WO2016075878A1 - 信号処理装置及び信号処理方法 - Google Patents

信号処理装置及び信号処理方法 Download PDF

Info

Publication number
WO2016075878A1
WO2016075878A1 PCT/JP2015/005367 JP2015005367W WO2016075878A1 WO 2016075878 A1 WO2016075878 A1 WO 2016075878A1 JP 2015005367 W JP2015005367 W JP 2015005367W WO 2016075878 A1 WO2016075878 A1 WO 2016075878A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
band
phase
noise
signal
Prior art date
Application number
PCT/JP2015/005367
Other languages
English (en)
French (fr)
Inventor
知育 原田
佳晋 服部
藤元 美俊
真也 伊藤
Original Assignee
株式会社豊田中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田中央研究所 filed Critical 株式会社豊田中央研究所
Publication of WO2016075878A1 publication Critical patent/WO2016075878A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference

Definitions

  • the present invention relates to signal processing in which noise is removed during demodulation in an environment where noise is superimposed only on one of the upper band band and the lower band band in broadcasting and communication using both side bands.
  • the present invention relates to an apparatus and a signal processing method.
  • Patent Document 1 discloses a first antenna that receives a broadcast wave stronger than the other antenna and obtains a first signal, and a second antenna that receives noise stronger than the other antenna and obtains a second signal. Is used to adjust the amplitude and phase of the second signal so that the signal level after synthesis is reduced, and synthesizes the first signal. In this technique, the amplitude and phase of the second signal are adjusted when the reception level of the desired broadcast wave is smaller than a certain threshold value.
  • the amplitude and phase of the second signal are adjusted so that the level of the combined signal becomes small. Since both antennas receive noise from the same noise source, the amplitude and phase of the noise received by both antennas differ according to the difference in distance from each antenna to the noise source. In order to compensate for this, the amplitude of the second signal is made to coincide with the amplitude of the first signal, the phase of the second signal is changed by ⁇ with respect to the phase of the first signal, and The second signal is synthesized in reverse phase. By adjusting the amplification factor and phase of the second signal in this way, a signal with noise canceled from the received broadcast wave can be obtained even when a desired broadcast wave can be received.
  • pulsed noise emitted from an electronic device of the vehicle is mixed in the AM radio broadcast wave.
  • This is a technology for removing sexual noise.
  • pulse noise in a band other than the AM radio broadcast wave band is detected, and the noise source is specified by obtaining the magnitude of the period of the pulse noise and the fluctuation range of the level.
  • the noise source in the broadcast wave on which pulse noise is superimposed, the harmonic band of the pulse noise near the broadcast wave frequency and the band of the noise period are attenuated for the time corresponding to the time width of the pulse noise.
  • the technique of Patent Document 1 is a technique that uses two antennas so that only noise can be received and is adjusted in advance so that the level of the combined signal of the received signals of the two antennas becomes small. .
  • the technique of Patent Document 1 requires two antennas to cancel noise, and the setting for removing noise does not affect the adjustment of noise removal by the reception level of a desired broadcast wave.
  • the amplitude and phase of the second signal are adjusted uniformly regardless of the frequency characteristics of the noise, the noise is not completely removed.
  • the frequency characteristics of noise change due to a change in pulse width even if the basic period does not change. For this reason, the method of Patent Document 1 cannot completely remove noise.
  • Patent Document 2 detects pulse noise in a band other than the broadcast wave band, and attenuates an appropriate frequency band according to the type of noise for the time corresponding to the pulse width at the detection timing.
  • the broadcast wave is essentially attenuated only during the period of pulse noise. This causes discomfort to those who listen to AM radio broadcasts.
  • an object of the present invention is to accurately remove this noise during demodulation in an environment where noise is superimposed only on one of the upper band band or the lower band band in broadcasting and communication using both side band waves. Is to do.
  • a double sideband signal is orthogonally demodulated in a signal processing apparatus that receives a double sideband signal and removes noise superimposed on only one sideband in the RF band. Then, based on the quadrature component output from the demodulating unit that demodulates the baseband signal having the positive frequency band and the negative frequency band, the noise component included in the in-phase component output from the demodulating unit is removed.
  • the gist of the present invention is to remove the noise component superimposed on the in-phase component from the quadrature component, paying attention to the fact that the quadrature component does not include the signal component and only the noise component appears.
  • the noise component can be removed on the time axis, the frequency axis, or a combination of both.
  • an orthogonal component band extracting means for extracting one band noise component of one of the positive frequency band and the negative frequency band among the orthogonal components output from the demodulating means, and the noise removing means
  • the phase rotation unit that rotates the phase of the one-band noise component extracted by the quadrature component band extraction unit by ⁇ / 2 or ⁇ / 2, and the phase rotation output by the phase rotation unit into the in-phase component output by the demodulation unit It is possible to provide a signal processing apparatus having a synthesis unit that synthesizes noise components and removes noise components included in the in-phase components.
  • the sign of the phase is defined as positive in the sign of the phase in the complex coordinate system, that is, the left rotation direction regardless of the positive frequency band and the negative frequency band.
  • the present invention uses the following principle to remove noise from the demodulated signal.
  • quadrature demodulation is performed on both sideband waves (for example, AM broadcast waves) that are not orthogonally multiplexed, a signal component and a noise component appear in the in-phase component of the baseband, no signal component appears in the orthogonal component, and only the noise component Appears.
  • the noise component since the in-phase component and the quadrature component after quadrature demodulation are real functions, the spectrum of the noise component in the baseband is in a complex conjugate relationship between the positive frequency band and the negative frequency band. That is, for the noise component of the in-phase component, the amplitude A ( ⁇ ) and the phase ⁇ r ( ⁇ ) at the frequency ⁇ of the spectrum are the amplitude A ( ⁇ ) and the phase ⁇ r ( ⁇ ⁇ ) ⁇ .
  • the amplitude is equal to the amplitude of the noise component of the in-phase component, and the amplitude A ( ⁇ ) and the phase ⁇ i ( ⁇ ) at the frequency ⁇ are the amplitude A at the frequency ( ⁇ ). Equal to ( ⁇ ) and phase ⁇ i ( ⁇ ) ⁇ .
  • the noise component of the quadrature component is the same as the noise component of the in-phase component in both the positive frequency band and the negative frequency band on the time axis.
  • the phase is delayed by ⁇ / 2. That is, the following equation is established.
  • phase ⁇ is positive in the left rotation direction in the complex coordinate system. It is defined that the wave vector rotates in the positive direction in the positive frequency region, and the wave vector rotates in the negative direction in the negative frequency band.
  • the signal component F of the in-phase component can be obtained by subtracting jf i + (t) from the in-phase component of the positive frequency band (that is, the signal component F + (t) + the noise component f r + (t)). + (T) is obtained.
  • the signal can be demodulated with only one band component, and therefore the signal can be demodulated by the above processing by the real part of F + (t).
  • Extraction of the noise component of the orthogonal component may be performed for the negative frequency band. That is, if the time waveform (complex function) f i ⁇ (t) of the noise component A ( ⁇ ) exp (j ⁇ i ( ⁇ )) of the orthogonal component in the negative frequency band is known, each frequency component of the noise component Is subtracted from the in-phase component of the negative frequency band (signal component + noise component), the noise component A ( ⁇ ) exp (j ⁇ r ( ⁇ )) of the time waveform (complex function) f r - a (t) can be removed.
  • the signal component F of the in-phase component is obtained.
  • - (T) is obtained.
  • the extraction of the noise component of the orthogonal component can be performed in either the positive frequency band or the negative frequency band.
  • the signal component F ⁇ (t) of the in-phase component is obtained.
  • the extraction of the noise component of the quadrature component is performed in either the positive frequency band or the negative frequency band, and the quadrature component in which the phase of ⁇ / 2 is advanced to the in-phase component of the same code band, Alternatively, the noise superimposed on the in-phase component can be removed by synthesizing the complex conjugate of the quadrature component with the ⁇ / 2 phase advanced to the in-phase component of the band of the different sign.
  • ⁇ i ( ⁇ ) ⁇ ⁇ r ( ⁇ ) + ⁇ / 2
  • ⁇ i ( ⁇ ) ⁇ r ( ⁇ ) + ⁇ / 2
  • ⁇ r ( ⁇ ) + ⁇ / 2 ⁇ r ( ⁇ ) + ⁇ / 2
  • the time waveform f i + (t) of the noise component of the orthogonal component in the positive frequency band is known, the time waveform obtained by delaying the phase of each frequency component of the noise component by ⁇ / 2 is calculated from the in-phase component of the positive frequency band.
  • the time waveform (complex function) f r + (t) of the noise component of the in-phase component can be removed.
  • the signal component F + (t) of the in-phase component is obtained.
  • the noise component in the negative frequency band of the orthogonal component is extracted. Extraction of the noise component of the orthogonal component may be performed for the negative frequency band. Also in this case, since the noise component of the quadrature component is advanced by ⁇ / 2 on the time axis with respect to the noise component of the in-phase component, compared to the case where noise is superimposed on the upper sideband, Similarly, the noise superimposed on the in-phase component can be removed only by reversing the factors (j) and ( ⁇ j) to be applied to the extracted orthogonal component.
  • the time waveform (complex function) f i ⁇ (t) of the noise component of the orthogonal component in the negative frequency band is known, the time waveform obtained by delaying the phase of each frequency component of the noise component by ⁇ / 2 is obtained. in-phase component, is subtracted, the time waveform (complex function) of the noise component of the phase component f r - a (t) can be removed. Specifically, by subtracting jf i ⁇ (t) from the in-phase component in the negative frequency band, the signal component F ⁇ (t) of the in-phase component is obtained. As described above, the extraction of the noise component of the orthogonal component can be performed in either the positive frequency band or the negative frequency band.
  • the noise component of the quadrature component is corrected in the same way as when noise is superimposed on the upper sideband.
  • the negative frequency band may be extracted to correct the positive frequency band signal of the in-phase component.
  • each frequency component of the time waveform (complex function) f i ⁇ (t) of the noise component of the orthogonal component in the negative frequency band By subtracting the complex conjugate of the time waveform delayed by ⁇ / 2 from the in-phase component of the positive frequency band, the time waveform (complex function) f r + (t) of the noise component of the in-phase component can be removed. Specifically, by subtracting ⁇ jf i ⁇ (t) ⁇ * from the in-phase component in the positive frequency band, the signal component F + (t) of the in-phase component is obtained.
  • the signal component F ⁇ (t) of the in-phase component is obtained.
  • the extraction of the noise component of the quadrature component is performed in either the positive frequency band or the negative frequency band, and the quadrature component delayed by the phase of ⁇ / 2 is changed to the in-phase component of the band of the same code, or
  • the noise superimposed on the in-phase component can be removed.
  • phase rotation processing and synthesis processing may be performed in a frequency space, and the result may be inversely Fourier transformed to obtain a demodulated signal on the time axis from which noise has been removed.
  • the spectrum of the orthogonal component can be obtained by Fourier-transforming the noise component in the positive frequency band of the orthogonal component to obtain the spectrum. By multiplying this spectrum by j or -j, the spectrum of the in-phase component of the noise component is obtained.
  • the spectrum of the in-phase component can be obtained by Fourier-transforming the in-phase component (signal + noise) in the positive frequency band.
  • in-phase component band extraction means for extracting one of the positive frequency band and negative frequency band from the in-phase component output from the demodulation means, and the phase rotation means is extracted by the quadrature component band extraction means.
  • a cross-correlation calculating means for calculating a cross-correlation value between the generated single-band noise component and the single-band signal component extracted by the in-phase component band extracting means, and based on a sign of a value output from the cross-correlation calculating means It is desirable to determine the rotation direction of the phase. This feature is that the result of cross-correlation between the noise component of the in-phase component and the noise component of the quadrature component is j or -j.
  • the sign of the phase of ⁇ / 2 is determined.
  • the phase of the noise component of the in-phase component in the positive frequency band is uniquely related to the phase of the quadrature component, the phase of the quadrature component in the negative frequency band, and the phase of the noise component of the in-phase component in the negative frequency band. is there. Therefore, the calculation of the cross correlation value is not necessarily performed between the frequency bands of the same code.
  • the cross-correlation calculating means is a product of one and the other complex conjugate of the one-band signal component output from the in-phase component band extracting means and the one-band noise component extracted by the quadrature component band extracting means.
  • the cross-correlation value may be calculated based on the moving time average. It is a specific example of cross-correlation calculation by complex calculation.
  • the synthesizing unit may synthesize the phase rotation noise component and the one-band signal component extracted by the in-phase component band extracting unit. That is, noise is removed from either the positive frequency band or the negative frequency band. In this case, an SSB from which noise is removed is obtained.
  • the in-phase component band extracting means includes a first in-phase component band extracting means for extracting the one-band signal component as the first one-band signal component, and the other frequency band for the first one-band signal component.
  • Second in-phase component band extracting means for extracting the second half-band signal component of the first half-band signal component, and the phase rotation means outputs the one-band noise component extracted by the quadrature component band extracting means by ⁇ / 2 or ⁇ / 2.
  • a first phase rotation unit for rotating the phase; and a phase inversion unit for calculating a complex conjugate of the signal output from the first phase rotation unit.
  • the combining unit converts the first one-band signal component into the first phase rotation.
  • a first synthesizing unit for removing noise superimposed on the first one-band signal component based on the first phase rotation noise component output from the unit; and a phase inversion for outputting the second one-band signal component from the phase inversion unit. Based on the noise component, the second single band signal And a second synthesis unit that removes noise superimposed on the component.
  • the single-band noise component, the in-phase component noise component in the positive frequency band and the noise component in the negative frequency band are uniquely determined by ⁇ / 2 phase rotation or complex conjugate (ie, phase inversion) after phase rotation. It is determined. Therefore, in this aspect, in the quadrature component, noise is removed from the signal of one or both bands of the in-phase component based on the one-band noise component extracted from one of the positive frequency band and the negative frequency band. be able to.
  • the in-phase component band extracting means extracts the first in-phase component band extracting means for extracting the one-band signal component as the first one-band signal component, and the first one-band signal component in the other frequency band.
  • a second in-phase component band extracting unit that extracts a two-single band signal component, and the quadrature component band extracting unit uses a noise component in a frequency band having the same sign as the first one-band signal component as a first one-band noise component.
  • the second one-band noise component is ⁇ / Or a second phase rotation unit that rotates the phase by ⁇ / 2, and the combining unit converts the first one-band signal component based on the first phase rotation noise component output from the first phase rotation unit, First synthesis means for removing noise superimposed on the first one-band signal component, and second second-band signal component based on the second phase rotation noise component output from the second phase rotation means.
  • the sign of the rotation phase by the first phase rotation means and the sign of the cross-correlation value determined by one phase rotation means also determines the sign of the phase rotation by the other phase rotation means. May be. That is, the phase rotation code determined by the noise component of the orthogonal component in one frequency band in the baseband is a different sign from the phase rotation code determined by the noise component of the orthogonal component in the other frequency band. Therefore, the phase rotation code can be determined by signal processing in one frequency band.
  • the first phase rotation means includes first cross-correlation calculation means as a cross-correlation calculation means for calculating a cross-correlation value from the first one-band noise component and the first one-band signal component.
  • the phase rotation direction is determined based on the first value output from the calculating means, and the second phase rotating means calculates the cross-correlation value between the second one-band noise component and the second one-band signal component.
  • the demodulating means includes a phase-locked loop unit for controlling the frequency and phase of the demodulated carrier so that the beat signal of the error frequency of the demodulated carrier contained in the quadrature component after quadrature demodulation becomes zero. It is desirable to have. Synchronous detection can be performed, and noise can be reliably removed.
  • the demodulation means obtains a beat signal of the error frequency of the demodulated carrier wave with respect to the modulated carrier wave from the moving average of the baseband signal, and based on the beat signal, a signal obtained by correcting the fluctuation due to the beat signal of the baseband signal is newly added to the baseband signal. It is desirable to have synchronization means for making a band signal. Since the spectrum in the baseband is shifted in frequency by the beat frequency for both the in-phase component and the quadrature component, the signal component can be demodulated and noise can be reliably removed by correcting this frequency shift.
  • the present invention is a signal processing method for receiving a double sideband signal and removing noise superimposed only on one sideband wave in the RF band.
  • the signal processing method is characterized in that a baseband signal having a negative frequency band is demodulated and a noise component included in the demodulated in-phase component is removed based on the demodulated quadrature component.
  • the noise component in one of the positive frequency band and the negative frequency band among the demodulated orthogonal components is further extracted as a one-band noise component, and the extracted noise component is ⁇ / 2 or
  • the signal component of one of the positive frequency band and the negative frequency band in the in-phase component is extracted as a single band signal component, and the sign of phase rotation is the single band signal component and the single band noise component. It may be determined based on the cross-correlation value.
  • the present invention is characterized in that noise contained in the in-phase component is eliminated from the quadrature component obtained by quadrature demodulation, although it is not necessary to perform quadrature demodulation for signal demodulation.
  • this noise in an environment where noise is superimposed only on one of the upper sideband band or the lower sideband band, this noise can be accurately removed during demodulation. Can be improved.
  • FIG. 3 is a frequency characteristic diagram of an input signal and a demodulated signal of the signal processing apparatus according to the first embodiment.
  • FIG. 3 is a frequency characteristic diagram of an in-phase component and a quadrature component in a baseband after demodulation of the signal processing apparatus according to the first embodiment.
  • FIG. 3 is a frequency characteristic diagram of an output signal from which an in-phase component, a quadrature component, and noise are removed in a baseband positive frequency band after demodulation of the signal processing device according to the first embodiment.
  • FIG. The block diagram of the signal processing apparatus which concerns on the specific Example 2 of this invention.
  • FIG. 1 shows the configuration of a signal processing apparatus 1 according to a specific embodiment of the present invention.
  • a present Example is a signal processing apparatus which suppresses the noise mixed in the AM radio receiver in HV (hybrid vehicle). It is assumed that the HV is equipped with a DC-DC converter that is controlled at a carrier frequency of 100 kHz.
  • the AM radio broadcast wave is assigned a frequency band of 531 kHz to 1602 kHz.
  • the switching noise generated from the DC-DC converter basically becomes a line spectrum string that is an integral multiple of the fundamental frequency of 100 kHz in the frequency space. This noise enters the AM radio broadcast band and gives noise to the AM radio broadcast wave.
  • the noise spectrum has an interval of 100 kHz, there is no noise in both the upper band band and the lower band band of AM radio broadcasting.
  • This embodiment is a signal processing device that cancels this type of noise entering the AM radio broadcast band.
  • the present invention is not limited to such noise.
  • all of the noise mixed only in one band of the upper sideband and the lower sideband. Can be used in any environment.
  • the signals in each band may be AM modulation, FM modulation, phase modulation, or other modulation schemes.
  • the AM radio broadcast signal received by the antenna 11 is amplified by the amplifier 12, sampled by the A / D converter 13 at a constant period ⁇ t, and converted into a digital value.
  • a device processed by the CPU A device processed by the CPU.
  • the configuration of FIG. 1 is expressed in blocks for each functional unit of digital processing.
  • the signal output from the A / D converter 13 is a real number, but the orthogonal demodulator 20 and subsequent data processing are all performed in complex numbers.
  • the quadrature demodulating unit 20 serving as a demodulating unit includes a mixer 21, a demodulated carrier wave generating unit 22, an in-phase component extracting unit 23, and a quadrature component extracting unit 24.
  • a baseband signal is obtained by the orthogonal demodulator 20.
  • this baseband has a positive frequency band corresponding to the upper sideband band and a negative frequency band corresponding to the lower sideband band.
  • the filter unit 30 includes a filter 31 that receives an in-phase component baseband signal and extracts a positive frequency band, and a filter 32 that receives a quadrature component baseband signal and extracts a positive frequency band.
  • the filter 31 constitutes in-phase component band extracting means for extracting one frequency band of the in-phase component
  • the filter 32 constitutes quadrature component band extracting means for extracting one frequency band of the quadrature component.
  • the phase rotation unit 40 constituting the phase rotation means includes a multiplier 41 that multiplies the orthogonal component baseband signal output from the filter 32 by ⁇ j or j in accordance with the setting of the changeover switch 42. Have. That is, this multiplication corresponds to rotating the phase by all frequencies, uniformly - ⁇ / 2 or ⁇ / 2. Then, the synthesizing unit 60 constituting the synthesizing unit adds and synthesizes the baseband signal in the positive frequency band of the in-phase component output from the filter 31 and the output signal (phase rotation noise component) of the phase rotating unit 40.
  • the filters 31 and 32 are filters that extract a positive frequency band, and are parallel circuits of a Hilbert filter and an all-pass delay circuit.
  • the noise removing means includes a filter 32, a phase rotation unit 40, and a synthesis unit 60.
  • the received signal is directly sampled.
  • the demodulator that shifts the band is configured by an analog circuit and temporarily drops to the intermediate frequency band to sample the IF signal. Also good.
  • orthogonal demodulation is performed by numerical calculation and is performed by extracting a real part and an imaginary part.
  • orthogonal demodulation is demodulation using cos ( ⁇ c t) and sin ( ⁇ c t). May be.
  • the reception signal r (t) output from the antenna 11 is expressed by equation (1).
  • a spectrum that is a Fourier transform of the received signal r (t) is as shown in FIG. 2A, and has an upper sideband and a lower sideband.
  • S ⁇ is the spectrum of the lower sideband
  • S + is the spectrum of the upper sideband
  • A is the amplitude of the carrier wave
  • is the transmission path from the broadcasting station to the receiving apparatus before the demodulation of the RF band and IF band It is the spectrum of the noise superimposed by.
  • A is a real number
  • S ⁇ , S + , and ⁇ are complex functions relating to an angular frequency ⁇ (hereinafter simply referred to as “frequency”).
  • frequency an angular frequency ⁇
  • S ⁇ and S + are mutually complex conjugate functions.
  • S ⁇ (t) and S + (t) are inverse Fourier transforms of S ⁇ and S + , respectively, and are complex functions related to time. Further, S ⁇ (t) and S + (t) are in a complex conjugate relationship with each other, and therefore S ⁇ (t) + S + (t) is a real function.
  • ⁇ c is the frequency of the carrier wave during modulation
  • ⁇ c + ⁇ n is the frequency of the noise superimposed on the upper sideband.
  • a wave propagating in space is represented by the real part of r (t). Therefore, the sampled received signal (data) output from the A / D converter 13 is a real number sequence.
  • the received signal is demodulated orthogonally. Since there is no orthogonal component of the signal component, in the complex space, orthogonal demodulation is equivalent to performing an operation of multiplying the received signal of the real part of the complex function expressed by equation (1) by exp ( ⁇ j ⁇ c t). Therefore, the demodulated baseband signal is expressed by equation (2). Since the demodulation result has a factor of 1/2, x (t) is defined as twice the result of the orthogonal demodulation in order to simplify the expression. That is, the output signal x (t) of the mixer 21 can be expressed by equation (2), and its spectrum is as shown in FIG. 2 (b), which has a baseband positive frequency band and a negative frequency band. Yes. Noise exists only in the positive frequency band.
  • the real part of equation (2) is the in-phase component in quadrature demodulation, and the imaginary part is the quadrature component in quadrature demodulation.
  • the in-phase component is expressed by equation (3)
  • the quadrature component is expressed by equation (4). That is, the output signal x r (t) of the in-phase component extraction unit 23 is expressed by equation (3), and the output signal x i (t) of the quadrature component extraction unit 24 is expressed by equation (4).
  • the in-phase component has a signal component and a noise component, but the quadrature component has no signal component and only a noise component.
  • the spectrum of the in-phase component (3) is as shown in FIG.
  • ⁇ * is a complex conjugate of ⁇ and a spectrum obtained by inverting the phase of ⁇ .
  • the spectrum of the orthogonal component x i (t) in the equation (4) is as shown in FIG.
  • a noise component spectrum ( ⁇ j ⁇ / 2) of the orthogonal component appears in the positive frequency band. That is, the noise component has the same amplitude as the noise component of the in-phase component, but the phase is rotated by ⁇ / 2 with respect to the in-phase component (delayed by ⁇ / 2 on the time axis).
  • the spectrum (j ⁇ * / 2) of the noise component of the orthogonal component appears in the negative frequency band.
  • the noise component has the same amplitude as the noise component of the in-phase component, but the phase is rotated by ⁇ / 2 with respect to the in-phase component (delayed by ⁇ / 2 on the time axis). Further, in both the in-phase component and the quadrature component, the spectra in the positive frequency band and the negative frequency band are in a complex conjugate relationship, that is, a relationship in which the phases are inverted.
  • the filter 31 extracts an in-phase component x r + (t) (one-band signal component) in the baseband positive frequency band.
  • x r + (t) is expressed by equation (5), and its spectrum is as shown in FIG.
  • the filter 32 extracts a noise component x i + (t) (one-band noise component) of an orthogonal component in the baseband positive frequency band.
  • x i + (t) is expressed by equation (6), and its spectrum is as shown in FIG.
  • x r + (t) and x i + (t) are complex functions.
  • the multiplier 41 of the phase rotation unit 40 multiplies the noise component x i + (t) output from the filter 32 by ⁇ j to output the phase rotation noise component ( ⁇ jx i + (t)). Is done.
  • This processing delays the phase of the noise component in the positive frequency band of the quadrature component by ⁇ / 2 (rotates by ⁇ / 2) so that the phase difference from the noise component in the positive frequency band of the in-phase component becomes ⁇ .
  • the phase is controlled. That is, the quadrature noise component is controlled to have an inverted waveform of the in-phase noise component.
  • the synthesizing unit 60 adds the phase rotation noise component ( ⁇ jx i + (t)) to the in-phase component x r + (t) in the positive frequency band.
  • the output of the synthesis unit 60 is expressed by equation (7).
  • the in-phase noise component ( ⁇ / 2) in the positive frequency band is eliminated, and the signal component A + S + (t) of the in-phase component is obtained.
  • a + S + (t) is a complex function. Since double-sideband broadcasting can be demodulated only in one band, the AM broadcast can be demodulated by the real part of this signal component S + (t).
  • the noise component of the in-phase component is the same as that in FIG. 3A, and is ⁇ * / 2 in the negative frequency band, and ⁇ / 2 in the positive frequency band. They are in a complex conjugate relationship.
  • the noise component of the orthogonal component is a spectrum (j ⁇ / 2) in the positive frequency band and a spectrum ( ⁇ j ⁇ * / 2) in the negative frequency band. That is, in the positive frequency band and the negative frequency band, the phase of the noise component of the quadrature component is advanced by ⁇ / 2 on the time axis with respect to the noise component of the in-phase component. Therefore, in order to remove the noise component ( ⁇ / 2) of the in-phase component in the positive frequency band, the noise component (j ⁇ / 2) of the quadrature component in the positive frequency band is multiplied by (j) and added to the in-phase component. There is a need to. In this case, the calculation by the multiplier 41 is multiplication of (j).
  • the sign of the multiplication factor (j) by the multiplier 41 differs between when noise is superimposed on the upper sideband and when noise is superimposed on the lower sideband.
  • the changeover switch 42 is operated so that the listener of the AM broadcast judges the degree of noise mixing in the reproduced sound and the noise is eliminated by the listener.
  • the case where the noise component of the quadrature component in the positive frequency band is extracted has been described.
  • the quadrature component in the negative frequency band is extracted, and the noise component of the in-phase component is removed from the in-phase component in the negative frequency band. Also good.
  • the multiplication factor in the multiplier 41 is (j).
  • the spectrum of the noise component of the orthogonal component in the negative frequency band is ( ⁇ j ⁇ * / 2), and the multiplication factor in the multiplier 41 is ( ⁇ j )
  • a + S ⁇ (t) is output from the synthesizing unit 60, and an AM audio signal can be obtained from the real part.
  • the term of the noise component in the equations (1) to (6) is expressed by a single spectrum, but is actually expressed by an integral of the frequency ⁇ n .
  • the sign of the multiplication factor (j) in the multiplier 41 is switched by the setting switch 42.
  • the sign of the multiplication factor (j) in the multiplier 41 is automatically determined by the cross-correlation operation between the in-phase component (signal component + noise component) in the positive frequency band and the noise component of the orthogonal component. It is the device which was made.
  • the signal processing apparatus of this embodiment is configured as shown in FIG. Parts having the same functions as those in FIG. 1 of the first embodiment are denoted by the same reference numerals. The only difference is the configuration of the phase rotation unit 40 with respect to FIG.
  • the complex conjugate computing unit 43 computes the complex conjugate of the in-phase component x r + (t) in the positive frequency band of the expression (5) output from the filter 31, and the multiplier 44 outputs the complex conjugate and the output of the filter 32.
  • the product of the orthogonal component of the positive frequency band in equation (8) and the noise component x i + (t) is calculated.
  • the output signal of the multiplier 44 is expressed by equation (9).
  • the noise component in the first row of the equation while indicating noise of a single frequency of the frequency omega n, is actually a spectrum [rho noise component functions ⁇ n ⁇ ( ⁇ n). Since the noise component has a fixed bandwidth, precisely, each noise component of the product of the equation (9) is an integral display regarding ⁇ n . Therefore, the second term in the last row of the equation (9) is accurately an integral display relating to ⁇ n .
  • 2 in the equation (9) is an integral with respect to the square of the spectrum amplitude ⁇ n and is a real positive value.
  • the signal of the expression (9) output from the multiplier 44 is input to the moving average calculation unit 45. Since the product of noise having different frequencies due to the moving average is 0, only the product of noise components having the same frequency remains.
  • the second term in the last row of the equation (9) is a waveform obtained by amplitude-modulating a sine wave of noise frequency ⁇ n with a conjugate A + S + (t) * of the in-phase component in the positive frequency band when viewed in a single frequency spectrum. It becomes. Therefore, by calculating the moving average over a time sufficiently longer than the shortest cycle determined by the frequency ⁇ n and the maximum frequency of the in-phase component, the noise component of the frequency ⁇ n is eliminated.
  • the second term is merely an integral display of ⁇ n , and thus the component that varies depending on the noise frequency of the second term can be eliminated.
  • the output signal of the moving average calculation unit 45 is expressed by equation (10).
  • Equation (10) is a pure imaginary number.
  • the phase detection unit 46 determines whether the expression (10) is ( ⁇ j) or (j). That is, it is determined whether the phase of the noise component of the quadrature component is in the delayed phase delayed by ⁇ / 2 or the advanced phase advanced by ⁇ / 2 with respect to the phase of the noise component of the in-phase component. Then, the phase determination unit 47 outputs ( ⁇ j) to the multiplier 41 if the sign of the expression (10) is (+), and outputs (j) to the multiplier 41 if the sign is ( ⁇ ).
  • the phase rotation noise component is output from the synthesizer 41 and added to the in-phase component x r (t) of the equation (5) in the synthesizer 40.
  • the noise component ( ⁇ / 2) of the in-phase component in the positive frequency band can be automatically removed. it can.
  • the impulse response of the Hilbert filter which is one of the constituent elements of the filters 31 and 32, is approximated by a finite term, the band separation is not perfect, and even if the real part of DC is present in the equation (9)
  • the phase rotation direction of the quadrature component can be determined by the sign of the imaginary part of equation (9).
  • the above processing is the same when the noise component of the orthogonal component in the negative frequency band is extracted.
  • the filter 31 in FIG. 6 may be a filter that extracts the negative frequency band of the in-phase component, and the filter 32 may be a filter that extracts the negative frequency band of the quadrature component.
  • noise removal and demodulation are performed for one of the positive frequency band and the negative frequency band.
  • the signal processing is performed independently for each of the positive frequency band and the negative frequency band. That is, similarly to the processing in the positive frequency band in the first embodiment, the noise component of the orthogonal component in the negative frequency band is extracted, and the noise component superimposed on the in-phase component is removed.
  • an upper side band processing unit U that removes noise in the positive frequency band and a lower side band processing unit L are provided.
  • the upper side band processing unit U has the same configuration as that of FIG. 1, and the lower side band processing unit L has the same configuration as that of FIG.
  • the filter 31L extracts the negative frequency band of the in-phase component and the filter 32L has the negative frequency of the quadrature component. The only difference is that the band is extracted. Then, S U (t) output from the upper side band processing unit U and S L (t) output from the lower side band processing unit L are combined by the combining unit 61, and the double side band S (t) is generated. can get.
  • S U (t) output from the upper sideband processing unit U is expressed by Expression (11) including the case where noise is superimposed on the upper sideband or the lower sideband. .
  • the waveform of the in-phase component is the same regardless of whether noise is superimposed on the upper sideband wave or noise on the lower sideband wave, and the output x r ⁇ (t) of the filter 31L is expressed by equation (12). Given in.
  • the noise component of the quadrature component when the noise component of the quadrature component is superimposed only on the upper sideband wave, it is in a delayed phase of ⁇ / 2 with respect to the noise component of the in-phase component, and the noise is superimposed only on the lower sideband wave.
  • the phase is ⁇ / 2 in advance with respect to the noise component of the in-phase component. Therefore, the output x i ⁇ (t) of the filter 32L that extracts the negative frequency band of the orthogonal component is expressed by the following equation (13).
  • the combining unit 61 adds the output S U (t) of the combining unit 60U and the output S L (t) of the combining unit 60L, thereby removing the noise-removed both side bands.
  • a wave signal S (t) can be obtained.
  • the phase rotation in the phase rotation unit 40U and the phase rotation unit 40L is reversed by the common changeover switch 42 in the same manner as in the first embodiment, so that the AM broadcast listener can hear noise. It will be set to the smaller one.
  • the second embodiment that automatically detects the sign of the rotational phase may be used. That is, the phase rotation unit 40U of the upper side band processing unit U in FIG. 7 of the third embodiment and the phase rotation unit 40L of the lower side band processing unit L are used in the phase rotation unit 40 shown in FIG. Also good. According to this configuration, it is possible to obtain a baseband double sideband wave in which noise is automatically removed from the in-phase component. Since the phase rotation code determined for the positive frequency band and the phase rotation code determined for the negative frequency band are only different from each other, the phase rotation code determined for one frequency band is different. Can be multiplied by ( ⁇ 1) to obtain a phase rotation code in the other frequency band. In this case, the phase rotation part 40 of FIG. 6 should exist only in the processing system of one frequency band.
  • x r + (t) and x r ⁇ (t) are the first half-band signal component, the second half-band signal component, and x i + (t) and x i ⁇ (t) are, respectively.
  • the filters 31U and 31L correspond to first in-phase component band extraction means and second in-phase component band extraction means
  • the filters 32U and 32L correspond to first quadrature component band extraction means and second quadrature component band extraction means.
  • the phase rotation unit 40U corresponds to the first phase rotation unit
  • the phase rotation unit 40L corresponds to the second phase rotation unit.
  • the combining unit 60U corresponds to the first combining unit
  • the combining unit 60L corresponds to the second combining unit.
  • FIG. 8 shows a configuration of a device that realizes synchronous demodulation in the signal processing device of the first embodiment.
  • the feature of the present embodiment is that the quadrature demodulation unit 20 is provided with a phase synchronization processing unit 70.
  • the phase synchronization processing unit 70 receives a baseband signal and calculates a moving average of the moving average calculating unit 71, a complex conjugate calculating unit 72 that calculates the complex conjugate of the output, and an amplitude that normalizes the amplitude of the output.
  • a normalization unit 73 and a multiplication unit 74 that multiplies the output by the baseband signal x (t).
  • the frequency of the demodulated carrier wave output from the demodulated carrier wave generator 22 is assumed to be larger by ⁇ than the frequency ⁇ c of the modulated carrier wave. That is, the demodulated carrier wave L (t) is expressed by equation (16). Since the received signal r (t) is represented by the real part of the equation (1), the baseband signal x (t) output from the mixer 21 is represented by the equation (17) in the same manner as the equation (2). The That is, a factor of exp ( ⁇ t) appears in the baseband signal. The moving average of the baseband signal x (t) is calculated by the moving average calculator 71. The result of the moving average is given by equation (18). That is, because the frequency of the final term of the equation (17) is large due to the moving average, this term becomes 0 due to the moving average.
  • the multiplier 74 can multiply the baseband signal by the normalized signal to obtain the synchronized baseband signal x sync (t) of the equation (20).
  • the influence of the deviation can be eliminated.
  • the phase difference ⁇ between the demodulated carrier wave and the modulated carrier wave included in the received signal is not clearly shown. Considering this, if the equation (20) is calculated, ⁇ is deleted, so that even if ⁇ exists, the equation (20) can be obtained. That is, not only the frequency error but also the phase error is compensated.
  • the apparatus of the fourth embodiment is an example in which the phase synchronization processing unit 70 is used in the configuration of FIG. 1 of the first embodiment, but the quadrature demodulation unit 20 of FIG. 70 may be provided.
  • the configuration is shown in FIG.
  • the in-phase component is demodulated by cos [( ⁇ c + ⁇ ) t + ⁇ ]
  • the quadrature component is demodulated by sin [( ⁇ c + ⁇ ) t + ⁇ ] so that the quadrature component becomes 0 (minimum).
  • the frequency ⁇ c + ⁇ and the phase ⁇ of the demodulated carrier wave may be synchronously demodulated by a PLL circuit using VOC, that is, a Costas loop.
  • the quadrature demodulation unit 20 is provided with the phase synchronization processing unit 70 of the fourth embodiment shown in FIG.
  • the configuration is shown in FIG. That is, in the upper side band processing unit U and the lower side band processing unit L in FIG. 10, the same configuration as the phase rotation unit 40 in FIG. 6 is used as the phase rotation unit 40U and the phase rotation unit 40L.
  • the phase rotation code of the quadrature component in the positive frequency band is determined by the cross-correlation between the in-phase component and the quadrature component in the positive frequency band, and the cross-correlation between the in-phase component and the quadrature component in the negative frequency band.
  • the phase rotation code of the orthogonal component in the negative frequency band is determined.
  • a code obtained by inverting the phase rotation code determined from one band may be used as the phase rotation code in the other band.
  • the complex conjugate of the noise component of the in-phase component obtained in one frequency band is calculated and synthesized with the in-phase component of the other frequency band, thereby superimposing it on the in-phase component of both frequency bands.
  • This is an example of removing noise.
  • the configuration is shown in FIG.
  • the configuration of the phase rotation unit related to the positive frequency band in the upper side band processing unit U is the same as that of the phase rotation unit 40U of the upper side band processing unit U of FIG.
  • the lower sideband processing unit L is provided with a phase inversion unit 401L and a synthesis unit 60L in place of the phase rotation unit for the negative frequency band.
  • the phase inversion part 401L has the complex conjugate calculating part 43L.
  • the output of the multiplication unit 41U of the upper side band processing unit U is input to the complex conjugate calculation unit 43L.
  • the output x ia + (t) of the multiplier 41U is expressed by equation (21) obtained by multiplying equation (6) by ⁇ j.
  • the output (x ia + (t)) * of the complex conjugate calculation unit 43L is a complex conjugate of x ia + (t), and is expressed by equation (22).
  • the synthesizer 60L adds and synthesizes (x ia + (t)) * of (22), which is the output of the complex conjugate calculator 43L, and x r ⁇ (t) of equation (12) output from the filter 31L.
  • S L (t) can be obtained from the equation (23). Therefore, the output of the synthesizing unit 61 is S (t) in the equation (15), and a DSB signal from which noise is removed from the in-phase component is obtained.
  • the in-phase component x r (t) is the same as the in-phase component when noise is superimposed only on the upper sideband, so that (3) It is expressed by a formula.
  • the quadrature component is an equation obtained by inverting the sign of the quadrature component in the equation (4) when noise is superimposed only on the upper sideband. Therefore, the orthogonal component x i (t) is expressed by the equation (24). Therefore, the multiplication in the multiplication unit 41U is (j), and the output x ia + (t) of the multiplication unit 41U is the same as the equation (21) when noise is superimposed on the upper side band.
  • the output (x ia + (t)) * of the complex conjugate calculation unit 43L is the same as the expression (22). Since the in-phase component is the same as when noise is superimposed only on the upper sideband, the output x r ⁇ (t) of the filter 31L is also the same as the equation (12). Accordingly, the output S L (t) of the synthesizing unit 60L is also expressed by the equation (23), and the output S (t) of the synthesizing unit 61 is also expressed by the equation (15). In this way, even when noise is superimposed only on the lower sideband, a DSB signal from which noise has been removed from the in-phase component is obtained.
  • the present invention can be used in an apparatus for removing periodic noise from an input signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)

Abstract

【課題】DSB信号から雑音を精度良く除去すること。 【解決手段】両側帯波信号を受信して、RF帯域における一方の側帯波にのみ重畳する雑音を除去する信号処理装置において、両側帯波信号を直交復調して、正周波数帯域と負周波数帯域とを有したベースバンド信号に復調する復調手段と、復調手段の出力する直交成分に基づいて、復調手段の出力する同相成分に含まれる雑音成分を除去する雑音除去手段とを有する。また、復調手段の出力する直交成分のうち正周波数帯域と負周波数帯域のうち一方の周波数帯域の雑音成分を抽出する直交成分帯域抽出手段を有し、雑音除去手段は、直交成分帯域抽出手段により抽出された雑音成分を-π/2又はπ/2だけ位相を回転させる位相回転手段と、復調手段の出力する同相成分であるベースバンドの信号成分を、位相回転手段の出力する位相回転雑音成分に基づいて、信号成分に重畳された雑音を除去する合成手段とを有する。

Description

信号処理装置及び信号処理方法
 本発明は、両側帯波を用いた放送、通信において、上側帯波帯域又は下側帯波帯域の一方の帯域にのみ雑音が重畳される環境において、復調時にこの雑音を除去するようにした信号処理装置及び信号処理方法に関する。
 雑音が重畳された所望の放送波から雑音を除去して所望の放送波を復調する方法として、下記特許文献に記載の技術が知られている。下記特許文献1は、他方のアンテナに比べて放送波を強く受信して第1信号を得る第1アンテナと、他方のアンテナに比べて雑音を強く受信して第2信号を得る第2アンテナとを用いて、合成後の信号レベルが小さくなるように、第2信号の振幅と位相とを調整して、第1信号に合成する技術である。この技術では、第2信号の振幅と位相の調整は、所望の放送波の受信レベルがある閾値より小さい場合に行っている。すなわち、雑音電力が放送波の電力よりも大きい場合に、合成信号のレベルが小さくなるように、第2信号の振幅と位相とを調整するものである。両アンテナが同一の雑音源から雑音を受信しているので、両アンテナで受信される雑音の振幅と位相は、雑音源との各アンテナとの距離の差に応じて異なる。これを補償するために、第2信号の振幅を第1信号の振幅と一致させ、第2信号の位相を第1信号の位相に対してπだけ位相を変化させて、第1信号に対して逆相で第2信号を合成している。このように第2信号の増幅率と位相とを調整すれば、所望の放送波を受信できる状態になった場合にも、受信された放送波から雑音がキャンセルされた信号を得ることができる。
 また、下記特許文献2の技術は、車両に搭載されたラジオ受信機によるAMラジオ放送波の受信において、AMラジオ放送波に車両の電子機器から発せられるパルス性の雑音が混入するが、このパルス性の雑音を除去する技術である。この技術では、まず、AMラジオ放送波帯域以外の帯域におけるパルス雑音を検出して、そのパルス雑音の周期の大きさやレベルの変動幅を求めることで、雑音源を特定している。そして、その雑音源に応じて、パルス雑音が重畳された放送波において、放送波周波数付近のパルス雑音の高調波の帯域、雑音周期の帯域を、パルス雑音の時間幅に対応した時間だけ、減衰させることで、AMラジオ放送を聞く人に、パルス性雑音による不快感を与えないようにしている。
特開2012-257155 特許第5012246
 特許文献1の技術は、2本のアンテナを用いて、雑音のみが受信できるようにして、2つのアンテナの受信信号の合成信号のレベルが小さくなるように、予め調整しておくという技術である。このため、特許文献1の技術は、雑音をキャンセルするために2本のアンテナを必要とし、雑音を除去するための設定は、所望の放送波の受信レベルが雑音除去の調整に影響を与えないように、受信レベルが小さい環境で行う必要がある。また、雑音の周波数特性に関係なく、一律に、第2信号の振幅と位相とを調整しているので、雑音は完全には除去されない。また、PWM方式によるDC-DCコンバータの場合には、基本周期は変わらなくとも、パルス幅の変化により雑音の周波数特性は変化する。このため、特許文献1の方法では、雑音を完全には除去できない。
 また、特許文献2の技術は、放送波帯域以外の帯域でパルス雑音を検出して、その検出タイミングで、パルス幅に応じた時間だけ、雑音の種類に応じた適性な周波数帯域を減衰させるという技術である。したがって、本質的には、放送波もパルス雑音の期間だけ減衰されることになる。これが、AMラジオ放送を聞く人に違和感を与える原因となる。
 そこで、本発明の目的は、両側帯波を用いた放送、通信において、上側帯波帯域又は下側帯波帯域の一方の帯域にのみ雑音が重畳される環境において、復調時にこの雑音を精密に除去するようにすることである。
 上記課題を解決するための本第1の発明は、両側帯波信号を受信して、RF帯域における一方の側帯波にのみ重畳する雑音を除去する信号処理装置において、両側帯波信号を直交復調して、正周波数帯域と負周波数帯域とを有したベースバンド信号に復調する復調手段と、復調手段の出力する直交成分に基づいて、復調手段の出力する同相成分に含まれる雑音成分を除去する雑音除去手段とを有することを特徴とする信号処理装置である。
 本発明の要旨は、直交成分には信号成分が含まれず雑音成分のみが現れることに注目して、直交成分から同相成分に重畳された雑音成分を除去することである。雑音成分の除去は時間軸上又は周波数軸上、又は、その両者の組み合わせにより行うことができる。
 また、上記本発明において、復調手段の出力する直交成分のうち正周波数帯域と負周波数帯域のうち一方の周波数帯域の片帯域雑音成分を抽出する直交成分帯域抽出手段を有し、雑音除去手段は、直交成分帯域抽出手段により抽出された片帯域雑音成分を-π/2又はπ/2だけ位相を回転させる位相回転手段と、復調手段の出力する同相成分に、位相回転手段の出力する位相回転雑音成分を合成して、同相成分に含まれる雑音成分を除去する合成手段とを有する信号処理装置とすることができる。なお、位相の符号は、正周波数帯域、負周波数帯域に係わらず、複素座標系における位相の符号、すなわち、左回転方向を正として定義する。
 本発明は、次の原理を用いて、復調後の信号から雑音を除去するものである。直交多重化していない両側帯波(例えば、AM放送波)を直交復調した場合に、ベースバンドの同相成分には信号成分と雑音成分が現れ、直交成分には信号成分が現れず、雑音成分のみが現れる。
 1.上側帯波帯域にのみ雑音が重畳され、直交成分の正周波数帯域の雑音成分を抽出する場合。
 雑音成分に関して、直交復調後の同相成分も直交成分も実関数であるので、ベースバンドにおける雑音成分のスペクトルは、正周波数帯域と負周波数帯域とで、互いに複素共役の関係にある。すなわち、同相成分の雑音成分について、スペクトルの周波数ωでの振幅A(ω)と位相φ(ω)は、周波数(-ω)での振幅A(-ω)と位相{-φ(-ω)}に等しい。また、直交成分の雑音成分のスペクトルに関して、振幅は同相成分の雑音成分の振幅に等しく、周波数ωでの振幅A(ω)と位相φ(ω)は、周波数(-ω)での振幅A(-ω)と位相{-φ(-ω)}に等しい。そして、RF帯域において上側帯波帯域にのみ雑音が重畳される場合には、直交成分の雑音成分は、同相成分の雑音成分に対して、正周波数帯域も負周波数帯域も、時間軸上において、位相がπ/2だけ遅れている。すなわち、次式が成立する。
φ(ω)=φ(ω)-π/2、
-φ(-ω)=-φ(-ω)-π/2、
φ(-ω)=φ(-ω)+π/2=-φ(ω)+π/2
 ただし、位相φは、複素座標系における左回転方向を正としている。正周波数領域では波動ベクトルは正方向に回転し、負周波数帯域では、波動ベクトルは負方向に回転していると定義する。
 この関係は、全正周波数帯域の周波数に対して成立する。したがって、正周波数帯域の直交成分の雑音成分A(ω)exp(j φ(ω))の時間波形(複素関数)f (t)が分かれば、その雑音成分の各周波数成分の位相をπ/2だけ進めた時間波形を、正周波数帯域の同相成分(信号成分+雑音成分)から、減算すれば、同相成分の雑音成分A(ω)exp(j φ(ω))の時間波形(複素関数)f (t)を除去できる。具体的には、正周波数帯域の同相成分(すなわち、信号成分F(t)+雑音成分f (t))から、jf (t)を減算すれば、同相成分の信号成分F(t)が得られる。両側帯波では、片帯域の成分だけでも、信号を復調できるので、F(t)の実部により、上記の処理により信号の復調が可能となる。
 2.上側帯波帯域にのみ雑音が重畳され、直交成分の負周波数帯域の雑音成分を抽出する場合。
 直交成分の雑音成分の抽出は、負周波数帯域について行っても良い。すなわち、負周波数帯域の直交成分の雑音成分A(-ω)exp(j φ(-ω))の時間波形(複素関数)f (t)が分かれば、その雑音成分の各周波数成分の位相をπ/2だけ進めた時間波形を、負周波数帯域の同相成分(信号成分+雑音成分)から、減算すれば、同相成分の雑音成分A(-ω)exp(j φ(-ω))の時間波形(複素関数)f (t)を除去できる。具体的には、負周波数帯域の同相成分(すなわち、信号成分F(t)+雑音成分f(t))から、-jf (t)を減算すれば、同相成分の信号成分F(t)が得られる。このように、直交成分の雑音成分の抽出は、正周波数帯域、負周波数帯域の何れか一方の帯域で行うことができる。
 3.上側帯波帯域に雑音が重畳された場合において、抽出した直交成分の帯域とは別の帯域の同相成分を補正する場合
 直交成分の雑音成分の負周波数帯域を抽出して、同相成分の正周波数帯域の信号を補正するようにしても良い。φ(ω)=-{φ(-ω)-π/2}の関係があるので、負周波数帯域の直交成分の雑音成分A(-ω)exp(j φ(-ω))の時間波形f (t)の各周波数成分の位相をπ/2だけ進めた時間波形の複素共役を、正周波数帯域の同相成分から、減算すれば、同相成分の雑音成分の時間波形(複素関数)f (t)を除去できる。具体的には、正周波数帯域の同相成分(すなわち、信号成分F(t)+雑音成分f(t))から、{-jf (t)}を減算すれば、同相成分の信号成分F(t)が得られる。ただし、*は、複素共役演算を表す。
 逆に、直交成分の雑音成分の正周波数帯域を抽出して、同相成分の負周波数帯域の信号を補正するようにしても良い。φ(-ω)=φ(-ω)-π/2=-{φ(ω)+π/2}の関係があるので、正周波数帯域の直交成分の雑音成分A(ω)exp(j φ(ω))の時間波形f (t)の各周波数成分の位相をπ/2だけ進めた時間波形の複素共役を、負周波数帯域の同相成分(信号成分+雑音成分)から、減算すれば、同相成分の雑音成分A(-ω)exp(j φ(-ω))の時間波形(複素関数)f (t)を除去できる。具体的には、負周波数帯域の同相成分から、{jf (t)}を減算すれば、同相成分の信号成分F(t)が得られる。
  このように、直交成分の雑音成分の抽出は、正周波数帯域、負周波数帯域の何れか一方の帯域で行い、π/2の位相を進ませた直交成分を同一符号の帯域の同相成分に、又は、π/2位相を進ませた直交成分の複素共役を異符号の帯域の同相成分に、それぞれ合成することで同相成分に重畳された雑音が除去できる。
 4.下側帯波帯域にのみ雑音が重畳され、直交成分の正周波数帯域の雑音成分を抽出する場合。
 上側帯波にのみ雑音が重畳される場合と比較して、正周波数帯域と負周波数帯域との関係が逆になるだけである。したがって、上式のωを-ωに置換して、次の式が成立する。
-φ(-ω)=-φ(-ω)+π/2、
φ(ω)=φ(ω)+π/2、
φ(ω)=φ(ω)+π/2=-φ(-ω)+π/2
 そして、RF帯域において下側帯波帯域にのみ雑音が重畳される場合には、直交成分の雑音成分は、同相成分の雑音成分に対して、正周波数帯域も負周波数帯域も、時間軸上において、位相がπ/2だけ進んでいる。したがって、上側帯波帯域に雑音が重畳した場合に比べて、抽出した直交成分に掛ける因子(j)、(-j)が逆になるだけで、同様に、同相成分に重畳した雑音を除去できる。
 正周波数帯域の直交成分の雑音成分の時間波形f (t)が分かれば、その雑音成分の各周波数成分の位相をπ/2だけ遅らせた時間波形を、正周波数帯域の同相成分から、減算すれば、同相成分の雑音成分の時間波形(複素関数)f (t)を除去できる。具体的には、正周波数帯域の同相成分から、-jf (t)を減算すれば、同相成分の信号成分F(t)が得られる。
  5.下側帯波帯域にのみ雑音が重畳され、直交成分の負周波数帯域の雑音成分を抽出する場合。
 直交成分の雑音成分の抽出は、負周波数帯域について行っても良い。この場合も、直交成分の雑音成分は、同相成分の雑音成分に対して、時間軸上において、位相がπ/2だけ進んでいるので、上側帯波帯域に雑音が重畳した場合に比べて、抽出した直交成分に掛ける因子(j)、(-j)が逆になるだけで、同様に、同相成分に重畳した雑音を除去できる。負周波数帯域の直交成分の雑音成分の時間波形(複素関数)f (t)が分かれば、その雑音成分の各周波数成分の位相をπ/2だけ遅らせた時間波形を、負周波数帯域の同相成分から、減算すれば、同相成分の雑音成分の時間波形(複素関数)f (t)を除去できる。具体的には、負周波数帯域の同相成分から、jf (t)を減算すれば、同相成分の信号成分F(t)が得られる。このように、直交成分の雑音成分の抽出は、正周波数帯域、負周波数帯域の何れか一方の帯域で行うことができる。
 6.下側帯波帯域に雑音が重畳された場合において、抽出した直交成分の帯域とは別の帯域の同相成分を補正する場合
 上側帯波に雑音が重畳した場合と同様に、直交成分の雑音成分の負周波数帯域を抽出して、同相成分の正周波数帯域の信号を補正するようにしても良い。φ(ω)=-{φ(-ω)+π/2}の関係があるので、負周波数帯域の直交成分の雑音成分の時間波形(複素関数)f (t)の各周波数成分の位相をπ/2だけ遅らせた時間波形の複素共役を、正周波数帯域の同相成分から、減算すれば、同相成分の雑音成分の時間波形(複素関数)f (t)を除去できる。具体的には、正周波数帯域の同相成分から、{jf (t)}を減算すれば、同相成分の信号成分F(t)が得られる。
 逆に、直交成分の雑音成分の正周波数帯域を抽出して、同相成分の負周波数帯域の信号を補正するようにしても良い。φ(-ω)=-φ(ω)+π/2の関係があるので、正周波数帯域の直交成分の雑音成分の時間波形f (t)の各周波数成分の位相をπ/2だけ遅らせた時間波形の複素共役を、負周波数帯域の同相成分から、減算すれば、同相成分の雑音成分の時間波形f (t)を除去できる。具体的には、負周波数帯域の同相成分から、{-jf (t)}を減算すれば、同相成分の信号成分F(t)が得られる。
  このように、直交成分の雑音成分の抽出は、正周波数帯域、負周波数帯域の何れか一方の帯域で行い、π/2の位相を遅らせた直交成分を同一符号の帯域の同相成分に、又は、π/2位相を遅らせた直交成分の複素共役を異符号の帯域の同相成分に、それぞれ合成することで同相成分に重畳された雑音が除去できる。
 7.位相回転処理と合成処理を周波数空間で行う場合。
 次のように、位相回転処理と合成処理は、周波数空間で行って、結果をフーリエ逆変換することで、雑音が除去された時間軸上の復調信号を得るようにしても良い。
 直交成分の正周波数帯域における雑音成分をフーリエ変換してスペクトルを求めて、直交成分のスペクトルを求めることができる。このスペクトルにj、又は、-jを掛ければ、雑音成分の同相成分のスペクトルが得られる。正周波数帯域における同相成分(信号+雑音)をフーリエ変換して、同相成分のスペクトルを求めることができる。同相成分のスペクトルから同相成分の雑音成分のスペクトルを減算して、フーリエ逆変換すれば、雑音が除去された正周波数帯域の信号波形を得ることができる。負周波数帯域においても同様である。
 本発明は上記の原理に基づくものである。
 本発明において、復調手段の出力する同相成分のうち正周波数帯域と負周波数帯域のうち一方の周波数帯域を抽出する同相成分帯域抽出手段を有し、位相回転手段は、直交成分帯域抽出手段により抽出された片帯域雑音成分と、同相成分帯域抽出手段により抽出された片帯域信号成分との相互相関値を演算する相互相関演算手段を有し、相互相関演算手段の出力する値の符号に基づいて、位相の回転方向を決定することが望ましい。この特徴は、同相成分の雑音成分と直交成分の雑音成分の相互相関の結果は、j、又は、-jとなる。同相成分の雑音成分を、検出された直交成分の雑音成分から除去するに当たり、π/2の位相の符号を決定するものである。上述したように、正周波数帯域の同相成分の雑音成分の位相は、直交成分の位相、負周波数帯域における直交成分の位相、負周波数帯域の同相成分の雑音成分の位相とは、一意的関係にある。したがって、相互相関値の演算は、必ずしも、同一符号の周波数帯域間で行う必要はない。
 また、本発明において、相互相関演算手段は、同相成分帯域抽出手段の出力する片帯域信号成分と直交成分帯域抽出手段により抽出された片帯域雑音成分とにおいて、一方と他方の複素共役との積の移動時間平均により相互相関値を演算するようにしても良い。複素演算による相互相関演算の具体例である。
 また、本発明において、合成手段は、位相回転雑音成分と、同相成分帯域抽出手段により抽出された片帯域信号成分とを合成するようにしても良い。すなわち、正周波数帯域と負周波数帯域の何れか一方の帯域について、雑音を除去する。この場合には雑音の除去されたSSBが得られる。
 また、本発明において、同相成分帯域抽出手段は、片帯域信号成分を第1片帯域信号成分として抽出する第1同相成分帯域抽出手段と、第1片帯域信号成分に対して、他方の周波数帯域の第2片帯域信号成分を抽出する第2同相成分帯域抽出手段とを有し、位相回転手段は、直交成分帯域抽出手段により抽出された片帯域雑音成分を-π/2又はπ/2だけ位相を回転させる第1位相回転手段と、第1位相回転手段の出力する信号の複素共役を演算する位相反転手段とを有し、合成手段は、第1片帯域信号成分を、第1位相回転手段の出力する第1位相回転雑音成分に基づいて、第1片帯域信号成分に重畳された雑音を除去する第1合成手段と、第2片帯域信号成分を、位相反転手段の出力する位相反転雑音成分に基づいて、第2片帯域信号成分に重畳された雑音を除去する第2合成手段とを有する構成とすることができる。
 片帯域雑音成分と、同相成分の正周波数帯域の雑音成分と負周波数帯域の雑音成分とは、π/2の位相回転や、位相回転後の複素共役(すなわち、位相反転)で、一意的に決定される。したがって、この態様では、直交成分において、正周波数帯域又は負周波数帯域のうちの一方の帯域から抽出された片帯域雑音成分に基づいて、同相成分の片帯域又は両帯域の信号から雑音を除去することができる。
 本発明において、同相成分帯域抽出手段は、片帯域信号成分を第1片帯域信号成分として抽出する第1同相成分帯域抽出手段と、第1片帯域信号成分に対して、他方の周波数帯域の第2片帯域信号成分を抽出する第2同相成分帯域抽出手段とを有し、直交成分帯域抽出手段は、第1片帯域信号成分と同一符号の周波数帯域の雑音成分を第1片帯域雑音成分として抽出する第1直交成分帯域抽出手段と、第1片帯域雑音成分に対して、他方の周波数帯域の第2片帯域雑音成分を抽出する第2直交成分帯域抽出手段とを有し、位相回転手段は、第1直交成分帯域抽出手段により抽出された第1片帯域雑音成分を-π/2又はπ/2だけ位相を回転させる第1位相回転手段と、第2直交成分帯域抽出手段により抽出された第2片帯域雑音成分をπ/2又は-π/2だけ位相を回転させる第2位相回転手段とを有し、合成手段は、第1片帯域信号成分を、第1位相回転手段の出力する第1位相回転雑音成分に基づいて、第1片帯域信号成分に重畳された雑音を除去する第1合成手段と、第2片帯域信号成分を、第2位相回転手段の出力する第2位相回転雑音成分に基づいて、第2片帯域信号成分に重畳された雑音を除去する第2合成手段とを有していても良い。この場合には、正周波数帯域と負周波数帯域の同相成分から、雑音を共に除去することができる。したがって、雑音が除去された両側帯波として復調することができるので、受信感度が向上する。
 また、第1位相回転手段及び第2位相回転手段による回転位相の符号は、一方の位相回転手段により決定された相互相関値の符号により、他方の位相回転手段による位相の回転の符号も決定しても良い。すなわち、ベースバンドにおける一方の周波数帯域の直交成分の雑音成分により決定された位相の回転符号は、他方の周波数帯域の直交成分の雑音成分により決定された位相の回転符号とは異付号であるので、一方の周波数帯域の信号処理により位相の回転符号を決定することができる。
 また、第1位相回転手段は、第1片帯域雑音成分と第1片帯域信号成分とから相互相関値を演算する相互相関演算手段としての第1相互相関演算手段を有し、第1相互相関演算手段の出力する第1の値に基づいて位相の回転方向を決定し、第2位相回転手段は、第2片帯域雑音成分と第2片帯域信号成分との相互相関値を演算する相互相関演算手段としての第2相互相関演算手段を有し、第2相互相関演算手段の出力する第2の値に基づいて位相の回転方向を決定するようにしても良い。この場合には、それぞれの周波数帯域から直交成分の雑音成分の位相の回転符号を決定している。
 本発明において、復調手段は、直交復調後の直交成分に含まれる、変調搬送波に対する復調搬送波の誤差周波数のビート信号が零となるように、復調搬送波の周波数と位相を制御するフェーズロックドループ部を有することが望ましい。同期検波を実行でき、雑音を確実に除去することができる。
 また、復調手段は、ベースバンド信号の移動平均から、変調搬送波に対する復調搬送波の誤差周波数のビート信号を求め、そのビート信号に基づいてベースバンド信号のビート信号による変動を補正した信号を新たにベースバンド信号とする同期手段を有することが望ましい。ベースバンドにおけるスペクトルは、同相成分も直交成分も、ビート周波数だけ周波数がシフトするので、これ周波数シフトを補正することで、信号成分の復調と、雑音の除去を確実に実行することができる。
 また、本方法発明は、両側帯波信号を受信して、RF帯域における一方の側帯波にのみ重畳する雑音を除去する信号処理方法において、両側帯波信号を直交復調して、正周波数帯域と負周波数帯域とを有したベースバンド信号に復調し、復調された直交成分に基づいて、復調された同相成分に含まれる雑音成分を除去することを特徴とする信号処理方法である。本方法発明において、さらに、復調された直交成分のうち正周波数帯域と負周波数帯域のうち一方の周波数帯域の雑音成分を片帯域雑音成分として抽出し、抽出された雑音成分を-π/2又はπ/2だけ位相を回転させ、復調された同相成分であるベースバンドの信号成分を、位相回転された位相回転雑音成分に基づいて、信号成分に重畳された雑音を除去することができる。また、本発明において、同相成分における正周波数帯域と負周波数帯域のうち一方の周波数帯域の信号成分を片帯域信号成分として抽出し、位相の回転の符号は、片帯域信号成分と片帯域雑音成分との相互相関値に基づいて決定しても良い。要するに、本発明は、信号の復調には直交復調する必要がないところ、直交復調して得られる直交成分から、同相成分に含まれる雑音を消去するようにしたことが特徴である。
 本発明によると、上側帯波帯域又は下側帯波帯域の一方の帯域にのみ雑音が重畳される環境において、復調時にこの雑音を精度よく除去することができるので、所望信号の検出精度、復調精度を向上させることができる。 
本発明の具体的な実施例1に係る信号処理装置の構成図。 実施例1の信号処理装置の入力信号及び復調後の信号の周波数特性図。 実施例1の信号処理装置の復調後のベースバンドにおける同相成分と直交成分の周波数特性図。 実施例1の信号処理装置の復調後のベースバンドの正周波数帯域での、同相成分、直交成分、雑音が除去される出力信号の周波数特性図。 実施例1の信号処理装置の作用を説明するための説明図。 本発明の具体的な実施例2に係る信号処理装置の構成図。 本発明の具体的な実施例3に係る信号処理装置の構成図。 本発明の具体的な実施例4に係る信号処理装置の構成図。 本発明の具体的な実施例4の変形例に係る信号処理装置の構成図。 本発明の具体的な実施例5に係る信号処理装置の構成図。 本発明の具体的な実施例6に係る信号処理装置の構成図。
 以下、本発明を具体的な実施例に基づいて説明する。本発明は、下記の実施例に限定されるものではない。
 本発明の具体的な一実施例に係る信号処理装置1の構成を図1に示す。本実施例は、HV(ハイブリッド車)におけるAMラジオ受信機に混入する雑音を抑制する信号処理装置である。HVには、100kHzのキャリア周波数で制御されるDC-DCコンバータが搭載されていると仮定する。AMラジオ放送波は、531kHzから1602kHzの周波数帯域が割り当てられている。DC-DCコンバータから発生するスイッチング雑音は、基本的には、周波数空間では、基本周波数100kHzの整数倍の線スペクトル列となる。この雑音が、AMラジオ放送帯域に入り込み、AMラジオ放送波に雑音を与える。このような雑音の場合に、雑音のスペクトルは、100kHzの間隔が存在するので、AMラジオ放送の上側帯波帯域と下側帯波帯域とに、共に、雑音が存在することはない。本実施例は、AMラジオ放送帯域に入り込むこの種の雑音をキャンセルする信号処理装置である。しかしながら、本発明は、このような雑音に限定されることなく、直交多重化されていない両側帯波伝送において、上側帯波帯域と下側帯波帯域との一方の帯域にのみ雑音が混入する全ての環境において用いることができる。また、スペクトルが互いに複素共役の関係にある両側帯波伝送であれば、各帯域の信号は、AM変調、FM変調、位相変調、その他の変調方式であっても良い。
 本実施例の信号処理装置1は、アンテナ11により受信されたAMラジオ放送信号が増幅器12により増幅され、A/Dコンバータ13により、一定の周期Δtでサンプリングされて、ディジタル値に変換された後、CPUにより処理される装置である。図1の構成は、ディジタル処理の各機能部毎にブロックで表現されている。A/Dコンバータ13の出力する信号は実数であるが、直交復調部20及びその後段のデータ処理は全て複素数で行われる。復調手段である直交復調部20は、ミキサー21と復調搬送波発生部22と同相成分抽出部23と直交成分抽出部24とを有している。直交復調部20によりベースバンド信号が得られる。複素信号で取り扱う関係上、このベースバンドは、上側帯波帯域に対応する正周波数帯域と下側帯波帯域に対応する負周波数帯域とを有する。フィルタ部30は同相成分のベースバンド信号を入力して、正周波数帯域を抽出するフィルタ31と、直交成分のベースバンド信号を入力して、正周波数帯域を抽出するフィルタ32とを有している。フィルタ31は、同相成分の片周波数帯域を抽出する同相成分帯域抽出手段を、フィルタ32は直交成分の片周波数帯域を抽出する直交成分帯域抽出手段を構成している。
 また、位相回転手段を構成する位相回転部40は、フィルタ32の出力する直交成分の正周波数帯域のベースバンド信号に、切換スイッチ42の設定に応じて、-j又はjを掛ける乗算器41を有している。すなわち、この乗算は、全周波数、一律に-π/2又はπ/2だけ位相を回転することに相当する。そして、合成手段を構成する合成部60により、フィルタ31の出力する同相成分の正周波数帯域のベースバンド信号と、位相回転部40の出力信号(位相回転雑音成分)とを加算合成する。フィルタ31、32は、正周波数帯域を抽出するフィルタで、ヒルベルトフィルタと全域通過遅延回路との並列回路である。すなわち、このフィルタは、実関数I(t)から、I(t)+jQ(t)={(δ(t)+jh(t)}*I(t)を得るフィルタである。ただし、h(t)はヒルベルトフィルタのインパルス応答、*は、畳み込み積分を意味する。δ(t)+jh(t)の伝達関数は、ωが負では0、ωが正では2となる、正帯域通過フィルタである。雑音除去手段は、フィルタ32、位相回転部40、合成部60とで構成されている。
 なお、本実施例では、受信信号を直接、サンプリングしているが、帯域をシフトさせる復調部は、アナログ回路で構成して、一旦、中間周波数帯域に落として、IF信号をサンプリングするようにしても良い。また、直交復調は、数値演算で行い、実部と虚部を抽出することで実行しているが、直交復調は、cos(ωt)、sin(ωt)を用いた復調であっても良い。
 次に本装置の作用を説明する。
 雑音は、放送局から受信装置に至る間に上側帯波帯域に重畳されるものとする。アンテナ11の出力する受信信号r(t)は、(1)式で表される。
Figure JPOXMLDOC01-appb-M000001
 この受信信号r(t)のフーリエ変換であるスペクトルは図2(a)に示すようになり、上側帯波帯域と下側帯波帯域とを有している。Sは下側帯波のスペクトル、Sは上側帯波のスペクトルであり、Aは搬送波の振幅、ρは、放送局から受信装置までにおいて、RF帯域やIF帯域の復調に至る前の伝送路で重畳された雑音のスペクトルである。Aは実数、S、S、ρは角周波数ω(以下、単に、「周波数」と記す)に関する複素関数である。ωに関して、S、Sの絶対値は等しく、位相は反転関係にある。したがって、S、Sは相互に複素共役関数である。S(t)、S(t)は、それぞれ、S、Sのフーリエ逆変換であり、時間に関する複素関数である。また、S(t)、S(t)は、相互に複素共役の関係にあり、したがって、S(t)+S(t)は実関数である。ωは、変調時の搬送波の周波数、ω+ωは上側帯波に重畳した雑音の周波数である。
 空間を伝搬する波は、r(t)の実部で表される。したがって、A/Dコンバータ13から出力されるサンプリングされた受信信号(データ)は、実数列である。次に、この受信信号を直交復調する。信号成分の直交成分は存在しないので、複素空間では、直交復調は、(1)式で表される複素関数の実部の受信信号にexp(-jωt)掛ける演算を行うことに等しい。したがって、復調した後のベースバンドの信号は、(2)式で表される。なお、復調結果には1/2の係数が係るので、表現を簡単にするために、x(t)は、直交復調の結果の2倍で定義する。すなわち、ミキサー21の出力信号x(t)は、(2)式で表現でき、そのスペクトルは図2(b)に示すようになり、ベースバンドの正周波数帯域と負周波数帯域とを有している。雑音は正周波数帯域にのみ存在する。
Figure JPOXMLDOC01-appb-M000002
 (2)式の実部が直交復調における同相成分、虚部が直交復調における直交成分である。
 同相成分は、(3)式で、直交成分は、(4)式で表される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 すなわち、同相成分抽出部23の出力信号x(t)が(3)式で、直交成分抽出部24の出力信号x(t)が(4)式で、表現される。同相成分には信号成分と雑音成分が存在するが、直交成分には、信号成分が存在せず、雑音成分のみが存在する。同相成分(3)式のスペクトルは、図3(a)に示すようになる。正周波数帯域には、信号成分のスペクトルSと雑音成分のスペクトル(ρ/2)が現れ、負周波数帯域には、信号成分のスペクトルSと雑音成分のスペクトル(ρ/2)が現れている。ρはρの複素共役で、ρの位相を反転したスペクトルである。同相成分x(t)も、直交成分x(t)も実関数である。
 (4)式の直交成分x(t)のスペクトルは図3(b)に示すようになる。正周波数帯域には、直交成分の雑音成分のスペクトル(-jρ/2)が現れている。すなわち、この雑音成分は、同相成分の雑音成分と振幅は等しいが、同相成分に対して、位相が-π/2だけ回転している(時間軸上ではπ/2だけ遅れている)。負周波数帯域には、直交成分の雑音成分のスペクトル(jρ/2)が現れている。すなわち、この雑音成分は、同相成分の雑音成分と振幅は等しいが、同相成分に対して位相がπ/2だけ回転している(時間軸上ではπ/2だけ遅れている)。また、同相成分も、直交成分も、正周波数帯域と負周波数帯域のスペクトルは、相互に、複素共役の関係、すなわち、位相が反転した関係にある。
 次に、フィルタ31により、ベースバンドの正周波数帯域における同相成分x (t)(片帯域信号成分)が抽出される。x (t)は、(5)式で表され、そのスペクトルは図4(a)に示すようになる。また、フィルタ32により、ベースバンドの正周波数帯域における直交成分の雑音成分x (t)(片帯域雑音成分)が抽出される。x (t)は、(6)式で表され、そのスペクトルは図4(b)に示すようになる。x (t)とx (t)は複素関数である。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 次に、位相回転部40の乗算器41により、フィルタ32の出力する雑音成分x (t)に、-jが掛け算されて、位相回転雑音成分(-jx (t))が出力される。この処理は、直交成分の正周波数帯域の雑音成分の位相をπ/2だけ遅延させ(-π/2だけ回転させ)、同相成分の正周波数帯域の雑音成分との位相差がπとなるように位相が制御されることを意味する。すなわち、直交雑音成分が、同相雑音成分の反転波形となるように制御される。そして、合成部60において、正周波数帯域の同相成分x (t)に、位相回転雑音成分(-jx (t))が加算される。合成部60の出力は、(7)式となる。
Figure JPOXMLDOC01-appb-M000007
 すなわち、図4(a)、(c)のスペクトルで示すように、正周波数帯域の同相雑音成分(ρ/2)が消去されて、同相成分の信号成分A+S(t)が得られる。A+S(t)は複素関数である。両側帯波放送は、片帯域だけで復調できるので、この信号成分S(t)の実部により、AM放送の復調が可能となる。
 上側帯波帯域にのみ雑音が重畳された場合における上記の処理手順は、図5において示された、各処理部での入力信号、出力信号の数式及びスペクトルにより、理解が容易である。
 RF帯域において、雑音が、下側帯波帯域にのみ重畳した場合には、x(t)とx(t)は、(3)式と(4)式において、ω=-ωと置いた式で表される。しかし、上側帯波帯域に雑音が重畳した場合と(3)、(4)式の表現を同一にするために、ω=-ωとおき、さらに、ρをρ、ρをρに置換する。すなわち、下側帯波帯域に雑音が重畳した場合の(1)式のρをρとする。このように雑音のスペクトルを定義することで、同相成分の雑音成分は、図3(a)と同一になり、負周波数帯域では、ρ/2となり、正周波数帯域では、ρ/2となり、相互に複素共役の関係にある。
 直交成分の雑音成分は、正周波数帯域では、スペクトル(jρ/2)、負周波数帯域では、スペクトル(-jρ/2)となる。すなわち、正周波数帯域及び負周波数帯域において、直交成分の雑音成分は、同相成分の雑音成分に対して、時間軸上において位相がπ/2だけ進んでいる。したがって、正周波数帯域において、同相成分の雑音成分(ρ/2)を除去するためには、正周波数帯域の直交成分の雑音成分(jρ/2)に(j)を掛けて、同相成分に加算する必要がある。この場合には、乗算器41による演算は、(j)の掛け算となる。このように、上側帯波帯域に雑音が重畳した場合と下側帯波帯域に雑音が重畳した場合とで、乗算器41による掛け算因子(j)の符号が異なる。切換スイッチ42は、AM放送の聴者が再生音声における雑音の混入度を判断して聴者により雑音が消去される側に操作される。
 以上、正周波数帯域の直交成分の雑音成分を抽出する場合を説明したが、負周波数帯域の直交成分を抽出して、負周波数帯域の同相成分から、同相成分の雑音成分を除去するようにしても良い。上側帯波帯域に雑音が重畳される場合には、負周波数帯域の直交成分の雑音成分のスペクトルは(jρ/2)であるので、乗算器41での掛け算因子は(j)となる。また、下側帯波帯域に雑音が重畳される場合には、負周波数帯域の直交成分の雑音成分のスペクトルは(-jρ/2)であるので、乗算器41での掛け算因子は(-j)となる。これにより、合成部60からは、A+S(t)が出力され、その実部からAM音声信号を得ることができる。
 なお、(1)~(6)式における雑音成分の項は、単一のスペクトルで表現されているが、実際には周波数ωの積分で表されるものである。
 実施例1では、乗算器41における乗算因子(j)の符号を、設定スイッチ42で切り換える方式である。実施例2は、正周波数帯域における同相成分(信号成分+雑音成分)と、直交成分の雑音成分との相互相関演算により、乗算器41における乗算因子(j)の符号を自動的に決定するようにした装置である。本実施例の信号処理装置は、図6に示すように構成されている。実施例1の図1と同一の機能を果たす部分には、同一の符号が付されている。図1に対して、位相回転部40の構成が異なるだけである。複素共役演算部43において、フィルタ31の出力する(5)式の正周波数帯域の同相成分x (t)の複素共役が演算され、乗算器44において、その複素共役と、フィルタ32の出力する(8)式の正周波数帯域の直交成分の雑音成分x (t)との積が演算される。
Figure JPOXMLDOC01-appb-M000008
 x (t)は、上側帯波帯域にのみ雑音が重畳した場合と、下側帯波帯域にのみ雑音が重畳した場合とで符号が異なるので、(8)式では、両者を含めて±の符号を付けて表現されている。(+)は上側帯波帯域、(-)は下側帯波帯域に雑音が重畳された場合を表している。
 乗算器44の出力信号は、(9)式で表される。
Figure JPOXMLDOC01-appb-M000009
 (9)式の第1行における雑音成分は、周波数ωの単一周波数の雑音を示しているが、実際には雑音成分のスペクトルρはωの関数ρ(ω)である。雑音成分は一定幅の帯域を有しているので、正確には、(9)式の積のそれぞれの雑音成分は、ωに関する積分表示となる。したがって、(9)式の最終行の第2項は、正確には、ωに関する積分表示となる。また、(9)式の|ρ|は、スペクトルの振幅の2乗のωに関する積分であり、実数で正の値である。
 乗算器44の出力する(9)式の信号は、移動平均演算部45に入力する。移動平均により周波数の異なる雑音の積は、0となるので、同一周波数の雑音成分の積だけが残る。(9)式の最終行の第2項は、単一周波数のスペクトルで見ると、雑音の周波数ωの正弦波を正周波数帯域の同相成分の共役A+S(t)で振幅変調した波形となる。したがって、周波数ω及び同相成分の最大周波数で決定される最短周期よりも十分長い時間での移動平均を演算することで、周波数ωの雑音成分は消去される。雑音が一定の帯域を有する場合には、この第2項はωの積分表示となるだけであるので、第2項の雑音の周波数により変動する成分は消去できる。この結果、移動平均演算部45の出力信号は、(10)式で表される。
Figure JPOXMLDOC01-appb-M000010
 (10)式は、純虚数であり、その符号が(+)の場合には、雑音が上側帯波帯域に重畳された場合であり、符号が(-)の場合には、雑音が下側帯波帯域に重畳されていることを意味する。そこで、位相検出部46において、(10)式が、(-j)か(j)かが判定される。すなわち、直交成分の雑音成分の位相は、同相成分の雑音成分の位相に対してπ/2遅れている遅れ位相にあるか、π/2進んでいる進み位相にあるかが判定される。そして、位相決定部47において、(10)式の符号が(+)であれば、(-j)を、符号が(-)であれば、(j)を乗算器41に出力して、乗算器41から位相回転雑音成分を出力して、合成器40において、(5)式の同相成分x(t)に加算する。これにより、上側帯波帯域と下側帯波帯域の何れか一方の帯域に雑音が重畳された場合でも、自動的に、正周波数帯域における同相成分の雑音成分(ρ/2)を除去することができる。なお、フィルタ31、32の構成要素の一つであるヒルベルトフィルタのインパルス応答が、有限項で近似する関係上、帯域分離が完全ではなく、(9)式に直流の実部が存在したとしても、(9)式の虚部の符号により、直交成分の位相回転方向を決定することができる。
 上記の処理は、負周波数帯域の直交成分の雑音成分を抽出した場合も同様である。図6のフィルタ31を同相成分の負周波数帯域を抽出するフィルタ、フィルタ32を直交成分の負周波数帯域を抽出するフィルタとすれば良い。
 上記実施例1、2は、正周波数帯域又は負周波数帯域の一方について、雑音の除去と復調を行うものである。本実施例3は、図7に示すように、正周波数帯域と、負周波数帯域とを、それぞれ、独立して、信号処理を行うものである。すなわち、実施例1における正周波数帯域での処理と同様に、負周波数帯域の直交成分の雑音成分を抽出して、同相成分に重畳された雑音成分を除去している。図7において、正周波数帯域での雑音を除去する上側帯波処理部Uと、下側帯波処理部Lとを有している。上側帯波処理部Uは図1と同一構成であり、下側帯波処理部Lは、図1の構成において、フィルタ31Lが同相成分の負周波数帯域を抽出し、フィルタ32Lが直交成分の負周波数帯域を抽出する点のみが相違する。そして、上側帯波処理部Uの出力するS(t)と、下側帯波処理部Lが出力するS(t)が、合成部61により合成されて、両側帯波S(t)が得られる。
 上側帯波処理部Uの出力するS(t)は、実施例2で説明したように、上側帯波又は下側帯波に雑音が重畳した場合を含めて、(11)式で表される。
Figure JPOXMLDOC01-appb-M000011
 負周波数帯域について、上側帯波に雑音が重畳されても、下側帯波に雑音が重畳されても、同相成分の波形は等しく、フィルタ31Lの出力x (t)は、(12)式で与えられる。
Figure JPOXMLDOC01-appb-M000012
 一方、直交成分の雑音成分は、上側帯波にのみ雑音が重畳される場合には、同相成分の雑音成分に対して、π/2の遅れ位相にあり、下側帯波にのみ雑音が重畳される場合には、同相成分の雑音成分に対して、π/2の進み位相にある。したがって、直交成分の負周波数帯域を抽出するフィルタ32Lの出力x (t)は、(13)式で表される。
Figure JPOXMLDOC01-appb-M000013
  よって、(13)式の符号が(-)であれば直交成分の雑音成分はπ/2の遅れ位相にあるので、x (t)に(j)を乗算して(π/2回転させて)、同相成分の雑音成分に対してπの遅れ位相にして、同相成分の雑音成分x (t)に加算すれば、負周波数帯域の同相成分から雑音を除去することができる。
 一方、(13)式の符号が(+)であれば直交成分の雑音成分はπ/2の進み位相にあるので、x (t)に(-j)を乗算して(-π/2回転させて)、同相成分の雑音成分に対してπの進み位相にして、同相成分の雑音成分x (t)に加算すれば、負周波数帯域の同相成分から雑音を除去することができる。この処理が位相回転部40Lと合成部60Lとで実現される。すなわち、(14)式により、負周波数帯域の信号S(t)が得られる。
Figure JPOXMLDOC01-appb-M000014
 そして、(15)式に示すように、合成部61により、合成部60Uの出力S(t)と合成部60Lの出力S(t)を加算することで、雑音の除去された両側帯波信号S(t)を得ることができる。
Figure JPOXMLDOC01-appb-M000015
 本実施例の場合に、位相回転部40Uと位相回転部40Lにおける位相回転は、実施例1と同様に共通の切換スイッチ42により、位相回転の符号を反転させて、AM放送の聴者が雑音の少ない方に設定することになる。
 本実施例3において、回転位相の符号を自動検出する実施例2を用いても良い。すなわち、実施例3の図7における上側帯波処理部Uの位相回転部40Uと、下側帯波処理部Lの位相回転部40Lに、実施例2の図6に示す位相回転部40を用いても良い。この構成によると、同相成分から雑音が自動的に除去されたベースバンドの両側帯波を得ることができる。なお、正周波数帯域に関して決定された位相回転の符号と、負周波数帯域に関して決定された位相回転の符号は、互いに異なる符号となるだけであるので、一方の周波数帯域で決定された位相回転の符号を用いて、その符号に(-1)を乗算して他方の周波数帯域での位相回転符号とすることができる。この場合には、図6の位相回転部40は、一方の周波数帯域の処理系統にのみ存在すれば良い。
 本実施例において、x (t)、x (t)は、それぞれ、第1片帯域信号成分、第2片帯域信号成分、x (t)、x (t)は、それぞれ、第1片帯域雑音成分、第2片帯域雑音成分に相当する。また、フィルタ31U、31Lは、第1同相成分帯域抽出手段、第2同相成分帯域抽出手段に相当し、フィルタ32U、32Lは、第1直交成分帯域抽出手段、第2直交成分帯域抽出手段に相当する。また、位相回転部40Uが第1位相回転手段、位相回転部40Lが第2位相回転手段に相当する。合成部60Uが第1合成手段、合成部60Lが第2合成手段に相当する。
 上記実施例1~3においては、復調時には、復調搬送波は、変調搬送波と同期しているものとして説明した。本実施例は同期誤差による雑音除去への影響を排除する実施例である。図8は、実施例1の信号処理装置において、同期復調を実現した装置の構成を示している。図8において、直交復調部20に、位相同期処理部70を設けたのが、本実施例の特徴である。位相同期処理部70はベースバンド信号を入力してその移動平均を演算する移動平均演算部71と、その出力の複素共役を演算する複素共役演算部72と、その出力の振幅を規格化する振幅規格化部73と、その出力とベースバンド信号x(t)とを乗算する乗算部74とを有している。
 復調搬送波発生部22の出力する復調搬送波の周波数は、変調搬送波の周波数ωに対してΔωだけ大きいとする。すなわち、復調搬送波波L(t)は(16)式で表される。
Figure JPOXMLDOC01-appb-M000016
 
 受信信号r(t)は(1)式の実部で表されるので、ミキサー21の出力するベースバンド信号x(t)は、(2)式と同様にして、(17)式で表される。すなわち、ベースバンド信号に、exp(Δωt)の因子が現れる。
Figure JPOXMLDOC01-appb-M000017
 このベースバンド信号x(t)が移動平均演算部71によりその移動平均が演算される。移動平均の結果は、(18)式で与えられる。
Figure JPOXMLDOC01-appb-M000018
 すなわち、移動平均により、(17)式の最終項の周波数は大きいので、移動平均により、この項は0となる。
 次に、複素共役演算部72により、(18)式の複素共役が求められ、振幅規格化部73により、(19)式の規格化信号が得られる。(18)式におけるA+S(t)+S(t)は実数であるので、(18)式から、-jωt=tan-1(実部/虚部)により-jωtが得られるので、exp(jωt)を得ることができる。
 次に、乗算部74により、ベースバンド信号に規格化信号を乗算して、(20)式の同期ベースバンド信号xsync(t)を得ることができる。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 
 この処理により、復調搬送波の周波数が変調搬送波の周波数に対して偏差Δωを有していても、その偏差による影響を排除することができる。
 なお、上記の説明では、受信信号に含まれる復調搬送波と、変調搬送波との位相差Δφは、明示していないが、(16)~(18)式におけるjΔωtをjΔωt+jΔφとおいて、位相誤差Δφを考慮して、(20)式を演算すると、Δφは消去されるので、Δφが存在しても、(20)式が得られる。すなわち、周波数誤差だけでなく位相誤差も、補償されることになる。
 本実施例4の装置は、位相同期処理部70を、実施例1の図1の構成に用いた例であるが、実施例2の図6の直交復調部20に、図8の位相処理部70を設けても良い。その構成を図9に示す。
 また、同期復調に関して、同相成分はcos[(ω+Δω)t+φ]で復調し、直交成分はsin[(ω+Δω)t+φ]で復調して、直交成分が0(極小)となるように復調搬送波の周波数ω+Δωと位相φを、VOCを用いたPLL回路、すなわち、コスタスループにより同期復調をするようにしても良い。
 本実施例は、図7に示す実施例3の構成において、直交復調部20に、図8に示す実施例4の位相同期処理部70を設けて、さらに、上側帯波と下側帯波に雑音が重畳した場合とで、異なる位相回転の符号を、実施例2の自動検出するようにした構成を採用した例である。その構成を図10に示す。すなわち、図10の上側帯波処理部U、下側帯波処理部Lにおいて、図6の位相回転部40と同一構成を、位相回転部40U、位相回転部40Lとして用いた例である。本実施例では、正周波数帯域において同相成分と直交成分との相互相関により、正周波数帯域での直交成分の位相回転符号を決定し、負周波数帯域において同相成分と直交成分との相互相関により、負周波数帯域での直交成分の位相回転符号を決定している。もちろん、一方の帯域から決定された位相回転符号を反転した符号を他の帯域における位相回転符号としても良い。
 本実施例は、一方の周波数帯域で得られた同相成分の雑音成分の複素共役を演算して、それを他方の周波数帯域の同相成分に合成することで、両周波数帯域の同相成分に重畳した雑音を除去する例である。その構成を図11に示す。
 上側帯波処理部Uにおける正周波数帯域に関する位相回転部の構成は、実施例5の図10の上側帯波処理部Uの位相回転部40Uと同一である。下側帯波処理部Lは、負周波数帯域に関する位相回転部に代わる位相反転部401Lと合成部60Lが設けられている。そして、位相反転部401Lは、複素共役演算部43Lを有している。上側帯波処理部Uの乗算部41Uの出力が複素共役演算部43Lに入力している。上側帯波帯域にのみ雑音が重畳した場合について説明すると、乗算部41Uの出力xia (t)は、(6)式に-jを掛けた(21)式で表される。
Figure JPOXMLDOC01-appb-M000021
 複素共役演算部43Lの出力(xia (t))は、xia (t)の複素共役であり、(22)式で表される。
Figure JPOXMLDOC01-appb-M000022
 合成部60Lで、複素共役演算部43Lの出力である(22)の(xia (t))と、フィルタ31Lから出力される(12)式のx (t)を加算合成すれば、負周波数帯域の同相雑音が除去される。すなわち、(23)式により、S(t)を得ることができる。
Figure JPOXMLDOC01-appb-M000023
 したがって、合成部61の出力は、(15)式のS(t)となり、同相成分から雑音が除去されたDSB信号が得られる。
 下側帯波帯域にのみ雑音が重畳した場合には、上述したように同相成分x(t)は、上側帯波帯域にのみ雑音が重畳した場合の同相成分と同一であるので、(3)式で表される。また、直交成分については、上側帯波帯域にのみ雑音が重畳した場合の(4)式の直交成分の符号を反転した式となる。したがって、直交成分x(t)は、(24)式で表される。
Figure JPOXMLDOC01-appb-M000024
 したがって、乗算部41Uでの乗算は(j)となり、乗算部41Uの出力xia (t)は、上側帯波帯域に雑音が重畳した場合の(21)式と同一となる。よって、複素共役演算部43Lの出力(xia (t))は、(22)式と同一となる。同相成分については、上側帯波帯域にのみ雑音が重畳した場合と同一であるから、フィルタ31Lの出力x (t)も(12)式と同一である。したがって、合成部60Lの出力S(t)も、(23)式となり、合成部61の出力S(t)も(15)式となる。このようにして、下側帯波帯域にのみ雑音が重畳された場合にも、同相成分から雑音が除去されたDSB信号が得られる。
 本発明は、入力信号から周期性雑音を除去する装置に用いることができる。
20…直交復調部
23…同相成分抽出部
24…直交成分抽出部
31,32…フィルタ
U…上側帯波処理部
L…下側帯波処理部

                                    

Claims (14)

  1.  両側帯波信号を受信して、RF帯域における一方の側帯波にのみ重畳する雑音を除去する信号処理装置において、
     前記両側帯波信号を直交復調して、正周波数帯域と負周波数帯域とを有したベースバンド信号に復調する復調手段と、
     前記復調手段の出力する直交成分に基づいて、前記復調手段の出力する同相成分に含まれる雑音成分を除去する雑音除去手段と
     を有することを特徴とする信号処理装置。
  2.  前記復調手段の出力する直交成分のうち前記正周波数帯域と前記負周波数帯域のうち一方の周波数帯域の片帯域雑音成分を抽出する直交成分帯域抽出手段を有し、
     前記雑音除去手段は、
     前記直交成分帯域抽出手段により抽出された前記片帯域雑音成分を-π/2又はπ/2だけ位相を回転させる位相回転手段と、
     前記復調手段の出力する前記同相成分に、前記位相回転手段の出力する位相回転雑音成分を合成して、前記同相成分に含まれる前記雑音成分を除去する合成手段と
     を有することを特徴とする請求項1に記載の信号処理装置。
  3.  前記復調手段の出力する前記同相成分のうち前記正周波数帯域と前記負周波数帯域のうち一方の周波数帯域を抽出する同相成分帯域抽出手段を有し、
     前記位相回転手段は、前記直交成分帯域抽出手段により抽出された前記片帯域雑音成分と、前記同相成分帯域抽出手段により抽出された片帯域信号成分との相互相関値を演算する相互相関演算手段を有し、前記相互相関演算手段の出力する値の符号に基づいて、位相の回転方向を決定することを特徴とする請求項2に記載の信号処理装置。
  4.  前記相互相関演算手段は、前記同相成分帯域抽出手段の出力する前記片帯域信号成分と前記直交成分帯域抽出手段により抽出された前記片帯域雑音成分とにおいて、一方と他方の複素共役との積の移動時間平均により前記相互相関値を演算することを特徴とする請求項3に記載の信号処理装置。
  5.  前記合成手段は、前記位相回転雑音成分と、前記同相成分帯域抽出手段により抽出された前記片帯域信号成分とを合成することを特徴とする請求項3乃至請求項4の何れか1項に記載の信号処理装置。
  6.  前記同相成分帯域抽出手段は、前記片帯域信号成分を第1片帯域信号成分として抽出する第1同相成分帯域抽出手段と、前記第1片帯域信号成分に対して、他方の周波数帯域の第2片帯域信号成分を抽出する第2同相成分帯域抽出手段とを有し、
     前記位相回転手段は、前記直交成分帯域抽出手段により抽出された前記片帯域雑音成分を-π/2又はπ/2だけ位相を回転させる第1位相回転手段と、前記第1位相回転手段の出力する信号の複素共役を演算する位相反転手段とを有し、
     前記合成手段は、前記第1片帯域信号成分を、前記第1位相回転手段の出力する第1位相回転雑音成分に基づいて、前記第1片帯域信号成分に重畳された雑音を除去する第1合成手段と、前記第2片帯域信号成分を、前記位相反転手段の出力する位相反転雑音成分に基づいて、前記第2片帯域信号成分に重畳された雑音を除去する第2合成手段とを有する
     ことを特徴とする請求項3乃至請求項5の何れか1項に記載の信号処理装置。
  7.  前記同相成分帯域抽出手段は、前記片帯域信号成分を第1片帯域信号成分として抽出する第1同相成分帯域抽出手段と、前記第1片帯域信号成分に対して、他方の周波数帯域の第2片帯域信号成分を抽出する第2同相成分帯域抽出手段とを有し、
     前記直交成分帯域抽出手段は、前記第1片帯域信号成分と同一符号の周波数帯域の雑音成分を第1片帯域雑音成分として抽出する第1直交成分帯域抽出手段と、第1片帯域雑音成分に対して、他方の周波数帯域の第2片帯域雑音成分を抽出する第2直交成分帯域抽出手段とを有し、
     前記位相回転手段は、前記第1直交成分帯域抽出手段により抽出された前記第1片帯域雑音成分を-π/2又はπ/2だけ位相を回転させる第1位相回転手段と、前記第2直交成分帯域抽出手段により抽出された前記第2片帯域雑音成分をπ/2又は-π/2だけ位相を回転させる第2位相回転手段とを有し、
     前記合成手段は、前記第1片帯域信号成分を、前記第1位相回転手段の出力する第1位相回転雑音成分に基づいて、前記第1片帯域信号成分に重畳された雑音を除去する第1合成手段と、前記第2片帯域信号成分を、前記第2位相回転手段の出力する第2位相回転雑音成分に基づいて、前記第2片帯域信号成分に重畳された雑音を除去する第2合成手段とを有する
     ことを特徴とする請求項3乃至請求項5の何れか1項に記載の信号処理装置。
  8.  前記第1位相回転手段及び前記第2位相回転手段による回転位相の符号は、一方の位相回転手段により決定された前記相互相関値の符号により、他方の位相回転手段による位相の回転の符号も決定することを特徴とする請求項7に記載の信号処理装置。
  9.  前記第1位相回転手段は、前記第1片帯域雑音成分と前記第1片帯域信号成分とから前記相互相関値を演算する前記相互相関演算手段としての第1相互相関演算手段を有し、前記第1相互相関演算手段の出力する第1の値に基づいて位相の回転方向を決定し、
     前記第2位相回転手段は、前記第2片帯域雑音成分と前記第2片帯域信号成分との相互相関値を演算する前記相互相関演算手段としての第2相互相関演算手段を有し、前記第2相互相関演算手段の出力する第2の値に基づいて位相の回転方向を決定する
     ことを特徴とする請求項7に記載の信号処理装置。
  10.  前記復調手段は、直交復調後の直交成分に含まれる、変調搬送波に対する復調搬送波の誤差周波数のビート信号が零となるように、復調搬送波の周波数と位相を制御するフェーズロックドループ部を有することを特徴とする請求項1乃至請求項9の何れか1項に記載の信号処理装置。
  11.  前記復調手段は、前記ベースバンド信号の移動平均から、変調搬送波に対する復調搬送波の誤差周波数のビート信号を求め、そのビート信号に基づいて前記ベースバンド信号のビート信号による変動を補正した信号を新たにベースバンド信号とする同期手段を有することを特徴とする請求項1乃至請求項9の何れか1項に記載の信号処理装置。
  12.  両側帯波信号を受信して、RF帯域における一方の側帯波にのみ重畳する雑音を除去する信号処理方法において、
     前記両側帯波信号を直交復調して、正周波数帯域と負周波数帯域とを有したベースバンド信号に復調し、
     復調された直交成分に基づいて、復調された同相成分に含まれる雑音成分を除去する
     ことを特徴とする信号処理方法。
  13.  前記直交成分における前記正周波数帯域と前記負周波数帯域のうち一方の周波数帯域の雑音成分を片帯域雑音成分として抽出し、
     抽出された前記片帯域雑音成分を-π/2又はπ/2だけ位相を回転させ、
     復調された同相成分であるベースバンドの信号成分を、位相回転された位相回転雑音成分に基づいて、前記信号成分に重畳された雑音を除去する
     ことを特徴とする請求項12に記載の信号処理方法。
  14.  前記同相成分における前記正周波数帯域と前記負周波数帯域のうち一方の周波数帯域の信号成分を片帯域信号成分として抽出し、
     前記位相の回転の符号は、前記片帯域信号成分と前記片帯域雑音成分との相互相関値に基づいて決定することを特徴とする請求項12又は請求項13に記載の信号処理方法。
                                        
PCT/JP2015/005367 2014-11-10 2015-10-26 信号処理装置及び信号処理方法 WO2016075878A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-227995 2014-11-10
JP2014227995A JP6278405B2 (ja) 2014-11-10 2014-11-10 信号処理装置及び信号処理方法

Publications (1)

Publication Number Publication Date
WO2016075878A1 true WO2016075878A1 (ja) 2016-05-19

Family

ID=55953984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005367 WO2016075878A1 (ja) 2014-11-10 2015-10-26 信号処理装置及び信号処理方法

Country Status (2)

Country Link
JP (1) JP6278405B2 (ja)
WO (1) WO2016075878A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021229715A1 (ja) * 2020-05-13 2021-11-18 三菱電機株式会社 ノイズ除去装置、アンテナ装置、及びノイズ除去方法
US11296739B2 (en) 2016-12-22 2022-04-05 Nuvoton Technology Corporation Japan Noise suppression device, noise suppression method, and reception device and reception method using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6886289B2 (ja) * 2016-12-26 2021-06-16 株式会社デンソーテン 受信機および受信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960419A (ja) * 1972-10-10 1974-06-12
JPS61129924A (ja) * 1984-04-09 1986-06-17 Nippon Hoso Kyokai <Nhk> テレビジヨン放送受信装置
JPH1093478A (ja) * 1996-09-12 1998-04-10 Uniden Corp スペクトラム拡散信号受信装置
JPH11355242A (ja) * 1998-06-11 1999-12-24 Victor Co Of Japan Ltd マルチキャリア変調装置及び復調装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960419A (ja) * 1972-10-10 1974-06-12
JPS61129924A (ja) * 1984-04-09 1986-06-17 Nippon Hoso Kyokai <Nhk> テレビジヨン放送受信装置
JPH1093478A (ja) * 1996-09-12 1998-04-10 Uniden Corp スペクトラム拡散信号受信装置
JPH11355242A (ja) * 1998-06-11 1999-12-24 Victor Co Of Japan Ltd マルチキャリア変調装置及び復調装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296739B2 (en) 2016-12-22 2022-04-05 Nuvoton Technology Corporation Japan Noise suppression device, noise suppression method, and reception device and reception method using same
WO2021229715A1 (ja) * 2020-05-13 2021-11-18 三菱電機株式会社 ノイズ除去装置、アンテナ装置、及びノイズ除去方法
JPWO2021229715A1 (ja) * 2020-05-13 2021-11-18
JP7179227B2 (ja) 2020-05-13 2022-11-28 三菱電機株式会社 ノイズ除去装置、アンテナ装置、及びノイズ除去方法

Also Published As

Publication number Publication date
JP2016092721A (ja) 2016-05-23
JP6278405B2 (ja) 2018-02-14

Similar Documents

Publication Publication Date Title
KR101853894B1 (ko) 변조된 신호들로부터 캐리어 신호들을 추출하기
CN105791179B (zh) 采样频偏补偿装置和方法
KR101850945B1 (ko) 변조된 신호들을 분리 및 추출하기
EP2120347A1 (en) Phase noise correction device and its method
WO2016075878A1 (ja) 信号処理装置及び信号処理方法
US20200119759A1 (en) Noise suppression device, noise suppression method, and reception device and reception method using same
WO2005093979A1 (ja) 無線システムおよび無線通信装置
JPS644707B2 (ja)
JP6296453B2 (ja) 信号処理装置及び信号処理方法
JP4925462B2 (ja) 受信機
US20150092827A1 (en) Method for determining the imperfections of a transmit pathway and of a receive pathway of an apparatus, and associated radio apparatus
WO2016136039A1 (ja) Fm受信装置、fm受信方法
JP2005520388A (ja) 信号経路を備える受信機
WO2016075879A1 (ja) 信号処理装置及び信号処理方法
TW201040942A (en) Method and apparatus for multiplex signal decoding
JP4275657B2 (ja) Ssb信号受信装置
JP3447823B2 (ja) デジタル放送受信方法
JPH1198103A (ja) 直交周波数分割多重信号発生装置、周波数制御装置および方法、受信装置ならびに通信装置および方法
JP2008022187A (ja) 受信装置
JP2008022187A5 (ja)
JP4070797B2 (ja) サブキャリア信号生成装置および多重化信号復調装置
JP3923354B2 (ja) 自動追尾アンテナ装置
JP5847762B2 (ja) 振幅変調信号を復調するための方法および装置
JPH11340863A (ja) ダイレクト・コンバージョン方式受信機
JP2876055B2 (ja) トランスパレント帯域内トーンの送受信機の処理装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15858380

Country of ref document: EP

Kind code of ref document: A1