JP6706654B2 - Electromagnetic wave shield film, flexible printed wiring board with electromagnetic wave shield film, and methods for manufacturing the same - Google Patents

Electromagnetic wave shield film, flexible printed wiring board with electromagnetic wave shield film, and methods for manufacturing the same Download PDF

Info

Publication number
JP6706654B2
JP6706654B2 JP2018186962A JP2018186962A JP6706654B2 JP 6706654 B2 JP6706654 B2 JP 6706654B2 JP 2018186962 A JP2018186962 A JP 2018186962A JP 2018186962 A JP2018186962 A JP 2018186962A JP 6706654 B2 JP6706654 B2 JP 6706654B2
Authority
JP
Japan
Prior art keywords
film
electromagnetic wave
adhesive layer
layer
conductive adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018186962A
Other languages
Japanese (ja)
Other versions
JP2018201055A (en
Inventor
川口 利行
利行 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2018186962A priority Critical patent/JP6706654B2/en
Publication of JP2018201055A publication Critical patent/JP2018201055A/en
Application granted granted Critical
Publication of JP6706654B2 publication Critical patent/JP6706654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Structure Of Printed Boards (AREA)

Description

本発明は、電磁波シールドフィルム、該電磁波シールドフィルムが設けられたフレキシブルプリント配線板、およびそれらの製造方法に関する。 The present invention relates to an electromagnetic wave shielding film, a flexible printed wiring board provided with the electromagnetic wave shielding film, and a method for manufacturing them.

フレキシブルプリント配線板から発生する電磁波ノイズや外部からの電磁波ノイズを遮蔽するために、電磁波シールドフィルムをフレキシブルプリント配線板の表面に設けることがある(例えば、特許文献1参照)。 An electromagnetic wave shield film may be provided on the surface of the flexible printed wiring board in order to shield electromagnetic noise generated from the flexible printed wiring board and electromagnetic noise from the outside (see, for example, Patent Document 1).

図9は、従来の電磁波シールドフィルム付きフレキシブルプリント配線板の製造工程の一例を示す断面図である。
電磁波シールドフィルム付きフレキシブルプリント配線板101は、フレキシブルプリント配線板130と、絶縁フィルム140と、離型フィルム118を剥離した電磁波シールドフィルム110とを備える。
フレキシブルプリント配線板130は、ベースフィルム132の片面にプリント回路134が設けられたものである。
絶縁フィルム140は、フレキシブルプリント配線板130のプリント回路134が設けられた側の表面に設けられる。
電磁波シールドフィルム110は、絶縁性保護層112と、絶縁性保護層112の第1の表面を覆う金属薄膜層114と、金属薄膜層114の表面を覆う異方導電性接着剤層116と、絶縁性保護層112の第2の表面を覆う離型フィルム118(キャリアフィルム)とを備える。
電磁波シールドフィルム110の異方導電性接着剤層116は、絶縁フィルム140の表面に接着され、かつ硬化されている。また、異方導電性接着剤層116は、絶縁フィルム140に形成された貫通孔142を通ってプリント回路134に電気的に接続されている。
FIG. 9: is sectional drawing which shows an example of the manufacturing process of the conventional flexible printed wiring board with an electromagnetic wave shield film.
The flexible printed wiring board 101 with an electromagnetic wave shield film includes a flexible printed wiring board 130, an insulating film 140, and an electromagnetic wave shield film 110 from which a release film 118 is peeled off.
The flexible printed wiring board 130 has a printed circuit 134 provided on one surface of a base film 132.
The insulating film 140 is provided on the surface of the flexible printed wiring board 130 on the side where the printed circuit 134 is provided.
The electromagnetic wave shield film 110 includes an insulating protective layer 112, a metal thin film layer 114 that covers the first surface of the insulating protective layer 112, an anisotropic conductive adhesive layer 116 that covers the surface of the metal thin film layer 114, and an insulating layer. Release film 118 (carrier film) that covers the second surface of the protective layer 112.
The anisotropic conductive adhesive layer 116 of the electromagnetic wave shielding film 110 is adhered and cured on the surface of the insulating film 140. Further, the anisotropic conductive adhesive layer 116 is electrically connected to the printed circuit 134 through the through hole 142 formed in the insulating film 140.

電磁波シールドフィルム付きフレキシブルプリント配線板101は、例えば、図9に示すように、下記の工程を経て製造される。
(i)フレキシブルプリント配線板130のプリント回路134が設けられた側の表面に、プリント回路134のグランドに対応する位置に貫通孔142が形成された絶縁フィルム140を設ける工程。
(ii)電磁波シールドフィルム110を、絶縁フィルム140の表面に、電磁波シールドフィルム110の異方導電性接着剤層116が接触するように重ね、これらを熱プレスすることによって、絶縁フィルム140の表面に異方導電性接着剤層116を接着し、かつ異方導電性接着剤層116を、貫通孔142を通ってプリント回路134のグランドに電気的に接続する工程。
(iii)熱プレス後、キャリアフィルムとしての役割を終えた離型フィルム118を、絶縁性保護層112から剥離し、取り除くことによって、電磁波シールドフィルム付きフレキシブルプリント配線板101を得る工程。
The flexible printed wiring board 101 with an electromagnetic wave shielding film is manufactured through the following steps, for example, as shown in FIG.
(I) A step of providing an insulating film 140 having a through hole 142 formed at a position corresponding to the ground of the printed circuit 134 on the surface of the flexible printed wiring board 130 where the printed circuit 134 is provided.
(Ii) The electromagnetic wave shielding film 110 is superposed on the surface of the insulating film 140 so that the anisotropic conductive adhesive layer 116 of the electromagnetic wave shielding film 110 is in contact with the surface of the insulating film 140. A step of adhering the anisotropic conductive adhesive layer 116 and electrically connecting the anisotropic conductive adhesive layer 116 to the ground of the printed circuit 134 through the through hole 142.
(Iii) A step of obtaining the flexible printed wiring board 101 with the electromagnetic wave shielding film by peeling and removing the release film 118 that has finished the role as a carrier film from the insulating protective layer 112 after hot pressing.

しかし、電磁波シールドフィルム付きフレキシブルプリント配線板101にあっては、貫通孔142の部分等の凹凸がある部分にて、電磁波シールドフィルム110が凹凸の形状に沿って曲げ変形するため、金属薄膜層114にクラックが生じやすい。異方導電性接着剤層116は厚さ方向に導電性を有するが、面方向には導電性を有さないため、金属薄膜層114にクラックが生じると、金属薄膜層114および異方導電性接着剤層116からなる電磁波シールド層の抵抗が高くなり、電磁波シールド層による電磁波ノイズの遮蔽効果が低下する。 However, in the flexible printed wiring board 101 with the electromagnetic wave shielding film, the electromagnetic wave shielding film 110 is bent and deformed along the shape of the unevenness at the portion having the unevenness such as the through hole 142, so that the metal thin film layer 114. Is likely to crack. The anisotropic conductive adhesive layer 116 has conductivity in the thickness direction, but does not have conductivity in the plane direction. Therefore, when a crack occurs in the metal thin film layer 114, the metal thin film layer 114 and the anisotropic conductive adhesive layer 116 have a conductive property. The resistance of the electromagnetic wave shield layer formed of the adhesive layer 116 increases, and the electromagnetic wave noise shielding effect of the electromagnetic wave shield layer decreases.

特開2014−112576号公報JP, 2014-112576, A

本発明は、金属薄膜層にクラックが生じても、電磁波ノイズの遮蔽効果を維持できる電磁波シールドフィルムおよび電磁波シールドフィルム付きフレキシブルプリント配線板、ならびにそれらの製造方法を提供する。 The present invention provides an electromagnetic wave shielding film and a flexible printed wiring board with an electromagnetic wave shielding film, which can maintain the electromagnetic wave noise shielding effect even if a crack occurs in the metal thin film layer, and a method for producing them.

本発明は、下記の態様を有する。
(1)絶縁性保護層と、表面抵抗が0.01〜0.3Ωである金属薄膜層と、導電性フィラーを含み、表面抵抗が1〜100Ωである等方導電性接着剤層とを順に備え、前記等方導電性接着剤層が、前記導電性フィラーとして、導電性粒子および導電性繊維を含む、電磁波シールドフィルム。
(2)前記導電性フィラーの割合が、前記等方導電性接着剤層の100体積%のうち、30〜80体積%である、(1)の電磁波シールドフィルム。
(3)前記絶縁性保護層の表面に設けられた第1の離型フィルムをさらに備えた、(1)または(2)の電磁波シールドフィルム。
(4)前記等方導電性接着剤層の表面に設けられた第2の離型フィルムをさらに備えた、(3)の電磁波シールドフィルム。
(5)前記(4)の電磁波シールドフィルムを製造する方法であって、下記の工程(a)〜(d)を有する、電磁波シールドフィルムの製造方法。
(a)第1の離型フィルムの片面に絶縁性保護層を形成する工程。
(b)前記絶縁性保護層の表面に表面抵抗が0.01〜0.3Ωである金属薄膜層を形成することによって、第1の離型フィルムと、絶縁性保護層と、金属薄膜層とを順に備えた第1の積層体を得る工程。
(c)第2の離型フィルムの片面に等方導電性接着剤層を形成することによって、第2の離型フィルムと、導電性フィラーを含み、表面抵抗が1〜100Ωである等方導電性接着剤層とを順に備えた第2の積層体を得る工程。
(d)前記第1の積層体と前記第2の積層体とを、前記第1の積層体の前記金属薄膜層と前記第2の積層体の前記等方導電性接着剤層とが接触するように貼り合わせる工程。
(6)ベースフィルムの少なくとも片面にプリント回路が設けられたフレキシブルプリント配線板と、前記フレキシブルプリント配線板の前記プリント回路が設けられた側の表面に設けられた絶縁フィルムと、前記絶縁フィルムの表面に前記等方導電性接着剤層が接着された(1)または(2)の電磁波シールドフィルムとを備え、前記等方導電性接着剤層が、前記絶縁フィルムに形成された貫通孔を通って前記プリント回路に電気的に接続された、電磁波シールドフィルム付きフレキシブルプリント配線板。
(7)下記の工程(e)〜(g)を有する、電磁波シールドフィルム付きフレキシブルプリント配線板の製造方法。
(e)ベースフィルムの少なくとも片面にプリント回路を有するフレキシブルプリント配線板の前記プリント回路が設けられた側の表面に、前記プリント回路に対応する位置に貫通孔が形成された絶縁フィルムを設け、絶縁フィルム付きフレキシブルプリント配線板を得る工程。
(f)前記工程(e)の後、前記絶縁フィルム付きフレキシブルプリント配線板と、(1)〜(3)のいずれかの電磁波シールドフィルムとを、前記絶縁フィルムの表面に前記等方導電性接着剤層が接触するように重ね、これらを熱プレスすることによって、前記絶縁フィルムの表面に前記等方導電性接着剤層を接着し、かつ前記等方導電性接着剤層を、前記貫通孔を通って前記プリント回路に電気的に接続する工程。
(g)前記電磁波シールドフィルムが第1の離型フィルムを備えている場合は、前記工程(f)の後、前記第1の離型フィルムを剥離する工程。
The present invention has the following aspects.
(1) An insulating protective layer, a metal thin film layer having a surface resistance of 0.01 to 0.3Ω, and an isotropic conductive adhesive layer containing a conductive filler and having a surface resistance of 1 to 100Ω in this order. An electromagnetic wave shielding film, wherein the isotropic conductive adhesive layer contains conductive particles and conductive fibers as the conductive filler.
(2) The electromagnetic wave shielding film according to (1), wherein the ratio of the conductive filler is 30 to 80% by volume based on 100% by volume of the isotropic conductive adhesive layer.
(3) The electromagnetic wave shielding film according to (1) or (2), further including a first release film provided on the surface of the insulating protective layer.
(4) The electromagnetic wave shielding film according to (3), further including a second release film provided on the surface of the isotropic conductive adhesive layer.
(5) A method for producing the electromagnetic wave shielding film according to (4) above, which has the following steps (a) to (d).
(A) A step of forming an insulating protective layer on one surface of the first release film.
(B) A first release film, an insulating protective layer, and a metal thin film layer by forming a metal thin film layer having a surface resistance of 0.01 to 0.3Ω on the surface of the insulating protective layer. And a step of obtaining a first laminated body including in order.
(C) Isotropic conductivity containing a second release film and a conductive filler by forming an isotropic conductive adhesive layer on one surface of the second release film, and having a surface resistance of 1 to 100Ω. Obtaining a second laminated body provided with a conductive adhesive layer in order.
(D) The first laminated body and the second laminated body are brought into contact with each other by the metal thin film layer of the first laminated body and the isotropic conductive adhesive layer of the second laminated body. Process to bond.
(6) Flexible printed wiring board having a printed circuit provided on at least one surface of a base film, an insulating film provided on a surface of the flexible printed wiring board on which the printed circuit is provided, and a surface of the insulating film The electromagnetic shielding film of (1) or (2), to which the isotropic conductive adhesive layer is adhered, the isotropic conductive adhesive layer passing through a through hole formed in the insulating film. A flexible printed wiring board with an electromagnetic wave shielding film electrically connected to the printed circuit.
(7) A method for manufacturing a flexible printed wiring board with an electromagnetic wave shielding film, which has the following steps (e) to (g).
(E) An insulating film having through holes formed at positions corresponding to the printed circuit is provided on the surface of the flexible printed wiring board having the printed circuit on at least one surface of the base film on the side where the printed circuit is provided, and insulation is provided. The process of obtaining a flexible printed wiring board with a film.
(F) After the step (e), the flexible printed wiring board with an insulating film and the electromagnetic wave shielding film according to any one of (1) to (3) are bonded to the surface of the insulating film by the isotropic conductive bonding. Layered so as to contact the agent layer, by hot pressing these, the isotropic conductive adhesive layer is adhered to the surface of the insulating film, and the isotropic conductive adhesive layer, the through hole Through and electrically connecting to the printed circuit.
(G) When the electromagnetic wave shielding film includes a first release film, a step of peeling the first release film after the step (f).

本発明の電磁波シールドフィルムは、金属薄膜層にクラックが生じても、電磁波ノイズの遮蔽効果を維持できる。
本発明の電磁波シールドフィルムの製造方法によれば、金属薄膜層にクラックが生じても、電磁波ノイズの遮蔽効果を維持できる電磁波シールドフィルムを製造できる。
本発明の電磁波シールドフィルム付きフレキシブルプリント配線板は、金属薄膜層にクラックが生じても、電磁波ノイズの遮蔽効果を維持できる。
本発明の電磁波シールドフィルム付きフレキシブルプリント配線板の製造方法によれば、金属薄膜層にクラックが生じても、電磁波ノイズの遮蔽効果を維持できる電磁波シールドフィルム付きフレキシブルプリント配線板を製造できる。
The electromagnetic wave shielding film of the present invention can maintain the electromagnetic wave noise shielding effect even if a crack occurs in the metal thin film layer.
According to the method for producing an electromagnetic wave shield film of the present invention, it is possible to produce an electromagnetic wave shield film that can maintain the electromagnetic wave noise shielding effect even if a crack occurs in the metal thin film layer.
The flexible printed wiring board with an electromagnetic wave shielding film of the present invention can maintain the electromagnetic wave noise shielding effect even if a crack occurs in the metal thin film layer.
ADVANTAGE OF THE INVENTION According to the manufacturing method of the flexible printed wiring board with an electromagnetic shielding film of this invention, the flexible printed wiring board with an electromagnetic shielding film which can maintain the electromagnetic-wave noise shielding effect can be manufactured, even if a crack occurs in a metal thin film layer.

本発明の電磁波シールドフィルムの一例を示す断面図である。It is sectional drawing which shows an example of the electromagnetic wave shield film of this invention. 本発明の電磁波シールドフィルムの製造方法における工程(a)〜(b)の一例を示す断面図である。It is sectional drawing which shows an example of process (a)-(b) in the manufacturing method of the electromagnetic wave shield film of this invention. 本発明の電磁波シールドフィルムの製造方法における工程(c)の一例を示す断面図である。It is sectional drawing which shows an example of a process (c) in the manufacturing method of the electromagnetic wave shield film of this invention. 本発明の電磁波シールドフィルムの製造方法における工程(d)の一例を示す断面図である。It is sectional drawing which shows an example of a process (d) in the manufacturing method of the electromagnetic wave shield film of this invention. 金属薄膜層にクラックが生じる前の電磁波シールド層の全体抵抗を概算するために用いた電磁波シールド層のモデルケースを示す斜視図である。FIG. 6 is a perspective view showing a model case of an electromagnetic wave shield layer used to roughly estimate the total resistance of the electromagnetic wave shield layer before a crack is generated in the metal thin film layer. 金属薄膜層にクラックが生じた後の電磁波シールド層の全体抵抗を概算するために用いた電磁波シールド層のモデルケースを示す斜視図である。FIG. 6 is a perspective view showing a model case of an electromagnetic wave shield layer used to roughly estimate the overall resistance of the electromagnetic wave shield layer after a crack has occurred in the metal thin film layer. 本発明の電磁波シールドフィルム付きフレキシブルプリント配線板の一例を示す断面図である。It is sectional drawing which shows an example of the flexible printed wiring board with an electromagnetic wave shield film of this invention. 本発明の電磁波シールドフィルム付きフレキシブルプリント配線板の製造方法における工程(e)〜(g)の一例を示す断面図である。It is sectional drawing which shows an example of process (e)-(g) in the manufacturing method of the flexible printed wiring board with an electromagnetic wave shielding film of this invention. 従来の電磁波シールドフィルム付きフレキシブルプリント配線板の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of the conventional flexible printed wiring board with an electromagnetic wave shield film.

以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
導電性粒子の平均粒子径は、導電性粒子の電子顕微鏡像から30個の導電性粒子を無作為に選び、それぞれの導電性粒子について、最小径および最大径を測定し、最小径と最大径との中央値を一粒子の粒子径とし、測定した30個の導電性粒子の粒子径を算術平均して得た値である。
導電性繊維の平均繊維長は、導電性繊維の電子顕微鏡像から30本の導電性繊維を無作為に選び、それぞれの導電性繊維について、繊維長を測定し、測定した30本の導電性繊維の繊維長を算術平均して得た値である。
導電性繊維の平均繊維径は、導電性繊維の電子顕微鏡像から30本の導電性繊維を無作為に選び、それぞれの導電性繊維について、最小径および最大径を測定し、最小径と最大径との中央値を一繊維の繊維径とし、測定した30本の導電性繊維の繊維径を算術平均して得た値である。
導電性粒子および導電性繊維の比表面積は、脱気した粒子等を液体窒素に浸漬させ、吸着した窒素量を測定し、この値から算出した値である。
フィルム(離型フィルム、絶縁フィルム等)、塗膜(絶縁性保護層、導電性接着剤層等)、金属薄膜層等の厚さは、透過型電子顕微鏡を用いて測定対象の断面を観察し、5箇所の厚さを測定し、平均した値である。
貯蔵弾性率は、測定対象に与えた応力と検出した歪から算出され、温度または時間の関数として出力する動的粘弾性測定装置を用いて、粘弾性特性の一つとして測定される。
表面抵抗は、石英ガラス上に金を蒸着して形成した、2本の薄膜金属電極(長さ10mm、幅5mm、電極間距離10mm)を用い、この電極上に被測定物を置き、被測定物上から、被測定物の10mm×20mmの領域を0.049Nの荷重で押し付け、1mA以下の測定電流で測定される電極間の抵抗である。
The following definitions of terms apply throughout the specification and claims.
For the average particle diameter of the conductive particles, 30 conductive particles are randomly selected from the electron microscopic image of the conductive particles, the minimum diameter and the maximum diameter of each conductive particle are measured, and the minimum diameter and the maximum diameter are measured. It is a value obtained by arithmetically averaging the measured particle diameters of 30 conductive particles with the median value of and as the particle diameter of one particle.
The average fiber length of the conductive fibers was determined by randomly selecting 30 conductive fibers from the electron microscope image of the conductive fibers, measuring the fiber length of each conductive fiber, and measuring 30 conductive fibers. Is a value obtained by arithmetically averaging the fiber lengths of.
For the average fiber diameter of the conductive fibers, randomly select 30 conductive fibers from the electron microscope image of the conductive fibers, measure the minimum diameter and the maximum diameter of each conductive fiber, and calculate the minimum diameter and the maximum diameter. Is the value obtained by arithmetically averaging the measured fiber diameters of the 30 conductive fibers, with the median value of and as the fiber diameter of one fiber.
The specific surface area of the conductive particles and the conductive fibers is a value calculated from the value obtained by immersing degassed particles and the like in liquid nitrogen and measuring the amount of adsorbed nitrogen.
For the thickness of the film (release film, insulating film, etc.), coating film (insulating protective layer, conductive adhesive layer, etc.), metal thin film layer, etc., observe the cross section of the measurement object using a transmission electron microscope. It is a value obtained by measuring and averaging the thickness at five points.
The storage elastic modulus is calculated as one of the viscoelastic properties using a dynamic viscoelasticity measuring device which is calculated from the stress applied to the measurement target and the detected strain and outputs as a function of temperature or time.
For the surface resistance, two thin-film metal electrodes (length 10 mm, width 5 mm, inter-electrode distance 10 mm) formed by vapor-depositing gold on quartz glass were used. The resistance between the electrodes is measured by pressing a region of 10 mm×20 mm of the object to be measured with a load of 0.049 N from above the object and measuring with a measuring current of 1 mA or less.

<電磁波シールドフィルム>
図1は、本発明の電磁波シールドフィルムの一例を示す断面図である。
電磁波シールドフィルム10は、絶縁性保護層12と、絶縁性保護層12の第1の表面を覆う金属薄膜層14と、金属薄膜層14の表面を覆う等方導電性接着剤層16と、絶縁性保護層12の第2の表面を覆う第1の離型フィルム18と、等方導電性接着剤層16の表面を覆う第2の離型フィルム20とを備える。
<Electromagnetic wave shield film>
FIG. 1 is a sectional view showing an example of the electromagnetic wave shielding film of the present invention.
The electromagnetic wave shielding film 10 includes an insulating protective layer 12, a metal thin film layer 14 that covers the first surface of the insulating protective layer 12, an isotropic conductive adhesive layer 16 that covers the surface of the metal thin film layer 14, and an insulating layer. The first release film 18 covering the second surface of the property protection layer 12 and the second release film 20 covering the surface of the isotropic conductive adhesive layer 16 are provided.

(絶縁性保護層)
絶縁性保護層12は、金属薄膜層14を形成する際のベース(下地)となり、電磁波シールドフィルム10を、フレキシブルプリント配線板の表面に設けられた絶縁フィルムの表面に貼着した後には、金属薄膜層14を保護する。
絶縁性保護層12の表面抵抗は、電気的絶縁性の点から、1×10Ω以上が好ましい。絶縁性保護層12の表面抵抗は、実用上の点から、1×1019Ω以下が好ましい。
(Insulating protective layer)
The insulating protective layer 12 serves as a base (base) when forming the metal thin film layer 14, and after the electromagnetic wave shielding film 10 is attached to the surface of the insulating film provided on the surface of the flexible printed wiring board, Protect the thin film layer 14.
The surface resistance of the insulating protective layer 12 is preferably 1×10 6 Ω or more from the viewpoint of electrical insulation. The surface resistance of the insulating protective layer 12 is preferably 1×10 19 Ω or less from the practical point of view.

絶縁性保護層12としては、熱硬化性樹脂と硬化剤とを含む塗料を塗布し、硬化させて形成された塗膜、熱可塑性樹脂を含む塗料を塗布して形成された塗膜、熱可塑性樹脂を溶融成形したフィルムからなる層等が挙げられる。ハンダ付け等の際の耐熱性の点から、熱硬化性樹脂と硬化剤とを含む塗料を塗布し、硬化させて形成された塗膜が好ましい。 As the insulating protective layer 12, a coating film formed by applying a coating material containing a thermosetting resin and a curing agent and curing it, a coating film formed by applying a coating material containing a thermoplastic resin, a thermoplastic resin Examples thereof include a layer made of a film obtained by melt-molding a resin. From the viewpoint of heat resistance when soldering or the like, a coating film formed by applying and curing a coating material containing a thermosetting resin and a curing agent is preferable.

熱硬化性樹脂としては、アミド樹脂、エポキシ樹脂、フェノール樹脂、アミノ樹脂、アルキッド樹脂、ウレタン樹脂、合成ゴム、UV硬化アクリレート樹脂等が挙げられ、耐熱性に優れる点から、アミド樹脂、エポキシ樹脂が好ましい。 Examples of the thermosetting resin include amide resin, epoxy resin, phenol resin, amino resin, alkyd resin, urethane resin, synthetic rubber, and UV-curable acrylate resin. From the viewpoint of excellent heat resistance, amide resin and epoxy resin are preferable. preferable.

絶縁性保護層12の160℃における貯蔵弾性率は、5×10〜1×10Paが好ましく、8×10〜2×10Paがより好ましい。通常、熱硬化性樹脂の硬化物は硬いため、これからなる塗膜は、柔軟性に乏しく、特に、厚さを薄くした場合は、非常に脆く自立膜として存在できるほどの強度がない。絶縁性保護層12は、第1の離型フィルム18を剥離する際の温度下(導電性接着剤を硬化させる温度で、通常150〜200℃の温度)において、十分な強度を有することが好ましい。絶縁性保護層12の160℃における貯蔵弾性率が5×10Pa以上であれば、絶縁性保護層12が軟化することがない。絶縁性保護層12の160℃における貯蔵弾性率が1×10Pa以下であれば、柔軟性や強度が十分となる。その結果、第1の離型フィルム18を剥離する際に絶縁性保護層12はもとより電磁波シールドフィルム10が破断しにくい。 The storage elastic modulus at 160° C. of the insulating protective layer 12 is preferably 5×10 6 to 1×10 8 Pa, more preferably 8×10 6 to 2×10 7 Pa. Usually, a cured product of a thermosetting resin is hard, and thus a coating film made of such a resin has poor flexibility, and particularly when the thickness is reduced, it is very brittle and does not have sufficient strength to exist as a self-supporting film. The insulating protective layer 12 preferably has sufficient strength under the temperature at which the first release film 18 is peeled off (the temperature at which the conductive adhesive is cured, usually 150 to 200° C.). .. When the storage elastic modulus at 160° C. of the insulating protective layer 12 is 5×10 6 Pa or more, the insulating protective layer 12 does not soften. If the storage elastic modulus at 160° C. of the insulating protective layer 12 is 1×10 8 Pa or less, flexibility and strength will be sufficient. As a result, when the first release film 18 is peeled off, not only the insulating protective layer 12 but also the electromagnetic wave shielding film 10 is unlikely to break.

絶縁性保護層12は、電磁波シールドフィルム付きフレキシブルプリント配線板に意匠性を付与するために、着色されていてもよい。
絶縁性保護層12は、貯蔵弾性率等の特性、材料等が異なる2種以上の層から構成されていてもよい。
The insulating protective layer 12 may be colored in order to impart a design property to the flexible printed wiring board with the electromagnetic wave shielding film.
The insulating protective layer 12 may be composed of two or more types of layers having different properties such as storage elastic modulus and materials.

絶縁性保護層12の厚さは、1〜10μmが好ましく、1〜5μmがより好ましい。絶縁性保護層12の厚さが1μm以上であれば、耐熱性が良好となる。絶縁性保護層12の厚さが10μm以下であれば、電磁波シールドフィルム10を薄くできる。 The thickness of the insulating protective layer 12 is preferably 1 to 10 μm, more preferably 1 to 5 μm. When the thickness of the insulating protective layer 12 is 1 μm or more, the heat resistance becomes good. If the thickness of the insulating protective layer 12 is 10 μm or less, the electromagnetic wave shielding film 10 can be made thin.

(金属薄膜層)
金属薄膜層14は、金属の薄膜からなる層である。金属薄膜層14は、面方向に広がるように形成されていることから、面方向に導電性を有し、電磁波シールド層等として機能する。
(Metal thin film layer)
The metal thin film layer 14 is a layer made of a metal thin film. Since the metal thin film layer 14 is formed so as to spread in the plane direction, it has conductivity in the plane direction and functions as an electromagnetic wave shield layer or the like.

金属薄膜層14としては、物理蒸着(真空蒸着、スパッタリング、イオンビーム蒸着、電子ビーム蒸着等)、CVD、めっき等によって形成された金属薄膜、金属箔等が挙げられ、厚さを薄くでき、かつ厚さが薄くても面方向の導電性に優れ、ドライプロセスにて簡便に形成できる点から、物理蒸着による金属薄膜(蒸着膜)が好ましい。 Examples of the metal thin film layer 14 include a metal thin film formed by physical vapor deposition (vacuum vapor deposition, sputtering, ion beam vapor deposition, electron beam vapor deposition, etc.), CVD, plating, and the like, and can be made thin, and A metal thin film (vapor deposited film) formed by physical vapor deposition is preferable because it has excellent conductivity in the surface direction even if the thickness is thin and can be easily formed by a dry process.

金属薄膜層14を構成する金属薄膜の材料としては、アルミニウム、銀、銅、金、導電性セラミックス等が挙げられる。電気伝導度の点からは、銅が好ましく、化学的安定性の点からは、導電性セラミックスが好ましい。 Examples of the material of the metal thin film forming the metal thin film layer 14 include aluminum, silver, copper, gold, conductive ceramics and the like. Copper is preferable in terms of electrical conductivity, and conductive ceramics are preferable in terms of chemical stability.

金属薄膜層14の厚さは、0.01〜1μmが好ましく、0.05〜1μmがより好ましい。金属薄膜層14の厚さが0.01μm以上であれば、面方向の導電性がさらに良好になる。金属薄膜層14の厚さが0.05μm以上であれば、電磁波ノイズの遮蔽効果がさらに良好になる。金属薄膜層14の厚さが1μm以下であれば、電磁波シールドフィルム10を薄くできる。また、電磁波シールドフィルム10の生産性、可とう性がよくなる。 The thickness of the metal thin film layer 14 is preferably 0.01 to 1 μm, more preferably 0.05 to 1 μm. When the thickness of the metal thin film layer 14 is 0.01 μm or more, the conductivity in the plane direction is further improved. When the thickness of the metal thin film layer 14 is 0.05 μm or more, the effect of shielding electromagnetic noise is further improved. When the thickness of the metal thin film layer 14 is 1 μm or less, the electromagnetic wave shielding film 10 can be thinned. Further, the productivity and flexibility of the electromagnetic wave shielding film 10 are improved.

金属薄膜層14の表面抵抗は、0.01〜0.3Ωであり、0.02〜0.2Ωが好ましく、0.05〜0.1Ωがより好ましい。金属薄膜層14の表面抵抗が0.01Ω以上であれば、金属薄膜層14を十分に薄くできる。金属薄膜層14の表面抵抗が0.3Ω以下であれば、電磁波シールド層として十分に機能できる。 The surface resistance of the metal thin film layer 14 is 0.01 to 0.3Ω, preferably 0.02 to 0.2Ω, and more preferably 0.05 to 0.1Ω. If the surface resistance of the metal thin film layer 14 is 0.01 Ω or more, the metal thin film layer 14 can be made sufficiently thin. If the surface resistance of the metal thin film layer 14 is 0.3Ω or less, it can sufficiently function as an electromagnetic wave shield layer.

(等方導電性接着剤層)
等方導電性接着剤層16は、厚さ方向および面方向に導電性を有し、かつ接着性を有する。
等方導電性接着剤層16は、厚さ方向に導電性を有し、面方向に導電性を有しない異方導電性接着剤層に比べ、電磁波シールド層として十分に機能できる。
(Isotropic conductive adhesive layer)
The isotropic conductive adhesive layer 16 has conductivity in the thickness direction and the surface direction and also has adhesiveness.
The isotropic conductive adhesive layer 16 can sufficiently function as an electromagnetic wave shield layer as compared with an anisotropic conductive adhesive layer that has conductivity in the thickness direction and does not have conductivity in the plane direction.

等方導電性接着剤層16は、導電性フィラーを含む。等方導電性接着剤層16は、厚さ方向および面方向の導電性の点から、導電性フィラーとして導電性粒子22を含むことが好ましく、面方向の導電性がさらに良好になり、表面抵抗が低くなる点、また、等方導電性接着剤層16の強度が高くなり、クラックが生じにくい点から、導電性フィラーとして導電性粒子22および導電性繊維24を含むことがより好ましい。 The isotropic conductive adhesive layer 16 contains a conductive filler. The isotropic conductive adhesive layer 16 preferably contains the conductive particles 22 as a conductive filler from the viewpoint of the conductivity in the thickness direction and the surface direction, and the conductivity in the surface direction is further improved, resulting in surface resistance. It is more preferable to include the conductive particles 22 and the conductive fibers 24 as the conductive filler from the standpoint that the ratio is low, and that the strength of the isotropic conductive adhesive layer 16 is high and cracks are less likely to occur.

また、等方導電性接着剤層16においては、面方向の導電性がさらに良好になり、表面抵抗が低くなる点、また、等方導電性接着剤層16の強度が高くなり、クラックが生じにくい点から、導電性繊維24の繊維方向の向きが、等方導電性接着剤層16の厚さ方向よりも、等方導電性接着剤層16の面方向に偏っている、すなわち導電性繊維24が等方導電性接着剤層16の面方向に配向していることが好ましい。 Further, in the isotropic conductive adhesive layer 16, the conductivity in the plane direction is further improved and the surface resistance is lowered, and the strength of the isotropic conductive adhesive layer 16 is increased, and cracks are generated. From the standpoint of difficulty, the fiber direction of the conductive fiber 24 is biased in the plane direction of the isotropic conductive adhesive layer 16 rather than in the thickness direction of the isotropic conductive adhesive layer 16, that is, the conductive fiber. It is preferable that 24 is oriented in the plane direction of the isotropic conductive adhesive layer 16.

等方導電性接着剤層16としては、硬化後に耐熱性を発揮できる点から、熱硬化性の等方導電性接着剤層が好ましい。
熱硬化性の等方導電性接着剤層16は、例えば、熱硬化性接着剤と導電性粒子22と導電性繊維24とを含む。等方導電性接着剤層16は、未硬化の状態であってもよく、Bステージ化された状態であってもよい。
The isotropic conductive adhesive layer 16 is preferably a thermosetting isotropic conductive adhesive layer from the viewpoint of exhibiting heat resistance after curing.
The thermosetting isotropic conductive adhesive layer 16 includes, for example, a thermosetting adhesive, conductive particles 22, and conductive fibers 24. The isotropic conductive adhesive layer 16 may be in an uncured state or in a B-staged state.

熱硬化性接着剤としては、エポキシ樹脂、フェノール樹脂、アミノ樹脂、アルキッド樹脂、ウレタン樹脂、合成ゴム、UV硬化アクリレート樹脂等が挙げられる。耐熱性に優れる点から、エポキシ樹脂が好ましい。エポキシ樹脂は、可とう性付与のためのゴム成分(カルボキシル変性ニトリルゴム等)、粘着付与剤等を含んでいてもよい。
熱硬化性接着剤は、等方導電性接着剤層16の強度を高め、打ち抜き特性を向上させるために、セルロース樹脂、ミクロフィブリル(ガラス繊維等)を含んでいてもよい。
Examples of the thermosetting adhesive include epoxy resin, phenol resin, amino resin, alkyd resin, urethane resin, synthetic rubber, and UV curable acrylate resin. Epoxy resin is preferable from the viewpoint of excellent heat resistance. The epoxy resin may contain a rubber component (carboxyl-modified nitrile rubber or the like) for imparting flexibility, a tackifier or the like.
The thermosetting adhesive may contain a cellulose resin or microfibril (glass fiber or the like) in order to increase the strength of the isotropic conductive adhesive layer 16 and improve the punching property.

導電性粒子22としては、黒鉛粉、焼成カーボン粒子、金属(銀、白金、金、銅、ニッケル、パラジウム、アルミニウム、ハンダ等)の粒子、めっきされた焼成カーボン粒子等が挙げられる。等方導電性接着剤層16の流動性の点からは、堅く球状である焼成カーボン粒子が好ましい。 Examples of the conductive particles 22 include graphite powder, baked carbon particles, particles of metal (silver, platinum, gold, copper, nickel, palladium, aluminum, solder, etc.), plated baked carbon particles, and the like. From the viewpoint of the fluidity of the isotropic conductive adhesive layer 16, the hard carbon particles having a spherical shape are preferable.

導電性粒子22の平均粒子径は、0.1〜10μmが好ましく、0.2〜1μmがより好ましい。導電性粒子22の平均粒子径が0.1μm以上であれば、導電性粒子22の接触点数が増えることになり、3次元方向の導通性を安定的に高めることができる。導電性粒子22の平均粒子径が10μm以下であれば、等方導電性接着剤層16の流動性(絶縁フィルムの貫通孔の形状への追随性)を確保でき、絶縁フィルムの貫通孔内を導電性接着剤で十分に埋めることができる。 The average particle diameter of the conductive particles 22 is preferably 0.1 to 10 μm, more preferably 0.2 to 1 μm. When the average particle diameter of the conductive particles 22 is 0.1 μm or more, the number of contact points of the conductive particles 22 increases, and the conductivity in the three-dimensional direction can be stably increased. If the average particle diameter of the conductive particles 22 is 10 μm or less, the fluidity of the isotropic conductive adhesive layer 16 (following the shape of the through hole of the insulating film) can be secured, and the inside of the through hole of the insulating film can be secured. It can be sufficiently filled with a conductive adhesive.

導電性粒子22の比表面積は、0.2〜50m/gが好ましく、0.5〜20m/gがより好ましい。導電性粒子22の比表面積が0.2m/g以上であれば、導電性粒子22を入手しやすい。導電性粒子22の比表面積が50m/g以下であれば、導電性粒子22の吸油量が大きくなりすぎず、その結果、導電性接着剤の粘度が高くなりすぎず、塗布性がさらに良好となる。また、等方導電性接着剤層16の流動性(絶縁フィルムの貫通孔の形状への追随性)をさらに確保できる。 The specific surface area of the conductive particles 22 is preferably 0.2~50m 2 / g, 0.5~20m 2 / g is more preferable. When the specific surface area of the conductive particles 22 is 0.2 m 2 /g or more, the conductive particles 22 are easily available. When the specific surface area of the conductive particles 22 is 50 m 2 /g or less, the oil absorption amount of the conductive particles 22 does not become too large, and as a result, the viscosity of the conductive adhesive does not become too high and the coating property is further improved. Becomes Further, the fluidity of the isotropic conductive adhesive layer 16 (following the shape of the through hole of the insulating film) can be further secured.

導電性フィラーが導電性粒子22のみの場合、導電性粒子22の割合は、等方導電性接着剤層16の100体積%のうち、30〜80体積%が好ましく、50〜70体積%がより好ましい。導電性粒子22の割合が30体積%以上であれば、等方導電性接着剤層16の導電性が安定化する。導電性粒子22の割合が80体積%以下であれば、等方導電性接着剤層16の接着性、流動性(絶縁フィルムの貫通孔の形状への追随性)が良好になる。また、電磁波シールドフィルム10の可とう性がよくなる。 When the conductive filler is only the conductive particles 22, the ratio of the conductive particles 22 is preferably 30 to 80% by volume, more preferably 50 to 70% by volume, out of 100% by volume of the isotropic conductive adhesive layer 16. preferable. When the proportion of the conductive particles 22 is 30% by volume or more, the conductivity of the isotropic conductive adhesive layer 16 is stabilized. When the proportion of the conductive particles 22 is 80% by volume or less, the adhesiveness and fluidity of the isotropic conductive adhesive layer 16 (the conformability to the shape of the through hole of the insulating film) are improved. In addition, the flexibility of the electromagnetic wave shielding film 10 is improved.

導電性繊維24としては、カーボンナノファイバ、金属(銅、白金、金、銀、ニッケル等)のナノワイヤ等が挙げられ、等方導電性接着剤層16の厚みがミクロンレベルと薄いことから繊維径の細いカーボンナノファイバが好ましい。カーボンナノファイバとしては、分散性に優れている点、等方導電性接着剤層16の流動性(絶縁フィルムの貫通孔の形状への追随性)を確保する点から、気相法炭素繊維が好ましい。 Examples of the conductive fibers 24 include carbon nanofibers, metal (copper, platinum, gold, silver, nickel, etc.) nanowires, and the like, because the thickness of the isotropic conductive adhesive layer 16 is as thin as the micron level, the fiber diameter Thin carbon nanofibers are preferred. As the carbon nanofiber, a vapor grown carbon fiber is preferable because it has excellent dispersibility and secures the fluidity of the isotropic conductive adhesive layer 16 (following the shape of the through hole of the insulating film). preferable.

導電性繊維24の平均繊維長は、0.5〜5μmが好ましく、1〜3μmがより好ましい。導電性繊維24の平均繊維長が0.5μm以上であれば、等方導電性接着剤層16の導電性および強度がさらに良好になる。導電性繊維24の平均繊維長が5μm以下であれば、等方導電性接着剤層16の接着性、流動性(絶縁フィルムの貫通孔の形状への追随性)が良好になる。 The average fiber length of the conductive fibers 24 is preferably 0.5 to 5 μm, more preferably 1 to 3 μm. When the average fiber length of the conductive fibers 24 is 0.5 μm or more, the conductivity and strength of the isotropic conductive adhesive layer 16 are further improved. When the average fiber length of the conductive fibers 24 is 5 μm or less, the adhesiveness and fluidity of the isotropic conductive adhesive layer 16 (the conformability to the shape of the through holes of the insulating film) are improved.

導電性繊維24の平均繊維径は、0.01〜0.5μmが好ましく、0.05〜0.3μmがより好ましい。導電性繊維の平均繊維径が0.01μm以上であれば、等方導電性接着剤層16の導電性および強度がさらに良好になる。導電性繊維24の平均繊維径が0.5μm以下であれば、等方導電性接着剤層16の接着性、流動性(絶縁フィルムの貫通孔の形状への追随性)が良好になる。 The average fiber diameter of the conductive fibers 24 is preferably 0.01 to 0.5 μm, more preferably 0.05 to 0.3 μm. When the average fiber diameter of the conductive fibers is 0.01 μm or more, the conductivity and strength of the isotropic conductive adhesive layer 16 are further improved. When the average fiber diameter of the conductive fibers 24 is 0.5 μm or less, the adhesiveness and fluidity of the isotropic conductive adhesive layer 16 (the conformability to the shape of the through holes of the insulating film) are improved.

導電性繊維24のアスペクト比は、5〜300が好ましく、10〜100がより好ましい。導電性繊維のアスペクト比が5以上であれば、等方導電性接着剤層16の導電性および強度がさらに良好になる。導電性繊維のアスペクト比が300以下であれば、等方導電性接着剤層16の接着性、流動性(絶縁フィルムの貫通孔の形状への追随性)が良好になる。 The aspect ratio of the conductive fibers 24 is preferably 5 to 300, more preferably 10 to 100. When the aspect ratio of the conductive fiber is 5 or more, the conductivity and strength of the isotropic conductive adhesive layer 16 are further improved. When the aspect ratio of the conductive fiber is 300 or less, the adhesiveness and fluidity of the isotropic conductive adhesive layer 16 (the conformability to the shape of the through hole of the insulating film) are improved.

導電性繊維24の比表面積は、2〜50m/gが好ましく、2〜40m/gがより好ましい。導電性繊維24の比表面積が2m/g以上であれば、導電性繊維24を入手しやすい。導電性繊維24の比表面積が50m/g以下であれば、導電性繊維24の吸油量が大きくなりすぎず、その結果、導電性接着剤の粘度が高くなりすぎず、塗布性がさらに良好となる。また、等方導電性接着剤層16の流動性(絶縁フィルムの貫通孔の形状への追随性)をさらに確保できる。 2-50 m< 2 >/g is preferable and, as for the specific surface area of the electroconductive fiber 24, 2-40 m< 2 >/g is more preferable. When the specific surface area of the conductive fiber 24 is 2 m 2 /g or more, the conductive fiber 24 is easily available. When the specific surface area of the conductive fibers 24 is 50 m 2 /g or less, the oil absorption amount of the conductive fibers 24 does not become too large, and as a result, the viscosity of the conductive adhesive does not become too high and the coating property is further improved. Becomes Further, the fluidity of the isotropic conductive adhesive layer 16 (following the shape of the through hole of the insulating film) can be further secured.

導電性フィラーが導電性粒子22および導電性繊維24である場合、導電性繊維24の割合は、等方導電性接着剤層16の100体積%のうち、3〜30体積%が好ましく、5〜20体積%がより好ましい。ただし、導電性粒子22および導電性繊維24の合計は、30〜80体積%(好ましくは50〜70体積%)である。導電性繊維24の割合が3体積%以上であれば、等方導電性接着剤層16の導電性および強度がさらに良好になる。導電性繊維24の割合が30体積%以下であれば、導電性接着剤の粘度が高くなりすぎず、塗布性が良好となる。また、等方導電性接着剤層16の流動性(絶縁フィルムの貫通孔の形状への追随性)を確保でき、絶縁フィルムの貫通孔内を等方導電性接着剤層16で十分に埋めることができる。 When the conductive filler is the conductive particles 22 and the conductive fibers 24, the ratio of the conductive fibers 24 is preferably 3 to 30% by volume in 100% by volume of the isotropic conductive adhesive layer 16, and 5 to 5%. 20% by volume is more preferred. However, the total of the conductive particles 22 and the conductive fibers 24 is 30 to 80% by volume (preferably 50 to 70% by volume). When the proportion of the conductive fibers 24 is 3% by volume or more, the conductivity and strength of the isotropic conductive adhesive layer 16 are further improved. When the proportion of the conductive fibers 24 is 30% by volume or less, the viscosity of the conductive adhesive does not become too high and the coatability becomes good. Further, the fluidity of the isotropic conductive adhesive layer 16 (following the shape of the through hole of the insulating film) can be ensured, and the through hole of the insulating film can be sufficiently filled with the isotropic conductive adhesive layer 16. You can

等方導電性接着剤層16の厚さは、5〜20μmが好ましく、7〜17μmがより好ましい。等方導電性接着剤層16の厚さが5μm以上であれば、等方導電性接着剤層16の導電性がさらに良好になり、電磁波シールド層として十分に機能できる。また、等方導電性接着剤層16の流動性(絶縁フィルムの貫通孔の形状への追随性)を確保でき、絶縁フィルムの貫通孔内を導電性接着剤で十分に埋めることができ、耐折性も確保でき繰り返し折り曲げても等方導電性接着剤層16が断裂することはない。等方導電性接着剤層16の厚さが20μm以下であれば、電磁波シールドフィルム10を薄くできる。また、電磁波シールドフィルム10の可とう性がよくなる。 The thickness of the isotropic conductive adhesive layer 16 is preferably 5 to 20 μm, more preferably 7 to 17 μm. When the thickness of the isotropic conductive adhesive layer 16 is 5 μm or more, the conductivity of the isotropic conductive adhesive layer 16 is further improved, and the isotropic conductive adhesive layer 16 can sufficiently function as an electromagnetic wave shield layer. In addition, the fluidity of the isotropic conductive adhesive layer 16 (following the shape of the through hole of the insulating film) can be secured, and the inside of the through hole of the insulating film can be sufficiently filled with the conductive adhesive to improve the resistance. Foldability can be ensured and the isotropic conductive adhesive layer 16 will not be broken even if it is repeatedly bent. If the thickness of the isotropic conductive adhesive layer 16 is 20 μm or less, the electromagnetic wave shielding film 10 can be made thin. In addition, the flexibility of the electromagnetic wave shielding film 10 is improved.

等方導電性接着剤層16の表面抵抗は、1〜100Ωであり、1〜50Ωが好ましく、1〜10Ωがより好ましい。等方導電性接着剤層16の表面抵抗が1Ω以上であれば、等方導電性接着剤層16の流動性も高く、強度が高く強靭となる。等方導電性接着剤層16の表面抵抗が100Ω以下であれば、金属薄膜層14にクラックが生じても、金属薄膜層14および等方導電性接着剤層16からなる電磁波シールド層の抵抗の上昇が抑えられ、その結果、電磁波シールドフィルム10が、電磁波ノイズの遮蔽効果を維持できる。 The surface resistance of the isotropic conductive adhesive layer 16 is 1 to 100 Ω, preferably 1 to 50 Ω, more preferably 1 to 10 Ω. When the surface resistance of the isotropic conductive adhesive layer 16 is 1 Ω or more, the isotropic conductive adhesive layer 16 has high fluidity and high strength and toughness. If the surface resistance of the isotropic conductive adhesive layer 16 is 100 Ω or less, even if a crack occurs in the metal thin film layer 14, the resistance of the electromagnetic wave shield layer composed of the metal thin film layer 14 and the isotropic conductive adhesive layer 16 The rise is suppressed, and as a result, the electromagnetic wave shielding film 10 can maintain the electromagnetic wave noise shielding effect.

(第1の離型フィルム)
第1の離型フィルム18は、絶縁性保護層12や金属薄膜層14を形成する際のキャリアフィルムとなるものであり、電磁波シールドフィルム10のハンドリング性を良好にする。第1の離型フィルム18は、電磁波シールドフィルム10をフレキシブルプリント配線板等に貼り付けた後には、絶縁性保護層12から剥離される。
(First release film)
The first release film 18 serves as a carrier film when the insulating protective layer 12 and the metal thin film layer 14 are formed, and improves the handleability of the electromagnetic wave shielding film 10. The first release film 18 is peeled from the insulating protective layer 12 after the electromagnetic wave shielding film 10 is attached to a flexible printed wiring board or the like.

第1の離型フィルム18の樹脂材料としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリオレフィン、ポリアセテート、ポリカーボネート、ポリフェニレンサルファイド、ポリアミド、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、合成ゴム、液晶ポリマー等が挙げられ、電磁波シールドフィルム10を製造する際の耐熱性(寸法安定性)およびコストの点から、ポリエチレンテレフタレートが好ましい。 Examples of the resin material of the first release film 18 include polyethylene terephthalate, polyethylene naphthalate, polyethylene isophthalate, polybutylene terephthalate, polyolefin, polyacetate, polycarbonate, polyphenylene sulfide, polyamide, ethylene-vinyl acetate copolymer, polychlorinated. Examples thereof include vinyl, polyvinylidene chloride, synthetic rubber, liquid crystal polymer, and the like, and polyethylene terephthalate is preferable from the viewpoint of heat resistance (dimensional stability) and cost when manufacturing the electromagnetic wave shielding film 10.

第1の離型フィルム18の160℃における貯蔵弾性率は、0.8×10〜4×10Paが好ましく、0.8×10〜3×10Paがより好ましい。第1の離型フィルム18の160℃における貯蔵弾性率が0.8×10Pa以上であれば、電磁波シールドフィルム10のハンドリング性が良好となる。第1の離型フィルム18の160℃における貯蔵弾性率が4×10Pa以下であれば、第1の離型フィルム18の柔軟性が良好となる。 The storage elastic modulus at 160° C. of the first release film 18 is preferably 0.8×10 8 to 4×10 8 Pa, more preferably 0.8×10 8 to 3×10 8 Pa. When the storage elastic modulus at 160° C. of the first release film 18 is 0.8×10 8 Pa or more, the electromagnetic wave shielding film 10 has good handleability. If the storage elastic modulus at 160° C. of the first release film 18 is 4×10 8 Pa or less, the flexibility of the first release film 18 will be good.

第1の離型フィルム18の厚さは、5〜500μmが好ましく、10〜150μmがより好ましく、25〜100μmがさらに好ましい。第1の離型フィルム18の厚さが5μm以上であれば、電磁波シールドフィルム10のハンドリング性が良好となる。また、第1の離型フィルム18がクッション材として十分に働き、フレキシブルプリント配線板の表面に設けられた絶縁フィルムの表面に電磁波シールドフィルム10の等方導電性接着剤層16を熱プレスにて貼着する際に、等方導電性接着剤層16が絶縁フィルムの表面の凹凸形状に追随しやすくなる。第1の離型フィルム18の厚さが500μm以下であれば、絶縁フィルムの表面に電磁波シールドフィルム10の等方導電性接着剤層16を熱プレスする際に等方導電性接着剤層16に熱が伝わりやすい。 The thickness of the first release film 18 is preferably 5 to 500 μm, more preferably 10 to 150 μm, and further preferably 25 to 100 μm. When the thickness of the first release film 18 is 5 μm or more, the electromagnetic wave shielding film 10 has good handleability. Further, the first release film 18 works sufficiently as a cushioning material, and the isotropic conductive adhesive layer 16 of the electromagnetic wave shielding film 10 is formed on the surface of the insulating film provided on the surface of the flexible printed wiring board by hot pressing. At the time of sticking, the isotropic conductive adhesive layer 16 easily follows the uneven shape of the surface of the insulating film. When the thickness of the first release film 18 is 500 μm or less, when the isotropic conductive adhesive layer 16 of the electromagnetic wave shielding film 10 is hot pressed onto the surface of the insulating film, the isotropic conductive adhesive layer 16 is formed. Heat is easily transmitted.

(離型剤層)
離型フィルム本体18aの絶縁性保護層12側の表面に、離型剤による離型処理が施されて、離型剤層18bが形成される。第1の離型フィルム18が離型剤層18bを有することによって、後述する工程(g)において第1の離型フィルム18を絶縁性保護層12から剥離する際に、第1の離型フィルム18が剥離しやすく、絶縁性保護層12や硬化後の等方導電性接着剤層16が破断しにくくなる。
離型剤としては、公知の離型剤を用いればよい。
(Release agent layer)
The surface of the release film main body 18a on the insulating protective layer 12 side is subjected to a release treatment with a release agent to form a release agent layer 18b. Since the first release film 18 has the release agent layer 18b, when the first release film 18 is peeled from the insulating protective layer 12 in the step (g) described below, the first release film 18 18 is easily peeled off, and the insulating protective layer 12 and the cured isotropic conductive adhesive layer 16 are less likely to break.
As the release agent, a known release agent may be used.

離型剤層18bの厚さは、0.05〜2.0μmが好ましく、0.1〜1.5μmがより好ましい。離型剤層18bの厚さが前記範囲内であれば、後述する工程(g)において第1の離型フィルム18がさらに剥離しやすくなる。 The thickness of the release agent layer 18b is preferably 0.05 to 2.0 μm, more preferably 0.1 to 1.5 μm. When the thickness of the release agent layer 18b is within the above range, the first release film 18 is more easily peeled off in the step (g) described later.

(第2の離型フィルム)
第2の離型フィルム20は、等方導電性接着剤層16を保護するものであり、電磁波シールドフィルム10のハンドリング性を良好にする。第2の離型フィルム20は、電磁波シールドフィルム10をフレキシブルプリント配線板等に貼り付ける前に、等方導電性接着剤層16から剥離される。
(Second release film)
The second release film 20 protects the isotropic conductive adhesive layer 16 and improves the handleability of the electromagnetic wave shielding film 10. The second release film 20 is peeled from the isotropic conductive adhesive layer 16 before the electromagnetic wave shielding film 10 is attached to a flexible printed wiring board or the like.

第2の離型フィルム20の樹脂材料としては、第1の離型フィルム18の樹脂材料と同様なものが挙げられる。
第2の離型フィルム20の厚さは、5〜500μmが好ましく、10〜150μmがより好ましく、25〜100μmがさらに好ましい。
The resin material of the second release film 20 may be the same as the resin material of the first release film 18.
The thickness of the second release film 20 is preferably 5 to 500 μm, more preferably 10 to 150 μm, and further preferably 25 to 100 μm.

(離型剤層)
離型フィルム本体20aの等方導電性接着剤層16側の表面に、離型剤による離型処理が施されて、離型剤層20bが形成される。第2の離型フィルム20が離型剤層20bを有することによって、後述する工程(g)において第2の離型フィルム20を等方導電性接着剤層16から剥離する際に、第2の離型フィルム20が剥離しやすく、等方導電性接着剤層16が破断しにくくなる。
離型剤としては、公知の離型剤を用いればよい。
(Release agent layer)
The surface of the release film main body 20a on the side of the isotropic conductive adhesive layer 16 is subjected to a release treatment with a release agent to form a release agent layer 20b. Since the second release film 20 has the release agent layer 20b, when the second release film 20 is released from the isotropic conductive adhesive layer 16 in the step (g) described below, The release film 20 is easily peeled off, and the isotropic conductive adhesive layer 16 is less likely to break.
As the release agent, a known release agent may be used.

離型剤層20bの厚さは、0.05〜2.0μmが好ましく、0.1〜1.5μmがより好ましい。離型剤層20bの厚さが前記範囲内であれば、後述する工程(g)において第2の離型フィルム20がさらに剥離しやすくなる。 The thickness of the release agent layer 20b is preferably 0.05 to 2.0 μm, more preferably 0.1 to 1.5 μm. When the thickness of the release agent layer 20b is within the above range, the second release film 20 is more easily peeled off in the step (g) described later.

(電磁波シールドフィルムの厚さ)
電磁波シールドフィルム10の厚さ(離型フィルムを除く)は、10〜45μmが好ましく、10〜30μmがより好ましい。電磁波シールドフィルム10の厚さ(離型フィルムを除く)が10μm以上であれば、第1の離型フィルム18を剥離する際に破断しにくい。電磁波シールドフィルム10の厚さ(離型フィルムを除く)が45μm以下であれば、電磁波シールドフィルム付きフレキシブルプリント配線板を薄くできる。
(Thickness of electromagnetic wave shield film)
The thickness of the electromagnetic wave shielding film 10 (excluding the release film) is preferably 10 to 45 μm, more preferably 10 to 30 μm. When the thickness of the electromagnetic wave shielding film 10 (excluding the release film) is 10 μm or more, the first release film 18 is less likely to break when peeled off. When the thickness of the electromagnetic wave shielding film 10 (excluding the release film) is 45 μm or less, the flexible printed wiring board with the electromagnetic wave shielding film can be made thin.

(電磁波シールドフィルムの製造方法)
本発明の電磁波シールドフィルムは、例えば、下記の工程(a)〜(d)を有する方法によって製造できる。
(a)第1の離型フィルムの片面に絶縁性保護層を形成する工程。
(b)絶縁性保護層の表面に金属薄膜層を形成することによって、第1の離型フィルムと、絶縁性保護層と、金属薄膜層とを順に備えた第1の積層体を得る工程。
(c)第2の離型フィルムの片面に等方導電性接着剤層を形成することによって、第2の離型フィルムと、等方導電性接着剤層とを順に備えた第2の積層体を得る工程。
(d)第1の積層体と第2の積層体とを、金属薄膜層と等方導電性接着剤層とが接触するように貼り合わせる工程。
(Method for manufacturing electromagnetic wave shielding film)
The electromagnetic wave shielding film of the present invention can be produced by, for example, a method including the following steps (a) to (d).
(A) A step of forming an insulating protective layer on one surface of the first release film.
(B) A step of forming a metal thin film layer on the surface of the insulating protective layer to obtain a first laminate including the first release film, the insulating protective layer, and the metal thin film layer in this order.
(C) A second laminate having a second release film and an isotropic conductive adhesive layer in that order by forming an isotropic conductive adhesive layer on one surface of the second release film. To obtain.
(D) A step of bonding the first laminate and the second laminate so that the metal thin film layer and the isotropic conductive adhesive layer are in contact with each other.

以下、図1に示す電磁波シールドフィルム10を製造する方法について、図2〜図4を参照しながら説明する。 Hereinafter, a method for manufacturing the electromagnetic wave shielding film 10 shown in FIG. 1 will be described with reference to FIGS.

(工程(a))
図2に示すように、第1の離型フィルム18の離型剤層18bの表面に絶縁性保護層12を形成する。
(Process (a))
As shown in FIG. 2, the insulating protective layer 12 is formed on the surface of the release agent layer 18b of the first release film 18.

絶縁性保護層12の形成方法としては、熱硬化性樹脂と硬化剤とを含む塗料を塗布し、硬化させる方法、熱可塑性樹脂を含む塗料を塗布する方法、熱可塑性樹脂を溶融成形したフィルムを貼着する方法等が挙げられる。ハンダ付け等の際の耐熱性の点から、熱硬化性樹脂と硬化剤とを含む塗料を塗布し、硬化させる方法が好ましい。
熱硬化性樹脂と硬化剤とを含む塗料は、必要に応じて溶剤、他の成分を含んでいてもよい。
The insulating protective layer 12 may be formed by applying a coating material containing a thermosetting resin and a curing agent and curing the coating material, applying a coating material containing a thermoplastic resin, or a film obtained by melt-molding the thermoplastic resin. Examples include a method of sticking. From the viewpoint of heat resistance when soldering or the like, a method of applying a coating material containing a thermosetting resin and a curing agent and curing it is preferable.
The coating material containing the thermosetting resin and the curing agent may contain a solvent and other components as necessary.

絶縁性保護層12を、塗料の塗布によって形成した場合、絶縁性保護層12を比較的薄くできる。なお、熱硬化性樹脂の硬化物は硬いため、絶縁性保護層12を薄くした場合は、強度が不十分となる。上述したように、絶縁性保護層12の160℃における貯蔵弾性率を、5×10〜1×10Paの範囲とすることによって、柔軟性や強度と、耐熱性とのバランスが良好となる。 When the insulating protective layer 12 is formed by applying a coating material, the insulating protective layer 12 can be made relatively thin. Since the cured product of the thermosetting resin is hard, the strength becomes insufficient when the insulating protective layer 12 is thin. As described above, by setting the storage elastic modulus at 160° C. of the insulating protective layer 12 to be in the range of 5×10 6 to 1×10 8 Pa, good balance between flexibility and strength and heat resistance can be obtained. Become.

絶縁性保護層12の貯蔵弾性率の制御は、架橋密度および架橋構造からもたらされる強靭性の観点から熱硬化性樹脂、硬化剤等の種類や組成を選択し、熱硬化性樹脂の硬化物の貯蔵弾性率を調整することによって行われる。
このほか、貯蔵弾性率は、熱硬化性樹脂を硬化させる際の温度、時間等の硬化条件を調整する、または熱硬化性を有さない成分として熱可塑性エラストマー等の熱可塑性樹脂を添加することによって調整できる。
The storage elastic modulus of the insulating protective layer 12 is controlled by selecting the type and composition of the thermosetting resin, the curing agent and the like from the viewpoint of the toughness brought about by the crosslink density and the crosslinked structure, and curing the thermosetting resin. This is done by adjusting the storage modulus.
In addition, the storage elastic modulus should be adjusted by adjusting the curing conditions such as temperature and time when curing the thermosetting resin, or by adding a thermoplastic resin such as a thermoplastic elastomer as a non-thermosetting component. Can be adjusted by

(工程(b))
図2に示すように、絶縁性保護層12の表面に金属薄膜層14を形成、第1の積層体10aを得る。
(Process (b))
As shown in FIG. 2, the metal thin film layer 14 is formed on the surface of the insulating protective layer 12 to obtain the first stacked body 10a.

金属薄膜層14の形成方法としては、物理蒸着、CVD、めっき等によって金属薄膜を形成する方法、金属箔を貼り付ける方法等が挙げられる。面方向の導電性に優れる金属薄膜層14を形成できる点から、物理蒸着、CVD、めっき等によって金属薄膜を形成する方法が好ましく、金属薄膜層14の厚さを薄くでき、かつ厚さが薄くても面方向の導電性に優れる金属薄膜層14を形成でき、ドライプロセスにて簡便に金属薄膜層14を形成できる点から、物理蒸着による方法がより好ましい。 Examples of the method of forming the metal thin film layer 14 include a method of forming a metal thin film by physical vapor deposition, CVD, plating and the like, a method of attaching a metal foil, and the like. A method of forming a metal thin film by physical vapor deposition, CVD, plating or the like is preferable from the viewpoint that the metal thin film layer 14 having excellent conductivity in the surface direction can be formed, and the thickness of the metal thin film layer 14 can be made thin and thin. However, the physical vapor deposition method is more preferable because the metal thin film layer 14 having excellent conductivity in the plane direction can be formed and the metal thin film layer 14 can be easily formed by a dry process.

(工程(c))
図3に示すように、第2の離型フィルム20の離型剤層20bの表面に等方導電性接着剤層16を形成し、第2の積層体10bを得る。
(Process (c))
As shown in FIG. 3, the isotropic conductive adhesive layer 16 is formed on the surface of the release agent layer 20b of the second release film 20 to obtain the second laminate 10b.

等方導電性接着剤層16の形成方法としては、導電性接着剤組成物を塗布する方法が挙げられる。
導電性接着剤組成物としては、上述した熱硬化性接着剤と導電性粒子22と導電性繊維24とを含むものを用いる。
Examples of the method for forming the isotropic conductive adhesive layer 16 include a method of applying a conductive adhesive composition.
As the conductive adhesive composition, a composition containing the above-mentioned thermosetting adhesive, conductive particles 22 and conductive fibers 24 is used.

(工程(d))
図4に示すように、第1の積層体10aと第2の積層体10bとを、金属薄膜層14と等方導電性接着剤層16とが接触するように貼り合わせる。
(Process (d))
As shown in FIG. 4, the first laminated body 10a and the second laminated body 10b are attached so that the metal thin film layer 14 and the isotropic conductive adhesive layer 16 are in contact with each other.

第1の積層体10aと第2の積層体10bとの貼り合わせは、導電性繊維24が等方導電性接着剤層16の面方向に配向しやすくなる点から、プレス機(図示略)等による熱プレスによって行うことが好ましい。 The first laminated body 10a and the second laminated body 10b are attached to each other by a pressing machine (not shown) or the like because the conductive fibers 24 are easily oriented in the surface direction of the isotropic conductive adhesive layer 16. It is preferable to carry out by hot pressing according to.

(作用効果)
以上説明した電磁波シールドフィルム10にあっては、金属薄膜層14の表面抵抗が0.3Ω以下であり、かつ等方導電性接着剤層16の表面抵抗が10Ω以下であるため、以下に説明するように、金属薄膜層14にクラックが生じても、電磁波ノイズの遮蔽効果を維持できる。
(Effect)
In the electromagnetic wave shielding film 10 described above, the surface resistance of the metal thin film layer 14 is 0.3Ω or less, and the surface resistance of the isotropic conductive adhesive layer 16 is 10Ω or less, and therefore will be described below. As described above, even if the metal thin film layer 14 is cracked, the electromagnetic noise shielding effect can be maintained.

図5は、金属薄膜層14にクラックが生じる前の、金属薄膜層14および等方導電性接着剤層16からなる電磁波シールド層のモデルケースを示す斜視図である。
モデルケースにおける電磁波シールド層は、幅10mm、長さ20mmの金属薄膜層14と、幅10mm、長さ20mmの等方導電性接着剤層16との積層体である。
金属薄膜層14の表面抵抗Rmsは、長さ10mm、電極間距離10mmの2本の電極間の抵抗であるから、金属薄膜層14の長さ方向(20mm)の全体抵抗、すなわち回路の抵抗は、表面抵抗Rmsの2倍の2Rmsとなる。
等方導電性接着剤層16の表面抵抗Rcsは、長さ10mm、電極間距離10mmの2本の電極間の抵抗であるから、等方導電性接着剤層16の長さ方向(20mm)の全体抵抗は、同様に2Rcsとなる。
電磁波シールド層を、金属薄膜層14と等方導電性接着剤層16との並列回路と見なせば、クラックが生じる前の電磁波シールド層の長さ方向の全体抵抗R1は、並列回路の抵抗、すなわち下記式(1)で表される。
R1=2×Rms・Rcs/(Rms+Rcs) ・・・(1)
FIG. 5 is a perspective view showing a model case of the electromagnetic wave shield layer including the metal thin film layer 14 and the isotropic conductive adhesive layer 16 before the metal thin film layer 14 is cracked.
The electromagnetic wave shield layer in the model case is a laminate of the metal thin film layer 14 having a width of 10 mm and a length of 20 mm and the isotropic conductive adhesive layer 16 having a width of 10 mm and a length of 20 mm.
Since the surface resistance Rms of the metal thin film layer 14 is a resistance between two electrodes having a length of 10 mm and a distance between electrodes of 10 mm, the total resistance in the length direction (20 mm) of the metal thin film layer 14, that is, the resistance of the circuit is , 2 Rms, which is twice the surface resistance Rms.
The surface resistance Rcs of the isotropic conductive adhesive layer 16 is a resistance between two electrodes having a length of 10 mm and a distance between electrodes of 10 mm. The total resistance is similarly 2Rcs.
When the electromagnetic wave shield layer is regarded as a parallel circuit of the metal thin film layer 14 and the isotropic conductive adhesive layer 16, the overall resistance R1 in the length direction of the electromagnetic wave shield layer before cracks are defined as the resistance of the parallel circuit, That is, it is represented by the following formula (1).
R1=2×Rms·Rcs/(Rms+Rcs) (1)

図6は、金属薄膜層14にクラックが生じた後の、金属薄膜層14および等方導電性接着剤層16からなる電磁波シールド層のモデルケースを示す斜視図である。
金属薄膜層14の長さ方向の中央に、幅方向にわたって間隙0.2mmのクラックが生じたとする。
電磁波シールド層を、幅10mm、長さ9.9mmの金属薄膜層14と等方導電性接着剤層16とからなる並列回路と、幅10mm、長さ0.2mmの等方導電性接着剤層16からなる回路と、幅10mm、長さ9.9mmの金属薄膜層14と等方導電性接着剤層16とからなる並列回路とが、直列に接続していると見なせば、クラックが生じた後の電磁波シールド層の長さ方向の全体抵抗R2は、下記式(2)で表される。
R2=2×0.99×Rms・Rcs/(Rms+Rcs)+0.02×Rcs ・・・(2)
FIG. 6 is a perspective view showing a model case of the electromagnetic wave shield layer including the metal thin film layer 14 and the isotropic conductive adhesive layer 16 after the metal thin film layer 14 is cracked.
It is assumed that a crack having a gap of 0.2 mm occurs in the widthwise direction at the center of the metal thin film layer 14 in the lengthwise direction.
A parallel circuit composed of a metal thin film layer 14 having a width of 10 mm and a length of 9.9 mm and an isotropic conductive adhesive layer 16 and an isotropic conductive adhesive layer having a width of 10 mm and a length of 0.2 mm. If a circuit composed of 16 and a parallel circuit composed of the metal thin film layer 14 having a width of 10 mm and a length of 9.9 mm and the isotropic conductive adhesive layer 16 are considered to be connected in series, a crack is generated. The total resistance R2 in the length direction of the electromagnetic wave shield layer after being exposed is represented by the following formula (2).
R2=2×0.99×Rms·Rcs/(Rms+Rcs)+0.02×Rcs (2)

金属薄膜層14の表面抵抗Rmsが最大値の0.3Ωであり、等方導電性接着剤層16の表面抵抗Rcsが最大値の100Ωであった場合、クラックが生じる前の電磁波シールド層の長さ方向の全体抵抗R1は、0.598Ωとなり、クラックが生じた後の電磁波シールド層の長さ方向の全体抵抗R2は、2.538Ωとなる。このように、金属薄膜層14にクラックが生じることによる電磁波シールド層の抵抗の上昇は、10倍以下に抑えられ、電磁波ノイズの遮蔽効果を維持できる。 When the surface resistance Rms of the metal thin film layer 14 is the maximum value of 0.3Ω and the surface resistance Rcs of the isotropic conductive adhesive layer 16 is the maximum value of 100Ω, the length of the electromagnetic wave shield layer before the crack is generated. The total resistance R1 in the depth direction is 0.598Ω, and the total resistance R2 in the length direction of the electromagnetic wave shield layer after the crack is generated is 2.538Ω. In this way, the increase in resistance of the electromagnetic wave shield layer due to the cracks in the metal thin film layer 14 is suppressed to 10 times or less, and the electromagnetic wave noise shielding effect can be maintained.

一方、金属薄膜層14の表面抵抗Rmsが最大値の0.3Ωであり、等方導電性接着剤層16の表面抵抗Rcsが最大値を超える1000Ωであった場合、クラックが生じる前の電磁波シールド層の長さ方向の全体抵抗R1は、0.600Ωとなり、クラックが生じた後の電磁波シールド層の長さ方向の全体抵抗R2は、20.540Ωとなる。このように、等方導電性接着剤層16の表面抵抗Rcsが最大値を超える場合、金属薄膜層14にクラックが生じることによって電磁波シールド層の抵抗が大きく上昇し、その結果、電磁波ノイズの遮蔽効果が低下する。 On the other hand, when the surface resistance Rms of the metal thin film layer 14 is the maximum value of 0.3Ω, and the surface resistance Rcs of the isotropic conductive adhesive layer 16 is 1000Ω which exceeds the maximum value, the electromagnetic wave shield before cracking occurs. The total resistance R1 in the length direction of the layer is 0.600Ω, and the total resistance R2 in the length direction of the electromagnetic wave shield layer after the crack is generated is 20540Ω. As described above, when the surface resistance Rcs of the isotropic conductive adhesive layer 16 exceeds the maximum value, cracks are generated in the metal thin film layer 14 to greatly increase the resistance of the electromagnetic wave shield layer, and as a result, shield electromagnetic wave noise. The effect decreases.

(他の実施形態)
本発明の電磁波シールドフィルムは、絶縁性保護層と、特定の表面抵抗の金属薄膜層と、特定の表面抵抗の等方導電性接着剤層とを順に備えたものであればよく、図1の実施形態に限定はされない。
例えば、等方導電性接着剤層16の表面のタック性が少ない場合は、第2の離型フィルム20を省略しても構わない。
絶縁性保護層12が十分な柔軟性や強度を有する場合は、第1の離型フィルム18を省略しても構わない。
離型フィルムは、離型フィルム本体のみで十分な離型性を有する場合は、離型剤層を有しなくてもよい。
(Other embodiments)
The electromagnetic wave shield film of the present invention may be any one provided with an insulating protective layer, a metal thin film layer having a specific surface resistance, and an isotropic conductive adhesive layer having a specific surface resistance in this order. It is not limited to the embodiment.
For example, when the tackiness of the surface of the isotropic conductive adhesive layer 16 is small, the second release film 20 may be omitted.
When the insulating protective layer 12 has sufficient flexibility and strength, the first release film 18 may be omitted.
The release film may not have the release agent layer when the release film itself has sufficient release properties.

<電磁波シールドフィルム付きフレキシブルプリント配線板>
図7は、本発明の電磁波シールドフィルム付きフレキシブルプリント配線板の一例を示す断面図である。
電磁波シールドフィルム付きフレキシブルプリント配線板1は、フレキシブルプリント配線板30と、絶縁フィルム40と、離型フィルムを剥離した電磁波シールドフィルム10とを備える。
フレキシブルプリント配線板30は、ベースフィルム32の少なくとも片面にプリント回路34が設けられたものである。
絶縁フィルム40は、フレキシブルプリント配線板30のプリント回路34が設けられた側の表面に設けられる。
電磁波シールドフィルム10の等方導電性接着剤層16は、絶縁フィルム40の表面に接着され、かつ硬化されている。また、等方導電性接着剤層16は、絶縁フィルム40に形成された貫通孔(図示略)を通ってプリント回路34に電気的に接続されている。
<Flexible printed wiring board with electromagnetic wave shielding film>
FIG. 7: is sectional drawing which shows an example of the flexible printed wiring board with an electromagnetic wave shielding film of this invention.
The flexible printed wiring board 1 with an electromagnetic wave shielding film includes a flexible printed wiring board 30, an insulating film 40, and an electromagnetic wave shielding film 10 from which a release film is peeled off.
The flexible printed wiring board 30 is provided with a printed circuit 34 on at least one surface of a base film 32.
The insulating film 40 is provided on the surface of the flexible printed wiring board 30 on the side where the printed circuit 34 is provided.
The isotropic conductive adhesive layer 16 of the electromagnetic wave shielding film 10 is adhered and cured on the surface of the insulating film 40. Further, the isotropic conductive adhesive layer 16 is electrically connected to the printed circuit 34 through a through hole (not shown) formed in the insulating film 40.

貫通孔のある部分を除くプリント回路34(信号回路、グランド回路、グランド層等)の近傍には、電磁波シールドフィルム10の金属薄膜層14が、絶縁フィルム40および等方導電性接着剤層16を介して離間して対向配置される。
貫通孔のある部分を除くプリント回路34と金属薄膜層14との離間距離は、絶縁フィルム40の厚さおよび等方導電性接着剤層16の厚さの総和である。離間距離は、30〜200μmが好ましく、60〜200μmがより好ましい。離間距離が30μmより小さいと、信号回路のインピーダンスが低くなるため、100Ω等の特性インピーダンスを有するためには、信号回路の線幅を小さくしなければならず、線幅のバラツキが特性インピーダンスのバラツキとなって、インピーダンスのミスマッチによる反射共鳴ノイズが電気信号に乗りやすくなる。離間距離が200μmより大きいと、電磁波シールドフィルム付きフレキシブルプリント配線板1が厚くなり、可とう性が不足する。
The metal thin film layer 14 of the electromagnetic wave shielding film 10 includes the insulating film 40 and the isotropic conductive adhesive layer 16 in the vicinity of the printed circuit 34 (a signal circuit, a ground circuit, a ground layer, etc.) excluding a portion having a through hole. They are spaced apart and are opposed to each other.
The distance between the printed circuit 34 and the metal thin film layer 14 excluding the portion having the through hole is the sum of the thickness of the insulating film 40 and the thickness of the isotropic conductive adhesive layer 16. The separation distance is preferably 30 to 200 μm, more preferably 60 to 200 μm. If the separation distance is less than 30 μm, the impedance of the signal circuit becomes low. Therefore, in order to have a characteristic impedance of 100Ω or the like, the line width of the signal circuit must be made small, and the variation in the line width causes the variation in the characteristic impedance. Then, the reflected resonance noise due to the impedance mismatch becomes easy to be carried on the electric signal. When the separation distance is larger than 200 μm, the flexible printed wiring board 1 with the electromagnetic wave shielding film becomes thick and flexibility is insufficient.

(フレキシブルプリント配線板)
フレキシブルプリント配線板30は、銅張積層板の銅箔を公知のエッチング法により所望のパターンに加工してプリント回路34(電源回路、グランド回路、グランド層等)としたものである。
銅張積層板としては、ベースフィルム32の片面または両面に接着剤層(図示略)を介して銅箔を貼り付けたもの;銅箔の表面にベースフィルム32を形成する樹脂溶液等をキャストしたもの等が挙げられる。
接着剤層の材料としては、エポキシ樹脂、ポリエステル、ポリイミド、ポリアミドイミド、ポリアミド、フェノール樹脂、ポリウレタン、アクリル樹脂、メラミン樹脂等が挙げられる。
接着剤層の厚さは、0.5〜30μmが好ましい。
(Flexible printed wiring board)
The flexible printed wiring board 30 is a printed circuit 34 (power circuit, ground circuit, ground layer, etc.) obtained by processing a copper foil of a copper clad laminate into a desired pattern by a known etching method.
As the copper-clad laminate, a copper foil is attached to one surface or both surfaces of the base film 32 via an adhesive layer (not shown); a resin solution or the like for forming the base film 32 is cast on the surface of the copper foil. The thing etc. are mentioned.
Examples of the material of the adhesive layer include epoxy resin, polyester, polyimide, polyamideimide, polyamide, phenol resin, polyurethane, acrylic resin, and melamine resin.
The thickness of the adhesive layer is preferably 0.5 to 30 μm.

(ベースフィルム)
ベースフィルム32としては、耐熱性を有するフィルムが好ましく、ポリイミドフィルム、液晶ポリマーフィルムがより好ましく、ポリイミドフィルムがさらに好ましい。
ベースフィルム32の表面抵抗は、電気的絶縁性の点から、1×10Ω以上が好ましい。ベースフィルム32の表面抵抗は、実用上の点から、1×1019Ω以下が好ましい。
ベースフィルム32の厚さは、5〜200μmが好ましく、屈曲性の点から、6〜25μmがより好ましく、10〜25μmがより好ましい。
(Base film)
As the base film 32, a film having heat resistance is preferable, a polyimide film and a liquid crystal polymer film are more preferable, and a polyimide film is further preferable.
The surface resistance of the base film 32 is preferably 1×10 6 Ω or more from the viewpoint of electrical insulation. The surface resistance of the base film 32 is preferably 1×10 19 Ω or less from the practical point of view.
The thickness of the base film 32 is preferably 5 to 200 μm, more preferably 6 to 25 μm, and further preferably 10 to 25 μm from the viewpoint of flexibility.

(プリント回路)
プリント回路34(信号回路、グランド回路、グランド層等)を構成する銅箔としては、圧延銅箔、電解銅箔等が挙げられ、屈曲性の点から、圧延銅箔が好ましい。
銅箔の厚さは、1〜50μmが好ましく、18〜35μmがより好ましい。
プリント回路34の長さ方向の端部(端子)は、ハンダ接続、コネクター接続、部品搭載等のため、絶縁フィルム40や電磁波シールドフィルム10に覆われていない。
(Printed circuit)
Examples of the copper foil forming the printed circuit 34 (signal circuit, ground circuit, ground layer, etc.) include rolled copper foil, electrolytic copper foil and the like, and rolled copper foil is preferable from the viewpoint of flexibility.
The thickness of the copper foil is preferably 1 to 50 μm, more preferably 18 to 35 μm.
The lengthwise ends (terminals) of the printed circuit 34 are not covered with the insulating film 40 or the electromagnetic wave shielding film 10 because of solder connection, connector connection, component mounting, and the like.

(絶縁フィルム)
絶縁フィルム40は、基材フィルム(図示略)の片面に、接着剤の塗布、接着剤シートの貼り付け等によって接着剤層(図示略)を形成したものである。
基材フィルムの表面抵抗は、電気的絶縁性の点から、1×10Ω以上が好ましい。基材フィルムの表面抵抗は、実用上の点から、1×1019Ω以下が好ましい。
基材フィルムとしては、耐熱性を有するフィルムが好ましく、ポリイミドフィルム、液晶ポリマーフィルムがより好ましく、ポリイミドフィルムがさらに好ましい。
基材フィルムの厚さは、1〜100μmが好ましく、可とう性の点から、3〜25μmがより好ましい。
接着剤層の材料としては、エポキシ樹脂、ポリエステル、ポリイミド、ポリアミドイミド、ポリアミド、フェノール樹脂、ポリウレタン、アクリル樹脂、メラミン樹脂、ポリスチレン、ポリオレフィン等が挙げられる。エポキシ樹脂は、可とう性付与のためのゴム成分(カルボキシル変性ニトリルゴム等)を含んでいてもよい。
接着剤層の厚さは、1〜100μmが好ましく、1.5〜60μmがより好ましい。
(Insulating film)
The insulating film 40 is formed by forming an adhesive layer (not shown) on one surface of a base film (not shown) by applying an adhesive, attaching an adhesive sheet, or the like.
The surface resistance of the base film is preferably 1×10 6 Ω or more from the viewpoint of electrical insulation. The surface resistance of the base film is preferably 1×10 19 Ω or less from the practical point of view.
As the substrate film, a film having heat resistance is preferable, a polyimide film and a liquid crystal polymer film are more preferable, and a polyimide film is further preferable.
The thickness of the base film is preferably 1 to 100 μm, and more preferably 3 to 25 μm from the viewpoint of flexibility.
Examples of the material of the adhesive layer include epoxy resin, polyester, polyimide, polyamideimide, polyamide, phenol resin, polyurethane, acrylic resin, melamine resin, polystyrene and polyolefin. The epoxy resin may include a rubber component (carboxyl-modified nitrile rubber or the like) for imparting flexibility.
The thickness of the adhesive layer is preferably 1 to 100 μm, more preferably 1.5 to 60 μm.

貫通孔の開口部の形状は、特に限定されない。貫通孔の開口部の形状としては、例えば、円形、楕円形、四角形等が挙げられる。 The shape of the opening of the through hole is not particularly limited. Examples of the shape of the opening of the through hole include a circle, an ellipse, and a quadrangle.

(電磁波シールドフィルム付きフレキシブルプリント配線板の製造方法)
本発明の電磁波シールドフィルム付きフレキシブルプリント配線板は、例えば、下記の工程(e)〜(g)を有する方法によって製造できる。
(e)ベースフィルムの少なくとも片面にプリント回路を有するフレキシブルプリント配線板のプリント回路が設けられた側の表面に、プリント回路に対応する位置に貫通孔が形成された絶縁フィルムを設け、絶縁フィルム付きフレキシブルプリント配線板を得る工程。
(f)工程(e)の後、絶縁フィルム付きフレキシブルプリント配線板と、本発明の電磁波シールドフィルムとを、絶縁フィルムの表面に等方導電性接着剤層が接触するように重ね、これらを熱プレスすることによって、絶縁フィルムの表面に等方導電性接着剤層を接着し、かつ等方導電性接着剤層を、貫通孔を通ってプリント回路に電気的に接続する工程。
(g)工程(f)の後、第1の離型フィルムを剥離し、電磁波シールドフィルム付きフレキシブルプリント配線板を得る工程。
(Method for manufacturing flexible printed wiring board with electromagnetic wave shielding film)
The flexible printed wiring board with the electromagnetic wave shielding film of the present invention can be produced, for example, by a method including the following steps (e) to (g).
(E) An insulating film having through holes formed at positions corresponding to the printed circuit is provided on the surface of the flexible printed wiring board having the printed circuit on at least one surface of the base film on which the printed circuit is provided. The process of obtaining a flexible printed wiring board.
(F) After the step (e), the flexible printed wiring board with an insulating film and the electromagnetic wave shielding film of the present invention are stacked so that the isotropic conductive adhesive layer is in contact with the surface of the insulating film, and these are heated. A step of adhering the isotropic conductive adhesive layer to the surface of the insulating film by pressing and electrically connecting the isotropic conductive adhesive layer to the printed circuit through the through hole.
(G) A step of peeling the first release film after the step (f) to obtain a flexible printed wiring board with an electromagnetic wave shielding film.

以下、電磁波シールドフィルム付きフレキシブルプリント配線板を製造する方法について、図8を参照しながら説明する。 Hereinafter, a method for manufacturing the flexible printed wiring board with the electromagnetic wave shielding film will be described with reference to FIG.

(工程(e))
図8に示すように、フレキシブルプリント配線板30に、プリント回路34に対応する位置に貫通孔42が形成された絶縁フィルム40を重ね、フレキシブルプリント配線板30の表面に絶縁フィルム40の接着剤層(図示略)を接着し、接着剤層を硬化させることによって、絶縁フィルム付きフレキシブルプリント配線板2を得る。フレキシブルプリント配線板30の表面に絶縁フィルム40の接着剤層を仮接着し、工程(f)にて接着剤層を本硬化させてもよい。
接着剤層の接着および硬化は、例えば、プレス機(図示略)等による熱プレスによって行う。
(Process (e))
As shown in FIG. 8, an insulating film 40 having through holes 42 formed at positions corresponding to the printed circuit 34 is laid on the flexible printed wiring board 30, and an adhesive layer of the insulating film 40 is formed on the surface of the flexible printed wiring board 30. By bonding (not shown) and curing the adhesive layer, the flexible printed wiring board 2 with an insulating film is obtained. The adhesive layer of the insulating film 40 may be temporarily adhered to the surface of the flexible printed wiring board 30, and the adhesive layer may be fully cured in the step (f).
Adhesion and curing of the adhesive layer are performed, for example, by hot pressing using a pressing machine (not shown) or the like.

(工程(f))
図8に示すように、絶縁フィルム付きフレキシブルプリント配線板2に、第2の離型フィルム20を剥離した電磁波シールドフィルム10を重ね、熱プレスすることによって、絶縁フィルム40の表面に等方導電性接着剤層16が接着され、かつ等方導電性接着剤層16が、貫通孔42を通ってプリント回路34に電気的に接続された電磁波シールドフィルム付きフレキシブルプリント配線板の前駆体3を得る。
(Process (f))
As shown in FIG. 8, the electromagnetic shielding film 10 from which the second release film 20 has been peeled off is placed on the flexible printed wiring board 2 with an insulating film, and hot pressed to obtain isotropic conductivity on the surface of the insulating film 40. The flexible printed wiring board precursor 3 with an electromagnetic wave shielding film is obtained in which the adhesive layer 16 is bonded and the isotropic conductive adhesive layer 16 is electrically connected to the printed circuit 34 through the through hole 42.

等方導電性接着剤層16の接着および硬化は、例えば、プレス機(図示略)等による熱プレスによって行う。
熱プレスの時間は、20秒〜60分間であり、30秒〜30分間がさらに好ましい。熱プレスの時間が20秒以上であれば、絶縁フィルム40の表面に等方導電性接着剤層16が接着される。熱プレスの時間が60分以下であれば、電磁波シールドフィルム付きフレキシブルプリント配線板1の製造時間を短縮できる。
Adhesion and curing of the isotropic conductive adhesive layer 16 are performed, for example, by hot pressing with a pressing machine (not shown).
The time of hot pressing is 20 seconds to 60 minutes, more preferably 30 seconds to 30 minutes. When the hot pressing time is 20 seconds or more, the isotropic conductive adhesive layer 16 is bonded to the surface of the insulating film 40. If the heat pressing time is 60 minutes or less, the manufacturing time of the flexible printed wiring board 1 with the electromagnetic wave shielding film can be shortened.

熱プレスの温度(プレス機のプレス板の温度)は、140〜190℃が好ましく、150〜175℃がより好ましい。熱プレスの温度が140℃以上であれば、絶縁フィルム40の表面に等方導電性接着剤層16が接着される。また、熱プレスの時間を短縮できる。熱プレスの温度が190℃以下であれば、電磁波シールドフィルム10、フレキシブルプリント配線板30等の劣化等を抑えることができる。 The temperature of the hot press (the temperature of the press plate of the press) is preferably 140 to 190°C, more preferably 150 to 175°C. When the temperature of hot pressing is 140° C. or higher, the isotropic conductive adhesive layer 16 is bonded to the surface of the insulating film 40. In addition, the time of hot pressing can be shortened. When the temperature of the hot press is 190° C. or lower, deterioration of the electromagnetic wave shielding film 10, the flexible printed wiring board 30, etc. can be suppressed.

熱プレスの圧力は、10MPa〜20MPaが好ましく、10MPa〜16MPaがより好ましい。熱プレスの圧力が10MPa以上であれば、絶縁フィルム40の表面に等方導電性接着剤層16が接着される。また、熱プレスの時間を短縮できる。熱プレスの圧力が20MPa以下であれば、電磁波シールドフィルム10、フレキシブルプリント配線板30等の破損等を抑えることができる。 The pressure of the hot press is preferably 10 MPa to 20 MPa, more preferably 10 MPa to 16 MPa. If the pressure of the hot press is 10 MPa or more, the isotropic conductive adhesive layer 16 is bonded to the surface of the insulating film 40. In addition, the time of hot pressing can be shortened. When the pressure of the hot press is 20 MPa or less, damage to the electromagnetic wave shielding film 10, the flexible printed wiring board 30, etc. can be suppressed.

(工程(g))
図8に示すように、絶縁性保護層12から第1の離型フィルム18を剥離し、電磁波シールドフィルム付きフレキシブルプリント配線板1を得る。
(Process (g))
As shown in FIG. 8, the first release film 18 is peeled from the insulating protective layer 12 to obtain the flexible printed wiring board 1 with the electromagnetic wave shielding film.

工程(f)における熱プレスの時間が20秒〜10分間の短時間である場合、第1の離型フィルム18を剥離する前または剥離した後に等方導電性接着剤層16の本硬化を行うことが好ましい。
等方導電性接着剤層16の本硬化は、例えば、オーブン等の加熱装置を用いて行う。
加熱時間は、15〜120分間であり、30〜60分間が好ましい。加熱時間が15分以上であれば、等方導電性接着剤層16を十分に硬化できる。加熱時間が120分以下であれば、電磁波シールドフィルム付きフレキシブルプリント配線板1の製造時間を短縮できる。
加熱温度(オーブン中の雰囲気温度)は、120〜180℃が好ましく、120〜150℃が好ましい。加熱温度が120℃以上であれば、加熱時間を短縮できる。加熱温度が160℃以下であれば、電磁波シールドフィルム10、フレキシブルプリント配線板30等の劣化等を抑えることができる。
加熱は、特殊な装置を使用しなくてもよい点から、無加圧で行うことが好ましい。
When the time of hot pressing in the step (f) is a short time of 20 seconds to 10 minutes, main curing of the isotropic conductive adhesive layer 16 is performed before or after peeling the first release film 18. Preferably.
The main curing of the isotropic conductive adhesive layer 16 is performed using a heating device such as an oven.
The heating time is 15 to 120 minutes, preferably 30 to 60 minutes. If the heating time is 15 minutes or more, the isotropic conductive adhesive layer 16 can be sufficiently cured. If the heating time is 120 minutes or less, the manufacturing time of the flexible printed wiring board 1 with the electromagnetic wave shielding film can be shortened.
The heating temperature (ambient temperature in the oven) is preferably 120 to 180°C, and preferably 120 to 150°C. When the heating temperature is 120° C. or higher, the heating time can be shortened. When the heating temperature is 160° C. or lower, deterioration of the electromagnetic wave shielding film 10, the flexible printed wiring board 30, etc. can be suppressed.
It is preferable to perform heating without pressurization, because a special device does not have to be used.

(作用効果)
以上説明した電磁波シールドフィルム付きフレキシブルプリント配線板1にあっては、金属薄膜層14の表面抵抗が0.3Ω以下であり、かつ等方導電性接着剤層16の表面抵抗が10Ω以下であるため、金属薄膜層14にクラックが生じても、電磁波ノイズの遮蔽効果を維持できる。
(Effect)
In the flexible printed wiring board 1 with the electromagnetic wave shielding film described above, the surface resistance of the metal thin film layer 14 is 0.3Ω or less, and the surface resistance of the isotropic conductive adhesive layer 16 is 10Ω or less. Even if the metal thin film layer 14 is cracked, the effect of shielding electromagnetic wave noise can be maintained.

(他の実施形態)
本発明の電磁波シールドフィルム付きフレキシブルプリント配線板は、フレキシブルプリント配線板と、絶縁フィルムと、本発明の電磁波シールドフィルムとを備えたものであればよく、図示例の実施形態に限定はされない。
例えば、フレキシブルプリント配線板は、裏面側にグランド層を有するものであってもよい。また、フレキシブルプリント配線板は、両面にプリント回路を有し、両面に絶縁フィルムおよび電磁波シールドフィルムが貼り付けられたものであってもよい。
(Other embodiments)
The flexible printed wiring board with the electromagnetic wave shielding film of the present invention is not limited to the embodiment shown in the drawings as long as it includes the flexible printed wiring board, the insulating film and the electromagnetic wave shielding film of the present invention.
For example, the flexible printed wiring board may have a ground layer on the back surface side. Further, the flexible printed wiring board may have printed circuits on both sides, and an insulating film and an electromagnetic wave shielding film may be attached to both sides.

以下、実施例を示す。なお、本発明は実施例に限定されるものではない。 Examples will be shown below. The present invention is not limited to the embodiments.

(貯蔵弾性率)
貯蔵弾性率は、動的粘弾性測定装置(Rheometric Scientific,Inc.製、RSAII)を用いて測定した。
(Storage elastic modulus)
The storage elastic modulus was measured using a dynamic viscoelasticity measuring device (RSAII, manufactured by Rheometric Scientific, Inc.).

(実施例1)
第1の離型フィルム18および第2の離型フィルム20として、非シリコーン系離型剤にて片面が離型処理されたポリエチレンテレフタレートフィルム(リンテック社製、T157、厚さ:50μm、160℃における貯蔵弾性率:6×10Pa)を用意した。
(Example 1)
As the first release film 18 and the second release film 20, a polyethylene terephthalate film whose one surface is release-treated with a non-silicone release agent (T157 manufactured by Lintec Co., thickness: 50 μm, at 160° C.) Storage elastic modulus: 6×10 8 Pa) was prepared.

工程(a):
第1の離型フィルム18の離型剤層18bの表面に、溶剤溶解性アミド樹脂(ティーアンドケイ東華社製、TPAE−617C)および硬化剤(トルエンジイソシアネート)をN,N−ジメチルホルムアミドに溶解した塗料を塗布し、150℃で0.4時間加熱し、アミド樹脂を硬化させて、絶縁性保護層12(厚さ:5μm、160℃における貯蔵弾性率:8×10Pa、表面抵抗:8×1012Ω)を形成した。
Step (a):
On the surface of the release agent layer 18b of the first release film 18, a solvent-soluble amide resin (TPAE-617C manufactured by T&K Toka Co., Ltd.) and a curing agent (toluene diisocyanate) are dissolved in N,N-dimethylformamide. The coating composition is applied and heated at 150° C. for 0.4 hours to cure the amide resin, and the insulating protective layer 12 (thickness: 5 μm, storage elastic modulus at 160° C.: 8×10 6 Pa, surface resistance: 8×10 12 Ω) was formed.

工程(b):
絶縁性保護層12の表面に、電子ビーム蒸着法にて銅を物理的に蒸着させ、厚さ0.07μm、表面抵抗0.3Ωの蒸着膜(金属薄膜層14)を形成し、第1の積層体10aを得た。
Step (b):
Copper is physically vapor-deposited on the surface of the insulating protective layer 12 by an electron beam vapor deposition method to form a vapor deposition film (metal thin film layer 14) having a thickness of 0.07 μm and a surface resistance of 0.3Ω. The laminated body 10a was obtained.

工程(c):
第2の離型フィルム20の離型剤層20bの表面に、硬化性エポキシ樹脂としてエポキシ樹脂(DIC社製、EXA−4816)と硬化剤(味の素ファインテクノ社製、PN−23)との混合物、導電性粒子22として銀粒子(DOWAエレクトロニクス社製、AG 6−11、平均粒子径:3.6μm、比表面積:0.21m/g、真密度:10.5g/cm)およびカーボンナノファイバ(昭和電工社製、VGCF、平均繊維長:6μm、平均繊維径:0.15μm、アスペクト比:60、比表面積:13m/g、真密度:2.1g/cm)を溶剤(メチルエチルケトン)に溶解または分散させた導電性接着剤組成物を、ダイコーターを用いて塗布し、溶剤を揮発させて、等方導電性接着剤層16(厚さ:10μm、銀粒子:58体積%、カーボンナノファイバ:15体積%、表面抵抗:80Ω)を形成し、第2の積層体10bを得た。
Step (c):
On the surface of the release agent layer 20b of the second release film 20, a mixture of an epoxy resin (manufactured by DIC, EXA-4816) as a curable epoxy resin and a curing agent (manufactured by Ajinomoto Fine Techno, PN-23). , Silver particles (AG 6-11, manufactured by DOWA Electronics Co., average particle size: 3.6 μm, specific surface area: 0.21 m 2 /g, true density: 10.5 g/cm 3 ) and carbon nano particles as the conductive particles 22. Fiber (Showa Denko KK, VGCF, average fiber length: 6 μm, average fiber diameter: 0.15 μm, aspect ratio: 60, specific surface area: 13 m 2 /g, true density: 2.1 g/cm 3 ) was used as a solvent (methyl ethyl ketone). ) Is dissolved or dispersed in a conductive adhesive composition is applied using a die coater, the solvent is volatilized, isotropic conductive adhesive layer 16 (thickness: 10 μm, silver particles: 58% by volume, Carbon nanofibers: 15% by volume, surface resistance: 80Ω) were formed to obtain a second laminated body 10b.

工程(d):
第1の積層体10aと第2の積層体10bとを、金属薄膜層14と等方導電性接着剤層16とが接触するように重ね、ホットプレス装置(VIGOR社製、VFPC−05R)を用い、温度:90℃、圧力:2MPaで3秒間熱プレスし、電磁波シールドフィルム10を得た。
Step (d):
The first laminated body 10a and the second laminated body 10b are overlapped so that the metal thin film layer 14 and the isotropic conductive adhesive layer 16 are in contact with each other, and a hot press machine (VFIG-05R manufactured by VIGOR Co., Ltd.) is used. It was used and hot pressed at a temperature of 90° C. and a pressure of 2 MPa for 3 seconds to obtain an electromagnetic wave shielding film 10.

工程(e):
厚さ25μmのポリイミドフィルム(表面抵抗:1×1017Ω)(基材フィルム)の表面に、ニトリルゴム変性エポキシ樹脂からなる絶縁性接着剤組成物を、乾燥膜厚が25μmになるように塗布し、接着剤層を形成し、絶縁フィルム40(厚さ:50μm)を得た。
Process (e):
An insulating adhesive composition composed of a nitrile rubber-modified epoxy resin is applied to the surface of a 25 μm-thick polyimide film (surface resistance: 1×10 17 Ω) (base film) so that the dry film thickness is 25 μm. Then, an adhesive layer was formed to obtain an insulating film 40 (thickness: 50 μm).

厚さ12μmのポリイミドフィルム(表面抵抗:1×1017Ω)(ベースフィルム32)の表面に、プリント回路34が形成されたフレキシブルプリント配線板30を用意した。
フレキシブルプリント配線板30に絶縁フィルム40を熱プレスにより貼り付けて、絶縁フィルム付きフレキシブルプリント配線板2を得た。
A flexible printed wiring board 30 having a printed circuit 34 formed on the surface of a polyimide film (surface resistance: 1×10 17 Ω) (base film 32) having a thickness of 12 μm was prepared.
The insulating film 40 was attached to the flexible printed wiring board 30 by hot pressing to obtain the flexible printed wiring board 2 with the insulating film.

工程(f):
フレキシブルプリント配線板30に、第2の離型フィルム20を剥離した電磁波シールドフィルム10を重ね、ホットプレス装置(VIGOR社製、VFPC−05R)を用い、温度:170℃、圧力:15MPaで30秒間熱プレスし、絶縁フィルム40の表面に等方導電性接着剤層16を接着して、電磁波シールドフィルム付きフレキシブルプリント配線板の前駆体3を得た。
電磁波シールドフィルム付きフレキシブルプリント配線板の前駆体3を、高温恒温器(楠本化成社製、HT210)を用い、温度:170℃で30分間加熱することによって、等方導電性接着剤層16を本硬化させた。
Process (f):
The electromagnetic shielding film 10 from which the second release film 20 has been peeled off is placed on the flexible printed wiring board 30 and a hot press device (VFPC-05R manufactured by VIGOR) is used, and the temperature is 170° C. and the pressure is 15 MPa for 30 seconds. By hot pressing, the isotropic conductive adhesive layer 16 was adhered to the surface of the insulating film 40 to obtain the precursor 3 of the flexible printed wiring board with the electromagnetic wave shielding film.
The isotropic conductive adhesive layer 16 is formed by heating the precursor 3 of the flexible printed wiring board with the electromagnetic wave shielding film at a temperature of 170° C. for 30 minutes using a high temperature incubator (HT210 manufactured by Kusumoto Kasei Co., Ltd.). Cured.

工程(g):
絶縁性保護層12から第1の離型フィルム18を剥離し、電磁波シールドフィルム付きフレキシブルプリント配線板1を得た。
Process (g):
The first release film 18 was peeled from the insulating protective layer 12 to obtain a flexible printed wiring board 1 with an electromagnetic wave shielding film.

(比較例1)
工程(a)〜(b):
実施例1と同様にして、第1の積層体を得た。
(Comparative Example 1)
Steps (a)-(b):
In the same manner as in Example 1, a first laminated body was obtained.

工程(c):
第2の離型フィルムの離型剤層の表面に、硬化性エポキシ樹脂としてエポキシ樹脂(DIC社製、EXA−4816)と硬化剤(味の素ファインテクノ社製、PN−23)との混合物、導電性粒子22として焼成カーボン粒子(エア・ウォーター・ベルパール社製、CR2−800SR、平均粒子径:5.0μm、比表面積:0.8m/g、真密度:1.34g/cm)を溶剤(メチルエチルケトン)に溶解または分散させた導電性接着剤組成物を、ダイコーターを用いて塗布し、溶剤を揮発させて、等方導電性接着剤層(厚さ:10μm、焼成カーボン粒子:75体積%、カーボンナノファイバ:10体積%、表面抵抗:620Ω)を形成し、第2の積層体を得た。
Step (c):
On the surface of the release agent layer of the second release film, a mixture of an epoxy resin (manufactured by DIC, EXA-4816) and a curing agent (manufactured by Ajinomoto Fine-Techno, PN-23) as a curable epoxy resin, and conductive. As fired particles 22, fired carbon particles (CR2-800SR, manufactured by Air Water Bell Pearl Co., average particle diameter: 5.0 μm, specific surface area: 0.8 m 2 /g, true density: 1.34 g/cm 3 ) are used as a solvent. The conductive adhesive composition dissolved or dispersed in (methyl ethyl ketone) is applied using a die coater, the solvent is volatilized, and the isotropic conductive adhesive layer (thickness: 10 μm, fired carbon particles: 75 volume) is applied. %, carbon nanofiber: 10% by volume, surface resistance: 620 Ω) to obtain a second laminated body.

工程(d):
第2の積層体として、比較例1の工程(c)で得られた第2の積層体を用いた以外は、実施例1と同様にして、電磁波シールドフィルムを得た。
Step (d):
An electromagnetic wave shielding film was obtained in the same manner as in Example 1 except that the second laminate obtained in the step (c) of Comparative Example 1 was used as the second laminate.

工程(e)〜(g):
電磁波シールドフィルムとして、比較例1の工程(d)で得られた電磁波シールドフィルムを用いた以外は、実施例1と同様にして、電磁波シールドフィルム付きフレキシブルプリント配線板を得た。
Steps (e) to (g):
A flexible printed wiring board with an electromagnetic wave shielding film was obtained in the same manner as in Example 1 except that the electromagnetic wave shielding film obtained in the step (d) of Comparative Example 1 was used as the electromagnetic wave shielding film.

本発明の電磁波シールドフィルムは、スマートフォン、携帯電話、光モジュール、デジタルカメラ、ゲーム機、ノートパソコン、医療器具等の電子機器用のフレキシブルプリント配線板における、電磁波シールド用部材として有用である。 The electromagnetic wave shielding film of the present invention is useful as an electromagnetic wave shielding member in a flexible printed wiring board for electronic devices such as smartphones, mobile phones, optical modules, digital cameras, game machines, notebook computers and medical instruments.

1 電磁波シールドフィルム付きフレキシブルプリント配線板
2 絶縁フィルム付きフレキシブルプリント配線板
3 電磁波シールドフィルム付きフレキシブルプリント配線板の前駆体
10 電磁波シールドフィルム
10a 第1の積層体
10b 第2の積層体
12 絶縁性保護層
14 金属薄膜層
16 等方導電性接着剤層
18 第1の離型フィルム
18a 離型フィルム本体
18b 離型剤層
20 第2の離型フィルム
20a 離型フィルム本体
20b 離型剤層
22 導電性粒子
24 導電性繊維
30 フレキシブルプリント配線板
32 ベースフィルム
34 プリント回路
40 絶縁フィルム
42 貫通孔
101 電磁波シールドフィルム付きフレキシブルプリント配線板
110 電磁波シールドフィルム
112 絶縁性保護層
114 金属薄膜層
116 異方導電性接着剤層
118 離型フィルム
130 フレキシブルプリント配線板
132 ベースフィルム
134 プリント回路
140 絶縁フィルム
142 貫通孔
1 Flexible Printed Wiring Board with Electromagnetic Wave Shielding Film 2 Flexible Printed Wiring Board with Insulating Film 3 Precursor of Flexible Printed Wiring Board with Electromagnetic Wave Shielding Film 10 Electromagnetic Wave Shielding Film 10a First Laminate 10b Second Laminate 12 Insulating Protective Layer 14 Metal Thin Film Layer 16 Isotropic Conductive Adhesive Layer 18 First Release Film 18a Release Film Body 18b Release Agent Layer 20 Second Release Film 20a Release Film Body 20b Release Agent Layer 22 Conductive Particles 24 Conductive Fiber 30 Flexible Printed Wiring Board 32 Base Film 34 Printed Circuit 40 Insulating Film 42 Through Hole 101 Flexible Printed Wiring Board with Electromagnetic Wave Shielding Film 110 Electromagnetic Wave Shielding Film 112 Insulating Protective Layer 114 Metal Thin Film Layer 116 Anisotropic Conductive Adhesive Layer 118 Release film 130 Flexible printed wiring board 132 Base film 134 Printed circuit 140 Insulation film 142 Through hole

Claims (6)

絶縁性保護層と、
前記絶縁性保護層の第1の表面を覆う、表面抵抗が0.01〜0.3Ωである金属薄膜層と、
前記金属薄膜層の前記絶縁性保護層と接する側とは反対側の表面を覆う、導電性フィラーを含み、表面抵抗が1〜100Ωである等方導電性接着剤層と
を順に備え、
前記絶縁性保護層の第2の表面を覆う第1の離型フィルムをさらに備え、
前記等方導電性接着剤層が、前記導電性フィラーとして、導電性粒子および導電性繊維を含み、
前記導電性フィラーの割合が、前記等方導電性接着剤層の100体積%のうち、50〜80体積%である、電磁波シールドフィルム。
An insulating protective layer,
A metal thin film layer that covers the first surface of the insulating protective layer and has a surface resistance of 0.01 to 0.3Ω;
An isotropic conductive adhesive layer containing a conductive filler and having a surface resistance of 1 to 100 Ω, which covers the surface of the metal thin film layer opposite to the side in contact with the insulating protective layer,
Further comprising a first release film covering the second surface of the insulating protective layer,
The isotropic conductive adhesive layer contains, as the conductive filler, conductive particles and conductive fibers,
The electromagnetic wave shielding film, wherein the ratio of the conductive filler is 50 to 80% by volume based on 100% by volume of the isotropic conductive adhesive layer.
前記導電性繊維が、カーボンナノファイバである、請求項1に記載の電磁波シールドフィルム。 The electromagnetic wave shielding film according to claim 1, wherein the conductive fiber is carbon nanofiber. 前記等方導電性接着剤層の前記等方導電性接着剤層と接する側とは反対側の表面を覆う第2の離型フィルムをさらに備えた、請求項1または2に記載の電磁波シールドフィルム。 The electromagnetic wave shielding film according to claim 1 or 2 , further comprising a second release film that covers a surface of the isotropic conductive adhesive layer opposite to a side in contact with the isotropic conductive adhesive layer. .. 請求項に記載の電磁波シールドフィルムを製造する方法であって、
下記の工程(a)〜(d)を有する、電磁波シールドフィルムの製造方法。
(a)第1の離型フィルムの片面に絶縁性保護層を形成する工程。
(b)前記絶縁性保護層の表面に表面抵抗が0.01〜0.3Ωである金属薄膜層を形成することによって、第1の離型フィルムと、絶縁性保護層と、金属薄膜層とを順に備えた第1の積層体を得る工程。
(c)第2の離型フィルムの片面に等方導電性接着剤層を形成することによって、第2の離型フィルムと、導電性フィラーを含み、表面抵抗が1〜100Ωである等方導電性接着剤層とを順に備えた第2の積層体を得る工程。
(d)前記第1の積層体と前記第2の積層体とを、前記第1の積層体の前記金属薄膜層と前記第2の積層体の前記等方導電性接着剤層とが接触するように貼り合わせる工程。
A method for producing the electromagnetic wave shielding film according to claim 3 ,
A method for producing an electromagnetic wave shielding film, which comprises the following steps (a) to (d).
(A) A step of forming an insulating protective layer on one surface of the first release film.
(B) A first release film, an insulating protective layer, and a metal thin film layer by forming a metal thin film layer having a surface resistance of 0.01 to 0.3Ω on the surface of the insulating protective layer. And a step of obtaining a first laminated body including in order.
(C) Isotropic conductivity containing a second release film and a conductive filler by forming an isotropic conductive adhesive layer on one surface of the second release film, and having a surface resistance of 1 to 100Ω. Obtaining a second laminated body that is sequentially provided with a conductive adhesive layer.
(D) The first laminated body and the second laminated body are brought into contact with each other by the metal thin film layer of the first laminated body and the isotropic conductive adhesive layer of the second laminated body. Process to bond.
ベースフィルムの少なくとも片面にプリント回路が設けられたフレキシブルプリント配線板と、
前記フレキシブルプリント配線板の前記プリント回路が設けられた側の表面に設けられた絶縁フィルムと、
前記絶縁フィルムの表面に前記等方導電性接着剤層が接着された請求項1または2に記載の電磁波シールドフィルムと
を備え、
前記等方導電性接着剤層が、前記絶縁フィルムに形成された貫通孔を通って前記プリント回路に電気的に接続された、電磁波シールドフィルム付きフレキシブルプリント配線板。
A flexible printed wiring board provided with a printed circuit on at least one surface of the base film,
An insulating film provided on the surface of the flexible printed wiring board on which the printed circuit is provided,
The electromagnetic wave shielding film according to claim 1 or 2, wherein the isotropic conductive adhesive layer is adhered to the surface of the insulating film.
A flexible printed wiring board with an electromagnetic wave shielding film, wherein the isotropic conductive adhesive layer is electrically connected to the printed circuit through a through hole formed in the insulating film.
下記の工程(e)〜(g)を有する、電磁波シールドフィルム付きフレキシブルプリント配線板の製造方法。
(e)ベースフィルムの少なくとも片面にプリント回路を有するフレキシブルプリント配線板の前記プリント回路が設けられた側の表面に、前記プリント回路に対応する位置に貫通孔が形成された絶縁フィルムを設け、絶縁フィルム付きフレキシブルプリント配線板を得る工程。
(f)前記工程(e)の後、前記絶縁フィルム付きフレキシブルプリント配線板と、請求項1または2に記載の電磁波シールドフィルムとを、前記絶縁フィルムの表面に前記等方導電性接着剤層が接触するように重ね、これらを熱プレスすることによって、前記絶縁フィルムの表面に前記等方導電性接着剤層を接着し、かつ前記等方導電性接着剤層を、前記貫通孔を通って前記プリント回路に電気的に接続する工程。
(g)前記電磁波シールドフィルムが第1の離型フィルムを備えている場合は、前記工程(f)の後、前記第1の離型フィルムを剥離する工程。
A method for manufacturing a flexible printed wiring board with an electromagnetic wave shielding film, which comprises the following steps (e) to (g).
(E) An insulating film having through holes formed at positions corresponding to the printed circuit is provided on the surface of the flexible printed wiring board having the printed circuit on at least one surface of the base film on the side where the printed circuit is provided, and insulation is provided. The process of obtaining a flexible printed wiring board with a film.
(F) After the step (e), the flexible printed wiring board with an insulating film and the electromagnetic wave shielding film according to claim 1 or 2 are formed on the surface of the insulating film by the isotropic conductive adhesive layer. By stacking them in contact with each other, by hot pressing these, the isotropic conductive adhesive layer is adhered to the surface of the insulating film, and the isotropic conductive adhesive layer is passed through the through hole to The process of electrically connecting to a printed circuit.
(G) When the electromagnetic wave shielding film includes a first release film, a step of peeling the first release film after the step (f).
JP2018186962A 2018-10-01 2018-10-01 Electromagnetic wave shield film, flexible printed wiring board with electromagnetic wave shield film, and methods for manufacturing the same Active JP6706654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018186962A JP6706654B2 (en) 2018-10-01 2018-10-01 Electromagnetic wave shield film, flexible printed wiring board with electromagnetic wave shield film, and methods for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018186962A JP6706654B2 (en) 2018-10-01 2018-10-01 Electromagnetic wave shield film, flexible printed wiring board with electromagnetic wave shield film, and methods for manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014219422A Division JP6467701B2 (en) 2014-10-28 2014-10-28 Electromagnetic wave shielding film, flexible printed wiring board with electromagnetic wave shielding film, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018201055A JP2018201055A (en) 2018-12-20
JP6706654B2 true JP6706654B2 (en) 2020-06-10

Family

ID=64668364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018186962A Active JP6706654B2 (en) 2018-10-01 2018-10-01 Electromagnetic wave shield film, flexible printed wiring board with electromagnetic wave shield film, and methods for manufacturing the same

Country Status (1)

Country Link
JP (1) JP6706654B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203109A1 (en) * 2019-03-29 2020-10-08 東レ株式会社 Metallized film and manufacturing method therefor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240000A (en) * 1987-03-27 1988-10-05 三井東圧化学株式会社 Method of attaching crt filter
JPH09116293A (en) * 1995-10-23 1997-05-02 Nippon Plast Kogyo Kk Electromagnetic wave shielding material, its manufacture, and its application method
JP4201548B2 (en) * 2002-07-08 2008-12-24 タツタ電線株式会社 SHIELD FILM, SHIELD FLEXIBLE PRINTED WIRING BOARD AND METHOD FOR PRODUCING THEM
JP2005277262A (en) * 2004-03-26 2005-10-06 Toray Ind Inc Electromagnetic wave shield film
JP4319167B2 (en) * 2005-05-13 2009-08-26 タツタ システム・エレクトロニクス株式会社 Shield film, shield printed wiring board, shield flexible printed wiring board, shield film manufacturing method, and shield printed wiring board manufacturing method
JP2009289840A (en) * 2008-05-28 2009-12-10 Toyo Ink Mfg Co Ltd Electromagnetic wave shieldable adhesive film
JP2011171522A (en) * 2010-02-19 2011-09-01 Toyo Ink Sc Holdings Co Ltd Curable electromagnetic shielding adhesive film and method for producing the same
JP5712095B2 (en) * 2011-09-16 2015-05-07 藤森工業株式会社 Electromagnetic wave shielding material for FPC

Also Published As

Publication number Publication date
JP2018201055A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
JP6467701B2 (en) Electromagnetic wave shielding film, flexible printed wiring board with electromagnetic wave shielding film, and manufacturing method thereof
JP6184025B2 (en) Electromagnetic wave shielding film and method for producing flexible printed wiring board with electromagnetic wave shielding film
JP6435540B2 (en) Electromagnetic wave shielding film, flexible printed wiring board with electromagnetic wave shielding film, and manufacturing method thereof
JP6774921B2 (en) Electromagnetic wave shield film
JP6709669B2 (en) Electromagnetic wave shield film and printed wiring board with electromagnetic wave shield film
US9609793B2 (en) Electromagnetic shielding film, flexible printed wiring board with electromagnetic shielding film, electronic device and method for forming the same
JP5899031B2 (en) Conductive adhesive sheet, method for producing the same, and printed wiring board
JP6694763B2 (en) Electromagnetic wave shield film and printed wiring board with electromagnetic wave shield film
JP6381117B2 (en) Electromagnetic wave shielding film and method for producing flexible printed wiring board with electromagnetic wave shielding film
JP6715150B2 (en) Electromagnetic wave shield film, method for producing electromagnetic wave shield film, and method for producing printed wiring board with electromagnetic wave shield film
JP5798980B2 (en) Conductive adhesive sheet, method for producing the same, and printed wiring board
JP7256618B2 (en) Electromagnetic wave shielding film with transfer film, method for producing electromagnetic wave shielding film with transfer film, and method for producing shield printed wiring board
JP6935187B2 (en) Electromagnetic wave shield film and its manufacturing method, and printed wiring board with electromagnetic wave shield film
JP6706654B2 (en) Electromagnetic wave shield film, flexible printed wiring board with electromagnetic wave shield film, and methods for manufacturing the same
JP6706655B2 (en) Electromagnetic wave shield film, flexible printed wiring board with electromagnetic wave shield film, and methods for manufacturing the same
WO2020090726A1 (en) Electromagnetic shielding film, method for producing shielded printed wiring board, and shielded printed wiring board
JP7424745B2 (en) Electromagnetic shielding film, printed wiring board with electromagnetic shielding film, and manufacturing method thereof
JP2020064927A (en) Electromagnetic wave shield film, manufacturing method of the same, and printed wiring board with electromagnetic wave shield film
JP2020061486A (en) Electromagnetic wave shield film, manufacturing method of the same, and print circuit board with electromagnetic wave shield film
JP2018056424A (en) Method for manufacturing electromagnetic wave shield film and method for manufacturing printed-wiring board with electromagnetic wave shield film
JP2018056423A (en) Method for manufacturing electromagnetic wave shield film and method for manufacturing printed-wiring board with electromagnetic wave shield film
JP7228330B2 (en) Electromagnetic wave shielding film and printed wiring board with electromagnetic wave shielding film
JP2018166181A (en) Electromagnetic wave shield film and printed wiring board with electromagnetic wave shield film
JP2021052083A (en) Electromagnetic wave-shield film and circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200518

R150 Certificate of patent or registration of utility model

Ref document number: 6706654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250