WO2020129985A1 - Electronic component mounting substrate and electronic apparatus - Google Patents

Electronic component mounting substrate and electronic apparatus Download PDF

Info

Publication number
WO2020129985A1
WO2020129985A1 PCT/JP2019/049435 JP2019049435W WO2020129985A1 WO 2020129985 A1 WO2020129985 A1 WO 2020129985A1 JP 2019049435 W JP2019049435 W JP 2019049435W WO 2020129985 A1 WO2020129985 A1 WO 2020129985A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
electronic component
wave shield
shield member
substrate
Prior art date
Application number
PCT/JP2019/049435
Other languages
French (fr)
Japanese (ja)
Inventor
和規 松戸
健次 安東
努 早坂
玲季 松尾
Original Assignee
東洋インキScホールディングス株式会社
トーヨーケム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019063674A external-priority patent/JP6607331B1/en
Priority claimed from JP2019063673A external-priority patent/JP6690752B1/en
Priority claimed from JP2019220612A external-priority patent/JP2021090013A/en
Application filed by 東洋インキScホールディングス株式会社, トーヨーケム株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to KR1020217021592A priority Critical patent/KR102400969B1/en
Priority to CN201980083377.9A priority patent/CN113196895B/en
Publication of WO2020129985A1 publication Critical patent/WO2020129985A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0022Casings with localised screening of components mounted on printed circuit boards [PCB]
    • H05K9/0024Shield cases mounted on a PCB, e.g. cans or caps or conformal shields

Definitions

  • the present invention relates to an electronic component mounting board having an electromagnetic wave shield member.
  • the present invention also relates to an electromagnetic wave shielding laminate suitable for forming an electromagnetic wave shield member of the electronic component mounting board, and an electronic device on which the electronic component mounting board is mounted.
  • Patent Document 1 a method of coating a conductive adhesive film made of an isotropic conductive adhesive and an anisotropic conductive adhesive on a substrate on which electronic components are mounted is disclosed (Patent Document 1). Further, a method of coating an electromagnetic wave shielding film having a conductive adhesive layer and a base material layer having a specific storage elastic modulus on a substrate on which an electronic component is mounted (Patent Document 2), and showing isotropic conductivity. A method (Patent Document 3) is disclosed in which an electromagnetic wave shield member having a specific tensile rupture strain and having a scale-like particle-containing layer is coated on a substrate on which electronic components are mounted.
  • An electronic component mounting substrate is manufactured by coating the electromagnetic component shield member on the substrate on which the electronic component is mounted, for example, by the following method.
  • the electromagnetic wave shield laminate 104 which is a laminate of the electromagnetic wave shield member 102 and the releasable cushion member 103, is mounted on the top surfaces of the plurality of electronic components 130 mounted on the substrate 120. Place.
  • the electromagnetic wave shielding laminate 104 is thermocompression bonded to partially cover the electronic component 130 and the substrate 120 with the electromagnetic wave shielding member 101.
  • the releasable cushion member 103 is peeled off, and subsequently, as shown in FIG. 21, a step of dividing the substrate 120 into product units is performed.
  • the electromagnetic wave shield member 101 is brought into contact with the dicing table 141, and while maintaining this contact state, a position facing the groove 125 which is the gap of the electronic component 130 from the substrate 120 side is set. This is performed by cutting the substrate 120 and the electromagnetic wave shield member 101 with the cutting tool 142.
  • the present invention has been made in view of the above background, and an object thereof is to provide an electronic component mounting board and an electronic device having a highly reliable electromagnetic wave shield member.
  • a substrate an electronic component mounted on at least one surface of the substrate, a side surface of a step portion formed by mounting the electronic component and covering the substrate from the upper surface of the electronic component to the substrate, and An electromagnetic wave shield member covering at least a part of the substrate, wherein the electromagnetic wave shield member has an electromagnetic wave shield layer containing a binder resin and a conductive filler, and conforms to JIS B0601; 2001 of the surface layer of the electromagnetic wave shield member.
  • a substrate an electronic component mounted on at least one surface of the substrate, a side surface of a step portion formed by mounting the electronic component and covering the substrate from the upper surface of the electronic component to the substrate, and An electromagnetic wave shield member that covers at least a part of the substrate,
  • the electromagnetic wave shield member has an electromagnetic wave shield layer containing a binder resin and a conductive filler, and has an indentation elastic modulus of 1 to 10 GPa.
  • the binder resin heats a binder resin precursor containing a thermosetting resin and a curable compound having a functional group capable of crosslinking with the reactive functional group of the thermosetting resin.
  • a substrate an electronic component mounted on at least one surface of the substrate, a side surface of a step portion formed by mounting the electronic component and covering the substrate from the upper surface of the electronic component to the substrate, and An electromagnetic wave shield member covering at least a part of the substrate, wherein the electromagnetic wave shield member has an electromagnetic wave shield layer containing a binder resin and a conductive filler, and a root mean square height Rq of a surface layer of the electromagnetic wave shield member.
  • An electronic component mounting board having a thickness of 0.05 ⁇ m or more and less than 0.3 ⁇ m.
  • [14] The electronic component mounting board according to [12] or [13], wherein the surface layer of the electromagnetic wave shield member has a water contact angle of 90 to 130°.
  • [15] The electronic component mounting according to any one of [12] to [14], wherein the conductive filler contains at least one of dendrite-shaped and needle-shaped conductive fillers and scale-shaped conductive fillers. substrate.
  • [16] An electronic device on which the electronic component mounting board according to any one of [1] to [15] is mounted.
  • an electronic component mounting board having a highly reliable electromagnetic wave shielding member and an electronic device, which is an excellent effect.
  • FIG. 3 is a schematic perspective view showing an example of an electronic component mounting board according to embodiments A1, B1, and C1.
  • FIG. 2 is a sectional view taken along the line II-II of FIG. 1.
  • FIG. 9 is a schematic cross-sectional view showing another example of the electronic component mounting board according to the embodiments A1, B1, and C1.
  • FIG. 3 is a schematic cross-sectional view showing an example of an electromagnetic wave shield laminate according to embodiments A1, B1, and C1.
  • FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A1, B1, and C1.
  • FIG. 1 is a schematic perspective view showing an example of an electronic component mounting board according to embodiments A1, B1, and C1.
  • FIG. 2 is a sectional view taken along the line II-II of FIG. 1.
  • FIG. 9 is a schematic cross-sectional view showing another example of the electronic component mounting board according to the embodiments A1, B1, and C1.
  • FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A1, B1, and C1.
  • FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A1, B1, and C1.
  • FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A1, B1, and C1.
  • FIG. 3 is a schematic explanatory diagram for explaining a factor of fluctuation of kurtosis on the surface layer of the electromagnetic wave shield member.
  • FIG. 3 is a schematic explanatory diagram for explaining a factor of fluctuation of kurtosis on the surface layer of the electromagnetic wave shield member.
  • FIG. 9 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A4, B4, and C4.
  • FIG. 9 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A4, B4, and C4.
  • FIG. 9 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A4, B4, and C4.
  • FIG. 9 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A4, B4, and C4.
  • FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A5, B5, and C5.
  • FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A5, B5, and C5.
  • FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A5, B5, and C5.
  • FIG. 9 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to a modification.
  • FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to a modification.
  • FIG. 9 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to a modification.
  • FIG. 9 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to a modification.
  • FIG. 9 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to a modification.
  • FIG. 3 is a schematic cross-sectional view showing an example of an electronic component mounting board according to the present embodiment.
  • FIG. 5 is a schematic cross-sectional view illustrating a step of coating an electronic component or the like with an electromagnetic wave shield member.
  • FIG. 5 is a schematic cross-sectional view illustrating a step of coating an electronic component or the like with an electromagnetic wave shield member.
  • FIG. 5 is a schematic cross-sectional view illustrating a step of coating an electronic component or the like with an electromagnetic wave shield member.
  • FIG. 5 is a schematic cross-sectional view illustrating a step of coating an electronic component or the like with an electromagnetic wave shield member.
  • 10 is an optical microscope photograph of the side surface of the electronic component mounting board according to the present Example B3.
  • the numerical values specified in this specification are values obtained by the method disclosed in the embodiment or the example. Further, the numerical values “A to B” specified in this specification refer to ranges satisfying the numerical values A and the values larger than the numerical value A and the numerical values B and the values smaller than the numerical value B.
  • the sheet in this specification includes not only a sheet defined by JIS but also a film. For clarity of explanation, the following description and drawings are simplified as appropriate. Unless otherwise noted, the various components mentioned in the present specification may be used alone or in combination of two or more. Further, for convenience of description, the same element members are denoted by the same reference numerals in different embodiments.
  • the electronic component mounting boards according to Embodiments A to C are disclosed as the electronic component mounting boards according to the present invention.
  • the electronic component mounting substrate of Embodiment A is formed by mounting a substrate, an electronic component mounted on at least one surface of the substrate, the electronic component upper surface to the substrate, and mounting the electronic component.
  • the electromagnetic wave shield member covers the side surface of the step portion and at least a part of the substrate.
  • the electromagnetic wave shield member has an electromagnetic wave shield layer containing a binder resin and a conductive filler. Then, the kurtosis measured according to JIS B0601; 2001 on the surface layer of this electromagnetic wave shielding member is set to 1 to 8.
  • a residue as shown in (i) of FIG. 20 may be attached on the electromagnetic wave shield member 101 of the electronic component mounting board.
  • the releasable cushion member 103 is torn. This tearing becomes a factor that remains as a residue even after the individualization process.
  • Such a residue on the electromagnetic wave shield member 101 causes not only a poor appearance but also a decrease in reliability of the electromagnetic wave shield property of the electronic device, which may be an obstacle when mounting on the circuit board.
  • a method of widening the gap between the electronic components 130 or reducing the height of the electronic components 130 can be considered in order to reduce the anchoring effect of the groove 125.
  • this method has a problem that the shape of the electronic component 130 is limited and cannot be applied to the electronic component 130 having complicated irregularities. Further, if the gap between the electronic components 130 mounted on the substrate 120 can be narrowed, the yield of the electronic components 130 obtained from one substrate 120 can be improved, and the manufacturing efficiency can be improved. Further, the electromagnetic wave shield member 101 is required to have high scratch resistance in order to prevent a decrease in reliability due to scratches of the electromagnetic wave shield member 101 during transportation or mounting of the electronic component 130.
  • the electronic component mounting board according to the embodiment A it is possible to provide an electronic component mounting board having a highly reliable electromagnetic wave shield member which has a high degree of design freedom, suppresses adhesion of residues, and is excellent in scratch resistance. it can. Therefore, it is particularly suitable for use as an electronic component mounting board for which the degree of freedom in design is desired to be increased or an electronic component mounting board which is easily scratched.
  • the electronic component mounting board of the embodiment B is formed by mounting a substrate, an electronic component mounted on at least one surface of the substrate, the electronic component upper surface to the substrate, and mounting the electronic component.
  • the electromagnetic wave shield member covers the side surface of the step portion and at least a part of the substrate.
  • This electromagnetic wave shield member has an electromagnetic wave shield layer containing a binder resin and a conductive filler, and has an indentation elastic modulus of 1 to 10 GPa.
  • the conventional technique in the above-described individualizing step of the manufacturing process of the electronic component mounting board, there is a problem that a burr that is a curl of the electromagnetic wave shielding member 101 from the cut surface of the electromagnetic wave shielding member 101 is likely to occur.
  • the main cause of burrs of the electromagnetic wave shield member 101 is high-pressure water washing at the time of dicing in the individualizing step.
  • the adhesion between the electromagnetic wave shield member 101 and the substrate 120 or the like may be deteriorated under high humidity and heat conditions.
  • the occurrence of burrs and the decrease in the adhesion of the electromagnetic wave shield member 101 cause a decrease in the reliability of the electromagnetic wave shield property of the electronic device, which may be an obstacle when mounting on the circuit board.
  • the electronic component mounting board of the embodiment B it is possible to provide an electronic component mounting board having a reliable and highly reliable electromagnetic wave shield member capable of suppressing the occurrence of burrs and having excellent pressure cooker test (PCT) resistance. .. Therefore, it is particularly suitable for applications in which severe conditions such as high-pressure water lines are used in the singulation process, or applications for electronic component mounting boards that require durability under high humidity and heat conditions.
  • PCT pressure cooker test
  • the electronic component mounting board of Embodiment C is formed by mounting a substrate, an electronic component mounted on at least one surface of the substrate, the electronic component upper surface to the substrate, and mounting the electronic component.
  • the electromagnetic wave shield member covers the side surface of the step portion and at least a part of the substrate.
  • This electromagnetic wave shield member has an electromagnetic wave shield layer containing a binder resin and a conductive filler, and the root mean square height Rq of the surface layer of the electromagnetic wave shield member is 0.05 ⁇ m or more and less than 0.3 ⁇ m.
  • the electromagnetic wave shield member 101 is brought into contact with the dicing table 141 via a dicing tape (not shown) (see FIG. 21), and the substrate 120 is maintained while maintaining this contact state.
  • the substrate 120 and the electromagnetic wave shield member 101 may be cut by the cutting tool 142 at a position facing the groove 125 which is the gap of the electronic component 130 from the side.
  • the electronic component mounting board is manufactured through a step of separating the dicing tape and the electromagnetic wave shield member 101 after being separated into individual pieces.
  • the electromagnetic wave shield member 101 may float.
  • a part of the electromagnetic wave shield member may be peeled off.
  • cracks may occur in the electromagnetic wave shield member.
  • the floating and cracking of the electromagnetic wave shield member 101 as described above may cause various problems as well as a poor appearance.
  • the electromagnetic wave shield member 101 and the housing are grounded with a conductive adhesive or a conductive adhesive, the adhesive force and the connection resistance are deteriorated, and the reliability of the electromagnetic wave shielding property of the electronic device is deteriorated. This can be an obstacle when mounting on a board.
  • the electronic component mounting board according to the embodiment C it is possible to provide an electronic component mounting board having a highly reliable and highly reliable electromagnetic wave shielding member having excellent coverage. Therefore, the application including the step of contacting the electromagnetic wave shield member and the dicing table with the dicing tape, or the application that needs to pass the thermal cycle test, for example, the severe temperature such as the electronic component mounting board mounted in the automobile. It is particularly suitable for applications that require the ability to withstand changes.
  • FIG. 1 is a schematic perspective view showing an example of an electronic component mounting board according to Embodiment A1
  • FIG. 2 is a sectional view taken along the line II-II of FIG.
  • the electronic component mounting board 51 includes the substrate 20, the electronic component 30, the electromagnetic wave shield member 1, and the like.
  • the substrate 20 may be any substrate as long as it can mount the electronic component 30 and can withstand the thermocompression bonding process described later, and can be arbitrarily selected. Examples thereof include a work board having a conductive pattern made of copper foil or the like formed on the surface or inside thereof, a mounted module substrate, a printed wiring board, or a build-up substrate formed by a build-up method or the like. Alternatively, a film- or sheet-shaped flexible substrate may be used.
  • the conductive pattern is, for example, an electrode/wiring pattern (not shown) for electrically connecting to the electronic component 30, and a ground pattern 22 for electrically connecting to the electromagnetic wave shield member 1. Electrodes/wiring patterns, vias (not shown) and the like can be arbitrarily provided inside the substrate 20.
  • the substrate 20 may be not only a rigid substrate but also a flexible substrate.
  • the electronic components 30 are arranged in a 5 ⁇ 4 array on the substrate 20 in the example of FIG.
  • the electromagnetic wave shield member 1 is provided so as to cover the exposed surfaces of the substrate 20 and the electronic component 30. That is, the electromagnetic wave shield member 1 is coated so as to follow the irregularities formed by the electronic component 30.
  • the electromagnetic wave shield member 1 can shield unnecessary radiation generated from the signal wiring and the like built in the electronic component 30 and/or the substrate 20, and can prevent malfunction due to a magnetic field or radio waves from the outside.
  • the number, arrangement, shape and type of electronic components 30 are arbitrary. Instead of arranging the electronic components 30 in an array, the electronic components 30 may be arranged at arbitrary positions.
  • the half dicing grooves 25 may be provided so as to partition the unit modules in the thickness direction of the board from the upper surface of the board.
  • the electronic component mounting board according to Embodiment A1 includes both a board before being singulated into unit modules and a board after being singulated into unit modules. That is, in addition to the electronic component mounting board 51 on which a plurality of unit modules (electronic components 30) are mounted as shown in FIGS. 1 and 2, the electronic component mounting board 52 after being divided into unit modules as shown in FIG. Including.
  • an electronic component mounting substrate in which one electronic component 30 is mounted on the substrate 20 and covered with an electromagnetic wave shield member without going through the individualizing step is also included.
  • the electronic component mounting board according to Embodiment A1 has a structure in which at least one electronic component is mounted on the substrate, and at least a part of the step portion formed by mounting the electronic component is covered with the electromagnetic wave shield member. To include.
  • the electronic components 30 include all components in which electronic elements such as semiconductor integrated circuits are integrally covered with an insulator.
  • a semiconductor chip 31 (see FIG. 3) on which an integrated circuit (not shown) is formed is molded with a sealing material (mold resin 32).
  • the substrate 20 and the semiconductor chip 31 are electrically connected to the wiring or the electrode 21 formed on the substrate 20 via these contact areas or via the bonding wires 33, solder balls (not shown) and the like.
  • Examples of electronic components include semiconductor chips, inductors, thermistors, capacitors, and resistors.
  • the electronic component 30 and the substrate 20 according to the embodiment A1 can be widely applied to known aspects.
  • the semiconductor chip 31 has solder balls 24 connected to the back surface of the substrate 20 via inner vias 23.
  • a ground pattern 22 for electrically connecting to the electromagnetic wave shield member 1 is formed in the substrate 20.
  • a plurality of electronic components 30 may be mounted on the electronic component mounting substrate after being singulated or the electronic component mounting substrate that is not singulated (see FIG. 14C).
  • a single or a plurality of electronic elements or the like can be mounted in the electronic component 30.
  • the electromagnetic wave shield member 1 is obtained by placing the electromagnetic wave shielding laminate on the top surface of the electronic component 30 mounted on the substrate 20 and coating the electronic component 30 and the substrate 20 by thermocompression bonding.
  • the electromagnetic wave shield member 1 is covered from the upper surface of the electronic component 30 to the substrate 20, and covers at least part of the substrate 20 and the side surface of the step portion formed by mounting the electronic component 30.
  • the electromagnetic wave shield member 1 is connected to a ground pattern 22 exposed on the side surface or the upper surface of the substrate 20 and/or a ground pattern (not shown) such as a connection wiring of the electronic component 30 in order to sufficiently exert the shielding effect. Is preferred.
  • the electromagnetic wave shield member 1 can be formed by using an electromagnetic wave shield laminate.
  • FIG. 4 shows a schematic sectional view of the electromagnetic wave shielding laminate.
  • the electromagnetic wave shielding laminate 4 according to the embodiment A1 includes the electromagnetic wave shielding member 2 and the releasable cushion member 3.
  • This electromagnetic wave shielding member 2 is composed of a single layer of the conductive adhesive layer 6 in the embodiment A1.
  • the conductive adhesive layer 6 is bonded to the electronic component 30 and the substrate 20 by thermocompression bonding to form the electromagnetic wave shield layer 5.
  • the electromagnetic wave shield layer 5 functions as the electromagnetic wave shield member 1.
  • the electromagnetic wave shielding member 2 is formed of a laminate of two or more conductive adhesive layers as in the embodiment A2 described later, or a laminate of a conductive adhesive layer and a hard coat layer as in the embodiment A3. Or a laminated body of other layers such as a laminated body of an insulating adhesive layer and a conductive adhesive layer as in the embodiment A4.
  • the electromagnetic wave shield member 1 obtained by thermocompression bonding the electromagnetic wave shield member 2 is composed of a laminate of two or more electromagnetic wave shield layers in the embodiment A2, and is a laminate of the electromagnetic wave shield layer and the hard coat layer in the embodiment A3. In Embodiment A4, it is composed of a laminated body of an insulating coating layer and an electromagnetic wave shielding layer.
  • the electromagnetic wave shield member may be composed of a laminate of the electromagnetic wave shield layer and other layers.
  • the electromagnetic wave shield layer 5 contains a binder resin and a conductive filler.
  • the conductive filler in the electromagnetic wave shield layer 5 is in continuous contact with the conductive filler and exhibits conductivity. From the viewpoint of enhancing the electromagnetic wave shielding property, the sheet resistance value of the electromagnetic wave shielding layer 5 is preferably 1 ⁇ / ⁇ or less.
  • the electromagnetic wave shield member 1 has a kurtosis of 1 to 8 measured according to JIS B0601; 2001 on its surface layer.
  • Kurtosis is an index showing the roughness curve of the surface unevenness represented by the mathematical expression (1), and represents the flatness and the sharpness of the height distribution.
  • L is a reference length.
  • Rq is the root mean square height, and is represented by the following mathematical expression (2), where Z(x) is the change in surface height along one axis (x axis).
  • Kurtosis indicates the square root of Z(x) in the standard length made dimensionless by the square of the root mean square height Rq.
  • the kurtosis is 3
  • the number of sharp pointed protrusions (or recesses) with respect to the reference height Rq increases as the kurtosis becomes larger than 3, and the steep pointed protrusions (or recesses) becomes smaller as the kurtosis becomes smaller than 3.
  • the manufacturing method will be described later, after the electromagnetic wave shielding laminate 4 is thermocompression bonded to the substrate on which the electronic component 30 is mounted, when the releasable cushion member 3 is separated from the electromagnetic wave shielding member 1, the half dicing groove 25 is separated.
  • the shape cushion member 3 is torn off while sliding almost vertically. Since the releasable cushion member 3 easily breaks due to the anchoring effect, a technique for suppressing this is required.
  • the shape control of the contact interface of the electromagnetic wave shield member 1 is important, and the range of the above kurtosis is suitable for this shape.
  • the releasable cushion member 3 filled in the half dicing groove 25 of the electronic component 30 can be favorably separated from the electromagnetic wave shield member 1. It is considered that this is because the sharpness of the surface shape of the electromagnetic wave shield member 1 becomes appropriate and the releasable cushion member 3 and the electromagnetic wave shield member 1 are easily separated.
  • the kurtosis of the surface layer of the electromagnetic wave shield member 1 is set to 1 or more, the resistance to steel wool can be improved. As a result, it is possible to provide a highly reliable electronic component mounting board with enhanced scratch resistance.
  • the preferable range of kurtosis of the electromagnetic wave shield member is 1.5 to 6.5, and the more preferable range is 2 to 4.
  • the root mean square height of the surface of the electromagnetic wave shield member 1 is preferably in the range of 0.4 to 1.6 ⁇ m, more preferably 0.5 to 1.5 ⁇ m, and 0.7 to 1.2 ⁇ m. More preferably.
  • the kurtosis and the root mean square height refer to values obtained by the method described in Examples below.
  • the kurtosis on the surface of the electromagnetic wave shield member 1 can be adjusted by the manufacturing process of the electromagnetic wave shield member 2 in the electromagnetic wave shield laminate 4. Further, it can be adjusted by the type of each component in the composition of the electromagnetic wave shielding member before thermocompression bonding for forming the electromagnetic wave shielding member 1 and the compounding amount thereof. Details will be described later. Note that the inventors of the present invention have made extensive studies, and by incorporating an amount of a conductive filler capable of functioning as an electromagnetic wave shield layer, the value of kurtosis does not substantially change before or after the reflow treatment, or even if it changes. It was confirmed that the amount of change was small.
  • the method of manufacturing the electronic component mounting board 51 according to the embodiment A1 includes the step of [a] mounting the electronic component 30 on the substrate and [b] mounting the electromagnetic wave shielding laminate 4 on the substrate 20 on which the electronic component 30 is mounted.
  • a step of peeling the releasable cushion member 3 and a step [e] individualizing the electronic component mounting board 51 will be described.
  • Step of mounting electronic components on the substrate First, the electronic component 30 is mounted on the substrate 20.
  • a semiconductor chip (not shown) is mounted on the substrate 20, and the substrate 20 on which the semiconductor chip is formed is molded with a sealing resin so that the inside of the substrate 20 is reached from above the electronic components 30.
  • the mold resin and the substrate 20 are half-cut by dicing or the like.
  • a method of arranging the electronic components 30 in an array on the substrate 20 half-cut in advance may be used. Through these steps, for example, a substrate having an electronic component 30 as shown in FIG. 5 is obtained.
  • the electronic component 30 in the example of FIG. 5 refers to an integrated body formed by molding a semiconductor chip, and refers to all electronic elements protected by an insulator.
  • the half-cut includes a mode of reaching the inside of the substrate 20 and a mode of cutting to the surface of the substrate 20. Also, the entire substrate 20 may be cut at this stage. In this case, it is preferable that the substrate 20 is placed on the substrate with the adhesive tape so that the positional displacement does not occur.
  • the material of the sealing resin for molding is not particularly limited, but a thermosetting resin is usually used.
  • the method for forming the sealing resin is not particularly limited, and examples thereof include printing, laminating, transfer molding, compression, casting and the like. Molding is arbitrary, and the mounting method of the electronic component 30 can be changed arbitrarily.
  • the electromagnetic wave shielding laminate 4 is prepared in which the substrate 20 on which the electronic component 30 is mounted is melted by thermocompression bonding and coated (see FIG. 4 ).
  • the electromagnetic wave shielding laminate 4 is placed on the top surface of the electronic component 30 so that the conductive adhesive layer 6 of the electromagnetic wave shielding laminate 4 is on the electronic component 30 side.
  • the electromagnetic wave shielding laminate 4 may be temporarily attached to a part or the whole surface of the electronic component 30.
  • temporary attachment refers to a state in which the conductive adhesive layer 6 is fixed to the adherend at the B stage, which is temporarily joined so as to come into contact with the upper surface of at least a part of the electronic component 30.
  • the peeling force it is preferable that the peeling force with respect to Kapton 200 is about 1 to 5 N/cm in the 90° peel test.
  • An example of the temporary attachment method is a method of placing the electromagnetic wave shielding laminate 4 on the substrate 20 on which the electronic component 30 is mounted, lightly thermocompressing the entire surface or the end portion with a heat source such as an iron, and temporarily attaching.
  • a plurality of electromagnetic wave shielding laminates 4 may be used for each region of the substrate 20 depending on the manufacturing equipment or the size of the substrate 20. Further, the electromagnetic wave shielding laminate 4 may be used for each electronic component 30. From the viewpoint of simplifying the manufacturing process, it is preferable to use one electromagnetic wave shielding laminate 4 for the entire plurality of electronic components 30 mounted on the substrate 20.
  • Step of forming electromagnetic wave shield member Then, the electromagnetic wave shielding laminate 4 is sandwiched between the pair of press substrates 40 on the substrate 20 on which the electronic component 30 is mounted, and thermocompression bonded (see FIG. 6 ).
  • the conductive adhesive layer 6 and the releasable cushion member 3 are melted by heat and stretched along the half-cut groove provided in the production substrate by pressing, and the electronic component 30 and the substrate are obtained. It is coated following 20.
  • the conductive adhesive layer 6 is bonded to the electronic component 30 and the substrate 20 and also functions as the electromagnetic wave shield layer 5 by thermocompression bonding.
  • the electromagnetic wave shield member 1 is composed of a single layer of the electromagnetic wave shield layer 5, so that the electromagnetic wave shield member 1 is formed by thermocompression bonding the conductive adhesive layer 6. After the thermocompression bonding, a heat treatment may be separately performed for the purpose of promoting thermosetting.
  • a heat softening member, cushion paper or the like may be used between the electromagnetic wave shielding laminate 4 and the press substrate 40, if necessary.
  • the temperature and pressure in the thermocompression bonding process can be arbitrarily set independently within the range in which the coverage of the conductive adhesive layer 6 can be secured, depending on the heat resistance and durability of the electronic component 30, the manufacturing equipment or needs.
  • the pressure range is not limited, but is preferably about 0.1 to 5.0 MPa, more preferably 0.5 to 2.0 MPa.
  • the heating temperature in the thermocompression bonding step is preferably 100°C or higher, more preferably 110°C or higher, and further preferably 120°C or higher.
  • the upper limit value depends on the heat resistance of the electronic component 30, it is preferably 220° C., more preferably 200° C., and further preferably 180° C.
  • the thermocompression bonding time can be set according to the heat resistance of the electronic component 30, the binder resin used for the electromagnetic wave shield member 1, the production process, and the like.
  • a thermosetting resin used as the binder resin precursor, the range of about 1 minute to 2 hours is suitable.
  • the thermocompression bonding time is more preferably about 1 minute to 1 hour.
  • the thermosetting resin is cured by this thermocompression bonding. However, the thermosetting resin may be partially or substantially completely cured before thermocompression bonding as long as it can flow.
  • the thickness of the conductive adhesive layer 6 is such that the electromagnetic shield layer 5 can be formed by covering the top and side surfaces of the electronic component 30 and the exposed surface of the substrate 20.
  • it may vary depending on the fluidity of the binder resin precursor used and the distance and size between the electronic components 30, it is usually preferably about 10 to 200 ⁇ m. This makes it possible to effectively exhibit the electromagnetic wave shielding property while improving the coverage with the sealing resin.
  • the releasable cushion member 3 has a function of softening to promote the coating of the conductive adhesive layer 6 to cover the top and side surfaces of the electronic component 30 and the exposed surface of the substrate 20, and the releasability in the peeling step. It is possible to use a material having excellent properties. As an upper layer of the releasable cushion member 3, a heat softening member that functions as a cushion material may be used, if necessary. In the example of Embodiment A1, the coating of the electromagnetic wave shield member 1 electrically connects the ground pattern 22 formed in the substrate 20 and the electromagnetic wave shield member 1 (see FIG. 7).
  • the conductive adhesive layer 6 contains a binder resin precursor and a conductive filler.
  • the binder resin precursor include a thermoplastic resin, a self-crosslinking resin, a plurality of types of reactive resins, and a mixture of a curable resin and a crosslinking agent. These may be used in combination.
  • a thermoplastic resin is exclusively used as the binder resin precursor, it can be said that the binder resin precursor and the binder resin are substantially the same in the sense that they do not have a crosslinked structure.
  • Step of peeling the releasable cushion member The releasable cushion member 3 covering the upper layer of the electromagnetic wave shield member 1 is peeled off. As a result, an electronic component mounting board 51 having the electromagnetic wave shield member 1 that covers the electronic component 30 is obtained (see FIGS. 1 and 2).
  • the releasable cushion member 3 may be peeled off manually from the end portion, or the outer surface of the releasable cushion member 3 may be sucked and peeled off from the electromagnetic wave shield member 1. Peeling by suction is preferable from the viewpoint of improving the yield by automation.
  • [E] Process of dividing into individual pieces Using a cutting tool such as a dicing blade, dicing is performed in the X direction and the Y direction at a position corresponding to the product area of the individual product of the electronic component mounting board 51 (see FIG. 2). Through these steps, the electronic component 30 is covered with the electromagnetic wave shield member 1, and the ground pattern 22 formed on the substrate 20 and the electromagnetic wave shield member 1 are electrically connected to each other. 51 is obtained.
  • the dicing method is not particularly limited as long as it can be separated into individual pieces. Dicing is performed from the substrate 20 side or the electromagnetic wave shielding laminate 4 side.
  • the peeling of the releasable cushion member 3 in the step (d) is carried out at an angle of, for example, 90° with respect to the substrate surface, so that the releasable cushion member 3 in the half dicing groove 25 and the side surface of the half dicing groove 25 are separated.
  • Large friction occurs at the contact interface of the electromagnetic wave shield member 1. Therefore, it is technically difficult to cleanly separate the releasable cushion member 3 from the electromagnetic wave shield member 1, and as described with reference to FIG. 20, the releasable cushion member 3 is broken into the half dicing grooves 25. Residues may remain. This residue remains at some positions even after the singulation process, which leads to a decrease in reliability.
  • the electromagnetic wave shielding laminate is thermocompression bonded to the electronic component mounting board. After that, the releasability of the releasable cushion member with respect to the electromagnetic wave shield member can be enhanced. Further, it is possible to effectively suppress the phenomenon that a part of the electromagnetic wave shield member is peeled off together with the releasable cushion member and the part of the electromagnetic wave shield member is damaged. Therefore, it is possible to provide a highly reliable electronic component mounting board. Further, it is possible to increase the degree of freedom in designing the height of the electronic components mounted on the board and the degree of freedom in designing the width of the gap between the electronic components.
  • the electromagnetic wave shielding laminate of the embodiment A1 is composed of two layers of the electromagnetic wave shielding member 2 and the releasable cushion member 3, as described in FIG.
  • the electromagnetic wave shielding member 2 is composed of the single-layer conductive adhesive layer 6.
  • the conductive adhesive layer 6 is bonded to the electronic component 30 and the substrate 20 through a thermocompression bonding process and functions as the electromagnetic wave shield layer 5.
  • the conductive adhesive layer 6 is a layer formed from a resin composition containing a binder resin precursor and a conductive filler.
  • the binder resin precursor contains at least a thermosoftening resin.
  • the thermosoftening resin include a thermoplastic resin, a thermosetting resin and an actinic ray curable resin.
  • the thermosetting resin and the actinic ray curable resin usually have a reactive functional group.
  • a thermosetting resin a curable compound and a thermosetting auxiliary can be used together.
  • an actinic ray curable resin is used, a photopolymerization initiator, a sensitizer and the like can be used in combination.
  • thermosetting type that cures at the time of thermocompression bonding is preferable from the viewpoint of simplicity of the manufacturing process.
  • a self-crosslinking resin or a plurality of resins that crosslink each other may be used.
  • a thermoplastic resin may be mixed.
  • the components such as the resin and the curable compound may be used alone or in combination of two or more.
  • a part of the crosslinks may be formed at the stage of the conductive adhesive layer 6 to be in the B stage (semi-cured state).
  • a state in which the thermosetting resin and a part of the curable compound are reacted and semi-cured may be included.
  • thermosetting resin when used under severe conditions during reflow contains at least one of an epoxy resin, an epoxy ester resin, a urethane resin, a urethane urea resin, and a polyamide. preferable.
  • thermosoftening resin may be used alone or in combination of two or more at an arbitrary ratio.
  • the resin having a polycarbonate skeleton examples include a polycarbonate resin, a polyurethane resin having a polycarbonate skeleton, a polyamide resin, and a polyimide resin.
  • a polycarbonate imide resin having a polyimide skeleton makes it possible to enhance heat resistance, insulation and chemical resistance.
  • flexibility and adhesion can be effectively enhanced.
  • polycarbonate urethane resin examples include 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanedimethanol, 1,9-nonanediol, and 2-methyl-1,8-octanediol.
  • Polycarbonate polyols based on one or more diols such as the above can be used as the polyol component.
  • the thermosoftening resin may have a plurality of functional groups that can be used for a crosslinking reaction by heating.
  • Functional groups include, for example, hydroxyl group, phenolic hydroxyl group, carboxyl group, amino group, epoxy group, oxetanyl group, oxazoline group, oxazine group, aziridine group, thiol group, isocyanate group, blocked isocyanate group, silanol group and the like. ..
  • the curable compound has a functional group capable of crosslinking with the reactive functional group of the thermosetting resin.
  • Curable compounds include epoxy compounds, acid anhydride group-containing compounds, isocyanate compounds, polycarbodiimide compounds, aziridine compounds, dicyandiamide compounds, amine compounds such as aromatic diamine compounds, phenol compounds such as phenol novolac resins, and organometallic compounds.
  • the curable compound may be a resin. In this case, in order to distinguish between the thermosetting resin and the curable compound, one having a larger content is a thermosetting resin and one having a smaller content is a curable compound.
  • the curable compound is preferably contained in an amount of 1 to 70 parts by mass, more preferably 3 to 65 parts by mass, still more preferably 3 to 60 parts by mass, based on 100 parts by mass of the thermosetting resin.
  • the curable compound may be used alone or in combination of two or more.
  • thermoplastic resin examples include polyester, acrylic resin, polyether, urethane resin, styrene elastomer, polycarbonate, butadiene rubber, polyamide, ester amide resin, polyisoprene, and cellulose.
  • tackifying resin examples include rosin-based resins, terpene-based resins, alicyclic petroleum resins, and aromatic petroleum resins.
  • a conductive polymer can be used. Examples of the conductive polymer include polyethylenedioxythiophene, polyacetylene, polypyrrole, polythiophene, and polyaniline.
  • thermoplastic resin examples include polyester, acrylic resin, polyether, urethane resin, styrene elastomer, polycarbonate, butadiene rubber, polyamide, ester amide resin, polyisoprene, and cellulose.
  • the silver content in the silver-coated copper is preferably 3 to 20% by mass, more preferably 8 to 17% by mass, and further preferably 10 to 15% by mass, based on the total 100% by mass of silver and copper.
  • the coverage of the coating layer on the core part is preferably 60% or more on average, more preferably 70% or more, and further preferably 80% or more.
  • the core part may be non-metal, but from the viewpoint of conductivity, a conductive substance is preferable, and metal particles are more preferable.
  • An electromagnetic wave absorbing filler may be used as the conductive filler.
  • iron alloys Mg-Zn ferrite, Mn-Zn ferrite, Mn-Mg ferrite, Cu-Zn ferrite, Mg-Mn-Sr ferrite, Ni-Zn ferrite, and other ferrite-based materials
  • carbon filler include acetylene black, Ketjen black, furnace black, carbon black, carbon fiber, particles composed of carbon nano-nanotubes, graphene particles, graphite particles and carbon nanowalls.
  • the shape of the conductive filler used in the conductive adhesive layer can be exemplified by scale particles, dendrite (dendritic) particles, needle particles, plate particles, grape particles, fibrous particles, and spherical particles, From the viewpoint of adjusting the numerical value of the kurtosis, it is preferable to include a conductive filler of needle-shaped particles and/or dendrite-shaped particles.
  • the acicular shape means that the major axis is three times or more the minor axis, and includes a so-called needle shape, a spindle shape, a columnar shape and the like.
  • the dendrite shape means a shape in which a plurality of branched branches extend two-dimensionally or three-dimensionally from a rod-shaped main axis when observed with an electron microscope (500 to 20,000 times).
  • the branched branch may be bent, or the branched branch may further extend from the branched branch.
  • the scaly shape includes a thin shape and a plate shape.
  • the conductive filler may have a scaly shape as a whole particle, and may have an elliptical shape, a circular shape, or cuts around the fine particles.
  • the conductive fillers may be used alone or as a mixture.
  • a combination of scale-like particles and dendrite-like particles, a combination of scale-like particles and acicular particles, and scale-like particles A combination of particles, dendrite-like particles and acicular particles is preferred. Particularly preferred is a combination of scale-like particles and acicular particles.
  • the content of the conductive filler is preferably 40 to 85% by mass, and more preferably 50 to 80% by mass in the solid content (100% by mass) of the thermosoftening resin composition layer.
  • the amount of needle-shaped particles and/or dendrite-shaped particles is 50% by mass or less based on 100% by mass of the conductive filler in the conductive adhesive layer.
  • the amount is more preferably 0.5 to 40% by mass, and further preferably 2 to 27% by mass.
  • the average particle diameter D50 of the acicular particles is preferably 2 to 100 ⁇ m, more preferably 2 to 80 ⁇ m.
  • the thickness is more preferably 3 to 50 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the preferable range of the average particle diameter D50 of the dendrite-shaped particles is preferably 2 to 100 ⁇ m, more preferably 2 to 80 ⁇ m.
  • the thickness is more preferably 3 to 50 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the average particle diameter D50 of the scaly particles is preferably 2 to 100 ⁇ m, more preferably 2 to 80 ⁇ m.
  • the thickness is more preferably 3 to 50 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the average particle diameter D50 can be measured by a laser diffraction/scattering method. Specifically, it is a numerical value obtained by measuring each conductive fine particle with a tornado dry powder sample module using a laser diffraction/scattering particle size distribution measuring device LS 13320 (manufactured by Beckman Coulter, Inc.). The average particle diameter is the diameter of the particle diameter for which the integrated value of the particles is 50%. The refractive index is set to 1.6 for measurement.
  • the average particle diameter D50 of each particle in the electromagnetic wave shield member 1 can be obtained by measuring the particle size of 100 particles using a scanning electron microscope (SEM) and determining the frequency distribution. In the case of needle-shaped particles and dendrite-shaped particles, the longest length of each particle is used as the particle size.
  • SEM scanning electron microscope
  • dendrite-shaped particles and/or needle-shaped particles in combination with scale-shaped particles, it is possible to increase the number of contact points between the conductive fillers and improve the shielding property.
  • the combined use of dendrite particles and/or acicular particles can increase the contact area with the binder component, facilitate adjustment of the kurtosis value, and further enhance scratch resistance. Therefore, a highly reliable electromagnetic wave shield member can be provided.
  • the composition forming the conductive adhesive layer may further contain a colorant, a flame retardant, an inorganic additive, a lubricant, an antiblocking agent and the like.
  • the colorant include organic pigments, carbon black, ultramarine blue, red iron oxide, zinc white, titanium oxide, graphite and the like. Among these, the inclusion of the black colorant improves the print visibility of the shield layer.
  • the flame retardant include halogen-containing flame retardants, phosphorus-containing flame retardants, nitrogen-containing flame retardants, inorganic flame retardants, and the like.
  • the inorganic additive include glass fiber, silica, talc, ceramics and the like.
  • lubricant examples include fatty acid ester, hydrocarbon resin, paraffin, higher fatty acid, fatty acid amide, aliphatic alcohol, metal soap, modified silicone and the like.
  • antiblocking agent examples include calcium carbonate, silica, polymethylsilsesquiosane, aluminum silicate and the like.
  • the conductive adhesive layer may be a layer having conductivity due to continuous contact of the conductive filler by thermocompression bonding, and does not necessarily have conductivity at the stage before thermocompression bonding.
  • the conductive adhesive layer can be formed by mixing and stirring the above-described conductive filler and a composition containing a binder resin precursor, coating the composition on a releasable substrate, and then drying. Alternatively, the releasable cushion member 3 may be directly applied and dried.
  • the drying step is preferably performed by heating (for example, 80 to 120° C.).
  • the kurtosis value can be adjusted by providing a process of drying at room temperature before heat drying.
  • a coating liquid is applied to form the conductive adhesive layer 6 on the releasable base material 15.
  • a conductive adhesive layer 6P that is in the process of drying and contains a solvent is obtained.
  • the solid content of the coating liquid is preferably 20 to 50% in order to set the kurtosis value of the electromagnetic wave shield member 1 to 1 to 8. Further, in order to adjust the kurtosis of the electromagnetic wave shield member, it is preferable that the viscosity of the coating liquid measured with a B-type viscometer is in the range of 200 to 5000 mPa ⁇ s. Further, in order to adjust the kurtosis of the electromagnetic wave shield member, the thixotropy index of the coating liquid is preferably 1.2 to 2.0.
  • the conductive filler 11 of FIG. 9 and FIG. 10 which will be described later is a scaly particle, and the figure is not a plan view of the main surface but shows a cross-sectional view taken along the thickness direction.
  • the kurtosis of the electromagnetic wave shield member 1 can also be adjusted by the particle size of dendrite-shaped particles and/or needle-shaped particles.
  • the effect of the particle size of the dendrite-shaped particles and/or the acicular particles on the kurtosis of the electromagnetic wave shield member 1 will be described with reference to the schematic explanatory view of FIG. 10. Similar to FIG. 9, by applying a coating liquid to form the conductive adhesive layer 6 on the releasable substrate 15, the conductive adhesive layer 6P in the process of being dried can be obtained.
  • members and components common to FIG. 9 are given the same reference numerals. As shown in FIG.
  • the average particle diameter D50 is 2 to 5 ⁇ m, and when it is desired to increase the value of the kurtosis, for example, the average particle diameter D50 is 20 to When it is desired to set 50 ⁇ m to an intermediate value between them, the average particle diameter D50 can be set to be more than 5 ⁇ m and less than 20 ⁇ m.
  • the corona is applied. It is preferable to perform treatment or plasma treatment.
  • the irradiation amount of corona discharge electrons is preferably 1 to 1,000 W/m 2 /min, more preferably 10 to 100 W/m 2 /min.
  • the kurtosis of the electromagnetic wave shield member 1 can be adjusted by increasing the amount of needle-like or dendrite-like conductive filler added to the composition forming the electromagnetic wave shield member 2 before thermocompression bonding.
  • the kurtosis of the electromagnetic wave shield member 1 can also be adjusted by the average particle diameters D50 and D90 of the conductive filler.
  • the releasable cushion member 3 is laminated on the conductive adhesive layer 6.
  • the laminating method includes a laminating method.
  • the releasable base material is a base material having releasability on one or both sides, and is a sheet having a tensile breaking strain of less than 50% at 150°C.
  • the releasable substrate include polyethylene terephthalate, polyethylene naphthalate, polyvinyl fluoride, polyvinylidene fluoride, rigid polyvinyl chloride, polyvinylidene chloride, nylon, polyimide, polystyrene, polyvinyl alcohol, ethylene/vinyl alcohol copolymer, and polycarbonate.
  • the releasable cushion member is a sheet that functions as a cushioning material that promotes the followability of the conductive adhesive layer to the electronic component and has releasability. That is, it is a layer that can be separated from the electromagnetic wave shield member 1 after the thermocompression bonding process. Further, it is preferable that the layer has a tensile breaking strain at 150° C. of 50% or more and melts during thermocompression bonding.
  • the tensile breaking strains of the releasable base material and the releasable cushion member 3 are values obtained by the following method.
  • the releasable base material and the releasable cushion member were cut into a size of width 200 mm ⁇ length 600 mm to obtain a measurement sample.
  • a tensile test (test speed 50 mm/min) was performed on the measurement sample using a small bench tester EZ-TEST (manufactured by Shimadzu Corporation) under the conditions of a temperature of 25° C. and a relative humidity of 50%.
  • the tensile breaking strain (%) was calculated from the obtained SS curve (Stress-Strain curve).
  • the releasable cushion member 3 polyethylene, polypropylene, polyether sulfone, polyphenylene sulfide, polystyrene, polymethylpentene, polybutylene terephthalate, cyclic olefin polymer and silicone are preferable.
  • polypropylene, polymethylpentene, polybutylene terephthalate, and silicone are more preferable from the viewpoint of achieving both embedding property and releasability.
  • the releasable cushion member may be used in a single layer or multiple layers. In the case of multiple layers, sheets of the same type or different types can be laminated.
  • the method of laminating the releasable cushion member 3 and the conductive adhesive layer 6 is not particularly limited, but a method of laminating these sheets can be mentioned. Since the releasable cushion member 3 is finally peeled off, a material having excellent releasability is preferable.
  • the thickness of the releasable cushion member is, for example, about 50 ⁇ m to 3 mm, more preferably about 100 ⁇ m to 1 mm.
  • the electronic component mounting board according to the embodiment A2 is different from the embodiment A1 using the electromagnetic wave shield member composed of a single electromagnetic wave shield layer in that the electromagnetic wave shield member is composed of two electromagnetic wave shield layers,
  • the other basic configuration and manufacturing method are the same as those of the embodiment A1. Note that the description overlapping with that of the embodiment A1 will be appropriately omitted.
  • the electromagnetic wave shield member of Embodiment A2 is an electromagnetic wave shield member that is a conductive adhesive layer 6a composed of two layers of a first conductive adhesive layer 6a1 and a second conductive adhesive layer 6a2. 2a and an electromagnetic wave shielding laminate 4a including a releasable cushion member 3a.
  • the electromagnetic wave shielding member including the first electromagnetic wave shielding layer and the second electromagnetic wave shielding layer is coated on the substrate on which the electronic component is mounted.
  • the degree of freedom in designing the electromagnetic wave shield member can be increased.
  • the same effect as that of the embodiment A1 can be obtained by using the electromagnetic wave shield member including the two electromagnetic wave shield layers. Further, by laminating two electromagnetic wave shield layers, the degree of freedom in designing each layer can be increased, and there is an advantage that it is easy to provide an electromagnetic wave shield member according to needs.
  • Embodiment A3 The electronic component mounting board according to Embodiment A3, in that the electromagnetic wave shield member is a laminate of an electromagnetic wave shield layer and a hard coat layer, Embodiment A1 using an electromagnetic wave shield member consisting of a single layer of the electromagnetic wave shield layer.
  • the other basic structure and manufacturing method are the same.
  • the electromagnetic wave shielding member according to the embodiment A3 includes an electromagnetic wave shielding member 2b and a releasable cushion member 3b which are a laminated body of one conductive adhesive layer 6b and an insulating resin layer 7b. It is formed by using the electromagnetic wave shielding laminate 4b. By thermocompression-bonding this electromagnetic wave shielding laminate 4b, an electromagnetic wave shielding layer formed of a conductive adhesive layer 6b and a hard coat layer formed of an insulating resin layer 7b are formed on a substrate on which electronic components are mounted. An electromagnetic wave shield member consisting of is obtained.
  • the electromagnetic wave shield member according to Embodiment A3 has a kurtosis of 1 to 8 when measured from the hard coat layer side.
  • the insulating resin layer 7b is a layer formed from a resin composition containing a binder resin precursor and an inorganic filler.
  • the binder resin precursor contains at least a thermosoftening resin. Examples of the heat softening resin, and examples and preferred examples of the binder resin precursor are the same as the composition of the conductive adhesive layer of the electromagnetic wave shielding member described in the embodiment A1.
  • the binder resin precursors of the conductive adhesive layer and the insulating resin layer may be the same or different.
  • the inorganic filler does not have conductivity unlike the conductive adhesive layer of the embodiment A1, but preferable characteristics of the inorganic filler, for example, shape, blending amount, D50, D90, etc. are the same as the examples given for the conductive filler. Is.
  • the inorganic filler include silica, alumina, magnesium hydroxide, barium sulfate, calcium carbonate, titanium oxide, zinc oxide, antimony trioxide, magnesium oxide, talc, kaolinite, mica, basic magnesium carbonate, sericite, montmoroli. Inorganic compounds such as knight, kaolinite and bentonite are mentioned.
  • the heat-softenable resin composition, and the heat-softenable resin composition layer if necessary, a colorant, a silane coupling agent, an ion scavenger, an antioxidant, a tackifying resin, a plasticizer, an ultraviolet absorber, a leveling agent. Modifiers, flame retardants and the like can be included.
  • the electromagnetic wave shield member having the hard coat layer in addition to the effect described in the embodiment A1, it is excellent by covering the electromagnetic wave shield layer with the hard coat layer.
  • An electromagnetic wave shield member having durability can be provided.
  • the electronic component mounting board according to the embodiment A4 is different from the embodiment A1 using the electromagnetic wave shield member composed of a single electromagnetic wave shield layer in that the electromagnetic wave shield member is a laminate of an electromagnetic wave shield layer and an insulating coating layer.
  • the other basic configuration and manufacturing method are the same as in Embodiment A1.
  • the electromagnetic wave shielding member according to the embodiment A4 is an electromagnetic wave composed of an electromagnetic wave shielding member 2c, which is a laminate of an insulating adhesive layer 8c and a conductive adhesive layer 6c, and a releasable cushion member 3c. It is formed using the shield laminate 4c.
  • Embodiment A4 an example will be described in which the electromagnetic wave shield member is coated on a substrate on which a plurality of electronic components (for example, semiconductor packages) that have not been subjected to the individualization process or have been individualized have been formed.
  • the electromagnetic wave shielding laminate 4c is arranged above the substrate 20 on which the electronic component 30 having the solder balls 24 functioning as connection terminals with the substrate 20 is mounted, and the releasable cushion member 3c.
  • the substrate 20 on which the electronic component 30 is mounted is thermocompression bonded from the side (FIG. 14B). After that, the releasable cushion member 3c is peeled off to obtain the electronic component mounting board 53 in which the electromagnetic wave shield member 1c of FIG. 14C is laminated.
  • the obtained electronic component mounting substrate 53 can take GND from the upper surface of the electromagnetic wave shield layer 5c.
  • a ground pattern is provided on the substrate 20, and in order to make the ground pattern and the electromagnetic wave shield layer 5c electrically conductive, the conductive pattern is penetrated through the insulating coating layer 9c on the ground pattern and electrically connected to the electromagnetic wave shield layer 5c.
  • the connector part may be provided.
  • the unit of the product unit of FIG. 14C is formed in an array on the mother substrate, and the electromagnetic wave shielding laminate is formed. It is also possible to obtain the electronic component mounting substrate shown in FIG. 14C by placing 4c and thermocompression-bonding it to form an electromagnetic wave shield layer, and then performing an individualizing step.
  • the insulating adhesive layer 8c is a layer formed of a resin composition containing a binder resin precursor.
  • the binder resin precursor contains at least a thermosoftening resin. Examples and preferred examples of the binder resin precursor include the binder resin precursor of the conductive adhesive layer described in the embodiment A1.
  • the binder resin precursors of the insulating adhesive layer 8c and the conductive adhesive layer 6c may be the same or different.
  • the heat-softenable resin composition and the heat-softenable resin composition layer if necessary, a colorant, a silane coupling agent, an ion scavenger, an antioxidant, a tackifier resin, a plasticizer, an ultraviolet absorber, and a leveling adjustment. Agents, flame retardants, inorganic fillers, etc. may be included.
  • the electromagnetic wave shield member 1c having the insulating coating layer 9c by using the electromagnetic wave shield member 1c having the insulating coating layer 9c, in addition to the effect described in Embodiment A1, a conductor portion such as a circuit other than the ground pattern or an electrode pattern is provided. It is possible to prevent a short circuit between the electromagnetic wave shield member and the electromagnetic wave shield member, and to enhance the reliability of bonding between the electronic component and the electromagnetic wave shield layer. Also, the insulation reliability of the electronic component can be improved. Therefore, the electromagnetic wave shield member having excellent durability can be provided. As a result, it is possible to provide an electronic component mounting board having excellent electromagnetic wave shielding properties. In addition, since the shield layer can be collectively formed on the entire substrate, the manufacturing process is simple, and the thickness can be remarkably reduced as compared with a shield can or the like.
  • the insulating coating layer 9c is mainly used for strengthening the bonding between the electronic component and the electromagnetic wave shielding member has been described, but the insulating coating layer 9c can also be applied to the sealing material.
  • the sealing material there is an advantage that the sealing step of the semiconductor chip and the electromagnetic wave shielding member can be performed in the same step. That is, the electromagnetic wave shielding member according to the embodiment A4 is applied to an electronic component which is an insulator and is not integrally covered, and an insulating coating layer corresponding to an insulating adhesive layer to a sealing material (mold resin).
  • a press plate in which concave portions corresponding to the electronic component are formed in an array (a press portion having a convex portion for embedding the electromagnetic wave shield member in a gap between the electronic components is formed).
  • a plate may be used.
  • Embodiment A5 The electronic component mounting board according to the embodiment A5, the electromagnetic wave shield layer and the ground pattern are in direct contact with each other for conduction, and the conductive adhesive layer positioned in the inner layer of the electromagnetic wave shield laminate is a stage of the laminate body.
  • An electromagnetic wave shield laminate having an exposed region is used. The exposed region is provided so that a conductive pattern such as a ground pattern formed on the substrate or the like and the electromagnetic wave shield layer come into contact with each other to establish electrical conduction.
  • the embodiment A5 is different from the embodiment A4 in these points, but the other basic configuration and manufacturing method are the same.
  • the laminated body for electromagnetic wave shielding according to the embodiment A5 has the same laminated structure as that of the embodiment A4, but as shown in FIG. 15A, at a position corresponding to a region covering the ground pattern 22 formed on the substrate 20.
  • the conductive adhesive layer 6d is exposed in the electromagnetic wave shielding laminate 4d. Specifically, the exposed region of the conductive adhesive layer 6d is provided in a top view from the insulating adhesive layer 8d side.
  • the size of the insulating adhesive layer 8d is made one size smaller than the size of the electromagnetic wave shielding laminate 4d, and the conductive adhesive is applied in the frame region of the electromagnetic wave shielding laminate 4d.
  • the agent layer 6d is exposed.
  • an electronic component mounting board 54 is obtained in which the ground pattern 22 and the electromagnetic wave shield layer 5d are brought into contact with each other by thermocompression to establish electrical conduction.
  • the position of the exposed portion of the conductive adhesive layer 6d in the electromagnetic wave shielding laminate 4d is not limited to the example of FIG. 15A, and the exposed portion may be formed as an opening pattern.
  • Embodiment B1 ⁇ Electronic component mounting board>
  • the electronic component mounting board of the embodiment B1 uses the electromagnetic wave shield member specified in the embodiment B instead of the electromagnetic wave shield member specified in the embodiment A.
  • the electronic component mounting board and the manufacturing method thereof of the embodiment B1 are the same as those of the embodiment A1 except that the electromagnetic wave shielding member according to the embodiment B is used and the description thereof is omitted. Common. Therefore, the description of the overlapping portions will be omitted as appropriate.
  • the basic configuration of the electronic component mounting board according to the embodiment B1 As a preferable example of the basic configuration of the electronic component mounting board according to the embodiment B1, the basic configuration of the electronic component mounting board of the embodiment A1 described in FIGS. 1 to 10 can be exemplified. Hereinafter, the characteristic part of the embodiment B1 will be described with reference to these drawings.
  • the electromagnetic wave shielding member 1 according to the embodiment B1 has the electromagnetic wave shielding laminated body placed on the top surface of the electronic component 30 mounted on the substrate 20 and thermocompression bonded to the electronic component 30. And by coating the substrate 20. Since the coating mode of the electromagnetic wave shield member 1 is the same as that of the embodiment A1, the description thereof is omitted.
  • the electromagnetic wave shield member 1 of the embodiment B1 can be formed using the electromagnetic wave shielding laminate as in the embodiment A1. Then, as shown in FIG. 4, the electromagnetic wave shielding laminate 4 is composed of the electromagnetic wave shielding member 2 and the releasable cushion member 3. This electromagnetic wave shielding member 2 is composed of a single layer of the conductive adhesive layer 6 as in the embodiment A1. The conductive adhesive layer 6 is bonded to the electronic component 30 and the substrate 20 by thermocompression bonding to form the electromagnetic wave shield layer 5. In the embodiment A1, the electromagnetic wave shield layer 5 functions as the electromagnetic wave shield member 1.
  • the electromagnetic wave shielding member 2 of Embodiment B1 is formed of a laminate of two or more conductive adhesive layers or a laminate of a conductive adhesive layer and a hard coat layer as described in Embodiment A1. It may be formed, or formed from a laminated body of other layers such as a laminated body of an insulating adhesive layer and a conductive adhesive layer.
  • the electromagnetic wave shield layer 5 of Embodiment B1 contains a binder resin and a conductive filler.
  • the conductive filler in the electromagnetic wave shield layer 5 is in continuous contact with the conductive filler and exhibits conductivity. From the viewpoint of enhancing the electromagnetic wave shielding property, the sheet resistance value of the electromagnetic wave shielding layer 5 is preferably 1 ⁇ / ⁇ or less.
  • the electromagnetic wave shield member 1 of Embodiment B1 has an indentation elastic modulus of 1 to 10 GPa.
  • the indentation elastic modulus By setting the indentation elastic modulus in this range, it is possible to suppress local minute deformation of the electromagnetic wave shield member 1 due to stress, and as a result, it is possible to effectively suppress damage due to the occurrence of burrs on the electromagnetic wave shield member 1. Furthermore, since it has excellent PCT resistance, it is possible to effectively suppress the decrease in adhesion after the reflow process. Therefore, a high quality electronic component mounting board can be provided.
  • the indentation elastic modulus of the electromagnetic wave shield member 1 of Embodiment B1 By setting the indentation elastic modulus of the electromagnetic wave shield member 1 of Embodiment B1 to 1 GPa or more, deformation of the electromagnetic wave shield member 1 is suppressed against stress received from a cutting tool such as a dicing blade in the cutting process, and electromagnetic waves generated in the manufacturing process are suppressed. Burrs (see (i) of FIG. 23) of the shield member 1 can be effectively suppressed.
  • the term “burr” as used herein refers to the turning of the electromagnetic wave shield member based on the cut surface of the electromagnetic wave shield member 1.
  • the indentation elastic modulus of the electromagnetic wave shield member 1 of Embodiment B1 can be adjusted by the composition of the electromagnetic wave shield member 2 in the electromagnetic wave shield laminate 4 described below before thermocompression bonding. More specifically, it can be adjusted by the kind of the binder resin precursor in the composition of the electromagnetic wave shielding member 2 before thermocompression bonding for forming the electromagnetic wave shielding member 1, the blending amount of each component, and the like. Specifically, the indentation elastic modulus tends to increase as the filler content increases. Further, the indentation elastic modulus tends to increase by increasing the number of functional groups of the resin used as the binder resin precursor or the content of the curable compound. Further, the higher the hardness of the binder resin, the larger the indentation elastic modulus tends to be. Therefore, it is preferable to make the kind of the binder resin precursor for forming the binder resin or the crosslink density of the binder resin appropriate. The crosslink density can be easily adjusted by the type of resin and curable compound and the number of functional groups.
  • indentation elastic modulus can be thought of as the Young's modulus that represents the property of the material to deform due to external stress.
  • the “indentation elastic modulus” in the present specification refers to a value obtained by the measuring method and the measuring condition described in Examples described later.
  • a more preferable range of the indentation elastic modulus of the electromagnetic wave shield member 1 of Embodiment B1 is more than 1.5 GPa and 8 GPa or less, and a more preferable range is 2 GPa or more and 7.4 GPa or less.
  • the film thickness of the electromagnetic wave shield member 1 of Embodiment B1 can be appropriately selected depending on the application.
  • the thickness T1 and T2 of the electromagnetic wave shield member 1 that covers the upper surface of the electronic component can be set to, for example, about 10 to 200 ⁇ m.
  • Product information may be stamped on the electronic component 30.
  • good visibility of the marking is required while maintaining high shielding property.
  • the thickness T1 of the electromagnetic wave shielding member is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more. In the latter marking method, that is, when marking is performed on the electromagnetic wave shield member, there is no upper limit of the film thickness of the electromagnetic wave shield member.
  • the upper limit of the film thickness T1 of the electromagnetic wave shield member is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less in order to maintain the visibility of the marking.
  • the water contact angle of the surface layer of the electromagnetic wave shield member 1 of Embodiment B1 is preferably 70 to 110°. By setting this range, it is possible to more effectively suppress damage to the electromagnetic wave shield layer during the manufacturing process. Further, it is possible to suppress the occurrence of burrs when the releasable cushion member filled in the groove-shaped recess formed in the half dicing groove 25 of the electronic component 30 is peeled off from the electromagnetic wave shield member 1.
  • the more preferable range of the water contact angle of the electromagnetic wave shield member is 75 to 105°, and the more preferable range is 80 to 100°.
  • the water contact angle of the electromagnetic wave shield member can be adjusted by adjusting the amount of the surface modifier added to the composition forming the electromagnetic wave shield member. The value of the water contact angle tends to increase as the amount of the surface modifier added to the electromagnetic wave shield member 1 increases.
  • the Martens hardness of the electromagnetic wave shield member 1 of the embodiment B1 in the range of 50 N/mm 2 or more.
  • the indentation elastic modulus of the electromagnetic wave shield member 1 is set within the range of 1 to 10 GPa and the Martens hardness of 50 N/mm 2 or more is combined, the adhesion after the pressure cooker test becomes more excellent.
  • Martens hardness is more preferably 60N / mm 2 or more, 70N / mm 2 or more is more preferable.
  • Martens hardness can be adjusted by the hardness of the conductive filler and binder component.
  • the hardness of the binder component mainly depends on the hardness of the cured product of the thermosetting resin and the curable compound. Specifically, the addition of scale-like particles tends to increase the Martens hardness, and the addition of spherical or dendrite-like particles tends to decrease the Martens hardness. Further, as the amount of conductive filler increases, the Martens hardness tends to increase. Further, the higher the hardness of the cured resin, the harder the Martens hardness.
  • the manufacturing method will be described later, from the viewpoint of enhancing releasability when the releasable cushion member is peeled from the electromagnetic wave shield member 1 after the electromagnetic wave shield laminate 4 is thermocompression bonded to the substrate 20 on which the electronic component 30 is mounted. It is preferable that the kurtosis of the surface layer of the electromagnetic wave shield member 1 measured according to JIS B0601; 2001 is 8 or less. It is considered that when it is 8 or less, the sharpness of the surface shape of the electromagnetic wave shield member 1 becomes appropriate, and the release cushion member 3 and the electromagnetic wave shield member 1 are easily separated.
  • the "removable” means a releasable cushion member that is torn when the releasable cushion member is peeled and remains in a groove that is a gap between electronic components.
  • the electromagnetic wave shield member 1 of Embodiment B1 has a kurtosis of 1 or more. By setting it to 1 or more, the resistance to steel wool can be improved.
  • the more preferable range of kurtosis of the electromagnetic wave shield member is 1.5 to 6.5, and the more preferable range thereof is 2 to 4.
  • the method of adjusting the kurtosis on the surface of the electromagnetic wave shield member 1 is as described in the embodiment A1.
  • the root mean square height Rq of the surface of the electromagnetic wave shield member 1 of Embodiment B1 is preferably in the range of 0.4 to 1.6 ⁇ m, more preferably 0.5 to 1.5 ⁇ m, and 0.7 It is more preferable that the thickness is 1.2 ⁇ m.
  • the kurtosis and the root mean square height refer to values obtained by the method described in Examples below.
  • the method of manufacturing the electromagnetic wave shield member 1 of Embodiment B1 is basically the same as the method of manufacturing the electromagnetic wave shield member 1 of Embodiment A1.
  • the binder resin forming the electromagnetic wave shield layer 5 has a three-dimensional crosslinked structure from the viewpoint of improving the tape adhesion after PCT.
  • high-pressure water washing may be performed in order to cool the frictional heat due to dicing and to wash away the dicing dust generated by dicing.
  • the electronic component mounting board 51 according to the embodiment B by setting the indentation elastic modulus to 1 to 10 GPa, the peeling of the electromagnetic wave shield member 1 due to the impact of high-pressure water washing can be significantly improved.
  • the electromagnetic wave shielding laminate of the embodiment B1 is composed of two layers of the electromagnetic wave shielding member 2 and the releasable cushion member 3, as described in FIG.
  • the electromagnetic wave shielding member 2 is composed of the single-layer conductive adhesive layer 6.
  • the conductive adhesive layer 6 is bonded to the electronic component 30 and the substrate 20 through a thermocompression bonding process and functions as the electromagnetic wave shield layer 5.
  • the conductive adhesive layer 6 is a layer formed from a resin composition containing a binder resin precursor and a conductive filler.
  • the binder resin precursor contains at least a thermosoftening resin.
  • the thermosoftening resin include a thermoplastic resin, a thermosetting resin and an actinic ray curable resin.
  • the thermosetting resin and the actinic ray curable resin usually have a reactive functional group.
  • a thermosetting resin a curable compound and a thermosetting auxiliary can be used together.
  • an actinic ray curable resin is used, a photopolymerization initiator, a sensitizer and the like can be used in combination.
  • thermosetting type that cures at the time of thermocompression bonding is preferable from the viewpoint of simplicity of the manufacturing process.
  • a self-crosslinking resin or a plurality of resins that crosslink each other may be used.
  • a thermoplastic resin may be mixed.
  • the components such as the resin and the curable compound may be used alone or in combination of two or more.
  • a part of the crosslinks may be formed at the stage of the conductive adhesive layer 6 to be in the B stage (semi-cured state).
  • a state in which the thermosetting resin and a part of the curable compound are reacted and semi-cured may be included.
  • thermosoftening resin as a thermosetting resin, may have a plurality of functional groups that can be used for a crosslinking reaction by heating. Specific examples of the functional group are the same as in Embodiment A1.
  • the curable compound has a functional group capable of crosslinking with the reactive functional group of the thermosetting resin. By crosslinking, the adhesion can be made stronger and the water resistance can be improved.
  • Curable compounds include epoxy compounds, acid anhydride group-containing compounds, isocyanate compounds, polycarbodiimide compounds, aziridine compounds, dicyandiamide compounds, amine compounds such as aromatic diamine compounds, phenol compounds such as phenol novolac resins, and organometallic compounds. preferable.
  • the curable compound may be a resin. In this case, in order to distinguish between the thermosetting resin and the curable compound, one having a larger content is a thermosetting resin and one having a smaller content is a curable compound.
  • the above epoxy compound is a compound having two or more epoxy groups in one molecule.
  • the properties of the epoxy compound may be liquid or solid.
  • the epoxy compound for example, a glycidyl ether type epoxy compound, a glycidyl amine type epoxy compound, a glycidyl ester type epoxy compound, a cycloaliphatic (alicyclic) epoxy compound and the like are preferable.
  • Examples of the glycidyl ether type epoxy compound include a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, a bisphenol S type epoxy compound, a bisphenol AD type epoxy compound, a cresol novolac type epoxy compound, a phenol novolac type epoxy compound, and ⁇ -naphthol novolak.
  • Examples of the glycidyl amine type epoxy compound include tetraglycidyl diaminodiphenylmethane, triglycidyl paraaminophenol, triglycidyl metaaminophenol, and tetraglycidyl metaxylylenediamine.
  • Examples of the glycidyl ester type epoxy compound include diglycidyl phthalate, diglycidyl hexahydrophthalate, diglycidyl tetrahydrophthalate and the like.
  • cycloaliphatic (alicyclic) epoxy compound examples include epoxycyclohexylmethyl-epoxycyclohexanecarboxylate, bis(epoxycyclohexyl)adipate, and the like. Further, a liquid epoxy compound can be preferably used.
  • imidazole compound examples include imidazole compounds such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2,4-dimethylimidazole and 2-phenylimidazole, and further imidazole compounds.
  • latent curing accelerators having improved storage stability such as a type in which an epoxy resin is reacted with a solvent to make them insoluble in a solvent, or a type in which an imidazole compound is encapsulated in microcapsules.
  • a conductive adhesive layer The latent curing accelerator is preferable from the viewpoint of initiating the curing after the heat-melting.
  • the structure and molecular weight of the curable compound can be appropriately designed depending on the application. From the viewpoint of effectively suppressing burrs by adjusting the indentation elastic modulus in the range of 1 to 10 GPa, it is preferable to use two or more curable compounds having different molecular weights.
  • the use of the first curable compound and the second curable compound also has the effect of increasing the tensile breaking strain of the electromagnetic wave shield layer.
  • the curable compound is preferably contained in an amount of 1 to 70 parts by mass, more preferably 3 to 65 parts by mass, still more preferably 3 to 60 parts by mass, based on 100 parts by mass of the thermosetting resin.
  • the first curable compound is preferably contained in an amount of 5 to 50 parts by mass, preferably 10 to 40 parts by mass, based on 100 parts by mass of the thermosetting resin. More preferably, it is more preferable to contain 20 to 30 parts by mass.
  • the second curable compound is preferably contained in an amount of 0 to 40 parts by mass, more preferably 5 to 30 parts by mass, and further preferably 10 to 20 parts by mass based on 100 parts by mass of the thermosetting resin.
  • thermoplastic resin is the same as that of the embodiment A1.
  • the conductive filler can be exemplified by metal filler, conductive ceramic particles and a mixture thereof.
  • a suitable example of the metal filler is the same as that of the embodiment A1.
  • the content of silver in the silver-coated copper described above is also the same as that of the embodiment A1.
  • the preferable range of the coverage of the coat layer with respect to the core part is the same as that of the embodiment A1.
  • the core part may be non-metal, but from the viewpoint of conductivity, a conductive substance is preferable, and metal particles are more preferable.
  • An electromagnetic wave absorbing filler may be used as the conductive filler, and its specific example is the same as that of the embodiment A1.
  • Examples of the shape of the conductive filler used in the conductive adhesive layer include scale particles, dendrite (dendritic) particles, needle particles, plate particles, grape particles, fibrous particles, and spherical particles. From the viewpoint of adjusting the numerical value of the kurtosis, it is preferable to include a conductive filler of needle-shaped particles and/or dendrite-shaped particles.
  • the acicular shape means that the major axis is three times or more the minor axis, and includes a so-called needle shape, a spindle shape, a columnar shape and the like.
  • the dendrite shape means a shape in which a plurality of branched branches extend two-dimensionally or three-dimensionally from a rod-shaped main axis when observed with an electron microscope (500 to 20,000 times).
  • the branched branch may be bent, or the branched branch may further extend from the branched branch.
  • the scaly shape includes a thin shape and a plate shape.
  • the conductive filler may have a scaly shape as a whole particle, and may have an elliptical shape, a circular shape, or cuts around the fine particles.
  • the scale-like particles tend to have a high Martens hardness, and the spherical and dendritic particles tend to have a low Martens hardness. Further, as the amount of conductive filler increases, the Martens hardness tends to increase. Further, the higher the hardness of the cured resin, the harder the Martens hardness.
  • the conductive fillers may be used alone or as a mixture.
  • a combination of scaly particles and spherical particles, a combination of scaly particles and dendrite particles, a combination of scaly particles and acicular particles, a combination of scaly particles, dendrite particles and acicular particles can be exemplified. These may also be used in combination with nano-sized spherical particles.
  • dendrite-shaped particles and/or needle-shaped particles in combination, it is possible to increase the contact points between the conductive fillers and improve the shield characteristics. Further, the combined use of dendrite-like particles and/or acicular particles can increase the contact area with the binder component, so that a high-quality electromagnetic wave shield member can be provided.
  • the content of the conductive filler is preferably 40 to 85% by mass, and more preferably 50 to 80% by mass in the solid content (100% by mass) of the thermosoftening resin composition layer.
  • acicular particles and/or dendrite particles are preferably contained in the conductive adhesive layer.
  • the amount is more preferably 0.5 to 40% by mass, further preferably 1 to 35% by mass, and particularly preferably 1 to 30% by mass.
  • the average particle diameter D50 of the scale-like particles is preferably 2 to 100 ⁇ m.
  • a nano-sized conductive filler may be mixed with the scaly particles.
  • the average particle diameter D50 of the acicular particles is preferably 2 to 100 ⁇ m, more preferably 2 to 80 ⁇ m.
  • the thickness is more preferably 3 to 50 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the preferable range of the average particle diameter D50 of the dendrite-shaped particles is preferably 2 to 100 ⁇ m, more preferably 2 to 80 ⁇ m.
  • the thickness is more preferably 3 to 50 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the average particle diameter D50 of the scaly particles is preferably 2 to 100 ⁇ m, more preferably 2 to 80 ⁇ m.
  • the thickness is more preferably 3 to 50 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the method of measuring the average particle diameter D50 and the like are as described in Embodiment A1.
  • the composition forming the conductive adhesive layer may include the additives described in Embodiment A1 (colorant, flame retardant, inorganic additive, lubricant, antiblocking agent, etc.). Each specific example is similar to that of the embodiment A1.
  • the conductive adhesive layer may be a layer having conductivity due to continuous contact of the conductive filler by thermocompression bonding, and does not necessarily have conductivity at the stage before thermocompression bonding.
  • the conductive adhesive layer can be formed by mixing and stirring the above-described conductive filler and a composition containing a binder resin precursor, coating the composition on a releasable substrate, and then drying. Alternatively, the releasable cushion member 3 may be directly applied and dried.
  • the drying step is preferably performed by heating (for example, 80 to 120° C.). From the viewpoint of adjusting the kurtosis of the electromagnetic wave shield member, it is preferable to perform drying at 25° C. (room temperature) and normal pressure for 1 to 10 minutes after applying the coating liquid and before heating and drying. More preferable drying time at 25° C. (room temperature) before heat drying is 2 to 6 minutes.
  • the kurtosis value can be adjusted by providing a process of drying at room temperature before heat drying.
  • the influence of the viscosity of the coating liquid and the drying time at 25° C. before heating and drying on the kurtosis of the electromagnetic wave shield member 1 will be described with reference to the schematic diagram of FIG. 9.
  • a coating liquid is applied to form the conductive adhesive layer 6 on the releasable base material 15.
  • a conductive adhesive layer 6P that is in the process of drying and contains a solvent is obtained.
  • the electromagnetic wave shielding laminate can be manufactured by the same method as the electromagnetic wave shielding laminate of Embodiment A1.
  • Embodiment B2 Next, an example of an electronic component mounting board different from that of the embodiment B1 will be described.
  • the electronic component mounting board according to the embodiment B2 is different from the embodiment B1 using the electromagnetic wave shield member composed of a single electromagnetic wave shield layer in that the electromagnetic wave shield member is composed of two electromagnetic wave shield layers,
  • the other basic configuration and manufacturing method are the same as in Embodiment B1.
  • the basic configuration and the manufacturing method are the same as those of the embodiment A2 except that the electromagnetic wave shielding member according to the embodiment B is used instead of the electromagnetic wave shielding member according to the embodiment A and that it is described separately. Is. Overlapping description is omitted as appropriate.
  • the electromagnetic wave shielding member of Embodiment B2 is an electromagnetic wave shielding member that is a conductive adhesive layer 6a composed of two layers of a first conductive adhesive layer 6a1 and a second conductive adhesive layer 6a2. 2a and an electromagnetic wave shielding laminate 4a including a releasable cushion member 3a.
  • the electromagnetic wave shielding member including the first electromagnetic wave shielding layer and the second electromagnetic wave shielding layer is coated on the substrate 20 on which the electronic component 30 is mounted.
  • the indentation elastic modulus measured from the surface layer side is 1 to 10 GPa.
  • the degree of freedom in designing the electromagnetic wave shield member can be increased.
  • a mode in which a laminate of an electromagnetic wave reflection layer and an electromagnetic wave absorption layer is used can be exemplified. You may laminate
  • the same effect as that of the embodiment B1 can be obtained by using the electromagnetic wave shield member including the two electromagnetic wave shield layers. Further, by laminating two electromagnetic wave shield layers, the degree of freedom in designing each layer can be increased, and there is an advantage that it is easy to provide an electromagnetic wave shield member according to needs.
  • Embodiment B3 to Embodiment B5 In the electronic component mounting board and the manufacturing method thereof according to the embodiments B3 to B5, the electromagnetic wave shield member according to the embodiment B (including the descriptions of the embodiments B1 and B2) is replaced with the electromagnetic wave shield member according to the embodiment A.
  • the description of the above-described embodiments A3 to A5 can be applied except for the use. Therefore, the description of the electronic component mounting boards of Embodiments B3 to B5 and the manufacturing method thereof will be omitted.
  • the basic configuration of the electronic component mounting board according to the embodiment C1 As a preferable example of the basic configuration of the electronic component mounting board according to the embodiment C1, the basic configuration of the electronic component mounting board of the embodiment A1 described in FIGS. 1 to 10 can be exemplified. Hereinafter, the characteristic part of the embodiment C1 will be described with reference to these drawings.
  • the electromagnetic wave shield member 1 of the embodiment C1 has the electromagnetic wave shielding laminate mounted on the top surface of the electronic component 30 mounted on the substrate 20 and thermocompression bonded to the electronic component 30. It is obtained by coating the substrate 20. Since the coating mode of the electromagnetic wave shield member 1 is the same as that of the embodiment A1, the description thereof is omitted.
  • the electromagnetic wave shield member 1 of the embodiment C1 can be formed using the electromagnetic wave shielding laminate as in the embodiment A1. Then, as shown in FIG. 4, the electromagnetic wave shielding laminate 4 is composed of the electromagnetic wave shielding member 2 and the releasable cushion member 3. This electromagnetic wave shielding member 2 is composed of a single layer of the conductive adhesive layer 6 as in the embodiment A1. The conductive adhesive layer 6 is bonded to the electronic component 30 and the substrate 20 by thermocompression bonding to form the electromagnetic wave shield layer 5.
  • the electromagnetic wave shield layer 5 functions as the electromagnetic wave shield member 1.
  • the electromagnetic wave shielding member 2 of Embodiment C1 is formed of a laminate of two or more conductive adhesive layers or a laminate of a conductive adhesive layer and a hard coat layer, as described in Embodiment A1.
  • the electromagnetic wave shield layer 5 of the embodiment C1 contains a binder resin and a conductive filler.
  • the conductive filler in the electromagnetic wave shield layer 5 is in continuous contact with the conductive filler and exhibits conductivity. From the viewpoint of enhancing the electromagnetic wave shielding property, the sheet resistance value of the electromagnetic wave shielding layer 5 is preferably 1 ⁇ / ⁇ or less.
  • the electromagnetic wave shield member 1 has a root mean square height Rq of 0.05 ⁇ m or more and less than 0.3 ⁇ m measured according to JIS B0601; 2001 of the surface layer.
  • the root mean square height Rq is a parameter corresponding to the standard deviation of the distance from the mean surface, which corresponds to the standard deviation of the height, and the height change of the surface along one axis (x axis) is Z( x) is expressed by the following mathematical expression (2).
  • L is a reference length.
  • the electronic component mounting board of the present embodiment is particularly suitable as an electronic component mounting board used in an electronic device used in a severe environment with a large temperature difference (for example, an electronic component mounting board mounted in an automobile).
  • the electromagnetic wave shield member In the manufacturing process of electronic component mounting boards, there is a case in which the electromagnetic wave shield member is fixed to a dicing table via a dicing tape, and while maintaining this state, the board side is divided into individual products. In that case, the dicing tape and the electromagnetic wave shield member are peeled off after the process is finished, but at this time, floating (partial poor adhesion) or peeling may occur between the electromagnetic wave shield member and the electronic component.
  • the electronic component mounting board of the present embodiment by setting the root mean square height Rq of the surface layer of the electromagnetic wave shield member to be 0.05 ⁇ m or more and less than 0.3 ⁇ m, an excellent effect is achieved even with respect to such a problem. it can.
  • the present embodiment since it has an electromagnetic wave shield layer having excellent coverage, which is excellent in thermal cycle resistance and in adhesion with the electronic component after the individualizing step, a highly reliable electronic component mounting board is provided. be able to.
  • the electronic component mounting board may be subjected to high temperature processing such as a reflow process.
  • a substance in the electronic component mounting board for example, a component of solder flux may adhere to the electromagnetic wave shielding member 101.
  • an excellent effect can be exhibited by setting the root mean square height Rq of the surface layer of the electromagnetic wave shielding member of Embodiment C1 to 0.05 ⁇ m or more and less than 0.3 ⁇ m. That is, there is an effect of effectively preventing the adhesion of the substance on the electromagnetic wave shield member 1. It is considered that this is because the unevenness on the surface of the electromagnetic wave shield member 1 can be made appropriate and substances such as the components of the solder flux can be effectively prevented from remaining on the uneven surface.
  • the preferred range of the root mean square height Rq of the electromagnetic wave shield member of Embodiment C1 is 0.05 to 0.29 ⁇ m, and the more preferred range is 0.05 to 0.27 ⁇ m, and a particularly preferable range is 0.05 to 0.25 ⁇ m.
  • the root mean square slope Rdq of the surface layer of the electromagnetic wave shield member 1 of Embodiment C1 is preferably in the range of 0.05 to 0.4, more preferably 0.05 to 0.37, and 0.1 to It is more preferable to set it to 0.35.
  • the root mean square height Rq and the root mean square slope Rdq are values obtained according to JIS B0601; 2001, and are values obtained by the method described in Examples below.
  • the root mean square slope Rdq is the root mean square of the local slope dz/dx in the reference length, and is represented by the following mathematical expression (3).
  • Rdq can be calculated by processing the surface shape obtained by any one of an optical microscope, a laser microscope, and an electron microscope with analysis software.
  • Rdq is a parameter expressing the degree of unevenness on the surface.
  • Arithmetic mean height Ra and maximum heights Rz and Rq are used as parameters for expressing the surface property, but these are parameters expressing only the height of the unevenness, and to accurately express the state of the surface. Not suitable.
  • the root mean square height Rq and root mean square slope Rdq of the surface of the electromagnetic wave shield member 1 of Embodiment C1 can be adjusted by the manufacturing process of the electromagnetic wave shield member 2 in the electromagnetic wave shield laminate 4. Further, it can be adjusted by the components of the composition of the electromagnetic wave shielding member before thermocompression bonding for forming the electromagnetic wave shielding member 1 and the compounding amount thereof. Details will be described later. Note that the inventors of the present invention have made extensive studies and found that the values of the root mean square height Rq and the root mean square slope Rdq before and after the reflow treatment are improved by adding a conductive filler in an amount capable of functioning as an electromagnetic wave shield layer.
  • the inorganic filler also in the insulating layer such as the hard coat layer disclosed in the embodiment described below, the values of the root mean square height Rq and the root mean square slope Rdq do not substantially change before and after the reflow treatment, or It was confirmed that the amount of change was small even if it fluctuated.
  • the water contact angle of the surface layer of the electromagnetic wave shield member 1 of Embodiment C1 is preferably 90 to 130°. By setting it in this range, it is possible to suppress the floating more effectively and the antifouling property more effectively.
  • a more preferable range of the water contact angle of the electromagnetic wave shield member is 95 to 125°, and a further preferable range is 100 to 120°.
  • the water contact angle of the electromagnetic wave shield member can be adjusted by adjusting the amount of the surface modifier added to the composition forming the electromagnetic wave shield member. The value of the water contact angle tends to increase as the amount of the surface modifier added to the electromagnetic wave shield member 1 increases.
  • the method of manufacturing the electromagnetic wave shield member 1 of Embodiment C1 is basically the same as the method of manufacturing the electromagnetic wave shield member 1 of Embodiment A1.
  • the thickness of the conductive adhesive layer 6 is such that the electromagnetic wave shield layer 5 can be formed by covering the top and side surfaces of the electronic component 30 and the exposed surface of the substrate 20. Although it may vary depending on the fluidity of the binder resin precursor used and the distance and size between the electronic components 30, it is usually preferably about 10 to 200 ⁇ m, more preferably about 15 to 100 ⁇ m, and even more preferably about 20 to 70 ⁇ m.
  • the electromagnetic wave shield member 1 is fixed to a dicing table using a dicing tape and a dicing cut is performed from the substrate 20 side.
  • This method is suitable when solder balls are bonded to the outer main surface of the substrate 20.
  • the root mean square height Rq of the surface layer of the electromagnetic wave shield member 1 is set to be in the range of 0.05 ⁇ m or more and less than 0.3 ⁇ m, so that the electromagnetic wave shield is formed in the individualizing step. Even when the member 1 side is fixed with a dicing tape, the electromagnetic wave shield member is effectively prevented from floating (partial adhesion) and peeling off from the electronic component, and an electronic component mounting substrate having good coverage is provided. be able to.
  • the electromagnetic wave shielding laminate of Embodiment C1 is composed of two layers of the electromagnetic wave shielding member 2 and the releasable cushion member 3, as described in FIG.
  • the electromagnetic wave shielding member 2 is composed of the single-layer conductive adhesive layer 6.
  • the conductive adhesive layer 6 is bonded to the electronic component 30 and the substrate 20 through a thermocompression bonding process and functions as the electromagnetic wave shield layer 5.
  • the conductive adhesive layer 6 is a layer formed from a resin composition containing a binder resin precursor and a conductive filler.
  • the binder resin precursor contains at least a thermosoftening resin.
  • the thermosoftening resin include a thermoplastic resin, a thermosetting resin and an actinic ray curable resin.
  • the thermosetting resin and the actinic ray curable resin usually have a reactive functional group.
  • a thermosetting resin a curable compound and a thermosetting auxiliary can be used together.
  • an actinic ray curable resin is used, a photopolymerization initiator, a sensitizer and the like can be used in combination.
  • thermosetting type that cures at the time of thermocompression bonding is preferable from the viewpoint of simplicity of the manufacturing process.
  • a self-crosslinking resin or a plurality of resins that crosslink each other may be used.
  • a thermoplastic resin may be mixed.
  • the components such as the resin and the curable compound may be used alone or in combination of two or more.
  • a part of the crosslinks may be formed at the stage of the conductive adhesive layer 6 to be in the B stage (semi-cured state).
  • a state in which the thermosetting resin and a part of the curable compound are reacted and semi-cured may be included.
  • thermosoftening resin as a thermosetting resin, may have a plurality of functional groups that can be used for a crosslinking reaction by heating. Specific examples of the functional group are the same as in Embodiment A1.
  • a suitable example and a suitable content of the curable compound are the same as those of the embodiment A1. Further, suitable examples of the thermoplastic resin, suitable examples of the tackifying resin, and the like are the same as those of the embodiment A1.
  • the conductive filler can be exemplified by metal filler, conductive ceramic particles and a mixture thereof, and specific examples thereof are the same as those in the embodiment A1.
  • the preferable content of silver in the silver-coated copper is the same as that of the embodiment A1.
  • the preferable range of the coverage of the coat layer with respect to the core portion, etc. are the same as those of the embodiment A1.
  • An electromagnetic wave absorbing filler may be used as the conductive filler, and specific examples thereof include the same examples as in Embodiment A1.
  • Examples of the shape of the conductive filler used in the conductive adhesive layer include scale (flake) particles, dendrite (dendritic) particles, needle particles, plate particles, grape particles, fibrous particles, and spherical particles.
  • the root mean square height Rq tends to decrease by increasing the ratio of the scaly particles, and the root mean square height Rq tends to increase by decreasing the ratio of the scaly particles. From the viewpoint of adjusting the desired values of the root mean square height Rq and the root mean square slope Rdq, it is preferable to contain a conductive filler of acicular particles and/or dendrite particles.
  • the conductive fillers may be used alone or as a mixture.
  • Particularly preferred is a combination of scaly particles and dendrite particles.
  • the scale-like particles preferably have a thickness of 0.2 ⁇ m or less.
  • the content of the conductive filler is preferably 40 to 85% by mass, and more preferably 50 to 80% by mass in the solid content (100% by mass) of the thermosoftening resin composition layer.
  • the acicular particles and/or dendrite particles are preferably 30% by mass or less with respect to 100% by mass of the conductive filler in the conductive adhesive layer.
  • a more preferred range is 0.1 to 20% by mass, a still more preferred range is 1 to 20% by mass, and a particularly preferred range is 3 to 16% by mass.
  • the surface layer of the electromagnetic wave shield member, in the embodiment C1 the surface layer of the conductive adhesive layer 6 is pre-pressed with a roll before laminating the cushion member, and then bonded to the surface layer of the electromagnetic wave shield member of the cushion member.
  • the root mean square height Rq can be easily adjusted by using the cushion member in which the root mean square height of the surface on the side to be filled is the desired Rq.
  • the average particle diameter D50 of the acicular particles is preferably 1 to 50 ⁇ m, more preferably 2 to 25 ⁇ m. More preferably, it is 5 to 15 ⁇ m.
  • the preferable range of the average particle diameter D50 of the dendrite-shaped particles is preferably 2 to 100 ⁇ m, more preferably 2 to 80 ⁇ m.
  • the thickness is more preferably 3 to 50 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the average particle diameter D50 of the scaly particles is preferably 2 to 70 ⁇ m, more preferably 2 to 50 ⁇ m.
  • the thickness is more preferably 3 to 25 ⁇ m, and particularly preferably 5 to 15 ⁇ m.
  • dendrite-shaped particles and/or needle-shaped particles in combination with scale-shaped particles, it is possible to increase the number of contact points between the conductive fillers and improve the shielding property. Further, the combined use of dendrite-like particles and/or needle-like particles can increase the contact area with the binder component and provide a highly reliable electromagnetic wave shield member.
  • composition forming the conductive adhesive layer may contain a colorant, a flame retardant, an inorganic additive, a lubricant, an antiblocking agent and the like. Specific examples of these are similar to those of the embodiment A1.
  • the conductive adhesive layer may be a layer having conductivity due to continuous contact of the conductive filler by thermocompression bonding, and does not necessarily have conductivity at the stage before thermocompression bonding.
  • the conductive adhesive layer can be formed by mixing and stirring the above-described conductive filler and a composition containing a binder resin precursor, coating the composition on a releasable substrate, and then drying. Alternatively, the releasable cushion member 3 may be directly applied and dried.
  • the drying step is preferably performed by heating (for example, 80 to 120° C.).
  • the value of the root mean square height Rq can be adjusted by providing a process of drying at room temperature before heat drying.
  • a coating liquid is applied to form a conductive adhesive layer on the releasable substrate.
  • a dry conductive adhesive layer containing a solvent is obtained.
  • the state where the evaporation rate of the solvent is slow is intentionally lengthened, whereby the binder resin precursor sinks downward. Can be encouraged.
  • the drying time at 25° C. short, it is possible to suppress the sinking of the binder resin precursor to the lower side, and to heat-dry at that stage to facilitate the rise of the conductive filler.
  • foaming easily occurs due to evaporation of the solvent, and the surface tends to be rough. It is needless to say that the temperature setting of 25° C. is an example and can be set appropriately.
  • the solid content of the coating liquid is preferably 20 to 30%. Further, in order to adjust the root mean square height Rq of the electromagnetic wave shield member, it is preferable that the coating liquid viscosity of the coating liquid measured with a B-type viscometer is in the range of 600 to 1800 mPa ⁇ s. Further, in order to adjust the root mean square height Rq of the electromagnetic wave shield member, it is preferable that the thixotropy index of the coating liquid is 1.2 to 1.5.
  • the values of the root mean square height Rq and the root mean square slope Rdq also change depending on the viscosity of the coating liquid for forming the conductive adhesive layer.
  • the higher the viscosity of the coating liquid the more the fluidity of the conductive filler tends to be suppressed. Therefore, when the viscosity is high, the conductive filler tends not to be oriented and becomes random. On the other hand, when the viscosity is low, the scale-like particles tend to be oriented so that the main surface faces the substrate surface. Further, when the drying time at 25° C.
  • the root mean square height Rq can be adjusted by adjusting the viscosity of the coating liquid and the drying time at 25°C.
  • the root mean square height Rq and the root mean square slope Rdq of the electromagnetic wave shield member 1 can be adjusted also by the particle diameter of the dendrite particles and/or the acicular particles. The influence of the particle diameter of the dendrite-shaped particles and/or the acicular particles on the root mean square height Rq and the root mean square slope Rdq of the electromagnetic wave shield member 1 will be described.
  • the values of the root mean square height Rq and the root mean square slope Rdq tend to decrease, and conversely, the mean particle diameter D50 of the dendrite particles. Is larger, the values of the root mean square height Rq and the root mean square slope Rdq tend to be larger.
  • the root mean square slope Rdq also depends on the shape of the acicular particles. If the particle diameter D50 of the acicular particles is large, Rdq becomes large. Further, when the particle diameter D50 of the acicular particles is small, Rdq becomes small.
  • the root mean square height Rq and the root mean square slope Rdq of the electromagnetic wave shield member 1 are scale-like conductive fillers in the composition forming the electromagnetic wave shield member 2 before thermocompression bonding, in addition to the adjusting method by the above-described process. And the needle-shaped and/or dendrite-shaped conductive filler can be adjusted by adjusting the addition amount ratio.
  • the root mean square height Rq of the electromagnetic wave shield member 1 can also be adjusted by the average particle diameters D50 and D90 of the conductive filler.
  • the electromagnetic wave shielding member 2 is composed of a single layer of the conductive adhesive layer 6, the releasable cushion member 3 is bonded onto the conductive adhesive layer 6.
  • a joining method there is a laminating method or the like.
  • the releasable base material is a base material having releasability on one or both sides, and is a sheet having a tensile breaking strain of less than 50% at 150°C.
  • Specific examples of the releasable substrate are the same as those in Embodiment A1.
  • Embodiment A1 can be applied to the releasable cushion member.
  • the electronic component mounting board according to the embodiment C2 is different from the embodiment C1 using the electromagnetic wave shield member composed of a single electromagnetic wave shield layer in that the electromagnetic wave shield member is composed of two electromagnetic wave shield layers,
  • the other basic configuration and manufacturing method are the same as in Embodiment C1.
  • the basic configuration and manufacturing method are the same as those of the embodiment A2 except that the electromagnetic wave shielding member according to the embodiment C is used instead of the electromagnetic wave shielding member according to the embodiment A and that it is described separately. Is. Overlapping description is omitted as appropriate.
  • the electromagnetic wave shielding member of Embodiment C2 is an electromagnetic wave shielding member that is a conductive adhesive layer 6a composed of two layers of a first conductive adhesive layer 6a1 and a second conductive adhesive layer 6a2. 2a and an electromagnetic wave shielding laminate 4a including a releasable cushion member 3a.
  • the electromagnetic wave shielding member including the first electromagnetic wave shielding layer and the second electromagnetic wave shielding layer is coated on the substrate 20 on which the electronic component 30 is mounted.
  • the second conductive adhesive layer 6a2 as the upper layer is manufactured by the same composition and process as the embodiment C1, and the first conductive adhesive layer 6a1 as the lower layer is not limited to the range of the root mean square height Rq and needs. It can be designed according to.
  • the conductive filler contained in the first conductive adhesive layer 6a1 may be a layer using a filler such as fibrous particles or spherical particles. It is also possible to design the first conductive adhesive layer 6a1 as an anisotropic conductive adhesive layer and the second conductive adhesive layer 6a2 as an isotropic conductive adhesive layer. Further, a mode in which a laminated body of an electromagnetic wave reflection layer and an electromagnetic wave absorption layer is also preferable. You may laminate
  • the same effect as that of the embodiment C1 can be obtained by using the electromagnetic wave shield member including the two electromagnetic wave shield layers. Further, by laminating two electromagnetic wave shield layers, the degree of freedom in designing each layer can be increased, and there is an advantage that it is easy to provide an electromagnetic wave shield member according to needs.
  • Embodiment C3 The electronic component mounting board according to the embodiment C3, in that the electromagnetic wave shield member is a laminate of an electromagnetic wave shield layer and a hard coat layer, an embodiment C1 using an electromagnetic wave shield member composed of a single electromagnetic wave shield layer.
  • the other basic structure and manufacturing method are the same.
  • the electromagnetic wave shielding member according to the embodiment C3 includes an electromagnetic wave shielding member 2b and a releasable cushion member 3b which are a laminate of a single conductive adhesive layer 6b and an insulating resin layer 7b. It is formed by using the electromagnetic wave shielding laminate 4b. By thermocompression-bonding this electromagnetic wave shielding laminate 4b, an electromagnetic wave shielding layer formed of a conductive adhesive layer 6b and a hard coat layer formed of an insulating resin layer 7b are formed on a substrate on which electronic components are mounted. An electromagnetic wave shield member consisting of is obtained.
  • the electromagnetic wave shield member of Embodiment C3 has a root mean square height Rq measured from the hard coat layer side of 0.05 ⁇ m or more and less than 0.3 ⁇ m.
  • the insulating resin layer 7b is a layer formed from a resin composition containing a binder resin precursor and an inorganic filler.
  • the binder resin precursor contains at least a thermosoftening resin. Examples and preferred examples of the binder resin precursor are the same as those of the conductive adhesive layer of the electromagnetic wave shielding member described in Embodiment A1.
  • the binder resin precursors of the conductive adhesive layer and the insulating resin layer may be the same or different.
  • the inorganic filler does not have conductivity unlike the conductive adhesive layer of the embodiment C1, but preferable characteristics of the inorganic filler, such as shape, blending amount, D50 and D90 are the same as the examples given for the conductive filler. Is.
  • examples of the inorganic filler include silica (fused silica, crystalline silica, non-crystalline silica), beryllia, alumina, magnesium hydroxide, barium sulfate, calcium carbonate, titanium oxide, zinc oxide, antimony trioxide, antimony oxide, and oxide.
  • the hard coat layer can also function as the heat conductive layer.
  • it can be used as a hard coat layer, a heat conductive layer (for example, a heat dissipation layer), or a layer having the functions of both.
  • the preferable examples of the preferable blending component and the blending amount of the binder resin precursor used for the insulating resin layer are the same as those of the conductive adhesive layer of the embodiment C1. Further, the preferable shape of the inorganic filler used for the insulating resin layer, the preferable average particle diameter D50, and the like are the same as those of the conductive filler of Embodiment C1.
  • the description of Embodiment 1C can be applied to the heat-softenable resin composition and the additive that can be applied to the heat-softenable resin composition layer.
  • Embodiment C1 by using the electromagnetic wave shield member having a hard coat layer, in addition to the effect described in Embodiment C1, by coating the electromagnetic wave shield layer with a hard coat layer, more An electromagnetic wave shield member having excellent durability can be provided.
  • Embodiment C4 and C5 The electronic component mounting boards of Embodiments C4 and C5 are the same as those of Embodiments A4 and Embodiments described above, except that the electromagnetic wave shield member according to Embodiment C is used instead of the electromagnetic wave shield member according to Embodiment A.
  • the explanation in A5 can be used.
  • an example using an electromagnetic wave shield laminate composed of a laminate of an insulating adhesive layer, a conductive adhesive layer and a releasable cushion member was described.
  • the insulating coating layer 9e is formed on the substrate 20 on which the plurality of electronic components 30 are mounted. This insulating coating layer 9e is obtained by hot pressing a sheet containing an insulating adhesive layer.
  • the electromagnetic wave shield layer 5e is formed by using the electromagnetic wave shield laminate 4e which is a laminate of the conductive adhesive layer 6e and the releasable cushion member 3e (FIGS.
  • the insulating coating layer 9e can be exemplified by a method of applying a solution resin and a method of spraying a solution resin, instead of the method of hot pressing the sheet.
  • an electronic component was described as an example of the component, but the present invention can be applied to all components that are desired to be shielded from electromagnetic waves.
  • the shape of the component is not limited to the rectangular shape, and includes a component having an R-shaped corner, a component having an acute angle between the top surface and the side surface of the component, and a component having an obtuse angle. It also includes a case where the top surface is uneven, and the case where the outer surface of the electronic part is a curved surface such as a sphere.
  • the half dicing groove 25 (see FIG. 2) is formed on the substrate 20, but the half dicing groove 25 is not essential, and the electromagnetic wave shield member may be placed and covered on a flat substrate. Good.
  • the electronic component mounting substrate of the present invention for example, when the electronic component mounting substrate on which the electronic component obtained by all-dicing the substrate 20 is mounted is mounted on another holding base material or the like. Including.
  • the electromagnetic wave shield laminate is not limited to the laminate form of the above embodiment.
  • a support substrate may be laminated on the releasable cushion member. By stacking the support substrates, it is possible to easily prevent the device from being soiled during thermocompression bonding.
  • the support substrate has an advantage that the step of attaching the electromagnetic wave shielding laminate is facilitated.
  • the electronic components can be mounted not only on one side of the substrate but also on both sides, and the electromagnetic wave shield member can be formed on each electronic component.
  • the electronic component mounting board of the present embodiment since it has excellent coverage with respect to the concavo-convex structure, it can be suitably applied to various electronic devices such as personal computers, mobile devices, and digital cameras.
  • a substrate was prepared in which 5 ⁇ 5 array of mold-sealed electronic components (1 cm ⁇ 1 cm) were mounted on a substrate made of glass epoxy.
  • the thickness of the substrate is 0.3 mm, and the mold sealing thickness, that is, the height (component height) H from the upper surface of the substrate to the top surface of the mold sealing material is 0.7 mm.
  • half dicing was performed along the groove that is a gap between the components to obtain a test substrate (see FIG. 17).
  • the half-cut groove depth was 0.8 mm (the cut groove depth of the substrate 20 was 0.1 mm), and the half-cut groove width was 200 ⁇ m.
  • test substrate 2 was prepared in the same manner as the test substrate 1 except that the half-cut groove width was changed to 150 ⁇ m. Further, a test substrate 3 was produced in the same manner as the test substrate except that the half cut groove width was changed to 150 ⁇ m and the groove depth was changed to 1000 ⁇ m.
  • -Binder resin precursor Resin 1: Polycarbonate resin (manufactured by Toyochem Co., Ltd.)
  • Resin 2 Phenoxy resin (manufactured by Toyochem Co., Ltd.)
  • Curable compound 1 Deconal EX830, (manufactured by Nagase Chemtech)
  • Curable compound 2 jERYX8000, (manufactured by Mitsubishi Chemical Corporation)
  • Curable compound 3 jER157S70 (manufactured by Mitsubishi Chemical Corporation)
  • ⁇ Curing accelerator: PZ-33 (manufactured by Nippon Shokubai Co., Ltd.)
  • -Conductive filler 1 flake Ag (average particle size D50: 11 ⁇ m) (manufactured by Fukuda Metal Co., Ltd.)
  • -Conductive filler 2 acicular silver-coated copper (average particle diameter D50: 7.5 ⁇ m) (manufactured by Fukuda Metal Co., Ltd.
  • Example A1 (Preparation of Resin Composition of Conductive Adhesive Layer)
  • a binder resin precursor 20 parts (solid content) of resin 1 (polycarbonate resin), 80 parts (solid content) of resin 4 (phenoxy resin), and curable compound 1 (epoxy resin) 20 parts, curable compound 2 (epoxy resin) 15 parts, curable compound 3 (epoxy resin) 10 parts, conductive filler 1 (flake-like Ag) 320 parts, conductive filler 2 ( 5 parts of acicular Ag coat Cu), 1 part of curing accelerator, and 0.4 part of additive 1 were charged into a container, and toluene:isopropyl alcohol (mass ratio was adjusted so that the solid content concentration became 25% by mass).
  • the mixed solvent of 2:1) was added and the mixture was stirred with a disper for 10 minutes to obtain a resin composition for forming a conductive adhesive layer.
  • Examples A2 to A5 A resin composition of a conductive adhesive layer and a laminate for electromagnetic wave shielding were obtained in the same manner as in Example A1 except that the composition shown in Table 1 was changed.
  • the surface of the electromagnetic wave shield member from which the releasable cushion member was peeled off was subjected to metal sputtering treatment.
  • a sputtering device “Smart Coater” manufactured by JEOL Ltd. was used, gold was used as a target, and the separation distance between the target and the sample surface was 2 cm, and sputtering was performed for 0.5 minutes.
  • kurtosis was determined using a laser microscope (VK-X100 manufactured by Keyence Corporation) according to JIS B 0601:2001. The measurement conditions were such that the measurement magnification was 1000 times in the shape measurement mode and the surface shape was acquired.
  • the obtained surface shape image was subjected to surface roughness measurement of an analysis application to select the entire region, and the ⁇ s contour curve filter was set to 2.5 ⁇ m and the ⁇ c contour curve filter was set to 0.8 mm, and kurtosis was measured.
  • the above measurement was carried out at five different points, and the average value of the measured values was used as the kurtosis value.
  • the electromagnetic wave shield member coated on the electronic component substrate may be directly measured. ..
  • ⁇ Viscosity of coating liquid and thixotropic index> The obtained conductive resin composition was allowed to stand in a water bath at 25° C. for 30 minutes, and then, with a “B type viscometer” (manufactured by Toki Sangyo Co., Ltd.), a viscosity (v1) at a rotation speed of 6 rpm and a rotation speed of 60 rpm. The viscosity (v2) of was measured. The value obtained by dividing (v1) by (v2) was used as a thixotropic index.
  • ⁇ Steel wool resistance> A 125 ⁇ m thick polyimide film (“Kapton 500H” manufactured by Toray-DuPont) was placed on each of the electromagnetic wave shielding laminates of Examples and Reference Examples cut into 5 ⁇ 15 cm, and the conditions were 180° C. and 2 MPa. A hot press was performed for 10 minutes, and a test substrate was obtained by curing at 180° C. for 2 hours. Then, the releasable cushion member was peeled off.
  • Kapton 500H manufactured by Toray-DuPont
  • the electromagnetic wave shield member was set on a Gakushin type abrasion tester (manufactured by Tester Sangyo Co., Ltd.), and the electromagnetic wave shield member was abraded and the polyimide film was formed under the conditions of a load of 200 gf, a stroke of 120 mm, and a reciprocating speed of 30 times/min.
  • the number of academic achievements until exposure was calculated.
  • the evaluation criteria are as follows. +++: 20,000 times or more. ++: 10,000 times or more and less than 20,000 times. +: 5,000 times or more and less than 10,000 times (practical level). NG: less than 5,000 times.
  • Table 1 shows the evaluation results of Examples A1 to A10 and Reference Examples A1 and A2.
  • the electronic component mounting board using the electromagnetic wave shielding member of Reference Example A1 having a kurtosis of less than 1 did not reach the acceptable level of steel wool resistance.
  • the electromagnetic wave shielding members of the electronic component mounting board of the present invention reached the acceptable level and were excellent in steel wool resistance.
  • the electromagnetic wave shield member of Reference Example A2 in which the kurtosis was more than 8 the peelability of the groove portion did not reach the acceptable level.
  • all the electromagnetic wave shielding members of the electronic component mounting substrate of the present invention were excellent in the peelability of the groove portion of the releasable cushion member after thermocompression bonding.
  • Test substrate according to the embodiment B was obtained by the same manufacturing method as the test substrate 1 of the embodiment A.
  • a resin composition for forming a conductive adhesive layer was obtained by stirring.
  • Examples B2 to B19, Reference Examples B1 and B2 The resin composition of the conductive adhesive layer, the electromagnetic wave shielding laminate, and the electronic component mounting substrate of each of the examples and reference examples, except that the compositions shown in Tables 2 and 3 were changed. The test piece of was obtained.
  • ⁇ Indentation elastic modulus> The electromagnetic wave shield laminates of Examples B1 to B19 and Reference Examples B1 and B2 were prepared and placed on a FR4 substrate having a thickness of 300 ⁇ m, and 180° C. for 2 hours under the condition of 2 MPa in the surface direction from the releasable cushion member side. Heating was performed. Then, the releasable cushion member was peeled off to obtain a test piece of FR4 substrate on which the electromagnetic wave shield member was formed. Then, the indentation elastic modulus was measured from the side where the releasable cushion member was laminated by the following method.
  • the indentation elastic modulus of the electromagnetic wave shield member it is possible to measure the electromagnetic wave shield member that is actually coated on the electronic component mounting board.
  • the Vickers indenter is brought into direct contact with the electromagnetic wave shield member coated on the electronic component substrate for measurement.
  • the electromagnetic shield member actually coated on the electronic component mounting substrate can be measured in the same manner.
  • a test board of FR4 board was obtained by the same method as described in Embodiment A, and kurtosis was determined by the same method.
  • the average value of the values obtained by repeatedly measuring the same cured film surface at 10 locations randomly was defined as Martens hardness.
  • the test force is adjusted according to the thickness of the electromagnetic wave shield layer. Specifically, the test force was adjusted so that the maximum indentation depth was about 1/10 of the thickness of the electromagnetic wave shield member.
  • ⁇ Tape adhesion> The FR4 substrate having a thickness of 300 ⁇ m was mounted with the electromagnetic wave shielding laminates of Examples and Reference Examples, each of which was cut into 5 ⁇ 5 cm, and heat-pressed at 170° C. for 8 minutes at 8 MPa for 2 hours at 180° C. A test substrate was obtained by curing. Then, the releasable cushion member was peeled off. Then, the obtained test substrate was subjected to a pressure cooker test at 130° C., a humidity of 85%, and a pressure of 0.23 MPa. The test time was 96 hours, and the adhesive tape used was a Nichiban adhesive tape having a width of 18 mm.
  • a test substrate was obtained by the same method as described in Embodiment A, and steel wool resistance was evaluated by the same measurement method. The evaluation criteria are also the same.
  • Tables 2 and 3 show the above evaluation results of Examples B1 to B19 and Reference Examples B1 and B2.
  • the electronic component mounting board using the electromagnetic wave shield member of Reference Example B1 having an indentation elastic modulus of less than 1 did not reach the acceptable level of burrs during full dicing.
  • all the electromagnetic wave shielding members of the electronic component mounting board of the present invention have reached the acceptable level, and it has been confirmed that the occurrence of burrs can be suppressed.
  • the electronic component mounting board using the electromagnetic wave shield member of Reference Example B2 having the indentation elastic modulus of more than 10 GPa did not reach the pass level in the tape adhesion after the PCT test.
  • FIG. 22 shows an image obtained by observing the side surface of the electronic component mounting board of Example B3 after singulation with a microscope. As shown in the figure, no burr was observed.
  • FIG. 23 shows an image obtained by observing the side surface of the electronic component mounting substrate of Reference Example B1 after being singulated with a microscope. As shown in the figure, the occurrence of burrs was recognized.
  • Test board 1 A test board was obtained by the same method as the method of manufacturing the test board 1 of the embodiment A.
  • Binder resin precursor Thermosetting resin 1 Polycarbonate resin (manufactured by Toyochem Co., Ltd.)
  • Thermosetting resin 2 Phenoxy resin (manufactured by Toyochem Co., Ltd.)
  • Curable compound 1 Deconal EX830 (manufactured by Nagase Chemtech)
  • Curable compound 2 jERYX8000 (manufactured by Mitsubishi Chemical Corporation)
  • Curable compound 3 jER157S70 (manufactured by Mitsubishi Chemical Corporation)
  • ⁇ Curing accelerator: PZ-33 -Conductive filler 1: scaly Ag (average particle diameter D50: 9.5 ⁇ m, D90 19 ⁇ m, thickness 0.1 ⁇ m)
  • thermosetting resin 1 polycarbonate resin
  • thermosetting resin 2 phenoxy resin
  • the laminate for electromagnetic wave shielding on the releasable substrate was cut into 10 ⁇ 10 cm, the releasable substrate was peeled off, and then the laminate for electromagnetic wave shielding was placed on the test substrate (see FIG. 17). It was placed and temporarily attached so that the conductive adhesive layer surface side of the body was in contact. Then, thermocompression bonding was performed from above the electromagnetic wave shielding laminate to the substrate surface under conditions of 2 MPa and 180° C. for 2 hours. After thermocompression bonding, the releasable cushion member was peeled off to obtain an electronic component mounting substrate (test piece) according to Example C1 covered with the electromagnetic wave shielding member.
  • Example C2 to C9 A resin composition of a conductive adhesive layer and a laminate for electromagnetic wave shielding were obtained in the same manner as in Example C1 except that the composition shown in Table 4 was changed.
  • the surface of the electromagnetic wave shield member from which the releasable cushion member was peeled off was subjected to metal sputtering treatment.
  • a sputtering device “Smart Coater” manufactured by JEOL Ltd. was used, gold was used as a target, and the separation distance between the target and the sample surface was 2 cm, and sputtering was performed for 0.5 minutes.
  • the root mean square height Rq was determined for the metal sputtered surface of the obtained sample using a laser microscope (VK-X100 manufactured by Keyence Corporation) according to JIS B 0601:2001. The measurement conditions were such that the measurement magnification was 1000 times in the shape measurement mode and the surface shape was acquired.
  • the obtained surface shape image was subjected to surface roughness measurement of an analysis application to select the entire area, set the ⁇ s contour curve filter to 2.5 ⁇ m and the ⁇ c contour curve filter to 0.8 mm, and measure the root mean square height Rq. ..
  • the above measurement was performed at five different points, and the average value of the measured values was taken as the value of the root mean square height Rq.
  • the electromagnetic wave shield member coated on the electronic component substrate is It can be measured directly.
  • ⁇ Square root mean square slope Rdq> Using the surface profile image obtained by the measurement of Rq, in the line roughness measurement of the analysis application, 20 two-dot lines are uniformly drawn over the entire image, the ⁇ 0026s contour curve filter is 2.5 ⁇ m, and the ⁇ c contour curve filter is 0. The root mean square slope Rdq was measured at 0.8 mm. The above measurement was carried out at five different points, and the average value of the measured values was taken as the value of the root mean square slope Rdq.
  • the electromagnetic wave shield laminates of the respective examples and reference examples were prepared, and placed on a test piece of an FR4 substrate prepared in the same manner as a 300 ⁇ m thick indentation elastic modulus measurement sample, and the surface direction from the releasable cushion member side. Further, heating was performed at 180° C. for 2 hours under the condition of 2 MPa. Then, the releasable cushion member was peeled off to obtain a test piece of FR4 substrate on which the electromagnetic wave shield member was formed. Then, the water contact angle was measured from the side where the releasable cushion member was laminated by the following method.
  • the water contact angle of the electromagnetic wave shield member was measured on the surface of the electromagnetic wave shield layer using "Automatic contact angle meter DM-501/Analysis software FAMAS" manufactured by Kyowa Interface Science Co., Ltd. The measurement was performed by a liquid method.
  • ⁇ Viscosity of coating liquid and thixotropic index The viscosity (v1) at a rotation speed of 6 rpm and the viscosity (v2) at a rotation speed of 60 rpm were measured by the same method as that described in the embodiment A. Further, the thixotropy index was obtained by the same method.
  • the FR4 substrate having a thickness of 300 ⁇ m was mounted with the electromagnetic wave shielding laminates of Examples and Reference Examples, each of which was cut into 5 ⁇ 5 cm, and heat-pressed at 170° C. for 8 minutes at 8 MPa for 2 hours at 180° C.
  • a test substrate was obtained by curing. Then, the releasable cushion member was peeled off. Then, the obtained test substrate was bonded to an electromagnetic wave shielding member with a dicing tape (UHP-110AT (UV type, substrate PET, total thickness 110 ⁇ m (including adhesive layer thickness 10 ⁇ m)), manufactured by Denka), and the substrate 20
  • UHP-110AT UV type, substrate PET, total thickness 110 ⁇ m (including adhesive layer thickness 10 ⁇ m)
  • the dicing tape was peeled off from the electromagnetic wave shield member, and the state of the electromagnetic wave shield member was observed with an optical microscope (magnification: 200 times) and judged according to the following criteria.
  • +: 3 to 4 floats having a diameter of 0.5 mm or less occur on the electromagnetic wave shield member per 1 cm 2 .
  • NG 5 or more floats having a diameter of more than 0.5 mm, peeling, or floats having a diameter of 0.5 mm or less occurred on the electromagnetic wave shield member per 1 cm 2 .
  • the antifouling property was evaluated using an optical microscope (magnification: 200 times). The evaluation criteria are as follows. +++: No residue after washing for 3 minutes. ++: No residue after washing for 5 minutes. +: After washing for 5 minutes, 1 to 2 places of residue remain on 1 cm 2 of the surface of the electromagnetic wave shield member. NG: After washing for 5 minutes, there are residues at 2 places per cm 2 of the electromagnetic wave shield member surface.
  • connection resistance value of the electromagnetic wave shield layer 5 before the cooling/heating cycle test is obtained by removing the measurement point of the insulating layer at the other place of the sample by the same method as described above.
  • ++: (connection resistance value after alternate exposure)/(initial connection resistance value) is 1.5 or more and less than 3.0, which is good.
  • +: (connection resistance value after alternate exposure)/(initial connection resistance value) is 3.0 or more and less than 5.0.
  • NG (connection resistance value after alternate exposure)/(initial connection resistance value) is 5.0 or more.
  • Table 4 shows the evaluation results of Examples C1 to C9 and Reference Example C1.
  • the electronic component mounting board using the electromagnetic wave shield member of Reference Example 1 having a root mean square height Rq of 0.3 or more did not reach the pass level in the thermal cycle test.
  • all the electromagnetic wave shielding members of the electronic component mounting board of the present invention have reached the pass level, and it was confirmed that the electromagnetic wave shielding member has excellent coverage even under severe conditions of the thermal cycle test. Further, it was confirmed that in the individualizing step, it is possible to effectively prevent the coverage defect such as floating or peeling on the electromagnetic wave shield member.
  • the electromagnetic wave shielding member of the electronic component mounting substrate of the present invention is excellent in antifouling property.
  • Electromagnetic Wave Shielding Member 1 Electromagnetic Wave Shielding Member 2 Electromagnetic Wave Shielding Member 3 Releasable Cushion Member 4 Electromagnetic Wave Shielding Laminate 5 Electromagnetic Wave Shielding Layer 6 Conductive Adhesive Layer 6P Conductive Adhesive Layer 7b Insulating Resin Layer 8c Insulating Adhesive Layer 9c Insulating coating layer 10 Binder resin precursor 11 Conductive filler 12 Dendritic particles 15 Releasable substrate 20 Substrate 21 Electrode 22 Ground pattern 23 Inner via 24 Solder ball 25 Half dicing groove 30 Electronic component 31 Semiconductor chip 32 Mold resin 33 Bonding Wire 40 Press Substrate 51, 52 Electronic Component Mounting Substrate

Abstract

An electronic component mounting substrate (51) according to an embodiment of the present invention comprises: a substrate (20); an electronic component (30) mounted on at least one surface of the substrate (20); and an electromagnetic wave shield member (1) which is covered from the upper surface of the electronic component (30) to the substrate (20), and covers at least a part of the substrate (20) and the side surface of a stepped portion formed by mounting the electronic component (30). The electromagnetic wave shield member (1) has an electromagnetic wave shield layer (5) containing a binder resin and a conductive filler. The kurtosis of the surface layer of the electromagnetic wave shield member (1) is 1 to 8 as measured in accordance with JIS B0601; 2001.

Description

電子部品搭載基板および電子機器Electronic component mounting board and electronic device
 本発明は、電磁波シールド部材を有する電子部品搭載基板に関する。また、前記電子部品搭載基板の電磁波シールド部材の形成に好適な電磁波シールド用積層体、並びに前記電子部品搭載基板が搭載された電子機器に関する。 The present invention relates to an electronic component mounting board having an electromagnetic wave shield member. The present invention also relates to an electromagnetic wave shielding laminate suitable for forming an electromagnetic wave shield member of the electronic component mounting board, and an electronic device on which the electronic component mounting board is mounted.
 ICチップ等を搭載した電子部品は、外部からの磁場や電波による誤動作を防止するために、通常、電磁波シールド構造が設けられている。例えば、等方導電性接着剤と異方導電性接着剤からなる導電性接着フィルムを、電子部品が搭載された基板に被覆する方法が開示されている(特許文献1)。また、導電性接着剤層および特定の貯蔵弾性率をもつ基材層を有する電磁波シールド用フィルムを、電子部品が搭載された基板に被覆する方法(特許文献2)や、等方導電性を示す鱗片状粒子含有層を有する、特定の引張破断歪を有する電磁波シールド部材を、電子部品が搭載された基板に被覆する方法(特許文献3)が開示されている。 Electronic parts equipped with IC chips, etc. are usually provided with an electromagnetic wave shield structure in order to prevent malfunction due to external magnetic fields and radio waves. For example, a method of coating a conductive adhesive film made of an isotropic conductive adhesive and an anisotropic conductive adhesive on a substrate on which electronic components are mounted is disclosed (Patent Document 1). Further, a method of coating an electromagnetic wave shielding film having a conductive adhesive layer and a base material layer having a specific storage elastic modulus on a substrate on which an electronic component is mounted (Patent Document 2), and showing isotropic conductivity. A method (Patent Document 3) is disclosed in which an electromagnetic wave shield member having a specific tensile rupture strain and having a scale-like particle-containing layer is coated on a substrate on which electronic components are mounted.
国際公開第2015/186624号International Publication No. 2015/186624 特開2014-57041号公報JP, 2014-57041, A 国際公開第2018/147355号International Publication No. 2018/147355
 電子部品が搭載された基板に対して、例えば以下の方法により電磁波シールド部材が被覆され、電子部品搭載基板が製造される。まず、図18に示すように、基板120に搭載された複数の電子部品130の天面に、電磁波シールド用部材102と離形性クッション部材103の積層体である電磁波シールド用積層体104を載置する。次いで、図19に示すように、電磁波シールド用積層体104を熱圧着させ、電子部品130および基板120の一部を電磁波シールド部材101により被覆する。その後、図20に示すように離形性クッション部材103を剥離し、続いて図21に示すように、基板120を製品単位に個片化する工程を行う。この個片化工程は、例えば、電磁波シールド部材101をダイシング台141に当接させ、この当接状態を維持しながら基板120側から電子部品130の間隙である溝125に対向する位置に対して切断工具142により基板120および電磁波シールド部材101を切断することにより行われる。 An electronic component mounting substrate is manufactured by coating the electromagnetic component shield member on the substrate on which the electronic component is mounted, for example, by the following method. First, as shown in FIG. 18, the electromagnetic wave shield laminate 104, which is a laminate of the electromagnetic wave shield member 102 and the releasable cushion member 103, is mounted on the top surfaces of the plurality of electronic components 130 mounted on the substrate 120. Place. Next, as shown in FIG. 19, the electromagnetic wave shielding laminate 104 is thermocompression bonded to partially cover the electronic component 130 and the substrate 120 with the electromagnetic wave shielding member 101. After that, as shown in FIG. 20, the releasable cushion member 103 is peeled off, and subsequently, as shown in FIG. 21, a step of dividing the substrate 120 into product units is performed. In this singulation step, for example, the electromagnetic wave shield member 101 is brought into contact with the dicing table 141, and while maintaining this contact state, a position facing the groove 125 which is the gap of the electronic component 130 from the substrate 120 side is set. This is performed by cutting the substrate 120 and the electromagnetic wave shield member 101 with the cutting tool 142.
 昨今の電子部品の高性能化の厳しい要求に伴って、電子部品搭載基板の電磁波シールド部材101の性能を高品質化する技術が求められている。 Along with the recent strict demand for higher performance of electronic components, a technology for improving the performance of the electromagnetic wave shield member 101 of the electronic component mounting board is required.
 本発明は上記背景に鑑みてなされたものであり、信頼性の高い電磁波シールド部材を有する電子部品搭載基板並びに電子機器を提供することを目的とする。 The present invention has been made in view of the above background, and an object thereof is to provide an electronic component mounting board and an electronic device having a highly reliable electromagnetic wave shield member.
 本発明者らが鋭意検討を重ねたところ、以下の態様において、本発明の課題を解決し得ることを見出し、本発明を完成するに至った。
[1]: 基板と、前記基板の少なくとも一方の面に搭載された電子部品と、前記電子部品上面から前記基板に亘って被覆され、前記電子部品の搭載によって形成された段差部の側面および前記基板の少なくとも一部を被覆する電磁波シールド部材と、を備え、前記電磁波シールド部材は、バインダー樹脂と導電性フィラーを含む電磁波シールド層を有し、前記電磁波シールド部材の表層のJISB0601;2001に準拠して測定したクルトシスが1~8である電子部品搭載基板。
[2]: 前記電磁波シールド部材の表層のJISB0601;2001に準拠して測定した二乗平均平方根高さRqが0.3~1.7μmである[1]に記載の電子部品搭載基板。
[3]: 前記導電性フィラーは、デンドライト状および針状の導電性フィラーの少なくとも一方を含有している[1]又は[2]に記載の電子部品搭載基板。
[4]: 基板と、前記基板の少なくとも一方の面に搭載された電子部品と、前記電子部品上面から前記基板に亘って被覆され、前記電子部品の搭載によって形成された段差部の側面および前記基板の少なくとも一部を被覆する電磁波シールド部材と、を備え、
 前記電磁波シールド部材は、バインダー樹脂と導電性フィラーを含む電磁波シールド層を有し、且つ押込み弾性率が1~10GPaである電子部品搭載基板。
[5]: 前記電磁波シールド部材の表層の水接触角が70~110°である[4]に記載の電子部品搭載基板。
[6]: 前記電磁波シールド部材のJIS K5600に基づくプレッシャークッカー試験後のテープ密着試験において、前記電子部品上の前記電磁波シールド部材が23/25以上のクロスカット残存率を示す[4]又は[5]に記載の電子部品搭載基板。
[7]: 前記電磁波シールド部材の表層のJISB0601;2001に準拠して測定したクルトシスが1~8となる[4]~[6]のいずれかに記載の電子部品搭載基板。
[8]: 前記電磁波シールド部材の表面の二乗平均平方根高さが0.4~1.6μmの範囲である[4]~[7]のいずれかに記載の電子部品搭載基板。
[9]: 前記電磁波シールド部材のマルテンス硬さが50~312N/mmである[4]~[8]のいずれかに記載の電子部品搭載基板。
[10]: 前記バインダー樹脂は、熱硬化性樹脂と、前記熱硬化性樹脂の反応性官能基と架橋可能な官能基を有している硬化性化合物と、を含有するバインダー樹脂前駆体を熱圧着して得られることを特徴とする[4]~[9]のいずれかに記載の電子部品搭載基板。
[11]: 前記電磁波シールド部材の膜厚が10~200μmである[4]~[10]のいずれかに記載の電子部品搭載基板。
[12]: 基板と、前記基板の少なくとも一方の面に搭載された電子部品と、前記電子部品上面から前記基板に亘って被覆され、前記電子部品の搭載によって形成された段差部の側面および前記基板の少なくとも一部を被覆する電磁波シールド部材と、を備え、前記電磁波シールド部材は、バインダー樹脂と導電性フィラーを含む電磁波シールド層を有し、前記電磁波シールド部材の表層の二乗平均平方根高さRqが0.05μm以上、0.3μm未満である電子部品搭載基板。
[13]: 前記電磁波シールド部材の表層の二乗平均平方根傾斜Rdqが0.05~0.4である[12]に記載の電子部品搭載基板。
[14]: 前記電磁波シールド部材の表層の水接触角が90~130°である[12]又は[13]に記載の電子部品搭載基板。
[15]: 前記導電性フィラーは、デンドライト状および針状の導電性フィラーの少なくとも一方および鱗片状の導電性フィラーを含有している[12]~[14]のいずれかに記載の電子部品搭載基板。
[16]: [1]~[15]のいずれかに記載の電子部品搭載基板が搭載された、電子機器。
The inventors of the present invention have made extensive studies, and have found that the problems of the present invention can be solved in the following aspects, and have completed the present invention.
[1]: a substrate, an electronic component mounted on at least one surface of the substrate, a side surface of a step portion formed by mounting the electronic component and covering the substrate from the upper surface of the electronic component to the substrate, and An electromagnetic wave shield member covering at least a part of the substrate, wherein the electromagnetic wave shield member has an electromagnetic wave shield layer containing a binder resin and a conductive filler, and conforms to JIS B0601; 2001 of the surface layer of the electromagnetic wave shield member. An electronic component mounting board with a kurtosis of 1 to 8 measured by
[2]: The electronic component mounting board according to [1], which has a root mean square height Rq of 0.3 to 1.7 μm measured according to JIS B0601; 2001 on the surface of the electromagnetic wave shield member.
[3]: The electronic component mounting board according to [1] or [2], wherein the conductive filler contains at least one of a dendrite-shaped and needle-shaped conductive filler.
[4]: A substrate, an electronic component mounted on at least one surface of the substrate, a side surface of a step portion formed by mounting the electronic component and covering the substrate from the upper surface of the electronic component to the substrate, and An electromagnetic wave shield member that covers at least a part of the substrate,
The electromagnetic wave shield member has an electromagnetic wave shield layer containing a binder resin and a conductive filler, and has an indentation elastic modulus of 1 to 10 GPa.
[5]: The electronic component mounting board according to [4], wherein the surface layer of the electromagnetic wave shield member has a water contact angle of 70 to 110°.
[6]: In the tape adhesion test after the pressure cooker test based on JIS K5600 of the electromagnetic wave shield member, the electromagnetic wave shield member on the electronic component shows a crosscut residual rate of 23/25 or more [4] or [5]. ] Electronic component mounting substrate described in.
[7]: The electronic component mounting board according to any one of [4] to [6], which has a kurtosis of 1 to 8 measured according to JIS B0601; 2001 on the surface layer of the electromagnetic wave shield member.
[8]: The electronic component mounting board according to any one of [4] to [7], wherein the root mean square height of the surface of the electromagnetic wave shielding member is in the range of 0.4 to 1.6 μm.
[9]: The electronic component mounting board according to any one of [4] to [8], wherein the electromagnetic shield member has a Martens hardness of 50 to 312 N/mm 2 .
[10]: The binder resin heats a binder resin precursor containing a thermosetting resin and a curable compound having a functional group capable of crosslinking with the reactive functional group of the thermosetting resin. The electronic component mounting board according to any one of [4] to [9], which is obtained by pressure bonding.
[11]: The electronic component mounting board according to any one of [4] to [10], wherein the electromagnetic wave shield member has a film thickness of 10 to 200 μm.
[12]: a substrate, an electronic component mounted on at least one surface of the substrate, a side surface of a step portion formed by mounting the electronic component and covering the substrate from the upper surface of the electronic component to the substrate, and An electromagnetic wave shield member covering at least a part of the substrate, wherein the electromagnetic wave shield member has an electromagnetic wave shield layer containing a binder resin and a conductive filler, and a root mean square height Rq of a surface layer of the electromagnetic wave shield member. An electronic component mounting board having a thickness of 0.05 μm or more and less than 0.3 μm.
[13]: The electronic component mounting board according to [12], wherein the surface layer of the electromagnetic wave shield member has a root mean square slope Rdq of 0.05 to 0.4.
[14]: The electronic component mounting board according to [12] or [13], wherein the surface layer of the electromagnetic wave shield member has a water contact angle of 90 to 130°.
[15]: The electronic component mounting according to any one of [12] to [14], wherein the conductive filler contains at least one of dendrite-shaped and needle-shaped conductive fillers and scale-shaped conductive fillers. substrate.
[16]: An electronic device on which the electronic component mounting board according to any one of [1] to [15] is mounted.
 本発明によれば、信頼性の高い電磁波シールド部材を有する電子部品搭載基板、並びに電子機器を提供できるという優れた効果を奏する。 According to the present invention, it is possible to provide an electronic component mounting board having a highly reliable electromagnetic wave shielding member and an electronic device, which is an excellent effect.
実施形態A1、B1、C1に係る電子部品搭載基板の一例を示す模式的斜視図。FIG. 3 is a schematic perspective view showing an example of an electronic component mounting board according to embodiments A1, B1, and C1. 図1のII-II切断部断面図。FIG. 2 is a sectional view taken along the line II-II of FIG. 1. 実施形態A1、B1、C1に係る電子部品搭載基板の別の一例を示す模式的断面図。FIG. 9 is a schematic cross-sectional view showing another example of the electronic component mounting board according to the embodiments A1, B1, and C1. 実施形態A1、B1、C1に係る電磁波シールド用積層体の一例を示す模式的断面図。FIG. 3 is a schematic cross-sectional view showing an example of an electromagnetic wave shield laminate according to embodiments A1, B1, and C1. 実施形態A1、B1、C1に係る電子部品搭載基板の製造工程の一例を示す模式的断面図。FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A1, B1, and C1. 実施形態A1、B1、C1に係る電子部品搭載基板の製造工程の一例を示す模式的断面図。FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A1, B1, and C1. 実施形態A1、B1、C1に係る電子部品搭載基板の製造工程の一例を示す模式的断面図。FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A1, B1, and C1. 実施形態A1、B1、C1に係る電子部品搭載基板の製造工程の一例を示す模式的断面図。FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A1, B1, and C1. 電磁波シールド部材の表層のクルトシスの変動要因を説明するための模式的説明図。FIG. 3 is a schematic explanatory diagram for explaining a factor of fluctuation of kurtosis on the surface layer of the electromagnetic wave shield member. 電磁波シールド部材の表層のクルトシスの変動要因を説明するための模式的説明図。FIG. 3 is a schematic explanatory diagram for explaining a factor of fluctuation of kurtosis on the surface layer of the electromagnetic wave shield member. 実施形態A2、B2、C2に係る電磁波シールド用積層体の一例を示す模式的断面図。The typical sectional view showing an example of the layered product for electromagnetic wave shields concerning embodiments A2, B2, and C2. 実施形態A3、B3、C3に係る電磁波シールド用積層体の一例を示す模式的断面図。The typical sectional view showing an example of the layered product for electromagnetic wave shields concerning embodiments A3, B3, and C3. 実施形態A4、B4、C4に係る電磁波シールド用積層体の一例を示す模式的断面図。The typical sectional view showing an example of the layered product for electromagnetic wave shields concerning embodiments A4, B4, and C4. 実施形態A4、B4、C4に係る電子部品搭載基板の製造工程の一例を示す模式的断面図。FIG. 9 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A4, B4, and C4. 実施形態A4、B4、C4に係る電子部品搭載基板の製造工程の一例を示す模式的断面図。FIG. 9 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A4, B4, and C4. 実施形態A4、B4、C4に係る電子部品搭載基板の製造工程の一例を示す模式的断面図。FIG. 9 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A4, B4, and C4. 実施形態A5、B5、C5に係る電子部品搭載基板の製造工程の一例を示す模式的断面図。FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A5, B5, and C5. 実施形態A5、B5、C5に係る電子部品搭載基板の製造工程の一例を示す模式的断面図。FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A5, B5, and C5. 実施形態A5、B5、C5に係る電子部品搭載基板の製造工程の一例を示す模式的断面図。FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to Embodiments A5, B5, and C5. 変形例に係る電子部品搭載基板の製造工程の一例を示す模式的断面図。FIG. 9 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to a modification. 変形例に係る電子部品搭載基板の製造工程の一例を示す模式的断面図。FIG. 9 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to a modification. 変形例に係る電子部品搭載基板の製造工程の一例を示す模式的断面図。FIG. 9 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to a modification. 変形例に係る電子部品搭載基板の製造工程の一例を示す模式的断面図。FIG. 9 is a schematic cross-sectional view showing an example of a manufacturing process of an electronic component mounting board according to a modification. 本実施例に係る電子部品搭載基板の一例を示す模式的断面図。FIG. 3 is a schematic cross-sectional view showing an example of an electronic component mounting board according to the present embodiment. 電子部品等に電磁波シールド部材を被覆する工程を説明する模式的断面図。FIG. 5 is a schematic cross-sectional view illustrating a step of coating an electronic component or the like with an electromagnetic wave shield member. 電子部品等に電磁波シールド部材を被覆する工程を説明する模式的断面図。FIG. 5 is a schematic cross-sectional view illustrating a step of coating an electronic component or the like with an electromagnetic wave shield member. 電子部品等に電磁波シールド部材を被覆する工程を説明する模式的断面図。FIG. 5 is a schematic cross-sectional view illustrating a step of coating an electronic component or the like with an electromagnetic wave shield member. 電子部品等に電磁波シールド部材を被覆する工程を説明する模式的断面図。FIG. 5 is a schematic cross-sectional view illustrating a step of coating an electronic component or the like with an electromagnetic wave shield member. 本実施例B3に係る電子部品搭載基板の側面の光学顕微鏡写真。10 is an optical microscope photograph of the side surface of the electronic component mounting board according to the present Example B3. 本参考例B1に係る電子部品搭載基板の側面の光学顕微鏡写真。An optical microscope photograph of the side surface of the electronic component mounting board according to Reference Example B1. 本実施例Cに係る電子部品搭載基板の評価方法の説明図。Explanatory drawing of the evaluation method of the electronic component mounting board which concerns on this Example C.
 以下、本発明を適用した実施形態の一例について説明する。なお、本明細書において特定する数値は、実施形態または実施例に開示した方法により求められる値である。また、本明細書で特定する数値「A~B」は、数値Aと数値Aより大きい値および数値Bと数値Bより小さい値を満たす範囲をいう。また、本明細書におけるシートとは、JISにおいて定義されるシートのみならず、フィルムも含むものとする。説明を明確にするため、以下の記載および図面は、適宜、簡略化されている。本明細書中に出てくる各種成分は特に注釈しない限り、それぞれ独立に一種単独でも二種以上を併用してもよい。また、説明の便宜上、異なる実施形態においても、同一の要素部材は同一の符号を付す。 An example of an embodiment to which the present invention is applied will be described below. The numerical values specified in this specification are values obtained by the method disclosed in the embodiment or the example. Further, the numerical values “A to B” specified in this specification refer to ranges satisfying the numerical values A and the values larger than the numerical value A and the numerical values B and the values smaller than the numerical value B. In addition, the sheet in this specification includes not only a sheet defined by JIS but also a film. For clarity of explanation, the following description and drawings are simplified as appropriate. Unless otherwise noted, the various components mentioned in the present specification may be used alone or in combination of two or more. Further, for convenience of description, the same element members are denoted by the same reference numerals in different embodiments.
 本発明に係る電子部品搭載基板として、実施形態A~実施形態Cに係る電子部品搭載基板を開示する。 The electronic component mounting boards according to Embodiments A to C are disclosed as the electronic component mounting boards according to the present invention.
[[実施形態A]]
 実施形態Aの電子部品搭載基板は、基板と、この基板の少なくとも一方の面に搭載された電子部品と、この電子部品上面から前記基板に亘って被覆され、前記電子部品の搭載によって形成された段差部の側面および前記基板の少なくとも一部を被覆する電磁波シールド部材とを備える。前記電磁波シールド部材は、バインダー樹脂と導電性フィラーを含む電磁波シールド層を有する。そして、この電磁波シールド部材の表層のJISB0601;2001に準拠して測定したクルトシスを1~8とする。
[[Embodiment A]]
The electronic component mounting substrate of Embodiment A is formed by mounting a substrate, an electronic component mounted on at least one surface of the substrate, the electronic component upper surface to the substrate, and mounting the electronic component. The electromagnetic wave shield member covers the side surface of the step portion and at least a part of the substrate. The electromagnetic wave shield member has an electromagnetic wave shield layer containing a binder resin and a conductive filler. Then, the kurtosis measured according to JIS B0601; 2001 on the surface layer of this electromagnetic wave shielding member is set to 1 to 8.
 従来の技術によれば、電子部品搭載基板の電磁波シールド部材101上に、図20の(i)に示すような残渣が付着していることがある。これは、電磁波シールド部材101を形成するために用いる電磁波シールド用積層体104の構成部材である離形性クッション部材103に由来するものである。電磁波シールド用積層体104を熱圧着した後の離形性クッション部材103を剥離する段階で、電子部品130の間隙に形成された溝125における投錨効果による。離形性クッション部材103の千切れである。この千切れは、個片化工程を経ても残渣として残存する要因となる。このような電磁波シールド部材101上の残渣は、外観不良だけでなく電子機器の電磁波シールド性の信頼性低下を招来し、回路基板に実装する際の障害となり得る。 According to the conventional technique, a residue as shown in (i) of FIG. 20 may be attached on the electromagnetic wave shield member 101 of the electronic component mounting board. This originates in the releasable cushion member 103 which is a constituent member of the electromagnetic wave shield laminate 104 used for forming the electromagnetic wave shield member 101. This is due to the anchoring effect in the groove 125 formed in the gap of the electronic component 130 at the stage of peeling off the releasable cushion member 103 after thermocompression bonding the electromagnetic wave shielding laminate 104. The releasable cushion member 103 is torn. This tearing becomes a factor that remains as a residue even after the individualization process. Such a residue on the electromagnetic wave shield member 101 causes not only a poor appearance but also a decrease in reliability of the electromagnetic wave shield property of the electronic device, which may be an obstacle when mounting on the circuit board.
 係る問題を回避する方法として、溝125の投錨効果を低減するべく、電子部品130同士の間隙の幅を広くしたり、電子部品130の高さを低くしたりする方法が考えられる。しかし、この方法では、電子部品130の形状が限定され、複雑な凹凸を有する電子部品130には適用できないという問題がある。また、基板120に搭載する電子部品130同士の間隙を狭めることができれば、一つの基板120から得られる電子部品130の収量が向上し、製造の効率化に貢献できる。また、電磁波シールド部材101は、電子部品130の搬送や実装時に電磁波シールド部材101の擦傷による信頼性低下を防ぐため、耐擦傷性が高いことが求められている。 As a method of avoiding such a problem, a method of widening the gap between the electronic components 130 or reducing the height of the electronic components 130 can be considered in order to reduce the anchoring effect of the groove 125. However, this method has a problem that the shape of the electronic component 130 is limited and cannot be applied to the electronic component 130 having complicated irregularities. Further, if the gap between the electronic components 130 mounted on the substrate 120 can be narrowed, the yield of the electronic components 130 obtained from one substrate 120 can be improved, and the manufacturing efficiency can be improved. Further, the electromagnetic wave shield member 101 is required to have high scratch resistance in order to prevent a decrease in reliability due to scratches of the electromagnetic wave shield member 101 during transportation or mounting of the electronic component 130.
 実施形態Aに係る電子部品搭載基板によれば、設計自由度が高く、残渣の付着を抑制し、且つ耐擦傷性に優れる信頼性の高い電磁波シールド部材を有する電子部品搭載基板を提供することができる。従って、設計自由度を高めたい電子部品搭載基板、或いは擦傷しやすい電子部品搭載基板の用途に特に好適である。 According to the electronic component mounting board according to the embodiment A, it is possible to provide an electronic component mounting board having a highly reliable electromagnetic wave shield member which has a high degree of design freedom, suppresses adhesion of residues, and is excellent in scratch resistance. it can. Therefore, it is particularly suitable for use as an electronic component mounting board for which the degree of freedom in design is desired to be increased or an electronic component mounting board which is easily scratched.
[[実施形態B]]
 実施形態Bの電子部品搭載基板は、基板と、この基板の少なくとも一方の面に搭載された電子部品と、前記電子部品上面から前記基板に亘って被覆され、前記電子部品の搭載によって形成された段差部の側面および前記基板の少なくとも一部を被覆する電磁波シールド部材とを備える。この電磁波シールド部材は、バインダー樹脂と導電性フィラーを含む電磁波シールド層を有し、且つ押込み弾性率を1~10GPaとする。
[[Embodiment B]]
The electronic component mounting board of the embodiment B is formed by mounting a substrate, an electronic component mounted on at least one surface of the substrate, the electronic component upper surface to the substrate, and mounting the electronic component. The electromagnetic wave shield member covers the side surface of the step portion and at least a part of the substrate. This electromagnetic wave shield member has an electromagnetic wave shield layer containing a binder resin and a conductive filler, and has an indentation elastic modulus of 1 to 10 GPa.
 従来の技術によれば、電子部品搭載基板の製造工程の上述した個片化工程において、電磁波シールド部材101の切断面を基点とした電磁波シールド部材101の捲れであるバリが発生しやすいという問題がある(図21の部分拡大図(ii)参照)。電磁波シールド部材101のバリの主たる原因は、個片化工程のダイシング時の高圧水洗等である。また、製造後の電子部品搭載基板は、高湿熱条件下において電磁波シールド部材101と基板120等との密着性が低下してしまう場合がある。このような電磁波シールド部材101のバリの発生および密着性低下は、電子機器の電磁波シールド性の信頼性低下を招来し、回路基板に実装する際の障害となり得る。 According to the conventional technique, in the above-described individualizing step of the manufacturing process of the electronic component mounting board, there is a problem that a burr that is a curl of the electromagnetic wave shielding member 101 from the cut surface of the electromagnetic wave shielding member 101 is likely to occur. (Refer to a partially enlarged view (ii) in FIG. 21). The main cause of burrs of the electromagnetic wave shield member 101 is high-pressure water washing at the time of dicing in the individualizing step. Further, in the manufactured electronic component mounting substrate, the adhesion between the electromagnetic wave shield member 101 and the substrate 120 or the like may be deteriorated under high humidity and heat conditions. The occurrence of burrs and the decrease in the adhesion of the electromagnetic wave shield member 101 cause a decrease in the reliability of the electromagnetic wave shield property of the electronic device, which may be an obstacle when mounting on the circuit board.
 実施形態Bに係る電子部品搭載基板によれば、バリの発生を抑制でき、且つプレッシャークッカーテスト(PCT)耐性に優れる信頼性の高い信頼性の高い電磁波シールド部材を有する電子部品搭載基板を提供できる。従って、個片化工程において高圧水線等の条件の厳しい用途、或いは高湿熱条件での耐久性が要求される電子部品搭載基板の用途に特に好適である。 According to the electronic component mounting board of the embodiment B, it is possible to provide an electronic component mounting board having a reliable and highly reliable electromagnetic wave shield member capable of suppressing the occurrence of burrs and having excellent pressure cooker test (PCT) resistance. .. Therefore, it is particularly suitable for applications in which severe conditions such as high-pressure water lines are used in the singulation process, or applications for electronic component mounting boards that require durability under high humidity and heat conditions.
[[実施形態C]]
 実施形態Cの電子部品搭載基板は、基板と、この基板の少なくとも一方の面に搭載された電子部品と、前記電子部品上面から前記基板に亘って被覆され、前記電子部品の搭載によって形成された段差部の側面および前記基板の少なくとも一部を被覆する電磁波シールド部材とを備える。この電磁波シールド部材は、バインダー樹脂と導電性フィラーを含む電磁波シールド層を有し、電磁波シールド部材の表層の二乗平均平方根高さRqを0.05μm以上、0.3μm未満とする。
[[Embodiment C]]
The electronic component mounting board of Embodiment C is formed by mounting a substrate, an electronic component mounted on at least one surface of the substrate, the electronic component upper surface to the substrate, and mounting the electronic component. The electromagnetic wave shield member covers the side surface of the step portion and at least a part of the substrate. This electromagnetic wave shield member has an electromagnetic wave shield layer containing a binder resin and a conductive filler, and the root mean square height Rq of the surface layer of the electromagnetic wave shield member is 0.05 μm or more and less than 0.3 μm.
 従来の技術によれば、個片化工程において、ダイシングテープ(不図示)を介して電磁波シールド部材101をダイシング台141に当接させ(図21参照)、この当接状態を維持しながら基板120側から電子部品130の間隙である溝125に対向する位置に対して切断工具142により基板120および電磁波シールド部材101を切断する場合がある。この場合、個片化後にダイシングテープと電磁波シールド部材101を剥離する工程を経て電子部品搭載基板が製造される。ところが、個片化後にダイシングテープを剥離する際に、電磁波シールド部材101に浮きが発生する場合がある。また、電磁波シールド部材の一部が剥離してしまう場合もある。また、冷熱サイクル試験(-50℃~125℃)を実施すると、電磁波シールド部材に罅割れを生じることがある。 According to the conventional technique, in the individualizing step, the electromagnetic wave shield member 101 is brought into contact with the dicing table 141 via a dicing tape (not shown) (see FIG. 21), and the substrate 120 is maintained while maintaining this contact state. The substrate 120 and the electromagnetic wave shield member 101 may be cut by the cutting tool 142 at a position facing the groove 125 which is the gap of the electronic component 130 from the side. In this case, the electronic component mounting board is manufactured through a step of separating the dicing tape and the electromagnetic wave shield member 101 after being separated into individual pieces. However, when the dicing tape is peeled off after being separated into pieces, the electromagnetic wave shield member 101 may float. Moreover, a part of the electromagnetic wave shield member may be peeled off. In addition, when the cooling/heating cycle test (−50° C. to 125° C.) is performed, cracks may occur in the electromagnetic wave shield member.
 このような電磁波シールド部材101の一浮き、罅割れは外観不良のみならず、様々な問題を引き起こすことがある。例えば、電磁波シールド部材101と筐体を導電性接着剤や導電性粘着剤でグランド接地する際に、接着力や接続抵抗が悪化し、電子機器の電磁波シールド性の信頼性低下を招来し、回路基板に実装する際の障害となり得る。また、経時的な信頼性において課題がある場合がある。 The floating and cracking of the electromagnetic wave shield member 101 as described above may cause various problems as well as a poor appearance. For example, when the electromagnetic wave shield member 101 and the housing are grounded with a conductive adhesive or a conductive adhesive, the adhesive force and the connection resistance are deteriorated, and the reliability of the electromagnetic wave shielding property of the electronic device is deteriorated. This can be an obstacle when mounting on a board. In addition, there may be a problem in reliability over time.
 実施形態Cに係る電子部品搭載基板によれば、被覆性に優れる信頼性の高い信頼性の高い電磁波シールド部材を有する電子部品搭載基板を提供できる。従って、ダイシングテープを用いて電磁波シールド部材とダイシング台を当接する工程を含む用途、或いは冷熱サイクル試験をクリアすることが必要な用途、例えば、自動車に搭載する電子部品搭載基板のように苛酷な温度変化に耐え得る性能が要求される用途に特に好適である。 According to the electronic component mounting board according to the embodiment C, it is possible to provide an electronic component mounting board having a highly reliable and highly reliable electromagnetic wave shielding member having excellent coverage. Therefore, the application including the step of contacting the electromagnetic wave shield member and the dicing table with the dicing tape, or the application that needs to pass the thermal cycle test, for example, the severe temperature such as the electronic component mounting board mounted in the automobile. It is particularly suitable for applications that require the ability to withstand changes.
[[実施形態A]]
 以下、実施形態Aに係る電子部品搭載基板の具体例について説明する。
[実施形態A1]
<電子部品搭載基板>
 図1に実施形態A1に係る電子部品搭載基板の一例を示す模式的斜視図を、図2に図1のII-II切断部断面図を示す。電子部品搭載基板51は、基板20、電子部品30および電磁波シールド部材1等を有する。
[[Embodiment A]]
Hereinafter, a specific example of the electronic component mounting board according to the embodiment A will be described.
[Embodiment A1]
<Electronic component mounting board>
FIG. 1 is a schematic perspective view showing an example of an electronic component mounting board according to Embodiment A1, and FIG. 2 is a sectional view taken along the line II-II of FIG. The electronic component mounting board 51 includes the substrate 20, the electronic component 30, the electromagnetic wave shield member 1, and the like.
 基板20は電子部品30を搭載可能であり、且つ後述する熱圧着工程に耐え得る基板であればよく、任意に選択できる。例えば銅箔等からなる導電パターンが表面又は内部に形成されたワークボード、実装モジュール基板、プリント配線板またはビルドアップ法等により形成されたビルドアップ基板が挙げられる。また、フィルムやシート状のフレキシブル基板を用いてもよい。前記導電パターンは、例えば、電子部品30と電気的に接続するための電極・配線パターン(不図示)、電磁波シールド部材1と電気的に接続するためのグランドパターン22である。基板20内部には電極・配線パターン、ビア(不図示)等を任意に設けることができる。基板20はリジッド基板のみならず、フレキシブル基板であってもよい。 The substrate 20 may be any substrate as long as it can mount the electronic component 30 and can withstand the thermocompression bonding process described later, and can be arbitrarily selected. Examples thereof include a work board having a conductive pattern made of copper foil or the like formed on the surface or inside thereof, a mounted module substrate, a printed wiring board, or a build-up substrate formed by a build-up method or the like. Alternatively, a film- or sheet-shaped flexible substrate may be used. The conductive pattern is, for example, an electrode/wiring pattern (not shown) for electrically connecting to the electronic component 30, and a ground pattern 22 for electrically connecting to the electromagnetic wave shield member 1. Electrodes/wiring patterns, vias (not shown) and the like can be arbitrarily provided inside the substrate 20. The substrate 20 may be not only a rigid substrate but also a flexible substrate.
 電子部品30は、図1の例においては基板20上に5×4個アレイ状に配置されている。そして、基板20および電子部品30の露出面を被覆するように電磁波シールド部材1が設けられている。即ち、電磁波シールド部材1は、電子部品30により形成される凹凸に追従するように被覆されている。電磁波シールド部材1により、電子部品30および/または基板20に内蔵された信号配線等から発生する不要輻射を遮蔽し、また、外部からの磁場や電波による誤動作を防止できる。 The electronic components 30 are arranged in a 5×4 array on the substrate 20 in the example of FIG. The electromagnetic wave shield member 1 is provided so as to cover the exposed surfaces of the substrate 20 and the electronic component 30. That is, the electromagnetic wave shield member 1 is coated so as to follow the irregularities formed by the electronic component 30. The electromagnetic wave shield member 1 can shield unnecessary radiation generated from the signal wiring and the like built in the electronic component 30 and/or the substrate 20, and can prevent malfunction due to a magnetic field or radio waves from the outside.
 電子部品30の個数、配置、形状および種類は任意である。アレイ状に電子部品30を配置する態様に代えて、電子部品30を任意の位置に配置してもよい。電子部品搭載基板51を単位モジュールに個片化する場合、図2に示すように、基板上面から基板の厚み方向に単位モジュールを区画するようにハーフダイシング溝25を設けてもよい。なお、実施形態A1に係る電子部品搭載基板は、単位モジュールに個片化する前の基板、および単位モジュールに個片化した後の基板の両方を含む。即ち、図1、図2のような複数の単位モジュール(電子部品30)が搭載された電子部品搭載基板51の他、図3のような単位モジュールに個片化した後の電子部品搭載基板52も含む。無論、個片化工程を経ずに、基板20上に1つの電子部品30を搭載し、電磁波シールド部材で被覆した電子部品搭載基板も含まれる。即ち、実施形態A1に係る電子部品搭載基板は、基板上に少なくとも1つの電子部品が搭載されており、電子部品の搭載により形成された段差部の少なくとも一部に電磁波シールド部材が被覆された構造を包括する。 The number, arrangement, shape and type of electronic components 30 are arbitrary. Instead of arranging the electronic components 30 in an array, the electronic components 30 may be arranged at arbitrary positions. When the electronic component mounting board 51 is divided into unit modules, as shown in FIG. 2, the half dicing grooves 25 may be provided so as to partition the unit modules in the thickness direction of the board from the upper surface of the board. The electronic component mounting board according to Embodiment A1 includes both a board before being singulated into unit modules and a board after being singulated into unit modules. That is, in addition to the electronic component mounting board 51 on which a plurality of unit modules (electronic components 30) are mounted as shown in FIGS. 1 and 2, the electronic component mounting board 52 after being divided into unit modules as shown in FIG. Including. Of course, an electronic component mounting substrate in which one electronic component 30 is mounted on the substrate 20 and covered with an electromagnetic wave shield member without going through the individualizing step is also included. That is, the electronic component mounting board according to Embodiment A1 has a structure in which at least one electronic component is mounted on the substrate, and at least a part of the step portion formed by mounting the electronic component is covered with the electromagnetic wave shield member. To include.
 電子部品30は、半導体集積回路等の電子素子が絶縁体により一体的に被覆された部品全般を含む。例えば、集積回路(不図示)が形成された半導体チップ31(図3参照)が封止材(モールド樹脂32)によりモールド成型されている態様がある。基板20と半導体チップ31は、これらの当接領域を介して、又はボンディングワイヤ33、はんだボール(不図示)等を介して基板20に形成された配線又は電極21と電気的に接続される。電子部品は、半導体チップの他、インダクタ、サーミスタ、キャパシタおよび抵抗等が例示できる。 The electronic components 30 include all components in which electronic elements such as semiconductor integrated circuits are integrally covered with an insulator. For example, there is a mode in which a semiconductor chip 31 (see FIG. 3) on which an integrated circuit (not shown) is formed is molded with a sealing material (mold resin 32). The substrate 20 and the semiconductor chip 31 are electrically connected to the wiring or the electrode 21 formed on the substrate 20 via these contact areas or via the bonding wires 33, solder balls (not shown) and the like. Examples of electronic components include semiconductor chips, inductors, thermistors, capacitors, and resistors.
 実施形態A1に係る電子部品30および基板20は、公知の態様に対して広く適用できる。図3の例においては、半導体チップ31は、インナービア23を介して基板20の裏面にはんだボール24が接続されている。また、基板20内には、電磁波シールド部材1と電気的に接続するためのグランドパターン22が形成されている。また、後述する実施形態A4のように、個片化後の電子部品搭載基板もしくは個片化しない電子部品搭載基板に、複数の電子部品30が搭載されていてもよい(図14C参照)。また、電子部品30内には、単数又は複数の電子素子等を搭載できる。 The electronic component 30 and the substrate 20 according to the embodiment A1 can be widely applied to known aspects. In the example of FIG. 3, the semiconductor chip 31 has solder balls 24 connected to the back surface of the substrate 20 via inner vias 23. In addition, a ground pattern 22 for electrically connecting to the electromagnetic wave shield member 1 is formed in the substrate 20. Further, as in embodiment A4 described later, a plurality of electronic components 30 may be mounted on the electronic component mounting substrate after being singulated or the electronic component mounting substrate that is not singulated (see FIG. 14C). In addition, a single or a plurality of electronic elements or the like can be mounted in the electronic component 30.
<電磁波シールド部材>
 電磁波シールド部材1は、基板20上に搭載された電子部品30の天面に電磁波シールド用積層体を載置して熱圧着により電子部品30および基板20を被覆することにより得られる。電磁波シールド部材1は、電子部品30上面から基板20に亘って被覆され、電子部品30の搭載によって形成された段差部の側面および基板20の少なくとも一部を被覆する。電磁波シールド部材1は、シールド効果を充分に発揮させるために、基板20の側面または上面に露出するグランドパターン22または/および電子部品30の接続用配線等のグランドパターン(不図示)に接続する構成が好ましい。
<Electromagnetic wave shield member>
The electromagnetic wave shield member 1 is obtained by placing the electromagnetic wave shielding laminate on the top surface of the electronic component 30 mounted on the substrate 20 and coating the electronic component 30 and the substrate 20 by thermocompression bonding. The electromagnetic wave shield member 1 is covered from the upper surface of the electronic component 30 to the substrate 20, and covers at least part of the substrate 20 and the side surface of the step portion formed by mounting the electronic component 30. The electromagnetic wave shield member 1 is connected to a ground pattern 22 exposed on the side surface or the upper surface of the substrate 20 and/or a ground pattern (not shown) such as a connection wiring of the electronic component 30 in order to sufficiently exert the shielding effect. Is preferred.
 電磁波シールド部材1は、電磁波シールド用積層体を用いて形成することができる。図4に、電磁波シールド用積層体の模式的断面図を示す。実施形態A1に係る電磁波シールド用積層体4は、電磁波シールド用部材2と離形性クッション部材3からなる。この電磁波シールド用部材2は、実施形態A1においては導電性接着剤層6の単層からなる。導電性接着剤層6は熱圧着により電子部品30および基板20に接合されて電磁波シールド層5が形成される。実施形態A1においては、この電磁波シールド層5が電磁波シールド部材1として機能する。 The electromagnetic wave shield member 1 can be formed by using an electromagnetic wave shield laminate. FIG. 4 shows a schematic sectional view of the electromagnetic wave shielding laminate. The electromagnetic wave shielding laminate 4 according to the embodiment A1 includes the electromagnetic wave shielding member 2 and the releasable cushion member 3. This electromagnetic wave shielding member 2 is composed of a single layer of the conductive adhesive layer 6 in the embodiment A1. The conductive adhesive layer 6 is bonded to the electronic component 30 and the substrate 20 by thermocompression bonding to form the electromagnetic wave shield layer 5. In the embodiment A1, the electromagnetic wave shield layer 5 functions as the electromagnetic wave shield member 1.
 電磁波シールド用部材2は、後述する実施形態A2のように2層以上の導電性接着剤層の積層体から形成したり、実施形態A3のように導電性接着剤層とハードコート層の積層体から形成したり、実施形態A4のように絶縁性接着剤層と導電性接着剤層の積層体から形成したりする等、他の層の積層体から形成してもよい。電磁波シールド用部材2を熱圧着して得られる電磁波シールド部材1は、実施形態A2では2層以上の電磁波シールド層の積層体から構成され、実施形態A3では電磁波シールド層とハードコート層の積層体から構成され、実施形態A4では絶縁被覆層と電磁波シールド層の積層体から構成されている。このように電磁波シールド部材は、電磁波シールド層と他の層との積層体から構成してもよい。 The electromagnetic wave shielding member 2 is formed of a laminate of two or more conductive adhesive layers as in the embodiment A2 described later, or a laminate of a conductive adhesive layer and a hard coat layer as in the embodiment A3. Or a laminated body of other layers such as a laminated body of an insulating adhesive layer and a conductive adhesive layer as in the embodiment A4. The electromagnetic wave shield member 1 obtained by thermocompression bonding the electromagnetic wave shield member 2 is composed of a laminate of two or more electromagnetic wave shield layers in the embodiment A2, and is a laminate of the electromagnetic wave shield layer and the hard coat layer in the embodiment A3. In Embodiment A4, it is composed of a laminated body of an insulating coating layer and an electromagnetic wave shielding layer. Thus, the electromagnetic wave shield member may be composed of a laminate of the electromagnetic wave shield layer and other layers.
 電磁波シールド層5には、バインダー樹脂と導電性フィラーが含まれる。電磁波シールド層5中の導電性フィラーは連続的に接触されており導電性を示す。電磁波シールド性を高める観点から電磁波シールド層5のシート抵抗値は1Ω/□以下が好ましい。 The electromagnetic wave shield layer 5 contains a binder resin and a conductive filler. The conductive filler in the electromagnetic wave shield layer 5 is in continuous contact with the conductive filler and exhibits conductivity. From the viewpoint of enhancing the electromagnetic wave shielding property, the sheet resistance value of the electromagnetic wave shielding layer 5 is preferably 1Ω/□ or less.
 電磁波シールド部材1は、その表層のJISB0601;2001に準拠して測定したクルトシスを1~8とする。クルトシスは、数式(1)で表される表面凹凸の粗さ曲線を示す指標であり、高さ分布の平坦度、尖り度を表す。
Figure JPOXMLDOC01-appb-M000001
ここで、Lは基準長さである。また、Rqは二乗平均平方根高さであり、一つの軸(x軸)に沿った表面の高さ変化をZ(x)として以下の数式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
The electromagnetic wave shield member 1 has a kurtosis of 1 to 8 measured according to JIS B0601; 2001 on its surface layer. Kurtosis is an index showing the roughness curve of the surface unevenness represented by the mathematical expression (1), and represents the flatness and the sharpness of the height distribution.
Figure JPOXMLDOC01-appb-M000001
Here, L is a reference length. Further, Rq is the root mean square height, and is represented by the following mathematical expression (2), where Z(x) is the change in surface height along one axis (x axis).
Figure JPOXMLDOC01-appb-M000002
 クルトシスは、二乗平均平方根高さRqの四乗によって無次元化した基準長さにおいて、Z(x)の四乗平均を示す。クルトシスが3のときは、凸部(または凹部)の尖りの分布が正規分布に近いことを示す。クルトシスが3より大きくなるにつれて、基準高さRqに対して急峻な尖った凸部(または凹部)の数が増加し、クルトシスが3よりも小さくなるにつれて、急峻な尖った凸部(または凹部)の数が少なくなることを表す。 Kurtosis indicates the square root of Z(x) in the standard length made dimensionless by the square of the root mean square height Rq. When the kurtosis is 3, it indicates that the distribution of the sharpness of the convex portion (or the concave portion) is close to the normal distribution. The number of sharp pointed protrusions (or recesses) with respect to the reference height Rq increases as the kurtosis becomes larger than 3, and the steep pointed protrusions (or recesses) becomes smaller as the kurtosis becomes smaller than 3. Indicates that the number of
 製造方法については後述するが、電子部品30を搭載した基板に電磁波シールド用積層体4を熱圧着後、電磁波シールド部材1から離形性クッション部材3を剥離する際に、ハーフダイシング溝25の離形性クッション部材3はほぼ垂直に摺りながら引き剥がされることになる。投錨効果によって離形性クッション部材3は破断しやすいため、これを抑制する技術が求められている。本発明者らが鋭意検討を重ねた結果、電磁波シールド部材1の接触界面の形状コントロールが重要であり、この形状として上記のクルトシスの範囲が好適であることを見出した。 Although the manufacturing method will be described later, after the electromagnetic wave shielding laminate 4 is thermocompression bonded to the substrate on which the electronic component 30 is mounted, when the releasable cushion member 3 is separated from the electromagnetic wave shielding member 1, the half dicing groove 25 is separated. The shape cushion member 3 is torn off while sliding almost vertically. Since the releasable cushion member 3 easily breaks due to the anchoring effect, a technique for suppressing this is required. As a result of intensive studies by the present inventors, it has been found that the shape control of the contact interface of the electromagnetic wave shield member 1 is important, and the range of the above kurtosis is suitable for this shape.
 クルトシスを8以下とすることにより、電子部品30のハーフダイシング溝25に充填された離形性クッション部材3を電磁波シールド部材1から良好に剥離できる。これは、電磁波シールド部材1の表面形状の尖り度が適切なものとなり、離形性クッション部材3と電磁波シールド部材1との剥離が容易となることによると考えられる。一方、電磁波シールド部材1の表層のクルトシスを1以上とすることにより、スチールウール耐性を向上させることができる。その結果、耐擦傷性を高め、信頼性の高い電子部品搭載基板を提供できる。電磁波シールド部材のクルトシスの好ましい範囲は1.5~6.5であり、より好ましい範囲は2~4である。 By setting the kurtosis to 8 or less, the releasable cushion member 3 filled in the half dicing groove 25 of the electronic component 30 can be favorably separated from the electromagnetic wave shield member 1. It is considered that this is because the sharpness of the surface shape of the electromagnetic wave shield member 1 becomes appropriate and the releasable cushion member 3 and the electromagnetic wave shield member 1 are easily separated. On the other hand, by setting the kurtosis of the surface layer of the electromagnetic wave shield member 1 to 1 or more, the resistance to steel wool can be improved. As a result, it is possible to provide a highly reliable electronic component mounting board with enhanced scratch resistance. The preferable range of kurtosis of the electromagnetic wave shield member is 1.5 to 6.5, and the more preferable range is 2 to 4.
 電磁波シールド部材1の表面の二乗平均平方根高さは0.4~1.6μmの範囲とすることが好ましく、0.5~1.5μmとすることがより好ましく、0.7~1.2μmとすることが更に好ましい。本明細書において、クルトシスと二乗平均平方根高さは、後述する実施例に記載の方法により求めた値をいう。 The root mean square height of the surface of the electromagnetic wave shield member 1 is preferably in the range of 0.4 to 1.6 μm, more preferably 0.5 to 1.5 μm, and 0.7 to 1.2 μm. More preferably. In the present specification, the kurtosis and the root mean square height refer to values obtained by the method described in Examples below.
 電磁波シールド部材1の表面のクルトシスは、電磁波シールド用積層体4中の電磁波シールド用部材2の製造工程により調整することができる。また、電磁波シールド部材1を形成するための、熱圧着前の電磁波シールド用部材の組成物中の各成分の種類やその配合量によって調整できる。詳細は後述する。なお、本発明者らが検討を重ねたところ、電磁波シールド層として機能し得る量の導電性フィラーを配合することにより、リフロー処理前後においてクルトシスの値は実質的に変動しないか、変動してもその変化量は小さいことを確認した。 The kurtosis on the surface of the electromagnetic wave shield member 1 can be adjusted by the manufacturing process of the electromagnetic wave shield member 2 in the electromagnetic wave shield laminate 4. Further, it can be adjusted by the type of each component in the composition of the electromagnetic wave shielding member before thermocompression bonding for forming the electromagnetic wave shielding member 1 and the compounding amount thereof. Details will be described later. Note that the inventors of the present invention have made extensive studies, and by incorporating an amount of a conductive filler capable of functioning as an electromagnetic wave shield layer, the value of kurtosis does not substantially change before or after the reflow treatment, or even if it changes. It was confirmed that the amount of change was small.
<電子部品搭載基板の製造方法>
 以下、実施形態A1の電子部品搭載基板の製造方法の一例について図5~図8を用いて説明する。但し、本発明の電子部品搭載基板の製造方法は、以下の製造方法に限定されるものではない。
<Method for manufacturing electronic component mounting board>
Hereinafter, an example of a method for manufacturing the electronic component mounting board of Embodiment A1 will be described with reference to FIGS. However, the manufacturing method of the electronic component mounting board of the present invention is not limited to the following manufacturing method.
 実施形態A1に係る電子部品搭載基板51の製造方法は、[a]基板に電子部品30を搭載する工程と、[b]電子部品30が搭載された基板20上に電磁波シールド用積層体4を載置する工程と、[c]電子部品30の搭載により形成された段差部の側面および基板の露出面の少なくとも一部に追従するように熱圧着によって電磁波シールド部材1を接合する工程と、[d]離形性クッション部材3を剥離する工程と、[e]電子部品搭載基板51を個片化する工程を備える。以下、各工程について説明する。 The method of manufacturing the electronic component mounting board 51 according to the embodiment A1 includes the step of [a] mounting the electronic component 30 on the substrate and [b] mounting the electromagnetic wave shielding laminate 4 on the substrate 20 on which the electronic component 30 is mounted. A step of placing, and [c] a step of joining the electromagnetic wave shield member 1 by thermocompression bonding so as to follow at least a part of the side surface of the step formed by mounting the electronic component 30 and the exposed surface of the substrate, d) A step of peeling the releasable cushion member 3 and a step [e] individualizing the electronic component mounting board 51. Hereinafter, each step will be described.
[a]基板に電子部品を搭載する工程:
 まず、基板20に電子部品30を搭載する。例えば、基板20上に半導体チップ(不図示)を搭載し、半導体チップが形成されている基板20上を封止樹脂によりモールド成形し、電子部品30間の上方から基板20内部まで到達するように、モールド樹脂および基板20をダイシング等によりハーフカットする。予めハーフカットされた基板20上に電子部品30をアレイ状に配置する方法でもよい。これらの工程を経て、例えば、図5に示すような電子部品30が搭載された基板が得られる。なお、電子部品30とは、図5の例においては半導体チップをモールド成形した一体物をいい、絶縁体により保護された電子素子全般をいう。ハーフカットは、基板20内部まで到達させる態様の他、基板20の表面までカットする態様がある。また、基板20全体をこの段階でカットしてもよい。この場合には、粘着テープ付き基体上に基板20を載置して位置ずれが生じないようにしておくことが好ましい。モールド成形する場合の封止樹脂の材料は特に限定されないが、熱硬化性樹脂が通常用いられる。封止樹脂の形成方法は特に限定されず、印刷、ラミネート、トランスファー成形、コンプレッション、注型等が挙げられる。モールド成形は任意であり、電子部品30の搭載方法も任意に変更できる。
[A] Step of mounting electronic components on the substrate:
First, the electronic component 30 is mounted on the substrate 20. For example, a semiconductor chip (not shown) is mounted on the substrate 20, and the substrate 20 on which the semiconductor chip is formed is molded with a sealing resin so that the inside of the substrate 20 is reached from above the electronic components 30. The mold resin and the substrate 20 are half-cut by dicing or the like. A method of arranging the electronic components 30 in an array on the substrate 20 half-cut in advance may be used. Through these steps, for example, a substrate having an electronic component 30 as shown in FIG. 5 is obtained. The electronic component 30 in the example of FIG. 5 refers to an integrated body formed by molding a semiconductor chip, and refers to all electronic elements protected by an insulator. The half-cut includes a mode of reaching the inside of the substrate 20 and a mode of cutting to the surface of the substrate 20. Also, the entire substrate 20 may be cut at this stage. In this case, it is preferable that the substrate 20 is placed on the substrate with the adhesive tape so that the positional displacement does not occur. The material of the sealing resin for molding is not particularly limited, but a thermosetting resin is usually used. The method for forming the sealing resin is not particularly limited, and examples thereof include printing, laminating, transfer molding, compression, casting and the like. Molding is arbitrary, and the mounting method of the electronic component 30 can be changed arbitrarily.
[b]基板上に電磁波シールド用積層体を載置する工程:
 次いで、電子部品30が搭載された基板20を熱圧着により溶融させて被覆させる、電磁波シールド用積層体4を用意する(図4参照)。電磁波シールド用積層体4の導電性接着剤層6が電子部品30側になるように電子部品30の天面上に電磁波シールド用積層体4を載置する。このとき、電磁波シールド用積層体4を電子部品30の一部または全面に仮貼付してもよい。仮貼付とは、電子部品30の少なくとも一部の上面と接触するように仮接合するものであり、導電性接着剤層6がBステージで被着体に固定されている状態をいう。剥離力としては、90°ピール試験で、カプトン200に対する剥離力が1~5N/cm程度が好ましい。仮貼りする手法として、電子部品30を搭載した基板20上に電磁波シールド用積層体4を載せ、アイロン等の熱源で軽く全面または端部を熱圧着して仮貼りする方法が例示できる。製造設備あるいは基板20のサイズ等に応じて、基板20の領域毎に複数の電磁波シールド用積層体4を用いてもよい。また、電子部品30毎に電磁波シールド用積層体4を用いてもよい。製造工程の簡略化の観点からは、基板20上に搭載された複数の電子部品30全体に1枚の電磁波シールド用積層体4を用いることが好ましい。
[B] Step of placing the electromagnetic wave shielding laminate on the substrate:
Next, the electromagnetic wave shielding laminate 4 is prepared in which the substrate 20 on which the electronic component 30 is mounted is melted by thermocompression bonding and coated (see FIG. 4 ). The electromagnetic wave shielding laminate 4 is placed on the top surface of the electronic component 30 so that the conductive adhesive layer 6 of the electromagnetic wave shielding laminate 4 is on the electronic component 30 side. At this time, the electromagnetic wave shielding laminate 4 may be temporarily attached to a part or the whole surface of the electronic component 30. The term “temporary attachment” refers to a state in which the conductive adhesive layer 6 is fixed to the adherend at the B stage, which is temporarily joined so as to come into contact with the upper surface of at least a part of the electronic component 30. As the peeling force, it is preferable that the peeling force with respect to Kapton 200 is about 1 to 5 N/cm in the 90° peel test. An example of the temporary attachment method is a method of placing the electromagnetic wave shielding laminate 4 on the substrate 20 on which the electronic component 30 is mounted, lightly thermocompressing the entire surface or the end portion with a heat source such as an iron, and temporarily attaching. A plurality of electromagnetic wave shielding laminates 4 may be used for each region of the substrate 20 depending on the manufacturing equipment or the size of the substrate 20. Further, the electromagnetic wave shielding laminate 4 may be used for each electronic component 30. From the viewpoint of simplifying the manufacturing process, it is preferable to use one electromagnetic wave shielding laminate 4 for the entire plurality of electronic components 30 mounted on the substrate 20.
[c]電磁波シールド部材を形成する工程:
 続いて、電子部品30が搭載された基板20上に電磁波シールド用積層体4を一対のプレス基板40間に挟持し、熱圧着する(図6参照)。電磁波シールド用積層体4は、導電性接着剤層6および離形性クッション部材3が熱により溶融され、押圧によって製造基板に設けられたハーフカット溝に沿うように延伸され、電子部品30および基板20に追従して被覆される。導電性接着剤層6が電子部品30や基板20と接合されると共に熱圧着により電磁波シールド層5として機能する。実施形態A1においては、電磁波シールド部材1は電磁波シールド層5の単層からなるので、導電性接着剤層6を熱圧着したものが電磁波シールド部材1たる電磁波シールド層5となる。熱圧着後に、熱硬化を促すこと等を目的として別途加熱処理を行うこともできる。
[C] Step of forming electromagnetic wave shield member:
Then, the electromagnetic wave shielding laminate 4 is sandwiched between the pair of press substrates 40 on the substrate 20 on which the electronic component 30 is mounted, and thermocompression bonded (see FIG. 6 ). In the electromagnetic wave shield laminate 4, the conductive adhesive layer 6 and the releasable cushion member 3 are melted by heat and stretched along the half-cut groove provided in the production substrate by pressing, and the electronic component 30 and the substrate are obtained. It is coated following 20. The conductive adhesive layer 6 is bonded to the electronic component 30 and the substrate 20 and also functions as the electromagnetic wave shield layer 5 by thermocompression bonding. In the embodiment A1, the electromagnetic wave shield member 1 is composed of a single layer of the electromagnetic wave shield layer 5, so that the electromagnetic wave shield member 1 is formed by thermocompression bonding the conductive adhesive layer 6. After the thermocompression bonding, a heat treatment may be separately performed for the purpose of promoting thermosetting.
 電磁波シールド用積層体4を加熱プレスする際に、この電磁波シールド用積層体4とプレス基板40との間に、必要に応じて、熱軟化性部材やクッション紙等を用いてもよい。 When heat-pressing the electromagnetic wave shielding laminate 4, a heat softening member, cushion paper or the like may be used between the electromagnetic wave shielding laminate 4 and the press substrate 40, if necessary.
 熱圧着工程の温度および圧力は、電子部品30の耐熱性、耐久性、製造設備あるいはニーズに応じて、導電性接着剤層6の被覆性が確保できる範囲においてそれぞれ独立に任意に設定できる。圧力範囲としては限定されないが、0.1~5.0MPa程度が好ましく、0.5~2.0MPaの範囲がより好ましい。プレス基板40をリリースすることにより図7に示すような製造基板が得られる。このようにして、電磁波シールド部材1により電子部品の天面および側面と基板の露出面とが被覆される。 The temperature and pressure in the thermocompression bonding process can be arbitrarily set independently within the range in which the coverage of the conductive adhesive layer 6 can be secured, depending on the heat resistance and durability of the electronic component 30, the manufacturing equipment or needs. The pressure range is not limited, but is preferably about 0.1 to 5.0 MPa, more preferably 0.5 to 2.0 MPa. By releasing the press substrate 40, a production substrate as shown in FIG. 7 is obtained. In this way, the electromagnetic shield member 1 covers the top and side surfaces of the electronic component and the exposed surface of the substrate.
 熱圧着工程の加熱温度は100℃以上であることが好ましく、より好ましくは110℃以上、さらに好ましくは120℃以上である。また、上限値としては、電子部品30の耐熱性に依存するが、220℃であることが好ましく、200℃であることがより好ましく、180℃であることがさらに好ましい。 The heating temperature in the thermocompression bonding step is preferably 100°C or higher, more preferably 110°C or higher, and further preferably 120°C or higher. Although the upper limit value depends on the heat resistance of the electronic component 30, it is preferably 220° C., more preferably 200° C., and further preferably 180° C.
 熱圧着時間は電子部品30の耐熱性、電磁波シールド部材1に用いるバインダー樹脂、および生産工程等に応じて設定できる。バインダー樹脂前駆体として熱硬化性樹脂を用いる場合には、1分~2時間程度の範囲が好適である。なお、熱圧着時間は1分~1時間程度がより好ましい。この熱圧着により熱硬化性樹脂は、硬化する。但し、熱硬化性樹脂は、流動が可能であれば熱圧着前に部分的に硬化あるいは実質的に硬化が完了していてもよい。 The thermocompression bonding time can be set according to the heat resistance of the electronic component 30, the binder resin used for the electromagnetic wave shield member 1, the production process, and the like. When a thermosetting resin is used as the binder resin precursor, the range of about 1 minute to 2 hours is suitable. The thermocompression bonding time is more preferably about 1 minute to 1 hour. The thermosetting resin is cured by this thermocompression bonding. However, the thermosetting resin may be partially or substantially completely cured before thermocompression bonding as long as it can flow.
 導電性接着剤層6の厚みは、電子部品30の天面および側面および基板20の露出面に被覆して、電磁波シールド層5を形成することが可能な厚みとする。用いるバインダー樹脂前駆体の流動性や、電子部品30間の距離およびサイズにより変動し得るが、通常、10~200μm程度が好ましい。これにより、封止樹脂への被覆性を良好にしつつ、電磁波シールド性を効果的に発揮することができる。 The thickness of the conductive adhesive layer 6 is such that the electromagnetic shield layer 5 can be formed by covering the top and side surfaces of the electronic component 30 and the exposed surface of the substrate 20. Although it may vary depending on the fluidity of the binder resin precursor used and the distance and size between the electronic components 30, it is usually preferably about 10 to 200 μm. This makes it possible to effectively exhibit the electromagnetic wave shielding property while improving the coverage with the sealing resin.
 離形性クッション部材3は、軟化して導電性接着剤層6の被覆を促し、電子部品30の天面および側面並びに基板20の露出面を被覆する機能を有すると共に、剥離工程において離形性に優れる材料を用いることができる。離形性クッション部材3の上層に、必要に応じて、クッション材として機能する熱軟化性部材を用いてもよい。電磁波シールド部材1の被覆により、実施形態A1の例においては、基板20内に形成されたグランドパターン22と電磁波シールド部材1とが電気的に接続される(図7参照)。 The releasable cushion member 3 has a function of softening to promote the coating of the conductive adhesive layer 6 to cover the top and side surfaces of the electronic component 30 and the exposed surface of the substrate 20, and the releasability in the peeling step. It is possible to use a material having excellent properties. As an upper layer of the releasable cushion member 3, a heat softening member that functions as a cushion material may be used, if necessary. In the example of Embodiment A1, the coating of the electromagnetic wave shield member 1 electrically connects the ground pattern 22 formed in the substrate 20 and the electromagnetic wave shield member 1 (see FIG. 7).
 導電性接着剤層6は、バインダー樹脂前駆体と導電性フィラーを含有する。バインダー樹脂前駆体としては、熱可塑性樹脂、自己架橋性樹脂、複数種の反応性樹脂および硬化性樹脂と架橋剤の混合物を例示できる。これらは組み合わせて用いてもよい。バインダー樹脂前駆体として専ら熱可塑性樹脂を用いる場合には、架橋構造を有していないという意味において、バインダー樹脂前駆体とバインダー樹脂が実質的に同じといえる。 The conductive adhesive layer 6 contains a binder resin precursor and a conductive filler. Examples of the binder resin precursor include a thermoplastic resin, a self-crosslinking resin, a plurality of types of reactive resins, and a mixture of a curable resin and a crosslinking agent. These may be used in combination. When a thermoplastic resin is exclusively used as the binder resin precursor, it can be said that the binder resin precursor and the binder resin are substantially the same in the sense that they do not have a crosslinked structure.
[d]離形性クッション部材を剥離する工程:
 電磁波シールド部材1の上層に被覆されている離形性クッション部材3を剥離する。これにより、電子部品30を被覆する電磁波シールド部材1を有する電子部品搭載基板51を得る(図1、図2参照)。例えば、離形性クッション部材3の剥離は端部から人力で剥がしてもよく、離形性クッション部材3の外面を吸引して電磁波シールド部材1から引き剥がしてもよい。自動化による歩留まり向上の観点から吸引による剥離が好ましい。
[D] Step of peeling the releasable cushion member:
The releasable cushion member 3 covering the upper layer of the electromagnetic wave shield member 1 is peeled off. As a result, an electronic component mounting board 51 having the electromagnetic wave shield member 1 that covers the electronic component 30 is obtained (see FIGS. 1 and 2). For example, the releasable cushion member 3 may be peeled off manually from the end portion, or the outer surface of the releasable cushion member 3 may be sucked and peeled off from the electromagnetic wave shield member 1. Peeling by suction is preferable from the viewpoint of improving the yield by automation.
[e]個片化する工程:
 ダイシングブレード等の切削工具を用いて、電子部品搭載基板51の個品の製品エリアに対応する位置でX方向およびY方向にダイシングする(図2参照)。これらの工程を経て、電子部品30が電磁波シールド部材1で被覆され、且つ基板20に形成されたグランドパターン22と電磁波シールド部材1が電気的に接続された、個片化された電子部品搭載基板51が得られる。ダイシングの方法は、個片化できればよく特に限定されない。ダイシングは基板20側若しくは電磁波シールド用積層体4側から行われる。
[E] Process of dividing into individual pieces:
Using a cutting tool such as a dicing blade, dicing is performed in the X direction and the Y direction at a position corresponding to the product area of the individual product of the electronic component mounting board 51 (see FIG. 2). Through these steps, the electronic component 30 is covered with the electromagnetic wave shield member 1, and the ground pattern 22 formed on the substrate 20 and the electromagnetic wave shield member 1 are electrically connected to each other. 51 is obtained. The dicing method is not particularly limited as long as it can be separated into individual pieces. Dicing is performed from the substrate 20 side or the electromagnetic wave shielding laminate 4 side.
 工程(d)における離形性クッション部材3の剥離は、基板面に対して、例えば90°の角度で剥離されるので、ハーフダイシング溝25における離形性クッション部材3とハーフダイシング溝25側面の電磁波シールド部材1の接触界面に大きな摩擦が生じる。このため、電磁波シールド部材1から離形性クッション部材3をきれいに剥離することが技術的に難しく、図20を用いて説明したように、離形性クッション部材3がハーフダイシング溝25に千切れて残渣が残る場合がある。この残渣は、個片化工程後にも位置によっては残存するので、信頼性低下を招来する。 The peeling of the releasable cushion member 3 in the step (d) is carried out at an angle of, for example, 90° with respect to the substrate surface, so that the releasable cushion member 3 in the half dicing groove 25 and the side surface of the half dicing groove 25 are separated. Large friction occurs at the contact interface of the electromagnetic wave shield member 1. Therefore, it is technically difficult to cleanly separate the releasable cushion member 3 from the electromagnetic wave shield member 1, and as described with reference to FIG. 20, the releasable cushion member 3 is broken into the half dicing grooves 25. Residues may remain. This residue remains at some positions even after the singulation process, which leads to a decrease in reliability.
 本実施形態A1によれば、電磁波シールド部材1のクルトシスを1~8とすることにより、電子部品搭載基板の電磁波シールド部材を形成する工程において、電子部品搭載基板に電磁波シールド用積層体を熱圧着した後に、電磁波シールド部材に対する離形性クッション部材の離形性を高められる。また、離形性クッション部材と共に電磁波シールド部材の一部が剥離されて、電磁波シールド部材の一部が損傷する現象を効果的に抑制できる。このため、信頼性の高い電子部品搭載基板を提供することができる。また、基板に搭載する電子部品の高さの設計自由度や、電子部品同士の間隙の幅の設計自由度を高めることが可能となる。 According to this embodiment A1, by setting the kurtosis of the electromagnetic wave shield member 1 to 1 to 8, in the process of forming the electromagnetic wave shield member of the electronic component mounting board, the electromagnetic wave shielding laminate is thermocompression bonded to the electronic component mounting board. After that, the releasability of the releasable cushion member with respect to the electromagnetic wave shield member can be enhanced. Further, it is possible to effectively suppress the phenomenon that a part of the electromagnetic wave shield member is peeled off together with the releasable cushion member and the part of the electromagnetic wave shield member is damaged. Therefore, it is possible to provide a highly reliable electronic component mounting board. Further, it is possible to increase the degree of freedom in designing the height of the electronic components mounted on the board and the degree of freedom in designing the width of the gap between the electronic components.
<電磁波シールド用積層体>
 実施形態A1の電磁波シールド用積層体は、図4において説明したように、電磁波シールド用部材2と離形性クッション部材3の2層からなる。実施形態A1においては、電磁波シールド用部材2は単層の導電性接着剤層6からなる。導電性接着剤層6は熱圧着工程を経て電子部品30や基板20と接合され、電磁波シールド層5として機能する。
<Laminate for electromagnetic wave shield>
The electromagnetic wave shielding laminate of the embodiment A1 is composed of two layers of the electromagnetic wave shielding member 2 and the releasable cushion member 3, as described in FIG. In the embodiment A1, the electromagnetic wave shielding member 2 is composed of the single-layer conductive adhesive layer 6. The conductive adhesive layer 6 is bonded to the electronic component 30 and the substrate 20 through a thermocompression bonding process and functions as the electromagnetic wave shield layer 5.
(導電性接着剤層)
 導電性接着剤層6は、バインダー樹脂前駆体と導電性フィラーとを含有する樹脂組成物から形成された層である。バインダー樹脂前駆体は、少なくとも熱軟化性樹脂を含む。熱軟化性樹脂は、熱可塑性樹脂、熱硬化性樹脂および活性光線硬化性樹脂が例示できる。熱硬化性樹脂および活性光線硬化性樹脂は、通常、反応性官能基を有する。熱硬化性樹脂を用いる場合は、硬化性化合物や熱硬化助剤を併用できる。また、活性光線硬化性樹脂を用いる場合は光重合開始剤、増感剤等を併用できる。製造工程の簡便性からは、熱圧着時に硬化する熱硬化タイプが好ましい。
 また、自己架橋性樹脂や互いに架橋する複数の樹脂を用いてもよい。また、これらの樹脂に加えて熱可塑性樹脂を混合させてもよい。樹脂および硬化性化合物等の配合成分は、それぞれ独立に単独または複数の併用とすることができる。
 なお、導電性接着剤層6の段階で架橋が一部形成されてBステージ(半硬化した状態)となっていてもよい。例えば、熱硬化性樹脂と硬化性化合物の一部が反応して半硬化した状態が含まれていてもよい。
(Conductive adhesive layer)
The conductive adhesive layer 6 is a layer formed from a resin composition containing a binder resin precursor and a conductive filler. The binder resin precursor contains at least a thermosoftening resin. Examples of the thermosoftening resin include a thermoplastic resin, a thermosetting resin and an actinic ray curable resin. The thermosetting resin and the actinic ray curable resin usually have a reactive functional group. When a thermosetting resin is used, a curable compound and a thermosetting auxiliary can be used together. When an actinic ray curable resin is used, a photopolymerization initiator, a sensitizer and the like can be used in combination. A thermosetting type that cures at the time of thermocompression bonding is preferable from the viewpoint of simplicity of the manufacturing process.
Alternatively, a self-crosslinking resin or a plurality of resins that crosslink each other may be used. In addition to these resins, a thermoplastic resin may be mixed. The components such as the resin and the curable compound may be used alone or in combination of two or more.
Incidentally, a part of the crosslinks may be formed at the stage of the conductive adhesive layer 6 to be in the B stage (semi-cured state). For example, a state in which the thermosetting resin and a part of the curable compound are reacted and semi-cured may be included.
 熱軟化性樹脂の好適な例は、ポリウレタン樹脂、ポリカーボネート樹脂、スチレンエラストマー樹脂、フェノキシ樹脂、ポリウレタンウレア樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカーボネートイミド樹脂、ポリアミドイミド樹脂、エポキシ系樹脂、エポキシエステル系樹脂、アクリル系樹脂、ポリエステル樹脂、ポリスチレン、ポリエステルアミド樹脂およびポリエーテルエステル樹脂が挙げられる。リフロー時における過酷な条件で使用する場合の熱硬化性樹脂としては、エポキシ系樹脂、エポキシエステル系樹脂、ウレタン系樹脂、ウレタンウレア系樹脂、およびポリアミドのうちの少なくとも1つを含んでいることが好ましい。 Suitable examples of the heat softening resin, polyurethane resin, polycarbonate resin, styrene elastomer resin, phenoxy resin, polyurethane urea resin, polyimide resin, polyamide resin, polycarbonate imide resin, polyamide imide resin, epoxy resin, epoxy ester resin, Acrylic resins, polyester resins, polystyrene, polyesteramide resins and polyetherester resins can be mentioned. The thermosetting resin when used under severe conditions during reflow contains at least one of an epoxy resin, an epoxy ester resin, a urethane resin, a urethane urea resin, and a polyamide. preferable.
 これらの中でも、ポリウレタン樹脂、ポリカーボネート樹脂、スチレンエラストマー樹脂、フェノキシ樹脂、ポリアミド樹脂、ポリイミド樹脂が好ましい。また、樹脂中に一般式(1)で表されるポリカーボネート骨格を有する樹脂が好ましい。
-R-O-CO-O-  ・・・一般式(1)
 式中、Rは2価の有機基である。
熱軟化性樹脂は、1種単独または任意の比率で2種以上を混合して用いることができる。
Among these, polyurethane resin, polycarbonate resin, styrene elastomer resin, phenoxy resin, polyamide resin, and polyimide resin are preferable. Further, a resin having a polycarbonate skeleton represented by the general formula (1) in the resin is preferable.
-RO-CO-O-... General formula (1)
In the formula, R is a divalent organic group.
The thermosoftening resin may be used alone or in combination of two or more at an arbitrary ratio.
 ポリカーボネート骨格を有する樹脂としては、ポリカーボネート樹脂の他、ポリカーボネート骨格を有するポリウレタン樹脂、ポリアミド樹脂およびポリイミド樹脂が例示できる。例えば、ポリカーボネートイミド樹脂によれば、ポリイミド骨格を有することにより、耐熱性、絶縁性および耐薬品性を高めることができる。一方、ポリカーボネート骨格を有することにより、柔軟性、密着性を効果的に高めることができる 。 Examples of the resin having a polycarbonate skeleton include a polycarbonate resin, a polyurethane resin having a polycarbonate skeleton, a polyamide resin, and a polyimide resin. For example, according to the polycarbonate imide resin, having a polyimide skeleton makes it possible to enhance heat resistance, insulation and chemical resistance. On the other hand, by having a polycarbonate skeleton, flexibility and adhesion can be effectively enhanced.
 ポリカーボネートウレタン樹脂としては、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,4-シクロヘキサンジメタノール、1,9-ノナンジオール、又は2-メチル-1,8-オクタンジオール等のジオール1種又は2種以上とをベースにしたポリカーボネートポリオールをポリオール成分として用いることができる。 Examples of the polycarbonate urethane resin include 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanedimethanol, 1,9-nonanediol, and 2-methyl-1,8-octanediol. Polycarbonate polyols based on one or more diols such as the above can be used as the polyol component.
 上記熱軟化性樹脂は、熱硬化性樹脂として、加熱による架橋反応に利用できる官能基を複数有していてもよい。官能基は、例えば、水酸基、フェノール性水酸基、カルボキシル基、アミノ基、エポキシ基、オキセタニル基、オキサゾリン基、オキサジン基、アジリジン基、チオール基、イソシアネート基、ブロック化イソシアネート基、シラノール基等が挙げられる。 As the thermosetting resin, the thermosoftening resin may have a plurality of functional groups that can be used for a crosslinking reaction by heating. Functional groups include, for example, hydroxyl group, phenolic hydroxyl group, carboxyl group, amino group, epoxy group, oxetanyl group, oxazoline group, oxazine group, aziridine group, thiol group, isocyanate group, blocked isocyanate group, silanol group and the like. ..
 硬化性化合物は、熱硬化性樹脂の反応性官能基と架橋可能な官能基を有している。硬化性化合物は、エポキシ化合物、酸無水物基含有化合物、イソシアネート化合物、ポリカルボジイミド化合物、アジリジン化合物、ジシアンジアミド化合物、芳香族ジアミン化合物等のアミン化合物、フェノールノボラック樹脂等のフェノール化合物、有機金属化合物等が好ましい。硬化性化合物は、樹脂であってもよい。この場合、熱硬化性樹脂と硬化性化合物の区別は、含有量の多い方を熱硬化性樹脂とし、含有量の少ない方を硬化性化合物として区別する。 The curable compound has a functional group capable of crosslinking with the reactive functional group of the thermosetting resin. Curable compounds include epoxy compounds, acid anhydride group-containing compounds, isocyanate compounds, polycarbodiimide compounds, aziridine compounds, dicyandiamide compounds, amine compounds such as aromatic diamine compounds, phenol compounds such as phenol novolac resins, and organometallic compounds. preferable. The curable compound may be a resin. In this case, in order to distinguish between the thermosetting resin and the curable compound, one having a larger content is a thermosetting resin and one having a smaller content is a curable compound.
 硬化性化合物は、熱硬化性樹脂100質量部に対して1~70質量部含むことが好ましく、3~65質量部がより好ましく、3~60質量部が更に好ましい。硬化性化合物は、1種単独でまたは複数種を併用して用いることができる。 The curable compound is preferably contained in an amount of 1 to 70 parts by mass, more preferably 3 to 65 parts by mass, still more preferably 3 to 60 parts by mass, based on 100 parts by mass of the thermosetting resin. The curable compound may be used alone or in combination of two or more.
 熱可塑性樹脂の好適な例は、ポリエステル、アクリル系樹脂、ポリエーテル、ウレタン系樹脂、スチレンエラストマー、ポリカーボネート、ブタジエンゴム、ポリアミド、エステルアミド系樹脂、ポリイソプレン、およびセルロースが例示できる。粘着付与樹脂としては、ロジン系樹脂、テルペン系樹脂、脂環式系石油樹脂、および芳香族系石油樹脂等が例示できる。また、導電性ポリマーを用いることができる。導電性ポリマーとしては、ポリエチレンジオキシチオフェン、ポリアセチレン、ポリピロール、ポリチオフェン、ポリアニリンが例示できる。熱可塑性樹脂の好適な例は、ポリエステル、アクリル系樹脂、ポリエーテル、ウレタン系樹脂、スチレンエラストマー、ポリカーボネート、ブタジエンゴム、ポリアミド、エステルアミド系樹脂、ポリイソプレン、およびセルロースが例示できる。 Suitable examples of the thermoplastic resin include polyester, acrylic resin, polyether, urethane resin, styrene elastomer, polycarbonate, butadiene rubber, polyamide, ester amide resin, polyisoprene, and cellulose. Examples of the tackifying resin include rosin-based resins, terpene-based resins, alicyclic petroleum resins, and aromatic petroleum resins. Moreover, a conductive polymer can be used. Examples of the conductive polymer include polyethylenedioxythiophene, polyacetylene, polypyrrole, polythiophene, and polyaniline. Preferable examples of the thermoplastic resin include polyester, acrylic resin, polyether, urethane resin, styrene elastomer, polycarbonate, butadiene rubber, polyamide, ester amide resin, polyisoprene, and cellulose.
 導電性フィラーは、金属フィラー、導電性セラミックス粒子およびそれらの混合物が例示できる。金属フィラーは、金、銀、銅、ニッケル等の金属粉、ハンダ等の合金粉、銀コート銅粉、金コート銅粉、銀コートニッケル粉、金コートニッケル粉のコアシェル型粒子が例示できる。優れた導電特性を得る観点から、銀を含有する導電性フィラーが好ましい。コストの観点からは、銅粉を銀で被覆した銀コート銅粉が特に好ましい。 Examples of the conductive filler include metal filler, conductive ceramic particles, and a mixture thereof. Examples of the metal filler include metal powders of gold, silver, copper, nickel and the like, alloy powders of solder and the like, silver-coated copper powder, gold-coated copper powder, silver-coated nickel powder, and core-shell type particles of gold-coated nickel powder. From the viewpoint of obtaining excellent conductive properties, a conductive filler containing silver is preferable. From the viewpoint of cost, silver-coated copper powder obtained by coating copper powder with silver is particularly preferable.
 銀コート銅における銀の含有量は、銀および銅の合計100質量%中、3~20質量%が好ましく、より好ましくは8~17質量%であり、更に好ましくは10~15質量%である。コアシェル型粒子の場合、コア部に対するコート層の被覆率は、平均で60%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましい。コア部は非金属でもよいが、導電性の観点からは導電性物質が好ましく、金属粒子がより好ましい。 The silver content in the silver-coated copper is preferably 3 to 20% by mass, more preferably 8 to 17% by mass, and further preferably 10 to 15% by mass, based on the total 100% by mass of silver and copper. In the case of core-shell type particles, the coverage of the coating layer on the core part is preferably 60% or more on average, more preferably 70% or more, and further preferably 80% or more. The core part may be non-metal, but from the viewpoint of conductivity, a conductive substance is preferable, and metal particles are more preferable.
 導電性フィラーとして、電磁波吸収フィラーを用いてもよい。例えば、鉄、Fe-Ni合金、Fe-Co合金、Fe-Cr合金、Fe-Si合金、Fe-Al合金、Fe-Cr-Si合金、Fe-Cr-Al合金、Fe-Si-Al合金等の鉄合金、Mg-Znフェライト、Mn-Znフェライト、Mn-Mgフェライト、Cu-Znフェライト、Mg-Mn-Srフェライト、Ni-Znフェライト等のフェライト系物質並びに、カーボンフィラーなどが挙げられる。カーボンフィラーは、アセチレンブラック、ケッチェンブラック、ファーネスブラック、カーボンブラック、カーボンファイバー、カーボンナノナノチューブからなる粒子、グラフェン粒子、グラファイト粒子およびカーボンナノウォールが例示できる。 An electromagnetic wave absorbing filler may be used as the conductive filler. For example, iron, Fe-Ni alloy, Fe-Co alloy, Fe-Cr alloy, Fe-Si alloy, Fe-Al alloy, Fe-Cr-Si alloy, Fe-Cr-Al alloy, Fe-Si-Al alloy, etc. Examples thereof include iron alloys, Mg-Zn ferrite, Mn-Zn ferrite, Mn-Mg ferrite, Cu-Zn ferrite, Mg-Mn-Sr ferrite, Ni-Zn ferrite, and other ferrite-based materials, and carbon filler. Examples of the carbon filler include acetylene black, Ketjen black, furnace black, carbon black, carbon fiber, particles composed of carbon nano-nanotubes, graphene particles, graphite particles and carbon nanowalls.
 導電性接着剤層に用いる導電性フィラーの形状は、鱗片状粒子、デンドライト(樹枝)状粒子、針状粒子、プレート状粒子、ブドウ状粒子、繊維状粒子、球状粒子が例示できるが、所望のクルトシスの数値を調整する観点からは、針状粒子または/およびデンドライト状粒子の導電性フィラーを含有させることが好ましい。ここで、針状とは長径が短径の3倍以上のものをいい、いわゆる針形状の他、紡錘形状、円柱形状等も含む。また、デンドライト状とは、電子顕微鏡(500~20、000倍)で観察した際に、棒状の主軸から複数の分岐枝が2次元的または3次元的に延在した形状をいう。デンドライト状には、前記分岐枝が折れ曲がったり、分岐枝から更に分岐枝が延在していてもよい。 The shape of the conductive filler used in the conductive adhesive layer can be exemplified by scale particles, dendrite (dendritic) particles, needle particles, plate particles, grape particles, fibrous particles, and spherical particles, From the viewpoint of adjusting the numerical value of the kurtosis, it is preferable to include a conductive filler of needle-shaped particles and/or dendrite-shaped particles. Here, the acicular shape means that the major axis is three times or more the minor axis, and includes a so-called needle shape, a spindle shape, a columnar shape and the like. The dendrite shape means a shape in which a plurality of branched branches extend two-dimensionally or three-dimensionally from a rod-shaped main axis when observed with an electron microscope (500 to 20,000 times). In the dendrite shape, the branched branch may be bent, or the branched branch may further extend from the branched branch.
 また、導電性フィラーとして鱗片状粒子を含有させることで、被覆性に優れた電磁波シールド部材を提供することができる。ここで鱗片状とは、薄片状、板状も含む。導電性フィラーは粒子全体として鱗片状であればよく、楕円状、円状または微粒子の周囲に切れ込み等が存在してもよい。 Further, by containing the scale-like particles as the conductive filler, it is possible to provide an electromagnetic wave shield member having excellent coverage. Here, the scaly shape includes a thin shape and a plate shape. The conductive filler may have a scaly shape as a whole particle, and may have an elliptical shape, a circular shape, or cuts around the fine particles.
 導電性フィラーは、単独または混合して用いられる。導電性フィラーを併用する場合、所望のクルトシスを得て、信頼性の高い電磁波シールド部材を提供擦る観点から、鱗片状粒子およびデンドライト状粒子の組み合わせ、鱗片状粒子および針状粒子の組み合わせ、鱗片状粒子、デンドライト状粒子および針状粒子の組み合わせが好適である。特に好ましくは、鱗片状粒子と針状粒子の組み合わせである。 The conductive fillers may be used alone or as a mixture. When used in combination with a conductive filler, from the viewpoint of obtaining a desired kurtosis and providing a highly reliable electromagnetic wave shielding member, a combination of scale-like particles and dendrite-like particles, a combination of scale-like particles and acicular particles, and scale-like particles A combination of particles, dendrite-like particles and acicular particles is preferred. Particularly preferred is a combination of scale-like particles and acicular particles.
 導電性フィラーの含有量は、熱軟化性樹脂組成物層の固形分(100質量%)中、40~85質量%であることが好ましく、50~80質量%がより好ましい。 The content of the conductive filler is preferably 40 to 85% by mass, and more preferably 50 to 80% by mass in the solid content (100% by mass) of the thermosoftening resin composition layer.
 導電性接着剤層中の導電性フィラー100質量%に対して、針状粒子または/およびデンドライト状粒子を50質量%以下とすることが好ましい。より好ましくは0.5~40質量%、更に好ましくは2~27質量%である。50質量%以下とすることで、離形性クッション部材の剥離性を高め、更に、耐擦傷性を効果的に高めることができる。 It is preferable that the amount of needle-shaped particles and/or dendrite-shaped particles is 50% by mass or less based on 100% by mass of the conductive filler in the conductive adhesive layer. The amount is more preferably 0.5 to 40% by mass, and further preferably 2 to 27% by mass. When the content is 50% by mass or less, the releasability of the releasable cushion member can be enhanced, and the scratch resistance can be effectively enhanced.
 針状粒子の平均粒子径D50は2~100μmが好ましく、2~80μmがより好ましい。更に好ましくは3~50μmであり、特に好ましくは5~20μmである。デンドライト状粒子の平均粒子径D50の好ましい範囲も同様に、2~100μmが好ましく、2~80μmがより好ましい。更に好ましくは3~50μmであり、特に好ましくは5~20μmである。鱗片状粒子の平均粒子径D50は2~100μmが好ましく、2~80μmがより好ましい。更に好ましくは3~50μmであり、特に好ましくは5~20μmである。 The average particle diameter D50 of the acicular particles is preferably 2 to 100 μm, more preferably 2 to 80 μm. The thickness is more preferably 3 to 50 μm, and particularly preferably 5 to 20 μm. Similarly, the preferable range of the average particle diameter D50 of the dendrite-shaped particles is preferably 2 to 100 μm, more preferably 2 to 80 μm. The thickness is more preferably 3 to 50 μm, and particularly preferably 5 to 20 μm. The average particle diameter D50 of the scaly particles is preferably 2 to 100 μm, more preferably 2 to 80 μm. The thickness is more preferably 3 to 50 μm, and particularly preferably 5 to 20 μm.
 平均粒子径D50は、レーザー回折・散乱法により測定できる。具体的には、例えば、レーザー回折・散乱法粒度分布測定装置LS 13320(ベックマン・コールター社製)を使用し、トルネードドライパウダーサンプルモジュールにて、各導電性微粒子を測定して得た数値であり、粒子の積算値が50%である粒度の直径の平均粒径である。なお、屈折率の設定は1.6として測定する。電磁波シールド部材1中の各粒子の平均粒子径D50は、走査型電子顕微鏡(SEM)を用いて100個の粒径を測定し、度数分布を求めることができる。針状粒子およびデンドライト状粒子の場合、粒径は各粒子の最長の長さを用いる。 The average particle diameter D50 can be measured by a laser diffraction/scattering method. Specifically, it is a numerical value obtained by measuring each conductive fine particle with a tornado dry powder sample module using a laser diffraction/scattering particle size distribution measuring device LS 13320 (manufactured by Beckman Coulter, Inc.). The average particle diameter is the diameter of the particle diameter for which the integrated value of the particles is 50%. The refractive index is set to 1.6 for measurement. The average particle diameter D50 of each particle in the electromagnetic wave shield member 1 can be obtained by measuring the particle size of 100 particles using a scanning electron microscope (SEM) and determining the frequency distribution. In the case of needle-shaped particles and dendrite-shaped particles, the longest length of each particle is used as the particle size.
 デンドライト状粒子および/または針状粒子と、鱗片状粒子を併用することによって、導電性フィラー同士の接触点を多くし、シールド特性を向上させることができる。また、デンドライト状粒子および/または針状粒子の併用によって、バインダー成分との接触面積を増加させ、クルトシスの値を調整しやすくし、更に、耐擦傷性を高めることができる。従って、信頼性の高い電磁波シールド部材を提供できる。 By using dendrite-shaped particles and/or needle-shaped particles in combination with scale-shaped particles, it is possible to increase the number of contact points between the conductive fillers and improve the shielding property. In addition, the combined use of dendrite particles and/or acicular particles can increase the contact area with the binder component, facilitate adjustment of the kurtosis value, and further enhance scratch resistance. Therefore, a highly reliable electromagnetic wave shield member can be provided.
 導電性接着剤層を構成する組成物には、さらに着色剤、難燃剤、無機添加剤、滑剤、ブロッキング防止剤等を含んでいてもよい。
 着色剤としては、例えば、有機顔料、カーボンブラック、群青、弁柄、亜鉛華、酸化チタン、黒鉛等が挙げられる。この中でも黒色系の着色剤を含むことでシールド層の印字視認性が向上する。
 難燃剤としては、例えば、ハロゲン含有難燃剤、りん含有難燃剤、窒素含有難燃剤、無機難燃剤等が挙げられる。
 無機添加剤としては、例えば、ガラス繊維、シリカ、タルク、セラミック等が挙げられる。
 滑剤としては、例えば、脂肪酸エステル、炭化水素樹脂、パラフィン、高級脂肪酸、脂肪酸アミド、脂肪族アルコール、金属石鹸、変性シリコーン等が挙げられる。
 ブロッキング防止剤としては、例えば、炭酸カルシウム、シリカ、ポリメチルシルセスキオサン、ケイ酸アルミニウム塩等が挙げられる。
The composition forming the conductive adhesive layer may further contain a colorant, a flame retardant, an inorganic additive, a lubricant, an antiblocking agent and the like.
Examples of the colorant include organic pigments, carbon black, ultramarine blue, red iron oxide, zinc white, titanium oxide, graphite and the like. Among these, the inclusion of the black colorant improves the print visibility of the shield layer.
Examples of the flame retardant include halogen-containing flame retardants, phosphorus-containing flame retardants, nitrogen-containing flame retardants, inorganic flame retardants, and the like.
Examples of the inorganic additive include glass fiber, silica, talc, ceramics and the like.
Examples of the lubricant include fatty acid ester, hydrocarbon resin, paraffin, higher fatty acid, fatty acid amide, aliphatic alcohol, metal soap, modified silicone and the like.
Examples of the antiblocking agent include calcium carbonate, silica, polymethylsilsesquiosane, aluminum silicate and the like.
 導電性接着剤層は、熱圧着により導電性フィラーが連続的に接触して導電性を有する層であればよく、熱圧着前の段階で必ずしも導電性を有していなくてもよい。導電性接着剤層は、上述した導電性フィラーと、バインダー樹脂前駆体を含有する組成物を混合攪拌し、離形性基材上に塗工後乾燥することで形成することができる。また離形性クッション部材3に直接塗工し乾燥する方法でも形成することができる。 The conductive adhesive layer may be a layer having conductivity due to continuous contact of the conductive filler by thermocompression bonding, and does not necessarily have conductivity at the stage before thermocompression bonding. The conductive adhesive layer can be formed by mixing and stirring the above-described conductive filler and a composition containing a binder resin precursor, coating the composition on a releasable substrate, and then drying. Alternatively, the releasable cushion member 3 may be directly applied and dried.
 導電性接着剤層の塗液を塗工後、乾燥して離形性基材上に導電性接着剤層を形成する。乾燥工程は、加熱(例えば、80~120℃)を行うことが好ましい。電磁波シールド部材のクルトシスを調整するために、塗液を塗工後、加熱乾燥前に25℃(室温)・常圧で乾燥を1~10分行うことが好ましい。より好ましい加熱乾燥前の25℃(室温)での乾燥時間は2~6分である。加熱乾燥前に室温で乾燥するプロセスを設けることにより、クルトシスの値を調整することができる。 After applying the coating liquid for the conductive adhesive layer, it is dried to form the conductive adhesive layer on the releasable substrate. The drying step is preferably performed by heating (for example, 80 to 120° C.). In order to adjust the kurtosis of the electromagnetic wave shield member, it is preferable to perform drying at 25° C. (room temperature) and normal pressure for 1 to 10 minutes after applying the coating liquid and before heating and drying. More preferable drying time at 25° C. (room temperature) before heat drying is 2 to 6 minutes. The kurtosis value can be adjusted by providing a process of drying at room temperature before heat drying.
 塗液の粘度と加熱乾燥前の25℃での乾燥時間が電磁波シールド部材1のクルトシスに与える影響について、図9の模式図を用いて説明する。同図に示すように、離形性基材15上に導電性接着剤層6を形成するために塗液を塗布する。溶剤が含まれている乾燥途上の導電性接着剤層6Pが得られる。 The influence of the viscosity of the coating liquid and the drying time at 25° C. before heating and drying on the kurtosis of the electromagnetic wave shield member 1 will be described with reference to the schematic diagram of FIG. 9. As shown in the figure, a coating liquid is applied to form the conductive adhesive layer 6 on the releasable base material 15. A conductive adhesive layer 6P that is in the process of drying and contains a solvent is obtained.
 加熱途上の導電性接着剤層6Pに対し、25℃での乾燥時間を長く設定することにより、図9に示すように、溶剤の蒸発速度が遅い状態を意図的に長くし、それによってバインダー樹脂前駆体10の下方への沈み込みを促すことができる。一方、25℃での乾燥時間を短く設定することにより、図9に示すようにバインダー樹脂前駆体10の下方への沈み込みを抑え、その段階で加熱乾燥することによって導電性フィラー11が立ち上がり易くなる。また、溶剤の蒸発に伴う発泡が生じやすくなり、表面が荒れる傾向となる。 By setting a long drying time at 25° C. for the conductive adhesive layer 6P in the process of heating, as shown in FIG. 9, the state in which the evaporation rate of the solvent is slow is intentionally lengthened, thereby making the binder resin The subduction of the precursor 10 can be promoted. On the other hand, by setting the drying time at 25° C. short, the sinking of the binder resin precursor 10 to the lower side is suppressed as shown in FIG. 9, and the conductive filler 11 easily rises by heating and drying at that stage. Become. Moreover, foaming easily occurs due to evaporation of the solvent, and the surface tends to be rough.
 前記塗液の固形分は、電磁波シールド部材1のクルトシスの値を1~8とするために20~50%とすることが好ましい。また、電磁波シールド部材のクルトシスを調整するために、前記塗液のB型粘度計で測定した塗液粘度を200~5000mPa・sの範囲とすることが好ましい。更に、電磁波シールド部材のクルトシスを調整するために、前記塗液のチキソトロピーインデックスを1.2~2.0とすることが好ましい。なお、図9および後述する図10の導電性フィラー11は鱗片状粒子であり、図は主面に対する平面視ではなく、厚み方向の切断部断面図を示している。 The solid content of the coating liquid is preferably 20 to 50% in order to set the kurtosis value of the electromagnetic wave shield member 1 to 1 to 8. Further, in order to adjust the kurtosis of the electromagnetic wave shield member, it is preferable that the viscosity of the coating liquid measured with a B-type viscometer is in the range of 200 to 5000 mPa·s. Further, in order to adjust the kurtosis of the electromagnetic wave shield member, the thixotropy index of the coating liquid is preferably 1.2 to 2.0. In addition, the conductive filler 11 of FIG. 9 and FIG. 10 which will be described later is a scaly particle, and the figure is not a plan view of the main surface but shows a cross-sectional view taken along the thickness direction.
 クルトシスの値は、導電性接着剤層を形成するための塗液の粘度によっても変わる。塗液の粘度が高い方が導電性フィラーの流動性が抑えられる傾向にある。このため、粘度が高い場合、導電性フィラー11は配向せずランダムとなる傾向がある。一方、粘度が低い場合、鱗片状粒子は基板面に対して、主面が凡そ対向するように配向する傾向がある。また、25℃での乾燥時間を短くして加熱乾燥を行うと、粘度が高いと発泡による表面荒れが大きくなる傾向にあり、粘度が低いと導電性フィラーが縦方向に移動しやすい傾向となる。
 このように、塗液の粘度および25℃での乾燥時間を調整することにより、クルトシスを調整することができる。
The value of kurtosis also changes depending on the viscosity of the coating liquid for forming the conductive adhesive layer. The higher the viscosity of the coating liquid, the more the fluidity of the conductive filler tends to be suppressed. Therefore, when the viscosity is high, the conductive fillers 11 tend not to be oriented and become random. On the other hand, when the viscosity is low, the scale-like particles tend to be oriented so that the main surface faces the substrate surface. Further, when the drying time at 25° C. is shortened to perform heat drying, when the viscosity is high, the surface roughness due to foaming tends to increase, and when the viscosity is low, the conductive filler tends to move in the vertical direction. ..
In this way, the kurtosis can be adjusted by adjusting the viscosity of the coating liquid and the drying time at 25°C.
 また、電磁波シールド部材1のクルトシスは、デンドライト状粒子および/または針状粒子の粒子径によっても調整することができる。デンドライト状粒子または/および針状粒子の粒子径が電磁波シールド部材1のクルトシスに与える影響について、図10の模式的説明図を用いて説明する。図9と同様に、離形性基材15上に導電性接着剤層6を形成するために塗液を塗布することにより、乾燥途上の導電性接着剤層6Pが得られる。図10において、図9と共通する部材や成分は同一の符号を付す。図10に示すように、導電性フィラーの一種であるデンドライト状粒子12の平均粒子径D50が小さいとクルトシスの値が低下する傾向にあり、逆に、デンドライト状粒子12の平均粒子径D50が大きいとクルトシスの値が大きくなる傾向にある。導電性接着剤層6の厚みによるが、クルトシスの値を小さくしたい場合には、例えば平均粒子径D50を2~5μm、クルトシスの値を大きくしたい場合には、例えば、平均粒子径D50を20~50μm、これらの中間値に設定したい場合には、平均粒子径D50を5μm越え、20μm未満に設定することができる。 The kurtosis of the electromagnetic wave shield member 1 can also be adjusted by the particle size of dendrite-shaped particles and/or needle-shaped particles. The effect of the particle size of the dendrite-shaped particles and/or the acicular particles on the kurtosis of the electromagnetic wave shield member 1 will be described with reference to the schematic explanatory view of FIG. 10. Similar to FIG. 9, by applying a coating liquid to form the conductive adhesive layer 6 on the releasable substrate 15, the conductive adhesive layer 6P in the process of being dried can be obtained. In FIG. 10, members and components common to FIG. 9 are given the same reference numerals. As shown in FIG. 10, when the average particle diameter D50 of the dendrite-like particles 12 which is a kind of conductive filler is small, the value of the kurtosis tends to decrease, and conversely, the average particle diameter D50 of the dendrite-like particles 12 is large. And the value of Kurtosis tends to increase. Depending on the thickness of the electrically conductive adhesive layer 6, when it is desired to reduce the value of kurtosis, for example, the average particle diameter D50 is 2 to 5 μm, and when it is desired to increase the value of the kurtosis, for example, the average particle diameter D50 is 20 to When it is desired to set 50 μm to an intermediate value between them, the average particle diameter D50 can be set to be more than 5 μm and less than 20 μm.
 また、電磁波シールド部材1のクルトシスを調整するために、電磁波シールド用部材2の最表層である導電性接着剤層6を形成するための導電性接着剤組成物を塗工・乾燥した後に、コロナ処理やプラズマ処理を行うことが好ましい。コロナ処理は、コロナ放電電子の照射量が1~1,000W/m/minであることが好ましく、10~100W/m/minとすることがより好ましい。 Further, in order to adjust the kurtosis of the electromagnetic wave shield member 1, after coating and drying a conductive adhesive composition for forming the conductive adhesive layer 6 which is the outermost layer of the electromagnetic wave shield member 2, the corona is applied. It is preferable to perform treatment or plasma treatment. In the corona treatment, the irradiation amount of corona discharge electrons is preferably 1 to 1,000 W/m 2 /min, more preferably 10 to 100 W/m 2 /min.
 電磁波シールド部材1のクルトシスは、熱圧着前の電磁波シールド用部材2を形成する組成物において針状またはデンドライト状の導電性フィラーの添加量を多くすることによりその数値を調整することができる。また、電磁波シールド部材1のクルトシスは、導電性フィラーの平均粒子径D50およびD90によっても調整することができる。 The kurtosis of the electromagnetic wave shield member 1 can be adjusted by increasing the amount of needle-like or dendrite-like conductive filler added to the composition forming the electromagnetic wave shield member 2 before thermocompression bonding. The kurtosis of the electromagnetic wave shield member 1 can also be adjusted by the average particle diameters D50 and D90 of the conductive filler.
 実施形態A1においては、電磁波シールド用部材2は導電性接着剤層6の単層からなるので、この導電性接着剤層6上に離形性クッション部材3を積層する。積層方法はラミネートによる方法等がある。 In the embodiment A1, since the electromagnetic wave shielding member 2 is composed of a single layer of the conductive adhesive layer 6, the releasable cushion member 3 is laminated on the conductive adhesive layer 6. The laminating method includes a laminating method.
 離形性基材は、片面あるいは両面が離形性のある基材であり、150℃における引張破断歪が50%未満のシートである。離形性基材は例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリフッ化ビニル、ポリフッ化ビニリデン、硬質ポリ塩化ビニル、ポリ塩化ビニリデン、ナイロン、ポリイミド、ポリスチレン、ポリビニルアルコール、エチレン・ビニルアルコール共重合体、ポリカーボネート、ポリアクリロニトリル、ポリブテン、軟質ポリ塩化ビニル、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、ポリウレタン樹脂、エチレン酢酸ビニル共重合体、ポリ酢酸ビニル等のプラスチックシート等、グラシン紙、上質紙、クラフト紙、コート紙等の紙類、各種の不織布、合成紙、金属箔や、これらを組み合わせた複合フィルムなどが挙げられる。 The releasable base material is a base material having releasability on one or both sides, and is a sheet having a tensile breaking strain of less than 50% at 150°C. Examples of the releasable substrate include polyethylene terephthalate, polyethylene naphthalate, polyvinyl fluoride, polyvinylidene fluoride, rigid polyvinyl chloride, polyvinylidene chloride, nylon, polyimide, polystyrene, polyvinyl alcohol, ethylene/vinyl alcohol copolymer, and polycarbonate. , Polyacrylonitrile, polybutene, soft polyvinyl chloride, polyvinylidene fluoride, polyethylene, polypropylene, polyurethane resin, ethylene vinyl acetate copolymer, plastic sheets such as polyvinyl acetate, glassine paper, fine paper, kraft paper, coated paper, etc. Papers, various non-woven fabrics, synthetic papers, metal foils, and composite films obtained by combining these.
(離形性クッション部材)
 離形性クッション部材は、導電性接着剤層の電子部品への追従性を促すクッション材として機能し、且つ離形性があるシートである。つまり、熱圧着工程後に電磁波シールド部材1から剥離可能な層である。また、150℃における引張破断歪が50%以上で、熱圧着時に溶融する層であることが好ましい。
(Releasable cushion member)
The releasable cushion member is a sheet that functions as a cushioning material that promotes the followability of the conductive adhesive layer to the electronic component and has releasability. That is, it is a layer that can be separated from the electromagnetic wave shield member 1 after the thermocompression bonding process. Further, it is preferable that the layer has a tensile breaking strain at 150° C. of 50% or more and melts during thermocompression bonding.
 なお、離形性基材および離形性クッション部材3の引張破断歪は以下の方法によって求めた値である。離形性基材および離形性クッション部材を幅200mm×長さ600mmの大きさに切断し測定試料とした。測定試料について小型卓上試験機EZ-TEST(島津製作所社製)を用いて、温度25℃、相対湿度50%の条件下で引っ張り試験(試験速度50mm/min)を実施した。得られたS-S曲線(Stress-Strain曲線)から引張破断歪(%)を算出した。 Note that the tensile breaking strains of the releasable base material and the releasable cushion member 3 are values obtained by the following method. The releasable base material and the releasable cushion member were cut into a size of width 200 mm×length 600 mm to obtain a measurement sample. A tensile test (test speed 50 mm/min) was performed on the measurement sample using a small bench tester EZ-TEST (manufactured by Shimadzu Corporation) under the conditions of a temperature of 25° C. and a relative humidity of 50%. The tensile breaking strain (%) was calculated from the obtained SS curve (Stress-Strain curve).
 離形性クッション部材3としては、ポリエチレン、ポリプロピレン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリスチレン、ポリメチルペンテン、ポリブチレンテレフタレート、環状オレフィンポリマー、シリコーンが好ましい。この中でも埋め込み性と剥離性を両立する観点から、ポリプロピレン、ポリメチルペンテン、ポリブチレンテレフタレート、シリコーンがさらに好ましい。離形性クッション部材は、単層で用いても複層で用いてもよい。複層とする場合、同一または異なる種類のシートを積層できる。 As the releasable cushion member 3, polyethylene, polypropylene, polyether sulfone, polyphenylene sulfide, polystyrene, polymethylpentene, polybutylene terephthalate, cyclic olefin polymer and silicone are preferable. Among these, polypropylene, polymethylpentene, polybutylene terephthalate, and silicone are more preferable from the viewpoint of achieving both embedding property and releasability. The releasable cushion member may be used in a single layer or multiple layers. In the case of multiple layers, sheets of the same type or different types can be laminated.
 離形性クッション部材3と導電性接着剤層6の積層方法は特に限定されないが、これらのシートをラミネートする方法が挙げられる。離形性クッション部材3は最終的には剥離するので、離形性の優れた材料が好ましい。離形性クッション部材の厚みは、例えば50μm~3mm程度であり、100μm~1mm程度がより好ましい。 The method of laminating the releasable cushion member 3 and the conductive adhesive layer 6 is not particularly limited, but a method of laminating these sheets can be mentioned. Since the releasable cushion member 3 is finally peeled off, a material having excellent releasability is preferable. The thickness of the releasable cushion member is, for example, about 50 μm to 3 mm, more preferably about 100 μm to 1 mm.
[実施形態A2]
 次に、実施形態A1とは異なる電子部品搭載基板の例について説明する。実施形態A2に係る電子部品搭載基板は、電磁波シールド部材が2層の電磁波シールド層からなっている点において、単層の電磁波シールド層からなる電磁波シールド部材を用いた実施形態A1と相違するが、その他の基本的な構成および製造方法は実施形態A1と同様である。なお、実施形態A1と重複する記載は適宜省略する。
[Embodiment A2]
Next, an example of an electronic component mounting board different from that of the embodiment A1 will be described. The electronic component mounting board according to the embodiment A2 is different from the embodiment A1 using the electromagnetic wave shield member composed of a single electromagnetic wave shield layer in that the electromagnetic wave shield member is composed of two electromagnetic wave shield layers, The other basic configuration and manufacturing method are the same as those of the embodiment A1. Note that the description overlapping with that of the embodiment A1 will be appropriately omitted.
 実施形態A2の電磁波シールド部材は、図11に示すように、第1導電性接着剤層6a1および第2導電性接着剤層6a2の2層からなる導電性接着剤層6aである電磁波シールド用部材2aと、離形性クッション部材3aからなる電磁波シールド用積層体4aを用いて形成される。この電磁波シールド用積層体4aを熱圧着することにより、電子部品が搭載された基板上に第1電磁波シールド層と第2電磁波シールド層からなる電磁波シールド部材が被覆される。2層の電磁波シールド層により構成することで、電磁波シールド部材の設計自由度を高めることができる。上層の第2導電性接着剤層6a2は実施形態A1と同様の組成や工程により製造し、下層の第1導電性接着剤層6a1は、クルトシスの範囲に限定されずにニーズに応じた設計とすることができる。例えば、第1導電性接着剤層6a1に含まれる導電性フィラーとして、繊維状粒子、球状粒子等のフィラーを用いた層としたりすることができる。また、第1導電性接着剤層6a1を異方導電性接着剤層、第2導電性接着剤層6a2を等方導電性接着剤層とする等の設計とすることも可能である。また、電磁波反射層と電磁波吸収層の積層体とする態様も好ましい。電磁波シールド層を3層以上積層してもよい。 As shown in FIG. 11, the electromagnetic wave shield member of Embodiment A2 is an electromagnetic wave shield member that is a conductive adhesive layer 6a composed of two layers of a first conductive adhesive layer 6a1 and a second conductive adhesive layer 6a2. 2a and an electromagnetic wave shielding laminate 4a including a releasable cushion member 3a. By thermocompression-bonding the electromagnetic wave shielding laminate 4a, the electromagnetic wave shielding member including the first electromagnetic wave shielding layer and the second electromagnetic wave shielding layer is coated on the substrate on which the electronic component is mounted. By comprising two electromagnetic wave shield layers, the degree of freedom in designing the electromagnetic wave shield member can be increased. The second conductive adhesive layer 6a2 as the upper layer is manufactured by the same composition and process as the embodiment A1, and the first conductive adhesive layer 6a1 as the lower layer is designed not to be limited to the range of kurtosis but to be designed according to needs. can do. For example, the conductive filler contained in the first conductive adhesive layer 6a1 may be a layer using a filler such as fibrous particles or spherical particles. It is also possible to design the first conductive adhesive layer 6a1 as an anisotropic conductive adhesive layer and the second conductive adhesive layer 6a2 as an isotropic conductive adhesive layer. Further, a mode in which a laminated body of an electromagnetic wave reflection layer and an electromagnetic wave absorption layer is also preferable. You may laminate|stack three or more electromagnetic wave shield layers.
 実施形態A2に係る電子部品搭載基板によれば、2層の電磁波シールド層からなる電磁波シールド部材を用いることにより、実施形態A1と同様の効果が得られる。また、電磁波シールド層を2層積層したことにより各層の設計自由度を高められるので、ニーズに応じた電磁波シールド部材を提供しやすいというメリットがある。 According to the electronic component mounting board of the embodiment A2, the same effect as that of the embodiment A1 can be obtained by using the electromagnetic wave shield member including the two electromagnetic wave shield layers. Further, by laminating two electromagnetic wave shield layers, the degree of freedom in designing each layer can be increased, and there is an advantage that it is easy to provide an electromagnetic wave shield member according to needs.
[実施形態A3]
 実施形態A3に係る電子部品搭載基板は、電磁波シールド部材が電磁波シールド層とハードコート層の積層体からなっている点において、単層の電磁波シールド層からなる電磁波シールド部材を用いた実施形態A1と相違するが、その他の基本的な構成および製造方法は同様である。
[Embodiment A3]
The electronic component mounting board according to Embodiment A3, in that the electromagnetic wave shield member is a laminate of an electromagnetic wave shield layer and a hard coat layer, Embodiment A1 using an electromagnetic wave shield member consisting of a single layer of the electromagnetic wave shield layer. Although different, the other basic structure and manufacturing method are the same.
 実施形態A3に係る電磁波シールド部材は、図12に示すように、1層の導電性接着剤層6bと絶縁性樹脂層7bの積層体である電磁波シールド用部材2bおよび離形性クッション部材3bからなる電磁波シールド用積層体4bを用いて形成される。この電磁波シールド用積層体4bを熱圧着することにより、電子部品が搭載された基板上に導電性接着剤層6bから形成された電磁波シールド層と絶縁性樹脂層7bから形成されたハードコート層とからなる電磁波シールド部材が得られる。実施形態A3に係る電磁波シールド部材は、ハードコート層側から測定したときのクルトシスを1~8とする。 As shown in FIG. 12, the electromagnetic wave shielding member according to the embodiment A3 includes an electromagnetic wave shielding member 2b and a releasable cushion member 3b which are a laminated body of one conductive adhesive layer 6b and an insulating resin layer 7b. It is formed by using the electromagnetic wave shielding laminate 4b. By thermocompression-bonding this electromagnetic wave shielding laminate 4b, an electromagnetic wave shielding layer formed of a conductive adhesive layer 6b and a hard coat layer formed of an insulating resin layer 7b are formed on a substrate on which electronic components are mounted. An electromagnetic wave shield member consisting of is obtained. The electromagnetic wave shield member according to Embodiment A3 has a kurtosis of 1 to 8 when measured from the hard coat layer side.
 絶縁性樹脂層7bはバインダー樹脂前駆体と無機フィラーを含有する樹脂組成物から形成された層である。バインダー樹脂前駆体は、少なくとも熱軟化性樹脂を含む。熱軟化性樹脂の例示、およびバインダー樹脂前駆体の例示および好適例は、実施形態A1で述べた電磁波シールド用部材の導電性接着剤層の組成と同じである。導電性接着剤層と絶縁性樹脂層のバインダー樹脂前駆体は同一であっても異なっていてもよい。 The insulating resin layer 7b is a layer formed from a resin composition containing a binder resin precursor and an inorganic filler. The binder resin precursor contains at least a thermosoftening resin. Examples of the heat softening resin, and examples and preferred examples of the binder resin precursor are the same as the composition of the conductive adhesive layer of the electromagnetic wave shielding member described in the embodiment A1. The binder resin precursors of the conductive adhesive layer and the insulating resin layer may be the same or different.
 無機フィラーは、実施形態A1の導電性接着剤層と異なり導電性を有していないが、好ましい無機フィラーの特性、例えば形状・配合量・D50・D90等は導電性フィラーで挙げた例と同じである。無機フィラーとしては、例えば、シリカ、アルミナ、水酸化マグネシウム、硫酸バリウム、炭酸カルシウム、酸化チタン、酸化亜鉛、三酸化アンチモン、酸化マグネシウム、タルク、カオリナイト、マイカ、塩基炭酸マグネシウム、セリサイト、モンモロリナイト、カオリナイト、ベントナイト等の無機化合物が挙げられる。 The inorganic filler does not have conductivity unlike the conductive adhesive layer of the embodiment A1, but preferable characteristics of the inorganic filler, for example, shape, blending amount, D50, D90, etc. are the same as the examples given for the conductive filler. Is. Examples of the inorganic filler include silica, alumina, magnesium hydroxide, barium sulfate, calcium carbonate, titanium oxide, zinc oxide, antimony trioxide, magnesium oxide, talc, kaolinite, mica, basic magnesium carbonate, sericite, montmoroli. Inorganic compounds such as knight, kaolinite and bentonite are mentioned.
 熱軟化性樹脂組成物、および熱軟化性樹脂組成物層は、必要に応じて着色剤、シランカップリング剤、イオン捕集剤、酸化防止剤、粘着付与樹脂、可塑剤、紫外線吸収剤、レベリング調整剤、難燃剤等を含むことができる。 The heat-softenable resin composition, and the heat-softenable resin composition layer, if necessary, a colorant, a silane coupling agent, an ion scavenger, an antioxidant, a tackifying resin, a plasticizer, an ultraviolet absorber, a leveling agent. Modifiers, flame retardants and the like can be included.
 実施形態A3に係る電子部品搭載基板によれば、ハードコート層を有する電磁波シールド部材を用いることにより、実施形態A1で述べた効果に加え、電磁波シールド層をハードコート層で被覆することにより優れた耐久性を有する電磁波シールド部材を提供できる。 According to the electronic component mounting board according to the embodiment A3, by using the electromagnetic wave shield member having the hard coat layer, in addition to the effect described in the embodiment A1, it is excellent by covering the electromagnetic wave shield layer with the hard coat layer. An electromagnetic wave shield member having durability can be provided.
[実施形態A4]
 実施形態A4に係る電子部品搭載基板は、電磁波シールド部材が電磁波シールド層と絶縁被覆層の積層体からなる点において、単層の電磁波シールド層からなる電磁波シールド部材を用いた実施形態A1と相違するが、その他の基本的な構成および製造方法は実施形態A1と同様である。
[Embodiment A4]
The electronic component mounting board according to the embodiment A4 is different from the embodiment A1 using the electromagnetic wave shield member composed of a single electromagnetic wave shield layer in that the electromagnetic wave shield member is a laminate of an electromagnetic wave shield layer and an insulating coating layer. However, the other basic configuration and manufacturing method are the same as in Embodiment A1.
 実施形態A4に係る電磁波シールド部材は、図13に示すように、絶縁性接着剤層8cと導電性接着剤層6cの積層体である電磁波シールド用部材2cおよび離形性クッション部材3cからなる電磁波シールド用積層体4cを用いて形成される。 As shown in FIG. 13, the electromagnetic wave shielding member according to the embodiment A4 is an electromagnetic wave composed of an electromagnetic wave shielding member 2c, which is a laminate of an insulating adhesive layer 8c and a conductive adhesive layer 6c, and a releasable cushion member 3c. It is formed using the shield laminate 4c.
 実施形態A4においては、個片化工程を行わない若しくは個片化済みの、複数の電子部品(例えば半導体パッケージ)が形成された基板上に、電磁波シールド部材を被覆する例について説明する。図14Aに示すように、基板20との接続端子として機能するはんだボール24を有する電子部品30が搭載された基板20の上方に、電磁波シールド用積層体4cを配置し、離形性クッション部材3c側から電子部品30が搭載された基板20に熱圧着を行う(図14B)。その後、離形性クッション部材3cを剥離することにより、図14Cの電磁波シールド部材1cが積層された電子部品搭載基板53が得られる。 In Embodiment A4, an example will be described in which the electromagnetic wave shield member is coated on a substrate on which a plurality of electronic components (for example, semiconductor packages) that have not been subjected to the individualization process or have been individualized have been formed. As shown in FIG. 14A, the electromagnetic wave shielding laminate 4c is arranged above the substrate 20 on which the electronic component 30 having the solder balls 24 functioning as connection terminals with the substrate 20 is mounted, and the releasable cushion member 3c. The substrate 20 on which the electronic component 30 is mounted is thermocompression bonded from the side (FIG. 14B). After that, the releasable cushion member 3c is peeled off to obtain the electronic component mounting board 53 in which the electromagnetic wave shield member 1c of FIG. 14C is laminated.
 得られた電子部品搭載基板53は、電磁波シールド層5cの上面からGNDを取ることが可能である。この方法に代えて、基板20上にグランドパターンを設け、このグランドパターンと電磁波シールド層5cを導通させるために、グランドパターン上に、絶縁被覆層9cを突き破り、電磁波シールド層5cと導通する導電性のコネクタ部を設けてもよい。 The obtained electronic component mounting substrate 53 can take GND from the upper surface of the electromagnetic wave shield layer 5c. In place of this method, a ground pattern is provided on the substrate 20, and in order to make the ground pattern and the electromagnetic wave shield layer 5c electrically conductive, the conductive pattern is penetrated through the insulating coating layer 9c on the ground pattern and electrically connected to the electromagnetic wave shield layer 5c. The connector part may be provided.
 実施形態A4では、個片化工程が不要の電子部品搭載基板の製造方法の一例について説明したが、マザー基板上に、図14Cの製品単位のユニットをアレイ状に形成し、電磁波シールド用積層体4cを載置して熱圧着して電磁波シールド層を形成し、その後、個片化工程を行うことにより、図14Cに示す電子部品搭載基板を得ることもできる。 In the embodiment A4, the example of the method for manufacturing the electronic component mounting substrate which does not require the individualizing step has been described. However, the unit of the product unit of FIG. 14C is formed in an array on the mother substrate, and the electromagnetic wave shielding laminate is formed. It is also possible to obtain the electronic component mounting substrate shown in FIG. 14C by placing 4c and thermocompression-bonding it to form an electromagnetic wave shield layer, and then performing an individualizing step.
 絶縁性接着剤層8cは、バインダー樹脂前駆体を含有する樹脂組成物から形成された層である。バインダー樹脂前駆体は、少なくとも熱軟化性樹脂を含む。バインダー樹脂前駆体の例示および好適例は、実施形態A1で述べた導電性接着剤層のバインダー樹脂前駆体が挙げられる。絶縁性接着剤層8cと導電性接着剤層6cのバインダー樹脂前駆体は同一であっても異なっていてもよい。 The insulating adhesive layer 8c is a layer formed of a resin composition containing a binder resin precursor. The binder resin precursor contains at least a thermosoftening resin. Examples and preferred examples of the binder resin precursor include the binder resin precursor of the conductive adhesive layer described in the embodiment A1. The binder resin precursors of the insulating adhesive layer 8c and the conductive adhesive layer 6c may be the same or different.
 熱軟化性樹脂組成物および熱軟化性樹脂組成物層は、必要に応じて着色剤、シランカップリング剤、イオン捕集剤、酸化防止剤、粘着付与樹脂、可塑剤、紫外線吸収剤、レベリング調整剤、難燃剤、無機フィラー等を含むことができる。 The heat-softenable resin composition and the heat-softenable resin composition layer, if necessary, a colorant, a silane coupling agent, an ion scavenger, an antioxidant, a tackifier resin, a plasticizer, an ultraviolet absorber, and a leveling adjustment. Agents, flame retardants, inorganic fillers, etc. may be included.
 実施形態A4に係る電子部品搭載基板によれば、絶縁被覆層9cを有する電磁波シールド部材1cを用いることにより、実施形態A1で述べた効果に加え、グランドパターン以外の回路または電極パターン等の導体部と電磁波シールド部材との短絡を防ぎ、電子部品と電磁波シールド層の接合信頼性を高めることができる。また、電子部品の絶縁信頼性を高めることができる。従って、優れた耐久性を有する電磁波シールド部材を提供できる。その結果、優れた電磁波シールド性を有する電子部品搭載基板を提供できる。また、基板全体に一括でシールド層を形成できるので、製造工程が簡便であり、シールド缶等に比べて顕著に厚みを縮小できるというメリットがある。 According to the electronic component mounting board according to Embodiment A4, by using the electromagnetic wave shield member 1c having the insulating coating layer 9c, in addition to the effect described in Embodiment A1, a conductor portion such as a circuit other than the ground pattern or an electrode pattern is provided. It is possible to prevent a short circuit between the electromagnetic wave shield member and the electromagnetic wave shield member, and to enhance the reliability of bonding between the electronic component and the electromagnetic wave shield layer. Also, the insulation reliability of the electronic component can be improved. Therefore, the electromagnetic wave shield member having excellent durability can be provided. As a result, it is possible to provide an electronic component mounting board having excellent electromagnetic wave shielding properties. In addition, since the shield layer can be collectively formed on the entire substrate, the manufacturing process is simple, and the thickness can be remarkably reduced as compared with a shield can or the like.
 なお、実施形態A4において、絶縁被覆層9cは主として電子部品と電磁波シールド部材との接合を強化するために用いる例を挙げたが、絶縁被覆層9cを封止材に適用することもできる。絶縁被覆層9cを封止材に適用する場合、半導体チップ等の封止工程と電磁波シールド部材の被覆を同一工程で行うことができるというメリットがある。即ち、実施形態A4に係る電磁波シールド部材は、絶縁体におり一体的に被覆されていない電子部品に対して適用し、絶縁性接着剤層から封止材(モールド樹脂)に対応する絶縁被覆層を得ることもできる。この場合、電子部品の側面に電磁波シールド部材を被覆するために、電子部品に対応する凹部がアレイ状に形成されたプレス板(電子部品の間隙に電磁波シールド部材を埋め込む凸部が形成されたプレス板)を用いてもよい。 In the embodiment A4, the example in which the insulating coating layer 9c is mainly used for strengthening the bonding between the electronic component and the electromagnetic wave shielding member has been described, but the insulating coating layer 9c can also be applied to the sealing material. When the insulating coating layer 9c is applied to the sealing material, there is an advantage that the sealing step of the semiconductor chip and the electromagnetic wave shielding member can be performed in the same step. That is, the electromagnetic wave shielding member according to the embodiment A4 is applied to an electronic component which is an insulator and is not integrally covered, and an insulating coating layer corresponding to an insulating adhesive layer to a sealing material (mold resin). You can also get In this case, in order to cover the electromagnetic wave shield member on the side surface of the electronic component, a press plate in which concave portions corresponding to the electronic component are formed in an array (a press portion having a convex portion for embedding the electromagnetic wave shield member in a gap between the electronic components is formed). A plate) may be used.
[実施形態A5]
 実施形態A5に係る電子部品搭載基板は、電磁波シールド層とグランドパターンが直接接触して導通しており、電磁波シールド用積層体の内部層に位置する導電性接着剤層が、当該積層体の段階で露出している領域を有する電磁波シールド用積層体を用いる。この露出領域は、基板等に形成されたグランドパターン等の導電パターンと電磁波シールド層が接触して導通するために設けられている。実施形態A5は、これらの点において実施形態A4と相違するが、その他の基本的な構成および製造方法は同様である。
[Embodiment A5]
The electronic component mounting board according to the embodiment A5, the electromagnetic wave shield layer and the ground pattern are in direct contact with each other for conduction, and the conductive adhesive layer positioned in the inner layer of the electromagnetic wave shield laminate is a stage of the laminate body. An electromagnetic wave shield laminate having an exposed region is used. The exposed region is provided so that a conductive pattern such as a ground pattern formed on the substrate or the like and the electromagnetic wave shield layer come into contact with each other to establish electrical conduction. The embodiment A5 is different from the embodiment A4 in these points, but the other basic configuration and manufacturing method are the same.
 実施形態A5に係る電磁波シールド用積層体は、積層構成は実施形態A4と同様であるが、図15Aに示すように、基板20上に形成されたグランドパターン22を被覆する領域に対応する位置の電磁波シールド用積層体4dにおいて導電性接着剤層6dが露出している。具体的には、絶縁性接着剤層8d側からの上面視において、導電性接着剤層6dの露出領域が設けられている。図15Aの電磁波シールド用積層体4dの例では、絶縁性接着剤層8dのサイズを電磁波シールド用積層体4dのサイズよりも一回り小さくし、電磁波シールド用積層体4dの額縁領域において導電性接着剤層6dが露出するようにする。係る構成により、図15B、図15Cに示すように、熱圧着によりグランドパターン22と電磁波シールド層5dとが接触して導通した電子部品搭載基板54が得られる。電磁波シールド用積層体4dにおける導電性接着剤層6dの露出部の位置は、図15Aの例に限定されず、露出部を開口パターンとして形成してもよい。 The laminated body for electromagnetic wave shielding according to the embodiment A5 has the same laminated structure as that of the embodiment A4, but as shown in FIG. 15A, at a position corresponding to a region covering the ground pattern 22 formed on the substrate 20. The conductive adhesive layer 6d is exposed in the electromagnetic wave shielding laminate 4d. Specifically, the exposed region of the conductive adhesive layer 6d is provided in a top view from the insulating adhesive layer 8d side. In the example of the electromagnetic wave shielding laminate 4d of FIG. 15A, the size of the insulating adhesive layer 8d is made one size smaller than the size of the electromagnetic wave shielding laminate 4d, and the conductive adhesive is applied in the frame region of the electromagnetic wave shielding laminate 4d. The agent layer 6d is exposed. With such a configuration, as shown in FIGS. 15B and 15C, an electronic component mounting board 54 is obtained in which the ground pattern 22 and the electromagnetic wave shield layer 5d are brought into contact with each other by thermocompression to establish electrical conduction. The position of the exposed portion of the conductive adhesive layer 6d in the electromagnetic wave shielding laminate 4d is not limited to the example of FIG. 15A, and the exposed portion may be formed as an opening pattern.
[[実施形態B]]
 以下、実施形態Bに係る電子部品搭載基板の具体例について説明する。
[実施形態B1]
<電子部品搭載基板>
 実施形態B1の電子部品搭載基板は、上記実施形態Aで特定する電磁波シールド部材に代えて上記実施形態Bで特定する電磁波シールド部材を用いる。実施形態B1の電子部品搭載基板およびその製造方法は、実施形態Bに係る電磁波シールド部材を用いている点、および別途記載している点を除き、基本的な構成および製造方法は実施形態A1と共通する。このため、重複する部分の説明は適宜省略する。
[[Embodiment B]]
Hereinafter, a specific example of the electronic component mounting board according to the embodiment B will be described.
[Embodiment B1]
<Electronic component mounting board>
The electronic component mounting board of the embodiment B1 uses the electromagnetic wave shield member specified in the embodiment B instead of the electromagnetic wave shield member specified in the embodiment A. The electronic component mounting board and the manufacturing method thereof of the embodiment B1 are the same as those of the embodiment A1 except that the electromagnetic wave shielding member according to the embodiment B is used and the description thereof is omitted. Common. Therefore, the description of the overlapping portions will be omitted as appropriate.
 実施形態B1に係る電子部品搭載基板の基本構成の好適例として、前述した図1~図10で説明した実施形態A1の電子部品搭載基板の基本構成が例示できる。以下、これらの図を用いて実施形態B1の特徴部について説明する。 As a preferable example of the basic configuration of the electronic component mounting board according to the embodiment B1, the basic configuration of the electronic component mounting board of the embodiment A1 described in FIGS. 1 to 10 can be exemplified. Hereinafter, the characteristic part of the embodiment B1 will be described with reference to these drawings.
<電磁波シールド部材>
 実施形態B1に係る電磁波シールド部材1は、実施形態A1で説明したように、基板20上に搭載された電子部品30の天面に電磁波シールド用積層体を載置して熱圧着により電子部品30および基板20を被覆することにより得られる。電磁波シールド部材1の被覆態様は、実施形態A1と同様であるので省略する。
<Electromagnetic wave shield member>
As described in the embodiment A1, the electromagnetic wave shielding member 1 according to the embodiment B1 has the electromagnetic wave shielding laminated body placed on the top surface of the electronic component 30 mounted on the substrate 20 and thermocompression bonded to the electronic component 30. And by coating the substrate 20. Since the coating mode of the electromagnetic wave shield member 1 is the same as that of the embodiment A1, the description thereof is omitted.
 実施形態B1の電磁波シールド部材1は、実施形態A1と同様に、電磁波シールド用積層体を用いて形成することができる。そして、図4に示すように、電磁波シールド用積層体4は、電磁波シールド用部材2と離形性クッション部材3からなる。この電磁波シールド用部材2は、実施形態A1と同様に導電性接着剤層6の単層からなる。導電性接着剤層6は熱圧着により電子部品30および基板20に接合されて電磁波シールド層5が形成される。実施形態A1においては、この電磁波シールド層5が電磁波シールド部材1として機能する。
 実施形態B1の電磁波シールド用部材2は、実施形態A1で説明したように、2層以上の導電性接着剤層の積層体から形成したり、導電性接着剤層とハードコート層の積層体から形成したり、絶縁性接着剤層と導電性接着剤層の積層体から形成したりする等、他の層の積層体から形成してもよい。
 実施形態B1の電磁波シールド層5には、バインダー樹脂と導電性フィラーが含まれる。電磁波シールド層5中の導電性フィラーは連続的に接触されており導電性を示す。電磁波シールド性を高める観点から電磁波シールド層5のシート抵抗値は1Ω/□以下が好ましい。
The electromagnetic wave shield member 1 of the embodiment B1 can be formed using the electromagnetic wave shielding laminate as in the embodiment A1. Then, as shown in FIG. 4, the electromagnetic wave shielding laminate 4 is composed of the electromagnetic wave shielding member 2 and the releasable cushion member 3. This electromagnetic wave shielding member 2 is composed of a single layer of the conductive adhesive layer 6 as in the embodiment A1. The conductive adhesive layer 6 is bonded to the electronic component 30 and the substrate 20 by thermocompression bonding to form the electromagnetic wave shield layer 5. In the embodiment A1, the electromagnetic wave shield layer 5 functions as the electromagnetic wave shield member 1.
The electromagnetic wave shielding member 2 of Embodiment B1 is formed of a laminate of two or more conductive adhesive layers or a laminate of a conductive adhesive layer and a hard coat layer as described in Embodiment A1. It may be formed, or formed from a laminated body of other layers such as a laminated body of an insulating adhesive layer and a conductive adhesive layer.
The electromagnetic wave shield layer 5 of Embodiment B1 contains a binder resin and a conductive filler. The conductive filler in the electromagnetic wave shield layer 5 is in continuous contact with the conductive filler and exhibits conductivity. From the viewpoint of enhancing the electromagnetic wave shielding property, the sheet resistance value of the electromagnetic wave shielding layer 5 is preferably 1Ω/□ or less.
 実施形態B1の電磁波シールド部材1は、その押込み弾性率を1~10GPaとする。押し込み弾性率をこの範囲にすることにより、電磁波シールド部材1の応力に対する局所的な微小変形を抑制することが可能となり、その結果として電磁波シールド部材1のバリ発生による損傷を効果的に抑制できる。更に、PCT耐性に優れるので、リフロー工程後の密着性低下を効果的に抑制できる。このため、品質の高い電子部品搭載基板を提供できる。 The electromagnetic wave shield member 1 of Embodiment B1 has an indentation elastic modulus of 1 to 10 GPa. By setting the indentation elastic modulus in this range, it is possible to suppress local minute deformation of the electromagnetic wave shield member 1 due to stress, and as a result, it is possible to effectively suppress damage due to the occurrence of burrs on the electromagnetic wave shield member 1. Furthermore, since it has excellent PCT resistance, it is possible to effectively suppress the decrease in adhesion after the reflow process. Therefore, a high quality electronic component mounting board can be provided.
 実施形態B1の電磁波シールド部材1の押込み弾性率を1GPa以上とすることにより、切断工程におけるダイシングブレード等の切削工具から受ける応力に対して電磁波シールド部材1の変形を抑制し、製造工程により生じる電磁波シールド部材1のバリ(図23の(i)参照)を効果的に抑制できる。なお、本明細書でいうバリとは、電磁波シールド部材1の切断面を基点とした電磁波シールド部材の捲れをいう。 By setting the indentation elastic modulus of the electromagnetic wave shield member 1 of Embodiment B1 to 1 GPa or more, deformation of the electromagnetic wave shield member 1 is suppressed against stress received from a cutting tool such as a dicing blade in the cutting process, and electromagnetic waves generated in the manufacturing process are suppressed. Burrs (see (i) of FIG. 23) of the shield member 1 can be effectively suppressed. The term “burr” as used herein refers to the turning of the electromagnetic wave shield member based on the cut surface of the electromagnetic wave shield member 1.
 実施形態B1の電磁波シールド部材1の押込み弾性率は、熱圧着前の後述する電磁波シールド用積層体4中の電磁波シールド用部材2の組成物により調整することができる。より具体的には電磁波シールド部材1を形成するための、熱圧着前の電磁波シールド用部材2の組成物中のバインダー樹脂前駆体の種類、各成分の配合量等によって調整できる。具体的には、押込み弾性率は、フィラーの含有量が多くなる程大きくなる傾向がある。また、バインダー樹脂前駆体として用いる樹脂の官能基数や硬化性化合物の含有量を増やすことによっても押込み弾性率が大きくなる傾向にある。また、バインダー樹脂の硬さが高いほど押込み弾性率が大きくなる傾向にある。従って、バインダー樹脂を形成するためのバインダー樹脂前駆体の種類、或いはバインダー樹脂の架橋密度を適切にすることが好適である。架橋密度は、樹脂および硬化性化合物の種類や官能基数によって容易に調整できる。 The indentation elastic modulus of the electromagnetic wave shield member 1 of Embodiment B1 can be adjusted by the composition of the electromagnetic wave shield member 2 in the electromagnetic wave shield laminate 4 described below before thermocompression bonding. More specifically, it can be adjusted by the kind of the binder resin precursor in the composition of the electromagnetic wave shielding member 2 before thermocompression bonding for forming the electromagnetic wave shielding member 1, the blending amount of each component, and the like. Specifically, the indentation elastic modulus tends to increase as the filler content increases. Further, the indentation elastic modulus tends to increase by increasing the number of functional groups of the resin used as the binder resin precursor or the content of the curable compound. Further, the higher the hardness of the binder resin, the larger the indentation elastic modulus tends to be. Therefore, it is preferable to make the kind of the binder resin precursor for forming the binder resin or the crosslink density of the binder resin appropriate. The crosslink density can be easily adjusted by the type of resin and curable compound and the number of functional groups.
 なお、押込み弾性率は外部応力による材料の変形に対する性質を表しているヤング率と考えることもできる。本明細書の「押込み弾性率」は、後述する実施例で記載した測定方法および測定条件によって得られる値をいう。 Note that the indentation elastic modulus can be thought of as the Young's modulus that represents the property of the material to deform due to external stress. The “indentation elastic modulus” in the present specification refers to a value obtained by the measuring method and the measuring condition described in Examples described later.
 実施形態B1の電磁波シールド部材1の押込み弾性率のより好ましい範囲は1.5GPa越え、8GPa以下であり、更に好ましい範囲は2GPa以上、7.4GPa以下である。 A more preferable range of the indentation elastic modulus of the electromagnetic wave shield member 1 of Embodiment B1 is more than 1.5 GPa and 8 GPa or less, and a more preferable range is 2 GPa or more and 7.4 GPa or less.
 実施形態B1の電磁波シールド部材1の膜厚は、用途により適宜選定できる。薄型化が求められている用途には、電子部品の上面を被覆する電磁波シールド部材1の厚みT1及びT2は、例えば10~200μm程度にすることができる。 The film thickness of the electromagnetic wave shield member 1 of Embodiment B1 can be appropriately selected depending on the application. For applications where thinning is required, the thickness T1 and T2 of the electromagnetic wave shield member 1 that covers the upper surface of the electronic component can be set to, for example, about 10 to 200 μm.
 電子部品30上に製品情報が刻印されることがある。その場合、電子部品30に刻印した後に電磁波シールド部材1を形成する方法、電子部品30に電磁波シールド部材1を形成した後に電磁波シールド部材に刻印する方法がある。いずれの場合にも、高いシールド性を保ちながらその刻印の良好な視認性が求められる。両特性を満足させる観点から、電磁波シールド部材の膜厚T1は10μm以上が好ましく、20μm以上がより好ましい。後者の刻印方法、即ち、電磁波シールド部材上に刻印する場合、電磁波シールド部材の膜厚の上限はない。一方、前者の刻印方法、即ち、電子部品に直接刻印する場合、刻印の視認性を保つために電磁波シールド部材の膜厚T1の上限は50μm以下が好ましく、30μm以下がより好ましい。 Product information may be stamped on the electronic component 30. In that case, there are a method of forming the electromagnetic wave shield member 1 after marking on the electronic component 30 and a method of forming the electromagnetic wave shield member 1 on the electronic component 30 and then marking on the electromagnetic wave shield member. In any case, good visibility of the marking is required while maintaining high shielding property. From the viewpoint of satisfying both characteristics, the thickness T1 of the electromagnetic wave shielding member is preferably 10 μm or more, more preferably 20 μm or more. In the latter marking method, that is, when marking is performed on the electromagnetic wave shield member, there is no upper limit of the film thickness of the electromagnetic wave shield member. On the other hand, in the former marking method, that is, when directly marking on an electronic component, the upper limit of the film thickness T1 of the electromagnetic wave shield member is preferably 50 μm or less, and more preferably 30 μm or less in order to maintain the visibility of the marking.
 実施形態B1の電磁波シールド部材1の表層の水接触角は70~110°とすることが好ましい。この範囲とすることにより、製造工程時の電磁波シールド層の損傷をより効果的に抑制することができる。また、電子部品30のハーフダイシング溝25に形成された溝状の凹部に充填された離形性クッション部材を電磁波シールド部材1から剥がす際にバリの発生を抑制できる。電磁波シールド部材の水接触角のより好ましい範囲は75~105°であり、更に好ましい範囲は80~100°である。電磁波シールド部材の水接触角は、電磁波シールド部材を形成する組成物において表面調整剤の添加量によりその数値を調整することができる。電磁波シールド部材1における表面調整剤の添加量が増えるにつれて水接触角の値が大きくなる傾向にある。 The water contact angle of the surface layer of the electromagnetic wave shield member 1 of Embodiment B1 is preferably 70 to 110°. By setting this range, it is possible to more effectively suppress damage to the electromagnetic wave shield layer during the manufacturing process. Further, it is possible to suppress the occurrence of burrs when the releasable cushion member filled in the groove-shaped recess formed in the half dicing groove 25 of the electronic component 30 is peeled off from the electromagnetic wave shield member 1. The more preferable range of the water contact angle of the electromagnetic wave shield member is 75 to 105°, and the more preferable range is 80 to 100°. The water contact angle of the electromagnetic wave shield member can be adjusted by adjusting the amount of the surface modifier added to the composition forming the electromagnetic wave shield member. The value of the water contact angle tends to increase as the amount of the surface modifier added to the electromagnetic wave shield member 1 increases.
 プレッシャークッカー(以下、PCTともいう)試験耐性をより優れたものとするためには、実施形態B1の電磁波シールド部材1のマルテンス硬さを50N/mm以上の範囲とすることが好ましい。電磁波シールド部材1の押込み弾性率を1~10GPaの範囲とし、更にマルテンス硬さ50N/mm以上を組み合わせることにより、プレッシャークッカー試験後の密着性がより優れたものとなる。その結果、リフロー後においても密着性に優れた電磁波シールド部材1を提供できる。マルテンス硬さは60N/mm以上がより好ましく、70N/mm以上が更に好ましい。 In order to further improve the pressure cooker (hereinafter, also referred to as PCT) test resistance, it is preferable to set the Martens hardness of the electromagnetic wave shield member 1 of the embodiment B1 in the range of 50 N/mm 2 or more. When the indentation elastic modulus of the electromagnetic wave shield member 1 is set within the range of 1 to 10 GPa and the Martens hardness of 50 N/mm 2 or more is combined, the adhesion after the pressure cooker test becomes more excellent. As a result, it is possible to provide the electromagnetic wave shield member 1 having excellent adhesion even after reflow. Martens hardness is more preferably 60N / mm 2 or more, 70N / mm 2 or more is more preferable.
 マルテンス硬さは、導電性フィラーおよびバインダー成分の硬さにより調整できる。バインダー成分の硬さは、主として熱硬化性樹脂と硬化性化合物の硬化物の硬さによる。具体的には、鱗片状粒子の添加によりマルテンス硬さが大きくなる傾向にあり、球状、デンドライト状粒子の添加によりマルテンス硬さが低くなる傾向にある。また、導電性フィラー量が多くなるとマルテンス硬さは大きくなる傾向にある。また、硬化後の樹脂の硬さが高いほど、マルテンス硬さも硬くなる。 Martens hardness can be adjusted by the hardness of the conductive filler and binder component. The hardness of the binder component mainly depends on the hardness of the cured product of the thermosetting resin and the curable compound. Specifically, the addition of scale-like particles tends to increase the Martens hardness, and the addition of spherical or dendrite-like particles tends to decrease the Martens hardness. Further, as the amount of conductive filler increases, the Martens hardness tends to increase. Further, the higher the hardness of the cured resin, the harder the Martens hardness.
 製造方法については後述するが、電子部品30を搭載した基板20に電磁波シールド用積層体4を熱圧着後、電磁波シールド部材1から離形性クッション部材を剥離する際の離形性を高める観点からは、電磁波シールド部材1の表層のJISB0601;2001に準拠して測定したクルトシスを8以下とすることが好ましい。8以下にすることにより、電磁波シールド部材1の表面形状の尖り度が適切なものとなり、離形性クッション部材3と電磁波シールド部材1との剥離が容易となると考えられる。その結果、電子部品同士の間隙のハーフダイシング溝25に離形性クッション部材3が千切れて残渣として残存する現象を効果的に抑制できる。なお、本明細書で千切れとは、離形性クッション部材を剥離する際に千切れて、電子部品の間隙である溝に残存してしまった離形性クッション部材をいう。 Although the manufacturing method will be described later, from the viewpoint of enhancing releasability when the releasable cushion member is peeled from the electromagnetic wave shield member 1 after the electromagnetic wave shield laminate 4 is thermocompression bonded to the substrate 20 on which the electronic component 30 is mounted. It is preferable that the kurtosis of the surface layer of the electromagnetic wave shield member 1 measured according to JIS B0601; 2001 is 8 or less. It is considered that when it is 8 or less, the sharpness of the surface shape of the electromagnetic wave shield member 1 becomes appropriate, and the release cushion member 3 and the electromagnetic wave shield member 1 are easily separated. As a result, it is possible to effectively suppress the phenomenon that the releasable cushion member 3 is torn in the half dicing groove 25 in the gap between the electronic components and remains as a residue. In the present specification, the "removable" means a releasable cushion member that is torn when the releasable cushion member is peeled and remains in a groove that is a gap between electronic components.
 また、耐擦傷性を高める観点からは、実施形態B1の電磁波シールド部材1のクルトシスを1以上にすることが好ましい。1以上にすることにより、スチールウール耐性を向上させることができる。電磁波シールド部材のクルトシスのより好ましい範囲は1.5~6.5であり、更に好ましい範囲は2~4である。なお、電磁波シールド部材1の表面のクルトシスの調整方法は、実施形態A1で述べた通りである。 Further, from the viewpoint of enhancing scratch resistance, it is preferable that the electromagnetic wave shield member 1 of Embodiment B1 has a kurtosis of 1 or more. By setting it to 1 or more, the resistance to steel wool can be improved. The more preferable range of kurtosis of the electromagnetic wave shield member is 1.5 to 6.5, and the more preferable range thereof is 2 to 4. The method of adjusting the kurtosis on the surface of the electromagnetic wave shield member 1 is as described in the embodiment A1.
 実施形態B1の電磁波シールド部材1の表面の二乗平均平方根高さRqは0.4~1.6μmの範囲とすることが好ましく、0.5~1.5μmとすることがより好ましく、0.7~1.2μmとすることが更に好ましい。本明細書において、クルトシスと二乗平均平方根高さは、後述する実施例に記載の方法により求めた値をいう。 The root mean square height Rq of the surface of the electromagnetic wave shield member 1 of Embodiment B1 is preferably in the range of 0.4 to 1.6 μm, more preferably 0.5 to 1.5 μm, and 0.7 It is more preferable that the thickness is 1.2 μm. In the present specification, the kurtosis and the root mean square height refer to values obtained by the method described in Examples below.
<電子部品搭載基板の製造方法>
 実施形態B1の電磁波シールド部材1の製造方法は、基本的には実施形態A1の電磁波シールド部材1の製造方法と同一である。工程(c)において、PCT後のテープ密着性を高める観点からは、電磁波シールド層5を構成するバインダー樹脂は3次元架橋構造が構築されていることが好ましい。工程(e)の個片化する工程でダイシングを行う場合、ダイシングによる摩擦熱を冷却し、且つダイシングによって発生するダイシング屑を洗い流すために高圧水洗することがある。実施形態Bに係る電子部品搭載基板51においては、押込み弾性率を1~10GPaにすることにより高圧水洗の衝撃による電磁波シールド部材1の剥離を著しく改善することができる。
<Method for manufacturing electronic component mounting board>
The method of manufacturing the electromagnetic wave shield member 1 of Embodiment B1 is basically the same as the method of manufacturing the electromagnetic wave shield member 1 of Embodiment A1. In the step (c), it is preferable that the binder resin forming the electromagnetic wave shield layer 5 has a three-dimensional crosslinked structure from the viewpoint of improving the tape adhesion after PCT. When dicing is performed in the step (e) of dividing into pieces, high-pressure water washing may be performed in order to cool the frictional heat due to dicing and to wash away the dicing dust generated by dicing. In the electronic component mounting board 51 according to the embodiment B, by setting the indentation elastic modulus to 1 to 10 GPa, the peeling of the electromagnetic wave shield member 1 due to the impact of high-pressure water washing can be significantly improved.
<電磁波シールド用積層体>
 実施形態B1の電磁波シールド用積層体は、図4において説明したように、電磁波シールド用部材2と離形性クッション部材3の2層からなる。実施形態B1においては、電磁波シールド用部材2は単層の導電性接着剤層6からなる。導電性接着剤層6は熱圧着工程を経て電子部品30や基板20と接合され、電磁波シールド層5として機能する。
<Laminate for electromagnetic wave shield>
The electromagnetic wave shielding laminate of the embodiment B1 is composed of two layers of the electromagnetic wave shielding member 2 and the releasable cushion member 3, as described in FIG. In the embodiment B1, the electromagnetic wave shielding member 2 is composed of the single-layer conductive adhesive layer 6. The conductive adhesive layer 6 is bonded to the electronic component 30 and the substrate 20 through a thermocompression bonding process and functions as the electromagnetic wave shield layer 5.
(導電性接着剤層)
 導電性接着剤層6は、バインダー樹脂前駆体と導電性フィラーとを含有する樹脂組成物から形成された層である。バインダー樹脂前駆体は、少なくとも熱軟化性樹脂を含む。熱軟化性樹脂は、熱可塑性樹脂、熱硬化性樹脂および活性光線硬化性樹脂が例示できる。熱硬化性樹脂および活性光線硬化性樹脂は、通常、反応性官能基を有する。熱硬化性樹脂を用いる場合は、硬化性化合物や熱硬化助剤を併用できる。また、活性光線硬化性樹脂を用いる場合は光重合開始剤、増感剤等を併用できる。製造工程の簡便性からは、熱圧着時に硬化する熱硬化タイプが好ましい。
 また、自己架橋性樹脂や互いに架橋する複数の樹脂を用いてもよい。また、これらの樹脂に加えて熱可塑性樹脂を混合させてもよい。樹脂および硬化性化合物等の配合成分は、それぞれ独立に単独または複数の併用とすることができる。
 なお、導電性接着剤層6の段階で架橋が一部形成されてBステージ(半硬化した状態)となっていてもよい。例えば、熱硬化性樹脂と硬化性化合物の一部が反応して半硬化した状態が含まれていてもよい。
(Conductive adhesive layer)
The conductive adhesive layer 6 is a layer formed from a resin composition containing a binder resin precursor and a conductive filler. The binder resin precursor contains at least a thermosoftening resin. Examples of the thermosoftening resin include a thermoplastic resin, a thermosetting resin and an actinic ray curable resin. The thermosetting resin and the actinic ray curable resin usually have a reactive functional group. When a thermosetting resin is used, a curable compound and a thermosetting auxiliary can be used together. When an actinic ray curable resin is used, a photopolymerization initiator, a sensitizer and the like can be used in combination. A thermosetting type that cures at the time of thermocompression bonding is preferable from the viewpoint of simplicity of the manufacturing process.
Alternatively, a self-crosslinking resin or a plurality of resins that crosslink each other may be used. In addition to these resins, a thermoplastic resin may be mixed. The components such as the resin and the curable compound may be used alone or in combination of two or more.
Incidentally, a part of the crosslinks may be formed at the stage of the conductive adhesive layer 6 to be in the B stage (semi-cured state). For example, a state in which the thermosetting resin and a part of the curable compound are reacted and semi-cured may be included.
 熱軟化性樹脂の好適な例は、実施形態A1と同様である。上記熱軟化性樹脂は、熱硬化性樹脂として、加熱による架橋反応に利用できる官能基を複数有していてもよい。官能基の具体例は、実施形態A1と同様である。 A suitable example of the thermosoftening resin is the same as that of the embodiment A1. The thermosoftening resin, as a thermosetting resin, may have a plurality of functional groups that can be used for a crosslinking reaction by heating. Specific examples of the functional group are the same as in Embodiment A1.
 硬化性化合物は、熱硬化性樹脂の反応性官能基と架橋可能な官能基を有している。架橋することで密着性をより強固にし、耐水性も向上させることができる。硬化性化合物は、エポキシ化合物、酸無水物基含有化合物、イソシアネート化合物、ポリカルボジイミド化合物、アジリジン化合物、ジシアンジアミド化合物、芳香族ジアミン化合物等のアミン化合物、フェノールノボラック樹脂等のフェノール化合物、有機金属化合物等が好ましい。硬化性化合物は、樹脂であってもよい。この場合、熱硬化性樹脂と硬化性化合物の区別は、含有量の多い方を熱硬化性樹脂とし、含有量の少ない方を硬化性化合物として区別する。 The curable compound has a functional group capable of crosslinking with the reactive functional group of the thermosetting resin. By crosslinking, the adhesion can be made stronger and the water resistance can be improved. Curable compounds include epoxy compounds, acid anhydride group-containing compounds, isocyanate compounds, polycarbodiimide compounds, aziridine compounds, dicyandiamide compounds, amine compounds such as aromatic diamine compounds, phenol compounds such as phenol novolac resins, and organometallic compounds. preferable. The curable compound may be a resin. In this case, in order to distinguish between the thermosetting resin and the curable compound, one having a larger content is a thermosetting resin and one having a smaller content is a curable compound.
 上記エポキシ化合物は、1分子中に2個以上のエポキシ基を有する化合物である。エポキシ化合物の性状としては、液状および固形状を問わない。エポキシ化合物としては、例えば、グリジシルエーテル型エポキシ化合物、グリジシルアミン型エポキシ化合物、グリシジルエステル型エポキシ化合物、環状脂肪族(脂環型)エポキシ化合物等が好ましい。 The above epoxy compound is a compound having two or more epoxy groups in one molecule. The properties of the epoxy compound may be liquid or solid. As the epoxy compound, for example, a glycidyl ether type epoxy compound, a glycidyl amine type epoxy compound, a glycidyl ester type epoxy compound, a cycloaliphatic (alicyclic) epoxy compound and the like are preferable.
 グリシジルエーテル型エポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビスフェノールAD型エポキシ化合物、クレゾールノボラック型エポキシ化合物、フェノールノボラック型エポキシ化合物、α-ナフトールノボラック型エポキシ化合物、ビスフェノールA型ノボラック型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、テトラブロムビスフェノールA型エポキシ化合物、臭素化フェノールノボラック型エポキシ化合物、トリス(グリシジルオキシフェニル)メタン、テトラキス(グリシジルオキシフェニル)エタン等が挙げられる。 Examples of the glycidyl ether type epoxy compound include a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, a bisphenol S type epoxy compound, a bisphenol AD type epoxy compound, a cresol novolac type epoxy compound, a phenol novolac type epoxy compound, and α-naphthol novolak. Type epoxy compound, bisphenol A type novolac type epoxy compound, dicyclopentadiene type epoxy compound, tetrabromobisphenol A type epoxy compound, brominated phenol novolac type epoxy compound, tris(glycidyloxyphenyl)methane, tetrakis(glycidyloxyphenyl)ethane Etc.
 グリシジルアミン型エポキシ化合物としては、例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、トリグリシジルメタアミノフェノール、テトラグリシジルメタキシリレンジアミン等が挙げられる。 Examples of the glycidyl amine type epoxy compound include tetraglycidyl diaminodiphenylmethane, triglycidyl paraaminophenol, triglycidyl metaaminophenol, and tetraglycidyl metaxylylenediamine.
 グリシジルエステル型エポキシ化合物としては、例えば、ジグリシジルフタレート、ジグリシジルヘキサヒドロフタレート、ジグリシジルテトラヒドロフタレート等が挙げられる。 Examples of the glycidyl ester type epoxy compound include diglycidyl phthalate, diglycidyl hexahydrophthalate, diglycidyl tetrahydrophthalate and the like.
 環状脂肪族(脂環型)エポキシ化合物としては、例えば、エポキシシクロヘキシルメチル-エポキシシクロヘキサンカルボキシレート、ビス(エポキシシクロヘキシル)アジペート等が挙げられる。また、液状のエポキシ化合物を好適に用いることができる。 Examples of the cycloaliphatic (alicyclic) epoxy compound include epoxycyclohexylmethyl-epoxycyclohexanecarboxylate, bis(epoxycyclohexyl)adipate, and the like. Further, a liquid epoxy compound can be preferably used.
 イミダゾール化合物は、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、2,4-ジメチルイミダゾール、2-フェニルイミダゾール等のイミダゾール化合物が挙げられ、更にはイミダゾール化合物とエポキシ樹脂を反応させて溶剤に不溶化したタイプ、またはイミダゾール化合物をマイクロカプセルに封入したタイプ等の保存安定性を改良した潜在性硬化促進剤が挙げられるが、これらの中でも、導電性接着剤層の熱溶融後に硬化を開始させる観点から潜在性硬化促進剤が好ましい。 Examples of the imidazole compound include imidazole compounds such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2,4-dimethylimidazole and 2-phenylimidazole, and further imidazole compounds. There are latent curing accelerators having improved storage stability, such as a type in which an epoxy resin is reacted with a solvent to make them insoluble in a solvent, or a type in which an imidazole compound is encapsulated in microcapsules. Among these, a conductive adhesive layer The latent curing accelerator is preferable from the viewpoint of initiating the curing after the heat-melting.
 硬化性化合物の構造、分子量は用途に応じて適宜設計できる。押込み弾性率を1~10GPaの範囲に調整して、バリを効果的に抑制する観点からは、分子量の異なる2種類以上の硬化性化合物を用いることが好ましい。第一硬化性化合物と第二硬化性化合物を用いることにより、電磁波シールド層の引張破断歪を高める効果もある。 The structure and molecular weight of the curable compound can be appropriately designed depending on the application. From the viewpoint of effectively suppressing burrs by adjusting the indentation elastic modulus in the range of 1 to 10 GPa, it is preferable to use two or more curable compounds having different molecular weights. The use of the first curable compound and the second curable compound also has the effect of increasing the tensile breaking strain of the electromagnetic wave shield layer.
 硬化性化合物は、熱硬化性樹脂100質量部に対して1~70質量部含むことが好ましく、3~65質量部がより好ましく、3~60質量部が更に好ましい。第一硬化性化合物と第二硬化性化合物を併用する場合には、第一硬化性化合物を熱硬化性樹脂100質量部に対して5~50質量部含むことが好ましく、10~40質量部含むことがより好ましく、20~30質量部含むことが更に好ましい。一方、第二硬化性化合物を熱硬化性樹脂100質量部に対して0~40質量部含むことが好ましく、5~30質量部含むことがより好ましく、10~20質量部含むことが更に好ましい。 The curable compound is preferably contained in an amount of 1 to 70 parts by mass, more preferably 3 to 65 parts by mass, still more preferably 3 to 60 parts by mass, based on 100 parts by mass of the thermosetting resin. When the first curable compound and the second curable compound are used in combination, the first curable compound is preferably contained in an amount of 5 to 50 parts by mass, preferably 10 to 40 parts by mass, based on 100 parts by mass of the thermosetting resin. More preferably, it is more preferable to contain 20 to 30 parts by mass. On the other hand, the second curable compound is preferably contained in an amount of 0 to 40 parts by mass, more preferably 5 to 30 parts by mass, and further preferably 10 to 20 parts by mass based on 100 parts by mass of the thermosetting resin.
 熱可塑性樹脂の好適な例は、実施形態A1と同様である。また、導電性フィラーは、金属フィラー、導電性セラミックス粒子およびそれらの混合物が例示できる。金属フィラーの好適例は、実施形態A1と同様である。また、前述した銀コート銅における銀の含有量も実施形態A1と同様である。更に、コアシェル型粒子の場合、コア部に対するコート層の被覆率の好適範囲も実施形態A1と同様である。コア部は非金属でもよいが、導電性の観点からは導電性物質が好ましく、金属粒子がより好ましい。 A suitable example of the thermoplastic resin is the same as that of the embodiment A1. The conductive filler can be exemplified by metal filler, conductive ceramic particles and a mixture thereof. A suitable example of the metal filler is the same as that of the embodiment A1. Further, the content of silver in the silver-coated copper described above is also the same as that of the embodiment A1. Further, in the case of core-shell type particles, the preferable range of the coverage of the coat layer with respect to the core part is the same as that of the embodiment A1. The core part may be non-metal, but from the viewpoint of conductivity, a conductive substance is preferable, and metal particles are more preferable.
 導電性フィラーとして、電磁波吸収フィラーを用いてもよく、その具体例は実施形態A1と同様である。 An electromagnetic wave absorbing filler may be used as the conductive filler, and its specific example is the same as that of the embodiment A1.
 導電性接着剤層に用いる導電性フィラーの形状は、鱗片状粒子、デンドライト(樹枝)状粒子、針状粒子、プレート状粒子、ブドウ状粒子、繊維状粒子、球状粒子が例示できる。クルトシスの数値を調整する観点からは、針状粒子または/およびデンドライト状粒子の導電性フィラーを含有させることが好ましい。ここで、針状とは長径が短径の3倍以上のものをいい、いわゆる針形状の他、紡錘形状、円柱形状等も含む。また、デンドライト状とは、電子顕微鏡(500~20、000倍)で観察した際に、棒状の主軸から複数の分岐枝が2次元的または3次元的に延在した形状をいう。デンドライト状には、前記分岐枝が折れ曲がったり、分岐枝から更に分岐枝が延在していてもよい。 Examples of the shape of the conductive filler used in the conductive adhesive layer include scale particles, dendrite (dendritic) particles, needle particles, plate particles, grape particles, fibrous particles, and spherical particles. From the viewpoint of adjusting the numerical value of the kurtosis, it is preferable to include a conductive filler of needle-shaped particles and/or dendrite-shaped particles. Here, the acicular shape means that the major axis is three times or more the minor axis, and includes a so-called needle shape, a spindle shape, a columnar shape and the like. The dendrite shape means a shape in which a plurality of branched branches extend two-dimensionally or three-dimensionally from a rod-shaped main axis when observed with an electron microscope (500 to 20,000 times). In the dendrite shape, the branched branch may be bent, or the branched branch may further extend from the branched branch.
 また、導電性フィラーとして鱗片状粒子を含有させることで、被覆性に優れた電磁波シールド部材を提供することができる。ここで鱗片状とは、薄片状、板状も含む。導電性フィラーは粒子全体として鱗片状であればよく、楕円状、円状または微粒子の周囲に切れ込み等が存在してもよい。鱗片状粒子はマルテンス硬さが大きくなる傾向にあり、球状、樹枝状粒子はマルテンス硬さが低くなる傾向にある。また、導電性フィラー量が多くなるとマルテンス硬さは大きくなる傾向にある。また、硬化後の樹脂の硬さが高いほど、マルテンス硬さも硬くなる。 Further, by containing the scale-like particles as the conductive filler, it is possible to provide an electromagnetic wave shield member having excellent coverage. Here, the scaly shape includes a thin shape and a plate shape. The conductive filler may have a scaly shape as a whole particle, and may have an elliptical shape, a circular shape, or cuts around the fine particles. The scale-like particles tend to have a high Martens hardness, and the spherical and dendritic particles tend to have a low Martens hardness. Further, as the amount of conductive filler increases, the Martens hardness tends to increase. Further, the higher the hardness of the cured resin, the harder the Martens hardness.
 導電性フィラーは、単独または混合して用いられる。例えば、鱗片状粒子と球状粒子の組み合わせ、鱗片状粒子とデンドライト状粒子の組み合わせ、鱗片状粒子と針状粒子の組み合わせ、鱗片状粒子、デンドライト状粒子および針状粒子の組み合わせが例示できる。これらに更にナノサイズの球状粒子を併用してもよい。 The conductive fillers may be used alone or as a mixture. For example, a combination of scaly particles and spherical particles, a combination of scaly particles and dendrite particles, a combination of scaly particles and acicular particles, a combination of scaly particles, dendrite particles and acicular particles can be exemplified. These may also be used in combination with nano-sized spherical particles.
 また、デンドライト状粒子または/および針状粒子を併用することによって、導電性フィラー同士の接触点を多くし、シールド特性を向上させることができる。また、デンドライト状粒子または/および針状粒子の併用によって、バインダー成分との接触面積を増加させることができるので高品質の電磁波シールド部材を提供できる。 Also, by using dendrite-shaped particles and/or needle-shaped particles in combination, it is possible to increase the contact points between the conductive fillers and improve the shield characteristics. Further, the combined use of dendrite-like particles and/or acicular particles can increase the contact area with the binder component, so that a high-quality electromagnetic wave shield member can be provided.
 導電性フィラーの含有量は、熱軟化性樹脂組成物層の固形分(100質量%)中、40~85質量%であることが好ましく、50~80質量%がより好ましい。 The content of the conductive filler is preferably 40 to 85% by mass, and more preferably 50 to 80% by mass in the solid content (100% by mass) of the thermosoftening resin composition layer.
 導電性接着剤層中の導電性フィラー100質量%に対して、針状粒子または/およびデンドライト状粒子を50質量%以下含有させることが好ましい。より好ましくは0.5~40質量%、更に好ましくは1~35質量%、特に好ましくは1~30質量%である。50質量%以下含有させることで、耐擦傷性のより優れた電磁波シールド部材を提供することができる。 It is preferable to contain 50% by mass or less of acicular particles and/or dendrite particles with respect to 100% by mass of the conductive filler in the conductive adhesive layer. The amount is more preferably 0.5 to 40% by mass, further preferably 1 to 35% by mass, and particularly preferably 1 to 30% by mass. By containing 50% by mass or less, it is possible to provide an electromagnetic wave shield member having more excellent scratch resistance.
 鱗片状粒子の平均粒子径D50は、2~100μmが好ましい。鱗片状粒子に、ナノサイズの導電性フィラーを混合してもよい。 The average particle diameter D50 of the scale-like particles is preferably 2 to 100 μm. A nano-sized conductive filler may be mixed with the scaly particles.
 針状粒子の平均粒子径D50は2~100μmが好ましく、2~80μmがより好ましい。更に好ましくは3~50μmであり、特に好ましくは5~20μmである。デンドライト状粒子の平均粒子径D50の好ましい範囲も同様に、2~100μmが好ましく、2~80μmがより好ましい。更に好ましくは3~50μmであり、特に好ましくは5~20μmである。鱗片状粒子の平均粒子径D50は2~100μmが好ましく、2~80μmがより好ましい。更に好ましくは3~50μmであり、特に好ましくは5~20μmである。鱗片状粒子とデンドライト状粒子を併用することにより、表面光沢度を最適化し、電磁波シールド層に文字を直接印刷した場合に、印字視認性を高めることができる。 The average particle diameter D50 of the acicular particles is preferably 2 to 100 μm, more preferably 2 to 80 μm. The thickness is more preferably 3 to 50 μm, and particularly preferably 5 to 20 μm. Similarly, the preferable range of the average particle diameter D50 of the dendrite-shaped particles is preferably 2 to 100 μm, more preferably 2 to 80 μm. The thickness is more preferably 3 to 50 μm, and particularly preferably 5 to 20 μm. The average particle diameter D50 of the scaly particles is preferably 2 to 100 μm, more preferably 2 to 80 μm. The thickness is more preferably 3 to 50 μm, and particularly preferably 5 to 20 μm. By using the scale-like particles and the dendrite-like particles together, the surface glossiness can be optimized and the print visibility can be improved when the characters are directly printed on the electromagnetic wave shield layer.
 平均粒子径D50の測定方法等は、実施形態A1で述べた通りである。導電性接着剤層を構成する組成物には、実施形態A1で述べた添加剤(着色剤、難燃剤、無機添加剤、滑剤、ブロッキング防止剤等)を含んでいてもよい。それぞれの具体例は、実施形態A1と同様である。 The method of measuring the average particle diameter D50 and the like are as described in Embodiment A1. The composition forming the conductive adhesive layer may include the additives described in Embodiment A1 (colorant, flame retardant, inorganic additive, lubricant, antiblocking agent, etc.). Each specific example is similar to that of the embodiment A1.
 導電性接着剤層は、熱圧着により導電性フィラーが連続的に接触して導電性を有する層であればよく、熱圧着前の段階で必ずしも導電性を有していなくてもよい。導電性接着剤層は、上述した導電性フィラーと、バインダー樹脂前駆体を含有する組成物を混合攪拌し、離形性基材上に塗工後乾燥することで形成することができる。また離形性クッション部材3に直接塗工し乾燥する方法でも形成することができる。 The conductive adhesive layer may be a layer having conductivity due to continuous contact of the conductive filler by thermocompression bonding, and does not necessarily have conductivity at the stage before thermocompression bonding. The conductive adhesive layer can be formed by mixing and stirring the above-described conductive filler and a composition containing a binder resin precursor, coating the composition on a releasable substrate, and then drying. Alternatively, the releasable cushion member 3 may be directly applied and dried.
 導電性接着剤層の塗液を塗工後、乾燥して離形性基材上に導電性接着剤層を形成する。乾燥工程は、加熱(例えば、80~120℃)を行うことが好ましい。電磁波シールド部材のクルトシスを調整する観点からは、塗液を塗工後、加熱乾燥前に25℃(室温)・常圧で乾燥を1~10分行うことが好ましい。より好ましい加熱乾燥前の25℃(室温)での乾燥時間は2~6分である。加熱乾燥前に室温で乾燥するプロセスを設けることにより、クルトシスの値を調整することができる。 After applying the coating liquid for the conductive adhesive layer, it is dried to form the conductive adhesive layer on the releasable substrate. The drying step is preferably performed by heating (for example, 80 to 120° C.). From the viewpoint of adjusting the kurtosis of the electromagnetic wave shield member, it is preferable to perform drying at 25° C. (room temperature) and normal pressure for 1 to 10 minutes after applying the coating liquid and before heating and drying. More preferable drying time at 25° C. (room temperature) before heat drying is 2 to 6 minutes. The kurtosis value can be adjusted by providing a process of drying at room temperature before heat drying.
 塗液の粘度と加熱乾燥前の25℃での乾燥時間が電磁波シールド部材1のクルトシスに与える影響について、図9の模式図を用いて説明する。同図に示すように、離形性基材15上に導電性接着剤層6を形成するために塗液を塗布する。溶剤が含まれている乾燥途上の導電性接着剤層6Pが得られる。電磁波シールド用積層体は、実施形態A1の電磁波シールド用積層体と同様の方法により製造することができる。 The influence of the viscosity of the coating liquid and the drying time at 25° C. before heating and drying on the kurtosis of the electromagnetic wave shield member 1 will be described with reference to the schematic diagram of FIG. 9. As shown in the figure, a coating liquid is applied to form the conductive adhesive layer 6 on the releasable base material 15. A conductive adhesive layer 6P that is in the process of drying and contains a solvent is obtained. The electromagnetic wave shielding laminate can be manufactured by the same method as the electromagnetic wave shielding laminate of Embodiment A1.
[実施形態B2]
 次に、実施形態B1とは異なる電子部品搭載基板の例について説明する。実施形態B2に係る電子部品搭載基板は、電磁波シールド部材が2層の電磁波シールド層からなっている点において、単層の電磁波シールド層からなる電磁波シールド部材を用いた実施形態B1と相違するが、その他の基本的な構成および製造方法は実施形態B1と同様である。そして、実施形態Aに係る電磁波シールド部材に代えて、実施形態Bに係る電磁波シールド部材を用いている点および別途記載している点を除き、実施形態A2と基本的な構成および製造方法は同様である。重複する記載は適宜省略する。
[Embodiment B2]
Next, an example of an electronic component mounting board different from that of the embodiment B1 will be described. The electronic component mounting board according to the embodiment B2 is different from the embodiment B1 using the electromagnetic wave shield member composed of a single electromagnetic wave shield layer in that the electromagnetic wave shield member is composed of two electromagnetic wave shield layers, The other basic configuration and manufacturing method are the same as in Embodiment B1. Then, the basic configuration and the manufacturing method are the same as those of the embodiment A2 except that the electromagnetic wave shielding member according to the embodiment B is used instead of the electromagnetic wave shielding member according to the embodiment A and that it is described separately. Is. Overlapping description is omitted as appropriate.
 実施形態B2の電磁波シールド部材は、図11に示すように、第1導電性接着剤層6a1および第2導電性接着剤層6a2の2層からなる導電性接着剤層6aである電磁波シールド用部材2aと、離形性クッション部材3aからなる電磁波シールド用積層体4aを用いて形成される。この電磁波シールド用積層体4aを熱圧着することにより、電子部品30が搭載された基板20上に第1電磁波シールド層と第2電磁波シールド層からなる電磁波シールド部材が被覆される。この2層の電磁波シールド層の積層体である電磁波シールド部材において、表層側から測定したときの押込み弾性率を1~10GPaとする。2層の電磁波シールド層により構成することで、電磁波シールド部材の設計自由度を高めることができる。例えば、電磁波反射層と電磁波吸収層の積層体とする態様が例示できる。電磁波シールド層を3層以上積層してもよい。 As shown in FIG. 11, the electromagnetic wave shielding member of Embodiment B2 is an electromagnetic wave shielding member that is a conductive adhesive layer 6a composed of two layers of a first conductive adhesive layer 6a1 and a second conductive adhesive layer 6a2. 2a and an electromagnetic wave shielding laminate 4a including a releasable cushion member 3a. By thermocompression-bonding the electromagnetic wave shielding laminate 4a, the electromagnetic wave shielding member including the first electromagnetic wave shielding layer and the second electromagnetic wave shielding layer is coated on the substrate 20 on which the electronic component 30 is mounted. In the electromagnetic wave shield member, which is a laminate of the two electromagnetic wave shield layers, the indentation elastic modulus measured from the surface layer side is 1 to 10 GPa. By comprising two electromagnetic wave shield layers, the degree of freedom in designing the electromagnetic wave shield member can be increased. For example, a mode in which a laminate of an electromagnetic wave reflection layer and an electromagnetic wave absorption layer is used can be exemplified. You may laminate|stack three or more electromagnetic wave shield layers.
 実施形態B2に係る電子部品搭載基板によれば、2層の電磁波シールド層からなる電磁波シールド部材を用いることにより、実施形態B1と同様の効果が得られる。また、電磁波シールド層を2層積層したことにより各層の設計自由度を高められるので、ニーズに応じた電磁波シールド部材を提供しやすいというメリットがある。 According to the electronic component mounting board of the embodiment B2, the same effect as that of the embodiment B1 can be obtained by using the electromagnetic wave shield member including the two electromagnetic wave shield layers. Further, by laminating two electromagnetic wave shield layers, the degree of freedom in designing each layer can be increased, and there is an advantage that it is easy to provide an electromagnetic wave shield member according to needs.
[実施形態B3~実施形態B5]
 実施形態B3~実施形態B5に係る電子部品搭載基板およびその製造方法は、実施形態Aに係る電磁波シールド部材に代えて、実施形態Bに係る電磁波シールド部材(実施形態B1、B2の記載含む)を用いている点を除き、上述した実施形態A3~実施形態A5の説明を援用できる。このため、実施形態B3~B5の電子部品搭載基板およびその製造方法の説明は省略する。
[Embodiment B3 to Embodiment B5]
In the electronic component mounting board and the manufacturing method thereof according to the embodiments B3 to B5, the electromagnetic wave shield member according to the embodiment B (including the descriptions of the embodiments B1 and B2) is replaced with the electromagnetic wave shield member according to the embodiment A. The description of the above-described embodiments A3 to A5 can be applied except for the use. Therefore, the description of the electronic component mounting boards of Embodiments B3 to B5 and the manufacturing method thereof will be omitted.
 [[実施形態C]]
 以下、実施形態Cに係る電子部品搭載基板の具体例について説明する。
[実施形態C1]
<電子部品搭載基板>
 実施形態C1の電子部品搭載基板は、上記実施形態Aの電磁波シールド部材に代えて上記実施形態Cの電磁波シールド部材を用いる。実施形態C1の電子部品搭載基板およびその製造方法は、実施形態C1の電磁波シールド部材および別途記載している点を除き、基本的な構成および製造方法は実施形態A1と共通する。共通する説明は適宜省略する。
[[Embodiment C]]
Hereinafter, a specific example of the electronic component mounting board according to the embodiment C will be described.
[Embodiment C1]
<Electronic component mounting board>
The electronic component mounting board of the embodiment C1 uses the electromagnetic wave shield member of the embodiment C instead of the electromagnetic wave shield member of the embodiment A. The electronic component mounting board and the manufacturing method thereof of the embodiment C1 have the same basic configuration and manufacturing method as that of the embodiment A1 except that the electromagnetic wave shield member of the embodiment C1 is described separately. Common description will be omitted as appropriate.
 実施形態C1に係る電子部品搭載基板の基本構成の好適例として、前述した図1~図10で説明した実施形態A1の電子部品搭載基板の基本構成が例示できる。以下、これらの図を用いて実施形態C1の特徴部について説明する。 As a preferable example of the basic configuration of the electronic component mounting board according to the embodiment C1, the basic configuration of the electronic component mounting board of the embodiment A1 described in FIGS. 1 to 10 can be exemplified. Hereinafter, the characteristic part of the embodiment C1 will be described with reference to these drawings.
<電磁波シールド部材>
 実施形態C1の電磁波シールド部材1は、実施形態A1で説明したように、基板20上に搭載された電子部品30の天面に電磁波シールド用積層体を載置して熱圧着により電子部品30および基板20を被覆することにより得られる。電磁波シールド部材1の被覆態様は、実施形態A1と同様であるので省略する。
<Electromagnetic wave shield member>
As described in the embodiment A1, the electromagnetic wave shield member 1 of the embodiment C1 has the electromagnetic wave shielding laminate mounted on the top surface of the electronic component 30 mounted on the substrate 20 and thermocompression bonded to the electronic component 30. It is obtained by coating the substrate 20. Since the coating mode of the electromagnetic wave shield member 1 is the same as that of the embodiment A1, the description thereof is omitted.
 実施形態C1の電磁波シールド部材1は、実施形態A1と同様に、電磁波シールド用積層体を用いて形成することができる。そして、図4に示すように、電磁波シールド用積層体4は、電磁波シールド用部材2と離形性クッション部材3からなる。この電磁波シールド用部材2は、実施形態A1と同様に導電性接着剤層6の単層からなる。導電性接着剤層6は熱圧着により電子部品30および基板20に接合されて電磁波シールド層5が形成される。この電磁波シールド層5が電磁波シールド部材1として機能する。
 実施形態C1の電磁波シールド用部材2は、実施形態A1で説明したように、2層以上の導電性接着剤層の積層体から形成したり、導電性接着剤層とハードコート層の積層体から形成したり、絶縁性接着剤層と導電性接着剤層の積層体から形成したりする等、他の層の積層体から形成してもよい。
 実施形態C1の電磁波シールド層5には、バインダー樹脂と導電性フィラーが含まれる。電磁波シールド層5中の導電性フィラーは連続的に接触されており導電性を示す。電磁波シールド性を高める観点から電磁波シールド層5のシート抵抗値は1Ω/□以下が好ましい。
The electromagnetic wave shield member 1 of the embodiment C1 can be formed using the electromagnetic wave shielding laminate as in the embodiment A1. Then, as shown in FIG. 4, the electromagnetic wave shielding laminate 4 is composed of the electromagnetic wave shielding member 2 and the releasable cushion member 3. This electromagnetic wave shielding member 2 is composed of a single layer of the conductive adhesive layer 6 as in the embodiment A1. The conductive adhesive layer 6 is bonded to the electronic component 30 and the substrate 20 by thermocompression bonding to form the electromagnetic wave shield layer 5. The electromagnetic wave shield layer 5 functions as the electromagnetic wave shield member 1.
The electromagnetic wave shielding member 2 of Embodiment C1 is formed of a laminate of two or more conductive adhesive layers or a laminate of a conductive adhesive layer and a hard coat layer, as described in Embodiment A1. It may be formed, or formed from a laminated body of other layers such as a laminated body of an insulating adhesive layer and a conductive adhesive layer.
The electromagnetic wave shield layer 5 of the embodiment C1 contains a binder resin and a conductive filler. The conductive filler in the electromagnetic wave shield layer 5 is in continuous contact with the conductive filler and exhibits conductivity. From the viewpoint of enhancing the electromagnetic wave shielding property, the sheet resistance value of the electromagnetic wave shielding layer 5 is preferably 1Ω/□ or less.
 電磁波シールド部材1は、その表層のJISB0601;2001に準拠して測定した二乗平均平方根高さRqを0.05μm以上、0.3μm未満とする。二乗平均平方根高さRqは、平均面からの距離の標準偏差に相当するパラメータであり、高さの標準偏差に相当し、一つの軸(x軸)に沿った表面の高さ変化をZ(x)として以下の数式(2)で表される。Lは基準長さである。
Figure JPOXMLDOC01-appb-M000003
The electromagnetic wave shield member 1 has a root mean square height Rq of 0.05 μm or more and less than 0.3 μm measured according to JIS B0601; 2001 of the surface layer. The root mean square height Rq is a parameter corresponding to the standard deviation of the distance from the mean surface, which corresponds to the standard deviation of the height, and the height change of the surface along one axis (x axis) is Z( x) is expressed by the following mathematical expression (2). L is a reference length.
Figure JPOXMLDOC01-appb-M000003
 本発明者らが鋭意検討を重ねた結果、電磁波シールド部材1の表層の接触界面の形状として二乗平均平方根高さRqを0.05μm以上、0.3μm未満の範囲とすることにより、冷熱サイクル試験(-50℃~125℃)に対し、電磁波シールド部材の罅割れを効果的に防止でき、被覆性に優れる電磁波シールド部材を提供できることを見出した。このため、信頼性の高い電子部品搭載基板を提供できる。本実施形態の電子部品搭載基板は、温度差の大きい苛酷な環境下で使用する電子機器に用いられる電子部品搭載基板(例えば、自動車に搭載される電子部品搭載基板)として特に好適である。 As a result of intensive studies by the present inventors, a cooling/heating cycle test was performed by setting the root mean square height Rq as the shape of the contact interface of the surface layer of the electromagnetic wave shield member 1 to a range of 0.05 μm or more and less than 0.3 μm. It has been found that, against (-50°C to 125°C), cracking of the electromagnetic wave shielding member can be effectively prevented and an electromagnetic wave shielding member having excellent coverage can be provided. Therefore, it is possible to provide a highly reliable electronic component mounting board. The electronic component mounting board of the present embodiment is particularly suitable as an electronic component mounting board used in an electronic device used in a severe environment with a large temperature difference (for example, an electronic component mounting board mounted in an automobile).
 電子部品搭載基板の製造工程において、ダイシングテープを介して電磁波シールド部材をダイシング台に固定し、この状態を維持しながら基板側から製品毎に個片化する工程を行う場合がある。その場合、工程終了後にダイシングテープと電磁波シールド部材を剥離するが、この際に、電磁波シールド部材と電子部品の間に浮き(部分的な密着不良)や剥離が生じる場合がある。本実施形態の電子部品搭載基板によれば、電磁波シールド部材の表層の二乗平均平方根高さRqを0.05μm以上、0.3μm未満とすることにより、係る問題に対しても優れた効果を発揮できる。 In the manufacturing process of electronic component mounting boards, there is a case in which the electromagnetic wave shield member is fixed to a dicing table via a dicing tape, and while maintaining this state, the board side is divided into individual products. In that case, the dicing tape and the electromagnetic wave shield member are peeled off after the process is finished, but at this time, floating (partial poor adhesion) or peeling may occur between the electromagnetic wave shield member and the electronic component. According to the electronic component mounting board of the present embodiment, by setting the root mean square height Rq of the surface layer of the electromagnetic wave shield member to be 0.05 μm or more and less than 0.3 μm, an excellent effect is achieved even with respect to such a problem. it can.
 本実施形態によれば、冷熱サイクル耐性、並びに個片化工程後の電子部品との密着性に優れる、被覆性の優れた電磁波シールド層を有するので、信頼性の高い電子部品搭載基板を提供することができる。 According to the present embodiment, since it has an electromagnetic wave shield layer having excellent coverage, which is excellent in thermal cycle resistance and in adhesion with the electronic component after the individualizing step, a highly reliable electronic component mounting board is provided. be able to.
 また、電子部品搭載基板は、リフロー工程などの高温処理を行う場合があるが、この際、電子部品搭載基板内の物質、例えば半田フラックスの成分が電磁波シールド部材101上に付着することがある。係る問題に対しても、実施形態C1の電磁波シールド部材の表層の二乗平均平方根高さRqを0.05μm以上、0.3μm未満とすることにより優れた効果を発揮できる。即ち、電磁波シールド部材1上の物質の付着を効果的に防止する効果がある。これは、電磁波シールド部材1の表面の凹凸を適切なものとし、凹凸面に半田フラックスの成分などの物質が残留してしまうのを効果的に防止できることによると考えられる。 Also, the electronic component mounting board may be subjected to high temperature processing such as a reflow process. At this time, a substance in the electronic component mounting board, for example, a component of solder flux may adhere to the electromagnetic wave shielding member 101. With respect to this problem as well, an excellent effect can be exhibited by setting the root mean square height Rq of the surface layer of the electromagnetic wave shielding member of Embodiment C1 to 0.05 μm or more and less than 0.3 μm. That is, there is an effect of effectively preventing the adhesion of the substance on the electromagnetic wave shield member 1. It is considered that this is because the unevenness on the surface of the electromagnetic wave shield member 1 can be made appropriate and substances such as the components of the solder flux can be effectively prevented from remaining on the uneven surface.
 上述の冷熱サイクル試験に対し優れた被覆性を実現する観点からは、実施形態C1の電磁波シールド部材の二乗平均平方根高さRqの好ましい範囲は0.05~0.29μmであり、より好ましい範囲は0.05~0.27μm、特に好ましい範囲は0.05~0.25μmである。 From the viewpoint of achieving excellent coverage with respect to the thermal cycle test described above, the preferred range of the root mean square height Rq of the electromagnetic wave shield member of Embodiment C1 is 0.05 to 0.29 μm, and the more preferred range is 0.05 to 0.27 μm, and a particularly preferable range is 0.05 to 0.25 μm.
 実施形態C1の電磁波シールド部材1の表層の二乗平均平方根傾斜Rdqは0.05~0.4の範囲とすることが好ましく、0.05~0.37とすることがより好ましく、0.1~0.35とすることが更に好ましい。本明細書において、二乗平均平方根高さRqと二乗平均平方根傾斜Rdqは、JISB0601;2001に準拠して測定した得られた値であり、後述する実施例に記載の方法により求めた値をいう。二乗平均平方根傾斜Rdqを0.05~0.4とすることにより、防汚性と罅割れをより効果的に良好にすることができる。
 二乗平均平方根傾斜Rdqは、基準長さにおいて、局部傾斜dz/dxの二乗平均平方根であり、以下の数式(3)によって表される。
Figure JPOXMLDOC01-appb-M000004
 Rdqは、光学顕微鏡、レーザー顕微鏡、および電子顕微鏡いずれかで得られる表面形状を、解析ソフトによって処理することにより、算出することができる。Rdqは、表面における凹凸の険しさを表現するパラメータである。表面の性状を表現するパラメータとしては、算術平均高さRaや最大高さRzおよびRqが用いられるが、これらは凹凸の高さのみを表したパラメータであり、表面の状態を正確に表すには適当でない。
 Rdqの数値が大きい程、表面凹凸はより険しくなる。即ち、Rdqの数値によって、表面凹凸険しさの程度を判断することができる。
The root mean square slope Rdq of the surface layer of the electromagnetic wave shield member 1 of Embodiment C1 is preferably in the range of 0.05 to 0.4, more preferably 0.05 to 0.37, and 0.1 to It is more preferable to set it to 0.35. In the present specification, the root mean square height Rq and the root mean square slope Rdq are values obtained according to JIS B0601; 2001, and are values obtained by the method described in Examples below. By setting the root mean square slope Rdq to be 0.05 to 0.4, the antifouling property and cracking can be more effectively improved.
The root mean square slope Rdq is the root mean square of the local slope dz/dx in the reference length, and is represented by the following mathematical expression (3).
Figure JPOXMLDOC01-appb-M000004
Rdq can be calculated by processing the surface shape obtained by any one of an optical microscope, a laser microscope, and an electron microscope with analysis software. Rdq is a parameter expressing the degree of unevenness on the surface. Arithmetic mean height Ra and maximum heights Rz and Rq are used as parameters for expressing the surface property, but these are parameters expressing only the height of the unevenness, and to accurately express the state of the surface. Not suitable.
The larger the value of Rdq, the steeper the surface unevenness. That is, it is possible to judge the degree of the surface roughness by the numerical value of Rdq.
 実施形態C1の電磁波シールド部材1の表面の二乗平均平方根高さRqおよび二乗平均平方根傾斜Rdqは、電磁波シールド用積層体4中の電磁波シールド用部材2の製造工程により調整することができる。また、電磁波シールド部材1を形成するための、熱圧着前の電磁波シールド用部材の組成物の成分およびその配合量によって調整できる。詳細は後述する。なお、本発明者らが検討を重ねたところ、電磁波シールド層として機能し得る量の導電性フィラーを配合することにより、リフロー処理前後において二乗平均平方根高さRqおよび二乗平均平方根傾斜Rdqの値は実質的に変動しないか、変動してもその変化量は小さいことを確認した。後述する実施形態において開示するハードコート層などの絶縁層においても無機フィラーを配合することにより、リフロー処理前後において二乗平均平方根高さRqおよび二乗平均平方根傾斜Rdqの値は実質的に変動しないか、変動してもその変化量は小さいことを確認した。 The root mean square height Rq and root mean square slope Rdq of the surface of the electromagnetic wave shield member 1 of Embodiment C1 can be adjusted by the manufacturing process of the electromagnetic wave shield member 2 in the electromagnetic wave shield laminate 4. Further, it can be adjusted by the components of the composition of the electromagnetic wave shielding member before thermocompression bonding for forming the electromagnetic wave shielding member 1 and the compounding amount thereof. Details will be described later. Note that the inventors of the present invention have made extensive studies and found that the values of the root mean square height Rq and the root mean square slope Rdq before and after the reflow treatment are improved by adding a conductive filler in an amount capable of functioning as an electromagnetic wave shield layer. It was confirmed that there was virtually no change, or the amount of change was small even if there was a change. By blending the inorganic filler also in the insulating layer such as the hard coat layer disclosed in the embodiment described below, the values of the root mean square height Rq and the root mean square slope Rdq do not substantially change before and after the reflow treatment, or It was confirmed that the amount of change was small even if it fluctuated.
 実施形態C1の電磁波シールド部材1の表層の水接触角は90~130°とすることが好ましい。この範囲とすることにより、浮きをより効果的に抑制し、且つ防汚性をより効果的に抑制することができる。電磁波シールド部材の水接触角のより好ましい範囲は95~125°であり、更に好ましい範囲は100~120°である。電磁波シールド部材の水接触角は、電磁波シールド部材を形成する組成物において表面調整剤の添加量によりその数値を調整することができる。電磁波シールド部材1における表面調整剤の添加量が増えるにつれて水接触角の値が大きくなる傾向にある。 The water contact angle of the surface layer of the electromagnetic wave shield member 1 of Embodiment C1 is preferably 90 to 130°. By setting it in this range, it is possible to suppress the floating more effectively and the antifouling property more effectively. A more preferable range of the water contact angle of the electromagnetic wave shield member is 95 to 125°, and a further preferable range is 100 to 120°. The water contact angle of the electromagnetic wave shield member can be adjusted by adjusting the amount of the surface modifier added to the composition forming the electromagnetic wave shield member. The value of the water contact angle tends to increase as the amount of the surface modifier added to the electromagnetic wave shield member 1 increases.
<電子部品搭載基板の製造方法>
 実施形態C1の電磁波シールド部材1の製造方法は、基本的には実施形態A1の電磁波シールド部材1の製造方法と同一である。導電性接着剤層6の厚みは、電子部品30の天面および側面および基板20の露出面に被覆して、電磁波シールド層5を形成することが可能な厚みとする。用いるバインダー樹脂前駆体の流動性や、電子部品30間の距離およびサイズにより変動し得るが、通常、10~200μm程度が好ましく、15~100μm程度がより好ましく、20~70μm程度がさらに好ましい。
<Method for manufacturing electronic component mounting board>
The method of manufacturing the electromagnetic wave shield member 1 of Embodiment C1 is basically the same as the method of manufacturing the electromagnetic wave shield member 1 of Embodiment A1. The thickness of the conductive adhesive layer 6 is such that the electromagnetic wave shield layer 5 can be formed by covering the top and side surfaces of the electronic component 30 and the exposed surface of the substrate 20. Although it may vary depending on the fluidity of the binder resin precursor used and the distance and size between the electronic components 30, it is usually preferably about 10 to 200 μm, more preferably about 15 to 100 μm, and even more preferably about 20 to 70 μm.
 実施形態C1においては、ダイシングテープを用いて電磁波シールド部材1をダイシング台に固定し、基板20側からダイシングカットを行う場合について説明する。基板20の外側主面に半田ボールが接合している場合には、この方法が好適である。実施形態C1に係る電磁波シールド部材1によれば、電磁波シールド部材1の表層の二乗平均平方根高さRqを0.05μm以上、0.3μm未満の範囲にすることにより、個片化工程において電磁波シールド部材1側をダイシングテープで固定する場合においても、電磁波シールド部材の電子部品との浮き(部分密着性不良)、剥離を効果的に防止して、被覆性の良好な電子部品搭載基板を提供することができる。 In the embodiment C1, a case will be described in which the electromagnetic wave shield member 1 is fixed to a dicing table using a dicing tape and a dicing cut is performed from the substrate 20 side. This method is suitable when solder balls are bonded to the outer main surface of the substrate 20. According to the electromagnetic wave shield member 1 of Embodiment C1, the root mean square height Rq of the surface layer of the electromagnetic wave shield member 1 is set to be in the range of 0.05 μm or more and less than 0.3 μm, so that the electromagnetic wave shield is formed in the individualizing step. Even when the member 1 side is fixed with a dicing tape, the electromagnetic wave shield member is effectively prevented from floating (partial adhesion) and peeling off from the electronic component, and an electronic component mounting substrate having good coverage is provided. be able to.
<電磁波シールド用積層体>
 実施形態C1の電磁波シールド用積層体は、図4において説明したように、電磁波シールド用部材2と離形性クッション部材3の2層からなる。実施形態C1においては、電磁波シールド用部材2は単層の導電性接着剤層6からなる。導電性接着剤層6は熱圧着工程を経て電子部品30や基板20と接合され、電磁波シールド層5として機能する。
<Laminate for electromagnetic wave shield>
The electromagnetic wave shielding laminate of Embodiment C1 is composed of two layers of the electromagnetic wave shielding member 2 and the releasable cushion member 3, as described in FIG. In the embodiment C1, the electromagnetic wave shielding member 2 is composed of the single-layer conductive adhesive layer 6. The conductive adhesive layer 6 is bonded to the electronic component 30 and the substrate 20 through a thermocompression bonding process and functions as the electromagnetic wave shield layer 5.
(導電性接着剤層)
 導電性接着剤層6は、バインダー樹脂前駆体と導電性フィラーとを含有する樹脂組成物から形成された層である。バインダー樹脂前駆体は、少なくとも熱軟化性樹脂を含む。熱軟化性樹脂は、熱可塑性樹脂、熱硬化性樹脂および活性光線硬化性樹脂が例示できる。熱硬化性樹脂および活性光線硬化性樹脂は、通常、反応性官能基を有する。熱硬化性樹脂を用いる場合は、硬化性化合物や熱硬化助剤を併用できる。また、活性光線硬化性樹脂を用いる場合は光重合開始剤、増感剤等を併用できる。製造工程の簡便性からは、熱圧着時に硬化する熱硬化タイプが好ましい。
 また、自己架橋性樹脂や互いに架橋する複数の樹脂を用いてもよい。また、これらの樹脂に加えて熱可塑性樹脂を混合させてもよい。樹脂および硬化性化合物等の配合成分は、それぞれ独立に単独または複数の併用とすることができる。
 なお、導電性接着剤層6の段階で架橋が一部形成されてBステージ(半硬化した状態)となっていてもよい。例えば、熱硬化性樹脂と硬化性化合物の一部が反応して半硬化した状態が含まれていてもよい。
(Conductive adhesive layer)
The conductive adhesive layer 6 is a layer formed from a resin composition containing a binder resin precursor and a conductive filler. The binder resin precursor contains at least a thermosoftening resin. Examples of the thermosoftening resin include a thermoplastic resin, a thermosetting resin and an actinic ray curable resin. The thermosetting resin and the actinic ray curable resin usually have a reactive functional group. When a thermosetting resin is used, a curable compound and a thermosetting auxiliary can be used together. When an actinic ray curable resin is used, a photopolymerization initiator, a sensitizer and the like can be used in combination. A thermosetting type that cures at the time of thermocompression bonding is preferable from the viewpoint of simplicity of the manufacturing process.
Alternatively, a self-crosslinking resin or a plurality of resins that crosslink each other may be used. In addition to these resins, a thermoplastic resin may be mixed. The components such as the resin and the curable compound may be used alone or in combination of two or more.
Incidentally, a part of the crosslinks may be formed at the stage of the conductive adhesive layer 6 to be in the B stage (semi-cured state). For example, a state in which the thermosetting resin and a part of the curable compound are reacted and semi-cured may be included.
 熱軟化性樹脂の好適な例は、実施形態A1と同様である。上記熱軟化性樹脂は、熱硬化性樹脂として、加熱による架橋反応に利用できる官能基を複数有していてもよい。官能基の具体例は、実施形態A1と同様である。 A suitable example of the heat softening resin is the same as that of the embodiment A1. The thermosoftening resin, as a thermosetting resin, may have a plurality of functional groups that can be used for a crosslinking reaction by heating. Specific examples of the functional group are the same as in Embodiment A1.
 硬化性化合物の好適な例および好適な含有量等は、実施形態A1と同様である。また、熱可塑性樹脂の好適例、粘着付与樹脂の好適例等は、実施形態A1と同様である。 A suitable example and a suitable content of the curable compound are the same as those of the embodiment A1. Further, suitable examples of the thermoplastic resin, suitable examples of the tackifying resin, and the like are the same as those of the embodiment A1.
 更に、導電性フィラーは、金属フィラー、導電性セラミックス粒子およびそれらの混合物が例示でき、これらの具体例は実施形態A1と同様である。また、銀コート銅における銀の好適な含有量も実施形態A1と同様である。更に、コアシェル型粒子の場合、コア部に対するコート層の被覆率の好適範囲等も実施形態A1と同様である。 Further, the conductive filler can be exemplified by metal filler, conductive ceramic particles and a mixture thereof, and specific examples thereof are the same as those in the embodiment A1. Further, the preferable content of silver in the silver-coated copper is the same as that of the embodiment A1. Further, in the case of core-shell type particles, the preferable range of the coverage of the coat layer with respect to the core portion, etc. are the same as those of the embodiment A1.
 導電性フィラーとして、電磁波吸収フィラーを用いてもよく、具体例としては実施形態A1と同様の例を挙げられる。 An electromagnetic wave absorbing filler may be used as the conductive filler, and specific examples thereof include the same examples as in Embodiment A1.
 導電性接着剤層に用いる導電性フィラーの形状は、鱗片(フレーク)状粒子、デンドライト(樹枝)状粒子、針状粒子、プレート状粒子、ブドウ状粒子、繊維状粒子、球状粒子が例示できるが、鱗片状粒子の比率を高めることにより二乗平均平方根高さRqが低下する傾向にあり、鱗片状粒子の比率を下げることにより二乗平均平方根高さRqが高くなる傾向にある。所望の二乗平均平方根高さRqおよび二乗平均平方根傾斜Rdqの数値を調整する観点からは、針状粒子または/およびデンドライト状粒子の導電性フィラーを含有させることが好ましい。 Examples of the shape of the conductive filler used in the conductive adhesive layer include scale (flake) particles, dendrite (dendritic) particles, needle particles, plate particles, grape particles, fibrous particles, and spherical particles. The root mean square height Rq tends to decrease by increasing the ratio of the scaly particles, and the root mean square height Rq tends to increase by decreasing the ratio of the scaly particles. From the viewpoint of adjusting the desired values of the root mean square height Rq and the root mean square slope Rdq, it is preferable to contain a conductive filler of acicular particles and/or dendrite particles.
 導電性フィラーは、単独または混合して用いられる。導電性フィラーを併用する場合、所望の二乗平均平方根高さRqを得て、信頼性の高い電磁波シールド部材を提供する観点から、鱗片状粒子およびデンドライト状粒子の組み合わせ、鱗片状粒子および針状粒子の組み合わせ、鱗片状粒子、デンドライト状粒子および針状粒子の組み合わせが好適である。特に好ましくは、鱗片状粒子とデンドライト状粒子の組み合わせである。ここで鱗片状粒子は厚みが0.2μm以下であることが好ましい。 The conductive fillers may be used alone or as a mixture. When used in combination with a conductive filler, from the viewpoint of obtaining a desired root mean square height Rq and providing a highly reliable electromagnetic wave shielding member, a combination of scale-like particles and dendrite-like particles, scale-like particles and acicular particles. And a combination of scale-like particles, dendrite-like particles and needle-like particles. Particularly preferred is a combination of scaly particles and dendrite particles. Here, the scale-like particles preferably have a thickness of 0.2 μm or less.
 導電性フィラーの含有量は、熱軟化性樹脂組成物層の固形分(100質量%)中、40~85質量%であることが好ましく、50~80質量%がより好ましい。 The content of the conductive filler is preferably 40 to 85% by mass, and more preferably 50 to 80% by mass in the solid content (100% by mass) of the thermosoftening resin composition layer.
 導電性接着剤層中の導電性フィラー100質量%に対して、針状粒子または/およびデンドライト状粒子を30質量%以下とすることが好ましい。より好ましくは0.1~20質量%、更に好ましくは1~20質量%、特に好ましい範囲は3~16質量%である。二乗平均平方根高さRqを0.05μm以上、0.3μm未満に調整する方法は、種々の方法があり、特に限定されない。例えば、電磁波シールド部材の表層、実施形態C1においては導電性接着剤層6の表層を、クッション部材を積層する前にロールで予め押圧処理し、次いで、クッション部材の、電磁波シールド部材の表層と接合する側の表面の二乗平均平方根高さが所望のRqであるクッション部材を用いることにより、二乗平均平方根高さRqを容易に調整することができる。 The acicular particles and/or dendrite particles are preferably 30% by mass or less with respect to 100% by mass of the conductive filler in the conductive adhesive layer. A more preferred range is 0.1 to 20% by mass, a still more preferred range is 1 to 20% by mass, and a particularly preferred range is 3 to 16% by mass. There are various methods for adjusting the root mean square height Rq to be 0.05 μm or more and less than 0.3 μm and are not particularly limited. For example, the surface layer of the electromagnetic wave shield member, in the embodiment C1, the surface layer of the conductive adhesive layer 6 is pre-pressed with a roll before laminating the cushion member, and then bonded to the surface layer of the electromagnetic wave shield member of the cushion member. The root mean square height Rq can be easily adjusted by using the cushion member in which the root mean square height of the surface on the side to be filled is the desired Rq.
 針状粒子の平均粒子径D50は1~50μmが好ましく、2~25μmがより好ましい。更に好ましくは5~15μmである。デンドライト状粒子の平均粒子径D50の好ましい範囲は、2~100μmが好ましく、2~80μmがより好ましい。更に好ましくは3~50μmであり、特に好ましくは5~20μmである。鱗片状粒子の平均粒子径D50は2~70μmが好ましく、2~50μmがより好ましい。更に好ましくは3~25μmであり、特に好ましくは5~15μmである。 The average particle diameter D50 of the acicular particles is preferably 1 to 50 μm, more preferably 2 to 25 μm. More preferably, it is 5 to 15 μm. The preferable range of the average particle diameter D50 of the dendrite-shaped particles is preferably 2 to 100 μm, more preferably 2 to 80 μm. The thickness is more preferably 3 to 50 μm, and particularly preferably 5 to 20 μm. The average particle diameter D50 of the scaly particles is preferably 2 to 70 μm, more preferably 2 to 50 μm. The thickness is more preferably 3 to 25 μm, and particularly preferably 5 to 15 μm.
 デンドライト状粒子および/または針状粒子と、鱗片状粒子を併用することによって、導電性フィラー同士の接触点を多くし、シールド特性を向上させることができる。また、デンドライト状粒子および/または針状粒子の併用によって、バインダー成分との接触面積を増加させ、信頼性の高い電磁波シールド部材を提供できる。 By using dendrite-shaped particles and/or needle-shaped particles in combination with scale-shaped particles, it is possible to increase the number of contact points between the conductive fillers and improve the shielding property. Further, the combined use of dendrite-like particles and/or needle-like particles can increase the contact area with the binder component and provide a highly reliable electromagnetic wave shield member.
 導電性接着剤層を構成する組成物には、着色剤、難燃剤、無機添加剤、滑剤、ブロッキング防止剤等を含んでいてもよい。これらの具体例は実施形態A1と同様である。 The composition forming the conductive adhesive layer may contain a colorant, a flame retardant, an inorganic additive, a lubricant, an antiblocking agent and the like. Specific examples of these are similar to those of the embodiment A1.
 導電性接着剤層は、熱圧着により導電性フィラーが連続的に接触して導電性を有する層であればよく、熱圧着前の段階で必ずしも導電性を有していなくてもよい。導電性接着剤層は、上述した導電性フィラーと、バインダー樹脂前駆体を含有する組成物を混合攪拌し、離形性基材上に塗工後乾燥することで形成することができる。また離形性クッション部材3に直接塗工し乾燥する方法でも形成することができる。 The conductive adhesive layer may be a layer having conductivity due to continuous contact of the conductive filler by thermocompression bonding, and does not necessarily have conductivity at the stage before thermocompression bonding. The conductive adhesive layer can be formed by mixing and stirring the above-described conductive filler and a composition containing a binder resin precursor, coating the composition on a releasable substrate, and then drying. Alternatively, the releasable cushion member 3 may be directly applied and dried.
 導電性接着剤層の塗液を塗工後、乾燥して離形性基材上に導電性接着剤層を形成する。乾燥工程は、加熱(例えば、80~120℃)を行うことが好ましい。電磁波シールド部材の二乗平均平方根高さRqを調整するために、塗液を塗工後、加熱乾燥前に25℃(室温)・常圧で乾燥を1~17分行うことが好ましい。より好ましい加熱乾燥前の25℃(室温)での乾燥時間は2~14分である。加熱乾燥前に室温で乾燥するプロセスを設けることにより、二乗平均平方根高さRqの値を調整することができる。 After applying the coating liquid for the conductive adhesive layer, it is dried to form the conductive adhesive layer on the releasable substrate. The drying step is preferably performed by heating (for example, 80 to 120° C.). In order to adjust the root mean square height Rq of the electromagnetic wave shield member, it is preferable to perform drying at 25° C. (room temperature) and normal pressure for 1 to 17 minutes after applying the coating liquid and before heating and drying. More preferable drying time at 25° C. (room temperature) before heat drying is 2 to 14 minutes. The value of the root mean square height Rq can be adjusted by providing a process of drying at room temperature before heat drying.
 次に、塗液の粘度と加熱乾燥前の25℃での乾燥時間が電磁波シールド部材1の二乗平均平方根高さRqおよび二乗平均平方根傾斜Rdqに与える影響について説明する。離形性基材上に導電性接着剤層を形成するために塗液を塗布する。溶剤が含まれている乾燥途上の導電性接着剤層が得られる。 Next, the influence of the viscosity of the coating liquid and the drying time at 25° C. before heating and drying on the root mean square height Rq and root mean square slope Rdq of the electromagnetic wave shield member 1 will be described. A coating liquid is applied to form a conductive adhesive layer on the releasable substrate. A dry conductive adhesive layer containing a solvent is obtained.
 加熱途上の導電性接着剤層に対し、25℃での乾燥時間を長く設定することにより、溶剤の蒸発速度が遅い状態を意図的に長くし、それによってバインダー樹脂前駆体の下方への沈み込みを促すことができる。一方、25℃での乾燥時間を短く設定することにより、バインダー樹脂前駆体の下方への沈み込みを抑え、その段階で加熱乾燥することによって導電性フィラーが立ち上がり易くなる。また、溶剤の蒸発に伴う発泡が生じやすくなり、表面が荒れる傾向となる。なお、25℃の温度設定は一例であり、適宜設定可能であることは言うまでもない。 By setting a long drying time at 25° C. for the conductive adhesive layer in the middle of heating, the state where the evaporation rate of the solvent is slow is intentionally lengthened, whereby the binder resin precursor sinks downward. Can be encouraged. On the other hand, by setting the drying time at 25° C. short, it is possible to suppress the sinking of the binder resin precursor to the lower side, and to heat-dry at that stage to facilitate the rise of the conductive filler. Moreover, foaming easily occurs due to evaporation of the solvent, and the surface tends to be rough. It is needless to say that the temperature setting of 25° C. is an example and can be set appropriately.
 前記塗液の固形分は、20~30%とすることが好ましい。また、電磁波シールド部材の二乗平均平方根高さRqを調整するために、前記塗液のB型粘度計で測定した塗液粘度を600~1800mPa・sの範囲とすることが好ましい。更に、電磁波シールド部材の二乗平均平方根高さRqを調整するために、前記塗液のチキソトロピーインデックスを1.2~1.5とすることが好ましい。 The solid content of the coating liquid is preferably 20 to 30%. Further, in order to adjust the root mean square height Rq of the electromagnetic wave shield member, it is preferable that the coating liquid viscosity of the coating liquid measured with a B-type viscometer is in the range of 600 to 1800 mPa·s. Further, in order to adjust the root mean square height Rq of the electromagnetic wave shield member, it is preferable that the thixotropy index of the coating liquid is 1.2 to 1.5.
 二乗平均平方根高さRqおよび二乗平均平方根傾斜Rdqの値は、導電性接着剤層を形成するための塗液の粘度によっても変わる。塗液の粘度が高い方が導電性フィラーの流動性が抑えられる傾向にある。このため、粘度が高い場合、導電性フィラーは配向せずランダムとなる傾向がある。一方、粘度が低い場合、鱗片状粒子は基板面に対して、主面が凡そ対向するように配向する傾向がある。また、25℃での乾燥時間を短くして加熱乾燥を行うと、粘度が高いと発泡による表面荒れが大きくなる傾向にあり、粘度が低いと導電性フィラーが縦方向に移動しやすい傾向となる。このように、塗液の粘度および25℃での乾燥時間を調整することにより、二乗平均平方根高さRqを調整することができる。 The values of the root mean square height Rq and the root mean square slope Rdq also change depending on the viscosity of the coating liquid for forming the conductive adhesive layer. The higher the viscosity of the coating liquid, the more the fluidity of the conductive filler tends to be suppressed. Therefore, when the viscosity is high, the conductive filler tends not to be oriented and becomes random. On the other hand, when the viscosity is low, the scale-like particles tend to be oriented so that the main surface faces the substrate surface. Further, when the drying time at 25° C. is shortened to perform heat drying, when the viscosity is high, the surface roughness due to foaming tends to increase, and when the viscosity is low, the conductive filler tends to move in the vertical direction. .. In this way, the root mean square height Rq can be adjusted by adjusting the viscosity of the coating liquid and the drying time at 25°C.
 また、電磁波シールド部材1の二乗平均平方根高さRqおよび二乗平均平方根傾斜Rdqは、デンドライト状粒子および/または針状粒子の粒子径によっても調整することができる。デンドライト状粒子または/および針状粒子の粒子径が電磁波シールド部材1の二乗平均平方根高さRqおよび二乗平均平方根傾斜Rdqに与える影響について説明する。離形性基材上に導電性接着剤層6を形成するために塗液を塗布することにより、乾燥途上の導電性接着剤層が得られる。導電性フィラーの一種であるデンドライト状粒子の平均粒子径D50が小さいと二乗平均平方根高さRqおよび二乗平均平方根傾斜Rdqの値が低下する傾向にあり、逆に、デンドライト状粒子の平均粒子径D50が大きいと二乗平均平方根高さRqおよび二乗平均平方根傾斜Rdqの値が大きくなる傾向にある。二乗平均平方根傾斜Rdqはまた、針状粒子の形状に依存する。針状粒子の粒子径D50が大きいとRdqが大きくなる。また、針状粒子の粒子径D50が小さいとRdqが小さくなる。 Further, the root mean square height Rq and the root mean square slope Rdq of the electromagnetic wave shield member 1 can be adjusted also by the particle diameter of the dendrite particles and/or the acicular particles. The influence of the particle diameter of the dendrite-shaped particles and/or the acicular particles on the root mean square height Rq and the root mean square slope Rdq of the electromagnetic wave shield member 1 will be described. By applying the coating liquid to form the conductive adhesive layer 6 on the releasable substrate, the conductive adhesive layer in the process of being dried can be obtained. When the average particle diameter D50 of the dendrite-like particles, which is a type of conductive filler, is small, the values of the root mean square height Rq and the root mean square slope Rdq tend to decrease, and conversely, the mean particle diameter D50 of the dendrite particles. Is larger, the values of the root mean square height Rq and the root mean square slope Rdq tend to be larger. The root mean square slope Rdq also depends on the shape of the acicular particles. If the particle diameter D50 of the acicular particles is large, Rdq becomes large. Further, when the particle diameter D50 of the acicular particles is small, Rdq becomes small.
 電磁波シールド部材1の二乗平均平方根高さRqおよび二乗平均平方根傾斜Rdqは、上述したプロセスによる調整方法の他に、熱圧着前の電磁波シールド用部材2を形成する組成物において鱗片状の導電性フィラーと、針状または/およびデンドライト状の導電性フィラーとの添加量比の調整によって調整することができる。また、電磁波シールド部材1の二乗平均平方根高さRqは、導電性フィラーの平均粒子径D50およびD90によっても調整することができる。 The root mean square height Rq and the root mean square slope Rdq of the electromagnetic wave shield member 1 are scale-like conductive fillers in the composition forming the electromagnetic wave shield member 2 before thermocompression bonding, in addition to the adjusting method by the above-described process. And the needle-shaped and/or dendrite-shaped conductive filler can be adjusted by adjusting the addition amount ratio. The root mean square height Rq of the electromagnetic wave shield member 1 can also be adjusted by the average particle diameters D50 and D90 of the conductive filler.
 実施形態C1においては、電磁波シールド用部材2は導電性接着剤層6の単層からなるので、この導電性接着剤層6上に離形性クッション部材3を接合する。接合方法はラミネートによる方法等がある。 In the embodiment C1, since the electromagnetic wave shielding member 2 is composed of a single layer of the conductive adhesive layer 6, the releasable cushion member 3 is bonded onto the conductive adhesive layer 6. As a joining method, there is a laminating method or the like.
 離形性基材は、片面あるいは両面が離形性のある基材であり、150℃における引張破断歪が50%未満のシートである。離形性基材の具体例等は実施形態A1と同様である。 The releasable base material is a base material having releasability on one or both sides, and is a sheet having a tensile breaking strain of less than 50% at 150°C. Specific examples of the releasable substrate are the same as those in Embodiment A1.
 また、離形性クッション部材も実施形態A1の記載を援用できる。 Also, the description of Embodiment A1 can be applied to the releasable cushion member.
[実施形態C2]
 次に、実施形態C1とは異なる電子部品搭載基板の例について説明する。実施形態C2に係る電子部品搭載基板は、電磁波シールド部材が2層の電磁波シールド層からなっている点において、単層の電磁波シールド層からなる電磁波シールド部材を用いた実施形態C1と相違するが、その他の基本的な構成および製造方法は実施形態C1と同様である。そして、実施形態Aに係る電磁波シールド部材に代えて、実施形態Cに係る電磁波シールド部材を用いている点および別途記載している点を除き、実施形態A2と基本的な構成および製造方法は同様である。重複する記載は適宜省略する。
[Embodiment C2]
Next, an example of an electronic component mounting board different from that of the embodiment C1 will be described. The electronic component mounting board according to the embodiment C2 is different from the embodiment C1 using the electromagnetic wave shield member composed of a single electromagnetic wave shield layer in that the electromagnetic wave shield member is composed of two electromagnetic wave shield layers, The other basic configuration and manufacturing method are the same as in Embodiment C1. Then, the basic configuration and manufacturing method are the same as those of the embodiment A2 except that the electromagnetic wave shielding member according to the embodiment C is used instead of the electromagnetic wave shielding member according to the embodiment A and that it is described separately. Is. Overlapping description is omitted as appropriate.
 実施形態C2の電磁波シールド部材は、図11に示すように、第1導電性接着剤層6a1および第2導電性接着剤層6a2の2層からなる導電性接着剤層6aである電磁波シールド用部材2aと、離形性クッション部材3aからなる電磁波シールド用積層体4aを用いて形成される。この電磁波シールド用積層体4aを熱圧着することにより、電子部品30が搭載された基板20上に第1電磁波シールド層と第2電磁波シールド層からなる電磁波シールド部材が被覆される。上層の第2導電性接着剤層6a2は実施形態C1と同様の組成や工程により製造し、下層の第1導電性接着剤層6a1は、二乗平均平方根高さRqの範囲に限定されずにニーズに応じた設計とすることができる。例えば、第1導電性接着剤層6a1に含まれる導電性フィラーとして、繊維状粒子、球状粒子等のフィラーを用いた層としたりすることができる。また、第1導電性接着剤層6a1を異方導電性接着剤層、第2導電性接着剤層6a2を等方導電性接着剤層とする等の設計とすることも可能である。また、電磁波反射層と電磁波吸収層の積層体とする態様も好ましい。電磁波シールド層を3層以上積層してもよい。 As shown in FIG. 11, the electromagnetic wave shielding member of Embodiment C2 is an electromagnetic wave shielding member that is a conductive adhesive layer 6a composed of two layers of a first conductive adhesive layer 6a1 and a second conductive adhesive layer 6a2. 2a and an electromagnetic wave shielding laminate 4a including a releasable cushion member 3a. By thermocompression bonding the electromagnetic wave shielding laminate 4a, the electromagnetic wave shielding member including the first electromagnetic wave shielding layer and the second electromagnetic wave shielding layer is coated on the substrate 20 on which the electronic component 30 is mounted. The second conductive adhesive layer 6a2 as the upper layer is manufactured by the same composition and process as the embodiment C1, and the first conductive adhesive layer 6a1 as the lower layer is not limited to the range of the root mean square height Rq and needs. It can be designed according to. For example, the conductive filler contained in the first conductive adhesive layer 6a1 may be a layer using a filler such as fibrous particles or spherical particles. It is also possible to design the first conductive adhesive layer 6a1 as an anisotropic conductive adhesive layer and the second conductive adhesive layer 6a2 as an isotropic conductive adhesive layer. Further, a mode in which a laminated body of an electromagnetic wave reflection layer and an electromagnetic wave absorption layer is also preferable. You may laminate|stack three or more electromagnetic wave shield layers.
 実施形態C2に係る電子部品搭載基板によれば、2層の電磁波シールド層からなる電磁波シールド部材を用いることにより、実施形態C1と同様の効果が得られる。また、電磁波シールド層を2層積層したことにより各層の設計自由度を高められるので、ニーズに応じた電磁波シールド部材を提供しやすいというメリットがある。 According to the electronic component mounting board of the embodiment C2, the same effect as that of the embodiment C1 can be obtained by using the electromagnetic wave shield member including the two electromagnetic wave shield layers. Further, by laminating two electromagnetic wave shield layers, the degree of freedom in designing each layer can be increased, and there is an advantage that it is easy to provide an electromagnetic wave shield member according to needs.
[実施形態C3]
 実施形態C3に係る電子部品搭載基板は、電磁波シールド部材が電磁波シールド層とハードコート層の積層体からなっている点において、単層の電磁波シールド層からなる電磁波シールド部材を用いた実施形態C1と相違するが、その他の基本的な構成および製造方法は同様である。
[Embodiment C3]
The electronic component mounting board according to the embodiment C3, in that the electromagnetic wave shield member is a laminate of an electromagnetic wave shield layer and a hard coat layer, an embodiment C1 using an electromagnetic wave shield member composed of a single electromagnetic wave shield layer. Although different, the other basic structure and manufacturing method are the same.
 実施形態C3に係る電磁波シールド部材は、図12に示すように、1層の導電性接着剤層6bと絶縁性樹脂層7bの積層体である電磁波シールド用部材2bおよび離形性クッション部材3bからなる電磁波シールド用積層体4bを用いて形成される。この電磁波シールド用積層体4bを熱圧着することにより、電子部品が搭載された基板上に導電性接着剤層6bから形成された電磁波シールド層と絶縁性樹脂層7bから形成されたハードコート層とからなる電磁波シールド部材が得られる。実施形態C3の電磁波シールド部材は、ハードコート層側から測定したときの二乗平均平方根高さRqを0.05μm以上、0.3μm未満とする。 As shown in FIG. 12, the electromagnetic wave shielding member according to the embodiment C3 includes an electromagnetic wave shielding member 2b and a releasable cushion member 3b which are a laminate of a single conductive adhesive layer 6b and an insulating resin layer 7b. It is formed by using the electromagnetic wave shielding laminate 4b. By thermocompression-bonding this electromagnetic wave shielding laminate 4b, an electromagnetic wave shielding layer formed of a conductive adhesive layer 6b and a hard coat layer formed of an insulating resin layer 7b are formed on a substrate on which electronic components are mounted. An electromagnetic wave shield member consisting of is obtained. The electromagnetic wave shield member of Embodiment C3 has a root mean square height Rq measured from the hard coat layer side of 0.05 μm or more and less than 0.3 μm.
 絶縁性樹脂層7bはバインダー樹脂前駆体と無機フィラーを含有する樹脂組成物から形成された層である。バインダー樹脂前駆体は、少なくとも熱軟化性樹脂を含む。バインダー樹脂前駆体の例示および好適例は、実施形態A1で述べた電磁波シールド用部材の導電性接着剤層と同じである。導電性接着剤層と絶縁性樹脂層のバインダー樹脂前駆体は同一であっても異なっていてもよい。 The insulating resin layer 7b is a layer formed from a resin composition containing a binder resin precursor and an inorganic filler. The binder resin precursor contains at least a thermosoftening resin. Examples and preferred examples of the binder resin precursor are the same as those of the conductive adhesive layer of the electromagnetic wave shielding member described in Embodiment A1. The binder resin precursors of the conductive adhesive layer and the insulating resin layer may be the same or different.
 無機フィラーは、実施形態C1の導電性接着剤層と異なり導電性を有していないが、好ましい無機フィラーの特性、例えば形状・配合量・D50・D90等は導電性フィラーで挙げた例と同じである。無機フィラーとしては、例えば、シリカ(溶融シリカ、結晶性シリカ、非結晶性シリカ)、ベリリア、アルミナ、水酸化マグネシウム、硫酸バリウム、炭酸カルシウム、酸化チタン、酸化亜鉛、三酸化アンチモン、酸化アンチモン、酸化マグネシウム、タルク、カオリナイト、マイカ、塩基炭酸マグネシウム、セリサイト、モンモロリナイト、カオリナイト、ベントナイト、カオリン、クレー、ハイドロタルサイト、ウォラストナイト、ゾノトライト、窒化ケイ素、窒化ホウ素、窒化アルミニウム、リン酸水素カルシウム、リン酸カルシウム、ガラスフレーク、水和ガラス、チタン酸カルシウム、セピオライト、硫酸マグネシウム、水酸化アルミニウム、水酸化ジルコニウム、水酸化バリウム、水酸化カルシウム、酸化カルシウム、酸化スズ、酸化アルミニウム、酸化ジルコニウム、酸化モリブデン、酸化ニッケル、炭酸亜鉛、炭酸マグネシウム、炭酸バリウム、ホウ酸亜鉛、ホウ酸アルミニウム、ケイ酸カルシウム、炭化ケイ素、炭化チタン、ダイヤモンド、グラファイト、グラフェン等の無機化合物が挙げられる。
 無機フィラーとして、熱伝導性フィラーを用いることにより、ハードコート層を熱伝導層としても機能させることができる。用途に応じて、ハードコート層、熱伝導層(例えば放熱層)、若しくは両者の機能を有する層として利用することができる。
The inorganic filler does not have conductivity unlike the conductive adhesive layer of the embodiment C1, but preferable characteristics of the inorganic filler, such as shape, blending amount, D50 and D90 are the same as the examples given for the conductive filler. Is. Examples of the inorganic filler include silica (fused silica, crystalline silica, non-crystalline silica), beryllia, alumina, magnesium hydroxide, barium sulfate, calcium carbonate, titanium oxide, zinc oxide, antimony trioxide, antimony oxide, and oxide. Magnesium, talc, kaolinite, mica, basic magnesium carbonate, sericite, montmorolinite, kaolinite, bentonite, kaolin, clay, hydrotalcite, wollastonite, zonotolite, silicon nitride, boron nitride, aluminum nitride, phosphoric acid Calcium hydrogen, calcium phosphate, glass flakes, hydrated glass, calcium titanate, sepiolite, magnesium sulfate, aluminum hydroxide, zirconium hydroxide, barium hydroxide, calcium hydroxide, calcium oxide, tin oxide, aluminum oxide, zirconium oxide, oxidation Examples thereof include inorganic compounds such as molybdenum, nickel oxide, zinc carbonate, magnesium carbonate, barium carbonate, zinc borate, aluminum borate, calcium silicate, silicon carbide, titanium carbide, diamond, graphite and graphene.
By using the heat conductive filler as the inorganic filler, the hard coat layer can also function as the heat conductive layer. Depending on the application, it can be used as a hard coat layer, a heat conductive layer (for example, a heat dissipation layer), or a layer having the functions of both.
 絶縁性樹脂層に用いるバインダー樹脂前駆体の好ましい配合成分および配合量の好適な例は実施形態C1の導電性接着剤層と同じである。また、絶縁性樹脂層に用いる無機フィラーの好ましい形状、好ましい平均粒子径D50等は、実施形態C1の導電性フィラーと同じである。また、熱軟化性樹脂組成物、および熱軟化性樹脂組成物層に適用できる添加剤は、実施形態1Cの記載を援用できる。 The preferable examples of the preferable blending component and the blending amount of the binder resin precursor used for the insulating resin layer are the same as those of the conductive adhesive layer of the embodiment C1. Further, the preferable shape of the inorganic filler used for the insulating resin layer, the preferable average particle diameter D50, and the like are the same as those of the conductive filler of Embodiment C1. The description of Embodiment 1C can be applied to the heat-softenable resin composition and the additive that can be applied to the heat-softenable resin composition layer.
 実施形態C1に係る電子部品搭載基板によれば、ハードコート層を有する電磁波シールド部材を用いることにより、実施形態C1で述べた効果に加え、電磁波シールド層をハードコート層で被覆することにより、より優れた耐久性を有する電磁波シールド部材を提供できる。 According to the electronic component mounting board according to Embodiment C1, by using the electromagnetic wave shield member having a hard coat layer, in addition to the effect described in Embodiment C1, by coating the electromagnetic wave shield layer with a hard coat layer, more An electromagnetic wave shield member having excellent durability can be provided.
[実施形態C4、実施形態C5]
 実施形態C4および実施形態C5の電子部品搭載基板は、実施形態Aに係る電磁波シールド部材に代えて、実施形態Cに係る電磁波シールド部材を用いている点を除き、上述した実施形態A4,実施形態A5の説明を援用できる。
[Embodiment C4, Embodiment C5]
The electronic component mounting boards of Embodiments C4 and C5 are the same as those of Embodiments A4 and Embodiments described above, except that the electromagnetic wave shield member according to Embodiment C is used instead of the electromagnetic wave shield member according to Embodiment A. The explanation in A5 can be used.
<変形例>
 次に、本実施形態に係る電子部品搭載基板等の変形例について説明する。但し、本発明は、上記実施形態および変形例に限定されるものではなく、本発明の趣旨に合致する限り、他の実施形態も本発明の範疇に属し得る。また、各実施形態および変形例は、互いに好適に組み合わせられる。
<Modification>
Next, modifications of the electronic component mounting board and the like according to the present embodiment will be described. However, the present invention is not limited to the above-described embodiments and modifications, and other embodiments may be included in the scope of the present invention as long as they match the gist of the present invention. Further, the respective embodiments and modified examples are preferably combined with each other.
 実施形態A4、A5、B4,B5,C4,C5においては、絶縁性接着剤層、導電性接着剤層および離形性クッション部材の積層体からなる電磁波シールド用積層体を用いた例を説明したが、以下のように製造することも可能である。即ち、図16Aに示すように、複数の電子部品30が搭載された基板20上に、まず、図16Bに示すように、絶縁被覆層9eを形成する。この絶縁被覆層9eは、絶縁性接着剤層を含むシートを熱プレスすることにより得られる。その後、導電性接着剤層6eおよび離形性クッション部材3eの積層体からなる電磁波シールド用積層体4eを用いることにより電磁波シールド層5eを形成する(図16C、16D)。これらの工程を経て、電磁波シールド部材が形成された電子部品搭載基板55が得られる。なお、絶縁被覆層9eは、シートを熱プレスする方法に代えて、溶液樹脂を塗布する方法および溶液樹脂をスプレーする方法を例示できる。 In the embodiments A4, A5, B4, B5, C4, C5, an example using an electromagnetic wave shield laminate composed of a laminate of an insulating adhesive layer, a conductive adhesive layer and a releasable cushion member was described. However, it is also possible to manufacture as follows. That is, as shown in FIG. 16A, first, as shown in FIG. 16B, the insulating coating layer 9e is formed on the substrate 20 on which the plurality of electronic components 30 are mounted. This insulating coating layer 9e is obtained by hot pressing a sheet containing an insulating adhesive layer. After that, the electromagnetic wave shield layer 5e is formed by using the electromagnetic wave shield laminate 4e which is a laminate of the conductive adhesive layer 6e and the releasable cushion member 3e (FIGS. 16C and 16D). Through these steps, the electronic component mounting board 55 on which the electromagnetic wave shield member is formed is obtained. The insulating coating layer 9e can be exemplified by a method of applying a solution resin and a method of spraying a solution resin, instead of the method of hot pressing the sheet.
 上記実施形態においては、部品の一例として電子部品を例として説明したが、電磁波から遮蔽したい部品全般に対して本発明を適用できる。また、部品の形状は矩形状に限定されず、角部がR形状である部品、部品の上面と側面の成す角度が鋭角の部品、鈍角の部品も含む。また、上面に凹凸形状がある部品、電子部品の外面が球状等の曲面になっている場合も含む。また、上記実施形態においては、基板20にハーフダイシング溝25(図2参照)が形成されていたが、ハーフダイシング溝25は必須ではなくフラットな基板に電磁波シールド部材を載置して被覆させてもよい。加えて、本発明の電子部品搭載基板には、例えば基板20をオールダイシングして個片化した電子部品が搭載された電子部品搭載基板が別の保持基材等に載置されている場合も含む。 In the above embodiment, an electronic component was described as an example of the component, but the present invention can be applied to all components that are desired to be shielded from electromagnetic waves. Further, the shape of the component is not limited to the rectangular shape, and includes a component having an R-shaped corner, a component having an acute angle between the top surface and the side surface of the component, and a component having an obtuse angle. It also includes a case where the top surface is uneven, and the case where the outer surface of the electronic part is a curved surface such as a sphere. Further, in the above-described embodiment, the half dicing groove 25 (see FIG. 2) is formed on the substrate 20, but the half dicing groove 25 is not essential, and the electromagnetic wave shield member may be placed and covered on a flat substrate. Good. In addition, in the electronic component mounting substrate of the present invention, for example, when the electronic component mounting substrate on which the electronic component obtained by all-dicing the substrate 20 is mounted is mounted on another holding base material or the like. Including.
 また、電磁波シールド用積層体は上記実施形態の積層形態に限定されない。例えば、離形性クッション部材上に、支持基板が積層されていてもよい。支持基板を積層することにより、熱圧着時の装置の汚れを簡易に防止することができる。また、支持基板により、電磁波シールド用積層体の貼付工程が容易になるというメリットがある。また、電子部品は基板の片面のみならず両面に搭載し、各電子部品に電磁波シールド部材を形成することもできる。 Also, the electromagnetic wave shield laminate is not limited to the laminate form of the above embodiment. For example, a support substrate may be laminated on the releasable cushion member. By stacking the support substrates, it is possible to easily prevent the device from being soiled during thermocompression bonding. In addition, the support substrate has an advantage that the step of attaching the electromagnetic wave shielding laminate is facilitated. Further, the electronic components can be mounted not only on one side of the substrate but also on both sides, and the electromagnetic wave shield member can be formed on each electronic component.
 本実施形態に係る電子部品搭載基板によれば、凹凸構造に対する被覆性に優れることから、パーソナルコンピュータ、モバイル機器或いはデジタルカメラ等の各種電子機器に好適に適用できる。 According to the electronic component mounting board of the present embodiment, since it has excellent coverage with respect to the concavo-convex structure, it can be suitably applied to various electronic devices such as personal computers, mobile devices, and digital cameras.
≪実施例≫
 以下、本発明を実施例によりさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。また、実施例中の「部」とあるのは「質量部」を、「%」とあるのは「質量%」をそれぞれ表すものとする。また、本発明に記載の値は、以下の方法により求めた。
<<Example>>
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. In addition, "part" in the examples means "part by mass", and "%" means "% by mass". The values described in the present invention were determined by the following method.
[[実施形態A]]
(試験基板1)
 ガラスエポキシからなる基板上に、モールド封止された電子部品(1cm×1cm)を5×5個アレイ状に搭載した基板を用意した。基板の厚みは0.3mmであり、モールド封止厚、即ち基板上面からモールド封止材の頂面までの高さ(部品高さ)Hは0.7mmである。その後、部品同士の間隙である溝に添ってハーフダイシングを行い、試験基板を得た(図17参照)。ハーフカット溝深さは0.8mm(基板20のカット溝深さは0.1mm)、ハーフカット溝幅は200μmとした。
[[Embodiment A]]
(Test board 1)
A substrate was prepared in which 5×5 array of mold-sealed electronic components (1 cm×1 cm) were mounted on a substrate made of glass epoxy. The thickness of the substrate is 0.3 mm, and the mold sealing thickness, that is, the height (component height) H from the upper surface of the substrate to the top surface of the mold sealing material is 0.7 mm. After that, half dicing was performed along the groove that is a gap between the components to obtain a test substrate (see FIG. 17). The half-cut groove depth was 0.8 mm (the cut groove depth of the substrate 20 was 0.1 mm), and the half-cut groove width was 200 μm.
(試験基板2、3)
 ハーフカット溝幅を150μmに変更した以外は、試験基板1と同様の方法により試験基板2を作製した。また、ハーフカット溝幅を150μmに変更し、且つ溝深さを1000μmに変更した以外は、試験基板と同様の方法により試験基板3を作製した。
(Test boards 2 and 3)
A test substrate 2 was prepared in the same manner as the test substrate 1 except that the half-cut groove width was changed to 150 μm. Further, a test substrate 3 was produced in the same manner as the test substrate except that the half cut groove width was changed to 150 μm and the groove depth was changed to 1000 μm.
 以下、実施例で使用した材料を示す。
・バインダー樹脂前駆体
  樹脂1:ポリカーボネート樹脂、(トーヨーケム社製)
  樹脂2:フェノキシ樹脂、(トーヨーケム社製)
  硬化性化合物1:デコナールEX830、(ナガセケムテック社製)
  硬化性化合物2:jERYX8000、(三菱ケミカル社製)
  硬化性化合物3:jER157S70、(三菱ケミカル社製)
・硬化促進剤:PZ-33(日本触媒社製)
・導電性フィラー1:フレーク状Ag(平均粒子径D50:11μm)(福田金属社製)
・導電性フィラー2:針状銀コート銅(平均粒子径D50:7.5μm)(福田金属社製)
・添加剤1:BYK322、(ビックケミー社製)
・添加剤2:BYK337(ビックケミー社製)
The materials used in the examples are shown below.
-Binder resin precursor Resin 1: Polycarbonate resin (manufactured by Toyochem Co., Ltd.)
Resin 2: Phenoxy resin (manufactured by Toyochem Co., Ltd.)
Curable compound 1: Deconal EX830, (manufactured by Nagase Chemtech)
Curable compound 2: jERYX8000, (manufactured by Mitsubishi Chemical Corporation)
Curable compound 3: jER157S70 (manufactured by Mitsubishi Chemical Corporation)
・Curing accelerator: PZ-33 (manufactured by Nippon Shokubai Co., Ltd.)
-Conductive filler 1: flake Ag (average particle size D50: 11 μm) (manufactured by Fukuda Metal Co., Ltd.)
-Conductive filler 2: acicular silver-coated copper (average particle diameter D50: 7.5 μm) (manufactured by Fukuda Metal Co., Ltd.)
-Additive 1: BYK322 (manufactured by BYK Chemie)
-Additive 2: BYK337 (manufactured by BYK Chemie)
[実施例A1]
(導電性接着剤層の樹脂組成物の調製)
 表1に示すように、バインダー樹脂前駆体として樹脂1(ポリカーボネート樹脂)を20部(固形分)と、樹脂4(フェノキシ樹脂)を80部(固形分)と、硬化性化合物1(エポキシ樹脂)を20部と、硬化性化合物2(エポキシ樹脂)を15部と、硬化性化合物3(エポキシ樹脂)を10部と、導電性フィラー1(フレーク状Ag)を320部と、導電性フィラー2(針状AgコートCu)を5部と、硬化促進剤を1部と、添加剤1を0.4部とを容器に仕込み、固形分濃度が25質量%になるようトルエン:イソプロピルアルコール(質量比2:1)の混合溶剤を加えディスパーで10分攪拌することで導電性接着剤層を形成するための樹脂組成物を得た。
[Example A1]
(Preparation of Resin Composition of Conductive Adhesive Layer)
As shown in Table 1, as a binder resin precursor, 20 parts (solid content) of resin 1 (polycarbonate resin), 80 parts (solid content) of resin 4 (phenoxy resin), and curable compound 1 (epoxy resin) 20 parts, curable compound 2 (epoxy resin) 15 parts, curable compound 3 (epoxy resin) 10 parts, conductive filler 1 (flake-like Ag) 320 parts, conductive filler 2 ( 5 parts of acicular Ag coat Cu), 1 part of curing accelerator, and 0.4 part of additive 1 were charged into a container, and toluene:isopropyl alcohol (mass ratio was adjusted so that the solid content concentration became 25% by mass). The mixed solvent of 2:1) was added and the mixture was stirred with a disper for 10 minutes to obtain a resin composition for forming a conductive adhesive layer.
(電磁波シールド用積層体の作製)
 この樹脂組成物を乾燥厚みが50μmになるようにドクターブレードを使用して離形性基材に塗工した。そして、25℃で14分常温乾燥した後、100℃で2分間乾燥することで電磁波シールド用部材(導電性接着剤層)を得た。その後、離形性クッション部材(CR1040)、軟質樹脂層の両面をポリメチルペンテンで挟み込んだ層構成(厚み150μm)、三井化学東セロ社製)を用意し、電磁波シールド用部材とラミネートすることにより離形性基材上に実施例A1に係る電磁波シールド用積層体を得た。
(Production of laminate for electromagnetic wave shield)
This resin composition was applied to a releasable substrate using a doctor blade so that the dry thickness would be 50 μm. Then, it was dried at 25° C. for 14 minutes at room temperature and then at 100° C. for 2 minutes to obtain an electromagnetic wave shielding member (conductive adhesive layer). Thereafter, a releasable cushion member (CR1040), a layer structure (thickness 150 μm) in which both surfaces of the soft resin layer were sandwiched by polymethylpentene, manufactured by Mitsui Chemicals Tohcello Co., Ltd. were prepared and laminated with a member for electromagnetic wave shielding. An electromagnetic wave shielding laminate according to Example A1 was obtained on a shaped substrate.
[実施例A2~A5、参考例A1]
 表1の記載の組成に変更した以外は、実施例A1と同様にして、導電性接着剤層の樹脂組成物、電磁波シールド用積層体を得た。
[Examples A2 to A5, Reference Example A1]
A resin composition of a conductive adhesive layer and a laminate for electromagnetic wave shielding were obtained in the same manner as in Example A1 except that the composition shown in Table 1 was changed.
[実施例A6~A10、参考例A2]
 表1の記載の組成に変更し、固形分濃度が29質量%になるようトルエン:イソプロピルアルコール(質量比2:1)の混合溶剤を加えた以外は、実施例A1と同様にして、導電性接着剤層の樹脂組成物、電磁波シールド用積層体を得た。
[Examples A6 to A10, Reference Example A2]
Conductivity was changed in the same manner as in Example A1 except that the composition shown in Table 1 was changed and a mixed solvent of toluene:isopropyl alcohol (mass ratio 2:1) was added so that the solid content concentration became 29 mass %. A resin composition for an adhesive layer and a laminate for electromagnetic wave shielding were obtained.
<クルトシス>
 実施例A1~A10、参考例A1,A2の電磁波シールド用積層体を用意し、厚み300μmのFR4基板に載置し、離形性クッション部材側から面方向に8MPaの条件で170℃5分加熱圧着を行った。その後離形性クッション部材を剥がし180℃2時間の加熱を行った。その後、離形性クッション部材を剥離して電磁波シールド部材を形成した試験片を得た。
<Kurtosis>
The electromagnetic wave shield laminates of Examples A1 to A10 and Reference Examples A1 and A2 were prepared, placed on a FR4 substrate having a thickness of 300 μm, and heated at 170° C. for 5 minutes from the releasable cushion member side in the surface direction at 8 MPa. Crimping was performed. After that, the releasable cushion member was peeled off and heating was performed at 180° C. for 2 hours. Then, the releasable cushion member was peeled off to obtain a test piece on which an electromagnetic wave shield member was formed.
 上記試験片において、離形性クッション部材を剥離した電磁波シールド部材の表面に金属スパッタ処理を施した。金属スパッタ処理条件は、日本電子株式会社製スパッタ装置「Smart Coater」を使用し、ターゲットとして金を用い、ターゲットとサンプル表面との離間距離を2cmとし、0.5分間スパッタした。得られた試料の金属スパッタ処理面に対し、JIS  B  0601:2001に準拠し、レーザー顕微鏡((株)キーエンス社製(VK-X100))を用いてクルトシスを求めた。測定条件は、形状測定モードで測定倍率を1000倍とし表面形状を取得した。得られた表面形状画像を解析アプリケーションの表面粗さ測定にて、全領域を選択しλs輪郭曲線フィルタを2.5μm、λc輪郭曲線フィルタを0.8mmとし、クルトシスを測定した。上記測定を異なる5箇所で行い測定値の平均値をクルトシスの値とした。
 なお、電磁波シールド部材のクルトシスの測定において、電子部品搭載基板上に実際に被覆されている電磁波シールド部材を測定する場合には、電子部品基板上に被覆された電磁波シールド部材を直接測定すればよい。
In the above test piece, the surface of the electromagnetic wave shield member from which the releasable cushion member was peeled off was subjected to metal sputtering treatment. As for the metal sputter processing conditions, a sputtering device “Smart Coater” manufactured by JEOL Ltd. was used, gold was used as a target, and the separation distance between the target and the sample surface was 2 cm, and sputtering was performed for 0.5 minutes. For the metal sputtered surface of the obtained sample, kurtosis was determined using a laser microscope (VK-X100 manufactured by Keyence Corporation) according to JIS B 0601:2001. The measurement conditions were such that the measurement magnification was 1000 times in the shape measurement mode and the surface shape was acquired. The obtained surface shape image was subjected to surface roughness measurement of an analysis application to select the entire region, and the λs contour curve filter was set to 2.5 μm and the λc contour curve filter was set to 0.8 mm, and kurtosis was measured. The above measurement was carried out at five different points, and the average value of the measured values was used as the kurtosis value.
In the measurement of the kurtosis of the electromagnetic wave shield member, when measuring the electromagnetic wave shield member actually coated on the electronic component mounting substrate, the electromagnetic wave shield member coated on the electronic component substrate may be directly measured. ..
<塗液の粘度およびチキソトロピーインデックス>
 得られた導電性樹脂組成物を25℃のウォーターバスに30分静置した後に「B型粘度計」(東機産業株式会社製)にて、回転数6rpmの粘度(v1)および回転数60rpmの粘度(v2)を測定した。(v1)を(v2)で除した値をチキソトロピーインデックスとした。
<Viscosity of coating liquid and thixotropic index>
The obtained conductive resin composition was allowed to stand in a water bath at 25° C. for 30 minutes, and then, with a “B type viscometer” (manufactured by Toki Sangyo Co., Ltd.), a viscosity (v1) at a rotation speed of 6 rpm and a rotation speed of 60 rpm. The viscosity (v2) of was measured. The value obtained by dividing (v1) by (v2) was used as a thixotropic index.
<熱圧着後の離形性クッション部材のハーフダイシング溝の剥離性評価>
 試験基板1~3それぞれに対して、各実施例および参考例の電磁波シールド用積層体それぞれを8MPa、170℃の条件で5分間熱圧着し、離形性クッション部材を手で剥離した。そして、電子部品同士の間隙の溝に千切れて残った離形性クッション部材の残渣個数を目視で確認した。評価基準は以下の通りとした
+++:残渣が認められない。
++:残渣が1個以上、3個未満。
+:残渣が3個以上、5個未満。
NG:残渣が5個以上、或いは溝全体に残渣が残った状態。
<Evaluation of releasability of half dicing groove of releasable cushion member after thermocompression bonding>
The electromagnetic wave shielding laminates of Examples and Reference Examples were thermocompression bonded to each of the test substrates 1 to 3 under conditions of 8 MPa and 170° C. for 5 minutes, and the releasable cushion member was peeled by hand. Then, the number of residues of the releasable cushion member that was broken and left in the groove in the gap between the electronic components was visually confirmed. The evaluation criteria are as follows: +++: No residue is observed.
++: 1 or more residue and less than 3 residue.
+: 3 or more residues and less than 5 residues.
NG: 5 or more residues, or a residue remains in the entire groove.
<スチールウール耐性>
 厚さ125μmのポリイミドフィルム(東レ・デュポン社製「カプトン500H」)に、5×15cmにカットした各実施例および参考例の電磁波シールド用積層体をそれぞれ載置し、180℃で2MPaの条件で10分熱プレスを行い、180℃で2時間キュアすることで試験基板を得た。その後、離形性クッション部材を剥離した。次いで、電磁波シールド部材に対して学振式磨耗試験機(テスター産業社製)にセットして荷重200gf、ストローク120mm、往復速度30回/minの条件で、電磁波シールド部材が摩耗してポリイミドフィルムが露出するまでの学振回数を求めた。評価基準は以下の通りである。
+++:20,000回以上。
++:10,000回以上、20,000回未満。
+:5,000回以上、10,000回未満(実用レベル)。
NG:5,000回未満。
<Steel wool resistance>
A 125 μm thick polyimide film (“Kapton 500H” manufactured by Toray-DuPont) was placed on each of the electromagnetic wave shielding laminates of Examples and Reference Examples cut into 5×15 cm, and the conditions were 180° C. and 2 MPa. A hot press was performed for 10 minutes, and a test substrate was obtained by curing at 180° C. for 2 hours. Then, the releasable cushion member was peeled off. Next, the electromagnetic wave shield member was set on a Gakushin type abrasion tester (manufactured by Tester Sangyo Co., Ltd.), and the electromagnetic wave shield member was abraded and the polyimide film was formed under the conditions of a load of 200 gf, a stroke of 120 mm, and a reciprocating speed of 30 times/min. The number of academic achievements until exposure was calculated. The evaluation criteria are as follows.
+++: 20,000 times or more.
++: 10,000 times or more and less than 20,000 times.
+: 5,000 times or more and less than 10,000 times (practical level).
NG: less than 5,000 times.
 表1に、実施例A1~A10および参考例A1,A2の上記評価結果を示す。 Table 1 shows the evaluation results of Examples A1 to A10 and Reference Examples A1 and A2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1の例に示すように、クルトシスが1未満の参考例A1の電磁波シールド部材を用いた電子部品搭載基板は、スチールウール耐性が合格レベルに達しなかった。これに対し、本発明の電子部品搭載基板の電磁波シールド性部材はいずれも合格レベルに達しており、スチールウール耐性に優れていることを確認した。また、クルトシスが8を超えている参考例A2の電磁波シールド部材は、溝部の剥離性が合格レベルに達していなかった。これに対し、本発明の電子部品搭載基板の電磁波シールド性部材はいずれも熱圧着後の離形性クッション部材の溝部の剥離性に優れていることを確認した。 As shown in the example in Table 1, the electronic component mounting board using the electromagnetic wave shielding member of Reference Example A1 having a kurtosis of less than 1 did not reach the acceptable level of steel wool resistance. On the other hand, it was confirmed that all the electromagnetic wave shielding members of the electronic component mounting board of the present invention reached the acceptable level and were excellent in steel wool resistance. In addition, the electromagnetic wave shield member of Reference Example A2 in which the kurtosis was more than 8, the peelability of the groove portion did not reach the acceptable level. On the other hand, it was confirmed that all the electromagnetic wave shielding members of the electronic component mounting substrate of the present invention were excellent in the peelability of the groove portion of the releasable cushion member after thermocompression bonding.
[[実施形態B]]
(試験基板)
 実施形態Aの試験基板1と同様の作製方法により、実施形態Bに係る試験基板を得た。
[[Embodiment B]]
(Test board)
The test substrate according to the embodiment B was obtained by the same manufacturing method as the test substrate 1 of the embodiment A.
 以下、実施例で使用した材料を示す。
・バインダー樹脂前駆体
  樹脂1:ウレタン樹脂、(トーヨーケム社製)
  樹脂2:ポリカーボネート樹脂、(トーヨーケム社製)
  樹脂3:スチレンエラストマー樹脂、(トーヨーケム社製)
  樹脂4:フェノキシ樹脂、(トーヨーケム社製)
  硬化性化合物1:デコナールEX830(ナガセケムテック社製)
  硬化性化合物2:jERYX8000、(三菱ケミカル社製)
  硬化性化合物3:jER157S70、(三菱ケミカル社製)
・硬化促進剤:PZ-33(日本触媒社製)
・導電性フィラー
  導電性フィラー1:フレーク状Ag(平均粒子径D50:11μm)(福田金属社製)
  導電性フィラー2:針状銀コート銅(平均粒子径D50:7.5μm)(福田金属社製)
・添加剤
  添加剤1:BYK322、(ビックケミー社製)
  添加剤2:BYK337、(ビックケミー社製)
The materials used in the examples are shown below.
・Binder resin precursor Resin 1: Urethane resin (manufactured by Toyochem Co., Ltd.)
Resin 2: Polycarbonate resin (manufactured by Toyochem Co., Ltd.)
Resin 3: Styrene elastomer resin (manufactured by Toyochem Co., Ltd.)
Resin 4: Phenoxy resin, (manufactured by Toyochem Co., Ltd.)
Curable compound 1: Deconal EX830 (manufactured by Nagase Chemtech)
Curable compound 2: jERYX8000, (manufactured by Mitsubishi Chemical Corporation)
Curable compound 3: jER157S70 (manufactured by Mitsubishi Chemical Corporation)
・Curing accelerator: PZ-33 (manufactured by Nippon Shokubai Co., Ltd.)
Conductive filler Conductive filler 1: Flake Ag (average particle diameter D50: 11 μm) (manufactured by Fukuda Metal Co., Ltd.)
Conductive filler 2: acicular silver-coated copper (average particle diameter D50: 7.5 μm) (manufactured by Fukuda Metal Co., Ltd.)
・Additive Additive 1: BYK322 (manufactured by BYK Chemie)
Additive 2: BYK337 (manufactured by BYK Chemie)
[実施例B1]
(導電性接着剤層の樹脂組成物の調製)
 表2に示すように、バインダー樹脂前駆体として樹脂1(ウレタン樹脂)を70部(固形分)と、樹脂2(ポリカーボネート樹脂)を30部(固形分)と、硬化性化合物1(エポキシ樹脂)を30部と、硬化性化合物2(エポキシ樹脂)を15部と、導電性フィラー1(フレーク状Ag)を280部と、導電性フィラー2(針状AgコートCu)を50部と、硬化促進剤を1部と、添加剤1を0.4部とを容器に仕込み、固形分濃度が35質量%になるようトルエン:イソプロピルアルコール(質量比2:1)の混合溶剤を加えディスパーで10分攪拌することで導電性接着剤層を形成するための樹脂組成物を得た。
[Example B1]
(Preparation of Resin Composition of Conductive Adhesive Layer)
As shown in Table 2, 70 parts (solid content) of resin 1 (urethane resin), 30 parts (solid content) of resin 2 (polycarbonate resin), and curable compound 1 (epoxy resin) as a binder resin precursor. 30 parts, 15 parts of curable compound 2 (epoxy resin), 280 parts of conductive filler 1 (flake-like Ag), 50 parts of conductive filler 2 (acicular Ag coat Cu), and curing acceleration. 1 part of the agent and 0.4 part of the additive 1 are charged into a container, a mixed solvent of toluene:isopropyl alcohol (mass ratio 2:1) is added so that the solid content concentration becomes 35% by mass, and 10 minutes by a disper. A resin composition for forming a conductive adhesive layer was obtained by stirring.
(電磁波シールド用積層体の作製)
 この樹脂組成物を乾燥厚みが50μmになるようにドクターブレードを使用して離形性基材に塗工した。そして、25℃で12分間常温乾燥した後、100℃で2分間乾燥することで電磁波シールド用部材(導電性接着剤層)を得た。その後、離形性クッション部材CR1040、軟質樹脂層の両面をポリメチルペンテンで挟み込んだ層構成(厚み150μm)、三井化学東セロ社製)を用意し、電磁波シールド用部材とラミネートすることにより離形性基材上に実施例B1に係る電磁波シールド用積層体を得た。
(Production of laminate for electromagnetic wave shield)
This resin composition was applied to a releasable substrate using a doctor blade so that the dry thickness would be 50 μm. Then, it was dried at room temperature for 12 minutes at 25° C. and then at 100° C. for 2 minutes to obtain an electromagnetic wave shielding member (conductive adhesive layer). Thereafter, a releasable cushion member CR1040, a layer configuration (thickness 150 μm) in which both surfaces of the soft resin layer are sandwiched by polymethylpentene, manufactured by Mitsui Chemicals Tohcello Co., Ltd. are prepared, and releasability is obtained by laminating with a member for electromagnetic wave shielding. An electromagnetic wave shielding laminate according to Example B1 was obtained on the substrate.
(電子部品搭載基板の試験片の作製)
 次に、この離形性基材上の電磁波シールド用積層体を10×10cmにカットし、離形性基材を剥離した後、前記試験基板(図17参照)に対して、電磁波シールド用積層体の導電性接着剤層面側が接するように載置し仮貼付した。そして、この電磁波シールド用積層体の上方から基板面に対し2MPa、180℃の条件で2時間熱圧着した。熱圧着後、離形性クッション部材を剥離することで、電磁波シールド部材が被覆された実施例1に係る電子部品搭載基板(試験片)を得た。
(Preparation of test pieces for electronic component mounting boards)
Next, the laminate for electromagnetic wave shielding on the releasable substrate was cut into 10×10 cm, the releasable substrate was peeled off, and then the laminate for electromagnetic wave shielding was placed on the test substrate (see FIG. 17). It was placed and temporarily attached so that the conductive adhesive layer surface side of the body was in contact. Then, thermocompression bonding was performed from above the electromagnetic wave shielding laminate to the substrate surface under conditions of 2 MPa and 180° C. for 2 hours. After the thermocompression bonding, the releasable cushion member was peeled off to obtain an electronic component mounting substrate (test piece) according to Example 1 covered with the electromagnetic wave shielding member.
[実施例B2~B19、参考例B1,B2]
 表2,表3の記載の組成に変更した以外は、実施例B1と同様にして、各実施例および参考例の導電性接着剤層の樹脂組成物、電磁波シールド用積層体および電子部品搭載基板の試験片を得た。
[Examples B2 to B19, Reference Examples B1 and B2]
The resin composition of the conductive adhesive layer, the electromagnetic wave shielding laminate, and the electronic component mounting substrate of each of the examples and reference examples, except that the compositions shown in Tables 2 and 3 were changed. The test piece of was obtained.
<押込み弾性率>
 実施例B1~B19、参考例B1,B2の電磁波シールド用積層体を用意し、厚み300μmのFR4基板に載置し、離形性クッション部材側から面方向に2MPaの条件で180℃2時間の加熱を行った。その後、離形性クッション部材を剥離して電磁波シールド部材を形成したFR4基板の試験片を得た。そして、離形性クッション部材が積層されていた側から以下の方法により押込み弾性率を測定した。
 即ち、フィッシャースコープH100C(フィッシャー・インストルメンツ社製)型硬度計を使用し、ビッカース圧子(100φの先端が球形のダイアモンド圧子)を用い、25℃の恒温室にて試験力0.3N、試験力の保持時間20秒、試験力の付加所要時間5秒で行った。電磁波シールド部材の同一膜面をランダムに5箇所繰り返し測定して得た値を平均して押込み弾性率を求めた。
<Indentation elastic modulus>
The electromagnetic wave shield laminates of Examples B1 to B19 and Reference Examples B1 and B2 were prepared and placed on a FR4 substrate having a thickness of 300 μm, and 180° C. for 2 hours under the condition of 2 MPa in the surface direction from the releasable cushion member side. Heating was performed. Then, the releasable cushion member was peeled off to obtain a test piece of FR4 substrate on which the electromagnetic wave shield member was formed. Then, the indentation elastic modulus was measured from the side where the releasable cushion member was laminated by the following method.
That is, using a Fischer Scope H100C (manufactured by Fischer Instruments Co.) type hardness meter, using a Vickers indenter (diamond indenter having a spherical tip of 100φ), a test force of 0.3N and a test force of 25N in a thermostatic chamber. Was held for 20 seconds, and the test force required time was 5 seconds. The indentation elastic modulus was determined by averaging the values obtained by repeatedly measuring the same film surface of the electromagnetic wave shield member at 5 locations.
 なお、電磁波シールド部材の押込み弾性率の測定において、電子部品搭載基板上に実際に被覆されている電磁波シールド部材を測定することもできる。この場合には、電子部品基板上に被覆された電磁波シールド部材に直接ビッカース圧子を接触させ測定する。後述するクルトシスおよび水接触角においても、同様の要領で電子部品搭載基板上に実際に被覆されている電磁波シールド部材の測定を行うことができる。 Note that in measuring the indentation elastic modulus of the electromagnetic wave shield member, it is possible to measure the electromagnetic wave shield member that is actually coated on the electronic component mounting board. In this case, the Vickers indenter is brought into direct contact with the electromagnetic wave shield member coated on the electronic component substrate for measurement. Also in the case of Kurtosis and water contact angle described later, the electromagnetic shield member actually coated on the electronic component mounting substrate can be measured in the same manner.
<クルトシス>
 実施形態Aで説明した方法と同様の方法により、FR4基板の試験基板を得、同様の方法によりクルトシスを求めた。
<Kurtosis>
A test board of FR4 board was obtained by the same method as described in Embodiment A, and kurtosis was determined by the same method.
<水接触角>
 押込み弾性率の測定試料と同様にして作製したFR4基板の試験片に対し、電磁波シールド層の表面に対して、協和界面科学(株)製「自動接触角計DM‐501/解析ソフトウェアFAMAS」を用いて電磁波シールド部材の水接触角を測定した。測定は液適法により行った。
<Water contact angle>
For the test piece of FR4 substrate prepared in the same manner as the sample for measuring the indentation elastic modulus, "Automatic contact angle meter DM-501/Analysis software FAMAS" manufactured by Kyowa Interface Science Co., Ltd. was used for the surface of the electromagnetic wave shield layer. Then, the water contact angle of the electromagnetic wave shield member was measured. The measurement was performed by a liquid method.
<マルテンス硬さの測定>
 各実施例および参考例の電子部品搭載基板の試験片を用意し、ISO14577-1に準拠して、フィッシャースコープH100C(フィッシャー・インストルメンツ社製)型硬度計にてマルテンス硬さを測定した。測定は、電子部品30上の上面に対して、ビッカース圧子(100φの先端が球形のダイアモンド圧子)を用い、25℃の恒温室にて試験力0.3N、試験力の保持時間20秒、試験力の付加所要時間5秒の条件で行った。同一硬化膜面をランダムに10箇所繰り返し測定して得た値の平均値をマルテンス硬さとした。なお、試験力は電磁波シールド層の厚みに応じて調整する。具体的には最大押し込み深さが電磁波シールド部材の厚みの10分の1程度になるように試験力を調整した。
<Measurement of Martens hardness>
The test pieces of the electronic component mounting boards of the respective examples and reference examples were prepared, and the Martens hardness was measured with a Fischer Scope H100C (manufactured by Fischer Instruments Co., Ltd.) type hardness meter in accordance with ISO14577-1. For the measurement, a Vickers indenter (diamond indenter having a spherical tip of 100φ) with a test force of 0.3 N, a test force holding time of 20 seconds, and a test were applied to the upper surface of the electronic component 30 in a thermostatic chamber at 25°C. It was performed under the condition that the time required to apply force was 5 seconds. The average value of the values obtained by repeatedly measuring the same cured film surface at 10 locations randomly was defined as Martens hardness. The test force is adjusted according to the thickness of the electromagnetic wave shield layer. Specifically, the test force was adjusted so that the maximum indentation depth was about 1/10 of the thickness of the electromagnetic wave shield member.
<塗液の粘度およびチキソトロピーインデックス>
 実施形態Aで説明した方法と同様の方法により、回転数6rpmの粘度(v1)および回転数60rpmの粘度(v2)を測定した。また、同様の方法によりチキソトロピーインデックスを求めた。
<Viscosity of coating liquid and thixotropic index>
The viscosity (v1) at a rotation speed of 6 rpm and the viscosity (v2) at a rotation speed of 60 rpm were measured by the same method as that described in the embodiment A. Further, the thixotropy index was obtained by the same method.
<フルダイシング時のバリ>
 上記試験基板(5×5個アレイ状に電子部品が搭載された基板)に、各実施例および参考例の電磁波シールド用積層体を8MPa、170℃の条件で5分間熱圧着し、離形性クッション部材を手で剥離した。その後、180℃2時間キュアすることにより電磁波シールド部材を被覆した試験サンプルを得た。得られた試験サンプルに対し、個片化工程(フルダイシング)を行ったときのバリの発生状況を、レーザー顕微鏡を用いて以下の基準で評価した。
+++:バリが確認されない。
++:バリの発生が個片化した電子部品25個中2個未満。
+:バリの発生が個片化した電子部品25個中2個以上、5個未満。
NG:バリの発生が個片化した電子部品25個中5個以上。
<Burr during full dicing>
The electromagnetic wave shielding laminates of Examples and Reference Examples were thermocompression-bonded to the above-mentioned test substrates (substrates on which electronic components were mounted in an array of 5×5) under conditions of 8 MPa and 170° C. for 5 minutes, and releasability was improved. The cushion member was peeled off by hand. Then, it was cured at 180° C. for 2 hours to obtain a test sample coated with the electromagnetic wave shield member. With respect to the obtained test sample, the occurrence state of burrs when an individualizing step (full dicing) was performed was evaluated by the following criteria using a laser microscope.
+++: No burr is confirmed.
++: Less than 2 out of 25 electronic components in which burrs are generated.
+: 2 or more and less than 5 out of 25 electronic components in which burrs are generated.
NG: 5 or more out of 25 electronic components in which burrs are generated.
<テープ密着性>
 厚み300μmのFR4基板に、5×5cmにカットした各実施例および参考例の電磁波シールド用積層体をそれぞれ載置し、170℃で8MPaの条件で5分熱プレスを行い、180℃で2時間キュアすることで試験基板を得た。次いで、離形性クッション部材を剥離した。その後、得られた試験基板を130℃、湿度85%、0.23MPaのプレッシャークッカー試験を実施した。試験時間は96時間とし、粘着テープは、幅18mmのニチバン製粘着テープを用いた。そして、JISK5600に準じてクロスカットガイドを使用し、間隔が1mmの碁盤目を電磁波シールド部材に25個作製した。その後、電磁波シールド部材の碁盤目部に粘着テープを圧着させ、テープの端を45°の角度で一気に引き剥がしてテープ密着試験を行った。電磁波シールド部材の碁盤目の状態(クロスカット残存率)を下記の基準で判断した。
+++:25/25の残存率を示す。
++:24/25の残存率を示す。
+:23/25の残存率を示す。
NG:23/25の残存率未満である。
<Tape adhesion>
The FR4 substrate having a thickness of 300 μm was mounted with the electromagnetic wave shielding laminates of Examples and Reference Examples, each of which was cut into 5×5 cm, and heat-pressed at 170° C. for 8 minutes at 8 MPa for 2 hours at 180° C. A test substrate was obtained by curing. Then, the releasable cushion member was peeled off. Then, the obtained test substrate was subjected to a pressure cooker test at 130° C., a humidity of 85%, and a pressure of 0.23 MPa. The test time was 96 hours, and the adhesive tape used was a Nichiban adhesive tape having a width of 18 mm. Then, using a cross-cut guide in accordance with JIS K5600, 25 grids having a distance of 1 mm were produced on the electromagnetic wave shield member. After that, an adhesive tape was pressure-bonded to the cross-cut portion of the electromagnetic wave shield member, the end of the tape was peeled off at an angle of 45°, and a tape adhesion test was performed. The cross-cut condition (crosscut residual rate) of the electromagnetic wave shield member was judged according to the following criteria.
+++: Shows the residual rate of 25/25.
++: Shows the residual rate of 24/25.
+: The residual rate of 23/25 is shown.
NG: less than the remaining rate of 23/25.
<熱圧着後の離形性クッション部材のハーフダイシング溝の剥離性評価>
 上記試験基板(ハーフダイシング溝深さ800μm、溝幅200μm)に対して、各実施例および参考例の電磁波シールド用積層体それぞれを8MPa、170℃の条件で5分間熱圧着し、離形性クッション部材を手で剥離した。そして、電子部品同士の間隙の溝に千切れて残った離形性クッション部材の個数を目視で確認した。評価基準は以下の通りとした。
+++:残渣が認められない。
++:残渣が1個以上、3個未満。
+:残渣が3個以上、5個未満。
NG:残渣が5個以上、或いは溝全体に残渣が残った状態。
<Evaluation of releasability of half dicing groove of releasable cushion member after thermocompression bonding>
The electromagnetic wave shielding laminates of Examples and Reference Examples were thermocompression-bonded to the test substrate (half dicing groove depth 800 μm, groove width 200 μm) under conditions of 8 MPa and 170° C. for 5 minutes to form a releasable cushion. The member was peeled off by hand. Then, the number of releasable cushion members torn and left in the groove in the gap between the electronic components was visually confirmed. The evaluation criteria are as follows.
+++: No residue is observed.
++: 1 or more residue and less than 3 residue.
+: 3 or more residues and less than 5 residues.
NG: 5 or more residues, or a residue remains in the entire groove.
<スチールウール耐性>
 実施形態Aで説明した方法と同様の方法により、試験基板を得、同様の測定方法によりスチールウール耐性を評価した。評価基準も同様とした。
<Steel wool resistance>
A test substrate was obtained by the same method as described in Embodiment A, and steel wool resistance was evaluated by the same measurement method. The evaluation criteria are also the same.
 表2,表3に、実施例B1~B19および参考例B1,B2の上記評価結果を示す。 Tables 2 and 3 show the above evaluation results of Examples B1 to B19 and Reference Examples B1 and B2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表2、表3の例に示すように、押込み弾性率が1未満の参考例B1の電磁波シールド部材を用いた電子部品搭載基板は、フルダイシング時のバリが合格レベルに達しなかった。これに対し、本発明の電子部品搭載基板の電磁波シールド性部材はいずれも合格レベルに達しており、バリの発生を抑制できることが確認できた。また、押込み弾性率が10GPaを超える参考例B2の電磁波シールド部材を用いた電子部品搭載基板は、PCT試験後のテープ密着性が合格レベルに達しなかった。これに対し、本発明の電子部品搭載基板の電磁波シールド性部材はいずれもPCT試験後のテープ密着性が合格レベルであり、PCT耐性に優れていることを確認した。 As shown in the examples of Tables 2 and 3, the electronic component mounting board using the electromagnetic wave shield member of Reference Example B1 having an indentation elastic modulus of less than 1 did not reach the acceptable level of burrs during full dicing. On the other hand, all the electromagnetic wave shielding members of the electronic component mounting board of the present invention have reached the acceptable level, and it has been confirmed that the occurrence of burrs can be suppressed. Further, the electronic component mounting board using the electromagnetic wave shield member of Reference Example B2 having the indentation elastic modulus of more than 10 GPa did not reach the pass level in the tape adhesion after the PCT test. On the other hand, it was confirmed that all the electromagnetic wave shielding members of the electronic component mounting substrate of the present invention had a pass level of tape adhesion after the PCT test and were excellent in PCT resistance.
 図22に、実施例B3の個片化後の電子部品搭載基板の側面を顕微鏡で観察した画像を示す。同図に示すように、バリは認められなかった。一方、図23に、参考例B1の個片化後の電子部品搭載基板の側面を顕微鏡で観察した画像を示す。同図に示すように、バリの発生が認められた。 FIG. 22 shows an image obtained by observing the side surface of the electronic component mounting board of Example B3 after singulation with a microscope. As shown in the figure, no burr was observed. On the other hand, FIG. 23 shows an image obtained by observing the side surface of the electronic component mounting substrate of Reference Example B1 after being singulated with a microscope. As shown in the figure, the occurrence of burrs was recognized.
[[実施形態C]]
(試験基板1)
 実施形態Aの試験基板1の作製方法と同様の方法により、試験基板を得た。
[[Embodiment C]]
(Test board 1)
A test board was obtained by the same method as the method of manufacturing the test board 1 of the embodiment A.
 以下、実施例で使用した材料を示す。
・バインダー樹脂前駆体
  熱硬化性樹脂1:ポリカーボネート樹脂(トーヨーケム社製)
  熱硬化性樹脂2:フェノキシ樹脂(トーヨーケム社製)
  硬化性化合物1:デコナールEX830(ナガセケムテック社製)
  硬化性化合物2:jERYX8000(三菱ケミカル社製)
  硬化性化合物3:jER157S70(三菱ケミカル社製)
・硬化促進剤:PZ-33
・導電性フィラー1:鱗片状Ag(平均粒子径D50:9.5μm、D90=19μm、厚み0.1μm)
・導電性フィラー2:デンドライト状銀コート銅(平均粒子径D50:7.1μm、D90=15.1μm)
・添加剤1:BYK337
The materials used in the examples are shown below.
Binder resin precursor Thermosetting resin 1: Polycarbonate resin (manufactured by Toyochem Co., Ltd.)
Thermosetting resin 2: Phenoxy resin (manufactured by Toyochem Co., Ltd.)
Curable compound 1: Deconal EX830 (manufactured by Nagase Chemtech)
Curable compound 2: jERYX8000 (manufactured by Mitsubishi Chemical Corporation)
Curable compound 3: jER157S70 (manufactured by Mitsubishi Chemical Corporation)
・Curing accelerator: PZ-33
-Conductive filler 1: scaly Ag (average particle diameter D50: 9.5 μm, D90=19 μm, thickness 0.1 μm)
-Conductive filler 2: dendrite-like silver-coated copper (average particle diameter D50: 7.1 μm, D90 = 15.1 μm)
・Additive 1: BYK337
[実施例C1]
(導電性接着剤層の樹脂組成物の調製)
 表4に示すように、バインダー樹脂前駆体として熱硬化性樹脂1(ポリカーボネート樹脂)を20部(固形分)と、熱硬化性樹脂2(フェノキシ樹脂)を80部(固形分)と、硬化性化合物1(エポキシ樹脂)を20部と、硬化性化合物2(エポキシ樹脂)を15部と、硬化性化合物3(エポキシ樹脂)を10部と、導電性フィラー1(鱗片状Ag)を365部と、導電性フィラー2(デンドライト状AgコートCu)を5部と、硬化促進剤を1部と、とを容器に仕込み、固形分濃度が23質量%になるようトルエン:イソプロピルアルコール(質量比2:1)の混合溶剤を加えディスパーで10分攪拌することで導電性接着剤層を形成するための樹脂組成物を得た。
[Example C1]
(Preparation of Resin Composition of Conductive Adhesive Layer)
As shown in Table 4, thermosetting resin 1 (polycarbonate resin) as a binder resin precursor is 20 parts (solid content), thermosetting resin 2 (phenoxy resin) is 80 parts (solid content), and curability 20 parts of compound 1 (epoxy resin), 15 parts of curable compound 2 (epoxy resin), 10 parts of curable compound 3 (epoxy resin), and 365 parts of conductive filler 1 (scaly Ag). , 5 parts of the conductive filler 2 (dendritic Ag coat Cu) and 1 part of the curing accelerator were charged in a container, and toluene:isopropyl alcohol (mass ratio 2: mass ratio: 2: The mixed solvent of 1) was added and the mixture was stirred with a disper for 10 minutes to obtain a resin composition for forming a conductive adhesive layer.
(電磁波シールド用積層体の作製)
 実施形態Aと同様の方法により、実施例C1に係る電磁波シールド用積層体を得た。
(Production of laminate for electromagnetic wave shield)
By the same method as in Embodiment A, an electromagnetic wave shielding laminate according to Example C1 was obtained.
(電子部品搭載基板の試験片の作製)
 次に、この離形性基材上の電磁波シールド用積層体を10×10cmにカットし、離形性基材を剥離した後、前記試験基板(図17参照)に対して、電磁波シールド用積層体の導電性接着剤層面側が接するように載置し仮貼付した。そして、この電磁波シールド用積層体の上方から基板面に対し2MPa、180℃の条件で2時間熱圧着した。熱圧着後、離形性クッション部材を剥離することで、電磁波シールド部材が被覆された実施例C1に係る電子部品搭載基板(試験片)を得た。
(Preparation of test pieces for electronic component mounting boards)
Next, the laminate for electromagnetic wave shielding on the releasable substrate was cut into 10×10 cm, the releasable substrate was peeled off, and then the laminate for electromagnetic wave shielding was placed on the test substrate (see FIG. 17). It was placed and temporarily attached so that the conductive adhesive layer surface side of the body was in contact. Then, thermocompression bonding was performed from above the electromagnetic wave shielding laminate to the substrate surface under conditions of 2 MPa and 180° C. for 2 hours. After thermocompression bonding, the releasable cushion member was peeled off to obtain an electronic component mounting substrate (test piece) according to Example C1 covered with the electromagnetic wave shielding member.
[実施例C2~C9、参考例C1]
 表4の記載の組成に変更した以外は、実施例C1と同様にして、導電性接着剤層の樹脂組成物、電磁波シールド用積層体を得た。
[Examples C2 to C9, Reference Example C1]
A resin composition of a conductive adhesive layer and a laminate for electromagnetic wave shielding were obtained in the same manner as in Example C1 except that the composition shown in Table 4 was changed.
<二乗平均平方根高さRq>
 実施例C1~C9、参考例C1の電磁波シールド用積層体を用意し、厚み300μmのFR4基板に載置し、離形性クッション部材側から面方向に8MPaの条件で170℃5分加熱圧着を行った。その後、離形性クッション部材を剥がし180℃2時間の加熱を行い、電磁波シールド部材を形成した試験片を得た。
<Root Mean Square Height Rq>
The electromagnetic wave shielding laminates of Examples C1 to C9 and Reference Example C1 were prepared, placed on a FR4 substrate having a thickness of 300 μm, and heat-pressed at 170° C. for 5 minutes under the condition of 8 MPa in the surface direction from the releasable cushion member side. went. Then, the releasable cushion member was peeled off and heated at 180° C. for 2 hours to obtain a test piece on which an electromagnetic wave shield member was formed.
 上記試験片において、離形性クッション部材を剥離した電磁波シールド部材の表面に金属スパッタ処理を施した。金属スパッタ処理条件は、日本電子株式会社製スパッタ装置「Smart Coater」を使用し、ターゲットとして金を用い、ターゲットとサンプル表面との離間距離を2cmとし、0.5分間スパッタした。得られた試料の金属スパッタ処理面に対し、JIS  B  0601:2001に準拠し、レーザー顕微鏡((株)キーエンス社製(VK-X100))を用いて二乗平均平方根高さRqを求めた。測定条件は、形状測定モードで測定倍率を1000倍とし、表面形状を取得した。得られた表面形状画像を解析アプリケーションの表面粗さ測定にて、全領域を選択しλs輪郭曲線フィルタを2.5μm、λc輪郭曲線フィルタを0.8mmとし、二乗平均平方根高さRqを測定した。上記測定を異なる5箇所で行い測定値の平均値を二乗平均平方根高さRqの値とした。
 なお、電磁波シールド部材の二乗平均平方根高さRqの測定において、電子部品搭載基板上に実際に被覆されている電磁波シールド部材を測定する場合には、電子部品基板上に被覆された電磁波シールド部材を直接測定すればよい。
In the above test piece, the surface of the electromagnetic wave shield member from which the releasable cushion member was peeled off was subjected to metal sputtering treatment. As for the metal sputter processing conditions, a sputtering device “Smart Coater” manufactured by JEOL Ltd. was used, gold was used as a target, and the separation distance between the target and the sample surface was 2 cm, and sputtering was performed for 0.5 minutes. The root mean square height Rq was determined for the metal sputtered surface of the obtained sample using a laser microscope (VK-X100 manufactured by Keyence Corporation) according to JIS B 0601:2001. The measurement conditions were such that the measurement magnification was 1000 times in the shape measurement mode and the surface shape was acquired. The obtained surface shape image was subjected to surface roughness measurement of an analysis application to select the entire area, set the λs contour curve filter to 2.5 μm and the λc contour curve filter to 0.8 mm, and measure the root mean square height Rq. .. The above measurement was performed at five different points, and the average value of the measured values was taken as the value of the root mean square height Rq.
In the measurement of the root mean square height Rq of the electromagnetic wave shield member, when measuring the electromagnetic wave shield member actually coated on the electronic component mounting substrate, the electromagnetic wave shield member coated on the electronic component substrate is It can be measured directly.
<二乗平均平方根傾斜Rdq>
 Rqの測定で得られた表面形状画像を用い、解析アプリケーションの線粗さ測定にて、2点線を画像全体に均一に20本引き、λ0026s輪郭曲線フィルタを2.5μm、λc輪郭曲線フィルタを0.8mmとし、二乗平均平方根傾斜Rdqを測定した。上記測定を異なる5箇所で行い測定値の平均値を二乗平均平方根傾斜Rdqの値とした。
<Square root mean square slope Rdq>
Using the surface profile image obtained by the measurement of Rq, in the line roughness measurement of the analysis application, 20 two-dot lines are uniformly drawn over the entire image, the λ0026s contour curve filter is 2.5 μm, and the λc contour curve filter is 0. The root mean square slope Rdq was measured at 0.8 mm. The above measurement was carried out at five different points, and the average value of the measured values was taken as the value of the root mean square slope Rdq.
<水接触角>
 各実施例、参考例の電磁波シールド用積層体を用意し、厚み300μmの押込み弾性率の測定試料と同様にして作製したFR4基板の試験片に載置し、離形性クッション部材側から面方向に2MPaの条件で180℃2時間の加熱を行った。その後、離形性クッション部材を剥離して電磁波シールド部材を形成したFR4基板の試験片を得た。そして、離形性クッション部材が積層されていた側から以下の方法により水接触角を測定した。即ち、電磁波シールド層の表面に対して、協和界面科学(株)製「自動接触角計DM‐501/解析ソフトウェアFAMAS」を用いて電磁波シールド部材の水接触角を測定した。測定は液適法により行った。
<Water contact angle>
The electromagnetic wave shield laminates of the respective examples and reference examples were prepared, and placed on a test piece of an FR4 substrate prepared in the same manner as a 300 μm thick indentation elastic modulus measurement sample, and the surface direction from the releasable cushion member side. Further, heating was performed at 180° C. for 2 hours under the condition of 2 MPa. Then, the releasable cushion member was peeled off to obtain a test piece of FR4 substrate on which the electromagnetic wave shield member was formed. Then, the water contact angle was measured from the side where the releasable cushion member was laminated by the following method. That is, the water contact angle of the electromagnetic wave shield member was measured on the surface of the electromagnetic wave shield layer using "Automatic contact angle meter DM-501/Analysis software FAMAS" manufactured by Kyowa Interface Science Co., Ltd. The measurement was performed by a liquid method.
<塗液の粘度およびチキソトロピーインデックス>
 実施形態Aで説明した方法と同様の方法により、回転数6rpmの粘度(v1)および回転数60rpmの粘度(v2)を測定した。また、同様の方法によりチキソトロピーインデックスを求めた。
<Viscosity of coating liquid and thixotropic index>
The viscosity (v1) at a rotation speed of 6 rpm and the viscosity (v2) at a rotation speed of 60 rpm were measured by the same method as that described in the embodiment A. Further, the thixotropy index was obtained by the same method.
<テープ被覆性>
 厚み300μmのFR4基板に、5×5cmにカットした各実施例および参考例の電磁波シールド用積層体をそれぞれ載置し、170℃で8MPaの条件で5分熱プレスを行い、180℃で2時間キュアすることで試験基板を得た。次いで、離形性クッション部材を剥離した。その後、得られた試験基板を、電磁波シールド部材をダイシングテープ(UHP-110AT(UVタイプ、基材PET、総厚み110μm(粘着層厚10μmを含む))、デンカ社製)と接着させ、基板20の外側表面からダイシングカットして電子部品搭載基板の個片化を行った。個片化後、電磁波シールド部材からダイシングテープを剥離し、電磁波シールド部材の状態を光学顕微鏡(倍率200倍)で観察し下記の基準で判断した。
+++:外観に異常なし。
++:1cmあたり電磁波シールド部材に直径0.5mm以下の浮きが1~2個生じている。
+:1cmあたり電磁波シールド部材に直径0.5mm以下の浮きが3~4個生じている。
NG:1cmあたり電磁波シールド部材に直径0.5mm越えの浮き、剥がれ、又は直径0.5mm以下の浮きが5個以上生じている。
<Tape coverage>
The FR4 substrate having a thickness of 300 μm was mounted with the electromagnetic wave shielding laminates of Examples and Reference Examples, each of which was cut into 5×5 cm, and heat-pressed at 170° C. for 8 minutes at 8 MPa for 2 hours at 180° C. A test substrate was obtained by curing. Then, the releasable cushion member was peeled off. Then, the obtained test substrate was bonded to an electromagnetic wave shielding member with a dicing tape (UHP-110AT (UV type, substrate PET, total thickness 110 μm (including adhesive layer thickness 10 μm)), manufactured by Denka), and the substrate 20 The electronic component mounting board was divided into individual pieces by dicing cutting from the outer surface. After separating into pieces, the dicing tape was peeled off from the electromagnetic wave shield member, and the state of the electromagnetic wave shield member was observed with an optical microscope (magnification: 200 times) and judged according to the following criteria.
+++: No abnormality in appearance.
++: 1 to 2 floats having a diameter of 0.5 mm or less are generated on the electromagnetic wave shield member per 1 cm 2 .
+: 3 to 4 floats having a diameter of 0.5 mm or less occur on the electromagnetic wave shield member per 1 cm 2 .
NG: 5 or more floats having a diameter of more than 0.5 mm, peeling, or floats having a diameter of 0.5 mm or less occurred on the electromagnetic wave shield member per 1 cm 2 .
<防汚性評価>
 厚さ125μmのポリイミドフィルム(東レ・デュポン社製「カプトン500H」)に、5×15cmにカットした各実施例および参考例の電磁波シールド用積層体をそれぞれ載置し、180℃で2MPaの条件で10分熱プレスを行い、180℃で2時間キュアすることで試験基板を得た。その後、離形性クッション部材を剥離した。疑似フラックスとして電磁波シールド部材の天面にn-オクタン酸を塗布した。その後、ジオキソランとイソプロパノールを8/2で混合した洗浄液に浸漬し超音波洗浄した。洗浄後、光学顕微鏡(倍率200倍)を用いて防汚性について評価した。評価基準は以下の通りである。
+++:3分間の洗浄で、残渣が無い。
++:5分間の洗浄で、残渣が無い。
+:5分間の洗浄で、電磁波シールド部材表面1cmあたり1~2か所残渣がある。
NG:5分間の洗浄で、電磁波シールド部材表面1cmあたり2か所越えで残渣がある。
<Evaluation of antifouling property>
A 125 μm thick polyimide film (“Kapton 500H” manufactured by Toray-DuPont) was placed on each of the electromagnetic wave shielding laminates of Examples and Reference Examples cut into 5×15 cm, and the conditions were 180° C. and 2 MPa. A hot press was performed for 10 minutes, and a test substrate was obtained by curing at 180° C. for 2 hours. Then, the releasable cushion member was peeled off. As a pseudo flux, n-octanoic acid was applied to the top surface of the electromagnetic wave shield member. Then, it was immersed in a cleaning liquid in which dioxolane and isopropanol were mixed at 8/2 and ultrasonically cleaned. After washing, the antifouling property was evaluated using an optical microscope (magnification: 200 times). The evaluation criteria are as follows.
+++: No residue after washing for 3 minutes.
++: No residue after washing for 5 minutes.
+: After washing for 5 minutes, 1 to 2 places of residue remain on 1 cm 2 of the surface of the electromagnetic wave shield member.
NG: After washing for 5 minutes, there are residues at 2 places per cm 2 of the electromagnetic wave shield member surface.
<冷熱サイクル試験>
 図15に示す試験基板に対し、実施例C1に係る電子部品搭載基板(試験片)電磁波シールド部材が被覆された電子部品搭載基板(試験片)を用意し、電磁波シールド部材1が被覆された電子部品の二つの天面(図24中の矢印)間の初期接続抵抗値を、三菱化学アナリテック製「ロレスターGP」のBSPプローブを用いて測定した。次いで、冷熱衝撃装置(「TSE‐11‐A」、エスペック社製)に投入し、高温さらし:125℃、15分、低温さらし:-50℃、15分の曝露条件にて交互曝露を1000回実施した。その後、試料の接続抵抗値を、初期と同様に測定した。
冷熱サイクル信頼性の評価基準は以下の通りである。測定値は、3箇所測定を行い、その平均値とした。
 なお、ハードコート層等の絶縁層が最表面に積層された場合においては、冷熱サイクル試験後に当該絶縁層の測定箇所を除去して、電磁波シールド層5を露出させて上記と同様の試験を行う。この場合において、冷熱サイクル試験前の電磁波シールド層5の接続抵抗値は、同サンプルの別の場所において、絶縁層の測定箇所を上記と同様の方法により除去して求める。
+++:(交互曝露後の接続抵抗値)/(初期接続抵抗値)が1.5未満 極めて良好である。
++:(交互曝露後の接続抵抗値)/(初期接続抵抗値)が1.5以上、3.0未満 良好。
+:(交互曝露後の接続抵抗値)/(初期接続抵抗値)が3.0以上、5.0未満 実用可。
NG:(交互曝露後の接続抵抗値)/(初期接続抵抗値)が5.0以上。
<Cooling cycle test>
An electronic component mounting substrate (test piece) coated with an electronic component mounting substrate (test piece) electromagnetic wave shielding member according to Example C1 was prepared for the test substrate shown in FIG. The initial connection resistance value between the two top surfaces (arrows in FIG. 24) of the component was measured using a BSP probe of “Lorester GP” manufactured by Mitsubishi Chemical Analytech. Then, put into a thermal shock device ("TSE-11-A", manufactured by ESPEC Co., Ltd.) and exposed to high temperature: 125°C for 15 minutes, low temperature exposure: -50°C for 15 minutes, and alternately exposed 1000 times. Carried out. After that, the connection resistance value of the sample was measured in the same manner as in the initial stage.
The evaluation standard of the thermal cycle reliability is as follows. The measured value was measured at three points and the average value was used.
When an insulating layer such as a hard coat layer is laminated on the outermost surface, the measurement point of the insulating layer is removed after the thermal cycle test, the electromagnetic wave shield layer 5 is exposed, and the same test as above is performed. .. In this case, the connection resistance value of the electromagnetic wave shield layer 5 before the cooling/heating cycle test is obtained by removing the measurement point of the insulating layer at the other place of the sample by the same method as described above.
+++: (connection resistance value after alternate exposure)/(initial connection resistance value) is less than 1.5, which is extremely good.
++: (connection resistance value after alternate exposure)/(initial connection resistance value) is 1.5 or more and less than 3.0, which is good.
+: (connection resistance value after alternate exposure)/(initial connection resistance value) is 3.0 or more and less than 5.0.
NG: (connection resistance value after alternate exposure)/(initial connection resistance value) is 5.0 or more.
 表4に、実施例C1~C9および参考例C1の上記評価結果を示す。 Table 4 shows the evaluation results of Examples C1 to C9 and Reference Example C1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表4の例に示すように、二乗平均平方根高さRqが0.3以上の参考例1の電磁波シールド部材を用いた電子部品搭載基板は、冷熱サイクル試験が合格レベルに達しなかった。これに対し、本発明の電子部品搭載基板の電磁波シールド部材はいずれも合格レベルに達しており、冷熱サイクル試験の苛酷な条件下においても被覆性に優れていることを確認した。また、個片化工程において、電磁波シールド部材に浮きや剥離などの被覆性不良を効果的に防止できることを確認した。また、本発明の電子部品搭載基板の電磁波シールド性部材は防汚性に優れていることを確認した。 As shown in the example of Table 4, the electronic component mounting board using the electromagnetic wave shield member of Reference Example 1 having a root mean square height Rq of 0.3 or more did not reach the pass level in the thermal cycle test. On the other hand, all the electromagnetic wave shielding members of the electronic component mounting board of the present invention have reached the pass level, and it was confirmed that the electromagnetic wave shielding member has excellent coverage even under severe conditions of the thermal cycle test. Further, it was confirmed that in the individualizing step, it is possible to effectively prevent the coverage defect such as floating or peeling on the electromagnetic wave shield member. In addition, it was confirmed that the electromagnetic wave shielding member of the electronic component mounting substrate of the present invention is excellent in antifouling property.
 この出願は、2018年12月18日に出願された日本出願特願2018-236541と同特願2018-236542、2019年3月28日に出願された日本出願特願2019-063673と同特願2019-063674、並びに2019年12月5日に出願された日本出願特願2019-220612を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application was filed on Dec. 18, 2018 in Japanese Patent Application No. 2018-236541 and Japanese Patent Application No. 2018-236542, and in Japanese application in Japanese Patent Application No. 2019-063673 filed on Mar. 28, 2019. Claiming priority based on Japanese Patent Application No. 2019-206612 filed on Dec. 5, 2019, 2019-0636674, the entire disclosure of which is incorporated herein.
1      電磁波シールド部材
2      電磁波シールド用部材
3      離形性クッション部材
4      電磁波シールド用積層体
5      電磁波シールド層
6      導電性接着剤層
6P      乾燥途上の導電性接着剤層
7b      絶縁性樹脂層
8c      絶縁性接着剤層
9c      絶縁被覆層
10      バインダー樹脂前駆体
11      導電性フィラー
12      デンドライト状粒子
15      離形性基材
20      基板
21      電極
22      グランドパターン
23      インナービア
24      はんだボール
25      ハーフダイシング溝
30      電子部品
31      半導体チップ
32      モールド樹脂
33      ボンディングワイヤ
40      プレス基板
51、52    電子部品搭載基板
1 Electromagnetic Wave Shielding Member 2 Electromagnetic Wave Shielding Member 3 Releasable Cushion Member 4 Electromagnetic Wave Shielding Laminate 5 Electromagnetic Wave Shielding Layer 6 Conductive Adhesive Layer 6P Conductive Adhesive Layer 7b Insulating Resin Layer 8c Insulating Adhesive Layer 9c Insulating coating layer 10 Binder resin precursor 11 Conductive filler 12 Dendritic particles 15 Releasable substrate 20 Substrate 21 Electrode 22 Ground pattern 23 Inner via 24 Solder ball 25 Half dicing groove 30 Electronic component 31 Semiconductor chip 32 Mold resin 33 Bonding Wire 40 Press Substrate 51, 52 Electronic Component Mounting Substrate

Claims (16)

  1.  基板と、
     前記基板の少なくとも一方の面に搭載された電子部品と、
     前記電子部品上面から前記基板に亘って被覆され、前記電子部品の搭載によって形成された段差部の側面および前記基板の少なくとも一部を被覆する電磁波シールド部材と、を備え、
     前記電磁波シールド部材は、バインダー樹脂と導電性フィラーを含む電磁波シールド層を有し、
     前記電磁波シールド部材の表層のJISB0601;2001に準拠して測定したクルトシスが1~8である電子部品搭載基板。
    Board,
    An electronic component mounted on at least one surface of the substrate,
    An electromagnetic wave shield member that covers from the upper surface of the electronic component to the substrate, and that covers at least a part of the side surface of the step portion formed by mounting the electronic component and the substrate,
    The electromagnetic wave shield member has an electromagnetic wave shield layer containing a binder resin and a conductive filler,
    An electronic component mounting board having a kurtosis of 1 to 8 measured according to JIS B0601; 2001 on the surface layer of the electromagnetic wave shield member.
  2.  前記電磁波シールド部材の表層のJISB0601;2001に準拠して測定した二乗平均平方根高さRqが0.3~1.7μmとなる請求項1に記載の電子部品搭載基板。 The electronic component mounting board according to claim 1, wherein the root mean square height Rq measured according to JIS B0601; 2001 of the surface layer of the electromagnetic wave shielding member is 0.3 to 1.7 μm.
  3.  前記導電性フィラーは、
     デンドライト状および針状の導電性フィラーの少なくとも一方を含有している請求項1又は2に記載の電子部品搭載基板。
    The conductive filler,
    The electronic component mounting board according to claim 1, which contains at least one of a dendrite-shaped and needle-shaped conductive filler.
  4.  基板と、
     前記基板の少なくとも一方の面に搭載された電子部品と、
     前記電子部品上面から前記基板に亘って被覆され、前記電子部品の搭載によって形成された段差部の側面および前記基板の少なくとも一部を被覆する電磁波シールド部材と、を備え、
     前記電磁波シールド部材は、バインダー樹脂と導電性フィラーを含む電磁波シールド層を有し、且つ押込み弾性率が1~10GPaである電子部品搭載基板。
    Board,
    An electronic component mounted on at least one surface of the substrate,
    An electromagnetic wave shield member that covers from the upper surface of the electronic component to the substrate, and that covers at least a part of the side surface of the step portion formed by mounting the electronic component and the substrate,
    The electromagnetic wave shield member has an electromagnetic wave shield layer containing a binder resin and a conductive filler, and has an indentation elastic modulus of 1 to 10 GPa.
  5.  前記電磁波シールド部材の表層の水接触角が70~110°である請求項4に記載の電子部品搭載基板。 The electronic component mounting board according to claim 4, wherein the water contact angle of the surface layer of the electromagnetic wave shield member is 70 to 110°.
  6.  前記電磁波シールド部材のJIS K5600に基づくプレッシャークッカー試験後のテープ密着試験において、前記電子部品上の前記電磁波シールド部材が23/25以上のクロスカット残存率を示す請求項4又は5に記載の電子部品搭載基板。 The electronic component according to claim 4 or 5, wherein the electromagnetic shield member on the electronic component shows a crosscut residual ratio of 23/25 or more in a tape adhesion test after a pressure cooker test based on JIS K5600 of the electromagnetic shield member. Mounting board.
  7.  前記電磁波シールド部材の表層のJISB0601;2001に準拠して測定したクルトシスが1~8となる請求項4~6のいずれかに記載の電子部品搭載基板。 The electronic component mounting substrate according to any one of claims 4 to 6, wherein the surface layer of the electromagnetic wave shield member has a kurtosis of 1 to 8 measured according to JIS B0601; 2001.
  8.  前記電磁波シールド部材の表面の二乗平均平方根高さが0.4~1.6μmの範囲である請求項4~7のいずれかに記載の電子部品搭載基板。 The electronic component mounting board according to any one of claims 4 to 7, wherein a root mean square height of the surface of the electromagnetic wave shield member is in a range of 0.4 to 1.6 µm.
  9.  前記電磁波シールド部材のマルテンス硬さが50~312N/mmである請求項4~8のいずれかに記載の電子部品搭載基板。 9. The electronic component mounting board according to claim 4, wherein the electromagnetic wave shielding member has a Martens hardness of 50 to 312 N/mm 2 .
  10.  前記バインダー樹脂は、熱硬化性樹脂と、前記熱硬化性樹脂の反応性官能基と架橋可能な官能基を有している硬化性化合物を含有するバインダー樹脂前駆体を熱圧着して得られることを特徴とする請求項4~9のいずれかに記載の電子部品搭載基板。 The binder resin is obtained by thermocompression bonding a thermosetting resin and a binder resin precursor containing a curable compound having a functional group capable of crosslinking with the reactive functional group of the thermosetting resin. The electronic component mounting board according to any one of claims 4 to 9.
  11.  前記電磁波シールド部材の膜厚が10~200μmである請求項4~10のいずれかに記載の電子部品搭載基板。 The electronic component mounting board according to any one of claims 4 to 10, wherein a film thickness of the electromagnetic wave shield member is 10 to 200 µm.
  12.  基板と、
     前記基板の少なくとも一方の面に搭載された電子部品と、
     前記電子部品上面から前記基板に亘って被覆され、前記電子部品の搭載によって形成された段差部の側面および前記基板の少なくとも一部を被覆する電磁波シールド部材と、を備え、
     前記電磁波シールド部材は、バインダー樹脂と導電性フィラーを含む電磁波シールド層を有し、
     前記電磁波シールド部材の表層の二乗平均平方根高さRqが0.05μm以上、0.3μm未満である電子部品搭載基板。
    Board,
    An electronic component mounted on at least one surface of the substrate,
    An electromagnetic wave shield member that covers from the upper surface of the electronic component to the substrate, and that covers at least a part of the side surface of the step portion formed by mounting the electronic component and the substrate,
    The electromagnetic wave shield member has an electromagnetic wave shield layer containing a binder resin and a conductive filler,
    An electronic component mounting board in which the root mean square height Rq of the surface layer of the electromagnetic wave shield member is 0.05 μm or more and less than 0.3 μm.
  13.  前記電磁波シールド部材の表層の二乗平均平方根傾斜Rdqが0.05~0.4となる請求項12に記載の電子部品搭載基板。 The electronic component mounting board according to claim 12, wherein the root mean square slope Rdq of the surface layer of the electromagnetic wave shield member is 0.05 to 0.4.
  14.  前記電磁波シールド部材の表層の水接触角が90~130°である請求項12又は13に記載の電子部品搭載基板。 The electronic component mounting board according to claim 12 or 13, wherein a water contact angle of the surface layer of the electromagnetic wave shield member is 90 to 130°.
  15.  前記導電性フィラーは、
     デンドライト状および針状の導電性フィラーの少なくとも一方と、鱗片状の導電性フィラーを含有している請求項12~14のいずれかに記載の電子部品搭載基板。
    The conductive filler,
    The electronic component mounting board according to any one of claims 12 to 14, which contains at least one of a dendrite-shaped and needle-shaped conductive filler and a scale-shaped conductive filler.
  16.  請求項1~15のいずれかに記載の電子部品搭載基板が搭載された、電子機器。 An electronic device on which the electronic component mounting board according to any one of claims 1 to 15 is mounted.
PCT/JP2019/049435 2018-12-18 2019-12-17 Electronic component mounting substrate and electronic apparatus WO2020129985A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217021592A KR102400969B1 (en) 2018-12-18 2019-12-17 Electronic component mounting board and electronic device
CN201980083377.9A CN113196895B (en) 2018-12-18 2019-12-17 Electronic component mounting board and electronic device

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2018236541 2018-12-18
JP2018-236541 2018-12-18
JP2018236542 2018-12-18
JP2018-236542 2018-12-18
JP2019063674A JP6607331B1 (en) 2018-12-18 2019-03-28 Electronic component mounting board and electronic equipment
JP2019-063674 2019-03-28
JP2019063673A JP6690752B1 (en) 2018-12-18 2019-03-28 Electronic component mounting board and electronic device
JP2019-063673 2019-03-28
JP2019220612A JP2021090013A (en) 2019-12-05 2019-12-05 Electronic component mounting substrate and electronic device
JP2019-220612 2019-12-05

Publications (1)

Publication Number Publication Date
WO2020129985A1 true WO2020129985A1 (en) 2020-06-25

Family

ID=71101924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049435 WO2020129985A1 (en) 2018-12-18 2019-12-17 Electronic component mounting substrate and electronic apparatus

Country Status (4)

Country Link
KR (1) KR102400969B1 (en)
CN (1) CN113196895B (en)
TW (1) TW202038696A (en)
WO (1) WO2020129985A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008327A1 (en) * 2021-07-29 2023-02-02 東洋インキScホールディングス株式会社 Electronic component mounted substrate, electronic component protecting sheet, and electronic apparatus
JP2023020982A (en) * 2021-07-29 2023-02-09 東洋インキScホールディングス株式会社 Substrate with electronic component, electronic component protection sheet and electronic equipment
WO2024004991A1 (en) * 2022-06-28 2024-01-04 タツタ電線株式会社 Electromagnetic shielding film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102636434B1 (en) * 2021-09-29 2024-02-14 주식회사 테라온 Chip bonding composition for power semiconductor package
TWI782874B (en) * 2022-02-21 2022-11-01 抱樸科技股份有限公司 Anti-electromagnetic wave heat dissipation composite film structure
CN114710877A (en) * 2022-06-07 2022-07-05 深圳市卓汉材料技术有限公司 Electromagnetic shielding packaging body and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037331B2 (en) * 1986-05-02 1991-02-01 Nippon Aluminium Mfg
WO2011007570A1 (en) * 2009-07-17 2011-01-20 パナソニック株式会社 Electronic module and method for manufacturing same
JP2017079218A (en) * 2015-10-19 2017-04-27 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet and printed wiring board
JP2018129498A (en) * 2017-02-10 2018-08-16 東洋インキScホールディングス株式会社 Electronic component-mounted board, laminate, electromagnetic wave-shielding sheet and electronic equipment
JP2018170492A (en) * 2017-11-21 2018-11-01 東洋インキScホールディングス株式会社 Electronic part protection sheet
JP6597927B1 (en) * 2019-06-18 2019-10-30 東洋インキScホールディングス株式会社 Electromagnetic shielding sheet and electromagnetic shielding wiring circuit board

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6263846B2 (en) 2012-08-16 2018-01-24 住友ベークライト株式会社 Electromagnetic wave shielding film and method for coating electronic component
KR101862121B1 (en) * 2015-02-02 2018-05-29 토요잉크Sc홀딩스주식회사 Electromagnetic wave shielding sheet, printed wiring board and electronic devices
JP5948469B2 (en) 2015-06-26 2016-07-06 株式会社三共 Slot machine
JP2016157920A (en) * 2015-12-18 2016-09-01 東洋インキScホールディングス株式会社 Electromagnetic wave shielding sheet, electromagnetic wave shielding wiring circuit board, and electronic device
JP6709669B2 (en) * 2016-04-20 2020-06-17 信越ポリマー株式会社 Electromagnetic wave shield film and printed wiring board with electromagnetic wave shield film
JP6240353B1 (en) 2017-03-08 2017-11-29 株式会社コロプラ Method for providing information in virtual space, program therefor, and apparatus therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037331B2 (en) * 1986-05-02 1991-02-01 Nippon Aluminium Mfg
WO2011007570A1 (en) * 2009-07-17 2011-01-20 パナソニック株式会社 Electronic module and method for manufacturing same
JP2017079218A (en) * 2015-10-19 2017-04-27 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet and printed wiring board
JP2018129498A (en) * 2017-02-10 2018-08-16 東洋インキScホールディングス株式会社 Electronic component-mounted board, laminate, electromagnetic wave-shielding sheet and electronic equipment
JP2018170492A (en) * 2017-11-21 2018-11-01 東洋インキScホールディングス株式会社 Electronic part protection sheet
JP6597927B1 (en) * 2019-06-18 2019-10-30 東洋インキScホールディングス株式会社 Electromagnetic shielding sheet and electromagnetic shielding wiring circuit board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008327A1 (en) * 2021-07-29 2023-02-02 東洋インキScホールディングス株式会社 Electronic component mounted substrate, electronic component protecting sheet, and electronic apparatus
KR20230019132A (en) 2021-07-29 2023-02-07 토요잉크Sc홀딩스주식회사 Electronic component mounting board, electronic component protection sheet, and electronic device
JP2023020982A (en) * 2021-07-29 2023-02-09 東洋インキScホールディングス株式会社 Substrate with electronic component, electronic component protection sheet and electronic equipment
WO2024004991A1 (en) * 2022-06-28 2024-01-04 タツタ電線株式会社 Electromagnetic shielding film

Also Published As

Publication number Publication date
CN113196895B (en) 2023-12-15
CN113196895A (en) 2021-07-30
TW202038696A (en) 2020-10-16
KR20210094094A (en) 2021-07-28
KR102400969B1 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2020129985A1 (en) Electronic component mounting substrate and electronic apparatus
JP6388064B2 (en) Electronic component mounting substrate, laminate, electromagnetic wave shielding sheet, and electronic device
TWI807011B (en) Electromagnetic wave shield sheet
JP7232996B2 (en) Electronic component mounting board and electronic equipment
JP2018006536A (en) Component mount substrate, manufacturing method thereof, laminate, electromagnetic wave shield sheet and electronic apparatus
WO2020071356A1 (en) Electromagnetic shielding sheet and electronic component mounting substrate
JP6607331B1 (en) Electronic component mounting board and electronic equipment
EP2641736A1 (en) Multilayer resin sheet and resin-sheet laminate
JP6468389B1 (en) Laminated body, component mounting board, and method for manufacturing component mounting board
JP6183568B1 (en) Manufacturing method of component mounting board
WO2018147355A1 (en) Component mounting substrate, method for producing same, laminate, electromagnetic shielding sheet and electronic device
JP2022040177A (en) Electronic component mounting substrate and electronic device
WO2020095919A1 (en) Electromagnetic shielding film, method for manufacturing electromagnetic shielding film, and method for manufacturing shielded printed wiring board
TW201841559A (en) Component-mounted board, manufacturing method thereof, laminate, electromagnetic wave-shielding sheet, and electronic device which have high in productivity, high in quality and high in coatability
JP6451801B1 (en) Electromagnetic shielding film used for manufacturing method of electromagnetic shielding electronic device and manufacturing method of electromagnetic shielding electronic device
JP7347184B2 (en) Electronic component mounting board and electronic equipment using the same
JP7099365B2 (en) Electromagnetic wave shield sheet, component mounting board, and electronic equipment
JP2018129495A (en) Method for manufacturing component-mounted board
JP7206441B1 (en) electromagnetic wave shielding film
JP2021086912A (en) Electronic component mounting board and electronic device
KR20230019132A (en) Electronic component mounting board, electronic component protection sheet, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217021592

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19899182

Country of ref document: EP

Kind code of ref document: A1