WO2016080517A1 - 非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池 Download PDF

Info

Publication number
WO2016080517A1
WO2016080517A1 PCT/JP2015/082692 JP2015082692W WO2016080517A1 WO 2016080517 A1 WO2016080517 A1 WO 2016080517A1 JP 2015082692 W JP2015082692 W JP 2015082692W WO 2016080517 A1 WO2016080517 A1 WO 2016080517A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
secondary battery
particle powder
Prior art date
Application number
PCT/JP2015/082692
Other languages
English (en)
French (fr)
Inventor
一路 古賀
広明 升國
和順 松本
Original Assignee
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社 filed Critical 戸田工業株式会社
Priority to KR1020177016039A priority Critical patent/KR102447786B1/ko
Priority to CN201580061842.0A priority patent/CN107004849B/zh
Priority to US15/527,417 priority patent/US10547047B2/en
Priority to CA2967917A priority patent/CA2967917A1/en
Priority to EP15861564.1A priority patent/EP3223346B1/en
Publication of WO2016080517A1 publication Critical patent/WO2016080517A1/ja
Priority to US16/712,161 priority patent/US11127940B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/41Particle morphology extending in three dimensions octahedron-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery.
  • lithium ion secondary batteries having features of high charge / discharge voltage and large charge / discharge capacity have attracted attention.
  • LiMn 2 O 4 having a spinel structure
  • LiCoO 2 having a layered rock salt structure
  • LiCo 1-x Ni x O 2 LiNiO 2 and the like
  • LiCoO 2 is excellent in that it has a high voltage and a high capacity.
  • the supply amount of the cobalt raw material is small, the manufacturing cost increases, and the viewpoint of environmental safety of the used battery after use is high. There is also a problem from.
  • lithium manganate having a spinel structure (basic composition: LiMn 2 O 4 ) is capable of suppressing a rise in cost due to a large supply amount, and uses good manganese suitable for the environment. Research is fostering.
  • the Li diffusion path is two-dimensional, whereas in the spinel structure positive electrode active material, the Li diffusion path is three-dimensional. It is expected as a positive electrode active material for secondary batteries for stationary applications.
  • the obtained lithium manganate particle powder has an octahedral structure which is a self-shaped cubic spinel structure, and elution of Mn Is likely to occur.
  • the secondary battery using such a positive electrode active material has a problem that charge / discharge cycle characteristics and storage characteristics at high temperatures are poor.
  • Patent Documents 1 to 5 Various researches and developments have been made on problems in non-aqueous electrolyte secondary batteries using such a spinel-type positive electrode active material made of lithium manganate.
  • Japanese Patent No. 4114314 Japanese Patent No. 3375898 JP 2002-145617 A Japanese Patent No. 5344111 Japanese Patent No. 5435278
  • the present invention has been made to solve such problems, and provides a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery excellent in high temperature characteristics, a method for producing the same, and a non-aqueous electrolyte secondary battery.
  • the purpose is to provide.
  • the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery is a lithium manganate particle powder having a cubic spinel structure that is mainly composed of Li and Mn and is a space group of Fd-3m.
  • the primary particles are aggregated secondary particles, and the average particle diameter (D50) of the secondary particles in the aggregated state is in the range of 4 ⁇ m or more and 20 ⁇ m or less. In 80% or more of the number of exposed primary particles, the primary particles have a polyhedral shape in which the (111) plane is adjacent to at least one (100) plane.
  • the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to the above aspect is excellent in high temperature characteristics. For this reason, it is suitable as a positive electrode active material of a nonaqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics and storage characteristics at high temperatures.
  • FIG. (A) is a SEM image which shows the external appearance of the aggregation secondary particle which concerns on Example 1
  • (b) is a SEM image which shows the external appearance of the aggregation secondary particle which concerns on the comparative example 1.
  • FIG. (A) is the SEM image which expanded a part of external appearance of the aggregation secondary particle which concerns on Example 1
  • (b) is a figure which shows the structure of the primary particle typically
  • FIG. 5 is an SEM image in which a part of the appearance of the aggregated secondary particles according to Example 5 is enlarged, and (d) schematically shows the structure of the primary particles.
  • (A) is the SEM image which expanded a part of external appearance of the aggregation secondary particle which concerns on the comparative example 1
  • (b) is a figure which shows the structure of the primary particle typically.
  • 6 is an SEM image showing the appearance of aggregated secondary particles according to Comparative Example 2.
  • 2 is an X-ray diffraction (XRD) diagram of aggregated secondary particles according to Example 1.
  • FIG. It is a figure which shows typically the manufacturing method of the aggregated secondary particle which concerns on embodiment.
  • 1 is a schematic cross-sectional view showing a configuration of a nonaqueous electrolyte secondary battery 100 according to an embodiment.
  • (A) is a characteristic view which shows the high temperature storage characteristic of the nonaqueous electrolyte secondary battery which concerns on each of Example 1 and the comparative example 1
  • (b) is a characteristic figure which shows a high temperature cycling characteristic.
  • (A) is an SEM image showing an LMO crystal having a (100) plane and a (111) plane
  • (b) is an SEM image after the corrosion (etching) test.
  • Mn elution and high temperature characteristics under high temperature environment Deterioration of charge / discharge cycle characteristics and storage characteristics under high temperature environment is due to (i) the crystal structure in the positive electrode active material that accompanies repeated charge / discharge under high temperature environment. The crystal lattice is destroyed due to the expansion and contraction of the crystal lattice due to the desorption / insertion behavior of lithium ions, and the crystal lattice is destroyed. (Ii) Lithium manganate in the state of charge is partially released. Instability of the crystal in the state of being broken, the crystal lattice is destroyed, (iii) the current collecting property of the electrode is lowered, (iv) Mn is dissolved in the electrolytic solution, etc. Is considered to be the cause. Here, it is considered that Mn elution is caused by the disproportionation reaction as shown below.
  • Mn elution occurs in a crystal structure having sharp edges and vertices like an octahedral shape. I thought it was easy. Therefore, the present inventors reduced the curvature and vertex of the ridges formed by the crystal faces constituting the primary particles in order to suppress elution of Mn. It has been determined that it is important that the face be adjacent to a crystal face other than the (111) face.
  • the degree of elution of Mn varies depending on the crystal plane exposed on the particle surface. That is, it was found that the (100) plane and the (110) plane can suppress Mn elution more than the (111) plane.
  • (111) plane when describing as (111) plane, it means that the plane equivalent to (111) plane is included.
  • (- 111) plane or a (111) plane a total of 8 surface such (111) plane.
  • the (100) plane includes a plane equivalent to the (100) plane.
  • (010) plane or a (001) plane is a total of six surfaces, such as surfaces.
  • the (110) plane also includes a plane equivalent to the (110) plane.
  • (101) plane or a (011) plane, (- 110) is a total of 12 surface such surface.
  • the growth rate of the crystal plane other than the (111) plane, particularly the (100) plane and the (110) plane can be reduced and the growth of the crystal plane can be suppressed, a crystal having these crystal planes can be obtained. Investigated what can be done.
  • the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery is a lithium manganate particle powder having a cubic spinel structure that is mainly composed of Li and Mn and is a space group of Fd-3m.
  • the secondary particles are formed in a state where the primary particles are aggregated, and the average secondary particle diameter (D50) of the secondary particles in the aggregated state is in the range of 4 ⁇ m or more and 20 ⁇ m or less. In 80% or more of the number of primary particles exposed on the surface, the primary particles have a polyhedral shape in which the (111) plane is adjacent to at least one (100) plane.
  • the “polyhedral shape in which the (111) plane is adjacent to at least one (100) plane” represents a polyhedral shape in which ridges are formed with flat crystal faces butting each other.
  • the “ridges” here need only overlap so that the crystal plane can be understood.
  • the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to another aspect is substituted with at least one metal element other than Mn, which can replace the Mn (16d) site in the above configuration, the substituted metal
  • the metal element other than Li among the elements is Me
  • the [Li / (Mn + Me)] ratio is 0.5 or more and 0.65 or less.
  • the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery has a cubic spinel phase mainly composed of Li and Mn and one or more compound phases by XRD diffraction in the above configuration.
  • the nonaqueous electrolyte secondary battery according to one aspect of the present invention includes a positive electrode element using the positive electrode active material particle powder for a nonaqueous electrolyte secondary battery according to any one of the above aspects.
  • the manufacturing method of the positive electrode active material particle powder for nonaqueous electrolyte secondary batteries which concerns on 1 aspect of this invention is the mixture which mixed (i) trimanganese tetraoxide, a lithium compound, and a crystal plane growth inhibitor. And (ii) firing the mixture in the range of 700 ° C. to 950 ° C. in an oxidizing atmosphere.
  • the method for producing a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to another aspect is formed by aggregating primary particles having a crystallite size of 50 nm or more and 150 nm or less as trimanganese tetraoxide in the above method.
  • Aggregated manganese trioxide having an agglomerated shape with an average secondary particle diameter (D50) of 3 ⁇ m or more and 20 ⁇ m or less is used.
  • a niobium compound is used as a crystal plane growth inhibitor in the above configuration.
  • it does not exclude including those other than the niobium compound as the crystal plane growth inhibitor.
  • the manufacturing method of the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to another aspect uses a molybdenum compound as a crystal plane growth inhibitor in the above configuration. Even in this case, it is not excluded to include other than the molybdenum compound as the crystal plane growth inhibitor.
  • the positive electrode active material particle powder according to the present embodiment has lithium manganate (stoichiometric composition: space group Fd-3m) having a cubic spinel structure mainly composed of lithium (Li) and manganese (Mn). LiMn 2 O 4 ).
  • the positive electrode active material particle powder according to the present embodiment is not limited to the one having the above stoichiometric composition, and as long as the crystal structure is maintained, cations are deficient or excessively present, On the other hand, a composition in which oxygen ions are deficient or excessive may be used.
  • a part of Mn is replaced with other metal elements (for example, Li, Fe, Ni, Mg, Zn, Al, Co, Cr, Si, Ti, Sn, V, Sb). It may be partially substituted with one or more cations selected from metal elements that can be substituted at the 16d site.
  • other metal elements for example, Li, Fe, Ni, Mg, Zn, Al, Co, Cr, Si, Ti, Sn, V, Sb.
  • a niobium (Nb) compound or a molybdenum (Mo) compound is used as a crystal plane growth inhibitor, for example, thereby forming a desired shape.
  • the addition amount of the crystal plane growth inhibitor such as Nb or Mo is preferably in the range of 0.001 to 0.012 in terms of the molar ratio of metal to Mn.
  • Li some Mn is substituted with Li (Li x Mn 2-x ) O 4 (x; substitution amount) or substituted with Al and Li Li (Li x Al y Mn 2-xy) O 4 (x, y: substitution amount) and the like can be mentioned.
  • desirable [Li / (Mn + Me)] ratio is 0.50 or more and 0.65 or less, More preferably, it is 0.53 or more and 0.63 or less.
  • the primary particles of the positive electrode active material particle powder according to the present embodiment have shapes as shown in FIGS. 1 (a) and 2 (a). That is, as shown in FIG. 2B, the (111) plane has a polyhedral shape adjacent to at least one (100) plane.
  • Such a crystal structure can be realized by suppressing the growth of crystal planes other than the (111) plane in the course of crystal growth. That is, it can be realized by leaving a surface that normally disappears in the course of crystal growth.
  • FIG. 1 (b), FIG. 3 (a), and FIG. 4 in which the abundance of primary particles in which crystal growth is suppressed is less than 80%, octahedral particles that are self-shaped lithium manganate are In the process of crystal growth, the (111) plane is slower than the growth rate of the other crystal planes, and as a result, the (111) plane is formed (FIG. 3B).
  • primary particles having other shapes such as octahedral shape and granular form, as long as the high-temperature storage characteristics and high-temperature cycle characteristics are excellent as a nonaqueous electrolyte secondary battery. May be included.
  • the (111) plane shown in FIG. It suffices if it has a polyhedral shape adjacent to the surface.
  • the average primary particle diameter in the positive electrode active material particle powder according to the present embodiment is 0.3 ⁇ m or more and 5 ⁇ m or less, preferably 0.4 ⁇ m or more and 4 ⁇ m or less, Desirably, it is 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the average secondary particle diameter (D50) is in the range of 4 ⁇ m to 20 ⁇ m. By controlling the average secondary particle diameter within the above range, the secondary battery is excellent in high temperature characteristics.
  • the average primary particle diameter is observed using a scanning electron microscope SEM-EDX with an energy dispersive X-ray analyzer [manufactured by Hitachi High-Technologies Corporation], and the average value is obtained from the SEM image. I read.
  • the average secondary particle size (D50) a volume-based average particle size measured by a wet laser method using a laser type particle size distribution measuring device Microtrac HRA [manufactured by Nikkiso Co., Ltd.] was adopted.
  • Specific surface area by BET method The specific surface area by the BET method of the positive electrode active material particle powder according to the present embodiment is in the range of 0.1 m 2 / g to 1.2 m 2 / g.
  • the specific surface area by the BET method is smaller than 0.1 m 2 / g, it is considered that the growth of primary particles proceeds excessively, and therefore the stability is lowered.
  • the specific surface area according to the BET method exceeds 1.2 m 2 / g, the primary particles become too small (when the particle size is less than the desired primary particle size), or become agglomerated secondary particles. The shape as the next particle cannot be maintained, or the characteristics as the positive electrode active material become unstable.
  • the specific surface area by the BET method preferably 0.15 m 2 / g or more 0.8 m 2 / g or less of the range, more preferably in the range below 0.2 m 2 / g or more 0.75 m 2 / g .
  • the positive electrode active material particle powder according to the present embodiment has a lattice constant in the range of 0.8185 nm to 0.8225 nm.
  • the positive electrode active material particle powder according to the present embodiment is crystallized in addition to lithium manganate that can be indexed by Fd-3m by X-ray diffraction (XRD).
  • Niobium (Nb) as a growth inhibitor may be present in a phase containing LiNbO 3 combined with Li.
  • the powder X-ray diffraction was measured using SmartLab (manufactured by Rigaku Corporation) (radiation source: CuK ⁇ ), and the measurement conditions were 10 ° to 90 ° in 2 ⁇ / ⁇ of 0.02 ° step ( (1.2 sec. Hold scan) in 0.02 ° increments.
  • Si standard powder was used as an internal standard substance, and calculation was performed using the Rietveld method.
  • step S1 First, a lithium compound, trimanganese tetroxide, and a crystal plane growth inhibitor are mixed with a ball mill (step S1).
  • Li 2 CO 3 is used as an example of the lithium compound in the present embodiment.
  • manganese trioxide as a manganese compound, aggregated manganese trioxide (Mn 3 O 4 ) formed by agglomerating fine primary particles is used.
  • the primary particle diameter depending on the crystallite size is 50 nm or more and 150 nm or less, desirably 60 nm or more and 140 nm or less, and the average secondary particle diameter is desirably 3 ⁇ m or more and 20 ⁇ m or less.
  • the crystallite size of trimanganese tetraoxide was calculated from the powder X-ray diffraction result using the Rietveld method.
  • X-ray diffraction measurement was performed using SmartLab (manufactured by Rigaku Corporation) (radiation source: CuK ⁇ ), and the measurement conditions were 10 ° to 90 ° at 2 ⁇ / ⁇ of 0.02 ° step (1.2 sec. .. hold scan) in increments of 0.02 °.
  • Nb 2 O 5 that is a niobium compound or MoO 3 that is a molybdenum compound is used as an example of the crystal plane growth inhibitor.
  • elements and compounds other than niobium compounds and molybdenum compounds can be used as long as they function as crystal plane growth inhibitors.
  • the addition amount of the niobium compound or the molybdenum compound as the crystal plane growth inhibitor is set to 0.1 mol% or more and 1.2 mol% or less in terms of a metal element with respect to Mn.
  • the amount of niobium compound or molybdenum compound added is less than the above range, the function as a crystal plane growth inhibitor cannot be sufficiently obtained.
  • the element compound particles impede its function and become a resistance component.
  • step S2 the mixture formed by mixing is fired in an oxidizing atmosphere.
  • About baking temperature it is the range of 700 to 950 degreeC, More desirably, it is 730 to 900 degreeC.
  • step S3 the positive electrode active material particle powder obtained by firing is crushed (step S3) and passed through a mesh sieve having a mesh opening of 45 ⁇ m (step S4), and the positive electrode active material particle powder according to the present embodiment 10 is obtained.
  • a substituted metal element compound can be mixed together with a lithium compound, trimanganese tetroxide, and a crystal plane growth inhibitor.
  • the substituted metal element in this case, at least one or more metal elements other than Mn that can replace the Mn (16d) site can be employed.
  • the charge / discharge capacity of the battery can be controlled, and the charge / discharge cycle and high-temperature characteristics can be further improved.
  • substitutional metal elements such as Li, Fe, Ni, Mg, Zn, Al, Co, Cr, Si, Ti, Sn, V, and Sb.
  • the substituted metal element is uniformly present in the positive electrode active material particles (is uniformly dissolved).
  • the metal element is unevenly distributed inside the particle, it is considered that the stability of the nonaqueous electrolyte secondary battery is reduced.
  • Nonaqueous Electrolyte Secondary Battery A configuration of the lithium ion secondary battery 100 according to the present embodiment, which is manufactured using the positive electrode active material particle powder as described above, will be described with reference to FIG.
  • a lithium ion secondary battery 100 includes a tablet-like positive electrode element 1 and a negative electrode element 2 that are arranged with a separator 3 interposed therebetween, and are formed in an outer package constituted by a positive electrode case 4 and a negative electrode case 5. It is stored.
  • the positive electrode case 4 is electrically connected to the positive electrode element 1
  • the negative electrode case 5 is electrically connected to the negative electrode element 2.
  • the positive electrode case 4 and the negative electrode case 5 are crimped at the outer edge portions 4e and 5e in a state where the gasket 6 is tightly sandwiched between them.
  • Positive electrode element 1 The positive electrode element 1 is formed using the positive electrode active material particle powder 10. Although a known method can be adopted as a specific forming method, it is omitted, but it can be formed by adding and mixing a conductive agent and a binder to the positive electrode active material particle powder 10.
  • acetylene black, carbon black, graphite or the like can be employed.
  • binder polytetrafluoroethylene, polyvinylidene fluoride, or the like can be used.
  • Negative electrode element 2 The negative electrode element 2 is formed using a negative electrode active material such as lithium metal, lithium / aluminum alloy, lithium / tin alloy, or graphite. In the lithium ion secondary battery 100 according to the present embodiment, a 300 ⁇ m thick Li foil is used as an example.
  • Electrolytic solution As a solvent in the electrolytic solution, an organic solvent containing at least one of a combination of ethylene carbonate and diethyl carbonate, carbonates such as propylene carbonate and dimethyl carbonate, and ethers such as dimethoxyethane is used. Can be adopted.
  • lithium hexafluorophosphate or at least one of lithium salts such as lithium perchlorate and lithium tetrafluoroborate can be adopted, and this electrolyte can be used as a solvent. It is used after dissolving.
  • the lithium ion secondary battery 100 which concerns on this Embodiment is made into the coin cell of 2032 size as an example.
  • the initial discharge capacity of the lithium ion secondary battery 100 is 80 mAh / g or more and 120 mAh / g or less. When the initial discharge capacity is less than 80 mAh / g, the battery capacity is too low to be practical. Moreover, when larger than 120 mAh / g, sufficient stability cannot be ensured in a high temperature characteristic.
  • the initial discharge capacity of the lithium ion secondary battery 100 is desirably 85 mAh / g or more and 115 mAh / g or less.
  • the high-temperature cycle capacity maintenance rate is 96.5% or more.
  • the high temperature cycle capacity retention rate is more preferably 97% or more.
  • the capacity recovery rate is 96% or more.
  • the capacity recovery rate is more preferably 96.5% or more.
  • the high temperature characteristics can be improved.
  • a manganese compound, a lithium compound, and a crystal plane growth inhibitor are homogeneously mixed, and a temperature of 700 ° C. or higher and 950 ° C. or lower in an oxidizing atmosphere (for example, in air).
  • an oxidizing atmosphere for example, in air.
  • Example 1 The positive electrode active material particle powder according to Example 1 was manufactured as follows.
  • trimanganese tetraoxide (Mn 3 O 4 ) having a crystallite size of 92 nm and an average secondary particle diameter of 10.5 ⁇ m, and lithium carbonate (Li 2 CO 3 ) were mixed with Li / Mn.
  • Nb 2 O 5 in an amount of 0.60 mol% with respect to the number of moles of Mn of trimanganese tetraoxide was weighed and mixed for Nb as a crystal plane growth inhibitor at a ratio of 0.58. Were calcined at 820 ° C. for 3 hours to produce lithium manganate particles.
  • the obtained positive electrode active material particle powder has a phase in which Nb as a crystal plane growth inhibitor is LiNbO 3 in addition to lithium manganate that can be indexed by Fd-3m by X-ray diffraction. None existed. That is, the composition of the positive electrode active material particle powder according to Example 1 is Li 1.10 Mn 1.90 O 4 + LiNbO 3 .
  • the positive electrode active material particle powder according to this example has the (111) plane adjacent to the (100) plane as shown in FIGS. 1 (a) and 2 (a). It was confirmed that the particles were aggregated particles composed of primary particles having a polyhedral shape.
  • the obtained positive electrode active material particle powder had an average primary particle size of about 0.8 ⁇ m and an average secondary particle size (D50) of 14.3 ⁇ m.
  • a lithium ion secondary battery was produced as follows.
  • metallic lithium having a thickness of 300 ⁇ m punched to 16 mm ⁇ was used.
  • electrolytic solution a solution in which EC and DMC in which 1 mol / L LiPF 6 was dissolved was mixed at a volume ratio of 1: 2 was used.
  • the lithium ion secondary battery according to this example is a 2032 type coin cell.
  • Example 2 As shown in Table 1, in the positive electrode active material particle powder according to the example, the amount of Nb added was changed with respect to Example 1. Others are the same.
  • Example 3 The positive electrode active material particle powder according to Example 3 was manufactured as follows.
  • the composition of the positive electrode active material particle powder according to Example 3 is Li 1.08 Mn 1.85 Al 0.07 O 4 + LiNbO 3 .
  • Example 4 The positive electrode active material particle powder according to Example 4 was manufactured as follows.
  • the mixture was mixed and fired in an air atmosphere at 810 ° C. for 3 hours to produce lithium manganate particles.
  • the composition of the positive electrode active material particle powder according to Example 4 is Li 1.06 Mn 1.89 Mg 0.05 O 4 + LiNbO 3 .
  • Example 5 The positive electrode active material particle powder according to Example 5 was manufactured as follows.
  • trimanganese tetraoxide (Mn 3 O 4 ) having a crystallite size of 92 nm and an average secondary particle diameter of 10.5 ⁇ m, lithium carbonate (Li 2 CO 3 ), and crystal plane growth suppression About Mo as an agent
  • Lithium manganate particles were produced by firing at 820 ° C. for 3 hours in an air atmosphere.
  • the positive electrode active material particle powder according to Example 5 has a composition of Li 1.11 Mn 1.89 Mo 0.01 O 4 .
  • the positive electrode active material particle powder according to this example has primary particles other than the (111) plane as well as the (100) plane, as shown in FIGS. 2 (c) and 2 (d). It was confirmed to be aggregated particles having a polyhedral shape having (110) faces.
  • Comparative Example 1 As shown in Table 1, in the production of the positive electrode active material particle powder according to Comparative Example 1, Nb which is a crystal plane growth inhibitor was not added.
  • the composition of the positive electrode active material particle powder according to Comparative Example 1 is Li 1.10 Mn 1.90 O 4 .
  • Comparative Example 2 As shown in Table 1, in the production of the positive electrode active material particle powder according to Comparative Example 2, the amount of Nb added was 0.06 mol% with respect to the number of moles of Mn of manganese trioxide relative to Example 1 described above. It was. Other manufacturing conditions are the same as in the first embodiment.
  • the composition of the positive electrode active material particle powder according to Comparative Example 2 is Li 1.10 Mn 1.90 O 4 + LiNbO 3 .
  • the primary particles exposed on the surface of the secondary particles have (111) faces of at least one (100).
  • the number ratio of primary particles forming a polyhedral shape adjacent to the surface was 55%.
  • Capacity recovery rate Regarding the capacity recovery rate showing high temperature characteristics, the battery was charged to 4.3 V at a current density of 0.1 C (CC-CV; constant current and constant voltage), and then discharged to 3.0 V (CC; constant current). The discharge capacity at this time is “a”.
  • the battery was charged again to 4.3 V at a current density of 0.1 C (CC-CV)
  • the lithium ion secondary battery was removed from the charging / discharging device, and left in a constant temperature bath at 60 ° C. for 6 weeks.
  • the lithium ion secondary battery is taken out and attached to a charging / discharging device, discharged to 3.0 V at 0.1 C (CC), charged to 4.3 V at 0.1 C (CC-CV), and then The battery was discharged to 3.0V (CC).
  • the discharge capacity at this time is “b”.
  • charging / discharging is repeated 40 cycles from 3.0V to 4.3V (however, charging is CC-CV at 0.5C and discharging is CC at 1.0C), and the discharge capacity at the 41st cycle is "d" And
  • Rate characteristics Regarding the rate characteristics, when charging is performed at 0.1 C (CC-CV) at 3.0 V to 4.3 V in an environment of 25 ° C. (CC-CV), and each discharge is discharged at 0.1 C and 10 C (CC), A discharge capacity of 0.1 C is “e”, and a discharge capacity of 10 C is “f”.
  • Comparative Example 1 was 94.9% and Comparative Example 2 was 95.5%, while Example 1 was 97.9%.
  • Example 2 was 97.6%
  • Example 3 was 98.8%
  • Example 4 was 98.1%
  • Example 5 was 97.1%.
  • FIG. 8A shows the capacity recovery rates of Example 1 and Comparative Example 1.
  • the area of the (111) plane which is considered to have a large amount of Mn elution, is reduced depending on whether or not Nb, which is a crystal plane growth inhibitor, is added.
  • Nb which is a crystal plane growth inhibitor
  • Example 1 the high temperature cycle capacity retention rate was 94.6% in Comparative Example 1 and 97.8% in Comparative Example 2, compared with 94.6% in Comparative Example 2 and 95.5%.
  • Example 5 was 97.5%, and Examples 1, 3, and 4 were 98% or more.
  • FIG. 8B it can be seen that in Example 1, the high-temperature cycle capacity retention rate is superior to Comparative Example 1 by about 2%.
  • Li and Mn are the main components, the cubic spinel structure that is the Fd-3m space group is included, and the primary particles are aggregated
  • the average particle diameter (D50) of the secondary particles in the aggregated state is in the range of 4 ⁇ m or more and 20 ⁇ m or less, and the number of primary particles exposed on the surface of the secondary particles is 80. % Or more, the primary particles have a polyhedral shape in which the (111) plane is adjacent to at least one (100) plane, whereby the effect of excellent high temperature characteristics can be obtained.
  • this particle is etched in particles having a (100) plane and a (111) plane, and as shown in FIG. 9B, (111) The surface is greatly corroded. On the other hand, the corrosion of the (100) plane is not so great as compared to the (111) plane.
  • the positive electrode active material particle powder shown in FIG. 9B is obtained through etching under the following conditions. 2 g of the positive electrode active material particle powder was mixed with 3 ml of a solution in which EC and DEC mixed with 1 mol / L LiPF 6 as a solute in a sealed container was mixed at a volume conversion of 3: 7, and sealed at 80 ° C. Leave in the environment for a week. Thereafter, the mixed solution was filtered, and the powder was washed with DMC, and then dried and etched to obtain positive electrode active material particle powder.
  • the (100) plane has a surface energy ⁇ of 0.96 J / m 2
  • the (111) plane has 1.29 J / m 2
  • the (111) plane has High surface energy.
  • the Mn elution Gibbs energy of the (100) plane is 27.6 kcal / mol
  • the Mn elution Gibbs energy of the (111) plane is ⁇ 16.1 kcal / mol
  • the (111) plane is more It has been suggested that elution of Mn tends to proceed.
  • the degree of corrosion progression in the SEM image shown in FIG. 9B is a relationship of (111) plane> (100) plane, which is consistent with the prediction of Thuckeray et al. From these results, considering that the dissolution of Mn at high temperature is low and that the storage characteristics at high temperature are good, the above results agree with the results of the battery characteristics in the present embodiment. I understood.
  • Example 3 Li and Al were adopted as the metal substitution elements, and in Example 4 Li and Mg were adopted as the metal substitution elements, but the metal substitution elements are not limited thereto.
  • a part of Mn is partly one or more cations selected from metal elements that can be substituted with 16d sites such as Fe, Ni, Zn, Co, Cr, Si, Ti, Sn, V, and Sb. It may be replaced.
  • Nb and Mo are used as examples of the crystal plane growth inhibitor used when producing the positive electrode active material particle powder, but the present invention is not limited to this. As described above, any material that can suppress the growth of crystal planes other than the (111) plane can be employed.
  • a coin-type lithium ion secondary battery is adopted as an example of the nonaqueous electrolyte secondary battery, but the present invention is not limited to this.
  • the present invention can also be applied to a cylindrical nonaqueous electrolyte secondary battery, a rectangular nonaqueous electrolyte secondary battery, and the like.
  • the anode element, the separator, and the electrolytic solution can be appropriately changed.
  • the present invention is useful for realizing a nonaqueous electrolyte secondary battery excellent in high temperature characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 LiおよびMnを主成分とし、Fd-3mの空間群である立方晶スピネル構造であるマンガン酸リチウム粒子粉末であって、一次粒子が凝集した状態で構成された凝集二次粒子からなり、当該凝集状態の二次粒子の平均粒子径(D50)が4μm以上20μm以下の範囲であり、前記二次粒子の表面に露出する一次粒子の個数の80%以上において、一次粒子が(111)面が少なくとも1つ以上の(100)面と隣り合う多面体形状をなしている。

Description

非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池
 本発明は、非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池に関する。
 近年のモバイル機器の普及に伴い、二次電池が広く使用されている。中でも、充放電電圧が高く、充放電容量が大きいという特徴を有するリチウムイオン二次電池が注目されている。
 従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池における正極活物質としては、スピネル型構造のLiMn24、層状岩塩型構造のLiCoO2、LiCo1-xNix2、LiNiO2などが一般的に知られている。この中でも、LiCoO2は、高電圧と高容量を有する点で優れているが、コバルト原料の供給量が少ないため、製造コストの高騰を招き、また、使用後の廃棄電池の環境安全性という観点からの問題もある。
 一方、スピネル型構造のマンガン酸リチウム(基本組成:LiMn24)は、供給量が多いためにコストの高騰を抑えることが可能であり、環境適正の良好なマンガンを用いるものであるため、研究が盛んである。また、層状岩塩型構造の正極活物質では、Liの拡散経路が二次元的であるのに対して、スピネル構造の正極活物質では、Liの拡散経路が三次元的であり、特に車両用途や据え置き型用途の二次電池用正極活物質として期待されている。
 ここで、高い電池性能を得るために、結晶性を高度に発達させると、得られるマンガン酸リチウム粒子粉末は、立方晶スピネル型構造の自形である八面体構造を有するものとなり、Mnの溶出が発生しやすくなってしまう。また、このような正極活物質を用いた二次電池では、高温での充放電サイクル特性や保存特性が劣るという問題を生じる。
 このようなマンガン酸リチウムからなるスピネル型構造の正極活物質を用いた非水電解質二次電池における問題に対して、種々の研究・開発がなされている(特許文献1~5)。
特許第4114314号公報 特許第3375898号公報 特開2002-145617号公報 特許第5344111号公報 特許第5435278号公報
 しかしながら、特許文献1~5で提案されている技術を含む従来技術では、高温特性に優れる非水電解質二次電池を構成するためには必要十分であるとは言えない。
 本発明は、このような問題の解決を図ろうとなされたものであって、高温特性に優れた非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池を提供することを目的とする。
 本発明の一態様に係る非水電解質二次電池用正極活物質粒子粉末は、LiおよびMnを主成分とし、Fd-3mの空間群である立方晶スピネル構造であるマンガン酸リチウム粒子粉末であって、一次粒子が凝集した状態で構成された凝集二次粒子からなり、当該凝集状態の二次粒子の平均粒子径(D50)が4μm以上20μm以下の範囲であり、前記二次粒子の表面に露出する一次粒子の個数の80%以上において、一次粒子が(111)面が少なくとも1つ以上の(100)面と隣り合う多面体形状をなしていることを特徴とする。
 上記態様に係る非水電解質二次電池用正極活物質粒子粉末は、高温特性に優れる。このため、高温での充放電サイクル特性や保存特性に優れる非水電解質二次電池の正極活物質として好適である。
(a)は、実施例1に係る凝集二次粒子の外観を示すSEM画像であり、(b)は、比較例1に係る凝集二次粒子の外観を示すSEM画像である。 (a)は、実施例1に係る凝集二次粒子の外観の一部を拡大したSEM画像であり、(b)は、その一次粒子の構造を模式的に示す図であり、(c)は、実施例5に係る凝集二次粒子の外観の一部を拡大したSEM画像であり、(d)は、その一次粒子の構造を模式的に示す図である。 (a)は、比較例1に係る凝集二次粒子の外観の一部を拡大したSEM画像であり、(b)は、その一次粒子の構造を模式的に示す図である。 比較例2に係る凝集二次粒子の外観を示すSEM画像である。 実施例1に係る凝集二次粒子におけるX線回折(XRD)図である。 実施の形態に係る凝集二次粒子の製造方法を模式的に示す図である。 実施の形態に係る非水電解質二次電池100の構成を示す模式断面図である。 (a)は、実施例1および比較例1のそれぞれに係る非水電解質二次電池の高温保存特性を示す特性図であり、(b)は、高温サイクル特性を示す特性図である。 (a)は、(100)面と(111)面とを有するLMO結晶を示すSEM画像であり、(b)は、その腐食(エッチング)試験後のSEM画像である。
 [本発明に至る経緯]
 本発明者等は、本発明に至る過程で、次のような検討を行った。
 (1)高温環境下におけるMn溶出と高温特性
 高温環境下での充放電サイクル特性や保存特性の劣化は、(i)高温環境下での充放電の繰り返しに伴う正極活物質における結晶構造中のリチウムイオンの脱離・挿入挙動による結晶格子の伸縮により、結晶の体積変化が発生することで結晶格子が破壊されること、(ii)マンガン酸リチウムの、ある充電状態におけるリチウムが中途半端に離脱している状態での結晶の不安定さにより、結晶格子が破壊されること、(iii)電極の集電性の低下を生じること、(iv)電解液中へのMn溶解が生じること、などが原因と考えられる。ここで、Mn溶出は、次に示すような不均化反応により生じるものと考えられる。
 2Mn3+(スピネル中)→Mn4+(スピネル中)+Mn2+(電解液中)
 (2)結晶面とMn溶出の抑制
 本発明者等は、Mn溶出が粒子における曲率の大きな箇所からより多く生じるので、八面体形状のように鋭い稜や頂点を持つ結晶構造でMn溶出が生じやすいと考えた。そこで、本発明者等は、Mn溶出の抑制のためには、一次粒子を構成している結晶面同士が形成している稜の曲率や頂点を減少させるため、(111)面と隣り合う結晶面を(111)面以外の結晶面と隣り合うようにすることが重要であることを究明した。
 さらに、粒子表面に露出する結晶面の違いによってもMn溶出の程度が異なることを見出した。即ち、(100)面や(110)面の方が(111)面よりMn溶出を抑制できることが分かった。
 なお、本明細書および特許請求の範囲において、(111)面と記載する場合には、(111)面と等価な面を含むことを意味するものである。例えば、(-111)面や(1-11)面、(11-1)面といった計8面である。
 (100)面についても、同様に(100)面と等価な面を含むことを意味するものである。例えば、(010)面や(001)面、(-100)面といった計6面である。また、(110)面についても、同様に(110)面と等価な面を含むことを意味するものである。例えば、(101)面や(011)面、(-110)面といった計12面である。
 上記の結晶面の表記において、『-1』と記載している個所については、本来的には、『-』がその直後に記載の『1』の上にバーとして表記するものであるが、本明細書では上記のように便宜的に表記している。
 以下において、特段の断わりがない限り、(100)面や(110)面、(111)面などの表記をする場合には、上記のような等価な面を含むことを意味するものである。
 (3)(111)面を減らす方策
 立方晶マンガンスピネルの結晶が(111)面およびそれと等価な面で構成させる自形の八面体形状となり易いのは、(111)面の結晶面成長速度が、それ以外の結晶面(例えば、(100)面、(110)面、(221)面)の結晶面成長速度よりも小さいことが原因で、八面体形状の結晶ができ易いものと考えられる。逆に言うと、(100)面や(110)面の結晶面成長速度が(111)面の結晶面成長速度より大きいため、結晶成長の過程で(111)面以外の結晶面の成長が促進されて、結果として、これらの結晶面が消失することを意味する。
 従って、(111)面以外の、特に(100)面や(110)面の結晶面成長速度を低下させ、結晶面の成長を抑制することができれば、これらの結晶面を有する結晶を得ることができることを究明した。
 [本発明の態様]
 本発明の一態様に係る非水電解質二次電池用正極活物質粒子粉末は、LiおよびMnを主成分とし、Fd-3mの空間群である立方晶スピネル構造であるマンガン酸リチウム粒子粉末であって、一次粒子が凝集した状態で構成された凝集二次粒子からなり、当該凝集状態の二次粒子の平均二次粒子径(D50)が4μm以上20μm以下の範囲であり、前記二次粒子の表面に露出する一次粒子の個数の80%以上において、一次粒子が(111)面が少なくとも1つ以上の(100)面と隣り合う多面体形状をなしていることを特徴とする。
 なお、上記態様において、「(111)面が少なくとも1つ以上の(100)面と隣り合う多面体形状」については、平坦な結晶面が互いに突合せ状態で稜が形成されてなる多面体形状を表す。そして、ここでの「稜」とは、結晶面が分かるような重なり合いをしていればよい。
 別態様に係る非水電解質二次電池用正極活物質粒子粉末は、上記構成において、Mn(16d)サイトを置換し得る、Mn以外の少なくとも一種以上の金属元素で置換した場合に、その置換金属元素の内のLi以外の金属元素をMeとするとき、[Li/(Mn+Me)]比が0.5以上0.65以下である。
 また、別態様に係る非水電解質二次電池用正極活物質粒子粉末は、上記構成において、XRD回折で、LiおよびMnを主成分とする立方晶スピネル相と、1つ以上の化合物相とが存在する。
 また、本発明の一態様に係る非水電解質二次電池は、上記の何れかの態様に係る非水電解質二次電池用正極活物質粒子粉末を用いた正極要素を備えることを特徴とする。
 また、本発明の一態様に係る非水電解質二次電池用正極活物質粒子粉末の製造方法は、(i)四三酸化マンガンと、リチウム化合物と、結晶面成長抑制剤とを混合して混合物を形成し、(ii)混合物を、酸化性雰囲気下で700℃以上950℃以下の範囲で焼成する、ことを特徴とする。
 別態様に係る非水電解質二次電池用正極活物質粒子粉末の製造方法は、上記方法において、四三酸化マンガンとして、結晶子サイズが50nm以上150nm以下である一次粒子が凝集して構成された平均二次粒子径(D50)が3μm以上20μm以下である凝集形状を有する凝集四三酸化マンガンを用いる。
 また、別態様に係る非水電解質二次電池用正極活物質粒子粉末の製造方法は、上記構成において、結晶面成長抑制剤として、ニオブ化合物を用いる。なお、結晶面成長抑制剤として、ニオブ化合物以外のものを含むことを排除するものではない。
 また、別態様に係る非水電解質二次電池用正極活物質粒子粉末の製造方法は、上記構成において、結晶面成長抑制剤として、モリブデン化合物を用いる。この場合においても、結晶面成長抑制剤として、モリブデン化合物以外のものを含むことを排除するものではない。
 以下では、本発明を実施するための一例について、図面を参酌しながら説明する。
 なお、以下に示す形態は、本発明の構成および当該構成から奏される作用・効果を分かり易く説明するために用いる一例であって、本発明は、その本質的部分を除き、何ら以下の形態に限定を受けるものではない。
 [実施の形態]
 1.正極活物質粒子粉末の構成概略
 本実施の形態に係る正極活物質粒子粉末の概略構成について、以下説明する。
 本実施の形態に係る正極活物質粒子粉末は、リチウム(Li)とマンガン(Mn)とを主成分とした、空間群Fd-3mの立方晶スピネル構造を有するマンガン酸リチウム(化学量論組成:LiMn24)である。ただし、本実施の形態に係る正極活物質粒子粉末では、上記化学量論組成を有するものに限定されるものではなく、結晶構造が維持される限度において、陽イオンが欠損あるいは過剰に存在し、一方、酸素イオンが欠損あるいは過剰に存在した組成とすることもできる。
 本実施の形態に係る正極活物質粒子粉末では、Mnの一部を他の金属元素(例えば、Li、Fe、Ni、Mg、Zn、Al、Co、Cr、Si、Ti、Sn、V、Sbなどの16dサイトに置換し得る金属元素の中から選ばれる1種以上)の陽イオンで一部置換したものとしてもよい。
 2.結晶面成長抑制
 本実施の形態に係る正極活物質粒子粉末では、結晶面成長抑制剤として、例えばニオブ(Nb)化合物やモリブデン(Mo)化合物を用い形成することにより、所望の形状となっている。NbやMoといった結晶面成長抑制剤の添加量については、Mnに対して該メタル換算のモル比において、0.001~0.012の範囲とすることが望ましい。
 3.[Li/(Mn+Me)]比
 本実施の形態に係る正極活物質粒子粉末では、[Li/(Mn+Me)]比を0.5以上のものとすることがより望ましい。これは、化学量論組成がLiMn24のものに比べて、内部抵抗の低減を図ることができ、また結晶構造が強固となり、高温特性に優れた非水電解質二次電池の正極活物質としてより優れた効果を奏する。
 例えば、Mnの一部がLiで置換されているLi(LixMn2-x)O4(x;置換量)や、AlとLiで置換されたLi(LixAlyMn2-x-y)O4(x、y;置換量)などを挙げることができる。なお、望ましい[Li/(Mn+Me)]比は、0.50以上0.65以下であり、より好ましくは0.53以上0.63以下である。
 4.結晶面
 本実施の形態に係る正極活物質粒子粉末の一次粒子は、図1(a)および図2(a)に示すような形状を有する。即ち、図2(b)に示すように、(111)面が少なくとも1つ以上の(100)面と隣り合う多面体形状である。
 なお、このような結晶構造については、結晶成長の過程で、(111)面以外の結晶面の成長を抑制することにより実現することができる。即ち、通常では結晶成長の過程で消失してしまう面を残留させることで実現できる。
 一方、図1(b)、図3(a)、および結晶成長が抑制された一次粒子存在量が80%未満である図4に示すように、マンガン酸リチウムの自形である八面体粒子は、結晶成長の過程で(111)面が他の結晶面の成長速度よりも遅いため、結果的に(111)面で構成されている(図3(b))。
 なお、本実施の形態に係る正極活物質粒子粉末では、非水電解質二次電池として高温の保存特性、高温サイクル特性が優れる範囲であれば、八面体形状、粒状など他の形状を有する一次粒子を含むものであってもよい。図1(a)に示すような凝集二次粒子の表面に見える一次粒子個数の80%以上において、上述のように、図2(b)に示す(111)面が少なくとも1つ以上の(100)面と隣り合う多面体形状を有していればよい。
 5.一次粒子径および凝集粒子である二次粒子径
 先ず、本実施の形態に係る正極活物質粒子粉末における平均一次粒子径は、0.3μm以上5μm以下、望ましくは、0.4μm以上4μm以下、さらに望ましくは、0.5μm以上3μm以下である。
 次に、平均二次粒子径(D50)については、4μm以上20μm以下の範囲である。平均二次粒子径を上記範囲に制御することによって、二次電池としたときに高温特性に優れるものとなる。
 なお、本実施の形態においては、平均一次粒子径を、エネルギー分散型X線分析装置付き走査電子顕微鏡SEM-EDX[(株)日立ハイテクノロジーズ製]を用いて観察し、そのSEM画像から平均値を読み取った。
 また、平均二次粒子径(D50)については、レーザー式粒度分布測定装置マイクロトラックHRA[日機装(株)製]を用いて湿式レーザー法で測定した体積基準の平均粒子径を採用した。
 6.BET法による比表面積
 本実施の形態に係る正極活物質粒子粉末のBET法による比表面積は、0.1m2/g以上1.2m2/g以下の範囲である。BET法による比表面積が0.1m2/gよりも小さい場合には、一次粒子の成長が過度に進み、そのため安定性の低下を招くものと考えられる。一方、BET法による比表面積が1.2m2/gを超えると、一次粒子が小さくなり過ぎた(望ましくない一次粒子径以下となった場合)凝集二次粒子体になってしまったり、凝集二次粒子としての形骸を維持できなくなったり、正極活物質としての特性が不安定になってしまう。
 なお、BET法による比表面積については、望ましくは0.15m2/g以上0.8m2/g以下の範囲、より望ましくは0.2m2/g以上0.75m2/g以下の範囲である。
 7.その他の特性
 本実施の形態に係る正極活物質粒子粉末の格子定数は、0.8185nm以上0.8225nm以下の範囲である。
 また、例えば図5に示すように、本実施の形態に係る正極活物質粒子粉末をX線回折(XRD;X-ray Diffraction)では、Fd-3mで指数付けができるマンガン酸リチウム以外に、結晶成長抑制剤としてのニオブ(Nb)がLiと化合したLiNbO3を含む相をなして存在してもよい。
 なお、粉末X線回折に際しては、SmartLab[(株)リガク製]を用いて測定し(線源:CuKα)、測定条件としては、2θ/θで10°~90°を0.02°ステップ(1.2sec.ホールドスキャン)で0.02°刻みで行った。また、格子定数の情報を得る場合には、内標準物質としてSiの標準粉末を使用し、リートベルト法を用いて算出した。
 8.正極活物質粒子粉末の製造方法
 本実施の形態に係る正極活物質粒子粉末の製造方法について、図6を用い説明する。
 (i) 先ず、リチウム化合物と、四三酸化マンガンと、結晶面成長抑制剤とをボールミルで混合する(ステップS1)。
 図6に示すように、本実施の形態においては、リチウム化合物の一例としてLi2CO3を用いている。
 また、マンガン化合物としての四三酸化マンガンについては、微小一次粒子が凝集して形成された凝集四三酸化マンガン(Mn34)を用いている。四三酸化マンガン(Mn34)については、結晶子サイズによる一次粒子径が50nm以上150nm以下、望ましくは60nm以上140nm以下であり、平均二次粒子径が3μm以上20μm以下であることが望ましい。これは、一次粒子径が大きすぎたり小さすぎたりした場合には、リチウム酸化物とした際の高温特性の悪化を招くことが考えられ、また、平均二次粒子径が小さすぎると、リチウム酸化物とした際の高温特性の悪化を招くと考えられるためである。また、平均二次粒子径が大きすぎると、合成時にLiとの反応が悪化し、結果としてマンガン酸リチウムの結晶として不安定になってしまうと考えられる。
 なお、四三酸化マンガンの結晶子サイズは、粉末X線回折結果からリートベルト法を用い算出を行った。X線回折に際しては、SmartLab[(株)リガク製]を用いて測定し(線源:CuKα)、測定条件としては、2θ/θで10°~90°を0.02°ステップ(1.2sec.ホールドスキャン)で0.02°刻みで行った。
 本実施の形態では、結晶面成長抑制剤の一例として、ニオブ化合物であるNb25やモリブデン化合物であるMoO3を用いている。ただし、ニオブ化合物やモリブデン化合物以外にも結晶面成長抑制剤として機能するものであれば、その元素および化合物を採用することもできる。
 ここで、結晶面成長抑制剤としてのニオブ化合物やモリブデン化合物の添加量については、Mnに対して金属元素換算で0.1mol%以上1.2mol%以下としている。ニオブ化合物やモリブデン化合物等の添加量が上記範囲よりも少ない場合には、結晶面成長抑制剤としての機能が十分には得られず、逆に、上記範囲よりも多い場合には、過剰の金属元素化合物の粒子が、該正極活物質を用いた電池において、その機能を阻害してしまい抵抗成分となってしまうと考えられる。本実施の形態における結晶面成長抑制剤の添加量については、Mnに対して金属元素換算で0.2mol%以上0.9mol%以下とすることが望ましい。
 (ii)次に、混合して形成した混合物を、酸化性雰囲気中で焼成する(ステップS2)。焼成温度については、700℃以上950℃以下の範囲であり、より望ましくは730℃以上900℃以下である。
 (iii)次に、焼成によって得られた正極活物質粒子粉末を解砕し(ステップS3)、目開きが45μmのメッシュの篩にかけて(ステップS4)、本実施の形態に係る正極活物質粒子粉末10が得られる。
 なお、正極活物質粒子粉末の製造にあたっては、リチウム化合物と、四三酸化マンガンと、結晶面成長抑制剤とともに、置換金属元素化合物を混合することもできる。この場合における置換金属元素としては、Mn(16d)サイトを置換し得るMn以外の少なくとも1種以上の金属元素を採用することができる。このような置換金属元素の採用により、電池における充放電容量を制御でき、充放電サイクルや高温特性をさらに優れたものとしたりすることができる。具体例としては、Li、Fe、Ni、Mg、Zn、Al、Co、Cr、Si、Ti、Sn、V、Sbなどの置換金属元素をあげることができる。
 また、置換金属元素については、正極活物質粒子の内部に均一に存在している(均一に固溶している)ことが望ましい。粒子内部で金属元素が偏在している場合には、非水電解質二次電池において、安定性の低下をもたらすことが考えられる。
 9.非水電解質二次電池
 上記のような正極活物質粒子粉末を用いて作製した、本実施の形態に係るリチウムイオン二次電池100の構成について、図7を用い説明する。
 本実施の形態に係るリチウムイオン二次電池100は、ともにタブレット状をした正極要素1と負極要素2とが、セパレータ3を挟み配置され、正極ケース4および負極ケース5により構成される外装体内に収納されてなる。正極ケース4は、正極要素1に対して電気的に接続され、負極ケース5は、負極要素2に対して電気的に接続された状態にある。そして、正極ケース4と負極ケース5とは、互いに間にガスケット6を密に挟み込んだ状態で、外縁部4e,5eでカシメ加工されている。
 (i)正極要素1
 正極要素1は、上記正極活物質粒子粉末10を用い形成されている。具体的な形成方法については公知の方法を採用することができるため省略するが、正極活物質粒子粉末10に対し、導電剤と結着剤とを添加混合して形成することができる。
 導電剤としては、例えば、アセチレンブラック、カーボンブラック、黒鉛などを採用することができる。また、結着剤としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどを採用することができる。
 (ii)負極要素2
 負極要素2は、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトなどの負極活物質を用い形成されている。本実施の形態に係るリチウムイオン二次電池100では、一例として、厚さ300μmのLi箔を用いている。
 (iii)電解液
 電解液における溶媒として、炭酸エチレンと炭酸ジエチルの組み合わせや、それ以外に、炭酸プロピレン、炭酸ジメチルなどのカーボネート類や、ジメトキシエタンなどのエーテル類の少なくとも1種を含む有機溶媒を採用することができる。
 電解液における電解質としては、六フッ化リン酸リチウムや、それ以外に、過塩素酸リチウム、四フッ化ホウ酸リチウムなどのリチウム塩の少なくとも1種を採用することができ、この電解質を溶媒に対して溶解させて用いる。
 なお、本実施の形態に係るリチウムイオン二次電池100では、一例として、1mol/LのLiPF6が添加されてなる非水電解質溶液(EC:DMC=1:2の割合で混合)を用いている。
 なお、図7に示すように、本実施の形態に係るリチウムイオン二次電池100は、一例として、2032サイズのコインセルとしている。そして、リチウムイオン二次電池100の初期放電容量は、80mAh/g以上120mAh/g以下である。初期放電容量が80mAh/g未満の場合には、電池容量が低すぎて実用的ではない。また、120mAh/gよりも大きい場合には、高温特性において十分な安定性を確保することができない。リチウムイオン二次電池100の初期放電容量については、85mAh/g以上115mAh/g以下とすることが望ましい。
 また、本実施の形態に係るリチウムイオン二次電池100では、高温サイクル容量維持率が96.5%以上である。高温サイクル容量維持率に関しては、97%以上であることがより望ましい。
 また、本実施の形態に係るリチウムイオン二次電池100では、容量回復率が96%以上である。容量回復率に関しては、96.5%以上であることがより望ましい。
 10.効果
 本実施の形態に係る正極活物質粒子粉末10を用いたリチウムイオン二次電池100では、高温特性の向上を図ることができる。
 また、正極活物質粒子粉末の製造方法において、マンガン化合物とリチウム化合物、および結晶面成長抑制剤とを均質に混合し、酸化性雰囲気下(例えば、空気中)で700℃以上950℃以下の温度範囲で焼成することにより得られた粒子粉末を非水電解質二次電池に用いた場合に、その高温特性の向上を図ることができる正極活物質粒子粉末10を得ることができる。
 [評価]
 以下では、具体的な実施例を用いた特性評価結果について、説明する。
 先ず、評価に用いた実施例サンプルおよび比較例サンプルについて、表1を用い説明する。
Figure JPOXMLDOC01-appb-T000001
 《実施例1》
 実施例1に係る正極活物質粒子粉末は、次のように製造した。
 表1に示すように、結晶子サイズが92nmで、平均二次粒子径が10.5μmの四三酸化マンガン(Mn34)と、炭酸リチウム(Li2CO3)とを、Li/Mn=0.58の割合で、結晶面成長抑制剤としてのNbについては四三酸化マンガンのMnのmol数に対し0.60mol%とした量のNb25を秤量・混合し、空気雰囲気中で820℃、3時間焼成してマンガン酸リチウム粒子粉末を製造した。
 得られた正極活物質粒子粉末は、図5に示したとおり、X線回折により、Fd-3m指数付けができるマンガン酸リチウム以外に、結晶面成長抑制剤であるNbがLiNbO3である相をなして存在していた。即ち、実施例1に係る正極活物質粒子粉末は、その組成がLi1.10Mn1.904+LiNbO3である。
 また、本実施例に係る正極活物質粒子粉末は、SEM画像を観察の結果、図1(a)および図2(a)に示したように、(111)面が(100)面と隣り合っている多面形状をなす一次粒子からなる凝集粒子であることを確認した。
 また、得られた正極活物質粒子粉末は、平均一次粒子径が約0.8μmであり、二次粒子の平均粒径(D50)が14.3μmであった。
 次に、上記のように製造した正極活物質粒子粉末を用い、次のようにリチウムイオン二次電池を製造した。
 上記の正極活物質粒子粉末を92重量%、導電剤としてアセチレンブラックを2.5重量%、グラファイトを2.5重量%、バインダとしてのN-メチルピロリドンに溶解したポリフッ化ビニリデン3重量%を混合し、Al金属箔に塗布して120℃で乾燥させる。このように作製したシートを、14mmφに打ち抜いて、その後、1.5ton/cm2で圧着したものを正極要素として用いた。
 負極要素については、16mmφに打ち抜いた、厚さ300μmの金属リチウムを用いた。
 電解液としては、1mol/LのLiPF6を溶解させたECとDMCを、体積比で1:2で混合した溶液を用いた。
 本実施例に係るリチウムイオン二次電池は、2032型コインセルである。
 《実施例2》
 表1に示すように、実施例に係る正極活物質粒子粉末においては、実施例1に対して、Nbの添加量を変えた。その他については同様である。
 《実施例3》
 実施例3に係る正極活物質粒子粉末は、次のように製造した。
 表1に示すように、結晶子サイズが92nmで、平均二次粒子径が10.5μmの四三酸化マンガン(Mn34)と、炭酸リチウム(Li2CO3)と、水酸化アルミニウム(Al(OH)3)とを、Li/(Mn+Al)=0.56の割合で、Nbに対しては四三酸化マンガンのMnのmol数に対し0.55mol%とした酸化ニオブ(Nb25)を秤量・混合し、空気雰囲気中で810℃、3時間焼成してマンガン酸リチウム粒子粉末を製造した。実施例3に係る正極活物質粒子粉末は、その組成がLi1.08Mn1.85Al0.074+LiNbO3である。
 リチウムイオン二次電池における他の構成部材については、上記実施例1,2と同じである。
 《実施例4》
 実施例4に係る正極活物質粒子粉末は、次のように製造した。
 表1に示すように、結晶子サイズが92nmで、平均二次粒子径が10.5μmの四三酸化マンガン(Mn34)と、炭酸リチウム(Li2CO3)と、酸化マグネシウム(MgO)とを、Li/(Mn+Mg)=0.55の割合で、Nbに対しては四三酸化マンガンのMnのmol数に対し0.55mol%とした酸化ニオブ(Nb25)を秤量・混合し、空気雰囲気中で810℃、3時間焼成してマンガン酸リチウム粒子粉末を製造した。実施例4に係る正極活物質粒子粉末は、その組成がLi1.06Mn1.89Mg0.054+LiNbO3である。
 リチウムイオン二次電池における他の構成部材については、上記実施例1,2,3と同じである。
 《実施例5》
 実施例5に係る正極活物質粒子粉末は、次のように製造した。
 表1に示すように、結晶子サイズが92nmで、平均二次粒子径が10.5μmの四三酸化マンガン(Mn34)と、炭酸リチウム(Li2CO3)と、結晶面成長抑制剤としてのMoについては四三酸化マンガンのMnのmol数に対し0.50mol%とした酸化モリブデン(MoO3)とを、Li/(Mn+Mo)=0.59の割合で、秤量・混合し、空気雰囲気中で820℃、3時間焼成してマンガン酸リチウム粒子粉末を製造した。実施例5に係る正極活物質粒子粉末は、その組成がLi1.11Mn1.89Mo0.014である。
 リチウムイオン二次電池における他の構成部材については、上記実施例1,2,3,4と同じである。
 本実施例に係る正極活物質粒子粉末は、SEM画像を観察の結果、図2(c)および図2(d)に示したように、一次粒子が(111)面以外に(100)面および(110)面を有する多面形状である凝集粒子であることを確認した。
 《比較例1》
 表1に示すように、比較例1に係る正極活物質粒子粉末の製造においては、結晶面成長抑制剤であるNbの添加を行わなかった。比較例1に係る正極活物質粒子粉末は、その組成がLi1.10Mn1.904である。
 その他の製造条件については、上記実施例1と同様である。
 《比較例2》
 表1に示すように、比較例2に係る正極活物質粒子粉末の製造においては、上記実施例1に対して、Nbの添加量を四三酸化マンガンのMnのmol数に対し0.06mol%とした。その他の製造条件については、上記実施例1と同様である。比較例2に係る正極活物質粒子粉末は、その組成がLi1.10Mn1.904+LiNbO3である。
 なお、得られた比較例2に係る正極活物質粒子粉末のSEM画像を観察した結果、二次粒子の表面に露出している一次粒子は、(111)面が少なくとも1つ以上の(100)面と隣り合う多面体形状をなす一次粒子の個数割合が55%であった。
 上記のように製造したリチウムイオン二次電池のそれぞれについて、次のような評価を行った。
 (容量回復率)
 高温特性を示す容量回復率については、0.1Cの電流密度で4.3Vまで充電し(CC-CV;定電流定電圧)、その後、3.0Vまで放電し(CC;定電流)、そのときの放電容量を“a“とする。
 その後、再び0.1Cの電流密度で4.3Vまで充電し(CC-CV)、充放電装置からリチウムイオン二次電池を取り外して、60℃の恒温槽の中で6週間放置した。6週間後にリチウムイオン二次電池を取り出して、充放電装置に装着し、0.1Cで3.0Vまで放電し(CC)、0.1Cで4.3Vまで充電し(CC-CV)、その後、3.0Vまで放電させた(CC)。このときの放電容量を“b”とする。
 そして、(b/a×100)を容量回復率(%)とした。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 (高温サイクル容量維持率)
 高温特性を示す高温サイクル容量維持率については、0.5Cで3.0Vから4.3Vまで充電し(CC-CV)、1.0Cで3.0Vまで放電させた(CC)。この時の放電容量を“c”とする。
 その後、3.0Vから4.3Vまで充放電を40サイクル繰り返し(但し、充電は0.5CでCC-CV、放電は1.0CでCCの操作)、41サイクル目の放電容量を“d”とする。
 そして、(d/c×100)を高温サイクル維持率(%)とした。その結果についても表2に示す。
 (レート特性)
 レート特性については、25℃の環境下で3.0V-4.3Vにおいて、充電を0.1Cで行い(CC-CV)、各放電を0.1C、10Cで放電させた(CC)とき、0.1Cの放電容量を“e”とし、10Cの放電容量を“f”とする。
 そして、(f/e×100)をレート特性(%)とした。この結果についても、表2に示す。
 〈考察1〉
 先ず、表2に示すように、容量回復率については、比較例1が94.9%、比較例2が95.5%であったのに対して、実施例1が97.9%、実施例2が97.6%、実施例3が98.8%、実施例4が98.1%、実施例5が97.1%と高い数値となった。
 図8(a)には、実施例1と比較例1の容量回復率を示す。図8(a)に示すように、結晶面成長抑制剤であるNbの添加の有無により、Mn溶出が多いと考えられる(111)面の面積を減らし、Mn溶出に強いと考えられる(100)面の面積が多くなることにより、容量回復率(高温における保存特性)について、約3%の向上が図られたと考えられる。
 〈考察2〉
 表2に示すように、高温サイクル容量維持率については、比較例1が94.6%、比較例2が95.5%であったのに対して、実施例2が97.8%であり、実施例5が97.5%であり、実施例1,3,4が98%以上となった。図8(b)に示すように、実施例1では、比較例1に対して、高温サイクル容量維持率が約2%優れていることが分かる。
 〈考察3〉
 表2に示すように、レート特性については、比較例1が94.1%、比較例2が93.9%であったのに対して、実施例1,2,4がそれらよりも高い数値を示し、また、Li拡散チャネルを有する(110)面の面積が大きい実施例5は、比較例1に対し大幅に高いレート特性値を示したと考えられる。
 (まとめ)
 実施例1~5に係る非水電解質二次電池用正極活物質粒子粉末では、LiおよびMnを主成分とし、Fd-3mの空間群である立方晶スピネル構造を備え、一次粒子が凝集した状態で構成された凝集二次粒子からなり、当該凝集状態の二次粒子の平均粒子径(D50)が4μm以上20μm以下の範囲であり、前記二次粒子の表面に露出する一次粒子の個数の80%以上において、一次粒子が(111)面が少なくとも1つ以上の(100)面と隣り合う多面体形状をなしていることにより、高温特性に優れるという効果を得ることができる。
 次に、表面エネルギーとMn溶出との関係について、図9および表3を用い説明する。
Figure JPOXMLDOC01-appb-T000003
 なお、本考察については、IMLB2010(2010年夏)におけるThackerayらの行った、シミュレーションからの表面エネルギーやMn溶出反応のギブスエネルギー変化の結果からの予測との対比で行っている。
 図9(a)に示すように、初期状態において、(100)面と(111)面とを有する粒子において、本粒子をエッチングすることで、図9(b)に示すように、(111)面が大きく腐食している様子が観察できる。それに対して、(100)面の腐食は(111)面に比べてあまり大きくない。
 ここで、図9(b)に示す正極活物質粒子粉末については、次のような条件でのエッチングを経て得たものである。密封容器に入れた1mol/LのLiPF6を溶質としたECとDECが体積換算で3:7で混合された溶液3mlに対して、正極活物質粒子粉末を2g混合し、密封させ80℃の環境下で1週間放置する。その後、該混合液を濾過し、DMCにて粉末を洗浄した後、乾燥させてエッチングさせた正極活物質粒子粉末を得た。
 表3に示すように、(100)面は、表面エネルギーγが0.96J/m2であるのに対して、(111)面では、1.29J/m2であり、(111)面の表面エネルギーが大きい。また、(100)面のMn溶出ギブスエネルギーは27.6kcal/molであるのに対して、(111)面のMn溶出ギブスエネルギーは-16.1kcal/molであり、(111)面の方がMnの溶出が進行しやすいことが示唆されている。
 以上の結果より、図9(b)に示すSEM像での腐食進行度合は、(111)面>(100)面の関係となり、Thackerayらの予想と合致するものである。本結果から、高温におけるMn溶出が少ないことと、高温における保存特性が良好であることを等価な結果であると考えると、上記予測と本実施の形態における電池特性の結果も合致していることが分かった。
 [その他の事項]
 上記実施例3では金属置換元素としてLiとAlを採用し、実施例4では金属置換元素としてLiとMgを採用したが、金属置換元素はこれに限定されるものではない。例えば、Mnの一部をFe、Ni、Zn、Co、Cr、Si、Ti、Sn、V、Sbなどの16dサイトに置換し得る金属元素の中から選ばれる1種以上の陽イオンで一部置換したものとしてもよい。
 また、上記実施の形態などでは、正極活物質粒子粉末の製造時に使用する結晶面成長抑制剤としてNbとMoを例として採用したが、本発明はこれに限定されるものではない。上記のように、(111)面以外の結晶面の成長を抑制し得るものであれば採用することができる。
 また、上記実施の形態などでは、非水電解質二次電池の一例として、コイン型のリチウムイオン二次電池を採用したが、本発明はこれに限定されるものはない。例えば、円筒型の非水電解質二次電池や、角型の非水電解質二次電池などにも適用が可能である。また、負極要素やセパレータ、さらには電解液などについても適宜の変更が可能である。
 本発明は、高温特性に優れた非水電解質二次電池を実現するのに有用である。
  1 正極要素
  2 負極要素
  3 セパレータ
  4 正極ケース
  5 負極ケース
  6 ガスケット
 10 正極活物質粒子粉末
100 リチウムイオン二次電池

Claims (8)

  1.  LiおよびMnを主成分とし、Fd-3mの空間群である立方晶スピネル構造であるマンガン酸リチウム粒子粉末であって、
     一次粒子が凝集した状態で構成された凝集二次粒子からなり、当該凝集状態の二次粒子の平均粒子径(D50)が4μm以上20μm以下の範囲であり、前記二次粒子の表面に露出する前記一次粒子の個数の80%以上において、前記一次粒子が(111)面が少なくとも1つ以上の(100)面と隣り合う多面体形状をなしている
     ことを特徴とする非水電解質二次電池用正極活物質粒子粉末。
  2.  Mn(16d)サイトを置換し得る、Mn以外の少なくとも一種以上の金属元素で置換した場合に、その置換金属元素の内のLi以外の金属元素をMeとするとき、[Li/(Mn+Me)]比が0.5以上0.65以下である
     ことを特徴とする請求項1記載の非水電解質二次電池用正極活物質粒子粉末。
  3.  XRD回折において、LiおよびMnを主成分とする立方晶スピネル相と、1つ以上の化合物の相とが存在する、
     ことを特徴とする請求項1記載の非水電解質二次電池用正極活物質粒子粉末。
  4.  請求項1から請求項3の何れかの非水電解質二次電池用正極活物質粒子粉末を用いた正極要素を備える
     ことを特徴とする非水電解質二次電池。
  5.  四三酸化マンガンと、リチウム化合物と、結晶面成長抑制剤とを、混合して混合物を形成し、
     前記混合物を、酸化性雰囲気下で700℃以上950℃以下の範囲で焼成する
     ことを特徴とする非水電解質二次電池用正極活物質粒子粉末の製造方法。
  6.  前記四三酸化マンガンとして、結晶子サイズが50nm以上150nm以下である一次粒子が凝集して構成された平均二次粒子径(D50)が3μm以上20μm以下である凝集形状を有する四三酸化マンガンを用いる
     ことを特徴とする請求項5記載の非水電解質二次電池用正極活物質粒子粉末の製造方法。
  7.  前記結晶面成長抑制剤として、ニオブ化合物を用いる
     ことを特徴とする請求項5記載の非水電解質二次電池用正極活物質粒子粉末の製造方法。
  8.  前記結晶面成長抑制剤として、モリブデン化合物を用いる
     ことを特徴とする請求項5記載の非水電解質二次電池用正極活物質粒子粉末の製造方法。
PCT/JP2015/082692 2014-11-20 2015-11-20 非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池 WO2016080517A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177016039A KR102447786B1 (ko) 2014-11-20 2015-11-20 비수 전해질 이차 전지용 양극 활물질 입자 분말과 그 제조 방법, 및 비수 전해질 이차 전지
CN201580061842.0A CN107004849B (zh) 2014-11-20 2015-11-20 非水电解质二次电池用正极活性物质粒子粉末及其制造方法、和非水电解质二次电池
US15/527,417 US10547047B2 (en) 2014-11-20 2015-11-20 Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
CA2967917A CA2967917A1 (en) 2014-11-20 2015-11-20 Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
EP15861564.1A EP3223346B1 (en) 2014-11-20 2015-11-20 Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
US16/712,161 US11127940B2 (en) 2014-11-20 2019-12-12 Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014235887A JP6417888B2 (ja) 2014-11-20 2014-11-20 非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池
JP2014-235887 2014-11-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/527,417 A-371-Of-International US10547047B2 (en) 2014-11-20 2015-11-20 Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
US16/712,161 Division US11127940B2 (en) 2014-11-20 2019-12-12 Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2016080517A1 true WO2016080517A1 (ja) 2016-05-26

Family

ID=56014049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082692 WO2016080517A1 (ja) 2014-11-20 2015-11-20 非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池

Country Status (8)

Country Link
US (2) US10547047B2 (ja)
EP (1) EP3223346B1 (ja)
JP (1) JP6417888B2 (ja)
KR (1) KR102447786B1 (ja)
CN (1) CN107004849B (ja)
CA (1) CA2967917A1 (ja)
TW (1) TW201626624A (ja)
WO (1) WO2016080517A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428192B2 (ja) * 2014-11-20 2018-11-28 戸田工業株式会社 非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池
WO2020180060A1 (ko) * 2019-03-05 2020-09-10 주식회사 엘지화학 리튬 이차전지용 양극 활물질 전구체의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질 전구체
KR20210154748A (ko) * 2020-06-12 2021-12-21 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
JP7315520B2 (ja) * 2020-10-05 2023-07-26 プライムプラネットエナジー&ソリューションズ株式会社 正極活物質粉体、正極、リチウムイオン電池および正極の製造方法
KR20220072800A (ko) * 2020-11-25 2022-06-02 주식회사 엘지에너지솔루션 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
CN114678525B (zh) * 2022-04-12 2023-08-18 浙江极氪智能科技有限公司 三元正极材料及其制备方法、锂离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171115A (ja) * 1997-06-19 1999-03-16 Tosoh Corp 他種元素を含有するスピネル構造リチウムマンガン系酸化物およびその製造方法並びにその用途
JP2000030707A (ja) * 1998-07-13 2000-01-28 Ngk Insulators Ltd リチウム二次電池
JP2001052703A (ja) * 1999-08-10 2001-02-23 Nikko Materials Co Ltd リチウム二次電池用正極材料及びその製造方法
JP2002145617A (ja) * 2000-11-09 2002-05-22 Nippon Chem Ind Co Ltd リチウムマンガン複合酸化物およびその製造方法
JP2009176732A (ja) * 2007-12-28 2009-08-06 Toda Kogyo Corp 非水電解液二次電池用マンガン酸リチウム及びその製造方法、並びに非水電解液二次電池
JP2010192428A (ja) * 2009-01-20 2010-09-02 Toda Kogyo Corp 非水電解液二次電池用正極活物質およびその製造方法、非水電解液二次電池
JP2010212261A (ja) * 2009-09-29 2010-09-24 Ngk Insulators Ltd 正極活物質及びそれを用いたリチウム二次電池

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435278B2 (ja) 1971-12-28 1979-11-01
JPS5344111B2 (ja) 1972-12-29 1978-11-25
JPS61266359A (ja) * 1985-05-20 1986-11-26 日本碍子株式会社 窒化珪素焼結体の製造法
CA2240805C (en) 1997-06-19 2005-07-26 Tosoh Corporation Spinel-type lithium-manganese oxide containing heteroelements, preparation process and use thereof
JP3375898B2 (ja) * 1998-10-01 2003-02-10 日本碍子株式会社 リチウム二次電池
WO2001036334A1 (en) 1999-11-15 2001-05-25 Mitsubishi Chemical Corporation Lithium-manganese composite oxide, positive electrode material for lithium secondary cell, positive electrode and lithium secondary cell, and method for preparing lithium-manganese composite oxide
JP4114314B2 (ja) 1999-11-15 2008-07-09 三菱化学株式会社 リチウムマンガン複合酸化物、リチウム二次電池用正極材料、正極、及びリチウム二次電池、並びにリチウムマンガン複合酸化物の製造方法
CN102044672A (zh) 2006-04-07 2011-05-04 三菱化学株式会社 锂二次电池正极材料用锂过渡金属系化合物粉体
JP4613943B2 (ja) 2006-11-10 2011-01-19 三菱化学株式会社 リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前躯体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP5344111B2 (ja) 2007-03-30 2013-11-20 戸田工業株式会社 非水電解液二次電池用マンガン酸リチウムの製造方法、並びに非水電解液二次電池
TW200910336A (en) * 2007-07-18 2009-03-01 Ulvac Inc Method for manufacturing perpendicular magnetic recording media
EP2447215A2 (en) * 2009-06-25 2012-05-02 NGK Insulators, Ltd. Positive electrode active material and lithium secondary battery using same
JP5638232B2 (ja) 2009-12-02 2014-12-10 住友金属鉱山株式会社 非水系電解質二次電池正極活物質用ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
KR101264333B1 (ko) * 2011-01-12 2013-05-14 삼성에스디아이 주식회사 양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
WO2012164693A1 (ja) * 2011-05-31 2012-12-06 トヨタ自動車株式会社 リチウム二次電池
JP5962429B2 (ja) * 2012-10-22 2016-08-03 ソニー株式会社 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR102228322B1 (ko) * 2012-11-13 2021-03-15 도다 고교 가부시끼가이샤 비수전해질 이차 전지용 망간산리튬 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
CN203415648U (zh) * 2013-09-12 2014-01-29 宁德新能源科技有限公司 电芯及电化学储能装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171115A (ja) * 1997-06-19 1999-03-16 Tosoh Corp 他種元素を含有するスピネル構造リチウムマンガン系酸化物およびその製造方法並びにその用途
JP2000030707A (ja) * 1998-07-13 2000-01-28 Ngk Insulators Ltd リチウム二次電池
JP2001052703A (ja) * 1999-08-10 2001-02-23 Nikko Materials Co Ltd リチウム二次電池用正極材料及びその製造方法
JP2002145617A (ja) * 2000-11-09 2002-05-22 Nippon Chem Ind Co Ltd リチウムマンガン複合酸化物およびその製造方法
JP2009176732A (ja) * 2007-12-28 2009-08-06 Toda Kogyo Corp 非水電解液二次電池用マンガン酸リチウム及びその製造方法、並びに非水電解液二次電池
JP2010192428A (ja) * 2009-01-20 2010-09-02 Toda Kogyo Corp 非水電解液二次電池用正極活物質およびその製造方法、非水電解液二次電池
JP2010212261A (ja) * 2009-09-29 2010-09-24 Ngk Insulators Ltd 正極活物質及びそれを用いたリチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3223346A4 *

Also Published As

Publication number Publication date
EP3223346B1 (en) 2023-08-02
JP6417888B2 (ja) 2018-11-07
CN107004849A (zh) 2017-08-01
US10547047B2 (en) 2020-01-28
KR102447786B1 (ko) 2022-09-27
US11127940B2 (en) 2021-09-21
KR20170084230A (ko) 2017-07-19
CN107004849B (zh) 2021-02-26
EP3223346A1 (en) 2017-09-27
EP3223346A4 (en) 2018-07-18
CA2967917A1 (en) 2016-05-26
JP2016100174A (ja) 2016-05-30
US20180183039A1 (en) 2018-06-28
TW201626624A (zh) 2016-07-16
US20200119332A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP7001082B2 (ja) 非水系電解質二次電池用正極活物質の製造方法、及び非水系電解質二次電池の製造方法
JP5435278B2 (ja) 非水電解液二次電池用正極活物質およびその製造方法、非水電解液二次電池
US11127940B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP6167822B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、およびこれを用いた非水系電解質二次電池
WO2012011212A1 (ja) 非水系電解質二次電池用正極活物質とその製造方法および非水系電解質二次電池
CA2976022C (en) Positive electrode active substance comprising lithium nickel-cobalt-manganese-based composite transition metal layered oxide for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP6729051B2 (ja) リチウムニッケル含有複合酸化物および非水系電解質二次電池
JP6008134B2 (ja) リチウム二次電池正極活物質と該正極活物質を用いたリチウム二次電池
US20150325837A1 (en) Lithium-metal oxide nanoparticles, preparation method and use thereof
TW201737543A (zh) 非水電解質二次電池用正極活性物質顆粒及其製造方法以及非水電解質二次電池
JP2008257902A (ja) 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
JP6109399B1 (ja) 非水電解質二次電池用の正極活物質粒子及びその製造方法、並びに非水電解質二次電池
US10892483B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for manufacturing same, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2967917

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15527417

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177016039

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015861564

Country of ref document: EP