WO2016075879A1 - 信号処理装置及び信号処理方法 - Google Patents

信号処理装置及び信号処理方法 Download PDF

Info

Publication number
WO2016075879A1
WO2016075879A1 PCT/JP2015/005369 JP2015005369W WO2016075879A1 WO 2016075879 A1 WO2016075879 A1 WO 2016075879A1 JP 2015005369 W JP2015005369 W JP 2015005369W WO 2016075879 A1 WO2016075879 A1 WO 2016075879A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
component
signal
synthesis
noise
Prior art date
Application number
PCT/JP2015/005369
Other languages
English (en)
French (fr)
Inventor
知育 原田
佳晋 服部
藤元 美俊
真也 伊藤
Original Assignee
株式会社豊田中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田中央研究所 filed Critical 株式会社豊田中央研究所
Publication of WO2016075879A1 publication Critical patent/WO2016075879A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference

Definitions

  • the present invention relates to a signal processing apparatus and a signal processing method for removing noise during demodulation in an environment where noise is superimposed in broadcasting and communication using double sideband waves.
  • Patent Document 1 discloses a first antenna that receives a broadcast wave stronger than the other antenna and obtains a first signal, and a second antenna that receives noise stronger than the other antenna and obtains a second signal. Is used to adjust the amplitude and phase of the second signal so that the signal level after synthesis is reduced, and synthesizes the first signal. In this technique, the amplitude and phase of the second signal are adjusted when the reception level of the desired broadcast wave is smaller than a certain threshold value.
  • the amplitude and phase of the second signal are adjusted so that the level of the combined signal becomes small. Since both antennas receive noise from the same noise source, the amplitude and phase of the noise received by both antennas differ according to the difference in distance from each antenna to the noise source. In order to compensate for this, the amplitude of the second signal is made to coincide with the amplitude of the first signal, the phase of the second signal is changed by ⁇ with respect to the phase of the first signal, and The second signal is synthesized in reverse phase. By adjusting the amplification factor and phase of the second signal in this way, a signal with noise canceled from the received broadcast wave can be obtained even when a desired broadcast wave can be received.
  • pulsed noise emitted from an electronic device of the vehicle is mixed in the AM radio broadcast wave.
  • This is a technology for removing sexual noise.
  • pulse noise in a band other than the AM radio broadcast wave band is detected, and the noise source is specified by obtaining the magnitude of the period of the pulse noise and the fluctuation range of the level.
  • the noise source in the broadcast wave on which pulse noise is superimposed, the harmonic band of the pulse noise near the broadcast wave frequency and the band of the noise period are attenuated for the time corresponding to the time width of the pulse noise.
  • Patent Document 1 is a technology that uses two antennas so that only noise can be received and is adjusted in advance so that the level of the combined signal of the received signals of the two antennas becomes small. For this reason, the technique of Patent Document 1 requires two antennas to cancel noise, and the setting for removing noise does not affect the adjustment of noise removal by the reception level of a desired broadcast wave. Thus, it is necessary to perform in an environment where the reception level is small. Further, since the amplitude and phase of the second signal are adjusted uniformly regardless of the frequency characteristics of the noise, the noise is not completely removed. In the case of a DC-DC converter using the PWM method, the frequency characteristics of noise change due to a change in pulse width even if the basic period does not change. For this reason, the method of Patent Document 1 cannot completely remove noise.
  • Patent Document 2 detects pulse noise in a band other than the broadcast wave band, and attenuates an appropriate frequency band according to the type of noise for the time corresponding to the pulse width at the detection timing.
  • the broadcast wave is essentially attenuated only during the period of pulse noise. This causes discomfort to those who listen to AM radio broadcasts.
  • an object of the present invention is to accurately remove noise having periodicity in the frequency space without affecting the desired signal.
  • the double sideband signal is orthogonally demodulated to obtain a positive frequency band.
  • Demodulating means for demodulating into a baseband signal having a negative frequency band, an equalizing means for correcting the frequency characteristic of the orthogonal component output from the demodulating means by a transfer function, an output of the equalizing means, and a demodulating means
  • a signal processing apparatus comprising: a synthesizing unit that synthesizes the in-phase component to be output.
  • the gist of the present invention is to remove the noise component superimposed on the in-phase component from the quadrature component, paying attention to the fact that the quadrature component does not include the signal component and only the noise component appears.
  • the noise component can be removed on the time axis or the frequency axis.
  • the present invention removes noise from a demodulated signal using the following principle.
  • quadrature demodulation is performed on both sideband waves (for example, AM broadcast waves) that are not orthogonally multiplexed, a signal component and a noise component appear in the in-phase component of the baseband, no signal component appears in the orthogonal component, and only the noise component Appears.
  • the phase of the quadrature component is delayed by ⁇ / 2 on the time axis with respect to the noise component of the in-phase component.
  • phase of the quadrature component is rotated by ⁇ / 2 with respect to the in-phase component, and with respect to the noise component in the negative frequency band, the quadrature component is ⁇ / 2 with respect to the in-phase component. Only the phase is rotating.
  • sign of the phase is defined as positive in the sign of the phase in the complex coordinate system, that is, the left rotation direction regardless of the positive frequency band and the negative frequency band.
  • phase advance and delay on the time axis is defined as the advance and delay with respect to the left rotation in the complex coordinate system for the positive frequency and the right rotation with respect to the negative frequency.
  • the spectrum of the noise component in the baseband is in a complex conjugate relationship between the positive frequency band and the negative frequency band. That is, for the noise component of the in-phase component, the amplitude A ( ⁇ ) and the phase ⁇ r ( ⁇ ) at the frequency ⁇ of the spectrum are the amplitude A ( ⁇ ) and the phase ⁇ r ( ⁇ ⁇ ) ⁇ .
  • the amplitude is equal to the amplitude of the noise component of the in-phase component, and the amplitude A ( ⁇ ) and the phase ⁇ i ( ⁇ ) at the frequency ⁇ are the amplitude A at the frequency ( ⁇ ). Equal to ( ⁇ ) and phase ⁇ i ( ⁇ ) ⁇ .
  • the noise component of the quadrature component has a phase of ⁇ on the time axis in both the positive frequency band and the negative frequency band with respect to the noise component of the in-phase component. Delayed by / 2. That is, the following equation is established.
  • phase ⁇ is positive in the left rotation direction in the complex coordinate system. It is defined that the wave vector rotates in the positive direction in the positive frequency region, and the wave vector rotates in the negative direction in the negative frequency band.
  • the subscript U means noise superimposed on the upper side band, r means in-phase component, and i means quadrature component.
  • ⁇ iU ( ⁇ U ) is the phase of the quadrature component at frequency ⁇ U in the noise baseband superimposed on the upper band
  • ⁇ rU ( ⁇ U ) is in the noise baseband superimposed on the upper band. It represents the phase of the in-phase component at the frequency ⁇ U.
  • ⁇ U is positive and represents a frequency in the positive frequency band
  • ⁇ U is negative and represents a frequency in the negative frequency band.
  • the noise component of the quadrature component has a phase of ⁇ on the time axis in both the positive frequency band and the negative frequency band with respect to the noise component of the in-phase component. Progressing by / 2. That is, the following equation is established.
  • ⁇ iL ( ⁇ L ) ⁇ rL ( ⁇ L ) + ⁇ / 2
  • ⁇ iL ( ⁇ L ) ⁇ ⁇ rL ( ⁇ L ) + ⁇ / 2
  • the subscript L means noise superimposed on the lower sideband band
  • r means in-phase component
  • i means quadrature component
  • ⁇ iL ( ⁇ L ) is the phase of the quadrature component at frequency ⁇ L in the noise baseband superimposed on the lower sideband
  • ⁇ rL ( ⁇ L ) is in the noise baseband superimposed on the lower sideband. It represents the phase of the in-phase component at the frequency ⁇ L.
  • ⁇ L is positive and represents a frequency in the positive frequency band
  • ⁇ L is negative and represents a frequency in the negative frequency band.
  • a U ( ⁇ U ) and A U ( ⁇ U ) represent the spectrum amplitudes at the frequencies ⁇ U and ⁇ U of the noise superimposed on the upper sideband wave, and they are equal.
  • a L ( ⁇ L ) and A L ( ⁇ L ) represent the amplitude of the spectrum at the frequencies ⁇ L and ⁇ L of the noise superimposed on the lower sideband wave, and they are equal.
  • the orthogonal component Phase is ⁇ / 2 in the positive frequency band for the noise component in the upper sideband, - ⁇ / 2 in the negative frequency band, and - ⁇ / 2 in the positive frequency band for the noise component in the lower sideband.
  • the negative frequency band if it is rotated by ⁇ / 2, each in-phase component noise can be obtained. Therefore, if the phase-rotated quadrature component is subtracted and synthesized from the in-phase component, the noise of the in-phase component can be removed.
  • the sign of each rotation phase is inverted from the above (- ⁇ / 2, ⁇ / 2, or ⁇ / 2, - ⁇ / 2 respectively) and the phase of the quadrature component is rotated, the sign of the in-phase component A component obtained by inverting is obtained.
  • the noise component of the in-phase component can be removed by adding and synthesizing the phase-rotated quadrature component and the in-phase component. It is clear that in-phase component noise can be removed in the same manner when the noise is superimposed only on one of the upper sideband band and the lower sideband band.
  • the transfer function Z ( ⁇ ) of the equalization means has two bands j and ⁇ j in each of the positive frequency band and the negative frequency band.
  • the frequency characteristic of this transfer function can be determined for each of the frequencies ⁇ U and ⁇ L in each band by adaptive control.
  • the transfer function Z ( ⁇ ) is constant at j or ⁇ j in all positive frequency bands, and all negative frequency bands. Since ⁇ j or j is constant, the transfer function of the equalization means can be set fixedly.
  • the transfer function Z ( ⁇ ) of the equalizing means is determined as follows.
  • the present invention is an invention using the above principle. The following various methods are conceivable for correcting and combining the frequency characteristics of the orthogonal components.
  • (1) Method for correcting frequency characteristic of quadrature component on time axis and synthesizing in-phase component and time axis In the present invention, the equalization means outputs the convolution of the impulse response of the transfer function and the quadrature component
  • the synthesizing means can be a means for synthesizing the output of the equalizing means and the in-phase component on the time axis.
  • the equalizing means is a means for performing a transversal filter process in which the transfer function is realized by a sequential delay between the taps and a weighting factor for multiplying the signal delayed and branched by the taps.
  • the output of the converting means and the in-phase component can be combined on the time axis.
  • the equalization means can be a Hilbert filter.
  • the Hilbert filter is a concept including both a filter on the time axis and a filter on the frequency axis.
  • the equalizing means obtains the frequency characteristic of the orthogonal component, multiplies the frequency characteristic by an imaginary unit (j or -j) in the positive frequency band, and in the positive frequency band in the negative frequency band.
  • the combining means may be a means for combining the output of the equalizing means and the in-phase component on the time axis. it can.
  • the frequency characteristic (phase frequency characteristic) of the quadrature component is corrected on the frequency axis, and a signal on the time axis is combined with the in-phase component on the time axis.
  • the transfer function which is an imaginary unit (j or -j) in the positive frequency band and an imaginary unit (-j or j) of the opposite sign to the positive frequency band in the negative frequency band, is an ideal Hilbert filter transfer function. is there.
  • the equalization means obtains the frequency characteristic of the orthogonal component, multiplies the frequency characteristic by an imaginary unit (j or -j) in the positive frequency band, and has an opposite sign to the positive frequency band in the negative frequency band.
  • the synthesizing unit obtains the frequency characteristic of the in-phase component, and the frequency characteristic of the in-phase component and the equalizing unit
  • the orthogonal component correction frequency characteristic to be output can be synthesized and used as means for inverse Fourier transform.
  • This aspect is characterized in that the orthogonal component whose frequency characteristic (phase frequency characteristic) is corrected and the frequency characteristic of the in-phase component are synthesized on the frequency axis.
  • This method is different from the method (2) in that a quadrature component and an in-phase component are synthesized on the frequency axis and converted to a signal on the time axis.
  • the transfer function for correcting the frequency characteristic of the orthogonal component is the same as (2).
  • the noise is in the upper sideband band.
  • in-phase component noise can be removed when superimposing only on one of the lower sideband bands.
  • the phase difference between the noise component of the quadrature component and the noise component of the in-phase component is ⁇ / 2
  • ⁇ / 2 the phase difference between the noise component of the quadrature component and the noise component of the in-phase component
  • the quadrature component has opposite phase signs in the positive frequency band and the negative frequency band. Therefore, in order to obtain the in-phase noise component from the noise component of the quadrature component, the transfer function whose frequency characteristic of the quadrature component is to be corrected is j or ⁇ j in the positive frequency band and ⁇ j or j in the negative frequency band.
  • the quadrature component corrected frequency characteristic corrected with this transfer function is in phase or out of phase in all positive and negative frequency bands with respect to the frequency characteristic of the noise component of the in-phase component. Therefore, it is necessary to determine whether the two are subtracted and combined in an in-phase relationship or added and combined in a reverse phase relationship.
  • the determination of the transfer function is a concept including determining the sign of the pure imaginary number j in the above-mentioned fixed transfer function, in addition to determining a general frequency characteristic that changes according to the frequency.
  • the signal processing apparatus controls the transfer function of the equalizing means so as to suppress noise in the synthesized signal output from the synthesizing means, or adds and synthesizes the synthesis of the synthesizing means.
  • control means for switching to subtractive synthesis may be provided.
  • the control means can be a means for controlling the transfer function so as to minimize the power of the composite signal by the power inversion algorithm, or for controlling the switching between addition synthesis or subtraction synthesis.
  • the control means can be a means for controlling the transfer function so as to minimize an error between the synthesized signal and the known reference signal, or for controlling switching between addition synthesis or subtraction synthesis.
  • controlling the transfer function of the equalization means so as to suppress noise in the combined signal determines the amplitude and phase for each frequency, and sets the transfer function to ⁇ j ( ⁇ ⁇ 0 Or j (when ⁇ > 0), or selecting one of the two transfer functions j (when ⁇ ⁇ 0) or ⁇ j (when ⁇ > 0) as the transfer function. . Further, the combination control of the synthesis means is switched to addition synthesis or subtraction synthesis when the transfer function is ⁇ j (when ⁇ ⁇ 0), j (when ⁇ > 0) or j ( ⁇ ⁇ 0).
  • the combining means adds or combines so that the quadrature component and the in-phase component are combined in an anti-phase relationship. It means to determine whether it is a subtraction composition.
  • the noise can be removed from the in-phase components of the double sidebands by determining the transfer function or selecting addition synthesis or subtraction synthesis.
  • the transfer function can be determined for each frequency band, so even if noise is superimposed on the upper sideband and lower sideband, in-phase component noise is reduced. Can be removed.
  • noise included in the in-phase component only when noise is superimposed only on one of the upper band band and the lower band band Can be removed.
  • the signal processing device has the power of the combined frequency characteristic after combining the in-phase component frequency characteristic and the quadrature component corrected frequency characteristic by the combining unit.
  • control means for selecting the sign of the imaginary unit in the positive frequency band and the negative frequency band of the transfer function of the equalization means or switching the synthesis of the synthesis means to addition synthesis or subtraction synthesis is provided.
  • the synthesis on the side where the power of the synthesized frequency characteristic is reduced means that the noise component of the in-phase component and the noise component of the quadrature component are synthesized in an antiphase relationship. Therefore, noise can be removed from the in-phase component of the double sidebands by the above synthesis.
  • the cross-correlation value between the output of the equalization means and the in-phase component output from the demodulation means is calculated, and the sign of the cross-correlation value Control means for controlling the transfer function of the equalization means or switching the synthesis of the synthesis means to addition synthesis or subtraction synthesis may be provided.
  • the sign of the cross-correlation value Control means for controlling the transfer function of the equalization means or switching the synthesis of the synthesis means to addition synthesis or subtraction synthesis may be provided.
  • noise is superimposed only on one of the upper sideband band and the lower sideband band.
  • the output of the equalizing means is the in-phase component of the noise component or the in-phase component with the sign inverted.
  • the cross-correlation value between the output of the equalization means and the in-phase component is a positive value if the output of the equalization means is the same as the in-phase component, and a negative value if the output is the inverted in-phase component. If the cross-correlation value is positive, the synthesizing unit subtracts and combines the in-phase components based on the output of the equalizing unit, and if the cross-correlation value is negative, the two are added and combined.
  • the cross-correlation value can also be obtained by a moving average (DC component) in a predetermined time interval of the product of the output on the time axis of the equalization means and the in-phase component on the time axis at each time.
  • the cross-correlation value between the quadrature component corrected frequency characteristic output from the equalization means and the in-phase component frequency characteristic is calculated, and the positive frequency of the transfer function of the equalization means is calculated by the sign of the cross-correlation value.
  • Control means may be provided for selecting a sign of an imaginary unit in the band and the negative frequency band, or switching the synthesis of the synthesis means to addition synthesis or subtraction synthesis.
  • the quadrature component correction frequency characteristic is the same as the frequency characteristic of the in-phase component of the noise component, and if negative, the quadrature component correction frequency characteristic is the phase of the in-phase component of the noise component. Is a frequency characteristic obtained by rotating ⁇ (inversion of the in-phase component). Therefore, noise is removed from the in-phase component by subtracting or adding and combining the orthogonal component correction frequency characteristic and the in-phase component frequency characteristic according to the sign of the cross-correlation value.
  • the demodulating means controls the frequency and phase of the demodulated carrier so that the beat signal of the error frequency of the demodulated carrier with respect to the modulated carrier contained in the quadrature component after quadrature demodulation is zero. It is desirable to have a part. Synchronous detection can be performed, and noise can be reliably removed.
  • the demodulation means obtains a beat signal of the error frequency of the demodulated carrier wave with respect to the modulated carrier wave from the moving average of the baseband signal, and based on the beat signal, a signal obtained by correcting the fluctuation due to the beat signal of the baseband signal It is desirable to have synchronization means for making a band signal. Since the spectrum in the baseband is shifted in frequency by the beat frequency for both the in-phase component and the quadrature component, the signal component can be demodulated and noise can be reliably removed by correcting this frequency shift.
  • the present invention is a signal processing method for receiving a double-sideband signal and removing noise superimposed on the RF band, and orthogonally demodulating the double-sideband signal to have a positive frequency band and a negative frequency band.
  • the baseband signal is demodulated, and the frequency characteristic of the demodulated quadrature component is corrected by the transfer function. Then, the corrected quadrature component and the demodulated in-phase component are combined to remove the noise component contained in the in-phase component. This is a signal processing method.
  • the transfer function it is desirable to control the transfer function so that the power of the combined signal is minimized. Further, in the present invention, it is desirable to combine the orthogonal component with the in-phase component after the Hilbert transform. Moreover, it is desirable that the synthesis is addition synthesis or subtraction synthesis based on the sign of the cross-correlation value between the signal after the Hilbert transform of the quadrature component and the in-phase component. The matters described in the above device invention can be applied to the control of the transfer function and the selection of the addition synthesis and the subtraction synthesis.
  • noise can be accurately removed during demodulation in an environment where noise is superimposed on the RF band, detection accuracy and demodulation accuracy of a desired signal can be improved.
  • FIG. 3 shows frequency characteristics of an input signal and a demodulated signal of the signal processing apparatus according to the first embodiment.
  • 5 is a timing chart showing a correlation matrix, a timing for calculating a weight vector, a timing for weighted addition, and a timing for a signal sequence in the signal processing apparatus according to the first embodiment.
  • the block diagram of the signal processing apparatus which concerns on the specific Example 2 of this invention.
  • FIG. 1 shows the configuration of a signal processing apparatus 1 according to a specific embodiment of the present invention.
  • a present Example is a signal processing apparatus which suppresses the noise mixed in the AM radio receiver in HV (hybrid vehicle). It is assumed that the HV is equipped with a DC-DC converter that is controlled at a carrier frequency of 100 kHz.
  • the AM radio broadcast wave is assigned a frequency band of 531 kHz to 1602 kHz.
  • the switching noise generated from the DC-DC converter basically becomes a line spectrum string that is an integral multiple of the fundamental frequency of 100 kHz in the frequency space. This noise enters the AM radio broadcast band and gives noise to the AM radio broadcast wave.
  • This embodiment is a signal processing device that cancels this type of noise entering the AM radio broadcast band.
  • the present invention is not limited to such noise, and can be used in all environments in which noise is mixed in the RF band in double-sideband transmission that is not orthogonally multiplexed.
  • the AM radio broadcast signal received by the antenna 11 is amplified by the amplifier 12, sampled by the A / D converter 13 at a constant period ⁇ t, and converted into a digital value.
  • a device processed by a CPU it is possible to construct all or part of the analog circuit, but since it is easy to process digitally, this embodiment is based on digital processing.
  • the configuration of FIG. 1 is expressed in blocks for each functional unit of digital processing.
  • the signal output from the A / D converter 13 is a real number, but the orthogonal demodulator 20 and subsequent data processing are all performed in complex numbers.
  • the quadrature demodulating unit 20 serving as a demodulating unit includes a mixer 21, a demodulated carrier wave generating unit 22, an in-phase component extracting unit 23, and a quadrature component extracting unit 24.
  • a baseband signal is obtained by the orthogonal demodulator 20. In relation to handling with complex signals, this baseband has a positive frequency band corresponding to the upper sideband band and a negative frequency band corresponding to the lower sideband band.
  • the quadrature demodulation unit 20 is provided with a phase synchronization processing unit 70.
  • the phase synchronization processing unit 70 receives a baseband signal and calculates a moving average of the moving average calculating unit 71, a complex conjugate calculating unit 72 that calculates the complex conjugate of the output, and an amplitude that normalizes the amplitude of the output.
  • a normalization unit 73 and a multiplication unit 74 that multiplies the output by the baseband signal.
  • the in-phase component output from the in-phase component extraction unit 23 is input to the synthesis unit 60, and the quadrature component output from the quadrature component extraction unit 24 is input to the equalization unit 40.
  • the in-phase component and the quadrature component are input to the control unit 50, and the control unit 50 determines the transfer function of the equalization unit 40.
  • the reception signal r (t) output from the antenna 11 is expressed by equation (1).
  • a spectrum that is a Fourier transform of the received signal r (t) is as shown in FIG. 2A, and has an upper sideband and a lower sideband.
  • S ⁇ is the spectrum of the lower sideband
  • S + is the spectrum of the upper sideband
  • A is the amplitude of the carrier wave
  • is the spectrum of noise superimposed in the RF band from the broadcasting station to the receiving apparatus.
  • A is a real number
  • S ⁇ , S + , and ⁇ are complex functions relating to an angular frequency ⁇ (hereinafter simply referred to as “frequency”).
  • frequency an angular frequency ⁇
  • S ⁇ and S + are mutually complex conjugate functions.
  • S ⁇ (t) and S + (t) are inverse Fourier transforms of S ⁇ and S + , respectively, and are complex functions related to time. Further, S ⁇ (t) and S + (t) are in a complex conjugate relationship with each other, and therefore S ⁇ (t) + S + (t) is a real function.
  • ⁇ c is the frequency of the carrier wave during modulation
  • ⁇ c + ⁇ n is the frequency of the noise superimposed on the upper sideband.
  • a wave propagating in space is represented by the real part of r (t). Therefore, the sampled received signal (data) output from the A / D converter 13 is a real number sequence. Next, the received signal is demodulated orthogonally.
  • the frequency of the demodulated carrier wave output from the demodulated carrier wave generator 22 is assumed to be larger by ⁇ than the frequency ⁇ c of the modulated carrier wave. That is, the demodulated carrier wave L (t) is expressed by equation (2). Since there is no quadrature component of the signal component, in the complex space, quadrature demodulation is performed by multiplying the received signal of the real part of the complex function expressed by equation (1) by exp [ ⁇ j ( ⁇ c + ⁇ ) t]. Equivalent to doing.
  • the demodulated baseband signal output from the mixer 21 is expressed by equation (3). Since the demodulation result has a factor of 1/2, x (t) is defined as twice the result of the orthogonal demodulation in order to simplify the expression. A factor exp ( ⁇ j ⁇ t) appears in the baseband signal.
  • the moving average of the baseband signal x (t) is calculated by the moving average calculator 71. The result of the moving average is given by equation (4). That is, since the frequency of the final term of the equation (3) is large due to the moving average, this term becomes 0 due to the moving average.
  • the multiplier 74 can multiply the baseband signal by the normalized signal of the formula (5) to obtain the synchronized baseband signal x sync (t) of the formula (6).
  • the phase error ⁇ is calculated by setting j ⁇ t to j ⁇ t + j ⁇ in equations (2) to (5). Considering this, if the expression (6) is calculated, ⁇ is deleted, so that even if ⁇ exists, the expression (6) can be obtained. That is, not only the frequency error but also the phase error is compensated.
  • the baseband signal demodulated by the phase synchronization processing unit 70 is expressed by equation (7). That is, the output signal x sync (t) of the mixer 74 can be expressed by equation (7), and its spectrum is as shown in FIG. 2B, and has a baseband positive frequency band and negative frequency band. ing. Noise exists only in the positive frequency band.
  • the real part of equation (7) is the in-phase component in quadrature demodulation, and the imaginary part is the quadrature component in quadrature demodulation.
  • the in-phase component is expressed by equation (8)
  • the quadrature component is expressed by equation (9). That is, the in-phase component x r (t) output from the in-phase component extraction unit 23 is expressed by equation (8), and the quadrature component x i (t) output by the quadrature component extraction unit 24 is expressed by equation (9).
  • the in-phase component has a signal component and a noise component, but the quadrature component has no signal component and only a noise component.
  • the spectrum of the in-phase component (8) is as shown in FIG.
  • ⁇ * is a complex conjugate of ⁇ and a spectrum obtained by inverting the phase of ⁇ .
  • the spectrum of the orthogonal component (9) is as shown in FIG.
  • a noise component spectrum ( ⁇ j ⁇ / 2) of the orthogonal component appears in the positive frequency band. That is, the noise component has the same amplitude as the noise component of the in-phase component, but the phase is rotated by ⁇ / 2 with respect to the in-phase component (delayed by ⁇ / 2 on the time axis).
  • the spectrum (j ⁇ * / 2) of the noise component of the orthogonal component appears in the negative frequency band. That is, the noise component has the same amplitude as the noise component of the in-phase component, but the phase is rotated by ⁇ / 2 with respect to the in-phase component (delayed by ⁇ / 2 on the time axis).
  • the spectra in the positive frequency band and the negative frequency band are in a complex conjugate relationship, that is, a relationship in which the phases are inverted.
  • the quadrature component x i (t) is input to the equalization unit 40.
  • the equalization unit 40 is composed of a transversal filter.
  • the unit delay time ⁇ is equal to the sampling period ⁇ t.
  • each signal delayed by each k ⁇ delay time is multiplied by weighting factors w 0 * to w Q-1 * , and the multiplied results are added.
  • the equalizing unit 40 corrects the frequency characteristic of the orthogonal component x i (t) by weighting factors w 0 * to w Q-1 * and exp (j ⁇ t) to exp (j ⁇ (Q-1) ⁇ t). .
  • the transfer function Z ( ⁇ ) of the equalization unit 40 is expressed by the following equation.
  • the equalization unit 40 outputs a signal in which the frequency characteristic of the orthogonal component x i (t) is corrected by the filter characteristic of the transfer function Z ( ⁇ ) to the synthesis unit 60.
  • the synthesizer 60 synthesizes the corrected quadrature component x id (t) and the in-phase component x r (t) output from the in-phase component extractor 23.
  • the quadrature component x i (t) and the in-phase component x r (t) are input to the control unit 50 that determines weighting factors w 0 * to w Q-1 * by a PI (power inversion) algorithm. .
  • the weighting factors w 0 * to w Q-1 * of the equalization unit 40 are determined so that the power of the output signal S (t) of the synthesis unit 60 is minimized.
  • the control unit 50 generates a reception vector x (p ⁇ T) defined by equation (11) from the in-phase component x r (t) and the quadrature component x i (t).
  • ⁇ t is a sampling period, and is equal to the unit delay time ⁇ in the equalization unit 40.
  • ⁇ t and ⁇ (> ⁇ t) are not necessarily equal.
  • Q is the number of signals delayed by ⁇ t, and is equal to the number of weighting factors of the equalization unit 40 minus one.
  • the in-phase component x r (p ⁇ T) means the p-th signal every ⁇ T period.
  • the received signal vector x (p ⁇ T) is a Q + 1-dimensional column vector and is generated for each ⁇ T. ⁇ T is also a time interval for performing a product-sum operation between the orthogonal component x i (t) and the weighting factor.
  • the time average R (hereinafter referred to as “average correlation matrix”) of the correlation matrix of the received signal vector is calculated by Expressions (12) and (13).
  • x H (p ⁇ T) represents a transposed matrix of complex conjugate of the received signal vector x (p ⁇ T), and is a Q + 1-dimensional row vector. Therefore, the average correlation matrix R is a Q + 1-dimensional square matrix.
  • the average correlation matrix R is calculated using the reception vector x (p ⁇ T) generated every ⁇ T period in the past P ⁇ T period. Is done. That is, the average correlation matrix R is updated every ⁇ T period for which the combined signal S (k ⁇ T) is obtained.
  • the weight vector W (Q + 1-dimensional column vector) can be obtained from the inverse matrix of the correlation matrix R and the constraint vector c by the equation (14).
  • the constraint vector c is a Q + 1-dimensional column vector defined by equation (15). This is equivalent to fixing the weighting factor of the in-phase component x r (t). Since the in-phase component x r (t) is directly input to the synthesis unit 60, the weighting factor for the in-phase component x r (t) is 1.
  • the combined signal S (k ⁇ T) can be generated by the equation (16).
  • W H is a Q + 1-dimensional row vector whose components are the weighting factors 1, w 0 * to w Q-1 * used in the equalization unit 40, as shown in the equation (17).
  • the weighting factor 1 is a weighting factor for the in-phase component x r (t).
  • k is a period number when the composite signal S (k ⁇ T) is obtained for each period ⁇ T, and k ⁇ T represents the current time t.
  • the power of the combined signal S (t) can be minimized. That is, when the noise power is larger than the power of the desired signal, the desired signal can be extracted by canceling the noise.
  • the case where noise is superimposed only on the upper sideband has been described. However, even when noise is superimposed only on the lower sideband, the sign is only inverted relative to the case where noise is superimposed only on the upper sideband of the orthogonal component spectrum, and thus the same applies.
  • the transfer function (weighting factor) of the equalization unit 40 is determined so that the combined power is minimized. The superimposed noise can be removed.
  • the average correlation matrix R is a simple average between the past P ⁇ T, but may be as follows. Let R old be the average correlation matrix between the past (P-1) ⁇ T, and let R new be the correlation matrix in the latest ⁇ T for one period.
  • the correlation matrix R for calculating the weight vector W may be obtained by equation (18). If the forgetting factor ⁇ is increased, the latest correlation matrix can be greatly reflected in the average correlation matrix R.
  • s * (p ⁇ T) is a known reference signal sequence
  • the constraint vector c is a Q + 1-dimensional column vector, and is an average of correlation vectors between the reference signal and the received signal vector. If the constraint vector c is determined in this way, the weight vector W using the equation (14) can be obtained. After correcting the frequency characteristic of the quadrature component x i (t) using the weighting coefficients 1, w 0 * to w Q-1 * of the equation (17) obtained from the weight vector W in this way, the in - phase component x When r (t) is combined, the combined signal S (t) has the smallest error from the reference signal. That is, noise that is not a reference signal is removed.
  • the equalization unit 40 is configured by a transversal filter.
  • the transfer function Z ( ⁇ ) of the equalizing unit 40 is obtained from the equation (10). Therefore, the orthogonal component x i (k ⁇ t) is Fourier transformed, the frequency characteristic Fx i ( ⁇ ) is multiplied by the transfer function Z ( ⁇ ), and the result is Fourier-transformed to obtain the corrected orthogonal component x id. You may make it obtain
  • the noise superimposed on the in-phase component can be canceled.
  • FIG. 5 shows the configuration of the signal processing apparatus according to the second embodiment.
  • the present embodiment is an example in which a Hilbert filter 41 is used in the equalization unit.
  • the Hilbert filter is a transversal filter.
  • Two types of transfer functions Z ( ⁇ ) of the Hilbert filter 41 are prepared: a first transfer function Z 1 ( ⁇ ) in Expression (20) and a second transfer function Z 2 ( ⁇ ) in Expression (21).
  • the Hilbert filter 41 is configured by a transparsal filter similar to the equalization unit 40 in FIG. 1 that performs convolution integration between the input orthogonal component x i (t) and the impulse response of each transfer function described above. Yes.
  • the spectrum of the noise component of the in-phase component is ⁇ ( ⁇ ) / 2 in the positive frequency band and ⁇ ( ⁇ ) * / 2 in the negative frequency band.
  • the spectrum of the noise component of the orthogonal component is ( ⁇ j ⁇ ( ⁇ ) / 2) in the positive frequency band ( ⁇ > 0), and (( ⁇ 0) in the negative frequency band ( ⁇ ⁇ 0).
  • the noise component of the in-phase component is the same as that in FIG. 3A, and is ⁇ * / 2 in the negative frequency band, and ⁇ / 2 in the positive frequency band. They are in a complex conjugate relationship.
  • the noise component of the orthogonal component is a spectrum (j ⁇ / 2) in the positive frequency band and a spectrum ( ⁇ j ⁇ * / 2) in the negative frequency band. That is, in the positive frequency band and the negative frequency band, the phase of the noise component of the quadrature component is advanced by ⁇ / 2 on the time axis with respect to the noise component of the in-phase component. Therefore, in order to remove the noise component ( ⁇ / 2) of the in-phase component in the positive frequency band, the noise component (j ⁇ / 2) of the quadrature component in the positive frequency band is multiplied by (j) and added to the in-phase component. There is a need to.
  • the transfer function of the Hilbert filter 41 is set to the first transfer function Z 1 ( ⁇ ) of the equation (20), and noise is superimposed only on the lower sideband.
  • the second transfer function Z 2 ( ⁇ ) in equation (21) is used, the spectrum of the output of the Hilbert filter 41 is converted to the spectrum ( ⁇ ( ⁇ ) / 2, ⁇ > 0, ⁇ * ( ⁇ ) / 2, ⁇ ⁇ 0). Therefore, if the quadrature component x i (t) is input to the Hilbert filter 41, and its output and the in-phase component x r (t) are added and synthesized by the synthesis unit 60, noise included in the in-phase component can be removed. it can.
  • the selection of the transfer function of the Hilbert filter 41 is performed as follows.
  • An output signal S (t) from the synthesis unit 60 is input to the control unit 50.
  • the control unit 50 switches the transfer function of the Hilbert filter 41 between the first transfer function Z 1 ( ⁇ ) and the second transfer function Z 2 ( ⁇ ), and averages the output signal S (t) at the time interval ⁇ T. What is necessary is just to obtain
  • the above transfer function may be selected every time an AM broadcast is selected. If there is a temporal shift in the frequency of the noise spectrum, the above transfer function selection operation may be executed at a constant time interval (for example, ⁇ T in the first embodiment).
  • a Hilbert filter for switching the transfer function and a system for synthesizing the output and the in-phase component are provided separately from the signal demodulation system. If the transfer function on the side where the power is minimized is selected, no noise is given to the listener.
  • the transfer function of the Hilbert filter 41 is controlled to be switched between the first transfer function Z 1 ( ⁇ ) and the second transfer function Z 2 ( ⁇ ).
  • the transfer function of the Hilbert filter 42 is fixed to one of the first transfer function Z 1 ( ⁇ ) and the second transfer function Z 2 ( ⁇ ).
  • the output signal of the Hilbert filter 42 is switched by the sign inversion unit 61 controlled by the output of the control unit 50 to be inverted (multiplied by ⁇ 1) or passed as it is.
  • the quadrature component whose frequency characteristic is corrected by the Hilbert filter 42 is always synthesized in the opposite phase to the in-phase component, and noise can be removed from the in-phase component of the double sideband.
  • the combining unit 60 including the sign inverting unit 61 is provided as a separate system, and the switching of the codes is always performed to optimize the switching. If the state is selected, no noise will be given to the listener.
  • a changeover switch 62 may be provided to select whether the sign of the input signal is reversed or passed by the sign reversing unit 61 according to an operator's command.
  • the third embodiment is a signal processing device that always generates addition synthesis and subtraction synthesis on the time axis for the quadrature component and the in-phase component whose frequency characteristics are corrected by the Hilbert filter 42.
  • the configuration is shown in FIG. A configuration different from FIG. 6 is a synthesis unit 60 and a control device 52.
  • the synthesizing unit 60 includes sign inverting units 63a and 63b.
  • the sign inversion units 63a and 63b are controlled by the control device 52 so that when one of the signs is inverted, the other is not inverted.
  • the corrected quadrature component and in-phase component output from the sign inverting unit 63a are added and synthesized by the adding unit 64a.
  • the corrected quadrature component and in-phase component output from the sign inverting unit 63b are added and synthesized by the adding unit 64b.
  • the combined signals output from the adders 64a and 64b are input to the control device 52, and the control device 50 calculates the average power of each combined signal for a predetermined time ( ⁇ T).
  • Sign inversion and sign non-inversion are set in the sign inversion unit 63a and the sign inversion unit 63b so that the power of the synthesis signal output from the addition unit 64a is smaller than the power of the synthesis signal output from the addition unit 64b. .
  • the frequency characteristic of the quadrature component is corrected on the frequency axis
  • the quadrature component corrected frequency characteristic and the in-phase component frequency characteristic are synthesized on the frequency axis
  • inverse Fourier transform is performed on the time axis. It is a device for converting into a composite signal S (t).
  • the equalization unit 45 receives the orthogonal component x i (t) output from the orthogonal component extraction unit 24 and performs Fourier transform on the FFT unit 46 and transmission for correcting the output of the FFT unit 46.
  • a function unit 47 is a function unit 47.
  • the synthesizing unit 80 synthesizes the FFT unit 81 that performs Fourier transform on the in-phase component x r (t) output from the in-phase component extracting unit 23, the spectrum output from the FFT unit 81, and the spectrum output from the equalizing unit 45. And an IFFT unit 83 that performs inverse Fourier transform on the output of the adding unit 82.
  • the spectrum output from the adding unit 82 is input to the control unit 53.
  • the frequency characteristic of the orthogonal component is multiplied by the first transfer function Z 1 ( ⁇ ) or the second transfer function Z 2 ( ⁇ ) to correct the frequency characteristic of the orthogonal component.
  • the spectrum output from the adding unit 82 is calculated by the control unit 53 in the baseband power of the spectrum.
  • the control unit 53 instructs the equalization unit 45 to select a transfer function on the side where the power of the combined signal is reduced. Thereby, the signal S (t) output from the IFFT unit 83 is obtained by removing noise from the in-phase component.
  • the output of the FFT unit 81 is branched, the output of the FFT unit 46 is branched and input to another equalization unit, and the output of this equalization unit and the branch output of the FFT unit 81 are Another system provided with another adding unit to be combined may be provided.
  • the power of the combined signal by this separate system is obtained, and the transfer function on the side where the power is reduced is determined.
  • This determined transfer function is a transfer function set in the transfer function unit 47. In this way, the determination of an appropriate transfer function is performed repeatedly in a short time period in another system, so that the transfer of the transfer function unit 47 is always performed without frequently switching the transfer function in the normal demodulation system.
  • the function can be set optimally.
  • the transfer function in the transfer function unit 47 is set to one of the first transfer function Z 1 ( ⁇ ) or the second transfer function Z 2 ( ⁇ ), and the spectrum is encoded as shown in FIG. Inversion synthesis and sign non-inversion synthesis may be performed. According to this, like the third embodiment, the orthogonal component and the in-phase component can be always synthesized in the opposite phase.
  • the transfer function of the transfer function unit 47 is fixed to one of the first transfer function Z 1 ( ⁇ ) or the second transfer function Z 2 ( ⁇ ) to transfer the transfer function.
  • the output of the unit 47 may be output to the adding unit 82 by controlling the code of the corrected orthogonal component spectrum so that the power of the combined spectrum is reduced by the sign inverting unit.
  • a changeover switch may be provided as shown in FIG. 7, and the sign of the output of the transfer function unit 47 may be controlled by an operator command.
  • the point that another system may be provided for the switching control of the sign of the output of the transfer function unit 47 is the same as the above embodiment.
  • the present embodiment is characterized in that the sign of addition synthesis or subtraction synthesis is determined according to the sign of the cross-correlation value between the in-phase component and the quadrature component that has passed through the Hilbert filter.
  • the configuration is shown in FIG. 6 or 7 of the second embodiment is characterized in that a control unit 54 that provides a sign command to the sign inverting unit 61 is provided. In FIG. 6 or 7 of the second embodiment is characterized in that a control unit 54 that provides a sign command to the sign inverting unit 61 is provided. In FIG.
  • the control unit 54 calculates a product of the corrected quadrature component Hx i (t) output from the Hilbert filter 42 and the in-phase component x r (t) output from the in-phase component extraction unit 23, A moving average calculation unit 542 that calculates a moving average of the product at a predetermined time ⁇ T, and a phase detection that detects a phase difference between the in-phase component x r (t) and the corrected quadrature component Hx i (t) from the average value D. Part 543.
  • the moving average of equation (23) is calculated by the moving average calculator 542.
  • the terms related to the factors of exp (j ⁇ n t) and exp ( ⁇ j ⁇ n t) are 0 by the moving average. Therefore, the output D of the moving average calculation unit 542 is expressed by equation (24).
  • the sign of the output D is negative because the phase difference between the noise component of the in-phase component x r (t) and the modified quadrature component Hx i (t) output from the Hilbert filter 42 is ⁇ , that is, in an anti-phase relationship. It means that there is. Therefore, if the sign of D is negative, the phase detection unit 543 performs control so that the sign in the sign inversion part 61 is not inverted.
  • the combining unit 60 adds and combines the corrected quadrature component, Hx i (t), and the in-phase component x r (t). As a result, noise is removed from the in-phase component x r (t), and a double sideband signal S (t) is obtained.
  • the in-phase component x r (t) is expressed by equation (8).
  • the quadrature component x i (t) is expressed by equation (25).
  • the corrected orthogonal component Hx i (t) output from the Hilbert filter 42 is expressed by equation (26). Therefore, the output D of the moving average calculation unit 542 is expressed by equation (27).
  • the sign detected by the phase detector 543 is positive.
  • the positive sign means that the noise component of the in-phase component x r (t) and the modified quadrature component Hx i (t) output from the Hilbert filter 42 have a phase difference of 0, that is, an in-phase relationship.
  • the phase detector 543 performs control so that the sign in the sign inversion part 61 is inverted.
  • the synthesis unit 60 performs subtraction synthesis of the corrected quadrature component, Hx i (t), and in-phase component x r (t).
  • noise is removed from the in-phase component x r (t), and a double sideband signal S (t) is obtained.
  • a cross-correlation value between the in-phase component x r (t) and the corrected quadrature component Hx i (t) output from the Hilbert filter 42 may be calculated. . That is, a convolution integral between x r (t) and Hx i (t) may be calculated. Since the correlation value D between the noise component of the in-phase component x r (t) and the modified quadrature component Hx i (t) is expressed by (24) and (27), the noise component is obtained by the same processing as described above. It is possible to obtain a double sideband signal S (t) from which is removed.
  • the signal input to the quadrature demodulator 20 is an RF signal, but it may be an IF signal whose frequency is lowered from the RF signal.
  • orthogonal demodulation may be performed at the time of conversion to baseband.
  • the present invention can be used in an apparatus for removing periodic noise from an input signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

【課題】RF帯域に雑音が重畳された場合に、その雑音を除去すること。 【解決手段】両側帯波信号を受信して、RF帯域に重畳する雑音を除去する信号処理装置において、両側帯波信号を直交復調して、正周波数帯域と負周波数帯域とを有したベースバンド信号に復調する直交復調部20と、直交復調部の出力する直交成分の周波数特性を、伝達関数により修正する等化部40と、等化部の出力と、直交復調部の出力する同相成分とを合成する合成部60とを有する。合成部出力する合成信号における雑音を抑制するように等化部の伝達関数を制御する。

Description

信号処理装置及び信号処理方法
 本発明は、両側帯波を用いた放送、通信において、雑音が重畳される環境において、復調時にこの雑音を除去するようにした信号処理装置及び信号処理方法に関する。
 雑音が重畳された所望の放送波から雑音を除去して所望の放送波を復調する方法として、下記特許文献に記載の技術が知られている。下記特許文献1は、他方のアンテナに比べて放送波を強く受信して第1信号を得る第1アンテナと、他方のアンテナに比べて雑音を強く受信して第2信号を得る第2アンテナとを用いて、合成後の信号レベルが小さくなるように、第2信号の振幅と位相とを調整して、第1信号に合成する技術である。この技術では、第2信号の振幅と位相の調整は、所望の放送波の受信レベルがある閾値より小さい場合に行っている。すなわち、雑音電力が放送波の電力よりも大きい場合に、合成信号のレベルが小さくなるように、第2信号の振幅と位相とを調整するものである。両アンテナが同一の雑音源から雑音を受信しているので、両アンテナで受信される雑音の振幅と位相は、雑音源との各アンテナとの距離の差に応じて異なる。これを補償するために、第2信号の振幅を第1信号の振幅と一致させ、第2信号の位相を第1信号の位相に対してπだけ位相を変化させて、第1信号に対して逆相で第2信号を合成している。このように第2信号の増幅率と位相とを調整すれば、所望の放送波を受信できる状態になった場合にも、受信された放送波から雑音がキャンセルされた信号を得ることができる。
 また、下記特許文献2の技術は、車両に搭載されたラジオ受信機によるAMラジオ放送波の受信において、AMラジオ放送波に車両の電子機器から発せられるパルス性の雑音が混入するが、このパルス性の雑音を除去する技術である。この技術では、まず、AMラジオ放送波帯域以外の帯域におけるパルス雑音を検出して、そのパルス雑音の周期の大きさやレベルの変動幅を求めることで、雑音源を特定している。そして、その雑音源に応じて、パルス雑音が重畳された放送波において、放送波周波数付近のパルス雑音の高調波の帯域、雑音周期の帯域を、パルス雑音の時間幅に対応した時間だけ、減衰させることで、AMラジオ放送を聞く人に、パルス性雑音による不快感を与えないようにしている。
特開2012-257155 特許第5012246
 特許文献1の技術は、2本のアンテナを用いて、雑音のみが受信できるようにして、2つのアンテナの受信信号の合成信号のレベルが小さくなるように、予め調整ておくという技術である。このため、特許文献1の技術は、雑音をキャンセルするために2本のアンテナを必要とし、雑音を除去するための設定は、所望の放送波の受信レベルが雑音除去の調整に影響を与えないように、受信レベルが小さい環境で行う必要がある。また、雑音の周波数特性に関係なく、一律に、第2信号の振幅と位相とを調整しているので、雑音は完全には除去されない。また、PWM方式によるDC-DCコンバータの場合には、基本周期は変わらなくとも、パルス幅の変化により雑音の周波数特性は変化する。このため、特許文献1の方法では、雑音を完全には除去できない。
 また、特許文献2の技術は、放送波帯域以外の帯域でパルス雑音を検出して、その検出タイミングで、パルス幅に応じた時間だけ、雑音の種類に応じた適性な周波数帯域を減衰させるという技術である。したがって、本質的には、放送波もパルス雑音の期間だけ減衰されることになる。これが、AMラジオ放送を聞く人に違和感を与える原因となる。
 そこで、本発明の目的は、所望信号に影響を与えることなく、周波数空間において周期性を有する雑音を精度良く除去することである。
 上記課題を解決するための本第1の発明は、両側帯波信号を受信して、RF帯域に重畳する雑音を除去する信号処理装置において、両側帯波信号を直交復調して、正周波数帯域と負周波数帯域とを有したベースバンド信号に復調する復調手段と、復調手段の出力する直交成分の周波数特性を、伝達関数により修正する等化手段と、等化手段の出力と、復調手段の出力する同相成分とを合成する合成手段と、を有することを特徴とする信号処理装置である。
 本発明の要旨は、直交成分には信号成分が含まれず雑音成分のみが現れることに注目して、直交成分から同相成分に重畳された雑音成分を除去することである。雑音成分の除去は時間軸上又は周波数軸上により行うことができる。
 1.本発明の原理
 本発明は、次の原理を用いて、復調後の信号から雑音を除去するものである。直交多重化していない両側帯波(例えば、AM放送波)を直交復調した場合に、ベースバンドの同相成分には信号成分と雑音成分が現れ、直交成分には信号成分が現れず、雑音成分のみが現れる。直交成分は、同相成分の雑音成分に対して、時間軸上において、π/2だけ位相が遅れている。すなわち、正周波数帯域の雑音成分に関して、直交成分は同相成分に対して-π/2だけ位相が回転しており、負周波数帯域の雑音成分に関して、直交成分は同相成分に対して、π/2だけ位相が回転している。なお、位相の符号は、正周波数帯域、負周波数帯域に係わらず、複素座標系における位相の符号、すなわち、左回転方向を正として定義する。また、時間軸上に関する位相の進み、遅れの定義は、正周波数については、複素座標系において左回転、負周波数については右回転に対する進み、遅れとして定義する。
 雑音成分に関して、直交復調後の同相成分も直交成分も実関数であるので、ベースバンドにおける雑音成分のスペクトルは、正周波数帯域と負周波数帯域とで、互いに複素共役の関係にある。すなわち、同相成分の雑音成分について、スペクトルの周波数ωでの振幅A(ω)と位相φ(ω)は、周波数(-ω)での振幅A(-ω)と位相{-φ(-ω)}に等しい。また、直交成分の雑音成分のスペクトルに関して、振幅は同相成分の雑音成分の振幅に等しく、周波数ωでの振幅A(ω)と位相φ(ω)は、周波数(-ω)での振幅A(-ω)と位相{-φ(-ω)}に等しい。
 そして、RF帯域において上側帯波帯域に重畳された雑音については、直交成分の雑音成分は、同相成分の雑音成分に対して、正周波数帯域も負周波数帯域も、時間軸上において、位相がπ/2だけ遅れている。すなわち、次式が成立する。
φiU(ω)=φrU(ω)-π/2、
-φiU(-ω)=-φrU(-ω)-π/2、
 ただし、位相φは、複素座標系における左回転方向を正としている。正周波数領域では波動ベクトルは正方向に回転し、負周波数帯域では、波動ベクトルは負方向に回転していると定義する。添え字Uは、上側帯波帯域に重畳した雑音を意味し、rは、同相成分、iは直交成分を意味する。φiU(ω)は、上側帯波帯域に重畳した雑音のベースバンドにおける周波数ωでの直交成分の位相、φrU(ω)は、上側帯波帯域に重畳した雑音のベースバンドにおける周波数ωでの同相成分の位相を表す。ωは、正であり正周波数帯域の周波数を、-ωは負であり負周波数帯域の周波数を表す。
  また、RF帯域において下側帯波帯域に重畳された雑音については、直交成分の雑音成分は、同相成分の雑音成分に対して、正周波数帯域も負周波数帯域も、時間軸上において、位相がπ/2だけ進んでいる。すなわち、次式が成立する。
φiL(ω)=φrL(ω)+π/2、
-φiL(-ω)=-φrL(-ω)+π/2、
 なお、添え字Lは、下側帯波帯域に重畳した雑音を意味し、rは、同相成分、iは直交成分を意味する。φiL(ω)は、下側帯波帯域に重畳した雑音のベースバンドにおける周波数ωでの直交成分の位相、φrL(ω)は、下側帯波帯域に重畳した雑音のベースバンドにおける周波数ωでの同相成分の位相を表す。ωは、正であり正周波数帯域の周波数を、-ωは負であり負周波数帯域の周波数を表す。
 したがって、直交成分のスペクトル{A(ω)exp(j φiU(ω)) , A(-ω)exp(j(φiU(-ω)),A(ω)exp(j(φiL(ω)),A(-ω)exp (jφiL(-ω)) }を上側帯波帯域の雑音成分については正周波数帯域でπ/2、負周波数帯域で-π/2、下側帯波帯域の雑音成分については正周波数帯域で-π/2、負周波数帯域でπ/2だけ位相を回転させれば、{A(ω)exp[j(φiU(ω)+π/2)],A(-ω)exp[j(φiU(-ω)-π/2)],A(ω)exp[j(φiL(ω)-π/2)],A(-ω)exp[j(φiL(-ω)+π/2) ] }のスペクトルが得られる。このスペクトルは、{A(ω)exp(j φrU(ω)) , A(-ω)exp(j(φrU(-ω)),A(ω)exp(j(φrL(ω)),A(-ω)exp (jφrL(-ω)) }となり、雑音成分の同相成分となる。
 なお、A(ω)、A(-ω)は、上側帯波に重畳した雑音の周波数ω、-ωでのスペクトルの振幅を表し、両者は等しい。A(ω)、A(-ω)は、下側帯波に重畳した雑音の周波数ω、-ωでのスペクトルの振幅を表し、両者は等しい。
  以上の関係は、全正周波数帯域及び全負周波数帯域での周波数に対して成立する。ωと、ωが等しくなければ、すなわち、上側帯波帯域に重畳した雑音と、下側帯波帯域に重畳した雑音とが、ベースバンドにおいて、スペクトル分布が分離されていれば、直交成分の位相を、上側帯波帯域の雑音成分に対しては正周波数帯域ではπ/2、負周波数帯域では-π/2、下側帯波帯域の雑音成分に対しては正周波数帯域では-π/2、負周波数帯域ではπ/2だけ回転させれば、それぞれの同相成分の雑音が得られる。したがって、位相回転された直交成分を、同相成分から減算合成すれば、同相成分の雑音を除去することができる。なお、それぞれの回転位相の符号を上記と反転(それぞれ-π/2、π/2又は、π/2、-π/2))して、直交成分の位相を回転させると、同相成分の符号を反転した成分が得られる。この場合には、位相回転させた直交成分と同相成分とを加算合成すれば、同相成分の雑音成分を除去することができる。雑音が上側帯波帯域と下側帯波帯域の何れか一方の片帯域にのみ重畳している場合には、同相成分の雑音が同様にして除去できることは明らかである。
 直交成分から同相成分を得る等化手段を伝達関数Z(ω)で表すと、上側帯波帯域に重畳した雑音のベースバンドでの帯域内の任意の周波数ωに対してZ(ω)=j、Z(-ω)=-j、下側帯波帯域に重畳した雑音のベースバンドでの帯域内の任意の周波数ωに対してZ(ω)=-j、Z(-ω)=jである。また、直交成分から符号の反転した同相成分を得る等化手段を伝達関数で表すと、Z(ω)=-j、Z(-ω)=j、Z(ω)=j、Z(-ω)=-jである。なお、雑音の同相成分の振幅と直交成分の振幅とは等しいので、この等化手段の伝達関数の振幅は1であり、伝達関数は位相のみを回転する関数となる。したがって、本願発明において、伝達関数は、振幅の周波数特性は一定であり、位相の周波数特性だけである場合を含む。
 等化手段の伝達関数Z(ω)は、正周波数帯域及び負周波数帯域のそれぞれの帯域において、j、-jとなる2つの帯域が存在することになる。この伝達関数の周波数特性を適応制御により、各帯域内の周波数ω、ω毎に決定することができる。また、雑音が上側帯波帯域又は下側帯波帯域の何れか一方の帯域にのみ重畳する場合には、伝達関数Z(ω)は全正周波数帯域でj又は-jで一定、全負周波数帯域で-j又はjで一定となるので、等化手段の伝達関数を固定的に設定することができる。
 また、上側帯波帯域に重畳した雑音と、下側帯波帯域に重畳した雑音とが、ベースバンドにおいて、スペクトル分布が一部又は全部が重なっている場合には、伝達関数はj、又は、-jに固定されない。次のように等化手段の伝達関数Z(ω)は決定される。
 Z(ω)={A(ω)exp(j φrU(ω)) +A(ω)exp(j φrL(ω)) }/{A(ω)exp(j φiU(ω)) +A(ω)exp(j φiL(ω))}
={A(ω)exp(j φrU(ω)) +A(ω)exp(j φrL(ω)) }/{-jA(ω)exp(j φrU(ω)) +jA(ω)exp(j φrL(ω))}
 Z(-ω)={A(-ω)exp(j φrU(-ω)) +A(-ω)exp(j φrL(-ω)) }/{A(-ω)exp(j φiU(-ω)) +A(-ω)exp(j φiL(-ω))}
={A(-ω)exp(j φrU(-ω)) +A(-ω)exp(j φrL(-ω)) }/{jA(-ω)exp(j φrU(-ω)) -jA(-ω)exp(j φrL(-ω))}
 適応制御では、同相成分と、等化手段により周波数特性が補正された直交成分との合成において雑音成分の同相成分が小さくなるように、等化手段の伝達関数Z(ω)が上記のように決定されることになる。
 2.周波数特性の修正と合成の態様
 本発明は、上記の原理を用いた発明である。直交成分の周波数特性の修正と合成には、以下の各種の方法が考えられる。
 (1)直交成分の周波数特性を時間軸上で修正して、同相成分と時間軸上で合成する方法
 本発明において、等化手段は、伝達関数のインパルス応答と直交成分との畳み込みを出力する手段であり、合成手段は、等化手段の出力と同相成分とを時間軸上で合成する手段とすることができる。
 また、等化手段は、伝達関数を、各タップ間の順次遅延と各タップで遅延分岐した信号に乗算する重み係数とで実現したトランスバーサルフィルタの処理を行う手段であり、合成手段は、等化手段の出力と同相成分とを時間軸上で合成する手段とすることができる。これらは、等化手段を時間軸上で実現した例である。
 本発明において、等化手段は、ヒルベルトフィルタとすることができる。この場合には、ヒルベルトフィルタは、時間軸上のフィルタと周波数軸上のフィルタとの両者を含む概念である。
 (2)直交成分の周波数特性を周波数軸上で修正して得られる修正周波数特性を時間軸上の修正直交成分に変換した後に、変換された修正直交成分と同相成分とを時間軸上で合成する方法
 本発明において、等化手段は、直交成分の周波数特性を求め、その周波数特性に、正周波数帯域においては、虚数単位(j又は-j)を掛け、負周波数帯域においては、正周波数帯域とは反対符号の虚数単位(-j又はj)を掛けて、フーリエ逆変換する手段であり、合成手段は、等化手段の出力と同相成分とを時間軸上で合成する手段とすることができる。この態様では、周波数軸上で直交成分の周波数特性(位相の周波数特性)を補正して、時間軸上の信号にして、時間軸上の同相成分と合成することを特徴とする。
 正周波数帯域においては虚数単位(j又は-j)、負周波数帯域においては正周波数帯域とは反対符号の虚数単位(-j又はj)である伝達関数は、理想的なヒルベルトフィルタの伝達関数である。直交成分をこの伝達関数で修正することで、同相成分の雑音成分と同一又は符号反転(逆位相)した周波数特性を得ることができる。したがって、この修正された直交成分の周波数特性を時間軸上にフーリエ逆変換して、同相成分と時間軸上で合成することで、同相成分に含まれる雑音成分を除去することができる。
 (3)直交成分の周波数特性を周波軸上で修正し、同相成分の周波数特性を求めて、両者を周波数軸上で合成した後、フーリエ逆変換により時間軸上の信号を得る方法
 本発明において、等化手段は、直交成分の周波数特性を求め、その周波数特性に、正周波数帯域においては、虚数単位(j又は-j)を掛け、負周波数帯域においては、正周波数帯域とは反対符号の虚数単位(-j又はj)を掛けて、直交成分の修正された周波数特性を出力する手段であり、合成手段は、同相成分の周波数特性を求め、その同相成分周波数特性と、等化手段の出力する直交成分修正周波数特性とを合成して、フーリエ逆変換する手段とすることができる。この態様では、周波数特性(位相の周波数特性)が補正された直交成分と、同相成分の周波数特性とを周波数軸上で合成することが特徴である。
 この方法は、(2)の方法に対して、直交成分と同相成分とを周波数軸上で合成して、時間軸上の信号に変換する点が異なる。直交成分の周波数特性を修正する伝達関数は(2)と同一である。
 なお、等化手段の伝達関数が正周波数帯域の全域で一定の(j又は-j)、負周波数帯域の全域で一定の(-j又はj)とする場合には、雑音が上側帯波帯域又は下側帯波帯域の何れか一方の帯域にのみ重畳している場合に、同相成分の雑音を除去することができる。
 3.伝達関数の決定、合成時の加算合成又は減算合成の決定の態様
 直交成分の雑音成分と同相成分の雑音成分の位相差は、本発明の原理で説明したように、π/2、-π/2であり、直交成分は、正周波数帯域と負周波数帯域とで、位相の符号が反対となる。したがって、直交成分の雑音成分から同相成分の雑音成分を得るには、直交成分の周波数特性を修正すべき伝達関数は、正周波数帯域でj又は-j、負周波数帯域では-j又はjとなる。この伝達関数で修正された直交成分修正周波数特性は、同相成分の雑音成分の周波数特性に対して、正負の全周波数帯域において、同相又は逆相になる。したがって、両者を同相関係で減算合成するか、逆相関係で加算合成するかを決定する必要がある。伝達関数の決定は、周波数に応じて変化する一般的な周波数特性を決定する他、上記の固定された伝達関数における純虚数jの符号を決定することも含む概念である。2つの伝達関数において一方を選択することや、加算合成か減算合成かを選択する場合には、操作者による切り換えスイッチの入力により、聞者が雑音が少なくなる方を選択するようにしても良い。以下は、自動的に決定する態様である。
 (1)適応制御による決定
 本発明において、本信号処理装置は、合成手段の出力する合成信号における雑音を抑制するように等化手段の伝達関数を制御し、又は、合成手段の合成を加算合成又は減算合成に切り換え制御する制御手段を有するようにしても良い。
 また、本発明において、制御手段は、パワーインバージョンアルゴリズムにより合成信号の電力を最小とするように、伝達関数を制御し、又は、加算合成又は減算合成の切り換えを制御する手段とすることができる。
 また、制御手段は、合成信号と既知の参照信号との誤差を最小とするように、伝達関数を制御し、又は、加算合成又は減算合成の切り換えを制御する手段とすることができる。   
 これらの態様において、合成信号における雑音が抑制されるように等化手段の伝達関数を制御することは、各周波数毎の振幅と位相とを決定する他、伝達関数を、-j(ω<0の時)、j(ω>0の時)とするか、伝達関数を、j(ω<0の時)、-j(ω>0の時)の2伝達関数の一方を選択することも含む。さらに、合成手段の合成を加算合成又は減算合成に切り換え制御するとは、伝達関数を、-j(ω<0の時)、j(ω>0の時)の伝達関数か、j(ω<0の時)、-j(ω>0の時)の伝達関数かの一方に固定しておいて、合成手段において、直交成分と同相成分が逆相の関係で合成されるように、加算合成又は減算合成かを決定することを意味する。上記のように伝達関数の決定、又は、加算合成又は減算合成の選択により、両側帯波の同相成分から雑音を除去することができる。
 伝達関数の周波数特性を適応制御する場合には、周波数帯域毎に伝達関数を決定することができるので、上側帯波帯域及び下側帯波帯域に雑音が重畳していても、同相成分の雑音を除去できる。また、加算合成又は減算合成とを切り換え制御する場合には、上側帯波帯域又は下側帯波帯域の何れか一方の片帯域にのみ雑音が重畳されている場合にのみ、同相成分に含まれる雑音を除去できる。
 (2)周波数軸上の合成による電力が小さくなる側に制御する
 上記発明において、信号処理装置は、合成手段による同相成分周波数特性と直交成分修正周波数特性との合成後の合成周波数特性の電力が小さくなる側に、等化手段の伝達関数の正周波数帯域及び負周波数帯域におけるの虚数単位の符号を選択し、又は、合成手段の合成を加算合成又は減算合成に切り換え制御する制御手段を有するように構成することができる。
 合成周波数特性の電力が小さくなる側の合成は、同相成分の雑音成分と直交成分の雑音成分とが逆相関係で合成されていることを意味する。したがって、上記の合成により、両側帯波の同相成分から雑音を除去することができる。
 (3)同相成分と直交成分との相互相関値による決定
 本発明において、等化手段の出力と、復調手段の出力する同相成分との相互相関値を演算して、その相互相関値の符号により、等化手段の伝達関数を制御し、又は、合成手段の合成を加算合成又は減算合成に切り換え制御する制御手段を有するようにしても良い。この態様では、上側帯波帯域又は下側帯波帯域の何れか一方の片帯域にのみ雑音が重畳されている場合を想定している。等化手段の出力は、雑音成分の同相成分又は符号を反転した同相成分となる。したがって、合成手段の合成において、等化手段の出力が、雑音成分の同相成分か、反転した同相成分かを判別する必要がある。等化手段の出力と同相成分との相互相関値は、等化手段の出力が同相成分と同一であれば、正の値、反転した同相成分であれば、負の値となる。相互相関値が正であれば、合成手段において、同相成分を、等化手段の出力により減算合成し、相互相関値が負であれば、両者は加算合成される。
 なお、相互相関値は、等化手段の時間軸上の出力と、時間軸上の同相成分との各時刻における積の所定の時間区間における移動平均(直流成分)により求めることもできる。
 また、本発明において、等化手段の出力する直交成分修正周波数特性と、同相成分周波数特性との相互相関値を演算して、その相互相関値の符号により、等化手段の伝達関数の正周波数帯域及び負周波数帯域におけるの虚数単位の符号を選択し、又は、合成手段の合成を加算合成又は減算合成に切り換え制御する制御手段を有するようにしても良い。前述の態様が時間軸上で相互相関値を演算するのに対して、本態様では周波数軸上で相互相関を求めることが特徴である。同相成分と直交成分の周波数が一致するところで相互相関の絶対値は大きくなる。この値の符号が正であれは、直交成分修正周波数特性が、雑音成分の同相成分の周波数特性と同一を意味し、負であれば、直交成分修正周波数特性は、雑音成分の同相成分の位相をπ回転した(同相成分の反転)周波数特性であることを意味している。したがって、その相互相関値の符号に応じて、直交成分修正周波数特性と同相成分周波数特性とを減算合成又は加算合成すれば、同相成分から雑音が除去される。
 4.同期復調
 本発明において、復調手段は、直交復調後の直交成分に含まれる、変調搬送波に対する復調搬送波の誤差周波数のビート信号が零となるように、復調搬送波の周波数と位相を制御するフェーズロックドループ部を有することが望ましい。同期検波を実行でき、雑音を確実に除去することができる。
 また、復調手段は、ベースバンド信号の移動平均から、変調搬送波に対する復調搬送波の誤差周波数のビート信号を求め、そのビート信号に基づいてベースバンド信号のビート信号による変動を補正した信号を新たにベースバンド信号とする同期手段を有することが望ましい。ベースバンドにおけるスペクトルは、同相成分も直交成分も、ビート周波数だけ周波数がシフトするので、これ周波数シフトを補正することで、信号成分の復調と、雑音の除去を確実に実行することができる。
 5.方法発明
 本方法発明は、両側帯波信号を受信して、RF帯域に重畳する雑音を除去する信号処理方法において、両側帯波信号を直交復調して、正周波数帯域と負周波数帯域とを有したベースバンド信号に復調し、復調された直交成分の周波数特性を、伝達関数により修正した後、その修正直交成分と復調された同相成分と合成して、同相成分に含まれる雑音成分を除去することを特徴とする信号処理方法である。
 また、本方法発明において、合成後の信号の電力が最小となるように伝達関数を制御することが望ましい。また、本方法発明において、直交成分をヒルベルト変換した後、同相成分と合成することが望ましい。また、直交成分のヒルベルト変換後の信号と、同相成分との相互相関値の符号により、合成を加算合成又は減算合成とするが望ましい。伝達関数の制御、加算合成と減算合成の選択は、上記の装置発明で説明した事項を適用することができる。
 本発明によると、RF帯域に雑音が重畳される環境において、復調時にこの雑音を精度よく除去することができるので、所望信号の検出精度、復調精度を向上させることができる。 
本発明の具体的な実施例1に係る信号処理装置の構成図。 実施例1の信号処理装置の入力信号及び復調後の信号の周波数特性。 実施例1の信号処理装置の復調後のベースバンドにおける同相成分と直交成分の周波数特性。 実施例1の信号処理装置において、相関行列、重みベクトルを演算するタイミング、重み付け加算のタイミング、信号列のタイミングを示したタイミングチャート。 本発明の具体的な実施例2に係る信号処理装置の構成図。 本発明の実施例2の変形例1に係る信号処理装置の構成図。 本発明の実施例2の変形例2に係る信号処理装置の構成図。 本発明の具体的な実施例3に係る信号処理装置の構成図。 本発明の具体的な実施例4に係る信号処理装置の構成図。 本発明の具体的な実施例5に係る信号処理装置の構成図。
 以下、本発明を具体的な実施例に基づいて説明する。本発明は、下記の実施例に限定されるものではない。
 本発明の具体的な一実施例に係る信号処理装置1の構成を図1に示す。本実施例は、HV(ハイブリッド車)におけるAMラジオ受信機に混入する雑音を抑制する信号処理装置である。HVには、100kHzのキャリア周波数で制御されるDC-DCコンバータが搭載されていると仮定する。AMラジオ放送波は、531kHzから1602kHzの周波数帯域が割り当てられている。DC-DCコンバータから発生するスイッチング雑音は、基本的には、周波数空間では、基本周波数100kHzの整数倍の線スペクトル列となる。この雑音が、AMラジオ放送帯域に入り込み、AMラジオ放送波に雑音を与える。このような雑音の場合に、雑音のスペクトルは、100kHzの間隔が存在するので、AMラジオ放送の上側帯波帯域と下側帯波帯域とに、共に、雑音が存在することはない。本実施例は、AMラジオ放送帯域に入り込むこの種の雑音をキャンセルする信号処理装置である。しかしながら、本発明は、このような雑音に限定されることなく、直交多重化されていない両側帯波伝送において、RF帯域に雑音が混入する全ての環境において用いることができる。
 本実施例の信号処理装置は、アンテナ11により受信されたAMラジオ放送信号が増幅器12により増幅され、A/Dコンバータ13により、一定の周期Δtでサンプリングされて、ディジタル値に変換された後、CPUにより処理される装置である。もちろん、アナログ回路で全て、又は一部を構成することは可能であるが、ディジタルで処理することが簡単であるので、本実施例はディジタル処理によるものである。図1の構成は、ディジタル処理の各機能部毎にブロックで表現されている。A/Dコンバータ13の出力する信号は実数であるが、直交復調部20及びその後段のデータ処理は全て複素数で行われる。復調手段である直交復調部20は、ミキサー21と復調搬送波発生部22と同相成分抽出部23と直交成分抽出部24とを有している。直交復調部20によりベースバンド信号が得られる。複素信号で取り扱う関係上、このベースバンドは、上側帯波帯域に対応する正周波数帯域と下側帯波帯域に対応する負周波数帯域とを有する。
 直交復調部20に、位相同期処理部70が設けられている。位相同期処理部70はベースバンド信号を入力してその移動平均を演算する移動平均演算部71と、その出力の複素共役を演算する複素共役演算部72と、その出力の振幅を規格化する振幅規格化部73と、その出力とベースバンド信号とを乗算する乗算部74とを有している。
 同相成分抽出部23の出力する同相成分は、合成部60に入力し、直交成分抽出部24の出力する直交成分は、等化部40に入力している。また、同相成分と直交成分とは、制御部50に入力し、制御部50により等化部40の伝達関数が決定される。
 次に本信号処理装置の作用について説明する。
 1.受信信号のスペクトル
 説明を簡単にするために、雑音は、放送局から受信装置に至る間に上側帯波帯域に重畳されるものとする。アンテナ11の出力する受信信号r(t)は、(1)式で表される。
Figure JPOXMLDOC01-appb-M000001
 この受信信号r(t)のフーリエ変換であるスペクトルは図2(a)に示すようになり、上側帯波帯域と下側帯波帯域とを有している。Sは、下側帯波のスペクトル、Sは、上側帯波のスペクトルであり、Aは搬送波の振幅、ρは、放送局から受信装置までにおいて、RF帯域で重畳された雑音のスペクトルである。Aは実数、S、S、ρは角周波数ω(以下、単に、「周波数」と記す)に関する複素関数である。ωに関して、S、Sの絶対値は等しく、位相は反転関係にある。したがって、S、Sは相互に複素共役関数である。S(t)、S(t)は、それぞれ、S、Sのフーリエ逆変換であり、時間に関する複素関数である。また、S(t)、S(t)は、相互に複素共役の関係にあり、したがって、S(t)+S(t)は実関数である。ωは、変調時の搬送波の周波数、ω+ωは上側帯波に重畳した雑音の周波数である。
 空間を伝搬する波は、r(t)の実部で表される。したがって、A/Dコンバータ13から出力されるサンプリングされた受信信号(データ)は、実数列である。次に、この受信信号を直交復調する。
 1.同期復調
 復調搬送波発生部22の出力する復調搬送波の周波数は、変調搬送波の周波数ωに対してΔωだけ大きいとする。すなわち、復調搬送波波L(t)は(2)式で表される。
Figure JPOXMLDOC01-appb-M000002
 
 信号成分の直交成分は存在しないので、複素空間では、直交復調は、(1)式で表される複素関数の実部の受信信号にexp[-j(ω+Δω)t]を掛ける演算を行うことに等しい。したがって、ミキサー21の出力する復調した後のベースバンドの信号は、(3)式で表される。なお、復調結果には1/2の係数が係るので、表現を簡単にするために、x(t)は、直交復調の結果の2倍で定義する。ベースバンド信号に、exp(-jΔωt)の因子が現れる。
Figure JPOXMLDOC01-appb-M000003
 このベースバンド信号x(t)が移動平均演算部71によりその移動平均が演算される。移動平均の結果は、(4)式で与えられる。
Figure JPOXMLDOC01-appb-M000004
 すなわち、移動平均により、(3)式の最終項の周波数は大きいので、移動平均により、この項は0となる。
 次に、複素共役演算部72により、(4)式の複素共役が求められ、振幅規格化部73により、(5)式の規格化信号が得られる。(4)式におけるA+S(t)+S(t)は実数であるので、(4)式から、-jΔωt=tan-1(実部/虚部)により-jΔωtが得られるので、exp(jΔωt)を得ることができる。
Figure JPOXMLDOC01-appb-M000005
 次に、乗算部74により、ベースバンド信号に(5)式の規格化信号を乗算して、(6)式の同期ベースバンド信号xsync(t)を得ることができる。
Figure JPOXMLDOC01-appb-M000006
 
 この処理により、復調搬送波の周波数が変調搬送波の周波数に対して偏差Δωを有していても、その偏差による影響を排除することができる。
 なお、上記の説明では、受信信号に含まれる復調搬送波と、変調搬送波との位相差Δφは、明示していないが、(2)~(5)式におけるjΔωtをjΔωt+jΔφとおいて、位相誤差Δφを考慮して、(6)式を演算すると、Δφは消去されるので、Δφが存在しても、(6)式が得られる。すなわち、周波数誤差だけでなく位相誤差も、補償されることになる。
 したがって、位相同期処理部70により、復調した後のベースバンドの信号は、(7)式で表される。すなわち、ミキサー74の出力信号xsync(t)は、(7)式で表現でき、そのスペクトルは図2(b)に示すようになり、ベースバンドの正周波数帯域と負周波数帯域とを有している。雑音は正周波数帯域にのみ存在する。
Figure JPOXMLDOC01-appb-M000007
 (7)式の実部が直交復調における同相成分、虚部が直交復調における直交成分である。
 同相成分は、(8)式で、直交成分は、(9)式で表される。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 すなわち、同相成分抽出部23の出力する同相成分x(t)が(8)式で、直交成分抽出部24の出力する直交成分x(t)が(9)式で、表現される。同相成分には信号成分と雑音成分が存在するが、直交成分には、信号成分が存在せず、雑音成分のみが存在する。同相成分(8)式のスペクトルは、図3(a)に示すようになる。正周波数帯域には、信号成分のスペクトルSと雑音成分のスペクトル(ρ/2)が現れ、負周波数帯域には、信号成分のスペクトルSと雑音成分のスペクトル(ρ/2)が現れている。ρはρの複素共役で、ρの位相を反転したスペクトルである。同相成分x(t)も、直交成分x(t)も実関数である。
 直交成分(9)式のスペクトルは図3(b)に示すようになる。正周波数帯域には、直交成分の雑音成分のスペクトル(-jρ/2)が現れている。すなわち、この雑音成分は、同相成分の雑音成分と振幅は等しいが、同相成分に対して、位相が-π/2だけ回転している(時間軸上ではπ/2だけ遅れている)。負周波数帯域には、直交成分の雑音成分のスペクトル(jρ/2)が現れている。すなわち、この雑音成分は、同相成分の雑音成分と振幅は等しいが、同相成分に対して位相がπ/2だけ回転している(時間軸上ではπ/2だけ遅れている)。また、同相成分も、直交成分も、正周波数帯域と負周波数帯域のスペクトルは、相互に、複素共役の関係、すなわち、位相が反転した関係にある。
 2.直交成分の周波数特性の修正及び同相成分との合成
 直交成分x(t)は、等化部40に入力している。等化部40はトランスバーサルフィルタで構成されている。等化部40は、入力信号を単位遅延時間τだけ順次遅延させ、各タップからは、直交成分x(t)がkτ遅延時間(k=0~Q-1)だけ遅延された信号が出力される。単位遅延時間τは、サンプリング周期Δtに等しくしている。そして、各kτ遅延時間だけ遅延されたそれぞれの信号に、重み係数w ~wQ-1  が乗算されて、それぞれの乗算された結果が加算される。等化部40は、直交成分x(t)の周波数特性を、重み係数w ~wQ-1  とexp(j ωΔt)~exp(j ω(Q-1) Δt)により修正する。
  等化部40の伝達関数Z(ω)は、次式で表される。
Figure JPOXMLDOC01-appb-M000010
 等化部40は、伝達関数Z(ω)のフィルタ特性により、直交成分x(t)の周波数特性を修正した信号を、合成部60に出力する。合成部60は、修正された直交成分x id(t)と、同相成分抽出部23の出力する同相成分x(t)とを合成する。
 また、直交成分x(t)、同相成分x(t)とは、PI(パワーインバージョン)アルゴリズムにより重み係数w ~wQ-1  を決定する制御部50に入力している。制御部50では、合成部60の出力信号S(t)の電力が最小となるように、等化部40の重み係数w ~wQ-1  が決定される。
 制御部50は、同相成分x(t)と、直交成分x(t)とから、(11)式で定義される受信ベクトルx(pΔT)を生成する。Δtは、サンプリング周期であり、等化部40における単位遅延時間αに等しくしている。ただし、Δtとα(>Δt)とを必ずしも等しくする必要はない。Qは、Δtづつ遅延させた信号の数であり、等化部40の重み係数の数-1に等しい。本実施例では、QΔt=ΔT間隔で、重み係数が演算される。同相成分x(pΔT)は、ΔT周期毎のp番目の信号を意味する。直交成分x(kΔt+pΔT)は、pΔT期間におけるΔt周期毎のk番目の信号を意味する。ただし、k=0,1,…,Q-1である。受信信号ベクトルx(pΔT)は、Q+1次元の列ベクトルであり、ΔT毎に生成される。また、ΔTは、直交成分x(t)と重み係数との積和演算を行う時間間隔でもある。
Figure JPOXMLDOC01-appb-M000011
 次に、受信信号ベクトルの相関行列の時間平均R(以下、「平均相関行列」という)が、(12)式、(13)式で演算される。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 平均は、PΔT(=PQΔt)期間の平均であり、Pは平均する期間のΔT期間の数である。ただし、x(pΔT)は、受信信号ベクトルx(pΔT)の複素共役の転置行列を表し、Q+1次元の行ベクトルである。したがって、平均相関行列Rは、Q+1次元の正方行列である。
 図4に示すように、平均相関行列Rを演算する時刻を現在時刻とすると、過去PΔTの期間において、ΔT期間毎に生成された受信ベクトルx(pΔT)を用いて、平均相関行列Rが演算される。すなわち、平均相関行列Rは、合成信号S(kΔT)を求めるΔT期間毎に更新される。
 パワーインバージョンアルゴリズムでは、重みベクトルW(Q+1次元の列ベクトル)を、相関行列Rの逆行列と拘束ベクトルcとから(14)式により求めることができる。
Figure JPOXMLDOC01-appb-M000014
 
 拘束ベクトルcは、(15)式で定義されるQ+1次元の列ベクトルである。これは、同相成分x(t)の重み係数を固定したことに等しい。同相成分x(t)は、そのまま合成部60に入力しているので、同相成分x(t)に対する重み係数は1である。
Figure JPOXMLDOC01-appb-M000015
 (14)式で決定された重みベクトルWの複素転置ベクトルWを用いて、(16)式により合成信号S(kΔT)を生成することができる。ただし、Wは、(17)式に示すように、等化部40で用いられる重み係数1,w ~wQ-1  を成分とするQ+1次元の行ベクトルである。重み係数1は、同相成分x(t)に対する重み係数である。kは、周期ΔT毎に、合成信号S(kΔT)を求める時の期間番号であり、kΔTが現在時刻tを表す。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 このようにして、重み係数を決定して、同相成分x(t)と、直交成分x(t)の遅延合成により周波数特性の修正された直交成分xid(t)とを合成すると、合成信号S(t)の電力を最小とすることができる。すなわち、雑音電力が所望信号の電力よりも大きい場合に、雑音をキャンセルして、所望信号を抽出することができる。上記の説明では上側帯波にのみ雑音が重畳した場合を説明した。しかし、下側帯波にのみ雑音が重畳した場合にも、直交成分のスペクトルが上側帯波にのみ雑音が重畳した場合に対して、符号が反転するだけであるので、同様に適用できる。さらに、上側帯波と下側帯波に異なる雑音が重畳している場合にも、合成した電力が最小となるように等化部40の伝達関数(重み係数)が決定されるので、同相成分に重畳した雑音を除去することができる。(
 [実施例1の変形例1]
 本実施例において、平均相関行列Rは、過去PΔT間の単純平均としたが、次のようにしても良い。過去(P-1)ΔT間の平均の相関行列をRold として、最新のΔTの1期間における相関行列をRnew とする。重みベクトルWを演算する相関行列Rを、(18)式で求めても良い。
Figure JPOXMLDOC01-appb-M000018
 忘却係数αを大きくすれば、最新に求めた相関行列を平均相関行列Rに大きく反映させることができる。
 [実施例1の変形例2]
 実施例1において、次の変形例を用いることができる。実施例1では、重みベクトルWを演算するのに、PIアルゴリズムを用いたが、最小2乗誤差法を用いることができる。この例は、実施例1の拘束ベクトルcを、(19)式で決定する方法である。
Figure JPOXMLDOC01-appb-M000019
 ここで、s(pΔT)は、既知の参照信号の列であり、拘束ベクトルcは、Q+1次元の列ベクトルであり、参照信号と受信信号ベクトルとの相関ベクトルの平均である。このように拘束ベクトルcを決定すれば、(14)式を用いた重みベクトルWを求めることができる。このようにして重みベクトルWから得られる(17)式の重み係数1,w ~wQ-1  を用いて直交成分x(t)の周波数特性を修正した後、と同相成分x(t)とを合成すると、合成信号S(t)は、参照信号との誤差が最小となる。すなわち、参照信号ではない雑音は、除去されることになる。
 [実施例1の変形例3]
 また、次の実施例1の変形例が考えられる。実施例1は、等化部40をトランスバーサルフィルタで構成している。実施例1及びその変形例1、2のように重み係数w が求まると、(10)式により等化部40の伝達関数Z(ω)が求まる。したがって、直交成分x(kΔt)をフーリエ変換してその周波数特性Fx(ω)に伝達関数Z(ω)を掛け算して、その結果をフーリエ逆変換して、修正された直交成分xid(t)を求めて、その信号を合成部60に出力するようにしても良い。これにより、同相成分x(t)と周波数特性の修正された直交成分xid(kΔt)とを時間軸上で合成すれば、上記の同相成分に重畳した雑音をキャンセルすることができる。
 実施例2の信号処理装置の構成を図5に示す。本実施例は等化部にヒルベルトフィルタ41を用いる例である。ヒルベルトフィルタはトランスバーサルフィルタである。ヒルベルトフィルタ41の伝達関数Z(ω)は、(20)式の第1伝達関数Z(ω)と、(21)式の第2伝達関数Z(ω)と2種類が準備される。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
 ヒルベルトフィルタ41は、入力する直交成分x(t)と、上記の各伝達関数のインパルスレンポンスとの畳み込み積分を実行する図1の等化部40と同様なトランスパーサルフィルタで構成されている。
 本発明の原理で説明したように、同相成分の雑音成分のスペクトルは正周波数帯域ではρ(ω)/2、負周波数帯域ではρ(ω)/2である。上側帯波に雑音が重畳した場合には、直交成分の雑音成分のスペクトルは、正周波数帯域(ω>0)では(-jρ(ω)/2)、負周波数帯域(ω<0)では(jρ(ω)/2)となる。また、下側帯波にのみ雑音が重畳した場合には、x(t)とx(t)は、(8)式と(9)式において、ω=-ωと置いた式で表される。しかし、上側帯波帯域に雑音が重畳した場合と(8)、(9)式の表現を同一にするために、ω=-ωとおき、さらに、ρをρ、ρをρに置換する。すなわち、下側帯波帯域に雑音が重畳した場合の(1)式のρをρとする。このように雑音のスペクトルを定義することで、同相成分の雑音成分は、図3(a)と同一になり、負周波数帯域では、ρ/2となり、正周波数帯域では、ρ/2となり、相互に複素共役の関係にある。
 直交成分の雑音成分は、正周波数帯域では、スペクトル(jρ/2)、負周波数帯域では、スペクトル(-jρ/2)となる。すなわち、正周波数帯域及び負周波数帯域において、直交成分の雑音成分は、同相成分の雑音成分に対して、時間軸上において位相がπ/2だけ進んでいる。したがって、正周波数帯域において、同相成分の雑音成分(ρ/2)を除去するためには、正周波数帯域の直交成分の雑音成分(jρ/2)に(j)を掛けて、同相成分に加算する必要がある。
 したがって、上側帯波にのみ雑音が重畳している場合には、ヒルベルトフィルタ41の伝達関数を、(20)式の第1伝達関数Z(ω)とし、下側帯波にのみ雑音が重畳している場合には、(21)式の第2伝達関数Z(ω)とすることで、ヒルベルトフィルタ41の出力のスペクトルを、同相成分の雑音成分のスペクトルの逆相のスペクトル(-ρ(ω)/2,ω>0,-ρ(ω)/2,ω<0)とすることができる。したがって、直交成分x(t)をヒルベルトフィルタ41に入力し、その出力と同相成分x(t)と合成部60で加算合成すれば、同相成分に含まれている雑音を除去することができる。
 ヒルベルトフィルタ41の伝達関数の選択は、次のように実行される。合成部60の出力信号S(t)が制御部50に入力される。制御部50は、ヒルベルトフィルタ41の伝達関数を第1伝達関数Z(ω)と第2伝達関数Z(ω)とで切り換えて、出力信号S(t)の上記時間間隔ΔTでの平均電力を求め、その平均電力が小さい方の伝達関数を選択するようにすれば良い。雑音のスペクトルの周波数が時間的にシフトしない場合には、AM放送が選局される毎に、上記の伝達関数の選択を行えば良い。雑音のスペクトルの周波数の時間的シフトが存在する場合には、一定の時間間隔(例えば、上記の実施例1におけるΔT)で、上記の伝達関数の選択操作を実行するようにすれば良い。この操作が短時間であれば、雑音の同相成分と直交成分とが同相で合成されたとしても、聞者に雑音として認識されることはない。また、伝達関数を切り換え制御するためのヒルベルトフィルタと、その出力と同相成分とを合成する系統を、信号の復調系統とは別に設けて、この系統により、常時、切り換え制御して、合成信号の電力が最小となる側の伝達関数を選択するようにすれば、聞者に雑音を与えることはない。
 [実施例2の変形例1]
 実施例2では、ヒルベルトフィルタ41の伝達関数を、第1伝達関数Z(ω)と第2伝達関数Z(ω)とで切り換え制御する装置である。本変形例1は、図6に示すように、ヒルベルトフィルタ42の伝達関数を、第1伝達関数Z(ω)と第2伝達関数Z(ω)の一方に固定している。そして、ヒルベルトフィルタ42の出力信号を、制御部50の出力により制御される符号反転部61で反転させる(-1を掛ける)か、そのまま通過させるかを切り換えるようにしている。これにより、常時、ヒルベルトフィルタ42により周波数特性の修正された直交成分が、同相成分に対して逆相で合成されることになり、両側帯波の同相成分から雑音を除去することができる。
 また、本変形例においても、合成時の直交成分の符号の切り換え制御のために、符号反転部61を含む合成部60を別系統として設けて、常時、符号の切り換え制御をして、最適な状態を選択するようにすれば、聞者に雑音を与えることはない。
 [実施例2の変形例2]
 また、図7に示すように、切換スイッチ62を設けて、操作者の指令により、符号反転部61により入力信号の符号を反転させるか、そのま通過させるかを選択するようにしても良い。
 本実施例3は、ヒルベルトフィルタ42により周波数特性の修正された直交成分と同相成分とに関して、時間軸上の加算合成と減算合成とを、常時、発生させるようにした信号処理装置である。その構成を図8に示す。図6と異なる構成は、合成部60と制御装置52である。合成部60は、符号反転部63a、63bとを有している。符号反転部63aと、63bとは、制御装置52により、一方が符号反転する時は、他方は符号反転をしないように制御される。そして、符号反転部63aの出力する修正された直交成分と同相成分とが加算部64aで加算合成される。また、符号反転部63bの出力する修正された直交成分と同相成分とが加算部64bで加算合成される。
 加算部64a、64bの出力する合成信号は制御装置52に入力しており、制御装置50において、それぞれの合成信号の所定時間(ΔT)における平均電力が演算される。加算部64aの出力する合成信号の電力が、加算部64bの出力する合成信号の電力よりも小さくなるように、符号反転部63aと符号反転部63bにおける符号反転と符号非反転とが設定される。この構成を採用すると、雑音が上側帯波に重畳する場合と、下側帯波に重畳する場合とが、時間的に変動しても、加算部64aにおいて、同相成分と直交成分とが逆相で、常時、合成されるように制御できる。これにより、常時、雑音が除去された両側帯波ベースバンド信号を得ることができる。
 本実施例4は、直交成分の周波数特性の修正を周波数軸上で行い、その直交成分修正周波数特性と同相成分周波数特性とを周波数軸上で合成して、フーリエ逆変換して時間軸上の合成信号S(t)に変換する装置である。
 図9に示すように、等化部45は、直交成分抽出部24の出力する直交成分x(t)を入力して、フーリエ変換するFFT部46と、FFT部46の出力を修正する伝達関数部47とを有している。合成部80は、同相成分抽出部23の出力する同相成分x(t)をフーリエ変換するFFT部81と、FFT部81の出力するスペクトルと、等化部45の出力するスペクトルを合成する加算部82と、加算部82の出力をフーリエ逆変換するIFFT部83とを有している。
 また、加算部82の出力するスペクトルは、制御部53に入力している。等化部45において、直交成分の周波数特性に第1伝達関数Z(ω)又は第2伝達関数Z(ω)が乗算されて、直交成分の周波数特性が修正される。加算部82の出力するスペクトルは、制御部53において、そのスペクトルのベースバンドにおける電力が演算される。制御部53は、等化部45に指令して、合成信号の電力が小さくなる側の伝達関数を選択する。これにより、IFFT部83から出力される信号S(t)は、同相成分から雑音が除去されたものとなる。
 本実施例においても、FFT部81の出力を分岐し、また、FFT部46の出力を分岐して別の等化部に入力させ、この等化部の出力とFFT部81の分岐出力とを合成する別の加算部を設けた別系統を設けても良い。この別系統による合成信号の電力を求めて、電力が小さくなる側の伝達関数を決定する。この決定された伝達関数が伝達関数部47で設定される伝達関数とする。このように、適正な伝達関数の決定は、別系統で、短い時間周期で繰り返して行うことにより、正規の復調系統における伝達関数の切換を頻繁に行うことなく、常時、伝達関数部47の伝達関数を最適に設定することができる。
 さらに、伝達関数部47における伝達関数を第1伝達関数Z(ω)又は第2伝達関数Z(ω)の一方の伝達関数に設定して、スペクトルに関して、図8に示すような、符号反転合成と、符号非反転合成とを行うようにしても良い。これによると、実施例3と同様に、常時、直交成分と同相成分が逆相で合成されるようにすることができる。
 本実施例4においても、図6と同様に、伝達関数部47の伝達関数を、第1伝達関数Z(ω)又は第2伝達関数Z(ω)の一方に固定して、伝達関数部47の出力を符号反転部で、合成スペクトルの電力が小さくなる側に、修正された直交成分のスペクトルの符号を制御して、加算部82に出力するようにしても良い。
 また、制御部53を設けずに、図7のように、切換スイッチを設けて、操作者の指令により、伝達関数部47の出力の符号を制御するようにしても良い。伝達関数部47の出力の符号の切換制御のために別系統を設けても良い点は、上記の実施例と同一である。
 本実施例は、同相成分とヒルベルトフィルタを通過した直交成分との相互相関値に符号に応じて、加算合成か減算合成かの符号を決定するようにしたことが特徴である。その構成を図10に示す。実施例2の図6又は図7において、符号反転部61に符号の指令を与える制御部54を設けた点が特徴である。図10において、制御部54は、ヒルベルトフィルタ42の出力する修正直交成分Hx(t)と同相成分抽出部23の出力する同相成分x(t)との積を演算する乗算部541と、その積の所定時間ΔTでの移動平均を演算する移動平均演算部542と、その平均値Dから同相成分x(t)と修正直交成分Hx(t)との位相差を検出する位相検出部543とを有する。
 今、上側帯波帯域に雑音が重畳されているとし、ヒルベルトフィルタ42の伝達関数は(20)式の第1伝達関数Z(t)に設定されているとする。このとき、ヒルベルトフィルタ42の出力する修正直交成分Hx(t)は、(22)式で表される。
Figure JPOXMLDOC01-appb-M000022
 
 したがって、乗算部541の出力は、(23)式で表現される。
Figure JPOXMLDOC01-appb-M000023
 そして、(23)式の移動平均が移動平均演算部542で演算される。exp(j ωt)、exp(-j ωt)の因子が係る項は、移動平均により0となる。したがって、移動平均演算部542の出力Dは、(24)式で表される。
Figure JPOXMLDOC01-appb-M000024
 出力Dの符号が負であることは、同相成分x(t)の雑音成分とヒルベルトフィルタ42の出力する修正直交成分Hx(t)とは、位相差がπ、すなわち、逆相関係にあることを意味する。したがって、位相検出部543は、Dの符号が負であれば、符号反転部61での符号を反転させないように制御する。これにより、合成部60では、修正直交成分とHx(t)と同相成分x(t)とが加算合成される。この結果、同相成分x(t)から雑音が除去されて、両側帯波信号S(t)が得られる。
 また、下側帯波帯域に雑音が重畳された場合には、同相成分x(t)は、(8)式で表され、このとき、直交成分x(t)は、(25)式で表され、ヒルベルトフィルタ42の出力する修正直交成分Hx(t)は、(26)式で表される。したがって、移動平均演算部542の出力Dは、(27)式で表される。
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
 よって、下側帯波帯域に雑音が重畳している場合には、位相検出部543の検出する符号は正となる。符号が正であることは、同相成分x(t)の雑音成分とヒルベルトフィルタ42の出力する修正直交成分Hx(t)とは、位相差が0、すなわち、同相関係にあることを意味する。位相検出部543は、Dの符号が正であれば、符号反転部61での符号を反転させるように制御する。これにより、合成部60では、修正直交成分とHx(t)と同相成分x(t)とが減算合成される。この結果、同相成分x(t)から雑音が除去されて、両側帯波信号S(t)が得られる。
 なお、乗算部541と移動平均演算部542に代えて、同相成分x(t)とヒルベルトフィルタ42の出力する修正直交成分Hx(t)との相互相関値を演算するようにしても良い。すなわち、x(t)とHx(t)との畳み込み積分を演算しても良い。同相成分x(t)の雑音成分と修正直交成分Hx(t)との相関値Dは、(24)、(27)で表されるので、上記したことと同一の処理により、雑音成分が除去された両側帯波信号S(t)を得ることができる。
[実施例5の変形例]
 実施例4の図9に示す伝達関数部47の伝達関数を第1伝達関数Z(ω)に固定する。そして、周波数軸上での同相成分x(ω)と、伝達関数部47の出力する修正直交成分Hx(ω)との合成において、周波数軸上での両者の相互相関や、周波数毎の積の移動平均を求めても良い。結果は、(24)、(27)式と同一となる。そのDの値の符号により、周波数軸上の同相成分x(ω)と伝達関数部47の出力する修正直交成分Hx(ω)とを合成部82で加算合成又は減算合成するようにしても良い。、
 上記の全実施例において、直交復調部20に入力する信号はRF信号としているが、RF信号から周波数が低下されたIF信号であっても良い。要は、ベースバンドに変換するところで、直交復調をすれば良い。
 本発明は、入力信号から周期性雑音を除去する装置に用いることができる。
23…同相成分抽出部
24…直交成分抽出部
40,45…等化部
41,42…ヒルベルトフィルタ
63a,63b…符号反転部
64a,64b…加算部
50、53…制御部
60,80,82…合成部
81…FFT部
83…IFFT部

                                    

Claims (18)

  1.  両側帯波信号を受信して、RF帯域に重畳する雑音を除去する信号処理装置において、
     前記両側帯波信号を直交復調して、正周波数帯域と負周波数帯域とを有したベースバンド信号に復調する復調手段と、
     前記復調手段の出力する直交成分の周波数特性を、伝達関数により修正する等化手段と、
     前記等化手段の出力と、前記復調手段の出力する同相成分とを合成する合成手段と、
     を有することを特徴とする信号処理装置。
  2.  前記等化手段は、前記伝達関数のインパルス応答と前記直交成分との畳み込みを出力する手段であり、
     前記合成手段は、前記等化手段の出力と前記同相成分とを時間軸上で合成する手段であることを特徴とする請求項1に記載の信号処理装置。
  3.  前記等化手段は、前記伝達関数を、各タップ間の順次遅延と各タップで遅延分岐した信号に乗算する重み係数とで実現したトランスバーサルフィルタの処理を行う手段であり、 前記合成手段は、前記等化手段の出力と前記同相成分とを時間軸上で合成する手段であることを特徴とする請求項1又は請求項2に記載の信号処理装置。
  4.  前記等化手段は、ヒルベルトフィルタであることを特徴とする請求項1乃至請求項3の何れか1項に記載の信号処理装置。
  5.  前記等化手段は、前記直交成分の周波数特性を求め、その周波数特性に、正周波数帯域においては、虚数単位(j又は-j)を掛け、負周波数帯域においては、正周波数帯域とは反対符号の虚数単位(-j又はj)を掛けて、フーリエ逆変換する手段であり、
     前記合成手段は、前記等化手段の出力と前記同相成分とを時間軸上で合成する手段であることを特徴とする請求項1に記載の信号処理装置。
  6.  前記等化手段は、前記直交成分の周波数特性を求め、その周波数特性に、正周波数帯域においては、虚数単位(j又は-j)を掛け、負周波数帯域においては、正周波数帯域とは反対符号の虚数単位(-j又はj)を掛けて、前記直交成分の修正された周波数特性を出力する手段であり、
     前記合成手段は、前記同相成分の周波数特性を求め、その同相成分周波数特性と、前記等化手段の出力する直交成分修正周波数特性とを合成して、フーリエ逆変換する手段であることを特徴とする請求項1に記載の信号処理装置。
  7.  前記合成手段の出力する合成信号における雑音を抑制するように前記等化手段の伝達関数を制御し、又は、前記合成手段の合成を加算合成又は減算合成に切り換え制御する制御手段を有することを特徴とする請求項1乃至請求項6の何れか1項に記載の信号処理装置。
  8.  前記制御手段は、パワーインバージョンアルゴリズムにより前記合成信号の電力を最小とするように、前記伝達関数を制御し、又は、前記加算合成又は減算合成の切り換えを制御することを特徴とする請求項7に記載の信号処理装置。
  9.  前記制御手段は、前記合成信号と既知の参照信号との誤差を最小とするように、前記伝達関数を制御し、又は、前記加算合成又は減算合成の切り換えを制御することを特徴とする請求項7に記載の信号処理装置。
  10.  前記等化手段の出力と、前記復調手段の出力する前記同相成分との相互相関値を演算して、その相互相関値の符号により、前記等化手段の前記伝達関数を制御し、又は、前記合成手段の合成を加算合成又は減算合成に切り換え制御する制御手段を有することを特徴とする請求項1乃至請求項5の何れか1項に記載の信号処理装置。
  11.  前記等化手段の出力する前記直交成分修正周波数特性と、前記同相成分周波数特性との相互相関値を演算して、その相互相関値の符号により、前記等化手段の伝達関数の正周波数帯域及び負周波数帯域におけるの前記虚数単位の符号を選択し、又は、前記合成手段の合成を加算合成又は減算合成に切り換え制御する制御手段を有することを特徴とする請求項6に記載の信号処理装置。
  12.  前記合成手段による前記同相成分周波数特性と前記直交成分修正周波数特性との合成後の合成周波数特性の電力が小さくなる側に、前記等化手段の伝達関数の正周波数帯域及び負周波数帯域におけるの前記虚数単位の符号を選択し、又は、前記合成手段の合成を加算合成又は減算合成に切り換え制御する制御手段を
     有することを特徴とする請求項6に記載の信号処理装置。
  13.  前記復調手段は、直交復調後の直交成分に含まれる、変調搬送波に対する復調搬送波の誤差周波数のビート信号が零となるように、復調搬送波の周波数と位相を制御するフェーズロックドループ部を有することを特徴とする請求項1乃至請求項12の何れか1項に記載の信号処理装置。
  14.  前記復調手段は、前記ベースバンド信号の移動平均から、変調搬送波に対する復調搬送波の誤差周波数のビート信号を求め、そのビート信号に基づいて前記ベースバンド信号のビート信号による変動を補正した信号を新たにベースバンド信号とする同期手段を有することを特徴とする請求項1乃至請求項12の何れか1項に記載の信号処理装置。
  15.  両側帯波信号を受信して、RF帯域に重畳する雑音を除去する信号処理方法において、
     前記両側帯波信号を直交復調して、正周波数帯域と負周波数帯域とを有したベースバンド信号に復調し、
     復調された直交成分の周波数特性を、伝達関数により修正した後、その修正直交成分と復調された同相成分と合成して、同相成分に含まれる雑音成分を除去する
     ことを特徴とする信号処理方法。
  16.  合成後の信号の電力が最小となるように前記伝達関数を制御することを特徴とする請求項15に記載の信号処理方法。
  17.  前記直交成分をヒルベルト変換した後、前記同相成分と合成することを特徴とする請求項15又は請求項16に記載の信号処理方法。
  18.  前記直交成分のヒルベルト変換後の信号と、前記同相成分との相互相関値の符号により、前記合成を加算合成又は減算合成とすることを特徴とする請求項17に記載の信号処理方法。

                                        
PCT/JP2015/005369 2014-11-10 2015-10-26 信号処理装置及び信号処理方法 WO2016075879A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-228002 2014-11-10
JP2014228002A JP2016092722A (ja) 2014-11-10 2014-11-10 信号処理装置及び信号処理方法

Publications (1)

Publication Number Publication Date
WO2016075879A1 true WO2016075879A1 (ja) 2016-05-19

Family

ID=55953985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005369 WO2016075879A1 (ja) 2014-11-10 2015-10-26 信号処理装置及び信号処理方法

Country Status (2)

Country Link
JP (1) JP2016092722A (ja)
WO (1) WO2016075879A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795176A (ja) * 1993-07-28 1995-04-07 Sony Corp ディジタル変調装置およびディジタル復調装置
JP2004140510A (ja) * 2002-10-16 2004-05-13 Casio Comput Co Ltd 電波受信装置及び電波時計

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795176A (ja) * 1993-07-28 1995-04-07 Sony Corp ディジタル変調装置およびディジタル復調装置
JP2004140510A (ja) * 2002-10-16 2004-05-13 Casio Comput Co Ltd 電波受信装置及び電波時計

Also Published As

Publication number Publication date
JP2016092722A (ja) 2016-05-23

Similar Documents

Publication Publication Date Title
US8583064B2 (en) Receiver for estimating and compensating for in-phase/quadrature mismatch
EP2060082B1 (en) I/q imbalance compensation
EP1064729B1 (en) Distortion correction circuit for direct conversion receiver
US20170126465A1 (en) Method and apparatus for low-complexity frequency dependent iq imbalance compensation
JP4456497B2 (ja) 受信装置及び中継装置
EP2894823B1 (en) Coefficient estimation for digital IQ calibration
JP2004304507A (ja) Ofdm復調方法及び半導体集積回路
US20090041161A1 (en) DC offset estimation system and method
JP2015126360A (ja) 信号処理装置及び信号処理方法
WO2005093979A1 (ja) 無線システムおよび無線通信装置
JP6548668B2 (ja) パラメトリックフィルタを使用して混合を改善する第1隣接キャンセラ(fac)
WO2016075878A1 (ja) 信号処理装置及び信号処理方法
JP6296453B2 (ja) 信号処理装置及び信号処理方法
WO2016075879A1 (ja) 信号処理装置及び信号処理方法
US9106326B2 (en) Method for determining the imperfections of a transmit pathway and of a receive pathway of an apparatus, and associated radio apparatus
JP6340118B2 (ja) 回り込み伝送路推定装置及び回り込みキャンセラ
US20080031389A1 (en) Phase Synthesizing Diversity Receiver
JP2008042720A (ja) 無線装置
JP2012039300A (ja) 中継装置
JP4886736B2 (ja) Ofdm信号合成用受信装置および中継装置
JP4236545B2 (ja) ダイバーシティ受信用回り込みキャンセラ及び中継装置
JP2006261814A (ja) ダイバーシチ受信方法及びダイバーシチ受信装置
JP6426559B2 (ja) 周波数受信信号の補正方法、周波数受信信号の補正装置、車両用ノイズキャンセリング方法、及び、車両用ノイズキャンセリング装置
JP6110650B2 (ja) 回り込みキャンセラおよび中継装置
JP5085499B2 (ja) 無線通信方法、システム、無線送信機及び無線受信機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15859047

Country of ref document: EP

Kind code of ref document: A1