WO2016076400A1 - 較正装置、較正方法、光学装置、撮影装置、投影装置、計測システムおよび計測方法 - Google Patents

較正装置、較正方法、光学装置、撮影装置、投影装置、計測システムおよび計測方法 Download PDF

Info

Publication number
WO2016076400A1
WO2016076400A1 PCT/JP2015/081886 JP2015081886W WO2016076400A1 WO 2016076400 A1 WO2016076400 A1 WO 2016076400A1 JP 2015081886 W JP2015081886 W JP 2015081886W WO 2016076400 A1 WO2016076400 A1 WO 2016076400A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
coordinates
camera model
world
dimensional
Prior art date
Application number
PCT/JP2015/081886
Other languages
English (en)
French (fr)
Inventor
聡明 松沢
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201580061447.2A priority Critical patent/CN107003109B/zh
Priority to JP2016559108A priority patent/JP6576945B2/ja
Priority to EP15858359.1A priority patent/EP3220099B1/en
Publication of WO2016076400A1 publication Critical patent/WO2016076400A1/ja
Priority to US15/590,175 priority patent/US10127687B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/61Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras

Definitions

  • the present invention relates to a calibration device, a calibration method, an optical device, a photographing device, a projection device, a measurement system, and a measurement method.
  • the camera model includes a plurality of unknown parameters (camera parameters), and the camera parameters are obtained by a calibration device, so that the back projection line in the real world corresponding to the two-dimensional coordinates of the image is mathematically calculated. Can get to.
  • Camera calibration is performed according to the following procedure using a mathematical camera model that represents a process in which real-world three-dimensional coordinates are captured by a camera and converted into two-dimensional coordinates of an image.
  • the real-world three-dimensional coordinates hereinafter referred to as world coordinates
  • x, y, z the real-world three-dimensional coordinates
  • z the normalized image plane coordinates
  • the rotation matrix R and the translation vector T in Equation 2 represent a three-dimensional coordinate transformation from world coordinates to camera coordinates. These are values representing the position and orientation of the camera with respect to the world coordinates, and are called external parameters.
  • Equation 1 is an expression based on the assumption that all back projection lines intersect at the optical center of the camera.
  • Equation 3 (ud, vd) obtained by adding distortion to the normalized image plane coordinates (up, vp) is obtained.
  • (g1, g2, g3, g4, k1) are distortion parameters. Further, the normalized image plane coordinates (ud, vd) to which distortion is added are converted into pixel coordinates (u, v) in units of pixels using Equation 4.
  • the standard camera model represents the transformation from world coordinates (x, y, z) to pixel coordinates (u, v) by imaging of the camera by the equations (1) to (4).
  • the parameters ( ⁇ u, ⁇ v, u0, v0, g1, g2, g3, g4, k1) of Equation 3 and Equation 4 are called internal parameters because they represent the properties of the camera itself.
  • Equation 3 is a model that considers distortion aberrations up to the third order, but a model in which higher order terms such as fifth order, seventh order, etc. are added is also used.
  • a typical distortion model is the Brown model of Non-Patent Document 2 shown in Equation 5.
  • the distortion is expressed by rotationally symmetric radial distortion parameters (k1, k2, k3,%) And rotationally asymmetric tangential distortion parameters (p1, p2, p3,).
  • a calibration chart having a plurality of feature points whose world coordinates (x, y, z) are known is imaged with a camera. Thereafter, pixel coordinates (u, v) at which the feature points are imaged by image processing are acquired. In this way, a plurality of measurement data representing the correspondence between the world coordinates (x, y, z) and the pixel coordinates (u, v) are obtained, and camera parameters are obtained.
  • the calibration apparatus of Patent Document 1 and Non-Patent Document 1 uses a camera model based on the assumption that all backprojected straight lines intersect at the optical center of the camera.
  • the optical system is accompanied by pupil aberration, all back projection lines do not intersect at one point on the entrance pupil.
  • pupil aberration is remarkable.
  • the conventional standard camera model including the camera model of Patent Document 1 is a non-linear model composed of a plurality of mathematical expressions shown in Equations 1 to 4, and is finally obtained in the process of obtaining camera parameters from measurement data. It is necessary to repeatedly optimize all camera parameters. Therefore, the following two problems arise.
  • the present invention has been made in view of the above-described circumstances, and provides a calibration device, a calibration method, an optical device, a photographing device, a projection device, a measurement system, and a measurement method capable of accurately obtaining camera parameters in a short time.
  • the purpose is to do.
  • One aspect of the present invention is a calibration of an optical device including a two-dimensional image conversion element having a plurality of pixels and an optical system that forms an imaging relationship between the image conversion element and a three-dimensional world coordinate space.
  • a calibration data acquisition unit for acquiring calibration data indicating a correspondence between a two-dimensional pixel coordinate of the image conversion element and a three-dimensional world coordinate of the world coordinate space; and the calibration data acquisition unit
  • a camera model representing two coordinate values of the three-dimensional world coordinates as functions of the coordinate values of the other one world coordinate and the two coordinate values of the two-dimensional pixel coordinates
  • the calibration apparatus includes a parameter calculation unit that calculates the parameters of the camera model.
  • the camera model is acquired by the parameter calculation unit in the calibration data obtained by the calibration data acquisition unit and indicating the correspondence between the two-dimensional pixel coordinates of the image conversion element and the three-dimensional world coordinates of the world coordinate space.
  • the parameters of the camera model are calculated.
  • the parameters of the camera model can be accurately obtained in a short time without excessively optimizing the linear model showing the imaging relationship between the world coordinates including distortion and the pixel coordinates.
  • the camera model is obtained by performing a linear sum of a plurality of two-dimensional vector functions having a function of a coordinate value of the other one world coordinate and two coordinate values of the two-dimensional pixel coordinate as elements. It may represent a straight line in the world coordinate space. In this way, a straight line in the world coordinate space corresponding to each pixel of the two-dimensional image is easily obtained from the coordinate value of the two-dimensional pixel of the image conversion element and the coordinate value of one world coordinate. Parameters can be obtained accurately in a short time.
  • the camera model includes two pixel coordinate values of a point on the two-dimensional pixel coordinate plane, and two points on a plane optically conjugate with the pixel coordinate plane by the optical system.
  • Each coefficient of a linear imaging model representing an imaging relationship with one world coordinate value may be expressed by a mathematical expression in which the linear expression of the other one world coordinate is replaced.
  • the calibration data acquisition unit includes three coordinate values of each point on two planes of the world coordinate space, and 2 of the two-dimensional pixel coordinates corresponding to each point. A plurality of calibration data representing the correspondence with one coordinate value may be acquired.
  • the parameter calculation unit includes three coordinate values of each point on two planes of the world coordinate space and two of the two-dimensional pixel coordinates corresponding to each point.
  • the camera model may be applied to a plurality of calibration data representing correspondence with coordinate values.
  • the calibration data acquisition unit may acquire a plurality of calibration data representing correspondence between two coordinate values of the two-dimensional pixel coordinates and the inclination and intercept of the straight line of the world coordinates. Good.
  • the parameter calculation unit may apply the camera model to the calibration data by a linear least square method. Further, in the above aspect, the parameter calculation unit converts the three-dimensional world coordinates of the calibration data acquired by the calibration data acquisition unit into one or more rotations of three rotation angles representing the rotation of the world coordinates.
  • the camera model may be applied to calibration data converted into world coordinates rotated at an angle, and one or more rotation angles at which the residual of the camera model is minimized may be obtained.
  • the parameter calculation unit may convert one or more of three translation components representing the translation of the world coordinates into three-dimensional world coordinates among the calibration data acquired by the calibration data acquisition unit.
  • the camera model may be applied to the calibration data converted into world coordinates translated by the above component to obtain one or more translation components that minimize the residual of the camera model.
  • the optical device includes a plurality of image conversion elements and an optical system that forms an imaging relationship between the image conversion elements and a three-dimensional world coordinate space
  • the calibration data acquisition unit includes Calibration data of each of the image conversion elements and the optical system is acquired
  • the parameter calculation unit adds the calibration data of each of the image conversion elements and the optical system as a function of the two-dimensional pixel coordinates of each of the image conversion elements.
  • the represented camera model may be applied.
  • the optical device may be a photographing device, the image conversion element may be an imaging element, and the optical system may be an imaging optical system.
  • the optical device may be a projection device, the image conversion element may be an image forming element, and the optical system may be a projection optical system.
  • an optical system in another aspect of the present invention, includes a two-dimensional image conversion element having a plurality of pixels, and an optical system that forms an imaging relationship between the image conversion element and a three-dimensional world coordinate space.
  • a calibration method including:
  • the camera model is obtained by performing a linear sum of a plurality of two-dimensional vector functions having a function of a coordinate value of the other one world coordinate and two coordinate values of the two-dimensional pixel coordinate as elements. It may represent a straight line in the world coordinate space. Further, in the above aspect, the camera model includes two pixel coordinate values of a point on the two-dimensional pixel coordinate plane, and two points on a plane optically conjugate with the pixel coordinate plane by the optical system. Each coefficient of a linear imaging model representing an imaging relationship with one world coordinate value may be expressed by a mathematical expression in which the linear expression of the other one world coordinate is replaced.
  • the step of acquiring the calibration data includes a plurality of steps representing correspondence between two coordinate values on two planes of the world coordinate space and two coordinate values of the two-dimensional pixel coordinates.
  • Calibration data may be obtained.
  • the step of calculating the parameter includes a plurality of calibrations representing correspondence between two coordinate values on two planes of the world coordinate space and two coordinate values of the two-dimensional pixel coordinates.
  • the camera model may be applied to the data.
  • the step of obtaining the calibration data obtains a plurality of calibration data representing correspondence between two coordinate values of the two-dimensional pixel coordinates and a slope and an intercept of the straight line of the world coordinates. May be.
  • the step of calculating the parameter may apply the camera model to calibration data by a linear least square method.
  • the step which calculates the said parameter WHEREIN Among the calibration data acquired by the step which acquires the said calibration data, three-dimensional world coordinates are made into three rotation angles showing rotation of this world coordinate.
  • the camera model may be applied to calibration data converted into world coordinates rotated at one or more rotation angles to obtain one or more rotation angles at which the residual of the camera model is minimized.
  • the step which calculates the said parameter WHEREIN Among the calibration data acquired by the step which acquires the said calibration data, three parallel movements which represent the parallel movement of the said world coordinates are represented by three-dimensional world coordinates.
  • the camera model may be applied to calibration data converted into world coordinates translated by one or more components to obtain one or more translation components that minimize the residual of the camera model.
  • Another aspect of the present invention is an optical device equipped with a camera model in which parameters calculated by the calibration device are set. Moreover, in the said aspect, you may hold
  • the camera model may be held as discrete data representing the correspondence between a plurality of pixel coordinates and the inclination and intercept of a straight line in the world coordinate space.
  • the camera model obtains two coordinate values of the three-dimensional world coordinates from the coordinate values of the other one world coordinate and the two coordinate values of the two-dimensional pixel coordinates.
  • a world coordinate calculation unit may be provided. By doing in this way, the world coordinate calculation part can obtain
  • the camera model may further include a straight line calculation unit that obtains a straight line in the world coordinate space corresponding to the pixel coordinates from the two coordinate values of the two-dimensional pixel coordinates.
  • the camera model further includes a distortion correction image generation unit that determines the world coordinates corresponding to the pixel coordinates of the image acquired or formed by the image conversion element and generates an image in which distortion is corrected. It may be.
  • Another aspect of the present invention is an imaging apparatus equipped with a camera model in which the rotation angle and / or translation component acquired by the calibration apparatus is set as a parameter.
  • a world coordinate rotation unit and / or world coordinates for converting world coordinates after rotation and / or translation to world coordinates before rotation and / or translation by the rotation angle and / or the translation component. You may provide the parallel displacement part.
  • Another aspect of the present invention is a photographing apparatus including the optical device.
  • Another aspect of the present invention is a projection device including the optical device.
  • the calibration device the one or more imaging devices, and the three-dimensional coordinates of the point of interest of the subject from the pixel coordinates of the image at a plurality of viewpoints acquired by the imaging device.
  • a three-dimensional coordinate calculation processing unit for calculating wherein the three-dimensional coordinate calculation processing unit uses the camera model used in the calibration device, and the parameters of the camera model of the photographing device calculated by the calibration device. It is a measurement system using.
  • a first calibration device that is the calibration device
  • a second calibration device that is the calibration device
  • the one or more imaging devices and the one A projection unit
  • a three-dimensional coordinate calculation processing unit that calculates a three-dimensional coordinate of a target point of the subject from pixel coordinates of an image obtained by photographing the subject on which structured light from the projection device is projected by the photographing device
  • the three-dimensional coordinate calculation processing unit includes the camera model used in the first and second calibration devices, and the parameters of the camera model of the imaging device calculated by the first calibration device. And the parameter of the camera model of the projection device calculated by the second calibration device.
  • the imaging is performed using the camera model used in the calibration device and the parameter of the camera model of the one or more imaging devices calculated by the calibration device.
  • This is a measurement method for calculating the three-dimensional coordinates of a target point of interest from the pixel coordinates of an image at a plurality of viewpoints acquired by the apparatus.
  • the camera model used in the first calibration device as the calibration device and the second calibration device as the calibration device is calculated by the first calibration device.
  • FIG. 1 is an overall configuration diagram schematically showing a calibration device according to a first embodiment of the present invention. It is a figure which shows the pattern of the calibration chart of the calibration apparatus of FIG. It is a figure which shows the flowchart of the calibration method which concerns on the 1st Embodiment of this invention. It is a figure which shows the relationship between the world coordinate and pixel coordinate of the calibration apparatus of FIG. It is a figure which shows the example of an image in case there exists a barrel-shaped distortion aberration. It is a figure which shows the example of an image when there is no distortion aberration. It is a figure which shows the flowchart of a distortion correction method.
  • the calibration device according to the present embodiment is a camera calibration device (first calibration device) 1, and a camera (photographing device) 2 that transfers a captured image as an image file of a predetermined format to the outside is a calibration target.
  • the camera 2 is used as an example of the optical device.
  • the camera calibration device 1 includes a base 3 for fixing a camera 2 to be calibrated, a z-axis movement stage 4 provided on the base 3, and the z-axis movement.
  • a calibration chart 6 fixed to a movable part 5 moved by a stage 4 and a computer 7 connected to the camera 2 and the z-axis moving stage 4 are provided.
  • the three-dimensional coordinate axes of the camera calibration device 1 are defined as shown in FIG.
  • a calibration data acquisition unit 8 is configured by the base 3 that fixes the camera 2, the calibration chart 6, and the z-axis movement stage 4.
  • the z-axis moving stage 4 is a linear drive mechanism that is driven by a motor 4a and moves the movable part 5 linearly.
  • the moving direction of the movable part 5 is defined as the z axis
  • the horizontal direction and the vertical direction in the plane perpendicular to the z axis are defined as the x axis and the y axis.
  • the position of the coordinate origin may be arbitrary, but is defined near the tip of the camera lens 9 in this embodiment.
  • the camera 2 has its optical axis parallel to the z-axis, the horizontal and vertical directions of the imaging surface are parallel to the x-axis and y-axis, and the coordinate origin is the predetermined range of the camera 2 It is attached to the base 3 so as to coincide with the position.
  • the calibration chart 6 is the chess board 10 of FIG. 2 that is widely used in camera calibration, and is arranged so as to face the camera 2 fixed to the base 3, that is, in a plane perpendicular to the z-axis. It is fixed to the movable part 5.
  • the calibration chart 6 may be any chart as long as it is a chart having a plurality of feature points.
  • the calibration chart 6 can be moved to an arbitrary position in the z-axis direction by the z-axis moving stage 4.
  • the computer 7 functions to control the imaging of the camera 2 and read the captured image as an image file of a predetermined format.
  • the computer 7 also functions to control the z-axis moving stage 4 to move the calibration chart 6 to a predetermined position in the z-axis direction.
  • the computer 7 also functions as a parameter calculation unit that calculates camera parameters by applying a camera model to the acquired configuration data.
  • the chess board 10 used as the calibration chart 6 will be described with reference to FIG.
  • the chess board 10 is a flat plate member having a checkered pattern in which black and white squares are arranged in a square lattice on a plane, and an intersection corresponding to the apex of each square is used as a feature point for camera calibration. (Hereinafter, these feature points are referred to as lattice points 11).
  • the chess board 10 one having a sufficient number of grid points 11 for camera calibration within the imaging range of the camera 2 is used.
  • the range of the chess board 10 to be imaged varies depending on the object distance, it is preferable that at least about 10 ⁇ 10 lattice points 11 are imaged at each object distance.
  • one reference position mark 12 is provided near the center of the calibration chart 6 in order to take correspondence between the pixel coordinates of the captured grid point 11 and the world coordinates of the grid point 11 on the calibration chart 6.
  • the chess board 10 has a lattice point (center lattice point 13) nearest to the lower right of the reference position mark 12 located on the z axis, and at the same time, the vertical and horizontal directions of the chess board 10 are parallel to the x axis and the y axis.
  • the world coordinates (x, y, z) of the respective lattice points 11 and 13 are determined as known values from the lattice interval of the square lattice of the chess board 10 and the movement position of the z-axis moving stage 4.
  • a camera calibration method using the camera calibration device 1 according to the present embodiment configured as described above will be described below.
  • the operator first attaches the camera 2 to be calibrated to the camera calibration device 1 according to the definition of the coordinate axis and connects it to the computer 7. Thereafter, the measurement program in the computer 7 is started.
  • the image of the calibration chart 6 having a plurality of object distances is automatically captured by the camera 2 by the measurement program, and the pixel coordinates of the lattice point 11 are acquired from these images.
  • the measurement program will be described with reference to the flowchart of FIG.
  • step S1 When the measurement is started, first, the z-axis moving stage 4 is moved so that the calibration chart 6 is positioned at the end closer to the camera 2 in the range of the object distance for calibrating the camera 2 (step S1). Next, the calibration chart 6 is imaged by the camera 2, and the image file is transferred to the computer 7 (step S2). These steps S1 and S2 are repeated until a predetermined number of times of imaging are performed (step S3). For example, five or more times are set as the predetermined number.
  • step S1 the movable unit 5 is moved by the z-axis moving stage 4 so that the object distance from the camera 2 to the calibration chart 6 is increased at a predetermined interval for each repetition.
  • the moving amount of the movable part 5 may not be equal, it is preferable to image the calibration chart 6 at at least about five different object distances within the range of the object distance for calibrating the camera 2.
  • the process proceeds to the next step S4.
  • the plurality of image files transferred to the computer 7 in steps S1 to S3 are subjected to image processing, whereby the pixel coordinates of each grid point 11 within the imaging range are obtained, and the pixel at the center of gravity of the reference position mark 12 of each image file. Coordinates are obtained (step S4).
  • the method for obtaining the pixel coordinates of the lattice points 11 of the chess board 10 by sub-pixels is known from the following documents and the like, and thus the description thereof is omitted here.
  • G. Bradski, A .; Kaehler translated by Junichi Matsuda
  • Kaehler translated by Junichi Matsuda
  • step S4 the pixel coordinates of each grid point 11 obtained in step S4 are associated with the world coordinates of the grid point 11 on the calibration chart 6 (step S5).
  • the pixel coordinates of the lattice points 11 and 13 are associated with the world coordinates on the basis thereof. be able to.
  • all the associated pixel coordinates and world coordinates are written in the measurement data file, and the measurement ends. Measurement data necessary for optimizing the camera parameters is obtained by the above procedure.
  • FIG. 4A is a cross-sectional view of the camera 2 for explaining the relationship between the pixel coordinates of the camera 2 and the back projection straight line on the object side.
  • the camera 2 includes an imaging optical system 14 having lenses 15 and 16 and an aperture stop 17 and an imaging element (image conversion element).
  • the world coordinates (x, y, z) on the object side are defined as in FIG.
  • u-axis and v-axis of pixel coordinates are defined on the imaging surface of the imaging element 18 in parallel with the horizontal direction and the vertical direction of the imaging element 18.
  • FIG. 4A a principal ray 19 incident on the center of each pixel of the image sensor 18 through the imaging optical system 14 is depicted.
  • the principal ray 19 is a ray that passes through the center of the aperture stop 17 of the imaging optical system 14.
  • the concept of the principal ray 19 will be described by taking the image point 20 and its principal ray 19 imaged at the center of one pixel as an example.
  • a plane 21 conjugate with the imaging surface of the image sensor 18 is considered.
  • the object point 22 at the intersection of the plane 21 and the principal ray 19 is imaged at the image point 20 by the imaging optical system 14. That is, all light rays passing through the object point 22 are incident on one point of the image point 20 if the aberration is ignored.
  • the blurred image spreads around the incident position of the principal ray 19 passing through the center of the aperture stop 17, so if the center of gravity of the light intensity of the blurred image point is taken as the image position.
  • the position of the image point 20 does not change. Accordingly, all the object points 22 and 24 on the principal ray 19 on the object side are imaged on one image point 20.
  • the principal ray 19 on the object side is a back projection straight line of the image point 20.
  • An imaginary aperture that forms an image of the aperture stop 17 with the lens 15 on the object side is an entrance pupil 25.
  • the principal ray group on the object side passes near the center of the entrance pupil 25, but unlike the case of the aperture stop 17, it does not intersect at one point at the center of the entrance pupil 25. This is because the aberration of the lens 15 is present in the imaging relationship between the aperture stop 17 and the entrance pupil 25. This is pupil aberration.
  • the distortion aberration of the imaging optical system 14 changes depending on the object distance due to pupil aberration.
  • the imaging in the reverse direction from the image side to the object side is accompanied by a pincushion distortion aberration. That is, the square lattice pixel array 26 of the image sensor 18 as shown in FIG. 4C forms an image 27 distorted in a pincushion shape as shown in FIG. 4B on the conjugate plane 21 on the object side.
  • the imaging relationship between the pixel coordinates (u, v) of the image point 20 on the image sensor 18 and the world coordinates (x1, y1, z1) of the object point 22 on the plane 21 conjugate with distortion is included. Represented by a formula.
  • the imaging formula of Formula 6 is defined based on the Brown model of Formula 5.
  • the imaging relationship with the world coordinates (x2, y2, z2) of the object point 24 on the non-conjugate plane 23 is also expressed by an imaging formula having the same shape as Equation 6.
  • each coefficient changes because the lateral magnification and distortion change as the object distance changes. Therefore, as shown in Equation 7, each coefficient of the imaging formula is primed.
  • the chief ray 19 on the object side is a straight line, it is expressed by the equation (8) by the inclination (a, c) and intercept (b, d) in the x and y directions.
  • Equations 9 and 10 hold.
  • the coefficients (a, b, c, d) are functions of the pixel coordinates (u, v), and the coefficients (a, b, c, d) are common in the equations 9 and 10.
  • the left sides of Equations 6 and 9 and Equations 7 and 10 are common to each other, simultaneous equations are established that their right sides are equal. Solve it to find the coefficients (a, b, c, d).
  • the camera model used in the camera calibration apparatus 1 of the present embodiment shown in Expression 14 is obtained by directly modeling the back projection straight line on the object side corresponding to the pixel coordinates. It is constructed based on a linear model of Formula 6 that expresses the imaging relationship between world coordinates including distortion and pixel coordinates. In addition, each coefficient of the linear model of Formula 6 representing the imaging relationship is replaced with a linear expression of z so that the lateral magnification and distortion that change with the object distance can be expressed.
  • Each coefficient of Formula 14 with the subscript A represents the inclination of the backprojection straight line with respect to the z axis.
  • the object coordinate vector (x) is a linear sum of linearly independent two-dimensional basis function vectors consisting of variables (u, v; z). , Y). Since it is a linear sum of basis function vectors, the coefficients of the models representing the x coordinate and the y coordinate are common. Therefore, the coefficient of each basis function vector can be obtained from all measurement data by the linear least square method. This is described below.
  • the camera model in which the camera parameter obtained in the present embodiment is set can be used as follows in a photographing apparatus including the camera 2 equipped with the camera model.
  • the imaging apparatus includes a world coordinate calculation unit (not shown) that calculates two coordinate values of three-dimensional world coordinates, and a straight line calculation unit (not shown) that calculates a straight line in the world coordinate space corresponding to the pixel coordinates. ) And a distortion corrected image generation unit (not shown) for generating an image with corrected distortion.
  • the world coordinate calculation unit substitutes the pixel coordinates (u, v) of interest of the image captured by the calibrated camera 2 and the object distance z into the camera model of Formula 14. By doing so, the world coordinates (x, y) of the above-described feature points can be obtained.
  • the straight line calculation unit substitutes the pixel coordinates (u, v) of interest into Equations (11) and (12) to obtain the slope and intercept of the backprojection straight line. Can be sought.
  • distortion of an image captured by the calibrated camera 2 can be corrected by the distortion correction image generation unit.
  • the method will be described.
  • An object represented by world coordinates is captured by the camera 2 and becomes a distorted image. Therefore, distortion can be corrected by projecting the obtained image onto world coordinates using the above-described camera model.
  • the pixel coordinates (u, v) are set to the world coordinates by substituting the pixel coordinates (u, v) and the object distance z into the camera model of Formula 14. Projected to (x, y).
  • a reference object distance for distortion correction is defined and projected onto the world coordinates (x, y) of the object distance z.
  • Such distortion correction is sufficient if the change in distortion due to object distance is small.
  • the image is enlarged or reduced. Therefore, the projected world coordinates are standardized by the lateral magnification (kA0z + kB0) of the camera model of Formula 14. As a result, it is possible to obtain a distortion-corrected image that is approximately the same size as the original image.
  • the creation of a distortion-corrected image is a series of procedures for substituting the pixel values of the original image corresponding to the pixel coordinates (integer) of the image after distortion correction into the pixel coordinates after distortion correction. The procedure will be described with reference to the flowchart of FIG.
  • the pixel coordinates (uc, vc) after the first distortion correction are determined (step S11).
  • an initial value (0, 0) is given to the pixel coordinates (u, v) before distortion correction (step S12). If the pixel coordinates (u, v) before distortion correction corresponding to the pixel coordinates (uc, vc) after distortion correction can be estimated by any method, it may be set as an initial value.
  • the world coordinates (x, y) are obtained by substituting the pixel coordinates (u, v) before distortion correction and the reference object distance z for distortion correction into the camera model of Formula 14 (step S13). Then, the obtained world coordinates (x, y) are normalized by the horizontal magnification (kA0z + kB0) to obtain the pixel coordinates (u ′, v ′) (step S14).
  • step S15 The distance between the obtained pixel coordinates (u ′, v ′) and the pixel coordinates (uc, vc) after distortion correction is obtained (step S15).
  • the process proceeds to step S18. In other cases, the process returns to step S13 through step S17 in which the pixel coordinates (u, v) before distortion correction are updated (step S16).
  • the iterative optimization steps S13 to S17 can be executed by a general algorithm such as the downhill simplex method.
  • the updating method of the pixel coordinates (u, v) follows the algorithm.
  • the pixel coordinates (u, v) before distortion correction when iterative optimization converges correspond to the pixel coordinates (uc, vc) after distortion correction via the camera model of Equation 14.
  • the pixel coordinates (u, v) are generally non-integer. Therefore, the pixel value of the pixel coordinate (u, v) is obtained from the pixel values of the four pixels close to the pixel coordinate by bilinear interpolation. Then, it is set as the pixel value of the pixel coordinate (uc, vc) after distortion correction (step S18). It should be noted that other methods such as bicubic interpolation may be employed for pixel value interpolation.
  • the above S11 to S18 are repeated for all the pixel coordinates (uc, vc) after distortion correction (step S19), and the distortion correction is completed.
  • the world coordinates corresponding to the pixel coordinates are calculated with the camera model of Formula 14 each time.
  • the calculation speed can be increased.
  • the inclination and intercept of the back projection line corresponding to each pixel coordinate are calculated in advance as a data array.
  • intersections between two object distance planes and backprojection straight lines corresponding to each pixel coordinate are calculated in advance as a data array.
  • the back projection line of the pixel of interest may be obtained by interpolating those data arrays. The same applies to other use cases.
  • camera calibration was performed using measurement data of lattice points 11 and 13 arranged in a square lattice on a flat chess board 10.
  • the feature points on the calibration chart 6 may be patterns other than the grid points 11 and 13.
  • a measurement data creation method may be used in which dot marks distributed on a plane are imaged and the center of gravity is used as pixel coordinates.
  • the feature points used in the camera calibration of the present invention do not need to be regularly arranged in the world coordinate space. Even if the arrangement of the feature points is random, if the correspondence between the world coordinates and the pixel coordinates can be known by measurement or simulation, the camera model of the present invention can be applied to them by the linear least square method.
  • the only requirement for the camera calibration measurement data of this embodiment is that the correspondence between the world coordinates and the pixel coordinates is clear.
  • Such measurement data can be acquired by the following method, for example. First, a point light source capable of moving in the x, y, and z axis directions is prepared on the world coordinate side. Then, the point light source is moved in the x-, y-, and z-axis directions so that the image of the point light source is located at the pixel coordinates of interest of the image captured by the camera 2 with the point light source.
  • the correspondence between world coordinates and pixel coordinates can also be obtained by repeating such measurement.
  • the camera model of Formula 14 is used in consideration of only the third order radial distortion and the second order tangential distortion.
  • a camera model to which higher-order distortion aberration or rotationally asymmetric distortion terms are added can also be employed.
  • a linear model like the imaging formula of Formula 6 representing the imaging relationship between the imaging surface of the imaging device 18 and the plane 21 conjugate with the imaging surface is prepared.
  • a new camera model can be constructed by replacing each coefficient of this linear model with a linear expression of the object distance z like the camera model of Equation 14.
  • the optimization method for obtaining each coefficient is the same as in this embodiment.
  • the measurement data of all the grid points 11 and 13 representing the correspondence between the world coordinates (x, y, z) and the pixel coordinates (u, v) are applied by the linear least square method, Sought camera models.
  • the camera model of this embodiment can be obtained by a method different from that. The following two methods are particularly effective when a camera model is created by obtaining an imaging relationship of feature points by the camera 2 by simulation.
  • the first is a method using feature points on two planes of world coordinates and corresponding pixel coordinate data.
  • the imaging formula of Formula 6 is applied to data representing the correspondence between the world coordinates and pixel coordinates of a plurality of feature points on the first plane by a linear least square method.
  • the imaging formula of Formula 7 is similarly applied to the feature points on the second plane.
  • each coefficient of the camera model of Formula 14 can be calculated
  • the second method is to individually calculate the slope of the backprojection straight line and the intercept model.
  • Expression 12 is applied thereto, the coefficient of the intercept with the subscript B of the camera model of this embodiment can be obtained.
  • the pupil aberration of the imaging optical system 14 can be accurately modeled by the camera model of the present embodiment. Furthermore, rotationally asymmetric distortion and pupil aberration can also be modeled. Thereby, it is possible to accurately represent the distortion aberration changing with the object distance and the backprojection straight line group reflecting the distortion, and to improve the accuracy of the camera model.
  • the camera model used in the camera calibration apparatus 1 and the camera calibration method of the present embodiment is a linear model, it can be applied to measurement data by a linear least square method. Therefore, unlike the conventional example using iterative optimization, there is no failure in optimization, and the calculation time can be greatly shortened.
  • the feature points used in the camera calibration device 1 and the camera calibration method of the present embodiment do not need to be regularly arranged. Therefore, as long as the correspondence between the world coordinates and the pixel coordinates can be clarified, it is possible to select an acquisition method by any measurement or calculation suitable for the camera 2 to be calibrated.
  • the optical axis of the camera 2 to be calibrated as shown in FIG. 1 is parallel to the z axis of the camera calibration apparatus 1, and the horizontal and vertical directions of the imaging surface are the x axis and the y axis.
  • a method of camera calibration when parallel is described.
  • a camera calibration method when the condition is not satisfied will be described.
  • the position and orientation of the camera 2 with respect to the world coordinates have a total of six degrees of freedom, that is, the three-axis rotation matrix R and the translation vector T of Equation 2.
  • the translation in the x, y, and z-axis directions can be expressed by terms of coefficients representing the intercepts with the coefficients ⁇ uB and ⁇ vB and the subscript B of the camera model of Expression 14.
  • 6A is a schematic view from the side of the camera calibration device 1 of FIG.
  • the camera 2 is attached by rotating around the x axis of the world coordinates defined by the camera calibration device 1. For this reason, the optical axis of the imaging optical system 14 is not parallel to the z-axis of world coordinates.
  • the calibration chart 6 moved to a plurality of object distances and the lattice points 11 are drawn.
  • the lattice array 28 of lattice points 11 arranged in a square lattice forms an image 29 on the imaging surface of the image sensor 18 in the form of an image 29 with trapezoidal distortion.
  • FIG. 6B illustrates a state in which the coordinate axis of the world coordinates is rotated around the x axis, and the z ′ axis after the rotation is parallel to the optical axis of the imaging optical system 14.
  • the lattice point 11 becomes a trapezoidal lattice arrangement 30 in appearance from the z′-axis direction after rotation. Therefore, the relationship between the world coordinates (x ′, y ′, z ′) of the lattice point 11 converted to the coordinate values of the rotated world coordinates and the pixel coordinates (u, v) at which the lattice point 11 forms an image is distorted. If the aberration is ignored, a similar imaging relationship from the trapezoidal grating 30 to the trapezoidal grating 31 is obtained. As a result, the camera model of Formula 14 can be applied well.
  • the rotation angles ⁇ x, ⁇ y, and ⁇ z are optimized so that the residual is minimized.
  • the optical axis of the imaging optical system 14 and the rotated z′-axis are parallel, and the horizontal and vertical directions of the imaging surface are parallel to the x-axis and the y-axis, The residual of the camera model is minimized.
  • the rotation angles ⁇ x, ⁇ y, and ⁇ z that are optimization parameters are repeatedly optimized.
  • the initial values of the rotation angles ⁇ x, ⁇ y, ⁇ z may be zero.
  • the rotation angle of the camera 2 can be estimated by some method, it may be set as an initial value.
  • This iterative optimization can be performed with a general algorithm such as the downhill simplex method.
  • the rotation angles ⁇ x, ⁇ y, and ⁇ z when the evaluation function converges to the minimum value are optimum rotation angles.
  • the optimum rotation angle and each coefficient of the camera model at the rotation angle are acquired, and the camera calibration is finished.
  • the camera model in which the camera parameter obtained using the camera calibration method according to the present embodiment is set can be used in the same manner as in the first embodiment by the photographing apparatus including the camera 2 equipped with the camera model.
  • the world coordinates obtained by the camera model of Formula 14 from the pixel coordinates of interest are the world coordinates after rotation (x ′, y ′, z ′).
  • a photographing apparatus including the camera 2 converts a world coordinate (x ′, y ′, z ′) after rotation into world coordinates before rotation (x, y, z) (illustrated). Omitted).
  • the world coordinates (x1 ′, y1 ′) and (x2 ′, y2 ′) corresponding to the pixel coordinates are obtained by the appropriate two object distances z1 ′ and z2 ′ after the rotation using the camera model of Expression 14.
  • these two world coordinates (x1 ′, y1 ′, z1 ′) and (x2 ′, y2 ′, z2 ′) are converted by the world coordinate rotation unit according to the equation 15 given by the optimal rotation angles ⁇ x, ⁇ y, ⁇ z. It is converted into world coordinates (x1, y1, z1) and (x2, y2, z2) before rotation by inverse transformation.
  • the straight line passing through the two points obtained by conversion is the back projection straight line of the world coordinates before rotation.
  • the object distance z before rotation into the backprojection straight line, the world coordinates (x, y) before rotation corresponding to the pixel coordinates can be obtained.
  • the three rotation angles ⁇ x, ⁇ y, and ⁇ z are optimized.
  • they may be fixed at known values and removed from the optimization parameters. In that case, only the remaining unknown rotation angle or angles need only be optimized. In this way, the number of optimization parameters is reduced, so that the calculation time can be shortened.
  • the camera calibration method it is possible to acquire a highly accurate camera model even when the position and orientation of the camera 2 with respect to the world coordinates are not properly aligned. Even when many camera parameters such as distortion are required, the number of parameters for iterative optimization is limited to 3 or less rotation angles, so there is no camera model optimization failure and the calculation time is greatly increased. Can be shortened.
  • the camera calibration device 32 is applied to the calibration of the multi-viewpoint cameras 33, 34, and 35 for the purpose of three-dimensional shape restoration.
  • the calibration of a multi-view camera including three cameras will be described as an example, but the present invention can be applied to the calibration of other cameras.
  • the three cameras 33, 34, and 35 to be calibrated are fixed to the camera fixing base 36 in the same arrangement as the use conditions of the multi-viewpoint camera. Is done.
  • the camera fixing stand 36 is attached to the camera calibration apparatus 32 so that each camera 33,34,35 can image the calibration chart 6.
  • FIG. Other configurations such as the calibration chart 6, the z-axis moving stage 4, and the computer 7 are the same as those in FIG.
  • the operation of the camera calibration device 32 according to the present embodiment configured as described above will be described below.
  • the operation of the camera calibration device 32 according to the present embodiment is the same as that of the camera calibration device 1 according to the first embodiment.
  • images of the calibration chart 6 having a plurality of object distances are automatically picked up by the cameras 33, 34, and 35 according to the measurement program of the flowchart of FIG. 3, and the pixel coordinates of the grid points 11 of the calibration chart 6 are determined from the images. To be acquired.
  • steps S2, S4, and S5 in the flowchart of FIG. 3 are executed for each of the three cameras.
  • the camera model of each camera 33, 34, 35 is obtained from the above measurement data of each camera 33, 34, 35.
  • the procedure is as follows when the optical axes of the cameras 33, 34, and 35 are substantially parallel to the z-axis of the camera calibration device 32, and the horizontal and vertical directions of the imaging surface are parallel to the x-axis and y-axis. This is the same as in the first embodiment. If not, the optimum rotation angles ⁇ x, ⁇ y, and ⁇ z are also optimized in the same manner as in the second embodiment.
  • the camera models set with the camera parameters obtained by the camera calibration device 32 according to the present embodiment are used in the same manner as in the first and second embodiments in the imaging device including the cameras 33, 34, and 35 on which the camera parameters are mounted. can do.
  • the world coordinates or backprojection before rotation described in the second embodiment is used.
  • a procedure for obtaining a straight line may be applied.
  • the measurement program of the flowchart of FIG. 3 may be executed sequentially for each camera individually. Further, when measuring the measurement data of each camera 33, 34, 35, the installation position of the z-axis moving stage 4 is changed on the camera calibration device 32 so that the calibration chart 6 faces each camera to be measured. Also good.
  • Such a camera calibration method is effective when there are cameras that cannot capture the calibration chart 6 fixed in one direction because the multi-viewpoint cameras 33, 34, and 35 are arranged so as to surround the observation region. is there.
  • the multi-viewpoint cameras 33, 34, and 35 can be calibrated in the same arrangement as the use conditions. And there exists an advantage that the world coordinate or back projection straight line corresponding to the pixel coordinate of each camera 33,34,35 can be handled by one common world coordinate.
  • the measurement system according to the present embodiment includes a camera calibration device 32, multi-viewpoint cameras 33, 34, and 35 according to the third embodiment, and a three-dimensional coordinate calculation processing unit (computer 7). And.
  • each camera model in which the respective camera parameters of the multi-viewpoint cameras 33, 34, and 35 are set is obtained from Equation 14.
  • the three-dimensional coordinate calculation processing unit built in the computer 7 calculates the world coordinates of the point of interest on the surface of the subject photographed by the multi-viewpoint cameras 33, 34, and 35 in the calculation process of the following steps.
  • the optical axes of the multi-viewpoint cameras 33, 34, and 35 can be regarded as parallel, the result is as shown in FIG.
  • Step S101 Three subject images I33, I34, and I35 taken by the multi-viewpoint cameras 33, 34, and 35 are captured.
  • Step S102 The pixel coordinate of the pixel of the image I33 corresponding to the pixel coordinate of each pixel designated on the image I34 by the user is obtained by the corresponding point search process.
  • Step S103 An expression in which the pixel coordinates designated in I34 and the camera parameters of the camera 34 are substituted into Expression 14; an expression in which the coordinates of the corresponding pixel in I33 obtained in Step S102 and the camera parameters of the camera 33 are substituted into Expression 14; To solve the simultaneous equations to obtain the world coordinate A of the point of interest on the subject surface corresponding to each pixel of the image I34.
  • Step S104 The pixel coordinates of the pixel of the image I35 corresponding to each pixel of the image I34 are obtained by the corresponding point search process.
  • Step S105 An expression in which the pixel coordinates designated in I34 and the camera parameters of the camera 34 are substituted into Expression 14, and an expression in which the coordinates of the corresponding pixel in I35 obtained in Step S104 and the camera parameters of the camera 35 are substituted into Expression 14; The simultaneous equations are solved by obtaining the world coordinates B of the point of interest on the subject surface corresponding to each pixel of the image I34.
  • Step S106 For each pixel of the image I34, a distance D1 between the two points of the world coordinates A and B is obtained.
  • Step S107 For each pixel of the image I34, it is determined whether or not the distance D1 between the two points is equal to or less than a predetermined threshold value.
  • Step S108 If the threshold is less than or equal to the threshold, both the world coordinates A and B are considered to have a small error, and the coordinates of the midpoint of the two world coordinates A and B are the world coordinates of the target point on the surface of the corresponding subject. And Step S109: If it is larger than the threshold value, the attention point on the surface of the corresponding subject is set to “no result” or the world coordinates with warning information that the error is large.
  • the calculation method of the similarity is a plurality of calculation methods such as the sum of squares of the difference SSD, the sum of the absolute values of the differences SAD, the normalized cross-correlation NCC, and the zero average normalized cross-correlation ZNCC according to the requirements of the calculation speed and calculation accuracy.
  • ZNCC is desirable in view of robustness with respect to the difference in brightness of images captured by the cameras 33, 34, and 35. Moreover, you may enable it to select from these several similarity calculation methods from balance with calculation time.
  • the distortion correction processing shown in the first embodiment it is desirable to apply the distortion correction processing shown in the first embodiment to the images I33, I34, and I35 used for the corresponding point search processing.
  • the corresponding point search process By performing the corresponding point search process on the image to which the distortion correction process is applied, it is possible to obtain a higher-accuracy corresponding point coordinate in which the influence of the difference in optical characteristics between cameras is reduced.
  • step S105 the simultaneous equations are first solved by the equations x and z, and y is obtained using the obtained z.
  • the equation for obtaining y uses a camera model according to Equation 14 in which the camera parameters of the camera 34 corresponding to the image I34 used for pixel designation are set.
  • the rotation angle obtained by the same method as in the second embodiment at the calibration stage is also used as a camera parameter.
  • the camera model is obtained by Equations 14 and 15 in which the camera parameters of the viewpoint cameras 33, 34, and 35 are set. After correcting the world coordinates in Equation 15, the simultaneous equations in Equation 14 are solved.
  • step S108 using the world coordinate of the midpoint between the two world coordinates A and B has an effect of further reducing the error of the obtained world coordinate.
  • a three-viewpoint camera is described as an example, but a two-viewpoint camera may be used. In that case, the processing after step S104 is not necessary.
  • the world coordinates are calculated for the pixel designated on the image I34 by the user, but a plurality of pixels determined to have a feature by the feature point extraction process executed on the image I34.
  • the world coordinates may be automatically calculated, or may be calculated for all the pixels of the image I34 when the computational resource constraints are small.
  • the calibration device according to the present embodiment is a projector calibration device (second calibration device) 37, which includes an image forming element (image conversion element: not shown) such as a liquid crystal element, and a projection optical system (optical system). Is a device for calibrating a projector (projection device) 38 that projects the image to the outside.
  • a projector 38 is used as an example of an optical device.
  • the projector calibration device 37 includes a base 39 for fixing a projector 38 to be calibrated, a z-axis movement stage 4 provided on the base 39, and a calibration chart 6 fixed to the movable part 5 of the z-axis movement stage 4. And a camera 2 which is arranged at a position adjacent to the projector 38 and captures an image of the calibration chart 6.
  • the camera 2 and the projector 38 are attached to the projector calibration device 37 so that their optical axes are parallel to the z-axis of the projector calibration device 37 and the predetermined position of the projector 38 coincides with the coordinate origin. It is supposed to be.
  • the imaging range of the camera 2 preferably includes the image projection range of the projector 38.
  • Other configurations such as the calibration chart 6, the z-axis moving stage 4, and the computer 7 are the same as those in FIG. 1. However, as the calibration chart 6 used in this embodiment, the chess board 10 of FIG. 2 and the plain screen can be exchanged.
  • the computer 7 also has a function of controlling the projector 38 and causing the projector 38 to project a predetermined image.
  • the camera 2 is calibrated with the chess board 10 of FIG. .
  • the procedure is the same as in the first embodiment.
  • the pattern of the chess board 10 in FIG. 2 is projected onto the calibration chart 6 from the projector 38 through the projection optical system.
  • the pixel coordinates of the lattice points 11 and 13 of the chess board 10 are known in the pixel coordinates defined on the image forming element (not shown) inside the projector 38.
  • the camera 2 captures an image of the calibration chart 6 in which the pattern of the chess board 10 is automatically projected at a plurality of object distances by the measurement program of the flowchart of FIG.
  • the pixel coordinates of the lattice point 11 of the pattern of the chess board 10 are acquired from the image.
  • the camera model of the camera 2 calibrated by the above procedure and the chess board 10 projected on the calibration chart 6.
  • the world coordinates (x, y) of the lattice point 11 of the pattern are obtained.
  • measurement data representing the correspondence between the pixel coordinates (u, v) of the projector 38 and the world coordinates (x, y, z) is obtained.
  • the method for obtaining the camera parameters of the projector 38 by applying the camera model of Equation 14 to the measurement data is the same as in the first embodiment.
  • the camera model in which the camera parameters of the projector 38 obtained in this way are set can be used as follows in the projector 38 equipped with the camera model.
  • the world coordinates (x, y) of the feature point can be obtained.
  • an image distortion that cancels the distortion caused by the projection may be added to the image formed by the image forming element of the projector 38 in advance.
  • the procedure for obtaining the pixel coordinates of such a distortion-corrected image is the same as the flowchart of the first embodiment shown in FIG.
  • the pattern projected by the projector 38 is not limited to the chess board 10. Patterns such as dot marks that can calculate pixel coordinates of feature points from an image captured by the camera 2 are also applicable. Alternatively, a method of lighting each discrete pixel of the projector 38 may be used.
  • the world coordinates (x, y) of the feature points projected by the projector 38 are measured by the camera 2 calibrated in advance.
  • the measurement can also be realized by a method in which an image sensor is installed instead of the calibration chart 6 and the projected pattern is directly imaged.
  • other acquisition methods can be selected.
  • the projector 38 can be calibrated by the camera model.
  • the measurement system according to the present embodiment includes a projector calibration device 37 according to the fourth embodiment, a projector 38, and a three-dimensional coordinate calculation processing unit (computer 7).
  • Equation 14 By executing the calibration of the projector 38 using the projector calibration device 37, the camera model in which the camera parameters of the projector 38 are set is obtained by Equation 14. By executing the camera calibration of the second embodiment with respect to the camera 2 of the fourth embodiment, a camera model in which the camera parameters of the camera 2 are set is obtained by Equation 14.
  • the pattern projected by the projector 38 is a random dot pattern image I38.
  • the three-dimensional calculation processing unit built in the computer 7 calculates the world coordinates of the point of interest on the surface of the subject photographed by the camera 2 in the calculation process of the following steps.
  • the random dot pattern can be generated by a known method. Moreover, you may produce by arranging the pseudorandom number series represented by the M series in two dimensions. When the optical axes of the projector 38 and the camera 2 are arranged substantially in parallel, the measuring method is as shown in FIG.
  • Step S111 A subject image I2 obtained by photographing the subject on which the pattern (structured light) is projected by the projector 38 is captured.
  • Step S112 The pixel coordinates of the pixel of the image I38 corresponding to each pixel designated on the image I2 by the user are obtained by the corresponding point search process.
  • Step S113 An expression in which the pixel coordinates designated in I2 and the camera parameters of the camera 2 are substituted into Expression 14, and an expression in which the coordinates of the corresponding pixel in I38 obtained in Step S112 and the camera parameters of the projector 38 are substituted into Expression 14; To solve the simultaneous equations and obtain the world coordinates of the point of interest on the subject surface corresponding to each pixel of the image I2.
  • the simultaneous equations are first solved by the expressions x and z, and y is obtained using the obtained z.
  • the equation for obtaining y uses the camera model of Formula 14 in which the camera parameters of the camera 2 corresponding to I2 used for pixel designation are set.
  • the projector 38 projects one type of pseudo-random pattern as a pattern.
  • a spatial coding method using a plurality of images on which the binary pattern is projected may be used.
  • the number of projectors 38 is one is given, a plurality of projectors 38 for one camera 2 or a plurality of projectors 38 for a plurality of cameras 2 may be provided.
  • the world coordinates are calculated for each pixel designated on the image I2 by the user, but a plurality of pixels determined to have a feature by the feature point extraction process executed on the image I2.
  • the three-dimensional coordinates may be automatically calculated for, or may be calculated for all the pixels of the image I2 if the computational resource constraints are small.
  • a camera calibration method according to a fifth embodiment of the present invention will be described below with reference to FIGS. 1, 4A and 6A.
  • the camera calibration method when the pupil aberration of the camera 2 to be calibrated cannot be ignored has been described.
  • a camera calibration method when pupil aberration can be ignored will be described.
  • the camera 2 can be calibrated with the camera model of Expression 16, in which each coefficient with the subscript B is omitted from the camera model of Expression 14.
  • the center of the entrance pupil 25 in FIG. 4A and the origin of the world coordinates (x, y, z) do not necessarily match. Therefore, the world coordinate (x, y, z) of the lattice point 11 is converted into the world coordinate (x ′, y ′, z ′) as shown in Expression 17, using the translation vector T of Expression 2 representing the translation of both. Then, it becomes applicable to the camera model of Formula 16.
  • the initial values of the translation vector components tx, ty, and tz may be zero. Alternatively, if they can be estimated by some method, they may be set as initial values. This iterative optimization can be performed by a general algorithm such as the downhill simplex method.
  • the translation vector components tx, ty, and tz when the evaluation function converges to the minimum value are the optimum translation vectors.
  • the 16 camera models obtained in this way are camera models in world coordinates (x ′, y ′, z ′) after translation.
  • the camera model of Formula 16 can be converted into the format of the camera model of Formula 14 in the original world coordinates (x, y, z) using the optimized translation vector components tx, ty, tz and Formula 17. .
  • the camera model in which the camera parameter obtained using the camera calibration method according to the present embodiment is set is used in the same manner as the first to fourth embodiments in the photographing apparatus including the camera 2 equipped with the camera model.
  • the components tx, ty, and tz of the three translation vectors are optimized.
  • some of the translation components in them are known, they may be fixed at known values and removed from the optimization parameters. In that case, only the remaining unknown translation component or components need only be optimized. In this way, the number of optimization parameters is reduced, so that the calculation time can be shortened.
  • this embodiment can be used in combination with the second embodiment. That is, when the camera 2 that is not parallel to the world coordinate axis as shown in FIG. 6A is calibrated with the equation (16) that ignores pupil aberration, the residual when the equation (16) is applied with the linear least square method. Is used as an evaluation function, and necessary components may be repeatedly optimized from among the translation vector components tx, ty, tz and rotation angles ⁇ x, ⁇ y, ⁇ z as optimization parameters.
  • the number of camera parameters can be reduced when the camera 2 that can ignore the pupil aberration is calibrated.
  • the number of parameters for repeated optimization is limited to 3 or less translation components and 3 or less rotation angles. The calculation time can be greatly reduced.
  • a plurality of camera calibrations may be performed corresponding to setting changes such as the focus, zoom, aperture, etc. of the camera 2 or projector 38, respectively.
  • the camera models corresponding to arbitrary settings may be obtained by interpolating those camera models.
  • camera calibration may be performed under a plurality of wavelengths of the light source. Further, a camera model for each wavelength may be used for a camera that captures an image for each wavelength.
  • the image sensor 18 and the image forming element are used as an example of the image conversion element. However, the present invention is not limited to this. What is necessary is just to convert a signal mutually.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Studio Devices (AREA)
  • Geometry (AREA)

Abstract

 カメラパラメータを短時間に精度よく求めることを目的として、本発明に係る較正装置1は、複数の画素を有する2次元の画像変換素子と、画像変換素子と3次元のワールド座標空間との間で結像関係を形成する光学系とを備える光学装置2の較正装置1であって、画像変換素子の2次元の画素座標と、ワールド座標空間の3次元のワールド座標との対応を示す較正データを取得する較正データ取得部8と、較正データ取得部8により取得された較正データに、3次元のワールド座標の内の2つの座標値を、他の1つのワールド座標の座標値および2次元の画素座標の2つの座標値の関数として表したカメラモデルを当てはめて、カメラモデルのパラメータを算出するパラメータ算出部7とを備える。

Description

較正装置、較正方法、光学装置、撮影装置、投影装置、計測システムおよび計測方法
 本発明は、較正装置、較正方法、光学装置、撮影装置、投影装置、計測システムおよび計測方法に関するものである。
 従来、撮影装置や投影装置のカメラ較正を行う較正装置が知られている(例えば、特許文献1参照。)。カメラモデルには複数の未知のパラメータ(カメラパラメータ)が含まれており、較正装置によってそれらのカメラパラメータを求めておくことにより、画像の2次元座標に対応する実世界の逆投影直線を数学的に得ることができる。
 ここで、特許文献1および非特許文献1に開示されている従来のカメラ較正について説明する。カメラ較正は、実世界の3次元座標がカメラで撮像されて画像の2次元座標に変換される過程を表現した数学的なカメラモデルを用いて以下の手順により行われる。初めに、数1を用いて実世界の3次元座標(以下、ワールド座標という。)(x,y,z)を正規化像面座標(up,vp)に投影する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ただし、数2の回転行列Rと平行移動ベクトルTは、ワールド座標からカメラ座標への3次元の座標変換を表している。これらはワールド座標に対するカメラの位置と姿勢を表す値であり、外部パラメータと呼ばれる。
 なお、数1は、全ての逆投影直線がカメラの光学中心で交わるという想定に基づいた式である。次に、数3を用いて、正規化像面座標(up,vp)に歪曲収差を加えた(ud,vd)を求める。
Figure JPOXMLDOC01-appb-M000003
 ただし、(g1,g2,g3,g4,k1)は歪曲パラメータである。さらに、数4を用いて、歪曲収差を加えた正規化像面座標(ud,vd)をピクセル単位の画素座標(u,v)に変換する。
Figure JPOXMLDOC01-appb-M000004
 このように、カメラの撮像によるワールド座標(x,y,z)から画素座標(u,v)への変換を数1から数4で表すのが標準的なカメラモデルである。なお、数3および数4のパラメータ(αu,αv,u0,v0,g1,g2,g3,g4,k1)は、カメラ自体の性質を表すので、内部パラメータと呼ばれる。
 歪曲パラメータは、用途によって様々に定義される。例えば、数3は、3次までの歪曲収差を考慮したモデルであるが、さらに5次、7次…という高次の項を追加したモデルも用いられる。それらの中で代表的な歪曲モデルが数5に示される非特許文献2のブラウンのモデルである。
Figure JPOXMLDOC01-appb-M000005
 ブラウンのモデルでは、歪曲収差を、回転対称な動径歪曲のパラメータ(k1,k2,k3,…)および回転非対称な接線歪曲のパラメータ(p1,p2,p3,…)で表している。
 カメラ較正では一般に、ワールド座標(x,y,z)が既知の特徴点を複数備えた較正チャートをカメラで撮像する。その後、画像処理で特徴点が撮像された画素座標(u,v)を取得する。このようにして、ワールド座標(x,y,z)と画素座標(u,v)との対応を表す複数の測定データを得て、カメラパラメータを求めている。
特開2004-213332号公報
「ディジタル画像処理」、CG-ARTS協会、2004、p.2 52-256 D.C.Brown,"Close-range camera calibration",Photogramm, Eng.37,855-86 6,1971
 特許文献1および非特許文献1の較正装置では、全ての逆投影直線がカメラの光学中心で交わるという想定に基づいたカメラモデルを用いている。しかしながら、一般には光学系は瞳収差を伴うために、全ての逆投影直線が入射瞳上の1点では交わらない。特に、画角が大きな広角レンズを用いている場合には、瞳収差が顕著である。
 また、特許文献1のカメラモデルを初めとする従来の標準的なカメラモデルは数1から数4に示される複数の数式からなる非線形モデルであり、測定データからカメラパラメータを求める過程で、最終的に全てのカメラパラメータを繰り返し最適化する必要がある。そのため、次の2つの問題が生じる。
 第1に、非線形モデルの最適化の評価関数には複数の極小値が存在する可能性があり、適切な初期値を設定しないと誤った最小値に収束するという問題がある。第2に、複数のカメラパラメータの最適化演算を繰り返し行う必要があるため、膨大な計算時間が必要となる場合があるという問題がある。
 本発明は上述した事情に鑑みてなされたものであって、カメラパラメータを短時間に精度よく求めることができる較正装置、較正方法、光学装置、撮影装置、投影装置、計測システムおよび計測方法を提供することを目的としている。
 本発明の一態様は、複数の画素を有する2次元の画像変換素子と、該画像変換素子と3次元のワールド座標空間との間で結像関係を形成する光学系とを備える光学装置の較正装置であって、前記画像変換素子の2次元の画素座標と、前記ワールド座標空間の3次元のワールド座標との対応を示す較正データを取得する較正データ取得部と、該較正データ取得部により取得された較正データに、前記3次元のワールド座標の内の2つの座標値を、他の1つのワールド座標の座標値および前記2次元の画素座標の2つの座標値の関数として表したカメラモデルを当てはめて、該カメラモデルのパラメータを算出するパラメータ算出部とを備える較正装置である。
 本態様によれば、較正データ取得部により取得された、画像変換素子の2次元の画素座標とワールド座標空間の3次元のワールド座標との対応を示す較正データに、パラメータ算出部においてカメラモデルが当てはめられることにより、カメラモデルのパラメータが算出される。パラメータの算出においては、3次元のワールド座標の内の2つの座標値を、他の1つのワールド座標の座標値および2次元の画素座標の2つの座標値の関数として表したカメラモデルを用いることにより、歪曲収差を含むワールド座標と画素座標との結像関係を示す線形モデルによって、過度な繰り返し最適化を行うことなくカメラモデルのパラメータを短時間に精度よく求めることができる。
 上記態様においては、前記カメラモデルが、前記他の1つのワールド座標の座標値と前記2次元の画素座標の2つの座標値の関数を要素とした複数の2次元ベクトル関数の線形和によって、前記ワールド座標空間の直線を表してもよい。
 このようにすることで、画像変換素子の2次元の画素の座標値と、1つのワールド座標の座標値とから、2次元の画像の各画素に対応するワールド座標空間内の直線を簡易に求めるパラメータを短時間に精度よく求めることができる。
 また、上記態様においては、前記カメラモデルが、前記2次元の画素座標平面上の点の2つの画素座標値と、前記光学系によって前記画素座標平面と光学的に共役な平面上の点の2つのワールド座標値との結像関係を表す線形の結像モデルの各係数を、前記他の1つのワールド座標の1次式で置換した数式で表現されてもよい。
 また、上記態様においては、前記較正データ取得部が、前記ワールド座標空間の2つの平面上のそれぞれの点の各3つの座標値と、前記それぞれの点に対応する前記2次元の画素座標の2つの座標値との対応を表す較正データを複数取得してもよい。
 また、上記態様においては、前記パラメータ算出部が、前記ワールド座標空間の2つの平面上のそれぞれの点の各3つの座標値と、前記それぞれの点に対応する前記2次元の画素座標の2つの座標値との対応を表す複数の較正データに、前記カメラモデルを当てはめてもよい。
 また、上記態様においては、前記較正データ取得部が、前記2次元の画素座標の2つの座標値と、前記ワールド座標の直線の傾きおよび切片との対応を表す複数の較正データを取得してもよい。
 また、上記態様においては、前記パラメータ算出部が、前記カメラモデルを線形の最小二乗法で前記較正データに当てはめてもよい。
 また、上記態様においては、前記パラメータ算出部が、前記較正データ取得部により取得された較正データの内、3次元のワールド座標を、該ワールド座標の回転を表す3つの回転角の1以上の回転角で回転したワールド座標に変換した較正データに、前記カメラモデルを当てはめて、該カメラモデルの残差が最小になる1以上の回転角を求めてもよい。
 また、上記態様においては、前記パラメータ算出部が、前記較正データ取得部により取得された較正データの内、3次元のワールド座標を、該ワールド座標の平行移動を表す3つの平行移動成分の1以上の成分で平行移動したワールド座標に変換した較正データに、前記カメラモデルを当てはめて、該カメラモデルの残差が最小になる1以上の平行移動成分を求めてもよい。
 また、上記態様においては、前記光学装置が、複数の画像変換素子および該画像変換素子と3次元のワールド座標空間との間で結像関係を形成する光学系を備え、前記較正データ取得部が各前記画像変換素子および前記光学系の較正データを取得し、前記パラメータ算出部が、各前記画像変換素子および前記光学系の較正データに、各該画像変換素子の2次元の画素座標の関数として表したカメラモデルを当てはめてもよい。
 また、上記態様においては、前記光学装置が撮影装置であり、前記画像変換素子が撮像素子であり、前記光学系が撮像光学系であってもよい。
 また、上記態様においては、前記光学装置が投影装置であり、前記画像変換素子が画像形成素子であり、前記光学系が投影光学系であってもよい。
 また、本発明の他の態様は、複数の画素を有する2次元の画像変換素子と、該画像変換素子と3次元のワールド座標空間との間で結像関係を形成する光学系とを備える光学装置の前記画像変換素子の2次元の画素座標と、前記ワールド座標空間の3次元のワールド座標との対応を示す較正データを取得するステップと、取得された較正データに、前記3次元のワールド座標の内の2つの座標値を、他の1つのワールド座標の座標値および前記2次元の画素座標の2つの座標値の関数として表したカメラモデルを当てはめて、該カメラモデルのパラメータを算出するステップとを含む較正方法である。
 上記態様においては、前記カメラモデルが、前記他の1つのワールド座標の座標値と前記2次元の画素座標の2つの座標値の関数を要素とした複数の2次元ベクトル関数の線形和によって、前記ワールド座標空間の直線を表してもよい。
 また、上記態様においては、前記カメラモデルが、前記2次元の画素座標平面上の点の2つの画素座標値と、前記光学系によって前記画素座標平面と光学的に共役な平面上の点の2つのワールド座標値との結像関係を表す線形の結像モデルの各係数を、前記他の1つのワールド座標の1次式で置換した数式で表現されてもよい。
 また、上記態様においては、前記較正データを取得するステップが、前記ワールド座標空間の2つの平面上の2つの座標値と、前記2次元の画素座標の2つの座標値との対応を表す複数の較正データを取得してもよい。
 また、上記態様においては、前記パラメータを算出するステップが、前記ワールド座標空間の2つの平面上の2つの座標値と、前記2次元の画素座標の2つの座標値との対応を表す複数の較正データに、前記カメラモデルを当てはめてもよい。
 また、上記態様においては、前記較正データを取得するステップが、前記2次元の画素座標の2つの座標値と、前記ワールド座標の直線の傾きおよび切片との対応を表す複数の較正データを取得してもよい。
 また、上記態様においては、前記パラメータを算出するステップが、前記カメラモデルを線形の最小二乗法で較正データに当てはめてもよい。
 また、上記態様においては、前記パラメータを算出するステップが、前記較正データを取得するステップにより取得された較正データの内、3次元のワールド座標を、該ワールド座標の回転を表す3つの回転角の1以上の回転角で回転したワールド座標に変換した較正データに、前記カメラモデルを当てはめて、該カメラモデルの残差が最小になる1以上の回転角を求めてもよい。
 また、上記態様においては、前記パラメータを算出するステップが、前記較正データを取得するステップにより取得された較正データの内、3次元のワールド座標を、該ワールド座標の平行移動を表す3つの平行移動成分の1以上の成分で平行移動したワールド座標に変換した較正データに、前記カメラモデルを当てはめて、該カメラモデルの残差が最小になる1以上の平行移動成分を求めてもよい。
 また、本発明の他の態様は、上記較正装置により算出されたパラメータが設定されたカメラモデルを搭載した光学装置である。
 また、上記態様においては、前記カメラモデルを、複数の画素座標と2つの平面上のワールド座標との対応を表す離散データとして保持してもよい。
 また、上記態様においては、前記カメラモデルを、複数の画素座標とワールド座標空間の直線の傾きおよび切片の対応を表す離散データとして保持してもよい。
 また、上記態様においては、前記カメラモデルにより、前記3次元のワールド座標の内の2つの座標値を、他の1つのワールド座標の座標値と前記2次元の画素座標の2つの座標値から求めるワールド座標算出部を備えていてもよい。
 このようにすることで、ワールド座標算出部により、取得された画像の画素座標から3次元のワールド座標内の2つの座標値を簡易に求めることができる。
 また、上記態様においては、前記カメラモデルにより、前記2次元の画素座標の2つの座標値から、該画素座標に対応するワールド座標空間の直線を求める直線算出部を備えていてもよい。
 さらに、上記態様においては、前記カメラモデルにより、前記画像変換素子により取得あるいは形成された画像の画素座標に対応する前記ワールド座標を求め、歪みを補正した画像を生成する歪み補正画像生成部を備えていてもよい。
 また、本発明の他の態様は、上記較正装置により取得された回転角および/または平行移動成分がパラメータとして設定されたカメラモデルを搭載した撮影装置である。
 上記態様においては、前記回転角および/または前記平行移動成分により、回転および/または平行移動後のワールド座標を回転および/または平行移動前のワールド座標に変換するワールド座標回転部および/またはワールド座標平行移動部を備えていてもよい。
 また、本発明の他の態様は、上記光学装置からなる撮影装置である。
 また、本発明の他の態様は、上記光学装置からなる投影装置である。
 また、本発明の他の態様は、上記較正装置と、上記1つ以上の撮影装置と、該撮影装置により取得された複数の視点での画像の画素座標から被写体の注目点の3次元座標を計算する3次元座標計算処理部とを備え、該3次元座標計算処理部が、前記較正装置において用いられた前記カメラモデルと、前記較正装置により算出された前記撮影装置の前記カメラモデルの前記パラメータとを用いる計測システムである。
 また、本発明の他の態様は、上記の較正装置である第1の較正装置と、上記の較正装置である第2の較正装置と、上記の1つ以上の撮影装置と、上記の1つ以上の投影装置と、前記投影装置からの構造化光が投影された被写体を前記撮影装置で撮影した画像の画素座標から前記被写体の注目点の3次元座標を計算する3次元座標計算処理部とを備え、該3次元座標計算処理部が、前記第1および第2の較正装置において用いられた前記カメラモデルと、前記第1の較正装置により算出された前記撮影装置の前記カメラモデルの前記パラメータと、前記第2の較正装置により算出された前記投影装置の前記カメラモデルの前記パラメータとを用いる計測システムである。
 また、本発明の他の態様は、上記較正装置において用いられた前記カメラモデルと、前記較正装置により算出された上記1つ以上の撮影装置の前記カメラモデルの前記パラメータとを用いて、前記撮影装置により取得された複数の視点での画像の画素座標から被写体の注目点の3次元座標を計算する計測方法である。
 また、本発明の他の態様は、上記の較正装置である第1の較正装置および上記の較正装置である第2の較正装置において用いられた前記カメラモデルと、前記第1の較正装置により算出された上記1つ以上の撮影装置の前記カメラモデルの前記パラメータと、前記第2の較正装置により算出された上記1つ以上の投影装置の前記カメラモデルの前記パラメータとを用いて、前記投影装置からの構造化光が投影された被写体を前記撮影装置で撮影した画像の画素座標から前記被写体の注目点の3次元座標を計算する計測方法である。
 本発明によれば、カメラパラメータを短時間に精度よく求めることができるという効果を奏する。
本発明の第1の実施形態に係る較正装置を模式的に示す全体構成図である。 図1の較正装置の較正チャートのパターンを示す図である。 本発明の第1の実施形態に係る較正方法のフローチャートを示す図である。 図1の較正装置のワールド座標と画素座標との関係を示す図である。 樽型の歪曲収差がある場合の画像例を示す図である。 歪曲収差がない場合の画像例を示す図である。 歪補正方法のフローチャートを示す図である。 図1の較正装置のz軸に対してカメラの光軸が傾斜している場合を示す図である。 本発明の第2の実施形態に係る較正方法を説明する図である。 本発明の第3の実施形態に係る較正装置を模式的に示す平面図である。 本発明の第4の実施形態に係る較正装置を模式的に示す平面図である。 本発明の一実施形態に係る計測方法を示すフローチャートである。 本発明の他の実施形態に係る計測方法を示すフローチャートである。
 本発明の第1の実施形態に係る較正装置およびカメラ較正方法について、図面を参照して以下に説明する。
 本実施形態に係る較正装置は、カメラ較正装置(第1の較正装置)1であって、撮像した画像を所定のフォーマットの画像ファイルとして外部に転送するカメラ(撮影装置)2を較正対象としている。本実施形態においては、光学装置の一例として、カメラ2を用いている。
 本実施形態に係るカメラ較正装置1は、図1に示されるように、較正対象であるカメラ2を固定するベース3と、該ベース3に設けられたz軸移動ステージ4と、該z軸移動ステージ4によって移動させられる可動部5に固定された較正チャート6と、カメラ2およびz軸移動ステージ4に接続されたコンピュータ7とを備えている。カメラ較正装置1の3次元の座標軸は図1のように定義されている。カメラ2を固定するベース3、較正チャート6およびz軸移動ステージ4により、較正データ取得部8が構成されている。
 z軸移動ステージ4は、モータ4aにより駆動され可動部5を直線的に移動させる直線駆動機構である。カメラ較正装置1においては、可動部5の移動方向をz軸とし、z軸に垂直な面内の水平方向および垂直方向をx軸およびy軸と定義している。
 座標原点の位置は任意で構わないが、本実施形態においてはカメラレンズ9の先端付近に定義されている。
 カメラ2は、その光軸がz軸に平行になるように、かつ、撮像面の水平方向および垂直方向がx軸およびy軸に平行になるように、かつ、座標原点がカメラ2の所定の位置と一致するように、ベース3に取り付けられるようになっている。
 較正チャート6は、カメラ較正で広く利用されている図2のチェスボード10であり、ベース3に固定されたカメラ2と正対するように、すなわち、z軸に垂直な面内に配置されるように可動部5に固定されている。較正チャート6は複数の特徴点を備えた図表であればどのようなものでも構わない。
 較正チャート6は、z軸移動ステージ4によってz軸方向の任意の位置に移動可能になっている。z軸移動ステージ4の可動部5の移動範囲は、カメラ較正が必要な物体距離(=カメラ2と撮像対象との距離)の範囲を包含している。
 コンピュータ7は、カメラ2の撮像を制御して、撮像された画像を所定のフォーマットの画像ファイルとして読み込むように機能する。また、コンピュータ7はz軸移動ステージ4を制御して、較正チャート6をz軸方向の所定の位置に移動するように機能する。さらにコンピュータ7は、取得された構成データにカメラモデルを当てはめてカメラパラメータを算出するパラメータ算出部としても機能する。
 ここで、図2を参照して、較正チャート6として使用されるチェスボード10について説明する。
 チェスボード10は、平面上に黒と白の正方形が正方格子を成すように並んだ市松模様のパターンを有する平板状部材であり、各正方形の頂点に相当する交点をカメラ較正の特徴点として利用するようになっている(以下、これらの特徴点を格子点11と呼ぶ。)。
 チェスボード10としては、カメラ較正に十分な数の格子点11がカメラ2の撮像範囲内に入るものが使用される。撮像されるチェスボード10の範囲は物体距離によって変化するが、各物体距離で少なくとも10×10個程度の格子点11が撮像されることが好ましい。また、撮像された格子点11の画素座標と較正チャート6上での格子点11のワールド座標との対応をとるために、較正チャート6の中央付近に1つの基準位置マーク12を設けている。
 この基準位置マーク12の右下最近傍の格子点(中央の格子点13)がz軸上に位置し、同時にチェスボード10の縦横がx軸およびy軸に平行になるように、チェスボード10をカメラ較正装置1に設置する。これにより、チェスボード10の正方格子の格子間隔とz軸移動ステージ4の移動位置とから、各格子点11,13のワールド座標(x,y,z)が既知の値として確定する。
 このように構成された本実施形態に係るカメラ較正装置1を用いたカメラ較正方法について以下に説明する。
 本実施形態に係るカメラ較正装置1を用いてカメラ2を較正するには、操作者は、初めに較正対象のカメラ2を座標軸の定義に従ってカメラ較正装置1に取り付け、コンピュータ7に接続する。その後に、コンピュータ7内部の測定プログラムを開始する。
 以下、測定プログラムにより、自動的に複数の物体距離の較正チャート6の画像がカメラ2によって撮像され、それらの画像から格子点11の画素座標が取得される。測定プログラムについて、図3のフローチャートを参照して説明する。
 測定が開始されると、まず、カメラ2を較正する物体距離の範囲のカメラ2に近い側の端に較正チャート6が位置するように、z軸移動ステージ4が移動される(ステップS1)。次に、カメラ2により較正チャート6が撮像され、その画像ファイルがコンピュータ7に転送される(ステップS2)。そして、所定回数の撮像が行われるまで、これらのステップS1,S2が繰り返される(ステップS3)。所定回数としては、例えば、5回以上の回数が設定されている。
 このとき、ステップS1では1回の繰り返しごとに、カメラ2から較正チャート6までの物体距離が所定の間隔で大きくなるようにz軸移動ステージ4により可動部5を移動させる。可動部5の移動量は等間隔でなくてもよいが、カメラ2を較正する物体距離の範囲内で少なくとも5カ所程度の異なる物体距離で較正チャート6を撮像することが好ましい。そして、所定の撮像枚数に達したら、次のステップS4に進む。
 ステップS1~S3でコンピュータ7に転送された複数の画像ファイルが画像処理されることにより、撮像範囲内の各格子点11の画素座標が求められ、各画像ファイルの基準位置マーク12の重心の画素座標が求められる(ステップS4)。なお、チェスボード10の格子点11の画素座標をサブピクセルで求める方法は、以下の文献等により公知なので、ここでの説明は省略する。G.Bradski,A.Kaehler(松田 晃一訳)「詳解 OpenCV-コンピュータビジョンライブラリを使った画像処理・認識」(オライリー・ジャパン,2009)p.325-326
 次いで、ステップS4で求めた各格子点11の画素座標が、較正チャート6上の格子点11のワールド座標に対応付けられる(ステップS5)。上述したように基準位置マーク12の右下最近傍の中央の格子点13はワールド座標のz軸上にあるので、それを基準にして各格子点11,13の画素座標とワールド座標とを対応付けることができる。最後に、対応付けられた全ての画素座標およびワールド座標が測定データファイルに書き出されて、測定が終了する。上記手順でカメラパラメータの最適化に必要な測定データが得られる。
 ここで、本実施形態において用いられるカメラモデルについて図4Aから図4Cを参照して説明する。図4Aは、カメラ2の画素座標と物体側の逆投影直線の関係を説明するカメラ2の断面図である。カメラ2は、レンズ15,16および開口絞り17を有する撮像光学系14と、撮像素子(画像変換素子とを備えている。
 物体側のワールド座標(x,y,z)を図1と同様に定義する。また、撮像素子18の撮像面に、撮像素子18の横方向および縦方向と平行に画素座標のu軸およびv軸を定義する。図4Aには、撮像光学系14を通して撮像素子18の各画素の中央に入射する主光線19が描かれている。
 主光線19とは、撮像光学系14の開口絞り17の中心を通る光線である。ここでは、1つの画素の中心に結像する像点20とその主光線19を例に、主光線19の概念を説明する。初めに、撮像素子18の撮像面と共役な平面21を考える。その平面21と主光線19の交点にある物点22は、撮像光学系14によって像点20に結像する。すなわち、物点22を通る全ての光線は、収差を無視すれば、像点20の1点に入射する。
 次に、共役な物点22から主光線19に沿って、撮像面と共役でない平面23上に移動した物点24を考える。共役でない物点24を通る各光線は像点20の1点に集まらないので、撮像面上の像点はボケて広がる。
 そのとき、コマ収差を無視すると、ボケ像は、開口絞り17の中心を通る主光線19の入射位置を中心に広がるので、ボケた像点の光強度の重心を取って像位置とするならば、像点20の位置は変わらない。したがって、物体側の主光線19上にある全ての物点22,24は、1つの像点20に結像する。言い換えると、物体側の主光線19は像点20の逆投影直線である。
 次に、瞳収差について説明する。開口絞り17をそれより物体側のレンズ15で結像した仮想的な開口が入射瞳25である。物体側の主光線群は入射瞳25の中心付近を通過するが、開口絞り17の場合と異なり、入射瞳25の中心の1点では交わらない。それは、開口絞り17と入射瞳25の結像関係にレンズ15の収差が介在するからである。これが瞳収差である。
 続いて、瞳収差に起因して、撮像光学系14の歪曲収差が物体距離によって変化することについて説明する。撮像光学系14の結像に樽型の歪曲収差があるとき、像側から物体側への逆方向の結像は糸巻き型の歪曲収差を伴う。すなわち、図4Cに示されるような撮像素子18の正方格子の画素配列26は、物体側の共役な平面21上に、図4Bに示されるような糸巻き型に歪んだ像27として結像する。
 ここで仮に、瞳収差が無く、物体側の全ての主光線19が入射瞳25の中心の1点で交わる状況を想定する。このとき、共役な平面21と平行な、共役でない平面23と図4Cに示される画素配列26の図形に対応する主光線群の交点は、図4Bに示されるような共役な平面21上の像27と相似な図形をなす。つまり、歪曲収差の形は物体距離によって変化しない。しかし、実際の撮像光学系14には瞳収差があるので、物体距離が変わると歪曲収差の形が変化することになる。
 このような状況に適合するように作成した、本発明のカメラモデルを説明する。初めに、撮像素子18上の像点20の画素座標(u,v)と共役な平面21上の物点22のワールド座標(x1,y1,z1)の結像関係を歪曲収差を含む結像式で表す。本実施形態では、数5のブラウンのモデルを基に、数6の結像式を定義する。
Figure JPOXMLDOC01-appb-M000006
 ここで、ブラウンのモデルから結像式への変更箇所は次のとおりである。(1)画素座標からワールド座標への横倍率を表す係数k0の項を追加した。(2)3次の動径歪曲k1と2次の接線歪曲(p1,p2)のみを考慮した。(3)ワールド座標に対する画素座標の横移動(Δu,Δv)を追加した。
 共役でない平面23上の物点24のワールド座標(x2,y2,z2)との結像関係も数6と同形の結像式で表される。ただし、物体距離の変化に伴って横倍率と歪曲収差が変わるので各係数は変化する。そこで、数7に示されるように、その結像式の各係数にプライムを付けた。
Figure JPOXMLDOC01-appb-M000007
 一方、物体側の主光線19は直線なので、x方向およびy方向の傾き(a,c)と切片(b,d)とによって、数8のように表される。
Figure JPOXMLDOC01-appb-M000008
 そして、物点22と物点24とは共通の主光線19上にあるので、数9および数10が成り立つ。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 ここで、係数(a,b,c,d)は画素座標(u,v)の関数であり、数9および数10において係数(a,b,c,d)は共通である。ここで、数6と数9、および、数7と数10の左辺はそれぞれ共通なので、それらの右辺はそれぞれ等しいという連立方程式が成り立つ。それを解いて係数(a,b,c,d)を求める。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 ただし、数11および数12の係数kA0,kB0は、数6および数7の係数k0,k′0と数13の関係にある。
Figure JPOXMLDOC01-appb-M000013
 数11および数12の他の係数と数6および数7の係数の関係も同様である。数11および数12を数8に代入して、数14の本実施形態のカメラモデルを得る。
Figure JPOXMLDOC01-appb-M000014
 このように、数14に示される本実施形態のカメラ較正装置1に用いられるカメラモデルは、画素座標に対応する物体側の逆投影直線を直接モデル化したものである。それは、歪曲収差を含むワールド座標と画素座標の結像関係を表す数6の線形モデルを基に構築される。そして、物体距離で変化する横倍率と歪曲収差を表現できるように、結像関係を表す数6の線形モデルの各係数をzの1次式で置き換えた形になっているという特徴がある。
 添え字Aを付けた数14の各係数は逆投影直線のz軸に対する傾きを表す。一方、(z=0のときに残る)添え字Bを付けた各係数は逆投影直線とz=0平面との交点、すなわち、切片を表す。
 また、本実施形態のカメラ較正装置1に用いられるカメラモデルのもう1つの特徴は、変数(u,v;z)からなる線形独立な2次元の基底関数ベクトルの線形和で物体座標ベクトル(x,y)を表すことにある。基底関数ベクトルの線形和なので、x座標とy座標を表すモデルの係数は共通である。そのため、各基底関数ベクトルの係数を全ての測定データから線形の最小二乗法で求めることができる。それを以下に述べる。
 まず、図3に示される上記測定プログラムにおいて、ワールド座標(x,y,z)と画素座標(u,v)の対応を表す測定データを求める。続いて、独立変数(u,v;z)と従属変数(x,y)の数14に示されるカメラモデルを、全ての格子点の測定データに線形の最小二乗法で当てはめて、数14のカメラモデルの各係数(カメラパラメータ)を求める。本実施形態のカメラ較正はこれで終了する。
 本実施形態で求めたカメラパラメータが設定されたカメラモデルを、それを搭載したカメラ2を含む撮影装置で次のように使うことができる。なお、撮影装置は、3次元のワールド座標の内の2つの座標値を算出するワールド座標算出部(図示省略)と、画素座標に対応するワールド座標空間の直線を算出する直線算出部(図示省略)と、歪みを補正した画像を生成する歪み補正画像生成部(図示省略)とをさらに備えている。
 第1に、物体距離zが既知のとき、ワールド座標算出部において、較正されたカメラ2で撮像した画像の注目する画素座標(u,v)と物体距離zとを数14のカメラモデルに代入することにより、上述した特徴点のワールド座標(x,y)を求めることができる。第2に、ワールド座標での逆投影直線を求めたいときには、直線算出部において、注目する画素座標(u,v)を数11および数12に代入することにより、逆投影直線の傾きと切片を求めることができる。
 第3に、較正されたカメラ2で撮像した画像の歪みを歪み補正画像生成部によって補正することができる。その方法を説明する。ワールド座標で表される物体は、カメラ2で撮像されて歪んだ画像になる。したがって、得られた画像を上述したカメラモデルでワールド座標に投影すれば、歪みを補正することができる。既知の物体距離zの平面上にある物体を撮像したときは、画素座標(u,v)と物体距離zを数14のカメラモデルに代入することにより、画素座標(u,v)をワールド座標(x,y)に投影できる。
 一方、そのような平面上にない物体を撮像した画像では、歪補正の基準物体距離を定義して、その物体距離zのワールド座標(x,y)に投影する。物体距離による歪曲収差の変化が小さければ、このような歪補正で十分である。ただし、ワールド座標に投影すると、画像が拡大あるいは縮小してしまう。そこで、投影したワールド座標を数14のカメラモデルの横倍率(kA0z+kB0)で規格化する。これにより、元の画像とほぼ等倍の歪補正画像を得ることができる。
 歪補正画像の作成は、歪補正後の画像の画素座標(整数)に対応する元の画像の画素値を、歪補正後の画素座標に代入する一連の手続きである。その手順を図5のフローチャートを参照して説明する。歪補正が開始されると、最初の歪補正後の画素座標(uc,vc)が決定される(ステップS11)。
 次いで、歪補正前の画素座標(u,v)に初期値(0,0)を与える(ステップS12)。なお、何らかの方法で歪補正後の画素座標(uc,vc)に対応する歪補正前の画素座標(u,v)を推定できるときは、それを初期値にしてもよい。
 歪補正前の画素座標(u,v)と歪補正の基準物体距離zを数14のカメラモデルに代入して、ワールド座標(x,y)を求める(ステップS13)。そして、求められたワールド座標(x,y)を横倍率(kA0z+kB0)で規格化して、画素座標(u′,v′)を求める(ステップS14)。
 求められた画素座標(u′,v′)と歪補正後の画素座標(uc,vc)の距離を求める(ステップS15)。求められた距離が所定の値より小さいときには、ステップS18に進む。それ以外のときには、歪補正前の画素座標(u,v)を更新するステップS17を経て、ステップS13に戻る(ステップS16)。
 繰り返し最適化のステップS13~S17は、滑降シンプレックス法などの一般的なアルゴリズムで実行できる。画素座標(u,v)の更新方法は、そのアルゴリズムに従う。
 繰り返し最適化が収束したときの歪補正前の画素座標(u,v)は、数14のカメラモデルを介して歪補正後の画素座標(uc,vc)に対応している。その画素座標(u,v)は一般に非整数である。そこで、その画素座標に近接する4つの画素の画素値からバイリニア補間で画素座標(u,v)の画素値を求める。そして、それを歪補正後の画素座標(uc,vc)の画素値とする(ステップS18)。なお、画素値の補間にはバイキュービック補間などの他の手法を採用してもよい。全ての歪補正後の画素座標(uc,vc)について、上記S11~S18を繰り返し(ステップS19)、歪補正を終了する。
 上述した第1から第3のカメラモデルの利用例では、画素座標に対応するワールド座標を数14のカメラモデルでその度に計算した。一方、それらを予め計算してデータ配列として保持しておくことにより、計算の高速化を図ることもできる。
 例えば、第2の利用例では、各画素座標に対応する逆投影直線の傾きと切片をそれぞれデータ配列として予め計算しておく。あるいは、2つの物体距離の平面と各画素座標に対応する逆投影直線の交点をデータ配列として予め計算しておく。そして、それらのデータ配列を補間して、注目する画素の逆投影直線を求めるようにしてもよい。他の利用例でも同様である。
 本実施形態では、平面のチェスボード10上に正方格子で並んだ格子点11,13の測定データでカメラ較正を実施した。しかし、較正チャート6上の特徴点は、格子点11,13以外のパターンでもよい。
 例えば、平面上に分布したドットマークを撮像して、その重心位置を画素座標とするような測定データの作成方法でもよい。さらに、本発明のカメラ較正で用いる特徴点は、ワールド座標空間に規則的に配列されている必要もない。特徴点の配置がランダムであっても、そのワールド座標と画素座標の対応を測定あるいはシミュレーション等で知ることができれば、それらに本発明のカメラモデルを線形の最小二乗法で当てはめることができる。
 このように、本実施形態のカメラ較正の測定データに要求される条件は、ワールド座標と画素座標との対応が明らかになっていることのみである。そのような測定データは、例えば、次のような方法でも取得可能である。まず、ワールド座標側にx,y,z軸方向に移動可能な点光源を用意する。それから、その点光源をカメラ2で撮像した画像の注目する画素座標に点光源の像が位置するように、点光源をx,y,z軸方向に移動する。そのような測定を繰り返すことによってもワールド座標と画素座標との対応を求めることができる。
 本実施形態では、3次の動径歪曲と2次の接線歪曲のみを考慮した数14のカメラモデルを採用した。しかし、歪曲収差がさらに大きいカメラ2を較正するときは、より高次の歪曲収差や回転非対称の歪曲の項を追加したカメラモデルも採用できる。その場合、撮像素子18の撮像面とそれと共役な平面21との結像関係を表す数6の結像式のような線形モデルを用意する。
 それから、この線形モデルの各係数を数14のカメラモデルのように、物体距離zの1次式で置き換えることにより、新たなカメラモデルを構築することができる。各係数を求める最適化の方法は本実施形態と同様である。
 逆に、カメラモデルから不要な項を省略することもできる。例えば、回転非対称な歪曲成分が常に無視できるほど小さいカメラ2を較正するときは、数14のカメラモデルの接線歪曲の項を省略した方がよい。それにより、格子点11の測定誤差によって、カメラモデルが無意味に変形して不正確になることを防止できる。他の項についても同様である。
 本実施形態では、ワールド座標(x,y,z)と画素座標(u,v)との対応を表す、全ての格子点11,13の測定データに線形の最小二乗法で当てはめて、数14のカメラモデルを求めた。一方、それとは異なる方法で、本実施形態のカメラモデルを求めることもできる。以下の2つの方法は、カメラ2による特徴点の結像関係をシミュレーションで求めてカメラモデルを作成する場合に特に有効である。
 1つ目は、ワールド座標の2つの平面上の特徴点とそれに対応する画素座標のデータを用いる方法である。初めに、第1の平面上の複数の特徴点のワールド座標と画素座標の対応を表すデータに、線形の最小二乗法で数6の結像式を当てはめる。次に、第2の平面上の特徴点についても同様に、数7の結像式を当てはめる。そして、両者の係数から数13によって、数14のカメラモデルの各係数を求めることができる。
 2つ目は、逆投影直線の傾きと切片のモデルを個別に算出する方法である。上記の2つの平面のうち1つをワールド座標のz=0平面にして、複数の画素座標から光線追跡した主光線との交点を求めると、逆投影直線の切片のデータが得られる。それに数12を当てはめると、本実施形態のカメラモデルの添え字Bを付けた切片の係数を求めることができる。
 さらに、同じ複数の画素座標から光線追跡した主光線ともう1つの平面の交点を求めると、各画素座標に対応する逆投影直線の傾きのデータが得られる。それに数11を当てはめると、本実施形態のカメラモデルの添え字Aを付けた傾きの係数を求めることができる。このようにして、数14のカメラモデルの各係数を求めてもよい。
 このように、本実施形態に係るカメラ較正装置1およびカメラ較正方法によれば、本実施形態のカメラモデルによって、撮像光学系14の瞳収差を的確にモデル化することができる。さらに、回転非対称な歪曲収差と瞳収差もモデル化できる。それにより、物体距離で変化する歪曲収差とそれを反映した逆投影直線群を正確に表現でき、カメラモデルの精度を向上させることができる。
 また、本実施形態のカメラ較正装置1およびカメラ較正方法に用いられるカメラモデルは線形モデルなので、線形の最小二乗法で測定データに当てはめることができる。したがって、繰り返し最適化を用いる従来例と異なり、最適化の失敗が無く、かつ計算時間を大幅に短縮することができる。
 また、本実施形態のカメラ較正装置1およびカメラ較正方法に用いる特徴点は規則的に配列している必要がない。したがって、ワールド座標と画素座標の対応さえ明確にできれば、較正されるカメラ2に適した任意の測定あるいは計算による取得方法を選択することが可能になる。
 次に、本発明の第2の実施形態に係るカメラ較正方法について、図面を参照して以下に説明する。第1の実施形態においては、図1のように較正されるカメラ2の光軸がカメラ較正装置1のz軸と平行であり、かつ撮像面の水平方向と垂直方向がx軸とy軸と平行であるときのカメラ較正の方法を説明した。本実施形態では、その条件を満たさないときのカメラ較正の方法を説明する。
 ワールド座標に対するカメラ2の位置と姿勢には、数2の3軸の回転行列Rと平行移動ベクトルTの合計6つの自由度がある。このうち、x,y,z軸方向の平行移動は、数14のカメラモデルの係数ΔuB,ΔvBおよび添え字Bを付けた切片を表す各係数の項で表すことができる。
 残る3つの自由度、すなわちx,y,z軸回りの回転は、それらが大きくなると、数14のカメラモデルでは表現できなくなる。このことを図6Aおよび図6Bを参照して説明する。図6Aは、図1のカメラ較正装置1の側面からの概略図である。カメラ2は、カメラ較正装置1で定義されるワールド座標のx軸回りに回転して取り付けられている。そのため、撮像光学系14の光軸はワールド座標のz軸に平行にはなっていない。
 また、図6Aには複数の物体距離に移動した較正チャート6とその格子点11が描かれている。このとき、正方格子に並んだ格子点11の格子配列28は、撮像素子18の撮像面上に台形歪曲を伴う像29の形で結像する。
 一般に、微小な台形歪曲は数14のカメラモデルの接線歪曲の項に吸収されてしまうことが知られている。しかし、x,y軸回りの回転角が大きくなり、それに伴う台形歪曲も大きくなると、数14のカメラモデルとの乖離が顕著になる。
 その結果、格子点11のワールド座標と画素座標の測定データに数14のカメラモデルを当てはめたときの残差が大きくなり、得られたカメラモデルも不正確になる。その対策について、図6Bを用いて説明する。
 図6Bは、ワールド座標の座標軸をx軸回りに回転して、回転後のz′軸が撮像光学系14の光軸に平行になった状態を図示している。このとき、格子点11は回転後のz′軸方向からの見かけ上、台形状の格子配列30になる。そのため、回転後のワールド座標の座標値に変換した格子点11のワールド座標(x′,y′,z′)と格子点11が結像する画素座標(u,v)との関係は、歪曲収差を無視すると、台形格子30から台形格子31への相似な結像関係になる。その結果、数14のカメラモデルが良好に当てはまるようになる。
 回転前の格子点11のワールド座標(x,y,z)から回転後のワールド座標(x′,y′,z′)への変換は、x,y,z軸回りの回転角θx,θy,θzによる回転行列で数15のように表される。
Figure JPOXMLDOC01-appb-M000015
 そこで、第2の実施形態では、図6Aの配置で測定した複数の格子点11のワールド座標(x,y,z)と画素座標(u,v)の対応を表す測定データのうち、ワールド座標のみを数15で(x′,y′,z′)に変換してから、数14のカメラモデルを当てはめる。
 そして、その残差が最小になるように回転角θx,θy,θzを最適化する。一般に、図6Bのように、撮像光学系14の光軸と回転後のz′軸が平行になり、かつ撮像面の水平方向と垂直方向がx軸とy軸と平行になるとき、数14のカメラモデルの残差が最小になる。
 次に、第2の実施形態に係るカメラ較正方法を用いてカメラモデルを最適化する手順を説明する。初めに、第1の実施形態と同様にして、ワールド座標(x,y,z)と画素座標(u,v)との対応を表す測定データを求める。
 次に、測定データの画素座標(u,v)と回転後のワールド座標(x′,y′,z′)に、数14のカメラモデルを線形の最小二乗法で当てはめたときの残差の標準偏差を評価関数として、最適化パラメータである回転角θx,θy,θzを繰り返し最適化する。回転角θx,θy,θzの初期値はゼロでよい。あるいは、何らかの方法でカメラ2の回転角を推定できるときは、それを初期値にしてもよい。
 この繰り返し最適化は、滑降シンプレックス法などの一般的なアルゴリズムで実行できる。評価関数が最小値に収束したときの回転角θx,θy,θzが最適な回転角である。最適な回転角とその回転角でのカメラモデルの各係数を取得して、カメラ較正を終了する。
 本実施形態に係るカメラ較正方法を用いて求めたカメラパラメータが設定されたカメラモデルを、それを搭載したカメラ2を含む撮影装置で第1の実施形態と同様に利用することができる。ただし、注目する画素座標から数14のカメラモデルで得られるワールド座標は、回転後のワールド座標(x′,y′,z′)である。用途によっては、注目する画素座標に対応する回転前のワールド座標あるいは逆投影直線を求めたい場合もある。この場合には、カメラ2を含む撮影装置が、回転後のワールド座標(x′,y′,z′)を回転前(x,y,z)のワールド座標に変換するワールド座標回転部(図示省略)を備えている。
 これは、例えば、以下の手順で実現できる。初めに、回転後の適当な2つの物体距離z1′とz2′で画素座標に対応するワールド座標(x1′,y1′)と(x2′,y2′)を数14のカメラモデルで求める。次に、それら2つのワールド座標(x1′,y1′,z1′)と(x2′,y2′,z2′)を、ワールド座標回転部によって、最適な回転角θx,θy,θzによる数15の逆変換で回転前のワールド座標(x1,y1,z1)と(x2,y2,z2)に変換する。
 変換により求められた2点を通る直線が回転前のワールド座標の逆投影直線である。その逆投影直線に回転前の物体距離zを代入すると、画素座標に対応する回転前のワールド座標(x,y)を求めることができる。
 本実施形態では、3つの回転角θx,θy,θzを最適化した。しかし、それらの中のいくつかの回転角が既知のときは、それらを既知の値で固定して、最適化パラメータから外してもよい。そのときは、残りの未知の1つあるいは複数の回転角のみを最適化すればよい。このようにすると最適化パラメータの数が減るので、計算時間を短縮することができる。
 なお、3次元座標の3つの回転角の定義には任意性がある。本実施形態ではx,y,z軸回りの回転角という定義を採用して説明した。しかし、それ以外の定義であっても本発明を適用できることは言うまでもない。
 このように、本実施形態に係るカメラ較正方法によれば、ワールド座標に対するカメラ2の位置と姿勢が適切にアライメントされていない場合でも、高精度なカメラモデルを取得することができる。また、歪曲収差などの多くのカメラパラメータが必要な場合でも、繰り返し最適化のパラメータ数は3つ以下の回転角に限定されるので、カメラモデルの最適化の失敗が無く、かつ計算時間を大幅に短縮することができる。
 次に、本発明の第3の実施の形態に係るカメラ較正装置32およびカメラ較正方法について、図面を参照して以下に説明する。本実施形態に係るカメラ較正装置32は、3次元形状復元を目的とした多視点カメラ33,34,35の較正に適用するものである。以下、3台からなる多視点カメラの較正を例示して説明するが、それ以外の台数のカメラの較正にも適用できる。
 本実施形態に係るカメラ較正装置32においては、図7に示されるように、較正対象の3台のカメラ33,34,35が、多視点カメラの使用条件と同じ配置でカメラ固定台36に固定される。そして、各々のカメラ33,34,35が較正チャート6を撮像できるように、カメラ固定台36がカメラ較正装置32に取り付けられるようになっている。較正チャート6とz軸移動ステージ4、コンピュータ7など、それ以外の構成は図1と同様であり、説明を省略する。
 このように構成された本実施形態に係るカメラ較正装置32の作用について、以下に説明する。本実施形態に係るカメラ較正装置32の動作は、第1の実施形態に係るカメラ較正装置1と同様である。初めに、図3のフローチャートの測定プログラムにより、自動的に複数の物体距離の較正チャート6の画像がカメラ33,34,35によって撮像され、その画像から較正チャート6の格子点11の画素座標が取得される。ただし、図3のフローチャートのステップS2,S4,S5は3台のカメラに対してそれぞれ実行される。
 続いて、各カメラ33,34,35の上記の測定データから、各カメラ33,34,35のカメラモデルが求められる。その手順は、カメラ33,34,35の光軸がカメラ較正装置32のz軸とほぼ平行であり、かつ、撮像面の水平方向と垂直方向がx軸とy軸と平行であるときは第1の実施形態と同様であり、そうでないときは第2の実施形態と同様に最適な回転角θx,θy,θzも併せて最適化する。
 本実施形態に係るカメラ較正装置32で求めたカメラパラメータを設定した各カメラモデルを、それらを搭載した各カメラ33,34,35を含む撮影装置で第1および第2の実施形態と同様に利用することができる。特に、各カメラ33,34,35の画素座標に対応するワールド座標あるいは逆投影直線を1つの共通なワールド座標で扱いたい用途では、第2の実施形態で述べた回転前のワールド座標あるいは逆投影直線を求める手順を適用すればよい。
 なお、多視点の各カメラ33,34,35の測定データを必ずしも同時に測定する必要は無い。例えば、図3のフローチャートの測定プログラムを各カメラに対して個別に順次、実行してもよい。さらに、各カメラ33,34,35の測定データを測定するときに、較正チャート6が測定対象の各カメラに正対するようにz軸移動ステージ4の設置位置をカメラ較正装置32上で変更してもよい。
 ただし、その設置位置の変更量を把握して、それを較正チャート6の格子点11のワールド座標に反映した測定データを作成する必要がある。このようなカメラ較正方法は、多視点カメラ33,34,35が観察領域を取り囲むように配置されているために、1方向に固定された較正チャート6を撮像できないカメラが存在する場合に有効である。
 このように本実施形態に係るカメラ較正装置32およびカメラ較正方法によれば、多視点カメラ33,34,35を使用条件と同じ配置でカメラ較正できる。そして、各カメラ33,34,35の画素座標に対応するワールド座標あるいは逆投影直線を、1つの共通なワールド座標で取り扱うことができるという利点がある。
 次に、本発明の一実施形態に係る計測システムおよび計測方法について、図面を参照して説明する。
 本実施形態に係る計測システムは、図7に示されるように、第3の実施形態に係るカメラ較正装置32と、多視点カメラ33,34,35と、3次元座標計算処理部(コンピュータ7)とを備えている。
 カメラ較正装置32を用いてカメラ較正を実行することで、多視点カメラ33,34,35のそれぞれのカメラパラメータを設定した各カメラモデルが、数14から求められる。
 コンピュータ7に内蔵された3次元座標計算処理部は、下記のステップの計算処理で多視点カメラ33,34,35によって撮影された被写体の表面上の注目点のワールド座標を計算する。多視点カメラ33,34,35のそれぞれの光軸が平行と見なせる場合は、図9に示す通りとなる。
 ステップS101:多視点カメラ33,34,35によって撮影された3枚の被写体画像I33,I34,I35を取り込む。
 ステップS102:ユーザが画像I34上で指定した各画素の画素座標に対応する画像I33の画素の画素座標を対応点探索処理で求める。
 ステップS103:I34で指定した画素座標とカメラ34のカメラパラメータを数14に代入した式と、ステップS102で求めたI33の対応する画素の座標とカメラ33のカメラパラメータを数14に代入した式とで連立方程式を解き、画像I34の各画素に対応する被写体表面上の注目点のワールド座標Aを求める
 ステップS104:画像I34の各画素に対応する画像I35の画素の画素座標を対応点探索処理で求める。
 ステップS105:I34で指定した画素座標とカメラ34のカメラパラメータを数14に代入した式と、ステップS104で求めたI35の対応する画素の座標とカメラ35のカメラパラメータを数14に代入した式とで連立方程式を解き、画像I34の各画素に対応する被写体表面上の注目点のワールド座標Bを求める。
 ステップS106:画像I34の各画素について、ワールド座標A,Bの2点間距離D1を求める。
 ステップS107:画像I34の各画素について、2点間距離D1が所定の閾値以下あるか否かを判定する。
 ステップS108:閾値以下であれば、ワールド座標A,Bは、どちらもその誤差が小さいとみなし、2つのワールド座標A,Bの中点の座標を対応する被写体の表面上の注目点のワールド座標とする。

 ステップS109:閾値より大きい場合には対応する被写体の表面状の注目点は「結果なし」とするか、誤差が大きいとの警告情報つきのワールド座標とする。
 画像間の対応点探索処理にはブロックマッチングに代表される画像の輝度値の分布の類似度を評価するアルゴリズムを用いる。類似度の計算方法は計算速度と計算精度の要求に合わせて差の2乗和SSD、差の絶対値の和SAD、正規化相互相関NCC、ゼロ平均正規化相互相関ZNCC等の複数の計算手法を用いることができる。カメラ33,34,35毎の撮影される画像の明るさの差に対するロバスト性を考慮すると、ZNCCが望ましい。また、計算時間とのバランスからこれら複数の類似度計算手法から選択できるようにしてもよい。
 また、対応点探索処理に用いる画像I33、I34、I35には第1の実施例で示した歪補正処理を適用することが望ましい。歪補正処理を適用した画像上で対応点探索処理を行うことで、カメラ間の光学特性の差の影響を低減したより精度の高い対応点座標を求めることができる。
 ステップS105においては、連立方程式は、まずxとzの式で解き、求めたzを用いてyを求める。yを求める式は、画素の指定に用いる画像I34に対応したカメラ34のカメラパラメータを設定した数14によるカメラモデルを用いる。多視点カメラ33,34,35のそれぞれの光軸が平行と見なせない場合は、較正の段階で第2の実施形態と同様の方法で求めておいた回転角もカメラパラメータとして用いて、多視点カメラ33,34,35のそれぞれのカメラパラメータを設定した数14と数15によるカメラモデルとなる。数15でワールド座標を補正してから数14の連立方程式を解く。
 ステップS108においては、2つのワールド座標A,Bの中点のワールド座標を用いることで、求めるワールド座標の誤差をさらに小さくする効果がある。
 ここでは、3視点のカメラを例として挙げたが、2視点のカメラであってもよい。その場合、上記のステップS104以降の処理は不要となる。
 なお、各ステップの説明ではユーザが画像I34上で指定した画素についてワールド座標を計算しているが、画像I34に対して実行される特徴点抽出処理によって特徴があると判定された複数の画素について自動的にワールド座標を計算するようにしてもよいし、計算資源の制約が小さい場合には画像I34の全ての画素について計算するようにしてもよい。
 次に、本発明の第4の実施形態に係る較正装置について、図8を参照して以下に説明する。本実施形態に係る較正装置は、プロジェクタ較正装置(第2の較正装置)37であって、その内部に液晶素子などの画像形成素子(画像変換素子:図示省略)と、投影光学系(光学系:図示省略)とを備えており、その画像を外部へ投影するプロジェクタ(投影装置)38を較正するための装置である。本実施形態においては、光学装置の一例として、プロジェクタ38を用いている。
 プロジェクタ較正装置37は、較正対象のプロジェクタ38を固定するベース39と、該ベース39に設けられたz軸移動ステージ4と、該z軸移動ステージ4の可動部5に固定された較正チャート6と、プロジェクタ38と隣接する位置に配置され、較正チャート6の像を撮影するカメラ2とを備えている。カメラ2とプロジェクタ38とは、それらの光軸がプロジェクタ較正装置37のz軸と平行になるように、かつ、プロジェクタ38の所定の位置が座標原点と一致するように、プロジェクタ較正装置37に取り付けられるようになっている。
 なお、カメラ2の撮像範囲はプロジェクタ38の画像投影範囲を包含していることが好ましい。較正チャート6とz軸移動ステージ4、コンピュータ7など、それ以外の構成は図1と同様である。ただし、本実施形態において使用される較正チャート6としては、図2のチェスボード10と無地のスクリーンとを交換可能になっている。また、コンピュータ7は、プロジェクタ38を制御して、所定の画像をプロジェクタ38に投影させる機能を併せ持っている。
 このように構成された本実施形態に係るプロジェクタ較正装置37を用いてプロジェクタ38を較正するには、初めに、図2のチェスボード10を較正チャート6として設置した状態で、カメラ2を較正する。その手順は第1の実施形態と同様である。
 続いて、較正チャート6を無地のスクリーンに交換する。そして、プロジェクタ38から、投影光学系を通して図2のチェスボード10のパターンを較正チャート6に投影する。このとき、プロジェクタ38内部の画像形成素子(図示省略)上で定義される画素座標において、チェスボード10の各格子点11,13の画素座標は既知である。
 この状態で、第1の実施形態と同様に、図3のフローチャートの測定プログラムにより、自動的に複数の物体距離でチェスボード10のパターンが投影された較正チャート6の画像がカメラ2によって撮像され、その画像からチェスボード10のパターンの格子点11の画素座標が取得される。
 この後に、取得された画素座標(u,v)と較正チャート6の物体距離zとから、前記の手順で較正されたカメラ2のカメラモデルで、較正チャート6上に投影されたチェスボード10のパターンの格子点11のワールド座標(x,y)を求める。以上の手順で、プロジェクタ38の画素座標(u,v)とワールド座標(x,y,z)との対応を表す測定データが得られる。その測定データに数14のカメラモデルを当てはめて、プロジェクタ38のカメラパラメータを求める方法は第1の実施形態と同様である。
 このようにして求められたプロジェクタ38のカメラパラメータを設定したカメラモデルを、それを搭載したプロジェクタ38で次のように使うことができる。第1に、物体距離zが既知のとき、注目する特徴点の画素座標(u,v)と物体距離zとを数14のカメラモデルに代入することにより、較正されたプロジェクタ38で投影された特徴点のワールド座標(x,y)を求めることができる。第2に、注目する画素座標(u,v)に対応するワールド座標での投影直線を求めたいときは、注目する画素座標(u,v)を数11および数12に代入することにより、投影直線の傾きと切片を求めることができる。
 第3に、歪みが無い画像を投影したいときは、プロジェクタ38の画像形成素子で形成する画像に、投影で生じる歪みを相殺するような画像歪みを予め加えておけばよい。そのような歪補正画像の画素座標を求める手順は、図5に示される第1の実施形態のフローチャートと同様である。
 なお、プロジェクタ38で投影するパターンはチェスボード10に限らない。カメラ2で撮像した画像から特徴点の画素座標を算出できる、ドットマークなどのパターンも適用可能である。あるいは、プロジェクタ38の離散した各画素を点灯する方法でもよい。
 また、本実施形態では、プロジェクタ38で投影された特徴点のワールド座標(x,y)を、予め較正したカメラ2で測定した。その測定は、較正チャート6の代わりに撮像素子を設置して、投影されたパターンを直接撮像する、という方法でも実現可能である。さらに、ワールド座標と画素座標の対応さえ明確にできれば、それ以外の取得方法も選択可能である。このように、本実施形態に係るプロジェクタ較正装置37によれば、プロジェクタ38をカメラモデルによって較正することができる。
 次に、本発明の他の実施形態に係る計測システムおよび計測方法について、図面を参照して説明する。
 本実施形態に係る計測システムは、第4の実施形態に係るプロジェクタ較正装置37と、プロジェクタ38と、3次元座標計算処理部(コンピュータ7)とを備えている。
 プロジェクタ較正装置37を用いてプロジェクタ38の較正を実行することで、プロジェクタ38のカメラパラメータを設定したカメラモデルが、数14により求められる。第4の実施形態のカメラ2に対して第2の実施形態のカメラ較正を実行することで、カメラ2のカメラパラメータを設定したカメラモデルが数14により求められる。
 プロジェクタ38が投影するパターンはランダムドットパターン画像I38とする。コンピュータ7に内蔵された3次元計算処理部は、下記のステップの計算処理でカメラ2によって撮影された被写体の表面上の注目点のワールド座標を計算する。ランダムドットパターンは、公知の方法で生成できる。また、M系列に代表される疑似乱数系列を2次元に配列することで作成してもよい。
 プロジェクタ38とカメラ2の光軸がほぼ平行に配置されている場合には、計測方法は図10に示す通りである。
 ステップS111:プロジェクタ38によってパターン(構造化光)を投影された被写体をカメラ2で撮影した被写体画像I2を取り込む。
 ステップS112:ユーザが画像I2上で指定した各画素に対応する画像I38の画素の画素座標を対応点探索処理で求める。
 ステップS113:I2で指定した画素座標とカメラ2のカメラパラメータを数14に代入した式と、ステップS112で求めたI38の対応する画素の座標とプロジェクタ38のカメラパラメータを数14に代入した式とで連立方程式を解き、画像I2の各画素に対応する被写体表面上の注目点のワールド座標を求める。
 ステップS113においては、連立方程式は、まずxとzの式で解き、求めたzを用いてyを求める。yを求める式は画素の指定に用いるI2に対応したカメラ2のカメラパラメータを設定した数14のカメラモデルを用いる。プロジェクタ38とカメラ2の光軸が平行と見なせない場合は、較正の段階で第2の実施形態と同様の手順で求めておいたそれぞれの回転角もカメラパラメータとして用いて、プロジェクタ38とカメラ2の数14と式15によるカメラモデルとなる。式15でワールド座標を補正してから式14の連立方程式を解く。
 ここでは、プロジェクタ38はパターンとして一種類の疑似ランダムパターンを投影する例を挙げたが、位相をずらした複数の縞を時間差で投影した複数枚の被写体画像を用いる位相シフト方式や、複数の解像度の2値パターンを投影した複数枚の画像を用いる空間コード化方式であってもよい。また、プロジェクタ38が1台の例を挙げたが、ひとつのカメラ2に対して複数のプロジェクタ38、あるいは複数のカメラ2に対して複数のプロジェクタ38があってもよい。
 なお、各ステップの説明ではユーザが画像I2上で指定した各画素についてワールド座標を計算しているが、画像I2に対して実行される特徴点抽出処理によって特徴があると判定された複数の画素について自動的に3次元座標を計算するようにしてもよいし、計算資源の制約が小さい場合には画像I2の全ての画素について計算するようにしてもよい。
 次に、本発明の第5の実施形態に係るカメラ較正方法について、図1、図4Aおよび図6Aを参照して以下に説明する。
 第1から第4の実施形態においては、較正されるカメラ2の瞳収差を無視できないときのカメラ較正の方法を説明した。本実施形態では、瞳収差を無視できるときのカメラ較正の方法を説明する。
 カメラ2の瞳収差を無視できることは、全ての逆投影直線が入射瞳25の中心の1点で交わることと等価である。従って、数14のカメラモデルから添え字Bを付けた各係数を省略した、数16のカメラモデルでカメラ2を較正できる。
Figure JPOXMLDOC01-appb-M000016
 ただし、図4Aの入射瞳25の中心とワールド座標(x,y,z)の原点は必ずしも一致していない。そこで、両者の平行移動を表す数2の平行移動ベクトルTで、格子点11のワールド座標(x,y,z)を数17のようにワールド座標(x′,y′,z′)に変換すると、数16のカメラモデルに当てはまるようになる。
Figure JPOXMLDOC01-appb-M000017
 すなわち、第5の実施形態では、図1の配置で測定した複数の格子点11のワールド座標(x,y,z)と画素座標(u,v)の対応を表す測定データのうち、ワールド座標のみを数17で(x′,y′,z′)に変換してから、数16のカメラモデルを当てはめる。
 次に、第5の実施形態に係るカメラ較正方法を用いてカメラモデルを最適化する手順を説明する。
 初めに、第1の実施形態と同様にして、ワールド座標(x,y,z)と画素座標(u,v)との対応を表す測定データを求める。次に、測定データの画素座標(u,v)と平行移動後のワールド座標(x′,y′,z′)に、数16のカメラモデルを線形の最小二乗法で当てはめたときの残差の標準偏差を評価関数として、最適化パラメータである平行移動ベクトルの成分tx,ty,tzを繰り返し最適化する。
 平行移動ベクトルの成分tx,ty,tzの初期値はゼロでよい。あるいは、何らかの方法でそれらを推定できるときは、それを初期値にしてもよい。
 この繰り返し最適化は、滑降シンプレックス法などの一般的なアルゴリズムで実行できる。評価関数が最小値に収束したときの平行移動ベクトルの成分tx,ty,tzが最適な平行移動ベクトルである。
 このようにして求めた数16のカメラモデルは、平行移動後のワールド座標(x′,y′,z′)におけるカメラモデルである。その数16のカメラモデルは、最適化した平行移動ベクトルの成分tx,ty,tzと数17を用いて、元のワールド座標(x,y,z)における数14のカメラモデルの形式に変換できる。
 したがって、本実施形態に係るカメラ較正方法を用いて求めたカメラパラメータが設定されたカメラモデルを、それを搭載したカメラ2を含む撮影装置で第1から第4の実施形態と同様に利用することができる。
 本実施形態では、3つの平行移動ベクトルの成分tx,ty,tzを最適化した。しかし、それらの中のいくつかの平行移動成分が既知のときは、それらを既知の値で固定して、最適化パラメータから外してもよい。そのときは、残りの未知の1つあるいは複数の平行移動成分のみを最適化すればよい。このようにすると最適化パラメータの数が減るので、計算時間を短縮することができる。
 また、本実施形態を第2の実施形態と併用することも可能である。すなわち、図6Aのようにワールド座標軸に平行でないカメラ2を、瞳収差を無視した数16のカメラモデルで較正するときは、数16のカメラモデルを線形の最小二乗法で当てはめたときの残差の標準偏差を評価関数として、最適化パラメータである平行移動ベクトルの成分tx,ty,tzおよび回転角θx,θy,θzの中から必要な成分を繰り返し最適化すればよい。
 このように、本実施形態に係るカメラ較正方法によれば、瞳収差を無視できるカメラ2を較正する場合に、カメラパラメータの数を減らすことができる。また、歪曲収差などの多くのカメラパラメータが必要な場合でも、繰り返し最適化のパラメータ数は3つ以下の平行移動成分および3つ以下の回転角に限定されるので、カメラモデルの最適化の失敗が無く、かつ計算時間を大幅に短縮することができる。
 また、本発明の第1から第5の実施形態において、カメラ2あるいはプロジェクタ38のフォーカス、ズーム、絞りなどの設定変更にそれぞれ対応した、複数のカメラ較正を実施することにしてもよい。また、それらのカメラモデルを補間して、任意の設定に対応したカメラモデルを求めることにしてもよい。
 さらに、光源の複数の波長の下で、カメラ較正を実施することにしてもよい。また、波長別の画像を撮影するカメラで、波長別のカメラモデルを使用することにしてもよい。また、本発明の第1から第5の実施形態に記載の光学装置において、画像変換素子の一例として、撮像素子18や画像形成素子を用いたが、これに限られるものではなく、画像と映像信号とを相互に変換するものであればよい。
1,32 カメラ較正装置(較正装置)
2 カメラ(撮影装置、光学装置)
7 コンピュータ(パラメータ算出部)
8 較正データ取得部
14 撮像光学系(光学系)
15,16 レンズ(光学系)
18 撮像素子(画像変換素子)
37 プロジェクタ較正装置(較正装置)
38 プロジェクタ(投影装置、光学装置)

Claims (35)

  1.  複数の画素を有する2次元の画像変換素子と、該画像変換素子と3次元のワールド座標空間との間で結像関係を形成する光学系とを備える光学装置の較正装置であって、
     前記画像変換素子の2次元の画素座標と、前記ワールド座標空間の3次元のワールド座標との対応を示す較正データを取得する較正データ取得部と、
     該較正データ取得部により取得された較正データに、前記3次元のワールド座標の内の2つの座標値を、他の1つのワールド座標の座標値および前記2次元の画素座標の2つの座標値の関数として表したカメラモデルを当てはめて、該カメラモデルのパラメータを算出するパラメータ算出部とを備える較正装置。
  2.  前記カメラモデルが、前記他の1つのワールド座標の座標値と前記2次元の画素座標の2つの座標値の関数を要素とした複数の2次元ベクトル関数の線形和によって、前記ワールド座標空間の直線を表す請求項1に記載の較正装置。
  3.  前記カメラモデルが、前記2次元の画素座標平面上の点の2つの画素座標値と、前記光学系によって前記画素座標平面と光学的に共役な平面上の点の2つのワールド座標値との結像関係を表す線形の結像モデルの各係数を、前記他の1つのワールド座標の1次式で置換した数式で表現される請求項2に記載の較正装置。
  4.  前記較正データ取得部が、前記ワールド座標空間の2つの平面上のそれぞれの点の各3つの座標値と、前記それぞれの点に対応する前記2次元の画素座標の2つの座標値との対応を表す較正データを複数取得する請求項1に記載の較正装置。
  5.  前記パラメータ算出部が、前記ワールド座標空間の2つの平面上のそれぞれの点の各3つの座標値と、前記それぞれの点に対応する前記2次元の画素座標の2つの座標値との対応を表す複数の較正データに、前記カメラモデルを当てはめる請求項1に記載の較正装置。
  6.  前記較正データ取得部が、前記2次元の画素座標の2つの座標値と、前記ワールド座標の直線の傾きおよび切片との対応を表す複数の較正データを取得する請求項1に記載の較正装置。
  7.  前記パラメータ算出部が、前記カメラモデルを線形の最小二乗法で前記較正データに当てはめる請求項1から請求項6のいずれかに記載の較正装置。
  8.  前記パラメータ算出部が、前記較正データ取得部により取得された較正データの内、3次元のワールド座標を、該ワールド座標の回転を表す3つの回転角の1以上の回転角で回転したワールド座標に変換した較正データに、前記カメラモデルを当てはめて、該カメラモデルの残差が最小になる1以上の回転角を求める請求項1に記載の較正装置。
  9.  前記パラメータ算出部が、前記較正データ取得部により取得された較正データの内、3次元のワールド座標を、該ワールド座標の平行移動を表す3つの平行移動成分の1以上の成分で平行移動したワールド座標に変換した較正データに、前記カメラモデルを当てはめて、該カメラモデルの残差が最小になる1以上の平行移動成分を求める請求項1または請求項8に記載の較正装置。
  10.  前記光学装置が、複数の画像変換素子および該画像変換素子と3次元のワールド座標空間との間で結像関係を形成する光学系を備え、
     前記較正データ取得部が各前記画像変換素子および前記光学系の較正データを取得し、
     前記パラメータ算出部が、各前記画像変換素子および前記光学系の較正データに、各該画像変換素子の2次元の画素座標の関数として表したカメラモデルを当てはめる請求項1から請求項9のいずれかに記載の較正装置。
  11.  前記光学装置が撮影装置であり、
     前記画像変換素子が撮像素子であり、
     前記光学系が撮像光学系である請求項1から請求項10のいずれかに記載の較正装置。
  12.  前記光学装置が投影装置であり、
     前記画像変換素子が画像形成素子であり、
     前記光学系が投影光学系である請求項1から請求項10のいずれかに記載の較正装置。
  13.  複数の画素を有する2次元の画像変換素子と、該画像変換素子と3次元のワールド座標空間との間で結像関係を形成する光学系とを備える光学装置の前記画像変換素子の2次元の画素座標と、前記ワールド座標空間の3次元のワールド座標との対応を示す較正データを取得するステップと、
     取得された較正データに、前記3次元のワールド座標の内の2つの座標値を、他の1つのワールド座標の座標値および前記2次元の画素座標の2つの座標値の関数として表したカメラモデルを当てはめて、該カメラモデルのパラメータを算出するステップとを含む較正方法。
  14.  前記カメラモデルが、前記他の1つのワールド座標の座標値と前記2次元の画素座標の2つの座標値の関数を要素とした複数の2次元ベクトル関数の線形和によって、前記ワールド座標空間の直線を表す請求項13に記載の較正方法。
  15.  前記カメラモデルが、前記2次元の画素座標平面上の点の2つの画素座標値と、前記光学系によって前記画素座標平面と光学的に共役な平面上の点の2つのワールド座標値との結像関係を表す線形の結像モデルの各係数を、前記他の1つのワールド座標の1次式で置換した数式で表現される請求項14に記載の較正方法。
  16.  前記較正データを取得するステップが、前記ワールド座標空間の2つの平面上の2つの座標値と、前記2次元の画素座標の2つの座標値との対応を表す複数の較正データを取得する請求項13に記載の較正方法。
  17.  前記パラメータを算出するステップが、前記ワールド座標空間の2つの平面上の2つの座標値と、前記2次元の画素座標の2つの座標値との対応を表す複数の較正データに、前記カメラモデルを当てはめる請求項13に記載の較正方法。
  18.  前記較正データを取得するステップが、前記2次元の画素座標の2つの座標値と、前記ワールド座標の直線の傾きおよび切片との対応を表す複数の較正データを取得する請求項13に記載の較正方法。
  19.  前記パラメータを算出するステップが、前記カメラモデルを線形の最小二乗法で較正データに当てはめる請求項13から請求項18のいずれかに記載の較正方法。
  20.  前記パラメータを算出するステップが、前記較正データを取得するステップにより取得された較正データの内、3次元のワールド座標を、該ワールド座標の回転を表す3つの回転角の1以上の回転角で回転したワールド座標に変換した較正データに、前記カメラモデルを当てはめて、該カメラモデルの残差が最小になる1以上の回転角を求める請求項13に記載の較正方法。
  21.  前記パラメータを算出するステップが、前記較正データを取得するステップにより取得された較正データの内、3次元のワールド座標を、該ワールド座標の平行移動を表す3つの平行移動成分の1以上の成分で平行移動したワールド座標に変換した較正データに、前記カメラモデルを当てはめて、該カメラモデルの残差が最小になる1以上の平行移動成分を求める請求項13または請求項20に記載の較正方法。
  22.  請求項1から請求項10のいずれかに記載の較正装置により算出されたパラメータが設定されたカメラモデルを搭載した光学装置。
  23.  前記カメラモデルを、複数の画素座標と2つの平面上のワールド座標との対応を表す離散データとして保持する請求項22に記載の光学装置。
  24.  前記カメラモデルを、複数の画素座標とワールド座標空間の直線の傾きおよび切片の対応を表す離散データとして保持する請求項22に記載の光学装置。
  25.  前記カメラモデルにより、前記3次元のワールド座標の内の2つの座標値を、他の1つのワールド座標の座標値と前記2次元の画素座標の2つの座標値から求めるワールド座標算出部を備える請求項22から請求項24のいずれかに記載の光学装置。
  26.  前記カメラモデルにより、前記2次元の画素座標の2つの座標値から、該画素座標に対応するワールド座標空間の直線を求める直線算出部を備える請求項22から請求項24のいずれかに記載の光学装置。
  27.  前記カメラモデルにより、前記画像変換素子により取得あるいは形成された画像の画素座標に対応する前記ワールド座標を求め、歪みを補正した画像を生成する歪み補正画像生成部を備える請求項22から請求項24のいずれかに記載の光学装置。
  28.  請求項8または請求項9に記載の較正装置により取得された回転角および/または平行移動成分がパラメータとして設定されたカメラモデルを搭載した光学装置。
  29.  前記回転角および/または前記平行移動成分により、回転および/または平行移動後のワールド座標を回転および/または平行移動前のワールド座標に変換するワールド座標回転部および/またはワールド座標平行移動部を備える請求項28に記載の光学装置。
  30.  請求項22から請求項29のいずれかに記載の光学装置からなる撮影装置。
  31.  請求項22から請求項29のいずれかに記載の光学装置からなる投影装置。
  32.  請求項11に記載の較正装置と、
     請求項30に記載の1つ以上の撮影装置と、
     該撮影装置により取得された複数の視点での画像の画素座標から被写体の注目点の3次元座標を計算する3次元座標計算処理部とを備え、
     該3次元座標計算処理部が、前記較正装置において用いられた前記カメラモデルと、前記較正装置により算出された前記撮影装置の前記カメラモデルの前記パラメータとを用いる計測システム。
  33.  請求項11に記載の較正装置である第1の較正装置と、
     請求項12に記載の較正装置である第2の較正装置と、
     請求項30に記載の1つ以上の撮影装置と、
     請求項31に記載の1つ以上の投影装置と、
     前記投影装置からの構造化光が投影された被写体を前記撮影装置で撮影した画像の画素座標から前記被写体の注目点の3次元座標を計算する3次元座標計算処理部とを備え、
     該3次元座標計算処理部が、前記第1および第2の較正装置において用いられた前記カメラモデルと、前記第1の較正装置により算出された前記撮影装置の前記カメラモデルの前記パラメータと、前記第2の較正装置により算出された前記投影装置の前記カメラモデルの前記パラメータとを用いる計測システム。
  34.  請求項11に記載の較正装置において用いられた前記カメラモデルと、前記較正装置により算出された請求項30に記載の1つ以上の撮影装置の前記カメラモデルの前記パラメータとを用いて、前記撮影装置により取得された複数の視点での画像の画素座標から被写体の注目点の3次元座標を計算する計測方法。
  35.  請求項11に記載の較正装置である第1の較正装置および請求項12に記載の較正装置である第2の較正装置において用いられた前記カメラモデルと、前記第1の較正装置により算出された請求項30に記載された1つ以上の撮影装置の前記カメラモデルの前記パラメータと、前記第2の較正装置により算出された請求項31に記載の1つ以上の投影装置の前記カメラモデルの前記パラメータとを用いて、前記投影装置からの構造化光が投影された被写体を前記撮影装置で撮影した画像の画素座標から前記被写体の注目点の3次元座標を計算する計測方法。
PCT/JP2015/081886 2014-11-13 2015-11-12 較正装置、較正方法、光学装置、撮影装置、投影装置、計測システムおよび計測方法 WO2016076400A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580061447.2A CN107003109B (zh) 2014-11-13 2015-11-12 校准装置、校准方法、光学装置、摄影装置、投影装置、测量系统以及测量方法
JP2016559108A JP6576945B2 (ja) 2014-11-13 2015-11-12 較正装置、較正方法、光学装置、撮影装置、投影装置、計測システムおよび計測方法
EP15858359.1A EP3220099B1 (en) 2014-11-13 2015-11-12 Calibration device, calibration method, optical device, imaging device, projection device, measurement system, and measurement method
US15/590,175 US10127687B2 (en) 2014-11-13 2017-05-09 Calibration device, calibration method, optical device, image-capturing device, projection device, measuring system, and measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014230957 2014-11-13
JP2014-230957 2014-11-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/590,175 Continuation US10127687B2 (en) 2014-11-13 2017-05-09 Calibration device, calibration method, optical device, image-capturing device, projection device, measuring system, and measuring method

Publications (1)

Publication Number Publication Date
WO2016076400A1 true WO2016076400A1 (ja) 2016-05-19

Family

ID=55954477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081886 WO2016076400A1 (ja) 2014-11-13 2015-11-12 較正装置、較正方法、光学装置、撮影装置、投影装置、計測システムおよび計測方法

Country Status (5)

Country Link
US (1) US10127687B2 (ja)
EP (1) EP3220099B1 (ja)
JP (1) JP6576945B2 (ja)
CN (1) CN107003109B (ja)
WO (1) WO2016076400A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106529536A (zh) * 2016-11-10 2017-03-22 北京昊翔信达科技有限公司 基于空间建模实现运动目标定位的图像分析方法及系统
CN108122230A (zh) * 2018-01-10 2018-06-05 广东工业大学 图像块的识别方法、装置及倒装芯片的焊球位置识别系统
JP2018146363A (ja) * 2017-03-03 2018-09-20 三菱航空機株式会社 3次元位置計測システム及び方法
US10699440B2 (en) 2016-05-13 2020-06-30 Olympus Corporation Calibration device, calibration method, optical device, photographing device, projecting device, measurement system, and measurement method
CN111833399A (zh) * 2019-04-17 2020-10-27 富华科精密工业(深圳)有限公司 基于鱼眼图像的目标检测方法及相关设备
US10977830B2 (en) 2016-08-12 2021-04-13 Olympus Corporation Calibration device, calibration method, optical device, image-acquisition device, and projection device

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10038850B2 (en) * 2014-09-23 2018-07-31 Texas Instruments Incorporated Optical image stabilization (OIS) with compensation for component misalignment
CN107003109B (zh) * 2014-11-13 2019-11-05 奥林巴斯株式会社 校准装置、校准方法、光学装置、摄影装置、投影装置、测量系统以及测量方法
WO2016131022A1 (en) 2015-02-12 2016-08-18 Glowforge Inc. Cloud controlled laser fabrication
US10509390B2 (en) 2015-02-12 2019-12-17 Glowforge Inc. Safety and reliability guarantees for laser fabrication
EP3144890A1 (en) * 2015-09-17 2017-03-22 Thomson Licensing An apparatus and a method for calibrating an optical acquisition system
KR101823208B1 (ko) * 2015-12-04 2018-01-29 엘지전자 주식회사 공기 조화기 및 그 제어방법
JP6809128B2 (ja) * 2016-10-24 2021-01-06 富士通株式会社 画像処理装置、画像処理方法、および画像処理プログラム
WO2018098396A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Multi-user computer-numerically-controlled machine
WO2018098397A1 (en) * 2016-11-25 2018-05-31 Glowforge Inc. Calibration of computer-numerically-controlled machine
WO2018098399A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Controlled deceleration of moveable components in a computer numerically controlled machine
WO2018098394A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Fabrication with image tracing
WO2018098395A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Improved engraving in a computer numerically controlled machine
WO2018098398A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Preset optical components in a computer numerically controlled machine
WO2018098393A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Housing for computer-numerically-controlled machine
DE102016224095A1 (de) * 2016-12-05 2018-06-07 Robert Bosch Gmbh Verfahren zum Kalibrieren einer Kamera und Kalibriersystem
CN108364249A (zh) * 2017-01-27 2018-08-03 株式会社东芝 图像处理装置以及图像处理方法
WO2018173551A1 (ja) * 2017-03-21 2018-09-27 オリンパス株式会社 較正装置、較正方法、光学装置、撮影装置および投影装置
WO2018181248A1 (ja) 2017-03-31 2018-10-04 パナソニックIpマネジメント株式会社 撮像システムおよび校正方法
EP3606038B1 (en) * 2017-03-31 2021-12-08 Panasonic Intellectual Property Management Co., Ltd. Imaging system and correction method
US10547784B2 (en) * 2017-06-19 2020-01-28 SighTour Technologies, Inc. Image stabilization
WO2018235163A1 (ja) * 2017-06-20 2018-12-27 株式会社ソニー・インタラクティブエンタテインメント キャリブレーション装置、キャリブレーション用チャート、チャートパターン生成装置、およびキャリブレーション方法
US10666926B1 (en) * 2017-07-18 2020-05-26 Edge 3 Technologies, Inc. Residual error mitigation in multiview calibration
SG11201907103QA (en) * 2017-08-25 2019-08-27 Maker Trading Pte Ltd Stereo machine vision system and method for identifying locations of natural target elements
WO2019049331A1 (ja) * 2017-09-08 2019-03-14 株式会社ソニー・インタラクティブエンタテインメント キャリブレーション装置、キャリブレーションシステム、およびキャリブレーション方法
US10613228B2 (en) 2017-09-08 2020-04-07 Microsoft Techology Licensing, Llc Time-of-flight augmented structured light range-sensor
DE102017010683B4 (de) * 2017-11-17 2019-08-14 domeprojection.com GmbH Verfahren zur automatischen Wiederherstellung eines eingemessenen Zustands eines Projektionssystems
CN107871329B (zh) * 2017-12-18 2021-09-07 北京峰云视觉技术有限公司 一种相机光学中心的快速标定方法及装置
CN108055524A (zh) * 2017-12-22 2018-05-18 深圳市金立通信设备有限公司 一种结构光模组、组装方法及终端
WO2019138646A1 (ja) * 2018-01-10 2019-07-18 ソニー株式会社 キャリブレーション装置とキャリブレーション方法およびキャリブレーションチャート装置
CN108648237B (zh) * 2018-03-16 2022-05-03 中国科学院信息工程研究所 一种基于视觉的空间定位方法
CN108761430B (zh) * 2018-04-12 2021-07-20 江苏大学 一种超声波雷达标定装置及方法
CN108489395B (zh) * 2018-04-27 2019-03-22 中国农业大学 视觉测量系统结构参数标定和仿射坐标系构建方法与系统
US10663567B2 (en) * 2018-05-04 2020-05-26 Microsoft Technology Licensing, Llc Field calibration of a structured light range-sensor
CN110824652B (zh) * 2018-08-07 2021-12-07 宁波舜宇光电信息有限公司 一种结构光投射模组组装方法
CN109272453B (zh) * 2018-08-31 2023-02-10 上海盎维信息技术有限公司 基于3d摄像机的建模装置及定位方法
US11727597B2 (en) * 2018-12-21 2023-08-15 Sony Group Corporation Calibrating volumetric rig with structured light
DE112019006323T5 (de) * 2018-12-21 2021-09-09 Omron Corporation Verfahren zum korrigieren von durch lineare skalen erfassten werten
US10846917B2 (en) 2019-01-03 2020-11-24 Microsoft Technology Licensing, Llc Iterating different camera representations in three-dimensional model
CN109712200B (zh) * 2019-01-10 2023-03-14 深圳大学 一种基于最小二乘原理及边长推算的双目定位方法及系统
US20220180560A1 (en) * 2019-03-20 2022-06-09 Nec Corporation Camera calibration apparatus, camera calibration method, and nontransitory computer readable medium storing program
TWI720447B (zh) * 2019-03-28 2021-03-01 財團法人工業技術研究院 影像定位方法及其系統
JP7151879B2 (ja) * 2019-04-08 2022-10-12 日本電気株式会社 カメラ校正装置、カメラ校正方法、及びプログラム
JP7218435B2 (ja) * 2019-05-23 2023-02-06 株式会社ソニー・インタラクティブエンタテインメント キャリブレーション装置、キャリブレーション用チャート、およびキャリブレーション方法
JP7310541B2 (ja) * 2019-10-28 2023-07-19 オムロン株式会社 位置測定方法
CN110930460B (zh) * 2019-11-15 2024-02-23 五邑大学 面向结构光3d视觉系统的全自动标定方法及装置
CN111047650B (zh) * 2019-12-02 2023-09-01 北京深测科技有限公司 一种用于飞行时间相机的参数标定方法
DE102019135189A1 (de) 2019-12-19 2021-06-24 Connaught Electronics Ltd. Verfahren zum Bestimmen eines Kameraparameters für eine Kamera einesPritschenfahrzeugs mittels eines Regressions-Analyse Algorithmus,Computerprogrammprodukt, elektronische Recheneinrichtung sowie Kamerasystem
CN111080702B (zh) * 2019-12-20 2023-05-23 上海巧视智能科技有限公司 一种基于广义线性模型的平面物体位姿测量方法
CN111178317A (zh) * 2020-01-06 2020-05-19 广东博智林机器人有限公司 检测定位方法、系统、装置、电子设备及存储介质
CN113155053A (zh) * 2020-01-22 2021-07-23 株式会社三丰 三维几何形状测量装置和三维几何形状测量方法
RU2749363C1 (ru) * 2020-07-22 2021-06-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Устройство для автоматизированной калибровки видеокамер различных спектральных диапазонов
US20220076451A1 (en) * 2020-09-08 2022-03-10 Weta Digital Limited Motion capture calibration using a three-dimensional assembly
US11232595B1 (en) * 2020-09-08 2022-01-25 Weta Digital Limited Three-dimensional assembly for motion capture calibration
US20220076452A1 (en) * 2020-09-08 2022-03-10 Weta Digital Limited Motion capture calibration using a wand
CN112161598B (zh) * 2020-09-30 2022-07-05 深圳中科飞测科技股份有限公司 一种检测设备的检测方法及检测装置
CN112232279B (zh) * 2020-11-04 2023-09-05 杭州海康威视数字技术股份有限公司 一种人员间距检测方法和装置
US11740608B2 (en) 2020-12-24 2023-08-29 Glowforge, Inc Computer numerically controlled fabrication using projected information
US11698622B2 (en) 2021-03-09 2023-07-11 Glowforge Inc. Previews for computer numerically controlled fabrication
CN113099203B (zh) * 2021-05-10 2023-08-22 青岛小鸟看看科技有限公司 显示系统校准方法及系统
CN113658265A (zh) * 2021-07-16 2021-11-16 北京迈格威科技有限公司 相机标定方法、装置、电子设备及存储介质
CN113487686A (zh) * 2021-08-02 2021-10-08 固高科技股份有限公司 一种多目相机的标定方法、装置、多目相机和存储介质
CN114577235B (zh) * 2022-01-28 2024-03-15 北京控制工程研究所 一种空间极高精度指向测量仪器跨尺度标定方法和系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202122A (ja) * 2001-01-05 2002-07-19 Olympus Optical Co Ltd 2次元距離画像センサのキャリブレーション方法
US20140085409A1 (en) * 2012-09-25 2014-03-27 GM Global Technology Operations LLC Wide fov camera image calibration and de-warping

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122895B2 (ja) 1985-10-04 1995-12-25 株式会社日立製作所 ステレオ画像処理方法
JP2685757B2 (ja) 1987-07-23 1997-12-03 株式会社東芝 立体視式内視鏡システム
JP3271813B2 (ja) 1993-02-08 2002-04-08 オリンパス光学工業株式会社 画像計測装置用キャリブレーション方法とキャリブレーション装置
JP3771988B2 (ja) 1997-03-12 2006-05-10 オリンパス株式会社 計測内視鏡装置
US6005958A (en) 1997-04-23 1999-12-21 Automotive Systems Laboratory, Inc. Occupant type and position detection system
US6442293B1 (en) 1998-06-11 2002-08-27 Kabushiki Kaisha Topcon Image forming apparatus, image forming method and computer-readable storage medium having an image forming program
JP4138145B2 (ja) 1999-04-07 2008-08-20 株式会社トプコン 画像形成装置
JP4372328B2 (ja) 2000-10-02 2009-11-25 株式会社ミツトヨ 三次元形状復元方法及びシステム
JP2004530202A (ja) 2001-03-05 2004-09-30 シーメンス アクチエンゲゼルシヤフト たとえば乗員保護システムのための画像の歪みを除去する方法および装置
JP4512293B2 (ja) 2001-06-18 2010-07-28 パナソニック株式会社 監視システムおよび監視方法
JP3705592B2 (ja) 2002-04-17 2005-10-12 立山マシン株式会社 環状画像のパノラマ画像への展開時の鉛直方向ひずみ補正方法および装置
JP4147059B2 (ja) 2002-07-03 2008-09-10 株式会社トプコン キャリブレーション用データ測定装置、測定方法及び測定プログラム、並びにコンピュータ読取可能な記録媒体、画像データ処理装置
JP3735344B2 (ja) 2002-12-27 2006-01-18 オリンパス株式会社 キャリブレーション装置、キャリブレーション方法、及びキャリブレーション用プログラム
JP4564239B2 (ja) 2003-04-11 2010-10-20 オリンパス株式会社 内視鏡装置
WO2004106856A1 (ja) 2003-05-29 2004-12-09 Olympus Corporation ステレオカメラ支持装置、ステレオカメラ支持方法及びキャリブレーション検出装置及びキャリブレーション補正装置並びにステレオカメラシステム
JP2004354257A (ja) 2003-05-29 2004-12-16 Olympus Corp キャリブレーションずれ補正装置及びこの装置を備えたステレオカメラ並びにステレオカメラシステム
JP2004354256A (ja) 2003-05-29 2004-12-16 Olympus Corp キャリブレーションずれ検出装置及びこの装置を備えたステレオカメラ並びにステレオカメラシステム
US7349580B2 (en) 2003-06-03 2008-03-25 Topcon Corporation Apparatus and method for calibrating zoom lens
JP4536428B2 (ja) 2003-06-03 2010-09-01 株式会社トプコン ズームレンズのキャリブレーション装置及びキャリブレーション方法、撮影装置
JP4270949B2 (ja) 2003-06-10 2009-06-03 株式会社トプコン キャリブレーションチャート画像表示装置、キャリブレーション装置、キャリブレーション方法
JP2005167517A (ja) 2003-12-01 2005-06-23 Olympus Corp 画像処理装置、画像処理装置のキャリブレーション方法及び画像処理プログラム
JP4681856B2 (ja) 2004-11-24 2011-05-11 アイシン精機株式会社 カメラの校正方法及びカメラの校正装置
EP1662440A1 (en) 2004-11-30 2006-05-31 IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A. Method for determining the position of an object from a digital image
JP2006267026A (ja) 2005-03-25 2006-10-05 Canon Inc 画像処理方法、画像処理装置
JP2006349443A (ja) 2005-06-15 2006-12-28 Matsushita Electric Ind Co Ltd カメラ校正装置
JP2007012889A (ja) 2005-06-30 2007-01-18 Hitachi High-Tech Instruments Co Ltd 電子部品装着方法及び電子部品装着装置
JP2007122328A (ja) 2005-10-27 2007-05-17 Konica Minolta Holdings Inc 歪曲収差補正装置及び歪曲収差補正方法
JP5296967B2 (ja) 2006-04-25 2013-09-25 パナソニック株式会社 3次元形状計測装置
US8351672B2 (en) * 2007-09-26 2013-01-08 Industry Vision Automation Corp. Machine imaging apparatus and method for detecting foreign materials
US8121433B2 (en) * 2008-01-18 2012-02-21 California Institute Of Technology Ortho-rectification, coregistration, and subpixel correlation of optical satellite and aerial images
JP5228614B2 (ja) 2008-05-15 2013-07-03 株式会社豊田中央研究所 パラメータ計算装置、パラメータ計算システムおよびプログラム
CN100557635C (zh) * 2008-06-10 2009-11-04 北京航空航天大学 一种基于柔性立体靶标的摄像机标定方法
US8086026B2 (en) * 2008-06-27 2011-12-27 Waldean Schulz Method and system for the determination of object positions in a volume
CN101520897B (zh) * 2009-02-27 2011-01-19 北京机械工业学院 摄像机标定方法
JP2010218226A (ja) 2009-03-17 2010-09-30 Suzuki Motor Corp 計測マップ生成装置及び走行環境確認装置
JP4873272B2 (ja) 2009-03-26 2012-02-08 アイシン精機株式会社 カメラ校正装置
US8872920B2 (en) 2009-03-26 2014-10-28 Aisin Seiki Kabushiki Kaisha Camera calibration apparatus
WO2010132791A1 (en) 2009-05-15 2010-11-18 Purdue Research Foundation Calibration of large camera networks
JP5322789B2 (ja) 2009-06-15 2013-10-23 三菱電機株式会社 モデル生成装置、モデル生成方法、モデル生成プログラム、点群画像生成方法および点群画像生成プログラム
JP2011101265A (ja) 2009-11-06 2011-05-19 Nippon Seiki Co Ltd 較正情報算出方法、較正情報算出装置、及び広角画像処理装置
JP5455123B2 (ja) 2010-03-03 2014-03-26 富士機械製造株式会社 部品実装機の撮像画像処理装置
CN101876532B (zh) * 2010-05-25 2012-05-23 大连理工大学 测量系统中的摄像机现场标定方法
JP2013036831A (ja) 2011-08-08 2013-02-21 Panasonic Corp キャリブレーション装置及び歪み誤差算出方法
JP5832278B2 (ja) * 2011-12-26 2015-12-16 三菱重工業株式会社 カメラ計測システムのキャリブレーション方法
JP2013179581A (ja) 2012-02-07 2013-09-09 Canon Inc 画像生成装置及びその制御方法
CN103685936A (zh) * 2012-09-25 2014-03-26 通用汽车环球科技运作有限责任公司 宽视场摄像机图像的校准和扭曲恢复
US10072924B2 (en) * 2014-03-17 2018-09-11 Washington University System and method for quantifying deformation, disruption, and development in a sample
CN105981074B (zh) * 2014-11-04 2018-02-02 深圳市大疆创新科技有限公司 用于标定成像装置的系统、方法和装置
CN107003109B (zh) * 2014-11-13 2019-11-05 奥林巴斯株式会社 校准装置、校准方法、光学装置、摄影装置、投影装置、测量系统以及测量方法
KR102081314B1 (ko) * 2015-03-19 2020-02-26 도판 인사츠 가부시키가이샤 식별 장치, 식별 방법, 및 식별 프로그램을 포함하는 컴퓨터 판독 가능 기록 매체
WO2016200792A1 (en) * 2015-06-07 2016-12-15 Barrows, Geoffrey, Louis Localization method and apparatus
US10412365B2 (en) * 2015-09-22 2019-09-10 Purdue Research Foundation Calibration arrangement for structured light system using a tele-centric lens
US10297031B2 (en) * 2015-12-08 2019-05-21 City University Of Hong Kong Apparatus for generating moveable screen across a three dimensional space
US9784576B2 (en) * 2015-12-28 2017-10-10 Automotive Research & Test Center Calibration method for merging object coordinates and calibration board device using the same
CN112386302A (zh) * 2016-03-14 2021-02-23 穆罕默德·R·马赫福兹 用于无线超声跟踪和通信的超宽带定位
US9965870B2 (en) * 2016-03-29 2018-05-08 Institut National D'optique Camera calibration method using a calibration target
US10410365B2 (en) * 2016-06-02 2019-09-10 Verily Life Sciences Llc System and method for 3D scene reconstruction with dual complementary pattern illumination
US10482621B2 (en) * 2016-08-01 2019-11-19 Cognex Corporation System and method for improved scoring of 3D poses and spurious point removal in 3D image data
US9990728B2 (en) * 2016-09-09 2018-06-05 Adobe Systems Incorporated Planar region guided 3D geometry estimation from a single image
US10733697B2 (en) * 2016-12-27 2020-08-04 Intel IP Corporation Convolutional neural network for wide-angle camera images
JP6501806B2 (ja) * 2017-01-05 2019-04-17 キヤノン株式会社 情報処理装置、操作検出方法、及びコンピュータプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202122A (ja) * 2001-01-05 2002-07-19 Olympus Optical Co Ltd 2次元距離画像センサのキャリブレーション方法
US20140085409A1 (en) * 2012-09-25 2014-03-27 GM Global Technology Operations LLC Wide fov camera image calibration and de-warping

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3220099A4 *
WENG ET AL.: "Camera Calibration with Distortion Models and Accuracy Evaluation", IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 14, no. 10, October 1992 (1992-10-01), pages 965 - 980, XP000328810 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10699440B2 (en) 2016-05-13 2020-06-30 Olympus Corporation Calibration device, calibration method, optical device, photographing device, projecting device, measurement system, and measurement method
US10977830B2 (en) 2016-08-12 2021-04-13 Olympus Corporation Calibration device, calibration method, optical device, image-acquisition device, and projection device
CN106529536A (zh) * 2016-11-10 2017-03-22 北京昊翔信达科技有限公司 基于空间建模实现运动目标定位的图像分析方法及系统
CN106529536B (zh) * 2016-11-10 2019-07-26 北京昊翔信达科技有限公司 基于空间建模实现运动目标定位的图像分析方法及系统
JP2018146363A (ja) * 2017-03-03 2018-09-20 三菱航空機株式会社 3次元位置計測システム及び方法
CN108122230A (zh) * 2018-01-10 2018-06-05 广东工业大学 图像块的识别方法、装置及倒装芯片的焊球位置识别系统
CN108122230B (zh) * 2018-01-10 2022-06-24 广东工业大学 图像块的识别方法、装置及倒装芯片的焊球位置识别系统
CN111833399A (zh) * 2019-04-17 2020-10-27 富华科精密工业(深圳)有限公司 基于鱼眼图像的目标检测方法及相关设备

Also Published As

Publication number Publication date
EP3220099A1 (en) 2017-09-20
CN107003109B (zh) 2019-11-05
CN107003109A (zh) 2017-08-01
US20170243374A1 (en) 2017-08-24
EP3220099A4 (en) 2018-07-04
US10127687B2 (en) 2018-11-13
JPWO2016076400A1 (ja) 2017-08-24
JP6576945B2 (ja) 2019-09-18
EP3220099B1 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
JP6576945B2 (ja) 較正装置、較正方法、光学装置、撮影装置、投影装置、計測システムおよび計測方法
JP6664000B2 (ja) 較正装置、較正方法、光学装置、撮影装置、および投影装置
JP6675478B2 (ja) 較正装置、較正方法、光学装置、撮影装置、投影装置、計測システムおよび計測方法
CN110447220B (zh) 校准装置、校准方法、光学装置、摄影装置以及投影装置
Tang et al. A precision analysis of camera distortion models
JP6079333B2 (ja) 校正装置、方法及びプログラム
JP4440341B2 (ja) キャリブレーション方法、キャリブレーション装置及びその装置を備えるキャリブレーションシステム
US20220270218A1 (en) Method and apparatus for calibrating augmented reality headsets
JP6217227B2 (ja) 校正装置、方法及びプログラム
CN107808398B (zh) 摄像头参数算出装置以及算出方法、程序、记录介质
CN113841384B (zh) 校准装置,用于校准的图表和校准方法
KR20090004428A (ko) 광학 설계 방법 및 시스템과 광학 수차를 갖는 광학 요소를이용한 촬상 소자
CN113920205A (zh) 一种非同轴相机的标定方法
JP5998532B2 (ja) 補正式算出方法、補正方法、補正装置及び撮像装置
Hou et al. Camera lens distortion evaluation and correction technique based on a colour CCD moiré method
JP7038315B2 (ja) カメラパラメータ算出装置、カメラパラメータ算出方法、プログラム、及び記録媒体
JP2008298589A (ja) 位置検出装置及び位置検出方法
Fasogbon et al. Calibration of fisheye camera using entrance pupil
JP6755737B2 (ja) 距離測定装置、撮像装置、および距離測定方法
Bushnevskiy et al. Multimode camera calibration
Richter et al. Development of a geometric model for an all-reflective camera system
Börlin et al. Flexible photogrammetric computations using modular bundle adjustment: The chain rule and the collinearity equations
KR20130009603A (ko) 소형 보정 패턴을 이용한 카메라 네트웍 보정 방법 및 장치
JP2015137897A (ja) 距離計測装置及び距離計測方法
JP7076598B1 (ja) 動画又は複数画像からの3次元情報生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016559108

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015858359

Country of ref document: EP