic wave shielding film is disclosed in which the content is 10 to 50 wt%.
  • a resin composition for a protective layer used in such an electromagnetic wave shielding film contains an amorphous polyester resin, a curing agent, and a white pigment, and the amorphous polyester resin is ,
  • the number average molecular weight Mn is less than 20,000
  • the glass transition point Tg is 40 ° C. or higher
  • the curing agent is a blocked isocyanate, a trimethylolpropane adduct of hexane diisocyanate, and an isocyanurate adduct of cyclohexane diisocyanate
  • a resin composition is disclosed which is at least one selected from the group consisting of:
  • a highly flexible protective layer has a low glass transition point and a low crosslink density. If the glass transition point of the protective layer is low, there is a problem that blocking is likely to occur when the electromagnetic wave shielding film is stored in a roll. In addition, if the cross-linking density of the resin constituting the protective layer is low, the electromagnetic wave shielding film will not be exposed to the steps such as openings provided to expose the ground circuit on the printed wiring board (hereinafter simply referred to as “steps on the printed wiring board”). ), the protective layer tends to have partially thin spots, the physical strength of the protective layer decreases, and moisture easily permeates the protective layer. As a result, there is a problem that the heat resistance and moisture resistance of the electromagnetic wave shielding film tend to deteriorate.
  • the present invention is an invention made to solve the above problems, and an object of the present invention is to provide an electromagnetic wave shielding film that is less likely to cause blocking during roll storage and has excellent moisture resistance and bending resistance.
  • the electromagnetic shielding film of the present invention is an electromagnetic shielding film in which a protective layer and a shielding layer are laminated, and the protective layer is a urethane having an acid value of 2000 to 4000 g/eq and a Tg of 0° C. or higher. and a non-conductive filler having an average particle size of 10 ⁇ m or less, wherein the weight ratio of the non-conductive filler to the total weight of the protective layer is 10 to 40% by weight.
  • the urethane resin contained in the protective layer has an acid value of 2000 to 4000 g/eq.
  • the acid value is within the above range, the cross-linking density is within a suitable range, so that when the electromagnetic wave shielding film is placed on the stepped portion of the printed wiring board by hot pressing, the protective layer is less likely to have partially thin portions. .
  • the physical strength of the protective layer is reduced, and moisture does not easily permeate the protective layer.
  • the flex resistance and moisture resistance of the electromagnetic wave shielding film are improved. If the acid value is less than 2000 g/eq, the crosslink density becomes high and the protective layer becomes hard.
  • the toughness of the protective layer is lowered, and the bending resistance tends to be lowered. If the acid value exceeds 4000 g/eq, the cross-linking density becomes low, and when the electromagnetic wave shielding film is placed on the stepped portion of the printed wiring board by hot pressing, the protective layer tends to be partially thinned. As a result, the moisture resistance tends to be extremely lowered.
  • the urethane-based resin contained in the protective layer has a Tg of 0° C. or higher. Therefore, when the electromagnetic wave shielding film of the present invention is stored in a roll, blocking is less likely to occur.
  • the protective layer contains a non-conductive filler having an average particle size of 10 ⁇ m or less, and the weight ratio of the non-conductive filler to the total weight of the protective layer is 10 to 40% by weight. If the protective layer contains a non-conductive filler having an average particle diameter of 10 ⁇ m or less in the above weight ratio, the urethane resin contained in the protective layer is used when the electromagnetic wave shielding film is placed on the stepped portion of the printed wiring board by hot pressing. can be prevented from flowing and part of the protective layer becoming thin. As a result, the electromagnetic wave shielding film has good moisture resistance and bending resistance.
  • the weight ratio of the non-conductive filler is less than 10% by weight, it becomes difficult to obtain the effect of containing the non-conductive filler, and moisture resistance tends to decrease. If the weight ratio of the non-conductive filler exceeds 40% by weight, the protective layer becomes hard and the flexibility tends to decrease. As a result, the bending resistance tends to decrease.
  • the protective layer preferably further contains an epoxy resin.
  • the protective layer contains an epoxy resin, it is possible to suppress the flow of the urethane resin contained in the protective layer when the electromagnetic wave shielding film is arranged on the printed wiring board by hot pressing.
  • the urethane-based resin preferably has a Tg of 0 to 60°C.
  • the protective layer has appropriate fluidity when the electromagnetic wave shielding film of the present invention is hot-pressed onto a printed wiring board, so that part of the protective layer becomes thin. It is possible to prevent the moisture resistance and bending resistance of the electromagnetic wave shielding film from deteriorating.
  • the urethane resin preferably has a weight average molecular weight of 100,000 to 2,000,000, more preferably 170,000 to 500,000.
  • the weight-average molecular weight of the urethane-based resin is within the above range, the urethane-based resin has appropriate hardness and fluidity, so that the electromagnetic wave shielding film can be improved in heat resistance, moisture resistance, and bending resistance.
  • the non-conductive filler is preferably at least one selected from the group consisting of silica and organic phosphates. Non-conductive fillers made of these materials can favorably improve the moisture resistance and bending resistance of the electromagnetic wave shielding film.
  • the shield layer may be a conductive adhesive layer.
  • the shield layer may be a metal layer, and an adhesive layer may be further laminated on the side of the shield layer on which the protective layer is not laminated.
  • the electromagnetic wave shielding film of the present invention can suitably shield electromagnetic waves in any aspect. In addition, blocking hardly occurs when the electromagnetic wave shielding film is stored in a roll, and the heat resistance, moisture resistance, and bending resistance of the electromagnetic wave shielding film are sufficiently increased.
  • the protective layer contains a urethane resin having an acid value of 2000 to 4000 g/eq and a Tg of 0° C. or higher, and a non-conductive filler having an average particle size of 10 ⁇ m or less.
  • the weight ratio of the non-conductive filler to the total weight of the protective layer is 10 to 40% by weight. Therefore, the cross-linking density of the urethane-based resin is in an appropriate range, and the flex resistance and moisture resistance of the electromagnetic wave shielding film are improved.
  • the Tg of the urethane-based resin is 0° C. or higher, blocking hardly occurs when the electromagnetic wave shielding film is stored in a roll.
  • the protective layer contains a predetermined non-conductive filler, when the electromagnetic wave shielding film is placed on the printed wiring board by heat pressing, the urethane resin contained in the protective layer flows and part of the protective layer thinning can be prevented. Therefore, the protective layer is less likely to have partially thin portions. As a result, the electromagnetic wave shielding film has good moisture resistance and bending resistance.
  • FIG. 1 is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film of the present invention.
  • FIG. 2A is a cross-sectional view schematically showing a printed wiring board preparation step in the method for manufacturing a shield printed wiring board using the electromagnetic wave shielding film of the present invention.
  • FIG. 2B is a cross-sectional view schematically showing an electromagnetic shielding film placement step in the method for manufacturing a shield printed wiring board using the electromagnetic shielding film of the present invention.
  • FIG. 2C is a cross-sectional view schematically showing a hot press step in the method for manufacturing a shield printed wiring board using the electromagnetic wave shielding film of the present invention.
  • FIG. 2D is a cross-sectional view schematically showing an example of a shield printed wiring board manufactured using the electromagnetic wave shielding film of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing another example of the electromagnetic wave shielding film of the present invention.
  • FIG. 4A is a schematic diagram showing a resistance value test method.
  • FIG. 4B is a schematic diagram showing a resistance value test method.
  • FIG. 5 is a diagram schematically showing a flex resistance test.
  • FIG. 6 is a diagram schematically showing a blocking test.
  • the electromagnetic wave shielding film of the present invention will be specifically described below.
  • the present invention is not limited to the following embodiments, and can be appropriately modified and applied without changing the gist of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film of the present invention.
  • the electromagnetic wave shielding film 10 shown in FIG. 1 is an electromagnetic wave shielding film in which a protective layer 20, a metal layer 30, and a conductive adhesive layer 40 are laminated in order.
  • the metal layer 30 functions as a shield layer for shielding electromagnetic waves. Each configuration will be described below.
  • the protective layer 20 contains urethane-based resin and non-conductive filler.
  • the urethane-based resin contained in the protective layer 20 has an acid value of 2000 to 4000 g/eq.
  • the acid value is preferably 2100-3900 g/eq, more preferably 2500-3500 g/eq.
  • the cross-linking density is within a suitable range, so that when the electromagnetic wave shielding film is placed on the stepped portion of the printed wiring board by hot pressing, the protective layer is less likely to have partially thin portions. .
  • the physical strength of the protective layer is reduced, and moisture does not easily permeate the protective layer.
  • the flex resistance and moisture resistance of the electromagnetic wave shielding film are improved.
  • the acid value is less than 2000 g/eq
  • the crosslink density becomes high and the protective layer becomes hard.
  • the toughness of the protective layer is lowered, and the bending resistance tends to be lowered.
  • the acid value exceeds 4000 g/eq
  • the cross-linking density becomes low, and when the electromagnetic wave shielding film is placed on the stepped portion of the printed wiring board by hot pressing, the protective layer tends to be partially thinned. As a result, the moisture resistance tends to be extremely lowered.
  • the urethane-based resin contained in the protective layer 20 has a Tg of 0° C. or higher.
  • Tg is preferably 0 to 60°C, more preferably 30 to 60°C.
  • the protective layer has appropriate fluidity when the electromagnetic wave shielding film of the present invention is hot-pressed onto a printed wiring board.
  • a protective layer may be formed in a transfer film. At this time, the adhesion between the protective layer and the transfer film is improved.
  • the Tg of the urethane-based resin means a value measured according to differential scanning calorimetry (DSC) in JIS K7121.
  • the weight average molecular weight of the urethane resin is preferably 100,000 to 2,000,000, more preferably 170,000 to 500,000.
  • the urethane-based resin has appropriate hardness and fluidity, so that the heat resistance, moisture resistance, and flex resistance of the protective layer can be improved.
  • the weight average molecular weight of the urethane-based resin can be measured by gel permeation chromatography (GPC) under the following conditions.
  • Measuring instrument Alliance GPC System (manufactured by Waters) Column: Shodex GPC KF-806L (Showa Denko) Column temperature: 40°C Sample concentration: 0.05 wt%/THF Injection volume: 10 ⁇ L Standard sample: Tosoh: standard PS 500, Shodex standard PS SM-105 (set)
  • the non-conductive filler contained in the protective layer 20 has an average particle diameter of 10 ⁇ m or less, and the weight ratio of the non-conductive filler to the total weight of the protective layer 20 is 10 to 40% by weight. Also, the weight ratio of the non-conductive filler is preferably 10 to 35% by weight, more preferably 10 to 25% by weight.
  • the protective layer 20 contains the non-conductive filler in the above weight ratio, the urethane-based resin contained in the protective layer flows when the electromagnetic wave shielding film is placed on the printed wiring board by hot pressing, and a part of the protective layer is partially removed. It can prevent thinning. Therefore, the protective layer is less likely to have partially thin portions. As a result, the electromagnetic wave shielding film has good moisture resistance and bending resistance.
  • the weight ratio of the non-conductive filler when the weight ratio of the non-conductive filler is 10 to 25% by mass, the flex resistance of the electromagnetic wave shielding film becomes better. If the weight ratio of the non-conductive filler is less than 10% by weight, it becomes difficult to obtain the effect of containing the non-conductive filler, and moisture resistance tends to decrease. If the weight ratio of the non-conductive filler exceeds 40% by weight, the protective layer becomes hard and the flexibility tends to decrease. As a result, the bending resistance tends to decrease.
  • the non-conductive filler preferably has an average particle size of 100 nm to 10 ⁇ m.
  • the average particle diameter of the non-conductive filler is 100 nm or more, it is possible to suitably prevent the urethane-based resin contained in the protective layer from flowing and partially thinning the protective layer.
  • the average particle size of the non-conductive filler is 10 ⁇ m or less, the thickness of the entire protective layer can be reduced.
  • the non-conductive filler is preferably at least one selected from the group consisting of silica and organic phosphates. Among these, silica is preferred. Non-conductive fillers made of these materials can favorably improve the moisture resistance and bending resistance of the electromagnetic wave shielding film.
  • non-conductive filler is silica, colloidal silica, fumed silica, wet silica synthesized by wet method, dry silica synthesized by dry method, porous silica, non-porous silica, hydrophobic silica, various surfaces It may be treated hydrophilic silica.
  • Hydrophobic silica is obtained, for example, by subjecting the silanol groups present on the surface of amorphous silica synthesized by a dry method or amorphous silica synthesized by a wet method to a surface treatment for imparting hydrophobicity.
  • a surface treatment for imparting hydrophobicity can be manufactured.
  • Examples of such surface treatment include treatment of coating the surface of amorphous silica with waxes such as paraffin wax, carnauba wax, amide wax, and polyethylene wax.
  • the resulting hydrophobic silica exhibits hydrophobicity because the silanol groups on the surface of the amorphous silica are covered with a wax layer.
  • amorphous silica is modified by hydrolysis or the like by adding organosilicon compounds such as tetramethylsilane, vinyltrichlorosilane, vinyltrimethoxysilane, epoxy group-containing silane, or dimethyldichlorosilane, or amino group-containing organic compounds. Processing is also included. Hydrophobic silica thus obtained is obtained by chemically reacting silanol groups on the surface of amorphous silica with an organic silicon compound or the like, and has hydrophobic groups such as alkyl groups on its surface.
  • hydrophobic silica examples include AEROSIL R972, AEROSIL R974, AEROSIL R976, AEROSIL R104, AEROSIL R106, AEROSIL R202, AEROSIL R805, AEROSIL R812, AEROSIL R812S, AEROSIL R816, AEROSIL R7200, AEROSIL R80, Nippon Aerosil Co., Ltd.), Cyrophobic 200, Cyrophobic 704, Cyrophobic 505, and Cyrophobic 603 (manufactured by Fuji Silysia Chemical Co., Ltd.).
  • Hydrophilic silica can be produced, for example, by not chemically modifying the silanol groups present on the surface of amorphous silica synthesized by a dry method or amorphous silica synthesized by a wet method.
  • hydrophilic silica include AEROSIL 90, AEROSIL 130, AEROSIL 150, AEROSIL 200, AEROSIL 300, AEROSIL 380, AEROSIL OX50, AEROSIL EG50, AEROSIL TT600 (manufactured by Nippon Aerosil Co., Ltd.), Silysia 250, Silysia 350, Silicia 450, Silicia 550, Silicia 740 (manufactured by Fuji Silysia Chemical Co., Ltd.) and the like.
  • the non-conductive filler is an organic phosphate
  • polyphosphates, metal phosphinates, and the like are included.
  • the phosphinic acid metal salt aluminum salt, sodium salt, potassium salt, magnesium salt, calcium salt and the like can be used, among which aluminum salt is preferable.
  • polyphosphates melamine salts, methylamine salts, ethylamine salts, diethylamine salts, triethylamine salts, ethylenediamine salts, piperazine salts, pyridine salts, triazine salts, ammonium salts and the like can be used, with melamine salts being preferred.
  • the thickness of the protective layer 20 is not particularly limited, it is preferably 1 to 100 ⁇ m, more preferably 2 to 50 ⁇ m. If the thickness of the protective layer is less than 1 ⁇ m, the protective layer is too thin and is easily damaged. If the thickness of the protective layer exceeds 100 ⁇ m, the electromagnetic wave shielding film as a whole becomes thick and difficult to handle. Also, the flexibility of the protective layer is reduced.
  • the protective layer 20 preferably further contains an epoxy resin.
  • the protective layer 20 contains an epoxy resin, it is possible to suppress the flow of the urethane resin contained in the protective layer when the electromagnetic wave shielding film 10 is arranged on the printed wiring board by hot pressing.
  • the acid value of the epoxy resin is preferably 100-500 g/eq, more preferably 150-450 g/eq.
  • the protective layer 20 may optionally contain a curing accelerator, a tackifier, an antioxidant, a pigment, a dye, a plasticizer, an ultraviolet absorber, an antifoaming agent, a leveling agent, a filler, a flame retardant, and a viscosity adjuster. agents, anti-blocking agents and the like may also be included.
  • the metal layer 30 of the electromagnetic wave shielding film 10 is not particularly limited as long as it can shield electromagnetic waves, and is preferably made of at least one selected from the group consisting of a copper layer, a silver layer and an aluminum layer. These metal layers have high conductivity and can suitably shield electromagnetic waves.
  • the thickness of the metal layer 30 is not particularly limited, it is preferably 0.01 to 10 ⁇ m. If the thickness of the metal layer is less than 0.01 ⁇ m, it is difficult to obtain a sufficient shielding effect. If the thickness of the metal layer exceeds 10 ⁇ m, the electromagnetic wave shielding film becomes difficult to bend.
  • the metal layer 30 may have through holes.
  • the electromagnetic wave shielding film 10 is hot-pressed onto the printed wiring board.
  • volatile components may occur between the conductive adhesive layer 40 and the metal layer 30 . If the metal layer 30 does not have through-holes, the volatile component expands due to heat and may separate the metal layer 30 and the conductive adhesive layer 40 from each other. However, if the metal layer 30 has through-holes, volatile components can pass through the through-holes, so that the metal layer 30 and the conductive adhesive layer 40 can be prevented from peeling off.
  • the conductive adhesive layer 40 contains an adhesive resin composition and metal particles.
  • the conductive adhesive layer 40 further includes a flame retardant, a flame retardant aid, a curing accelerator, a tackifier, an antioxidant, a pigment, a dye, a plasticizer, an ultraviolet absorber, an antifoaming agent, and a leveling agent. , fillers, viscosity modifiers and the like.
  • the material of the adhesive resin composition contained in the conductive adhesive layer 40 is not particularly limited, but may be a styrene-based resin composition, a vinyl acetate-based resin composition, a polyester-based resin composition, a polyethylene-based resin composition, or polypropylene.
  • Thermoplastic resin compositions such as resin compositions, imide resin compositions, amide resin compositions, acrylic resin compositions, phenol resin compositions, epoxy resin compositions, urethane resin compositions, melamine
  • a thermosetting resin composition such as an alkyd-based resin composition or an alkyd-based resin composition can be used.
  • the polyester-based resin composition is preferable.
  • the material of the adhesive resin composition may be one of these alone or a combination of two or more.
  • metal particles contained in the conductive adhesive layer 40 include silver, copper, nickel, aluminum, and silver-coated copper obtained by plating copper with silver. Since these metal particles have excellent conductivity, they can suitably impart conductivity to the conductive adhesive layer 40 . These metal particles may be contained singly in the conductive adhesive layer 40, or may be contained in a plurality of types.
  • the size of the metal particles is not particularly limited, but the average particle size is preferably 0.5 to 20 ⁇ m.
  • the weight ratio of the metal particles contained in the conductive adhesive layer 40 is preferably 2-60 wt %, more preferably 10-40 wt %. If the weight ratio of the metal particles is less than 2 wt %, the shielding properties of the electromagnetic wave shielding film tend to deteriorate. If the weight ratio of the metal particles exceeds 60 wt %, the conductive adhesive layer becomes brittle and the electromagnetic wave shielding film tends to break. Moreover, when the weight ratio of the metal particles is 40 wt % or less, the conductive adhesive layer can obtain anisotropic conductivity.
  • the conductive adhesive layer 40 may have isotropic conductivity or anisotropic conductivity.
  • the printed wiring board on which the electromagnetic wave shielding film 10 is arranged has good high-frequency signal transmission characteristics.
  • the thickness of the conductive adhesive layer 40 is not particularly limited and can be appropriately set as necessary, but is preferably 0.5 to 30.0 ⁇ m. If the thickness of the conductive adhesive layer is less than 0.5 ⁇ m, it becomes difficult to obtain good conductivity. If the thickness of the conductive adhesive layer exceeds 30.0 ⁇ m, the thickness of the entire electromagnetic wave shielding film becomes thick and difficult to handle.
  • An anchor coat layer may be formed between the protective layer 20 and the metal layer 30 in the electromagnetic wave shielding film 10 .
  • Materials for the anchor coat layer include urethane resin, acrylic resin, core-shell type composite resin with urethane resin as the shell and acrylic resin as the core, epoxy resin, imide resin, amide resin, melamine resin, phenol resin, and urea-formaldehyde resin. , blocked isocyanate obtained by reacting polyisocyanate with a blocking agent such as phenol, polyvinyl alcohol, polyvinylpyrrolidone, and the like.
  • the electromagnetic wave shielding film 10 has the conductive adhesive layer 40, but the electromagnetic wave shielding film of the present invention may have a non-conductive adhesive layer instead of the conductive adhesive layer.
  • FIG. 2A is a cross-sectional view schematically showing a printed wiring board preparation step in the method for manufacturing a shield printed wiring board using the electromagnetic wave shielding film of the present invention.
  • a printed wiring board 50 comprising a base film 51, a printed circuit 52 including a ground circuit 52a disposed on the base film 51, and a coverlay 53 covering the printed circuit 52 is prepared.
  • the coverlay 53 has an opening 53a that exposes the ground circuit 52a.
  • FIG. 2B is a cross-sectional view schematically showing an electromagnetic shielding film placement step in the method for manufacturing a shield printed wiring board using the electromagnetic shielding film of the present invention.
  • the electromagnetic shielding film 10 is arranged on the printed wiring board 50 so that the conductive adhesive layer 40 of the electromagnetic shielding film 10 is in contact with the coverlay 53 of the printed wiring board 50 .
  • FIG. 2C is a cross-sectional view schematically showing a hot press step in the method for manufacturing a shield printed wiring board using the electromagnetic wave shielding film of the present invention.
  • the electromagnetic wave shielding film 10 is heat-pressed onto the printed wiring board 50 by heat-pressing the printed wiring board 50 on which the electromagnetic wave shielding film 10 is arranged in the direction of the arrow.
  • the protective layer 20 contains a non-conductive filler having an average particle size of 10 ⁇ m or less, and the weight ratio of the non-conductive filler to the total weight of the protective layer 20 is 10 to 40% by weight. It is possible to prevent the urethane-based resin contained in the protective layer 20 from flowing and partially thinning the protective layer. Therefore, the protective layer 20 is less likely to be partially thin. As a result, the electromagnetic wave shielding film has good moisture resistance and bending resistance.
  • the conductive adhesive layer 40 fills the opening 53a, and the conductive adhesive layer 40 and the ground circuit 52a are brought into contact with each other. Therefore, the metal layer 30 and the ground circuit 52a are electrically connected, and the electromagnetic wave shielding property is improved.
  • Conditions for hot pressing are not particularly limited, but include, for example, conditions of 150 to 200° C., 2 to 5 MPa, and 1 to 60 minutes.
  • FIG. 2D is a cross-sectional view schematically showing an example of a shield printed wiring board manufactured using the electromagnetic wave shielding film of the present invention. Through the above steps, as shown in FIG. 2D, the shield printed wiring board 1 using the electromagnetic wave shielding film 10 can be manufactured.
  • FIG. 3 is a cross-sectional view schematically showing another example of the electromagnetic wave shielding film of the present invention.
  • the electromagnetic wave shielding film 110 shown in FIG. 3 is an electromagnetic wave shielding film in which a protective layer 120 and a conductive adhesive layer 140 are laminated in order.
  • the conductive adhesive layer 140 has isotropic conductivity and functions as a shield layer that shields electromagnetic waves.
  • the preferred aspects of the protective layer 120 are the same as those of the protective layer 120 of the electromagnetic wave shielding film 10 described above.
  • Conductive adhesive layer 140 includes an adhesive resin composition and metal particles.
  • the conductive adhesive layer 140 further includes a flame retardant, a flame retardant aid, a curing accelerator, a tackifier, an antioxidant, a pigment, a dye, a plasticizer, an ultraviolet absorber, an antifoaming agent, and a leveling agent. , fillers, viscosity modifiers and the like.
  • the material of the adhesive resin composition contained in the conductive adhesive layer 140 is not particularly limited, but may be a styrene-based resin composition, a vinyl acetate-based resin composition, a polyester-based resin composition, a polyethylene-based resin composition, or polypropylene.
  • Thermoplastic resin compositions such as resin compositions, imide resin compositions, amide resin compositions, acrylic resin compositions, phenol resin compositions, epoxy resin compositions, urethane resin compositions, melamine
  • a thermosetting resin composition such as an alkyd-based resin composition or an alkyd-based resin composition can be used.
  • the polyester-based resin composition is preferred.
  • the material of the adhesive resin composition may be one of these alone or a combination of two or more.
  • Examples of the metal particles contained in the conductive adhesive layer 140 include silver, copper, nickel, aluminum, and silver-coated copper obtained by plating copper with silver. Since these metal particles have excellent conductivity, they can suitably impart conductivity to the conductive adhesive layer 140 . These metal particles may be contained singly in the conductive adhesive layer 140, or may be contained in a plurality of types.
  • the size of the metal particles is not particularly limited, but the average particle size is preferably 0.5 to 20 ⁇ m.
  • the weight ratio of the metal particles contained in the conductive adhesive layer 140 is preferably 40% by weight or more, more preferably 40 to 60% by weight. When the weight ratio of the metal particles is 40% by weight or more, the conductive adhesive layer 140 can obtain isotropic conductivity.
  • Example 1 Urethane resin A (manufacturer: manufactured by Toyobo Co., Ltd., weight average molecular weight: 200,000) having an acid value of 3300 g/eq and a Tg of 40°C, an epoxy resin (acid value: 170 g/eq), and silica as a non-conductive filler Particles (average particle diameter: 2 ⁇ m) were kneaded at the ratio shown in Table 1 to prepare a protective layer composition.
  • the numerical value of the composition in Table 1 means the weight%.
  • a transfer film a polyethylene terephthalate film having one side subjected to release treatment was prepared.
  • the release-treated surface of the transfer film was coated with the protective layer composition and heated at 100° C. for 2 minutes in an electric oven to prepare a protective layer having a thickness of 5 ⁇ m.
  • a copper layer of 2 ⁇ m was formed on the protective layer by electroless plating. The copper layer becomes a shield layer.
  • thermoplastic polyester resin as an adhesive resin composition
  • silver-coated copper powder average particle diameter: 12 ⁇ m
  • a conductive filler 60 parts by weight of silver-coated copper powder (average particle diameter: 12 ⁇ m) as a conductive filler are kneaded to prepare a conductive adhesive.
  • the produced conductive adhesive was applied onto the copper layer and heated at 100° C. for 2 minutes using an electric oven to produce a conductive adhesive layer with a thickness of 20 ⁇ m.
  • An electromagnetic wave shielding film according to Example 1 was produced through the above steps.
  • Example 2 and 3 and Comparative Example were carried out in the same manner as in Example 1, except that the urethane resin of the type shown in Table 1 was used as the urethane resin used for the protective layer, and the composition of the protective layer was changed as shown in Table 1. Electromagnetic wave shielding films according to 1 to 8 were produced.
  • Table 1 shows the acid value, weight average molecular weight, and Tg of the urethane resins B to E in Examples and Comparative Examples.
  • FIG. 4A and 4B are schematic diagrams showing a resistance value test method.
  • a test substrate 55 was prepared in which a metal pad 52b was formed on a base film 51 and a coverlay 53 having two openings 53a for exposing the metal pad 52b was arranged. The diameter of the opening 53a was set to 1 mm.
  • the electromagnetic wave shielding film 10 according to each example and each comparative example was placed on the test substrate 55 so that the conductive adhesive layer 40 was in contact with the coverlay 53 .
  • a pressing machine was used to heat-press under the conditions of 170° C., 3 MPa, and 30 min, thereby fabricating the test shield substrate 2 shown in FIG. 4B.
  • a resistance measuring device R is connected to the two metal pads 52b, and the electrical resistance value (the electrical resistance in the thickness direction) of the conductive adhesive layer 40 of the test shield substrate 2 immediately after manufacturing is measured. value) is shown in Table 1.
  • the test shield substrate 2 was subjected to thermal shock five times under conditions of 260° C. and 1 minute, and then the electric resistance value (thickness direction) of the conductive adhesive layer 40 of the test shield substrate 2 was measured in the same manner.
  • Table 1 shows the results of measuring the electrical resistance value).
  • the test shield substrate 2 was left in a high-temperature and high-humidity environment of 85° C. and 85% RH for 500 hours. Table 1 shows the results of measuring the electrical resistance value in the vertical direction.
  • FIG. 5 is a diagram schematically showing a flex resistance test. The bending resistance of the electromagnetic wave shielding film was evaluated by the following method.
  • ⁇ Operation (i)> three copper foil patterns (copper foil thickness 12 ⁇ m, line width 8 mm) forming a circuit imitating a wiring board are formed on a base member made of a polyimide film of 25 ⁇ m, and an insulating adhesive layer is formed thereon. and a coverlay (insulating film thickness: 37.5 ⁇ m) made of a polyimide film were laminated.
  • a jig was prepared by fixing two rectangular glass epoxy plates 72 with a thickness of 0.4 mm on a baking plate 71 with a thickness of 2 mm so as to be parallel to each other. Then, the laminated body 61 was held between two glass epoxy plates 72 in a jig while being bent so that the electromagnetic wave shielding film 10 was on the outside.
  • FIG. 6 is a diagram schematically showing a blocking test.
  • the blocking resistance of the protective layer was evaluated by the following method.
  • a polyethylene terephthalate film 80 having a thickness of 50 ⁇ m, a vertical dimension of 40 mm, and a horizontal dimension of 40 mm was coated with the protective layer composition according to each example and each comparative example, and was heated at 100° C. for 2 minutes using an electric oven.
  • a specimen 81 for blocking test was produced by heating and producing a protective layer having a thickness of 5 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Surgical Instruments (AREA)

Abstract

Provided is an electromagnetic wave shield film which is less likely to cause blocking when stored in a rolled form, and which has excellent moisture resistance and bending resistance. An electromagnetic wave shield film according to the present invention in which a protective layer and a shield layer are laminated is characterized in that: the protective layer includes a urethane resin having an acid value of 2,000-4,000 g/eq and a Tg of at least 0 °C, and a non-conductive filler having an average particle diameter of at most 10 μm; and the weight percentage of the non-conductive filler to the total weight of the protective layer is 10-40 wt%.

Description

電磁波シールドフィルムelectromagnetic wave shielding film
本発明は、電磁波シールドフィルムに関する。 The present invention relates to an electromagnetic wave shielding film.
モバイル機器であるスマートフォン、タブレット端末等には、内部から発生する電磁波や外部から侵入する電磁波を遮蔽するために、電磁波シールドフィルムを貼り付けた、シールド付きフレキシブルプリント配線板(以下、「シールドプリント配線板」とも記載する)が用いられている。電磁波シールドフィルムに用いるシールド層は、蒸着、スパッタ、めっき等で形成された薄膜の金属層や、導電性フィラーを高充填配合した導電性ペースト等により形成されている。今後5G等が本格的に広がるようになれば、大容量のデータを通信するために、高周波、高速伝送化が進み、電子機器のノイズ対策はさらに必要となる。 Mobile devices such as smartphones and tablet terminals are equipped with shielded flexible printed wiring boards (hereafter referred to as "shield printed wiring (also referred to as "plate") is used. The shield layer used in the electromagnetic wave shield film is formed of a thin metal layer formed by vapor deposition, sputtering, plating, or the like, or a conductive paste containing a high content of conductive filler. In the future, when 5G, etc., will spread in earnest, high frequency and high speed transmission will advance in order to communicate large amounts of data, and noise countermeasures for electronic devices will become even more necessary.
一般的に、電磁波シールドフィルムは、電磁波を遮蔽する本体となるシールド層と、当該シールド層を外部からの衝撃や、薬品、溶剤、水等から保護するための保護層(絶縁層)とからなる。 In general, an electromagnetic wave shield film consists of a shield layer that serves as a main body that shields electromagnetic waves, and a protective layer (insulating layer) that protects the shield layer from external impacts, chemicals, solvents, water, etc. .
フレキシブルプリント配線板に配置される電磁波シールドフィルムには柔軟性が求められており、その構成要素である保護層にも柔軟性が求められている。 Flexibility is required for the electromagnetic shielding film placed on the flexible printed wiring board, and flexibility is also required for the protective layer that is a component thereof.
このようなフレキシブルプリント配線板に配置される電磁波シールドフィルムとして、特許文献1には、凹凸を有する導電性のシールド層と、前記凹凸を被覆する接着剤層とを備え、前記凹凸の最大山高さの値は、前記接着剤層の厚さよりも大きい、電磁波シールドフィルムが開示されている。 As an electromagnetic wave shielding film arranged on such a flexible printed wiring board, Patent Document 1 discloses a conductive shield layer having unevenness and an adhesive layer covering the unevenness, and the maximum peak height of the unevenness is is greater than the thickness of the adhesive layer.
また、特許文献2には、シールド層と、上記シールド層に積層された絶縁層とを備える電磁波シールドフィルムであって、上記絶縁層は、シリカ微粒子を含み、上記絶縁層中の前記シリカ微粒子の含有量は、10~50wt%であることを特徴とする電磁波シールドフィルムが開示されている。 Further, Patent Document 2 discloses an electromagnetic wave shielding film comprising a shield layer and an insulating layer laminated on the shield layer, wherein the insulating layer contains silica fine particles, and the silica fine particles in the insulating layer An electromagnetic wave shielding film is disclosed in which the content is 10 to 50 wt%.
また、特許文献3には、このような電磁波シールドフィルムに用いられる保護層用の樹脂組成物として、非晶性ポリエステル樹脂と、硬化剤と、白色顔料とを含み、上記非晶性ポリエステル樹脂は、数平均分子量Mnが20,000未満であり、ガラス転移点Tgが、40℃以上であり、上記硬化剤は、ブロックイソシアネート、ヘキサンジイソシアネートのトリメチロールプロパンアダクト体及びシクロヘキサンジイソシアネートのイソシアヌレートアダクト体からなる群から選択される少なくとも1種であることを特徴とする樹脂組成物が開示されている。 Further, in Patent Document 3, a resin composition for a protective layer used in such an electromagnetic wave shielding film contains an amorphous polyester resin, a curing agent, and a white pigment, and the amorphous polyester resin is , The number average molecular weight Mn is less than 20,000, the glass transition point Tg is 40 ° C. or higher, and the curing agent is a blocked isocyanate, a trimethylolpropane adduct of hexane diisocyanate, and an isocyanurate adduct of cyclohexane diisocyanate A resin composition is disclosed which is at least one selected from the group consisting of:
国際公開第2016/088381号WO2016/088381 特開2019-046871号公報JP 2019-046871 A 国際公開第2019/188983号WO2019/188983
一般的に、柔軟性が高い保護層はガラス転移点と架橋密度が低い。保護層のガラス転移点が低いと、電磁波シールドフィルムをロール保管する際にブロッキングが発生しやすくなるという問題がある。また、保護層を構成する樹脂の架橋密度が低いと、電磁波シールドフィルムを、プリント配線板におけるグランド回路を露出するために設けられた開口部等の段差箇所(以下、単に「プリント配線板における段差箇所」とも記載する)に熱プレスにより配置する際に、保護層に部分的に薄い箇所が生じやすくなり、保護層の物理的強度が低下したり、湿気が保護層を透過しやすくなる。その結果、電磁波シールドフィルムの耐熱性、耐湿性が低下しやすくなるという問題がある。 In general, a highly flexible protective layer has a low glass transition point and a low crosslink density. If the glass transition point of the protective layer is low, there is a problem that blocking is likely to occur when the electromagnetic wave shielding film is stored in a roll. In addition, if the cross-linking density of the resin constituting the protective layer is low, the electromagnetic wave shielding film will not be exposed to the steps such as openings provided to expose the ground circuit on the printed wiring board (hereinafter simply referred to as “steps on the printed wiring board”). ), the protective layer tends to have partially thin spots, the physical strength of the protective layer decreases, and moisture easily permeates the protective layer. As a result, there is a problem that the heat resistance and moisture resistance of the electromagnetic wave shielding film tend to deteriorate.
本発明は、上記問題点を解決するためになされた発明であり、本発明の目的は、ロール保管時にブロッキングが生じにくく、耐湿性及び耐屈曲性に優れる電磁波シールドフィルムを提供することである。 The present invention is an invention made to solve the above problems, and an object of the present invention is to provide an electromagnetic wave shielding film that is less likely to cause blocking during roll storage and has excellent moisture resistance and bending resistance.
本発明の電磁波シールドフィルムは、保護層と、シールド層とが積層された電磁波シールドフィルムであって、上記保護層は、酸価が2000~4000g/eq、かつ、Tgが0℃以上であるウレタン系樹脂と、平均粒径が10μm以下である非導電性フィラーとを含み、上記保護層の全体重量に対する上記非導電性フィラーの重量割合は、10~40重量%であることを特徴とする。 The electromagnetic shielding film of the present invention is an electromagnetic shielding film in which a protective layer and a shielding layer are laminated, and the protective layer is a urethane having an acid value of 2000 to 4000 g/eq and a Tg of 0° C. or higher. and a non-conductive filler having an average particle size of 10 μm or less, wherein the weight ratio of the non-conductive filler to the total weight of the protective layer is 10 to 40% by weight.
本発明の電磁波シールドフィルムでは、保護層に含まれるウレタン系樹脂は、酸価が2000~4000g/eqである。
酸価が上記範囲であると、架橋密度が適度な範囲になるので、電磁波シールドフィルムをプリント配線板における段差箇所に熱プレスにより配置する際に、保護層に部分的に薄い箇所が生じにくくなる。そのため、保護層の物理的強度が低下したり、湿気が保護層を透過しにくくなる。その結果、電磁波シールドフィルムの耐屈曲性及び耐湿性が良好になる。
酸価が2000g/eq未満であると、架橋密度が高くなり保護層が硬くなる。その結果、保護層の靭性が低下し、耐屈曲性が低下しやすくなる。
酸価が4000g/eqを超えると、架橋密度が低くなり、電磁波シールドフィルムをプリント配線板における段差箇所に熱プレスにより配置する際に、保護層に部分的に薄い箇所が生じやすくなる。その結果、耐湿性が極端に低下しやすくなる。
In the electromagnetic wave shielding film of the present invention, the urethane resin contained in the protective layer has an acid value of 2000 to 4000 g/eq.
When the acid value is within the above range, the cross-linking density is within a suitable range, so that when the electromagnetic wave shielding film is placed on the stepped portion of the printed wiring board by hot pressing, the protective layer is less likely to have partially thin portions. . As a result, the physical strength of the protective layer is reduced, and moisture does not easily permeate the protective layer. As a result, the flex resistance and moisture resistance of the electromagnetic wave shielding film are improved.
If the acid value is less than 2000 g/eq, the crosslink density becomes high and the protective layer becomes hard. As a result, the toughness of the protective layer is lowered, and the bending resistance tends to be lowered.
If the acid value exceeds 4000 g/eq, the cross-linking density becomes low, and when the electromagnetic wave shielding film is placed on the stepped portion of the printed wiring board by hot pressing, the protective layer tends to be partially thinned. As a result, the moisture resistance tends to be extremely lowered.
本発明の電磁波シールドフィルムでは、保護層に含まれるウレタン系樹脂は、Tgが0℃以上である。
そのため、本発明の電磁波シールドフィルムをロール保管した際に、ブロッキングが生じにくくなる。
In the electromagnetic wave shielding film of the present invention, the urethane-based resin contained in the protective layer has a Tg of 0° C. or higher.
Therefore, when the electromagnetic wave shielding film of the present invention is stored in a roll, blocking is less likely to occur.
本発明の電磁波シールドフィルムでは、保護層が、平均粒径が10μm以下である非導電性フィラーを含み、保護層の全体重量に対する非導電性フィラーの重量割合が、10~40重量%である。
保護層が上記重量割合の平均粒径が10μm以下である非導電性フィラーを含むと、電磁波シールドフィルムをプリント配線板における段差箇所に熱プレスにより配置する際に、保護層に含まれるウレタン系樹脂が流動して保護層の一部が薄くなることを防ぐことができる。その結果、電磁波シールドフィルムの耐湿性及び耐屈曲性が良好になる。
非導電性フィラーの重量割合が10重量%未満であると、非導電性フィラーを含む場合の効果が得られにくくなり、耐湿性が低下しやすくなる。
非導電性フィラーの重量割合が40重量%を超えると、保護層が硬くなり柔軟性が低下しやすくなる。その結果、耐屈曲性が低下しやすくなる。
In the electromagnetic wave shielding film of the present invention, the protective layer contains a non-conductive filler having an average particle size of 10 μm or less, and the weight ratio of the non-conductive filler to the total weight of the protective layer is 10 to 40% by weight.
If the protective layer contains a non-conductive filler having an average particle diameter of 10 μm or less in the above weight ratio, the urethane resin contained in the protective layer is used when the electromagnetic wave shielding film is placed on the stepped portion of the printed wiring board by hot pressing. can be prevented from flowing and part of the protective layer becoming thin. As a result, the electromagnetic wave shielding film has good moisture resistance and bending resistance.
If the weight ratio of the non-conductive filler is less than 10% by weight, it becomes difficult to obtain the effect of containing the non-conductive filler, and moisture resistance tends to decrease.
If the weight ratio of the non-conductive filler exceeds 40% by weight, the protective layer becomes hard and the flexibility tends to decrease. As a result, the bending resistance tends to decrease.
本発明の電磁波シールドフィルムでは、上記保護層が、さらにエポキシ系樹脂を含むことが好ましい。
保護層がエポキシ系樹脂を含むと、電磁波シールドフィルムをプリント配線板に熱プレスにより配置する際に、保護層に含まれるウレタン系樹脂が流動することを抑制することができる。
In the electromagnetic wave shielding film of the present invention, the protective layer preferably further contains an epoxy resin.
When the protective layer contains an epoxy resin, it is possible to suppress the flow of the urethane resin contained in the protective layer when the electromagnetic wave shielding film is arranged on the printed wiring board by hot pressing.
本発明の電磁波シールドフィルムでは、上記ウレタン系樹脂と、上記エポキシ系樹脂との重量比が、ウレタン系樹脂/エポキシ系樹脂=4~49であることが好ましい。
上記重量比が4未満であると、エポキシ系樹脂が多くなりすぎ、保護層が硬くなりやすくなる。その結果、保護層の柔軟性が低下し、耐屈曲性が低下する。
上記重量比が49を超えると、エポキシ系樹脂が少なくなり、保護層が柔らかくなり、エポキシ系樹脂を含む効果を得られにくくなる。
In the electromagnetic wave shielding film of the present invention, it is preferable that the weight ratio of the urethane-based resin and the epoxy-based resin is urethane-based resin/epoxy-based resin=4 to 49.
If the weight ratio is less than 4, the amount of the epoxy resin is too large, and the protective layer tends to be hard. As a result, the flexibility of the protective layer is lowered and the bending resistance is lowered.
If the weight ratio exceeds 49, the amount of the epoxy resin decreases, the protective layer becomes soft, and it becomes difficult to obtain the effect of including the epoxy resin.
本発明の電磁波シールドフィルムでは、上記ウレタン系樹脂のTgが、0~60℃であることが好ましい。
ウレタン系樹脂のTgが、0~60℃であると、本発明の電磁波シールドフィルムをプリント配線板に熱プレスする際に保護層が適度な流動性を有するため、保護層の一部が薄くなって電磁波シールドフィルムの耐湿性及び耐屈曲性が低下することを防ぐことができる。
In the electromagnetic wave shielding film of the present invention, the urethane-based resin preferably has a Tg of 0 to 60°C.
When the Tg of the urethane-based resin is 0 to 60° C., the protective layer has appropriate fluidity when the electromagnetic wave shielding film of the present invention is hot-pressed onto a printed wiring board, so that part of the protective layer becomes thin. It is possible to prevent the moisture resistance and bending resistance of the electromagnetic wave shielding film from deteriorating.
本発明の電磁波シールドフィルムでは、上記ウレタン系樹脂の重量平均分子量は、100,000~2,000,000であることが好ましく、170,000~500,000であることがより好ましい。
ウレタン系樹脂の重量平均分子量は上記範囲であると、ウレタン系樹脂が適度な硬さ及び流動性になるので、電磁波シールドフィルムの耐熱性、耐湿性及び耐屈曲性を向上させることができる。
In the electromagnetic wave shielding film of the present invention, the urethane resin preferably has a weight average molecular weight of 100,000 to 2,000,000, more preferably 170,000 to 500,000.
When the weight-average molecular weight of the urethane-based resin is within the above range, the urethane-based resin has appropriate hardness and fluidity, so that the electromagnetic wave shielding film can be improved in heat resistance, moisture resistance, and bending resistance.
本発明の電磁波シールドフィルムでは、上記非導電性フィラーは、シリカ及び有機リン酸塩からなる群から選択される少なくとも1種であることが好ましい。
これらの材料からなる非導電性フィラーは、電磁波シールドフィルムの耐湿性及び耐屈曲性を好適に向上させることができる。
In the electromagnetic wave shielding film of the present invention, the non-conductive filler is preferably at least one selected from the group consisting of silica and organic phosphates.
Non-conductive fillers made of these materials can favorably improve the moisture resistance and bending resistance of the electromagnetic wave shielding film.
本発明の電磁波シールドフィルムでは、上記シールド層は、導電性接着剤層であってもよい。
また、本発明の電磁波シールドフィルムでは、上記シールド層は、金属層であり、上記シールド層の上記保護層が積層されていない側の面には、さらに接着剤層が積層されていてもよい。
本発明の電磁波シールドフィルムは、いずれの態様であっても好適に電磁波を遮蔽することができる。また、電磁波シールドフィルムのロール保管時にブロッキングが生じにくく、電磁波シールドフィルムの耐熱性、耐湿性及び耐屈曲性が充分に高くなる。
In the electromagnetic wave shielding film of the present invention, the shield layer may be a conductive adhesive layer.
In the electromagnetic wave shielding film of the present invention, the shield layer may be a metal layer, and an adhesive layer may be further laminated on the side of the shield layer on which the protective layer is not laminated.
The electromagnetic wave shielding film of the present invention can suitably shield electromagnetic waves in any aspect. In addition, blocking hardly occurs when the electromagnetic wave shielding film is stored in a roll, and the heat resistance, moisture resistance, and bending resistance of the electromagnetic wave shielding film are sufficiently increased.
本発明の電磁波シールドフィルムでは、保護層が、酸価が2000~4000g/eq、かつ、Tgが0℃以上であるウレタン系樹脂と、平均粒径が10μm以下である非導電性フィラーとを含み、保護層の全体重量に対する非導電性フィラーの重量割合が、10~40重量%である。
そのため、ウレタン系樹脂の架橋密度が適度な範囲となり、電磁波シールドフィルムの耐屈曲性及び耐湿性が良好になる。また、ウレタン系樹脂のTgが0℃以上であるので、電磁波シールドフィルムをロール保管した際に、ブロッキングが生じにくくなる。また、保護層に所定の非導電性フィラーが含まれることにより、電磁波シールドフィルムをプリント配線板に熱プレスにより配置する際に、保護層に含まれるウレタン系樹脂が流動して保護層の一部が薄くなることを防ぐことができる。そのため、保護層の部分的に薄い箇所が生じにくくなる。その結果、電磁波シールドフィルムの耐湿性及び耐屈曲性が良好になる。
In the electromagnetic wave shielding film of the present invention, the protective layer contains a urethane resin having an acid value of 2000 to 4000 g/eq and a Tg of 0° C. or higher, and a non-conductive filler having an average particle size of 10 μm or less. , the weight ratio of the non-conductive filler to the total weight of the protective layer is 10 to 40% by weight.
Therefore, the cross-linking density of the urethane-based resin is in an appropriate range, and the flex resistance and moisture resistance of the electromagnetic wave shielding film are improved. In addition, since the Tg of the urethane-based resin is 0° C. or higher, blocking hardly occurs when the electromagnetic wave shielding film is stored in a roll. In addition, since the protective layer contains a predetermined non-conductive filler, when the electromagnetic wave shielding film is placed on the printed wiring board by heat pressing, the urethane resin contained in the protective layer flows and part of the protective layer thinning can be prevented. Therefore, the protective layer is less likely to have partially thin portions. As a result, the electromagnetic wave shielding film has good moisture resistance and bending resistance.
図1は、本発明の電磁波シールドフィルムの一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film of the present invention. 図2Aは、本発明の電磁波シールドフィルムを用いたシールドプリント配線板の製造方法における、プリント配線板準備工程を模式的に示す断面図である。FIG. 2A is a cross-sectional view schematically showing a printed wiring board preparation step in the method for manufacturing a shield printed wiring board using the electromagnetic wave shielding film of the present invention. 図2Bは、本発明の電磁波シールドフィルムを用いたシールドプリント配線板の製造方法における、電磁波シールドフィルム配置工程を模式的に示す断面図である。FIG. 2B is a cross-sectional view schematically showing an electromagnetic shielding film placement step in the method for manufacturing a shield printed wiring board using the electromagnetic shielding film of the present invention. 図2Cは、本発明の電磁波シールドフィルムを用いたシールドプリント配線板の製造方法における、熱プレス工程を模式的に示す断面図である。FIG. 2C is a cross-sectional view schematically showing a hot press step in the method for manufacturing a shield printed wiring board using the electromagnetic wave shielding film of the present invention. 図2Dは、本発明の電磁波シールドフィルムを用いて製造されたシールドプリント配線板の一例を模式的に示す断面図である。FIG. 2D is a cross-sectional view schematically showing an example of a shield printed wiring board manufactured using the electromagnetic wave shielding film of the present invention. 図3は、本発明の電磁波シールドフィルムの別の一例を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing another example of the electromagnetic wave shielding film of the present invention. 図4Aは、抵抗値試験の方法を示す模式図である。FIG. 4A is a schematic diagram showing a resistance value test method. 図4Bは、抵抗値試験の方法を示す模式図である。FIG. 4B is a schematic diagram showing a resistance value test method. 図5は、耐屈曲性試験を模式的に示す図である。FIG. 5 is a diagram schematically showing a flex resistance test. 図6は、ブロッキング試験を模式的に示す図である。FIG. 6 is a diagram schematically showing a blocking test.
以下、本発明の電磁波シールドフィルムについて具体的に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。 The electromagnetic wave shielding film of the present invention will be specifically described below. However, the present invention is not limited to the following embodiments, and can be appropriately modified and applied without changing the gist of the present invention.
図1は、本発明の電磁波シールドフィルムの一例を模式的に示す断面図である。
図1に示す電磁波シールドフィルム10は、保護層20と、金属層30と、導電性接着剤層40とが順に積層された電磁波シールドフィルムである。
電磁波シールドフィルム10において、金属層30は電磁波を遮蔽するシールド層として機能する。
各構成について以下に説明する。
FIG. 1 is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film of the present invention.
The electromagnetic wave shielding film 10 shown in FIG. 1 is an electromagnetic wave shielding film in which a protective layer 20, a metal layer 30, and a conductive adhesive layer 40 are laminated in order.
In the electromagnetic wave shielding film 10, the metal layer 30 functions as a shield layer for shielding electromagnetic waves.
Each configuration will be described below.
(保護層)
電磁波シールドフィルム10において、保護層20は、ウレタン系樹脂及び非導電性フィラーを含む。
(protective layer)
In the electromagnetic wave shielding film 10, the protective layer 20 contains urethane-based resin and non-conductive filler.
保護層20に含まれるウレタン系樹脂は、酸価が2000~4000g/eqである。酸価は、2100~3900g/eqであることが好ましく、2500~3500g/eqであることがより好ましい。
酸価が上記範囲であると、架橋密度が適度な範囲になるので、電磁波シールドフィルムをプリント配線板における段差箇所に熱プレスにより配置する際に、保護層に部分的に薄い箇所が生じにくくなる。そのため、保護層の物理的強度が低下したり、湿気が保護層を透過しにくくなる。その結果、電磁波シールドフィルムの耐屈曲性及び耐湿性が良好になる。
酸価が2000g/eq未満であると、架橋密度が高くなり、保護層が硬くなる。その結果、保護層の靭性が低下し、耐屈曲性が低下しやすくなる。
酸価が4000g/eqを超えると、架橋密度が低くなり、電磁波シールドフィルムをプリント配線板における段差箇所に熱プレスにより配置する際に、保護層に部分的に薄い箇所が生じやすくなる。その結果、耐湿性が極端に低下しやすくなる。
The urethane-based resin contained in the protective layer 20 has an acid value of 2000 to 4000 g/eq. The acid value is preferably 2100-3900 g/eq, more preferably 2500-3500 g/eq.
When the acid value is within the above range, the cross-linking density is within a suitable range, so that when the electromagnetic wave shielding film is placed on the stepped portion of the printed wiring board by hot pressing, the protective layer is less likely to have partially thin portions. . As a result, the physical strength of the protective layer is reduced, and moisture does not easily permeate the protective layer. As a result, the flex resistance and moisture resistance of the electromagnetic wave shielding film are improved.
If the acid value is less than 2000 g/eq, the crosslink density becomes high and the protective layer becomes hard. As a result, the toughness of the protective layer is lowered, and the bending resistance tends to be lowered.
If the acid value exceeds 4000 g/eq, the cross-linking density becomes low, and when the electromagnetic wave shielding film is placed on the stepped portion of the printed wiring board by hot pressing, the protective layer tends to be partially thinned. As a result, the moisture resistance tends to be extremely lowered.
保護層20に含まれるウレタン系樹脂は、Tgが0℃以上である。Tgは、0~60℃であることが好ましく、30~60℃であることがより好ましい。
ウレタン系樹脂のTgが0℃以上であると、電磁波シールドフィルム10をロール保管した際に、ブロッキングが生じにくくなる。
また、ウレタン系樹脂のTgが0~60℃であると、本発明の電磁波シールドフィルムをプリント配線板に熱プレスする際に保護層が適度な流動性となる。
また、本発明の電磁波シールドフィルムを作製する場合、転写フィルムに保護層を形成する場合がある。この際、保護層と転写フィルムの密着性が向上する。
なお、ウレタン系樹脂のTgは、JIS K7121における示差走査熱量測定(DSC)に準拠して測定した値を意味する。
The urethane-based resin contained in the protective layer 20 has a Tg of 0° C. or higher. Tg is preferably 0 to 60°C, more preferably 30 to 60°C.
When the Tg of the urethane-based resin is 0° C. or higher, blocking is less likely to occur when the electromagnetic wave shielding film 10 is stored in a roll.
Further, when the Tg of the urethane-based resin is 0 to 60° C., the protective layer has appropriate fluidity when the electromagnetic wave shielding film of the present invention is hot-pressed onto a printed wiring board.
Moreover, when producing the electromagnetic wave shielding film of this invention, a protective layer may be formed in a transfer film. At this time, the adhesion between the protective layer and the transfer film is improved.
The Tg of the urethane-based resin means a value measured according to differential scanning calorimetry (DSC) in JIS K7121.
ウレタン系樹脂の重量平均分子量は、100,000~2,000,000であることが好ましく、170,000~500,000であることがより好ましい。
ウレタン系樹脂の重量平均分子量は上記範囲であると、ウレタン系樹脂が適度な硬さ及び流動性になるので、保護層の耐熱性、耐湿性及び耐屈曲性を向上させることができる。
なお、ウレタン系樹脂の重量平均分子量は、以下の条件のゲルパーミエーションクロマトグラフィー(GPC)で測定することができる。
測定器:Alliance GPC System(Waters製)
カラム:Shodex GPC KF-806L(昭和電工)
カラム温度:40℃
試料濃度:0.05wt%/THF
注入量:10μL
標準試料:東ソー:標準PS 500、Shodex標準PS SM-105(セット)
The weight average molecular weight of the urethane resin is preferably 100,000 to 2,000,000, more preferably 170,000 to 500,000.
When the weight-average molecular weight of the urethane-based resin is within the above range, the urethane-based resin has appropriate hardness and fluidity, so that the heat resistance, moisture resistance, and flex resistance of the protective layer can be improved.
In addition, the weight average molecular weight of the urethane-based resin can be measured by gel permeation chromatography (GPC) under the following conditions.
Measuring instrument: Alliance GPC System (manufactured by Waters)
Column: Shodex GPC KF-806L (Showa Denko)
Column temperature: 40°C
Sample concentration: 0.05 wt%/THF
Injection volume: 10 μL
Standard sample: Tosoh: standard PS 500, Shodex standard PS SM-105 (set)
保護層20に含まれる非導電性フィラーは、平均粒径が10μm以下であり、また、保護層20の全体重量に対する非導電性フィラーの重量割合は、10~40重量%である。また、非導電性フィラーの重量割合は、10~35重量%であることが好ましく、10~25質量%であることがより好ましい。
保護層20が上記重量割合の非導電性フィラーを含むと、電磁波シールドフィルムをプリント配線板に熱プレスにより配置する際に、保護層に含まれるウレタン系樹脂が流動して保護層の一部が薄くなることを防ぐことができる。そのため、保護層の部分的に薄い箇所が生じにくくなる。その結果、電磁波シールドフィルムの耐湿性及び耐屈曲性が良好になる。特に非導電性フィラーの重量割合が10~25質量%であると、電磁波シールドフィルムの耐屈曲性がより良好になる。
非導電性フィラーの重量割合が10重量%未満であると、非導電性フィラーを含む場合の効果が得られにくくなり、耐湿性が低下しやすくなる。
非導電性フィラーの重量割合が40重量%を超えると、保護層が硬くなり柔軟性が低下しやすくなる。その結果、耐屈曲性が低下しやすくなる。
The non-conductive filler contained in the protective layer 20 has an average particle diameter of 10 μm or less, and the weight ratio of the non-conductive filler to the total weight of the protective layer 20 is 10 to 40% by weight. Also, the weight ratio of the non-conductive filler is preferably 10 to 35% by weight, more preferably 10 to 25% by weight.
When the protective layer 20 contains the non-conductive filler in the above weight ratio, the urethane-based resin contained in the protective layer flows when the electromagnetic wave shielding film is placed on the printed wiring board by hot pressing, and a part of the protective layer is partially removed. It can prevent thinning. Therefore, the protective layer is less likely to have partially thin portions. As a result, the electromagnetic wave shielding film has good moisture resistance and bending resistance. In particular, when the weight ratio of the non-conductive filler is 10 to 25% by mass, the flex resistance of the electromagnetic wave shielding film becomes better.
If the weight ratio of the non-conductive filler is less than 10% by weight, it becomes difficult to obtain the effect of containing the non-conductive filler, and moisture resistance tends to decrease.
If the weight ratio of the non-conductive filler exceeds 40% by weight, the protective layer becomes hard and the flexibility tends to decrease. As a result, the bending resistance tends to decrease.
また、非導電性フィラーは、平均粒径が100nm~10μmであることが好ましい。
非導電性フィラーの平均粒径が100nm以上であると、保護層に含まれるウレタン系樹脂が流動して保護層の一部が薄くなることを好適に防ぐことができる。
非導電性フィラーの平均粒径が10μm以下であると、保護層全体の厚さを薄くすることができる。
Also, the non-conductive filler preferably has an average particle size of 100 nm to 10 μm.
When the average particle diameter of the non-conductive filler is 100 nm or more, it is possible to suitably prevent the urethane-based resin contained in the protective layer from flowing and partially thinning the protective layer.
When the average particle size of the non-conductive filler is 10 µm or less, the thickness of the entire protective layer can be reduced.
非導電性フィラーは、シリカ及び有機リン酸塩からなる群から選択される少なくとも1種であることが好ましい。これらの中ではシリカであることが好ましい。
これらの材料からなる非導電性フィラーは、電磁波シールドフィルムの耐湿性及び耐屈曲性を好適に向上させることができる。
The non-conductive filler is preferably at least one selected from the group consisting of silica and organic phosphates. Among these, silica is preferred.
Non-conductive fillers made of these materials can favorably improve the moisture resistance and bending resistance of the electromagnetic wave shielding film.
非導電性フィラーがシリカである場合、コロイダルシリカ、フュームドシリカ、湿式法により合成された湿式シリカ、乾式法により合成された乾式シリカ、多孔性シリカ、無孔性シリカ、疎水性シリカ、各種表面処理を施した親水性シリカであってもよい。 When the non-conductive filler is silica, colloidal silica, fumed silica, wet silica synthesized by wet method, dry silica synthesized by dry method, porous silica, non-porous silica, hydrophobic silica, various surfaces It may be treated hydrophilic silica.
疎水性シリカは、例えば、乾式法で合成された非晶質シリカ又は湿式法で合成された非晶質シリカの表面に存在するシラノール基に、疎水性を付与するための表面処理を施すことで製造することができる。
このような表面処理としては、例えば、非晶質シリカの表面を、パラフィンワックス、カルナウバワックス、アミドワックス、ポリエチレンワックスなどのワックス類で被覆する処理が挙げられる。得られる疎水性シリカは、非晶質シリカ表面のシラノール基がワックス層により覆われるため、疎水性を示す。また、非晶質シリカにテトラメチルシラン、ビニルトリクロロシラン、ビニルトリメトキシシラン、エポキシ基含有シラン、ジメチルジクロロシランなどの有機ケイ素化合物やアミノ基含有有機化合物などを添加し、加水分解等で変性する処理も挙げられる。このようにして得られる疎水性シリカは、非晶質シリカ表面のシラノール基が、有機ケイ素化合物などと化学反応したものであり、その表面にアルキル基などの疎水性基を有している。
Hydrophobic silica is obtained, for example, by subjecting the silanol groups present on the surface of amorphous silica synthesized by a dry method or amorphous silica synthesized by a wet method to a surface treatment for imparting hydrophobicity. can be manufactured.
Examples of such surface treatment include treatment of coating the surface of amorphous silica with waxes such as paraffin wax, carnauba wax, amide wax, and polyethylene wax. The resulting hydrophobic silica exhibits hydrophobicity because the silanol groups on the surface of the amorphous silica are covered with a wax layer. In addition, amorphous silica is modified by hydrolysis or the like by adding organosilicon compounds such as tetramethylsilane, vinyltrichlorosilane, vinyltrimethoxysilane, epoxy group-containing silane, or dimethyldichlorosilane, or amino group-containing organic compounds. Processing is also included. Hydrophobic silica thus obtained is obtained by chemically reacting silanol groups on the surface of amorphous silica with an organic silicon compound or the like, and has hydrophobic groups such as alkyl groups on its surface.
このような疎水性シリカとしては、AEROSIL R972、AEROSIL R974、AEROSIL R976、AEROSIL R104、AEROSIL R106、AEROSIL R202、AEROSIL R805、AEROSIL R812、AEROSIL R812S、AEROSIL R816、AEROSIL R7200、AEROSIL R8200、AEROSIL R9200(以上、日本アエロジル(株)製)、サイロホービック200、サイロホービック704、サイロホービック505、サイロホービック603(以上、富士シリシア化学株式会社製)等が挙げられる。 Examples of such hydrophobic silica include AEROSIL R972, AEROSIL R974, AEROSIL R976, AEROSIL R104, AEROSIL R106, AEROSIL R202, AEROSIL R805, AEROSIL R812, AEROSIL R812S, AEROSIL R816, AEROSIL R7200, AEROSIL R80, Nippon Aerosil Co., Ltd.), Cyrophobic 200, Cyrophobic 704, Cyrophobic 505, and Cyrophobic 603 (manufactured by Fuji Silysia Chemical Co., Ltd.).
親水性シリカは、例えば、乾式法で合成された非晶質シリカ又は湿式法で合成された非晶質シリカの表面に存在するシラノール基に、化学修飾を行わないことで製造することができる。
このような親水性シリカとしては、AEROSIL 90、AEROSIL 130、AEROSIL 150、AEROSIL 200、AEROSIL 300、AEROSIL 380、AEROSIL OX50、AEROSIL EG50、AEROSIL TT600(以上、日本アエロジル(株)製)、サイリシア250、サイリシア350、サイリシア450、サイリシア550、サイリシア740(以上、富士シリシア化学株式会社製)等が挙げられる。
Hydrophilic silica can be produced, for example, by not chemically modifying the silanol groups present on the surface of amorphous silica synthesized by a dry method or amorphous silica synthesized by a wet method.
Examples of such hydrophilic silica include AEROSIL 90, AEROSIL 130, AEROSIL 150, AEROSIL 200, AEROSIL 300, AEROSIL 380, AEROSIL OX50, AEROSIL EG50, AEROSIL TT600 (manufactured by Nippon Aerosil Co., Ltd.), Silysia 250, Silysia 350, Silicia 450, Silicia 550, Silicia 740 (manufactured by Fuji Silysia Chemical Co., Ltd.) and the like.
非導電性フィラーが有機リン酸塩である場合、ポリリン酸塩及びホスフィン酸金属塩等が挙げられる。ホスフィン酸金属塩としては、アルミニウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、及びカルシウム塩等を用いることができ、中でもアルミニウム塩が好ましい。ポリリン酸塩としては、メラミン塩、メチルアミン塩、エチルアミン塩、ジエチルアミン塩、トリエチルアミン塩、エチレンジアミン塩、ピペラジン塩、ピリジン塩、トリアジン塩、及びアンモニウム塩等を用いることができ、中でもメラミン塩が好ましい。 When the non-conductive filler is an organic phosphate, polyphosphates, metal phosphinates, and the like are included. As the phosphinic acid metal salt, aluminum salt, sodium salt, potassium salt, magnesium salt, calcium salt and the like can be used, among which aluminum salt is preferable. As polyphosphates, melamine salts, methylamine salts, ethylamine salts, diethylamine salts, triethylamine salts, ethylenediamine salts, piperazine salts, pyridine salts, triazine salts, ammonium salts and the like can be used, with melamine salts being preferred.
保護層20の厚さは、特に限定されないが、1~100μmであることが好ましく、2~50μmであることがより好ましい。
保護層の厚さが1μm未満であると、保護層が薄すぎるので破損しやすくなる。
保護層の厚さが100μmを超えると、電磁波シールドフィルム全体が厚くなり、扱いにくくなる。また、保護層の柔軟性が低下する。
Although the thickness of the protective layer 20 is not particularly limited, it is preferably 1 to 100 μm, more preferably 2 to 50 μm.
If the thickness of the protective layer is less than 1 μm, the protective layer is too thin and is easily damaged.
If the thickness of the protective layer exceeds 100 μm, the electromagnetic wave shielding film as a whole becomes thick and difficult to handle. Also, the flexibility of the protective layer is reduced.
保護層20は、さらにエポキシ系樹脂を有することが好ましい。
保護層20がエポキシ系樹脂を含むと、電磁波シールドフィルム10をプリント配線板に熱プレスにより配置する際に、保護層に含まれるウレタン系樹脂が流動することを抑制することができる。
The protective layer 20 preferably further contains an epoxy resin.
When the protective layer 20 contains an epoxy resin, it is possible to suppress the flow of the urethane resin contained in the protective layer when the electromagnetic wave shielding film 10 is arranged on the printed wiring board by hot pressing.
エポキシ系樹脂の酸価は、100~500g/eqであることが好ましく、150~450g/eqであることがより好ましい。 The acid value of the epoxy resin is preferably 100-500 g/eq, more preferably 150-450 g/eq.
電磁波シールドフィルム10では、保護層20におけるウレタン系樹脂と、エポキシ系樹脂との重量比は、ウレタン系樹脂/エポキシ系樹脂=4~49であることが好ましく、10~40であることがより好ましい。
上記重量比が4未満であると、エポキシ系樹脂が多くなりすぎ、保護層が硬くなりやすくなる。その結果、保護層の柔軟性が低下し、耐屈曲性が低下する。
上記重量比が49を超えると、エポキシ系樹脂が少なくなり、保護層が柔らかくなり、エポキシ系樹脂を含む効果を得られにくくなる。
In the electromagnetic wave shielding film 10, the weight ratio of the urethane-based resin and the epoxy-based resin in the protective layer 20 is preferably urethane-based resin/epoxy-based resin=4 to 49, and more preferably 10 to 40. .
If the weight ratio is less than 4, the amount of the epoxy resin is too large, and the protective layer tends to be hard. As a result, the flexibility of the protective layer is lowered and the bending resistance is lowered.
If the weight ratio exceeds 49, the amount of the epoxy resin decreases, the protective layer becomes soft, and it becomes difficult to obtain the effect of including the epoxy resin.
保護層20には、必要に応じて、硬化促進剤、粘着性付与剤、酸化防止剤、顔料、染料、可塑剤、紫外線吸収剤、消泡剤、レベリング剤、充填材、難燃剤、粘度調節剤、ブロッキング防止剤等が含まれていてもよい。 The protective layer 20 may optionally contain a curing accelerator, a tackifier, an antioxidant, a pigment, a dye, a plasticizer, an ultraviolet absorber, an antifoaming agent, a leveling agent, a filler, a flame retardant, and a viscosity adjuster. agents, anti-blocking agents and the like may also be included.
(金属層)
電磁波シールドフィルム10の金属層30は、電磁波をシールドできれば、特に限定されず、銅層、銀層及びアルミニウム層からなる群から選択される少なくとも1種からなることが好ましい。
これらの金属層は、導電性が高く、好適に電磁波をシールドすることができる。
(metal layer)
The metal layer 30 of the electromagnetic wave shielding film 10 is not particularly limited as long as it can shield electromagnetic waves, and is preferably made of at least one selected from the group consisting of a copper layer, a silver layer and an aluminum layer.
These metal layers have high conductivity and can suitably shield electromagnetic waves.
金属層30の厚さは特に限定されないが、0.01~10μmであることが好ましい。
金属層の厚さが0.01μm未満では、充分なシールド効果が得られにくい。
金属層の厚さが10μmを超えると電磁波シールドフィルムが屈曲しにくくなる。
Although the thickness of the metal layer 30 is not particularly limited, it is preferably 0.01 to 10 μm.
If the thickness of the metal layer is less than 0.01 μm, it is difficult to obtain a sufficient shielding effect.
If the thickness of the metal layer exceeds 10 μm, the electromagnetic wave shielding film becomes difficult to bend.
電磁波シールドフィルム10では、金属層30は、貫通孔を有していてもよい。
電磁波シールドフィルム10は、プリント配線板に熱プレスされることになる。この際、導電性接着剤層40と、金属層30との間に揮発成分が生じることがある。
金属層30に貫通孔が形成されていない場合、この揮発成分が熱により膨張し、金属層30と導電性接着剤層40を剥離することがある。しかし、金属層30に貫通孔が形成されていると、揮発成分が貫通孔を通過することができるので、金属層30と導電性接着剤層40とが剥離することを防ぐことができる。
In the electromagnetic wave shielding film 10, the metal layer 30 may have through holes.
The electromagnetic wave shielding film 10 is hot-pressed onto the printed wiring board. At this time, volatile components may occur between the conductive adhesive layer 40 and the metal layer 30 .
If the metal layer 30 does not have through-holes, the volatile component expands due to heat and may separate the metal layer 30 and the conductive adhesive layer 40 from each other. However, if the metal layer 30 has through-holes, volatile components can pass through the through-holes, so that the metal layer 30 and the conductive adhesive layer 40 can be prevented from peeling off.
(導電性接着剤層)
導電性接着剤層40は、接着性樹脂組成物と金属粒子とを含む。
なお、導電性接着剤層40は、さらに、難燃剤、難燃助剤、硬化促進剤、粘着性付与剤、酸化防止剤、顔料、染料、可塑剤、紫外線吸収剤、消泡剤、レベリング剤、充填材、粘度調節剤等を含んでいてもよい。
(Conductive adhesive layer)
The conductive adhesive layer 40 contains an adhesive resin composition and metal particles.
The conductive adhesive layer 40 further includes a flame retardant, a flame retardant aid, a curing accelerator, a tackifier, an antioxidant, a pigment, a dye, a plasticizer, an ultraviolet absorber, an antifoaming agent, and a leveling agent. , fillers, viscosity modifiers and the like.
導電性接着剤層40に含まれる接着性樹脂組成物の材料としては、特に限定されないが、スチレン系樹脂組成物、酢酸ビニル系樹脂組成物、ポリエステル系樹脂組成物、ポリエチレン系樹脂組成物、ポリプロピレン系樹脂組成物、イミド系樹脂組成物、アミド系樹脂組成物、アクリル系樹脂組成物等の熱可塑性樹脂組成物や、フェノール系樹脂組成物、エポキシ系樹脂組成物、ウレタン系樹脂組成物、メラミン系樹脂組成物、アルキッド系樹脂組成物等の熱硬化性樹脂組成物等を用いることができる。
これらの中では、ポリエステル系樹脂組成物であることが好ましい。
接着性樹脂組成物の材料はこれらの1種単独であってもよく、2種以上の組み合わせであってもよい。
The material of the adhesive resin composition contained in the conductive adhesive layer 40 is not particularly limited, but may be a styrene-based resin composition, a vinyl acetate-based resin composition, a polyester-based resin composition, a polyethylene-based resin composition, or polypropylene. Thermoplastic resin compositions such as resin compositions, imide resin compositions, amide resin compositions, acrylic resin compositions, phenol resin compositions, epoxy resin compositions, urethane resin compositions, melamine A thermosetting resin composition such as an alkyd-based resin composition or an alkyd-based resin composition can be used.
Among these, the polyester-based resin composition is preferable.
The material of the adhesive resin composition may be one of these alone or a combination of two or more.
導電性接着剤層40に含まれる金属粒子としては、銀、銅、ニッケル、アルミニウム、銅に銀めっきを施した銀コート銅等が挙げられる。
これらの金属粒子は導電性に優れるので、導電性接着剤層40に好適に導電性を付与することができる。
これらの金属粒子は、導電性接着剤層40に一種単独で含まれていてもよく、複数種類が含まれていてもよい。
Examples of metal particles contained in the conductive adhesive layer 40 include silver, copper, nickel, aluminum, and silver-coated copper obtained by plating copper with silver.
Since these metal particles have excellent conductivity, they can suitably impart conductivity to the conductive adhesive layer 40 .
These metal particles may be contained singly in the conductive adhesive layer 40, or may be contained in a plurality of types.
金属粒子の大きさは特に限定されないが、平均粒径が0.5~20μmであることが好ましい。 The size of the metal particles is not particularly limited, but the average particle size is preferably 0.5 to 20 μm.
導電性接着剤層40に含まれる金属粒子の重量割合は、2~60wt%であることが好ましく、10~40wt%であることがより好ましい。
金属粒子の重量割合が2wt%未満であると、電磁波シールドフィルムのシールド性が低下しやすくなる。
金属粒子の重量割合が60wt%を超えると、導電性接着剤層が脆くなり、電磁波シールドフィルムが破損しやすくなる。
また、金属粒子の重量割合が40wt%以下であると、導電性接着剤層が、異方導電性を得ることができる。
The weight ratio of the metal particles contained in the conductive adhesive layer 40 is preferably 2-60 wt %, more preferably 10-40 wt %.
If the weight ratio of the metal particles is less than 2 wt %, the shielding properties of the electromagnetic wave shielding film tend to deteriorate.
If the weight ratio of the metal particles exceeds 60 wt %, the conductive adhesive layer becomes brittle and the electromagnetic wave shielding film tends to break.
Moreover, when the weight ratio of the metal particles is 40 wt % or less, the conductive adhesive layer can obtain anisotropic conductivity.
電磁波シールドフィルム10では、導電性接着剤層40は、等方導電性を有していてもよく、異方導電性を有していてもよい。
導電性接着剤層40が異方導電性を有すると、電磁波シールドフィルム10が配置されたプリント配線板において、高周波信号の送電特性が良好になる。
In the electromagnetic shielding film 10, the conductive adhesive layer 40 may have isotropic conductivity or anisotropic conductivity.
When the conductive adhesive layer 40 has anisotropic conductivity, the printed wiring board on which the electromagnetic wave shielding film 10 is arranged has good high-frequency signal transmission characteristics.
導電性接着剤層40の厚さは、特に限定されず、必要に応じ適宜設定することができるが、0.5~30.0μmであることが望ましい。
導電性接着剤層の厚さが0.5μm未満であると、良好な導電性が得られにくくなる。
導電性接着剤層の厚さが30.0μmを超えると、電磁波シールドフィルム全体の厚さが厚くなり扱いにくくなる。
The thickness of the conductive adhesive layer 40 is not particularly limited and can be appropriately set as necessary, but is preferably 0.5 to 30.0 μm.
If the thickness of the conductive adhesive layer is less than 0.5 μm, it becomes difficult to obtain good conductivity.
If the thickness of the conductive adhesive layer exceeds 30.0 μm, the thickness of the entire electromagnetic wave shielding film becomes thick and difficult to handle.
電磁波シールドフィルム10では、保護層20と金属層30との間にアンカーコート層が形成されていてもよい。
アンカーコート層の材料としては、ウレタン樹脂、アクリル樹脂、ウレタン樹脂をシェルとしアクリル樹脂をコアとするコア・シェル型複合樹脂、エポキシ樹脂、イミド樹脂、アミド樹脂、メラミン樹脂、フェノール樹脂、尿素ホルムアルデヒド樹脂、ポリイソシアネートにフェノール等のブロック化剤を反応させて得られたブロックイソシアネート、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。
An anchor coat layer may be formed between the protective layer 20 and the metal layer 30 in the electromagnetic wave shielding film 10 .
Materials for the anchor coat layer include urethane resin, acrylic resin, core-shell type composite resin with urethane resin as the shell and acrylic resin as the core, epoxy resin, imide resin, amide resin, melamine resin, phenol resin, and urea-formaldehyde resin. , blocked isocyanate obtained by reacting polyisocyanate with a blocking agent such as phenol, polyvinyl alcohol, polyvinylpyrrolidone, and the like.
上記電磁波シールドフィルム10は、導電性接着剤層40を備えているが、本発明の電磁波シールドフィルムは、導電性接着剤層に代えて非導電性の接着剤層を備えていてもよい。 The electromagnetic wave shielding film 10 has the conductive adhesive layer 40, but the electromagnetic wave shielding film of the present invention may have a non-conductive adhesive layer instead of the conductive adhesive layer.
次に、電磁波シールドフィルム10をプリント配線板に配置するシールドプリント配線板の製造方法について説明する。 Next, a method for manufacturing a shield printed wiring board in which the electromagnetic wave shielding film 10 is arranged on the printed wiring board will be described.
(プリント配線板準備工程)
図2Aは、本発明の電磁波シールドフィルムを用いたシールドプリント配線板の製造方法における、プリント配線板準備工程を模式的に示す断面図である。
本工程では、ベースフィルム51と、ベースフィルム51の上に配置されたグランド回路52aを含むプリント回路52と、プリント回路52を覆うカバーレイ53とからなるプリント配線板50を準備する。なお、カバーレイ53には、グランド回路52aを露出する開口部53aが形成されている。
(Printed wiring board preparation process)
FIG. 2A is a cross-sectional view schematically showing a printed wiring board preparation step in the method for manufacturing a shield printed wiring board using the electromagnetic wave shielding film of the present invention.
In this step, a printed wiring board 50 comprising a base film 51, a printed circuit 52 including a ground circuit 52a disposed on the base film 51, and a coverlay 53 covering the printed circuit 52 is prepared. The coverlay 53 has an opening 53a that exposes the ground circuit 52a.
(電磁波シールドフィルム配置工程)
図2Bは、本発明の電磁波シールドフィルムを用いたシールドプリント配線板の製造方法における、電磁波シールドフィルム配置工程を模式的に示す断面図である。
本工程では、電磁波シールドフィルム10の導電性接着剤層40は、プリント配線板50のカバーレイ53に接触するように、電磁波シールドフィルム10をプリント配線板50に配置する。
(Electromagnetic wave shielding film placement process)
FIG. 2B is a cross-sectional view schematically showing an electromagnetic shielding film placement step in the method for manufacturing a shield printed wiring board using the electromagnetic shielding film of the present invention.
In this step, the electromagnetic shielding film 10 is arranged on the printed wiring board 50 so that the conductive adhesive layer 40 of the electromagnetic shielding film 10 is in contact with the coverlay 53 of the printed wiring board 50 .
(熱プレス工程)
図2Cは、本発明の電磁波シールドフィルムを用いたシールドプリント配線板の製造方法における、熱プレス工程を模式的に示す断面図である。
次に、電磁波シールドフィルム10が配置されたプリント配線板50を矢印の方向に熱プレスすることにより電磁波シールドフィルム10をプリント配線板50に熱プレスする。
(Heat press process)
FIG. 2C is a cross-sectional view schematically showing a hot press step in the method for manufacturing a shield printed wiring board using the electromagnetic wave shielding film of the present invention.
Next, the electromagnetic wave shielding film 10 is heat-pressed onto the printed wiring board 50 by heat-pressing the printed wiring board 50 on which the electromagnetic wave shielding film 10 is arranged in the direction of the arrow.
保護層20は、平均粒径が10μm以下である非導電性フィラーを含み、保護層20の全体重量に対する非導電性フィラーの重量割合は、10~40重量%であるため、熱プレスする際、保護層20に含まれるウレタン系樹脂が流動して保護層の一部が薄くなることを防ぐことができる。そのため、保護層20の部分的に薄い箇所が生じにくくなる。その結果、電磁波シールドフィルムの耐湿性及び耐屈曲性が良好になる。 The protective layer 20 contains a non-conductive filler having an average particle size of 10 μm or less, and the weight ratio of the non-conductive filler to the total weight of the protective layer 20 is 10 to 40% by weight. It is possible to prevent the urethane-based resin contained in the protective layer 20 from flowing and partially thinning the protective layer. Therefore, the protective layer 20 is less likely to be partially thin. As a result, the electromagnetic wave shielding film has good moisture resistance and bending resistance.
また、熱プレスにより、導電性接着剤層40が開口部53aを埋め、導電性接着剤層40とグランド回路52aとが接触することになる。
そのため、金属層30とグランド回路52aとが電気的に接続され、電磁波シールド性が向上する。
Further, by hot pressing, the conductive adhesive layer 40 fills the opening 53a, and the conductive adhesive layer 40 and the ground circuit 52a are brought into contact with each other.
Therefore, the metal layer 30 and the ground circuit 52a are electrically connected, and the electromagnetic wave shielding property is improved.
熱プレスの条件としては、特に限定されないが、例えば、150~200℃、2~5MPa、1~60minの条件が挙げられる。 Conditions for hot pressing are not particularly limited, but include, for example, conditions of 150 to 200° C., 2 to 5 MPa, and 1 to 60 minutes.
図2Dは、本発明の電磁波シールドフィルムを用いて製造されたシールドプリント配線板の一例を模式的に示す断面図である。
以上の工程を経て、図2Dに示すように、電磁波シールドフィルム10を用いたシールドプリント配線板1を製造することができる。
FIG. 2D is a cross-sectional view schematically showing an example of a shield printed wiring board manufactured using the electromagnetic wave shielding film of the present invention.
Through the above steps, as shown in FIG. 2D, the shield printed wiring board 1 using the electromagnetic wave shielding film 10 can be manufactured.
次に、本発明の電磁波シールドフィルムの別の態様を説明する。
図3は、本発明の電磁波シールドフィルムの別の一例を模式的に示す断面図である。
図3に示す電磁波シールドフィルム110は、保護層120と、導電性接着剤層140とが順に積層された電磁波シールドフィルムである。
電磁波シールドフィルム110において、導電性接着剤層140は等方導電性を有し、電磁波を遮蔽するシールド層として機能する。
Next, another aspect of the electromagnetic wave shielding film of the present invention will be described.
FIG. 3 is a cross-sectional view schematically showing another example of the electromagnetic wave shielding film of the present invention.
The electromagnetic wave shielding film 110 shown in FIG. 3 is an electromagnetic wave shielding film in which a protective layer 120 and a conductive adhesive layer 140 are laminated in order.
In the electromagnetic wave shielding film 110, the conductive adhesive layer 140 has isotropic conductivity and functions as a shield layer that shields electromagnetic waves.
電磁波シールドフィルム110において、保護層120の好ましい態様は、上記電磁波シールドフィルム10の保護層120と同じである。 In the electromagnetic wave shielding film 110, the preferred aspects of the protective layer 120 are the same as those of the protective layer 120 of the electromagnetic wave shielding film 10 described above.
電磁波シールドフィルム110において、導電性接着剤層140の好ましい態様について以下に説明する。 Preferred aspects of the conductive adhesive layer 140 in the electromagnetic wave shielding film 110 will be described below.
導電性接着剤層140は、接着性樹脂組成物と金属粒子とを含む。
なお、導電性接着剤層140は、さらに、難燃剤、難燃助剤、硬化促進剤、粘着性付与剤、酸化防止剤、顔料、染料、可塑剤、紫外線吸収剤、消泡剤、レベリング剤、充填材、粘度調節剤等を含んでいてもよい。
Conductive adhesive layer 140 includes an adhesive resin composition and metal particles.
In addition, the conductive adhesive layer 140 further includes a flame retardant, a flame retardant aid, a curing accelerator, a tackifier, an antioxidant, a pigment, a dye, a plasticizer, an ultraviolet absorber, an antifoaming agent, and a leveling agent. , fillers, viscosity modifiers and the like.
導電性接着剤層140に含まれる接着性樹脂組成物の材料としては、特に限定されないが、スチレン系樹脂組成物、酢酸ビニル系樹脂組成物、ポリエステル系樹脂組成物、ポリエチレン系樹脂組成物、ポリプロピレン系樹脂組成物、イミド系樹脂組成物、アミド系樹脂組成物、アクリル系樹脂組成物等の熱可塑性樹脂組成物や、フェノール系樹脂組成物、エポキシ系樹脂組成物、ウレタン系樹脂組成物、メラミン系樹脂組成物、アルキッド系樹脂組成物等の熱硬化性樹脂組成物等を用いることができる。
これらの中では、ポリエステル系樹脂組成物であることが好ましい。
接着性樹脂組成物の材料はこれらの1種単独であってもよく、2種以上の組み合わせであってもよい。
The material of the adhesive resin composition contained in the conductive adhesive layer 140 is not particularly limited, but may be a styrene-based resin composition, a vinyl acetate-based resin composition, a polyester-based resin composition, a polyethylene-based resin composition, or polypropylene. Thermoplastic resin compositions such as resin compositions, imide resin compositions, amide resin compositions, acrylic resin compositions, phenol resin compositions, epoxy resin compositions, urethane resin compositions, melamine A thermosetting resin composition such as an alkyd-based resin composition or an alkyd-based resin composition can be used.
Among these, the polyester-based resin composition is preferred.
The material of the adhesive resin composition may be one of these alone or a combination of two or more.
導電性接着剤層140に含まれる金属粒子としては、銀、銅、ニッケル、アルミニウム、銅に銀めっきを施した銀コート銅等が挙げられる。
これらの金属粒子は導電性に優れるので、導電性接着剤層140に好適に導電性を付与することができる。
これらの金属粒子は、導電性接着剤層140に一種単独で含まれていてもよく、複数種類が含まれていてもよい。
Examples of the metal particles contained in the conductive adhesive layer 140 include silver, copper, nickel, aluminum, and silver-coated copper obtained by plating copper with silver.
Since these metal particles have excellent conductivity, they can suitably impart conductivity to the conductive adhesive layer 140 .
These metal particles may be contained singly in the conductive adhesive layer 140, or may be contained in a plurality of types.
金属粒子の大きさは特に限定されないが、平均粒径が0.5~20μmであることが好ましい。 The size of the metal particles is not particularly limited, but the average particle size is preferably 0.5 to 20 μm.
導電性接着剤層140に含まれる金属粒子の重量割合は、40重量%以上であることが好ましく、40~60重量%であることがより好ましい。
金属粒子の重量割合が40重量%以上であると、導電性接着剤層140が等方導電性を得ることができる。
The weight ratio of the metal particles contained in the conductive adhesive layer 140 is preferably 40% by weight or more, more preferably 40 to 60% by weight.
When the weight ratio of the metal particles is 40% by weight or more, the conductive adhesive layer 140 can obtain isotropic conductivity.
以下に本発明をより具体的に説明する実施例を示すが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be described below in more detail with examples, but the present invention is not limited to these examples.
(実施例1)
酸価が3300g/eq、Tgが40℃のウレタン樹脂A(製造元:東洋紡社製、重量平均分子量:200,000)と、エポキシ樹脂(酸価:170g/eq)と、非導電性フィラーとしてシリカ粒子(平均粒径:2μm)とを表1に示す割合で混錬し、保護層用組成物を作製した。
なお、表1中の組成の数値は、重量%を意味している。
(Example 1)
Urethane resin A (manufacturer: manufactured by Toyobo Co., Ltd., weight average molecular weight: 200,000) having an acid value of 3300 g/eq and a Tg of 40°C, an epoxy resin (acid value: 170 g/eq), and silica as a non-conductive filler Particles (average particle diameter: 2 μm) were kneaded at the ratio shown in Table 1 to prepare a protective layer composition.
In addition, the numerical value of the composition in Table 1 means the weight%.
次に、転写フィルムとして、片面に剥離処理を施したポリエチレンテレフタレートフィルムを準備した。
次に、転写フィルムの剥離処理面に保護層用組成物を塗工し、電気オーブンを用い、100℃で2分間加熱し、厚さ5μmの保護層を作製した。
その後、保護層の上に、無電解めっきにより2μmの銅層を形成した。当該銅層は、シールド層となる。
Next, as a transfer film, a polyethylene terephthalate film having one side subjected to release treatment was prepared.
Next, the release-treated surface of the transfer film was coated with the protective layer composition and heated at 100° C. for 2 minutes in an electric oven to prepare a protective layer having a thickness of 5 μm.
After that, a copper layer of 2 μm was formed on the protective layer by electroless plating. The copper layer becomes a shield layer.
次に、接着性樹脂組成物として熱可塑性ポリエステル樹脂を40重量部と、導電性フィラーとして銀コート銅粉(平均粒径:12μm)を60重量部とを混錬して導電性接着剤を作製した。
そして、銅層の上に、作製した導電性接着剤を塗工し、電気オーブンを用い、100℃で2分間加熱し、厚さ20μmの導電性接着剤層を作製した。
上記工程を経て実施例1に係る電磁波シールドフィルムを作製した。
Next, 40 parts by weight of a thermoplastic polyester resin as an adhesive resin composition and 60 parts by weight of silver-coated copper powder (average particle diameter: 12 μm) as a conductive filler are kneaded to prepare a conductive adhesive. did.
Then, the produced conductive adhesive was applied onto the copper layer and heated at 100° C. for 2 minutes using an electric oven to produce a conductive adhesive layer with a thickness of 20 μm.
An electromagnetic wave shielding film according to Example 1 was produced through the above steps.
(実施例2~3)及び(比較例1~8)
保護層に用いるウレタン系樹脂として表1に示す種類のウレタン樹脂を用い、保護層の組成を表1に示すように変更した以外は、実施例1と同様に、実施例2~3及び比較例1~8に係る電磁波シールドフィルムを作製した。
(Examples 2-3) and (Comparative Examples 1-8)
Examples 2 and 3 and Comparative Example were carried out in the same manner as in Example 1, except that the urethane resin of the type shown in Table 1 was used as the urethane resin used for the protective layer, and the composition of the protective layer was changed as shown in Table 1. Electromagnetic wave shielding films according to 1 to 8 were produced.
なお、実施例及び比較例におけるウレタン樹脂B~Eの酸価、重量平均分子量、Tgは表1の通りである。 Table 1 shows the acid value, weight average molecular weight, and Tg of the urethane resins B to E in Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(抵抗値試験)
図4A及び図4Bは、抵抗値試験の方法を示す模式図である。
まず、図4Aに示すように、ベースフィルム51に、金属パッド52bが形成され、金属パッド52bを露出する2つの開口部53aを有するカバーレイ53が配置された試験基板55を準備した。なお開口部53aの直径は1mmとした。
次に、導電性接着剤層40が、カバーレイ53に接触するように、各実施例及び各比較例に係る電磁波シールドフィルム10を試験基板55に配置した。
その後、プレス機を用いて170℃、3MPa、30minの条件で熱プレスすることにより、図4Bに示す試験用シールド基板2を作製した。
次に、図4Bに示すように、2つの金属パッド52bに抵抗測定器Rを接続し、製造直後の試験用シールド基板2の導電性接着剤層40の電気抵抗値(厚さ方向の電気抵抗値)を測定した結果を表1に示す。
また、試験用シールド基板2に、260℃、1minの条件で熱衝撃を5回加え、その後、同様の方法で、試験用シールド基板2の導電性接着剤層40の電気抵抗値(厚さ方向の電気抵抗値)を測定した結果を表1に示す。
また、試験用シールド基板2を、85℃、85%RHの高温高湿環境下に500hr放置し、その後、同様の方法で試験用シールド基板2の導電性接着剤層40の電気抵抗値(厚さ方向の電気抵抗値)を測定した結果を表1に示す。
(Resistance value test)
4A and 4B are schematic diagrams showing a resistance value test method.
First, as shown in FIG. 4A, a test substrate 55 was prepared in which a metal pad 52b was formed on a base film 51 and a coverlay 53 having two openings 53a for exposing the metal pad 52b was arranged. The diameter of the opening 53a was set to 1 mm.
Next, the electromagnetic wave shielding film 10 according to each example and each comparative example was placed on the test substrate 55 so that the conductive adhesive layer 40 was in contact with the coverlay 53 .
After that, a pressing machine was used to heat-press under the conditions of 170° C., 3 MPa, and 30 min, thereby fabricating the test shield substrate 2 shown in FIG. 4B.
Next, as shown in FIG. 4B, a resistance measuring device R is connected to the two metal pads 52b, and the electrical resistance value (the electrical resistance in the thickness direction) of the conductive adhesive layer 40 of the test shield substrate 2 immediately after manufacturing is measured. value) is shown in Table 1.
In addition, the test shield substrate 2 was subjected to thermal shock five times under conditions of 260° C. and 1 minute, and then the electric resistance value (thickness direction) of the conductive adhesive layer 40 of the test shield substrate 2 was measured in the same manner. Table 1 shows the results of measuring the electrical resistance value).
In addition, the test shield substrate 2 was left in a high-temperature and high-humidity environment of 85° C. and 85% RH for 500 hours. Table 1 shows the results of measuring the electrical resistance value in the vertical direction.
(耐屈曲性試験)
図5は、耐屈曲性試験を模式的に示す図である。
電磁波シールドフィルムの耐屈曲性を以下の方法で評価した。
(Bend resistance test)
FIG. 5 is a diagram schematically showing a flex resistance test.
The bending resistance of the electromagnetic wave shielding film was evaluated by the following method.
<操作(i)>
まず、ポリイミドフィルム25μmからなるベース部材の上に配線基板を模した回路を形成した3本の銅箔パターン(銅箔厚み12μm、ライン巾8mm)が形成され、その上に絶縁性の接着剤層およびポリイミドフィルムからなるカバーレイ(絶縁フィルム厚み37.5μm)が積層された試験用プリント配線基板60を準備した。
<Operation (i)>
First, three copper foil patterns (copper foil thickness 12 μm, line width 8 mm) forming a circuit imitating a wiring board are formed on a base member made of a polyimide film of 25 μm, and an insulating adhesive layer is formed thereon. and a coverlay (insulating film thickness: 37.5 μm) made of a polyimide film were laminated.
<操作(ii)>
次に各実施例及び各比較例に係る電磁波シールドフィルム10と試験用プリント配線基板60とを、電磁波シールドフィルム10の接着剤層がプリント配線板60のカバーレイと接するように、プレス機を用いて温度:170℃、時間:30分、圧力:2~3MPaの条件で接着し、積層体61を作製した。
<Operation (ii)>
Next, the electromagnetic wave shielding film 10 according to each example and each comparative example and the test printed wiring board 60 are put together using a pressing machine so that the adhesive layer of the electromagnetic wave shielding film 10 is in contact with the coverlay of the printed wiring board 60. A laminate 61 was produced by bonding under the conditions of temperature: 170° C., time: 30 minutes, and pressure: 2 to 3 MPa.
<操作(iii)>
次に、厚さ2mmのベーク板71上に、厚さ0.4mmの矩形状のガラスエポキシ板72を2本、平行となるように固定した治具を作製した。そして、積層体61を電磁波シールドフィルム10が外側となるように折り曲げた状態で治具における2本のガラスエポキシ板72の間で保持した。
<Operation (iii)>
Next, a jig was prepared by fixing two rectangular glass epoxy plates 72 with a thickness of 0.4 mm on a baking plate 71 with a thickness of 2 mm so as to be parallel to each other. Then, the laminated body 61 was held between two glass epoxy plates 72 in a jig while being bent so that the electromagnetic wave shielding film 10 was on the outside.
<操作(iv)>
次いで、折り曲げた状態で保持された積層体61の上に、厚さ2mmのベーク板73および1kgの標準分銅74を載置し、10秒間保持した。
<Operation (iv)>
Next, a baking plate 73 with a thickness of 2 mm and a standard weight 74 with a weight of 1 kg were placed on the laminate 61 held in the folded state and held for 10 seconds.
<操作(v)>
10秒間保持した後、ベーク板73および標準分銅74を取り除き、積層体61を1分間放置した。
<Operation (v)>
After holding for 10 seconds, the baking plate 73 and the standard weight 74 were removed, and the laminate 61 was left for 1 minute.
上記操作(iv)~(v)の動作を10回繰り返し、各実施例及び各比較例に係る電磁波シールドフィルムの保護層を目視で観察し、耐屈曲性を評価した。
評価基準は以下の通りである。結果を表1に示す。
◎:クラックが観察されなかった
○:クラックが観察されたが、クラック箇所から保護層の下の層(銅層)は露出しなかった
×:クラックが観察され、クラック箇所から保護層の下の層(銅層)が露出した
The above operations (iv) to (v) were repeated 10 times, and the protective layer of the electromagnetic wave shielding film according to each example and each comparative example was visually observed to evaluate the bending resistance.
Evaluation criteria are as follows. Table 1 shows the results.
◎: No cracks were observed ○: Cracks were observed, but the layer (copper layer) under the protective layer was not exposed from the cracks ×: Cracks were observed, and the cracks were observed under the protective layer layer (copper layer) exposed
(ブロッキング試験)
図6は、ブロッキング試験を模式的に示す図である。
以下の方法で、保護層の耐ブロッキング性を評価した。
(Blocking test)
FIG. 6 is a diagram schematically showing a blocking test.
The blocking resistance of the protective layer was evaluated by the following method.
まず、厚み50μm、縦寸法40mm、横寸法40mmのポリエチレンテレフタレートフィルム80の上面に、各実施例及び各比較例に係る保護層用組成物を塗工し、電気オーブンを用い、100℃で2分間加熱し、厚さ5μmの保護層を作製することにより、ブロッキング試験用試験体81を作製した。 First, the upper surface of a polyethylene terephthalate film 80 having a thickness of 50 μm, a vertical dimension of 40 mm, and a horizontal dimension of 40 mm was coated with the protective layer composition according to each example and each comparative example, and was heated at 100° C. for 2 minutes using an electric oven. A specimen 81 for blocking test was produced by heating and producing a protective layer having a thickness of 5 μm.
次に、図6に示すように、アルミニウム板91の上に、保護層20が下に位置し、ポリエチレンテレフタレートフィルム80が上に位置するように、ブロッキング試験用試験体81を2枚重ね、その上にアルミニウム板92を配置した。
そして、アルミニウム板91及びアルミニウム板92の上下から2kgの圧力をかけ、常温で3日間その状態を維持した。
その後、ブロッキング試験用試験体81を取り出し、ブロッキングが生じているかを観察し、耐ブロッキング性を評価した。
評価基準は以下の通りである。結果を表1に示す。
〇:ブロッキング試験用試験体81が容易に剥がれ、ブロッキングが生じていなかった。
×:一方のブロッキング試験用試験体81の保護層20と、もう一方のブロッキング試験用試験体81のポリエチレンテレフタレートフィルム80とがくっついており、各ブロッキング試験用試験体81が剥がれにくく、ブロッキングが生じていた。
Next, as shown in FIG. 6, two specimens 81 for blocking test are stacked on the aluminum plate 91 so that the protective layer 20 is positioned below and the polyethylene terephthalate film 80 is positioned above. An aluminum plate 92 was placed on top.
Then, a pressure of 2 kg was applied from above and below the aluminum plate 91 and the aluminum plate 92, and this state was maintained at room temperature for 3 days.
After that, the blocking test specimen 81 was taken out, and whether or not blocking occurred was observed to evaluate the blocking resistance.
Evaluation criteria are as follows. Table 1 shows the results.
◯: The specimen 81 for blocking test was easily peeled off, and no blocking occurred.
x: The protective layer 20 of one blocking test specimen 81 and the polyethylene terephthalate film 80 of the other blocking test specimen 81 are stuck together, and each blocking test specimen 81 is difficult to peel off, causing blocking. was
表1に示すように、保護層に含まれるウレタン樹脂の酸価が2000~4000g/eqであると、耐屈曲性が良好になることが判明した。
また、保護層に含まれるウレタン樹脂のTgが0℃以上であると、ブロッキングが生じにくくなることが判明した。
また、保護層に平均粒径が10μm以下の非導電性フィラーが、保護層の全体重量に対し、10~40重量%含まれると、耐湿性及び耐屈曲性が向上することが判明した。
As shown in Table 1, it was found that when the acid value of the urethane resin contained in the protective layer was 2000 to 4000 g/eq, the flex resistance was improved.
Further, it was found that when the Tg of the urethane resin contained in the protective layer is 0° C. or higher, blocking hardly occurs.
It was also found that when the protective layer contains 10 to 40% by weight of a non-conductive filler having an average particle size of 10 μm or less relative to the total weight of the protective layer, the moisture resistance and flex resistance are improved.
1 シールドプリント配線板
2 試験用シールド基板
10、110 電磁波シールドフィルム
20、120 保護層
30 金属層
40、140 導電性接着剤層
50 プリント配線板
51 ベースフィルム
52 プリント回路
52a グランド回路
52b 金属パッド
53 カバーレイ
53a 開口部
55 試験基板
60 試験用プリント配線基板
61 積層体
71、73 ベーク板
72 ガラスエポキシ板
74 標準分銅
80 ポリエチレンテレフタレートフィルム
81 ブロッキング試験用試験体
91、92 アルミニウム板

 
1 shield printed wiring board 2 test shield substrates 10, 110 electromagnetic shielding films 20, 120 protective layer 30 metal layers 40, 140 conductive adhesive layer 50 printed wiring board 51 base film 52 printed circuit 52a ground circuit 52b metal pad 53 cover Ray 53a Opening 55 Test board 60 Test printed wiring board 61 Laminate 71, 73 Bake plate 72 Glass epoxy plate 74 Standard weight 80 Polyethylene terephthalate film 81 Blocking test specimen 91, 92 Aluminum plate

Claims (8)

  1. 保護層と、シールド層とが積層された電磁波シールドフィルムであって、
    前記保護層は、酸価が2000~4000g/eq、かつ、Tgが0℃以上であるウレタン系樹脂と、平均粒径が10μm以下である非導電性フィラーとを含み、
    前記保護層の全体重量に対する前記非導電性フィラーの重量割合は、10~40重量%であることを特徴とする電磁波シールドフィルム。
    An electromagnetic wave shielding film in which a protective layer and a shield layer are laminated,
    The protective layer contains a urethane resin having an acid value of 2000 to 4000 g/eq and a Tg of 0° C. or higher, and a non-conductive filler having an average particle size of 10 μm or less,
    An electromagnetic wave shielding film, wherein the weight ratio of the non-conductive filler with respect to the total weight of the protective layer is 10 to 40% by weight.
  2. 前記保護層が、さらにエポキシ系樹脂を含む請求項1に記載の電磁波シールドフィルム。 The electromagnetic wave shielding film according to claim 1, wherein the protective layer further contains an epoxy resin.
  3. 前記ウレタン系樹脂と、前記エポキシ系樹脂との重量比が、ウレタン系樹脂/エポキシ系樹脂=4~49である請求項2に記載の電磁波シールドフィルム。 3. The electromagnetic wave shielding film according to claim 2, wherein the weight ratio of said urethane-based resin and said epoxy-based resin is urethane-based resin/epoxy-based resin=4-49.
  4. 前記ウレタン系樹脂のTgが、0~60℃である請求項1~3のいずれかに記載の電磁波シールドフィルム。 The electromagnetic wave shielding film according to any one of claims 1 to 3, wherein the urethane resin has a Tg of 0 to 60°C.
  5. 前記ウレタン系樹脂の重量平均分子量は、100,000~2,000,000である請求項1~4のいずれかに記載の電磁波シールドフィルム。 The electromagnetic wave shielding film according to any one of claims 1 to 4, wherein the urethane resin has a weight average molecular weight of 100,000 to 2,000,000.
  6. 前記非導電性フィラーは、シリカ及び有機リン酸塩からなる群から選択される少なくとも1種である請求項1~5のいずれかに記載の電磁波シールドフィルム。 The electromagnetic wave shielding film according to any one of claims 1 to 5, wherein the non-conductive filler is at least one selected from the group consisting of silica and organic phosphates.
  7. 前記シールド層は、導電性接着剤層である請求項1~6のいずれかに記載の電磁波シールドフィルム。 The electromagnetic wave shielding film according to any one of claims 1 to 6, wherein the shield layer is a conductive adhesive layer.
  8. 前記シールド層は、金属層であり、
    前記シールド層の前記保護層が積層されていない側の面には、さらに接着剤層が積層されている請求項1~6のいずれかに記載の電磁波シールドフィルム。

     
    The shield layer is a metal layer,
    The electromagnetic wave shielding film according to any one of claims 1 to 6, further comprising an adhesive layer laminated on the side of the shield layer on which the protective layer is not laminated.

PCT/JP2022/007068 2021-02-24 2022-02-22 Electromagentic wave shield film WO2022181570A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227028896A KR102558231B1 (en) 2021-02-24 2022-02-22 electromagnetic wave shielding film
CN202280004051.4A CN115486215B (en) 2021-02-24 2022-02-22 Electromagnetic wave shielding film
JP2022541965A JP7206441B1 (en) 2021-02-24 2022-02-22 electromagnetic wave shielding film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-027524 2021-02-24
JP2021027524 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022181570A1 true WO2022181570A1 (en) 2022-09-01

Family

ID=83048076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007068 WO2022181570A1 (en) 2021-02-24 2022-02-22 Electromagentic wave shield film

Country Status (5)

Country Link
JP (1) JP7206441B1 (en)
KR (1) KR102558231B1 (en)
CN (1) CN115486215B (en)
TW (1) TW202234982A (en)
WO (1) WO2022181570A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140007A1 (en) * 2007-05-09 2008-11-20 Toray Industries, Inc. Conductive board, electromagnetic shielding board for plasma display and method for manufacturing conductive board
WO2016088381A1 (en) * 2014-12-05 2016-06-09 タツタ電線株式会社 Electromagnetic wave shielding film
WO2018047957A1 (en) * 2016-09-09 2018-03-15 タツタ電線株式会社 Conductive adhesive composition
WO2019012590A1 (en) * 2017-07-10 2019-01-17 タツタ電線株式会社 Electromagnetic wave shield film, and shielded printed wiring board equipped with same
WO2020218507A1 (en) * 2019-04-24 2020-10-29 三菱ケミカル株式会社 Thermoplastic polyurethane resin elastomer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129226A (en) * 2014-01-08 2015-07-16 日東電工株式会社 Film type adhesive, dicing tape with film type adhesive, method for manufacturing semiconductor device, and semiconductor device
JP6723146B2 (en) * 2016-11-30 2020-07-15 三菱電機株式会社 Driving equipment and driving equipment system
JP2019046871A (en) 2017-08-30 2019-03-22 タツタ電線株式会社 Electromagnetic wave shield film, shield printed wiring board, and method for manufacturing shield printed wiring board
CN107880530B (en) * 2017-12-25 2020-10-27 广东生益科技股份有限公司 Halogen-free resin composition, cover film and preparation method thereof
TW201943330A (en) 2018-03-29 2019-11-01 日商拓自達電線股份有限公司 Resin composition for protective layer of electromagnetic wave-shielding film, electromagnetic wave-shielding film, and method for producing electromagnetic wave-shielding film
JP7070061B2 (en) * 2018-05-11 2022-05-18 Dic株式会社 Conductive adhesive composition
KR20210014107A (en) * 2018-05-29 2021-02-08 주식회사 쿠라레 Reinforcing fiber and manufacturing method thereof, and molded article using the same
JP2020119964A (en) * 2019-01-22 2020-08-06 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet-attached printed wiring board
JP6904464B2 (en) * 2019-06-12 2021-07-14 東洋インキScホールディングス株式会社 Printed wiring board
TW202111001A (en) * 2019-06-28 2021-03-16 日商東亞合成股份有限公司 Resin composition, laminate having resin composition layer, laminate, and electromagnetic wave shielding film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140007A1 (en) * 2007-05-09 2008-11-20 Toray Industries, Inc. Conductive board, electromagnetic shielding board for plasma display and method for manufacturing conductive board
WO2016088381A1 (en) * 2014-12-05 2016-06-09 タツタ電線株式会社 Electromagnetic wave shielding film
WO2018047957A1 (en) * 2016-09-09 2018-03-15 タツタ電線株式会社 Conductive adhesive composition
WO2019012590A1 (en) * 2017-07-10 2019-01-17 タツタ電線株式会社 Electromagnetic wave shield film, and shielded printed wiring board equipped with same
WO2020218507A1 (en) * 2019-04-24 2020-10-29 三菱ケミカル株式会社 Thermoplastic polyurethane resin elastomer

Also Published As

Publication number Publication date
KR102558231B1 (en) 2023-07-20
CN115486215A (en) 2022-12-16
JPWO2022181570A1 (en) 2022-09-01
TW202234982A (en) 2022-09-01
CN115486215B (en) 2023-08-11
JP7206441B1 (en) 2023-01-17
KR20220123474A (en) 2022-09-06

Similar Documents

Publication Publication Date Title
KR101956091B1 (en) Electromagnetic wave shielding film
CN105451529B (en) Electromagnetic shielding film, flexible printing wiring board and their manufacturing method
WO2020129985A1 (en) Electronic component mounting substrate and electronic apparatus
WO2019239710A1 (en) Electromagnetic wave shielding sheet
JP2006232985A (en) Non-halogen adhesive composition, and coverlay film and adhesive sheet obtained using the same
JP7232996B2 (en) Electronic component mounting board and electronic equipment
JP6468389B1 (en) Laminated body, component mounting board, and method for manufacturing component mounting board
JP2012097197A (en) Flame-retardant adhesive composition and adhesive sheet and coverlay film using the same
KR20190065158A (en) Electromagnetic wave shield film
JP2016111172A (en) Composite electromagnetic wave suppressor
JP2017092417A (en) Electromagnetic wave shield film and electromagnetic wave shield film-attached printed wiring board
JP7206441B1 (en) electromagnetic wave shielding film
JP2006169446A (en) Adhesive composition and cover lay film
WO2020095919A1 (en) Electromagnetic shielding film, method for manufacturing electromagnetic shielding film, and method for manufacturing shielded printed wiring board
JP2012097195A (en) Flame-retardant adhesive composition and adhesive sheet and coverlay film using the same
JP7056723B2 (en) Parts set
KR101970484B1 (en) Conductive bonding sheet for fpc and fpc
JP2000158589A (en) Manufacture of metal foil clad laminated sheet
JP2017092415A (en) Electromagnetic wave shield film and electromagnetic wave shield film-attached printed wiring board
JPS60243180A (en) Adhesive and flexibile base for printed circuit
CN115024029A (en) Electromagnetic wave shielding film
WO2023090334A1 (en) Electromagnetic wave shield film
JP2824149B2 (en) Coverlay film
KR100827756B1 (en) Thermosetting adhesive agent and adhesive film using the same
JP2021093501A (en) Electronic component mounting substrate and electronic apparatus using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022541965

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227028896

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759606

Country of ref document: EP

Kind code of ref document: A1