WO2016074432A1 - 大型玻璃钢罐体及其成型模具和制造设备及其制造方法 - Google Patents

大型玻璃钢罐体及其成型模具和制造设备及其制造方法 Download PDF

Info

Publication number
WO2016074432A1
WO2016074432A1 PCT/CN2015/076479 CN2015076479W WO2016074432A1 WO 2016074432 A1 WO2016074432 A1 WO 2016074432A1 CN 2015076479 W CN2015076479 W CN 2015076479W WO 2016074432 A1 WO2016074432 A1 WO 2016074432A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
template
frp tank
main shaft
movable
Prior art date
Application number
PCT/CN2015/076479
Other languages
English (en)
French (fr)
Inventor
谭海鹏
Original Assignee
深圳市绿洲彩虹机电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绿洲彩虹机电科技有限公司 filed Critical 深圳市绿洲彩虹机电科技有限公司
Publication of WO2016074432A1 publication Critical patent/WO2016074432A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • B65D88/06Large containers rigid cylindrical

Definitions

  • the invention relates to the technical field of FRP forming, in particular to a large FRP tank body and a molding die thereof, a manufacturing device and a manufacturing method thereof.
  • FRP tanks are widely used because of their good strength, relatively simple molding process, light weight, and easy transportation and installation.
  • Existing FRP tanks are usually formed by a winding forming process.
  • the glass fiber material fully immersed in the resin is wound around the outer surface of the cylindrical mold, and after the resin is cured and shaped, the glass fiber reinforced plastic can body can be obtained by demolding.
  • the existing large FRP tanks are often larger than three meters in diameter and several meters or even ten meters in length.
  • a plurality of circumferentially stiffened ribs are required on the inner wall of the FRP tank due to the FRP.
  • the annular reinforcing rib inside the tank is arranged from the inner wall to the inner cavity of the FRP tank, and the existing mold is located inside the formed FRP tank and is not movable.
  • the existing FRP The tank body is assembled with reinforcing ribs on the inner wall of the FRP tank after the FRP tank is formed.
  • the forming process is relatively complicated, and the joint strength between the rib and the FRP tank is also low, which seriously affects the overall strength of the FRP tank.
  • the existing FRP tanks are usually open at both ends during the forming process, at least one of them is open, so that it is necessary to separately form and assemble a cover sealing the opening, resulting in a process. Complex and poor sealing performance.
  • the technical problem to be solved by the embodiments of the present invention is to provide a large-scale FRP tank molding die, which can conveniently form a FRP tank with a cover at both ends and a rib and a FRP tank integrally formed, and the sealing property thereof Ok, and the demoulding is convenient.
  • Another technical problem to be solved by the embodiments of the present invention is to provide a large-scale FRP tank manufacturing apparatus, which can form a FRP tank body with a cover at both ends and a rib and a FRP tank body integrally formed, and demoulding Convenience.
  • Another technical problem to be solved by the embodiments of the present invention is to provide a method for manufacturing a large-sized FRP tank body, so as to quickly form a FRP tank body with a cover at both ends and a rib and a FRP tank body integrally formed, and Easy to demould.
  • the present invention provides a large FRP tank molding die, the mold comprising a main shaft, a plurality of moving templates, a cover template at both ends, and a traction mechanism; the plurality of movable templates and the two cover templates are enclosed in two End seal a closed mold core; the main shaft is located at a central axis of the mold and can rotate the mold core; the traction mechanism movably connects the movable mold to the main shaft and supports the movable mold; the movable mold can be radially toward the main shaft motion.
  • the traction mechanism includes a link structure that can be folded or expanded toward the main shaft; the folding of the link structure is folded or opened to achieve radial movement of the movable platen toward or away from the main shaft;
  • the structure includes a top rod, a bottom rod and a tie rod; the top rod and the bottom rod are respectively connected to the movable template and the main shaft, and the other ends are butted to each other to form a connection point, one end of the pull rod is connected with the connection point, and the other end is along the main shaft. parallel movement.
  • the link structure is supported between the movable platen and the main shaft.
  • the traction mechanism includes a guiding structure capable of lifting and contracting movement to the main shaft; the guiding structure is raised or lowered or contracted to realize radial movement of the movable platen toward or away from the main shaft; the guiding structure is supported by Between the movable plate and the main shaft, the sleeve includes a sleeve and a rod body that is detachably engaged with the sleeve.
  • the number of the moving templates is four, and the moving templates are a left template, a right template, an upper template, and a lower template, respectively, the left template is centrally symmetric with the right template, and the upper template is The lower template is center symmetrical.
  • the traction mechanism includes a screw disposed along an axial direction of the main shaft and fixed with a gear, and an output shaft engaged with the gear to drive the screw to rotate in a clockwise or counterclockwise direction, and respectively set a first support member and a second support member at the two ends of the screw, the two ends of the first support member and the second support member are respectively movably connected to the main shaft and the same movable template, wherein The first support member and the second support member are telescoped under the driving of the screw to drive the movable template to retract and retract relative to the spindle.
  • the two ends of the screw are provided with oppositely-threaded threads
  • the first support member and the second support member each include a top rod, a bottom rod and a tie rod; in the first support member, the top portion One end of the rod is movably connected to the movable template, one end of the bottom rod is movably connected to the main shaft, and the other end of the top rod is movably connected to the other end of the bottom rod, and one end of the pull rod is movably connected to the top rod and The bottom rod is connected to the position, the other end is provided with a threaded sleeve provided with a thread and the threaded sleeve is screwed to one end of the screw; in the second support member, one end of the top rod is movably connected to the bottom a movable template, one end of the bottom rod is movably connected to the main shaft, and the other end of the top rod is movably connected to the other end of the bottom rod, and one end of the pull rod is movably
  • the mold includes four sets of first guiding assemblies and second guiding assemblies respectively disposed at two ends of the screw, and the first guiding assembly and the second guiding assembly in each group are respectively fixed to the main shaft.
  • the upper sleeve and one end slide the rod body disposed inside the sleeve, and one ends of the rod body in the first guiding assembly and the second guiding assembly are fixed to the same movable template.
  • each of the screws is further provided with a sprocket relatively fixed and coaxial with the gear to drive the left template
  • the sprocket of the screw and the sprocket of the screw driving the right stencil are linked by a chain to realize synchronous expansion and contraction
  • the sprocket of the screw driving the upper stencil and the sprocket of the screw driving the lower stencil are linked by a chain to realize Synchronous expansion and contraction
  • the motor for driving the left template and the motor for driving the right template can select one of the operations
  • the motor for driving the upper template and the motor for driving the lower template can select one of the operations.
  • the motor for driving the left template is identical to the motor model for driving the right template, and the motor for driving the upper template is identical to the model for driving the lower template; the outer sidewalls of the movable template are curved surfaces. And, at least part of the moving template is a solid structure.
  • the present invention provides a large-scale FRP tank manufacturing apparatus, comprising the mold according to any of the above embodiments, a main drive motor for driving the mold rotation, and for rotating a mold holder that supports the mold and is removable from the mold, a feeding device for supplying glass fibers that are sufficiently wetted by the resin, a cutting device for cutting the glass steel can body into two sections to assist in demolding, and for assisting a demoulding support vehicle, a supporting device for supporting the movable platen of the mold after the cutting device cuts the FRP tank body, and for controlling the main driving motor, the feeding device and The control device for working the mold, the feeding device is movably disposed along the axial side of the mold to the side of the mold.
  • an embodiment of the present invention provides a method for manufacturing a large FRP tank using the manufacturing equipment of the aforementioned large FRP tank, comprising the following steps:
  • Step 1 providing the molding die and manufacturing equipment
  • Step 2 winding molding
  • Step 3 cutting: cutting the FRP tank to make it into two sections;
  • Step 4 assembling the tank body: processing the cutting edges of each section of the FRP tank body, and sealingly connecting into one body.
  • the step 1 further includes:
  • Pasting the sealant sticking the sealant on the outer surface of the mold on the outer surface of the mold, so that the molding surface of the mold core is a complete cylindrical surface;
  • Release agent spray or apply a release agent to the outer surface of the mold core of the mold.
  • the step 2 further includes:
  • Winding the main drive motor is turned on to make the mold rotate at a constant speed, and the glass fiber fully wetted by the resin is wound on the movable template and the cover template of the mold at a predetermined angle and speed until the thickness and length of the winding meet the design requirements;
  • Curing and setting After the winding is completed, the mold and the green body of the FRP tank are continuously rotated at a constant speed for a predetermined time, so that the resin is naturally solidified to form a FRP tank;
  • Inserting a support vehicle placing at least two support vehicles into the bottom of the FRP tank and abutting or adjacent to the FRP tank;
  • Tank separation control the contraction of each traction mechanism, so that each movable template is contracted to a predetermined position along the axial direction of the mold, so that the movable template is separated from the formed FRP tank and the reinforcing ribs of the FRP tank and the ribs of the mold core are The groove is completely detached and maintains a certain gap.
  • the step 3 is specifically: taking out the tank body, keeping the cutting device and the FRP tank body relatively rotated, and cutting the FRP tank body into two sections by using a cutting device; each of the FRP tanks is respectively supported by a supporting vehicle Supporting, supporting the vehicle to move outward along the axial direction of the mold to separate the two sections of the FRP tank, placing the supporting device and raising the moving template against the mold to support the mold; removing the mold bracket on one side, along the axial direction of the mold One side of the mold holder is removed to move the support vehicle adjacent to the side until a section of the FRP tank supported on the support vehicle is taken out of the mold; further, the removed mold holder is mounted and the mold on the other side is removed The bracket moves the support vehicle adjacent to the side along the axial direction of the mold toward the side from which the mold holder is removed until another piece of FRP tank supported on the support vehicle is taken out of the mold.
  • the step 4 is specifically: the glass fiber cloth fully wetted with the resin is adhered to the slit of the two-stage glass steel can body and sealed and integrated to form an integral body.
  • the embodiment of the present invention further provides a large FRP tank body, the FRP tank body comprising a can body and a can body cover respectively sealing the two ends of the can body and being inseparably connected with the can body; the can body And/or the inner wall of the can body cover is integrally formed and inseparably provided with reinforcing ribs; the can body is sealed and connected by two sections of the can body to form an integral structure.
  • the two-stage split can body is integrally bonded by a glass fiber cloth fully impregnated with a resin; the surface of the can body is further wound with a glass fiber sufficiently wetted by the resin.
  • each movable template of the mold can be expanded and contracted in the radial direction, when each movable template protrudes to a certain length, the cover template fixed at both ends of the main shaft of the mold abuts and is formed into a straight cylindrical shape and both ends.
  • the sealed mold core can conveniently form a FRP tank body with a cover at both ends, and the sealing property is good, and the outer side wall of the mold core is provided with at least two reinforcing rib grooves on the outer side wall of each movable template, through which the reinforcement is provided.
  • the rib groove can conveniently form a FRP tank integrally formed with the rib and the FRP tank.
  • the mold can conveniently and quickly take out the FRP tank under the cooperation of the auxiliary components such as the cutting device and the support car, so that the FRP tank and the mold can be smoothly demolded and separated, and the FRP tank body is avoided during the separation process.
  • the deformation or damage of the extrusion ensures the quality of the product and greatly improves the production efficiency of the FRP tank product.
  • FIG. 1 is a front elevational view showing a large glass fiber reinforced plastic can body forming mold in an extended state according to an embodiment of the present invention.
  • Figure 2 is a side elevational view of the mold of Figure 1.
  • Fig. 3 is a front elevational view showing the large-sized FRP tank molding die of the embodiment of the present invention in a contracted state.
  • Figure 4 is a side elevational view of the mold of Figure 2.
  • Fig. 5 is a view showing the state of a glass fiber reinforced plastic can body in a large-scale FRP tank manufacturing apparatus according to an embodiment of the present invention.
  • Fig. 6 is a view showing a state in which a shrinking mold is used in the manufacturing apparatus shown in Fig. 5 to separate the FRP tank from the mold.
  • Fig. 7 is a view showing a state in which the FRP tank body is cut into two stages as shown in Fig. 6.
  • Fig. 8 is a view showing a state in which two stages of FRP tanks are separated as shown in Fig. 7.
  • FIG. 9 is a flow chart of a method of manufacturing a large FRP tank by using the manufacturing apparatus of the embodiment of the present invention.
  • Figure 10 is a front elevational view of the FRP tank after assembly of the embodiment of the present invention.
  • a large FRP tank molding die includes a spindle 1, a movable die plate, a cover template, and a traction mechanism 3.
  • the movable template is at least three, respectively arranged around the main shaft 1; the cover template is usually two, that is, the cover templates 41, 42, and the cover templates 41, 42 may be arcuate, such as spherical, and of course other shapes.
  • the cover templates 41 and 42 are respectively installed at the two ends of the main shaft 1.
  • the number of the traction mechanisms 3 matches the number of the movable templates, and each traction mechanism 3 is connected between the main shaft 1 and the corresponding movable template to drive the movable template.
  • each movable template protrudes for a certain length (for example, the extension length is the largest)
  • each movable template abuts against the cover templates 41 and 42 and is jointly enclosed into a straight cylindrical shape and sealed at both ends.
  • the mold core The outer side wall of the 6 is provided with a plurality of reinforcing rib grooves 61.
  • the reinforcing rib grooves 61 may be disposed on the outer side walls of the movable template and/or the cover templates 41 and 42 to reinforce the FRP tank 100 made of the mold.
  • the reinforcing rib 61 can be arranged in a ring shape along the circumference of the mold core. Of course, it can also be arranged in a cross or other structure. This embodiment is described by taking a circular arrangement as an example, and correspondingly, the formed The rib 102 (Fig. 6) is annular. Among them, the mold core 6 can be rotated by the spindle 1.
  • the cover templates 41 and 42 may be mounted on both ends of the main shaft 1 by welding; of course, the cover templates 41 and 42 may be detachably connected to the ends of the main shaft 1 by screwing or snapping, and at this time, Selecting the appropriate size of the cover templates 41, 42 to match the specific length of each movable template to form a straight cylindrical mold 6 which is sealed at both ends, so that the size of the mold core 6 can be diversified, and it is convenient to manufacture different sizes of FRP tanks. 100.
  • the traction mechanism 3 includes a screw 31 disposed axially along the main shaft 1, a motor 30 disposed on the main shaft 1 for driving the screw 31 to rotate in a clockwise or counterclockwise direction (in conjunction with FIG. 9), and respectively
  • the first support member 33 and the second support member 34 are disposed on the two ends of the screw 31.
  • the gear shaft 32 is fixed on the screw 31.
  • the output shaft of the motor 30 is meshed with the gear 32.
  • the output shaft rotates to drive the gear 32 to drive the screw 31.
  • the two ends of the first support member 33 and the second support member 34 are movably connected to the main shaft 1 and the same movable template, wherein the first support member 33 and the second support member 34 are telescoped and driven by the screw 31.
  • the template is stretched back and forth with respect to the main shaft 1.
  • a shifting gear can be provided between the motor 30 and the gear 32, depending on the need.
  • the two ends of the screw 31 are provided with oppositely-rotating threads, and the thread pitches of the two ends are equal.
  • the structures of the first support member 33 and the second support member 34 are identical, and both include a top rod 331 (341) and a bottom. a rod 332 (342) and a pull rod 333 (343); in the first support member 33, one end of the top rod 331 is movably connected to the movable template (such as the template 21), one end of the bottom rod 332 is movably connected to the main shaft 1, and the other end of the top rod 331 is movable.
  • one end of the pull rod 333 is movably connected to the position where the top rod 331 and the bottom rod 332 are connected, the other end is provided with a threaded sleeve 334 which is internally threaded and the threaded sleeve 334 is screwed to one end of the screw 31;
  • one end of the jack 341 is movably connected to the movable template (such as the template 21)
  • one end of the bottom rod 342 is movably connected to the main shaft 1
  • the other end of the top rod 341 is movably connected to the other end of the bottom rod 342, and one end of the rod 343 is movably connected.
  • the ejector rod 341 and the bottom rod 342 are connected to each other at the other end, and the other end is provided with a threaded sleeve 334 and the threaded sleeve 334 is screwed to the other end of the screw 31, wherein each ejector rod 331 (341) and the bottom rod When 332 (342) is fully expanded into a straight line perpendicular to the main axis 1, two The lever 333 (343) with the same angle between the straight line, and the threaded sleeve 334 (344) 31 are equal distance from the ends of the screw thread.
  • top rod 341 and the bottom rod 342 of the second support member 34 are rotated around their mutually connected end points so that the top rod 341 and the bottom rod 342 are not in phase.
  • the ends of the joints are close to each other, that is, the movable die plate is brought closer to the main shaft 1 in the radial direction by the cooperation of the first support member 33 and the second support member 34, because the respective tie rods of the first support member 33 and the second support member 34 are respectively 333 (343) is opposite in direction of motion and the stroke is uniform, and the pulling force of each of the pull rods 333 (343) is the same, so that the top rods 331 (341) and the bottom rods 332 (342) of the first support member 33 and the second support member 34 are stressed.
  • the screw 31 of the traction mechanism 3 can also be replaced by a turbine.
  • the first support member 33 and the second support member 34 can be realized by a worm.
  • the motor drives the turbine to rotate in the forward and reverse directions, and the worm is telescoped to drive the movable template relative to the main shaft 1 .
  • Stretching back and forth, which is not specifically described herein; or the traction mechanism 3 may be replaced by a cylinder assembly including a cylinder and a piston rod that are used in cooperation with each other. At this time, the cylinder is fixed to the main shaft 1.
  • the piston rod is fixedly connected to the movable plate, which is not specifically described herein.
  • the traction mechanism 3 further includes a first guiding assembly 51 and a second guiding assembly 52 disposed at both ends of the screw 31, each of which includes a sleeve 501 fixed to the main shaft 1 and one end slidably disposed inside the sleeve 501.
  • the rod body 502, one end of the rod body 502 of the first guiding assembly 51 and the second guiding assembly 52 is fixed to the same moving template (such as the template 21).
  • the first supporting member 33 and the second supporting member 34 are used to expand and contract the movable template
  • the first guiding assembly 51 and the second guiding assembly 52 are synchronously expanded and contracted, so that the corresponding moving template does not sway back and forth when being extended and contracted, which is beneficial to the smoothness of the mold.
  • Telescopic the first support member 33 and the second support member 34 are used to drive the movable plate to contract at the same speed, so that a part of the reinforcing ribs 102 of the inner wall of the FRP tank 100 made of the mold can be prevented from being caught in the rib groove 61. mold.
  • the wires connecting the motors (such as the motor 30) are disposed inside the main shaft 1 and are led out through the two ends of the main shaft 1, which is clean and does not affect the rotation of the main shaft 1.
  • the number of movable templates is four, which are a left template 23, a right template 24, an upper template 21, and a lower template 22.
  • the left template 23 and the right template 24 are centrally symmetric, and the upper template 21 is The lower template 22 is centrally symmetrical.
  • Each of the templates is connected to the main shaft 1 by the traction mechanism 3.
  • the cover templates 41 and 42 at both ends are combined to form a mold core sealed at both ends. 6.
  • each of the screws is further provided with a sprocket (not shown) coaxial with the gear and relatively fixed, and the gear and the sprocket may be an integrally formed structure or an assembled structure.
  • the sprocket that drives the left template 23 and the sprocket that drives the right template 24 are linked by a chain (not shown), and the sprocket that drives the upper template 21 and the sprocket that drives the lower template 22 are linked by a chain (not shown).
  • the corresponding screw in the right template 24 will also rotate synchronously, thereby realizing the synchronous expansion and contraction of the left template 23 and the right template 24.
  • the screws of the left template 23 and the right template 24 can be completely synchronized and rotated at the same speed, and the sprocket and the chain are matched.
  • the method is not easy to slip, so that the synchronization performance of the two traction mechanisms is more stable and reliable, and the symmetrical templates (the upper template 21 and the lower template 22; the left template 23 and the right template 24) can be synchronized and scaled to the same extent.
  • the corresponding motor of the upper template 21 and the lower template 22 is defined as a group, and the corresponding motors of the left template 23 and the right template 24 are grouped.
  • the rotational speeds of the two sets of motors have a speed difference.
  • the rotational speed of a group of motors that drive the upper template 21 and the lower template 22 to expand and contract is greater than the rotational speed of a group of motors that drive the left template 23 and the right template 24 to expand and contract, especially when contracting, the upper template 21 and the lower template 22 phase.
  • the shrinkage is faster, so that each of the templates does not block each other when contracted, resulting in inability to shrink.
  • the motor of the traction mechanism of the left template 23 and the motor of the traction mechanism of the right template 24 may select one of the operations.
  • the motor of the traction mechanism 3 of the upper die plate 21 and the motor of the traction mechanism of the lower die plate 22 may select one of the operations.
  • any of the motors of any one of the motors fails, the group is selected.
  • the other motor can be operated without destroying the structure of the formed or semi-formed FRP tank 100.
  • the motors can also be controlled separately without the chain link, but the two motors that drive the upper and lower templates 22 and 22 and the two motors that drive the left and right templates 23 and 24 are used.
  • chain links the speed of expansion and contraction is slow, and precise settings are required to control the speed and degree of expansion and contraction of each template.
  • the motor fails, the production of the FRP tank 100 cannot be completed and/or removed from the mold.
  • the motor of the traction mechanism for driving the left template 23 is identical to the motor model of the traction mechanism for driving the right template 24 to ensure that the two motors can work in the same direction, synchronous, same speed, and same power; and the traction mechanism for driving the upper template 21
  • the motor of 3 is identical to the motor type of the traction mechanism that drives the lower die plate 22 to ensure that the two motors can also work in the same direction, synchronous, same speed, and same power.
  • the motor types of the two sets of motors are the same, the two motors in the contract group are connected by the chain in the meshing mode.
  • the power can be increased, and the load on each motor is compared. Small enough to protect the motor, even if one of the motors fails, the subsequent FRP can 100 can be completed and/or removed from the mold.
  • each of the movable templates may be curved surfaces.
  • At least part of the movable template is a solid structure 20, which is not a solid structure compared to the entire area of the movable template, because the mold itself has a large self-weight, which can facilitate the support of the mold during subsequent demolding without damaging the mold structure.
  • the present invention further provides a large-scale FRP tank manufacturing apparatus, which can form a FRP tank 100 having a cover 103 at both ends and a rib 102 and a FRP tank 100 integrally formed, and Easy to mold.
  • the manufacturing apparatus includes the mold described above, and further includes a main drive motor 7 for driving the rotation of the mold, mold holders 91, 92 for rotating the support mold and being removable from the mold, and glass fibers for supplying the resin to be sufficiently wetted.
  • the support device 13 supported on the movable plate of the mold can be lifted and lowered.
  • the control main drive motor 7, the mold and the feeding device 10 can be controlled by a control device (not shown). Of course, the cutting device 11, the support device 13 and the support vehicles 91, 92, etc.
  • the feeding device 10 is movably disposed laterally of the mold along the axial direction of the mold.
  • the mold holders 91, 92 are abutted against the spindle 1 and are provided with rollers (not shown) so that the rotation of the spindle 1 relative to the mold holders 91, 92 is unaffected and supported by the spindles 1; the support vehicles 121, 122 can freely roll.
  • the upper ends of the support vehicles 121 and 122 are provided with arc-shaped support surfaces matching the FRP tank 100, and the support vehicles 121 and 122 are located at the bottom of the curved support surface.
  • the component realizes the free adjustment of the support height by driving the arc support surface to be lifted and lowered;
  • the feeding device 10 is controlled by the control device to move and send the FRP raw material, and is provided with a FRP material storage tank and can be along the mold axis on the special track 1001 thereof.
  • the reciprocating motion; the cutting device 11 and the mold can be rotated relative to each other, and the cutting device 11 can be a laser cutting machine, a flame cutting machine, a high pressure water jet knife or the like.
  • the main shaft 1 of the mold When the mold is installed and used, the main shaft 1 of the mold is disposed in a horizontal direction, and the mold holders 91 and 92 are rotatably supported at both ends of the main shaft 1 of the mold, and one end of the main shaft 1 of the mold is connected to a rotating shaft 93 through a coupling 71.
  • the rotating shaft 93 is rotatably supported on the mold holders 94, 95, and the sprocket 72 is fixed on the rotating shaft 93.
  • the output shaft of the main driving motor 7 is linked with the sprocket 72 through the chain 73. Therefore, the mold is a horizontally mounted mold.
  • the control device When it is required to fabricate the FRP tank 100, the control device first controls the operation of each motor in the mold to drive the movable templates to abut against the cover templates 41, 42 and jointly form a complete cylindrical mold with a straight cylindrical shape sealed at both ends, and then control The device controls the main drive motor 7 to drive the mold to perform a rotary motion, and automatically rotates the mixed glass fiber and resin and other raw materials on the circumferential outer wall of the mold core 6 by the rotation of the mold until the thickness and length of the winding meet the design requirements. After the main drive motor 7 is stopped, the mold rotation stops. The FRP tank 100 is formed after the FRP material is cooled and formed.
  • the FRP tank 100 is taken out. Specifically, firstly, the control device controls the operation of each motor in the mold to axially contract the movable template with respect to the main shaft 1, so that the rib 102 of the FRP tank 100 and the rib groove 61 outside the mold are completely separated and kept constant. Clearance (in conjunction with Figures 4 and 6, the outer layer in Figure 4 represents the ribs 102 in the FRP tank 100, the inner layer represents the outside of each moving template); then the at least two support vehicles 121, 122 are moved to the bottom of the FRP tank 100, The curved support faces of the support cars 121, 122 are abutted or adjacent to the bottom of the FRP tank 100.
  • the driving and cutting device 11 is moved along its dedicated track, so that the cutting device 11 moves in the circumferential direction with respect to the FRP tank 100, and the FRP tank 100 is moved while moving.
  • the FRP tank 100 is cut into two sections, or a roller can be arranged on the curved support surface of the support vehicles 121, 122, the cutting device 11 is disposed at a fixed position, and the FRP tank 100 is driven by the main drive motor 7.
  • the lower rotation is relatively rotated with respect to the cutting device 11, and the FRP tank 100 is circumscribed and cut into two sections by the cutting device 11; or, when the support vehicles 121, 122 are adjacent to the bottom of the FRP tank 100, the cutting device can be made 11 is fixed (the rail dedicated to the cutting device 11 is not required), and the main drive motor 7 drives the spindle 1 to rotate to move the FRP tank 100 in the circumferential direction with respect to the cutting device 11 so that the cutting device 11 performs the FRP can 100
  • the rib is cut, and then the FRP tank 100 is cut into two sections. After the cutting, the two sections of the FRP tank 100 fall into the curved support of the support vehicles 121 and 122 by gravity.
  • the two support vehicles 121 and 122 supporting the different sections of the FRP tank 100 are respectively moved away from the axial direction of the mold main shaft 1 by a certain distance so that the two sections of the FRP tank 100 are separated, and the two sections are separated from the FRP.
  • a supporting device 13 is placed between the can bodies 100, and the supporting device 13 is raised to abut the movable template of the mold to support and fix the mold.
  • the support device 13 preferably abuts the position of the solid structure 20 on the movable platen; the mold holder 91 on one side is removed, and the support vehicles 121, 122 adjacent to the side are moved in the axial direction of the main shaft 1 to be removed.
  • One side of the mold holder 91 is moved until the FRP tank 100 supported on the support carts 121, 122 is taken out from the mold; the removed mold holder 91 is mounted and the mold holder 92 on the other side is removed, along the main shaft
  • the axial movement of 1 is adjacent to the support vehicles 121, 122 on the side to move to the side from which the mold holder 92 has been removed until the FRP tank 100 supported on the support carts 121, 122 is removed from the mold. So far, the work of taking out the FRP tank 100 from the mold is completed.
  • the large-scale FRP tank manufacturing apparatus of the embodiment of the present invention can take out the FRP tank 100 conveniently and quickly by shrinking the mold and cooperating with the auxiliary components such as the cutting device 11 and the supporting carts 121 and 122, so that the FRP tank 100 and the mold can be smoothly taken off.
  • the mold is separated, and the extrusion deformation or damage to the FRP tank 100 during the separation process of the two is avoided, the product quality is ensured, and the production efficiency of the FRP tank 100 product is greatly improved.
  • an embodiment of the present invention further provides a method for manufacturing a large-sized FRP tank, and the method specifically includes the following steps.
  • Step S1 pasting the sealant: sticking the sealant on the gap between two adjacent modules on the outer surface of the mold core 6 of the mold to make the molding surface of the mold core 6 a complete cylindrical surface, so as to form a complete cylinder
  • the straight tubular FRP tank 100 and the raw material for preventing the forming of the FRP tank 100 in the subsequent process enter the inside of the mold from the gap.
  • step S2 the release agent is sprayed or sprayed on the outer surface of the mold core 6 of the mold.
  • Step S3 winding forming: the main driving motor 7 is turned on to make the mold rotate at a constant speed, and the glass fiber fully wetted by the resin is wound around the movable template and the cover templates 41 and 42 of the mold at a predetermined angle and speed until the thickness of the winding. And length meets design requirements.
  • the winding on the movable template can be performed in a full-wound manner
  • the winding on the cover templates 41, 42 can be performed in a cross-wound manner.
  • Step S4 curing setting: After the winding is completed, the mold and the blank of the FRP tank 100 are continuously rotated at a constant speed for a predetermined time, so that the resin is naturally solidified to form the FRP tank 100.
  • the sealant at the gap between the movable template and the cover templates 41 and 42 is integrated with the FRP tank 100, and the can body 101 and the cover 103 of the FRP tank 100 formed by the winding forming method are not formed.
  • the slits are joined into an integrated structure, and the can body 101 is molded and solidified by an outer wall of a resin wound moving template, and the cover 103 is formed and solidified by the outer walls of the resin wound cover templates 41 and 42.
  • Step S5 placing the support vehicle: placing at least two support vehicles 121, 122 into the bottom of the FRP tank 100 and abutting or adjacent to the FRP tank 100.
  • Step S6 tank separation: controlling the contraction of each traction mechanism 3, so that each movable template is contracted to a predetermined position along the axial direction of the mold, so that the movable template is separated from the formed FRP tank 100 and the reinforcing bars of the FRP tank 100 are obtained. 102 is completely separated from the rib groove 61 of the mold core 6 and maintains a certain gap.
  • step S7 the can body is taken out: the opposite direction between the cutting device 11 and the FRP tank 100 is moved in the circumferential direction, and the FRP tank 100 is circumscribed by the cutting device 11 to be two segments, and a section of the FRP tank 100 is supported by the vehicle 121.
  • the support and the other end can body 100 are supported by the support vehicle 122.
  • the at least one support vehicle 121 (or 122) is moved outwardly along the axial direction of the mold to separate the two sections of the FRP tank 100, placed in the support device 13 and raised to abut the mold.
  • the movable template is used to support the mold, and the mold holder 91 on one side is removed, and the supporting vehicles 121 and 122 adjacent to the side are moved along the axial direction of the mold toward the side from which the mold holder 91 is removed until it is supported on the supporting vehicles 121 and 122.
  • a section of FRP tank 100 is taken out of the mold, and further, the removed mold holder 91 is mounted and the other side mold holder 92 is removed, and moved along the mold axial direction toward the side from which the mold holder 92 is removed.
  • the side supports the cars 121, 122 until the other section of the FRP tank 100 supported on the support cars 121, 122 is taken out of the mold.
  • the unremoved mold holder 91 (or 92) and the support device 13 placed at the bottom of the mold together maintain the balance of the mold, facilitating the removal of the respective sections of the FRP tank 100.
  • the following two methods may be adopted: First, the support vehicles 121 and 122 respectively abut the bottom of the FRP tank 100, so that the cutting device 11 moves along the special circular orbit thereof, and the FRP The can body 100 is kept stationary, and the FRP tank 100 is circumscribed by the cutting device 11; Second, the support vehicles 121 and 122 are respectively adjacent to the bottom of the FRP tank 100, and there is a gap with the bottom of the FRP tank 100, and the cutting device 11 is kept still, and the main drive motor 7 drives the main shaft 1 to rotate to drive the FRP tank 100 to rotate, and then uses the relative movement between the cutting device 11 and the FRP tank 100 to circulate the FRP tank 100 and cut into two. After the section, under the self-weight of the F
  • Step S8 assembling the can body: processing the cutting edges of each section of the FRP tank 100, and sealingly connecting them into one body.
  • the glass fiber cloth fully impregnated with one or more layers of resin may be adhered to the slit of the two-stage FRP tank 100 to seal the two together.
  • a through hole on the cover 103 is required subsequently.
  • the sealing treatment can also be carried out by using a glass fiber cloth which is sufficiently wetted with one or more layers of resin. Refer to Figure 10 for the completed FRP tank structure.
  • an embodiment of the present invention further provides a large FRP tank body 100.
  • the FRP tank body 100 includes an integrally formed can body 101 sealed at both ends, and the inner wall of the can body 101 is provided with a reinforcement integrally formed with the can body 101.
  • Tendon 102 For convenience of description, the FRP tank 100 can be considered to include the can body 101 and the closure 103 (Fig. 6).
  • the closure 103 also belongs to a portion of the can body 101 that is integrally formed and the two are not separate components.
  • the can body 101 may have a cylindrical shape, and the cover 103 is seamlessly connected to the opening of the can body 101 and integrated with the can body 101. Further, the inner wall of the can body 101 is integrally formed with a reinforcing rib 102.
  • the can body 101 is formed by moving templates (the upper template 21, the lower template 22, the left template 23, and the right template 24), and the cover 103 is formed by the cover templates 41, 42.
  • the cover templates 41, 42 are curved like a ball
  • the formed cover 103 is also spherical.
  • the FRP tank formed by the above mold, equipment and method can be used as the inner core, and a glass fiber reinforced plastic fiber (that is, glass fiber fully impregnated with resin) can be wound on the outer surface thereof by a conventional process. ), not specifically described here.
  • the FRP tank 100 can be used as a water storage tank, an oil storage tank, a septic tank, an underground building, an underground electromechanical room, a fire pool and an electromechanical room, and a rainwater infiltration regulation tank.
  • each movable template of the mold can be expanded and contracted in the radial direction, when each movable template protrudes to a certain length, the cover templates 41 and 42 fixed on both ends of the main shaft 1 of the mold abut against each other to form a straight tube.
  • the mold core 6 sealed at both ends can conveniently form the FRP tank 100 having the cover 103 at both ends, and the sealing property is good, and the outer side wall of the mold core 6 is provided at least on the outer side wall of each movable template.
  • the reinforcing rib groove 61 can easily form the FRP tank 100 integrally formed by the reinforcing rib 102 and the FRP tank 100 through the rib groove 61.
  • the mold can conveniently and quickly take out the FRP tank 100 under the cooperation of the cutting device 11, the support vehicles 121, 122 and other auxiliary components, so that the FRP tank 100 and the mold can be smoothly demolded and separated, and the separation of the two is avoided.
  • the extrusion deformation or damage of the FRP tank 100 ensures the product quality and greatly improves the production efficiency of the FRP tank 100 product.
  • the movable template of the present invention may also be a pair of movable templates that are relatively matched, or may be a plurality of moving templates, and cover each other to form a cylindrical mold core 6.

Abstract

大型玻璃钢罐体及其成型模具、制造设备、制造方法。该成型模具包括主轴(1)、围绕所述主轴(1)设置于所述主轴上的至少三块动模板、驱动所述动模板相对于所述主轴(1)径向来回伸缩的牵引机构(3)以及装设于所述主轴两端的封盖模板(41,42),其中,各所述动模板均通过单独的所述牵引机构(3)连接至所述主轴(1)上,各所述动模板伸出一定长度时,所述动模板与所述封盖模板(41,42)相抵接并共同合围成直筒状且两端密封的模仁(6),所述模仁(6)的外侧壁上设置有多道加强筋槽(61)。该成型模具能方便地成型出两端具有封盖且加强筋和玻璃钢罐体一体成型而成的玻璃钢罐体,其密封性好,并且脱模方便。

Description

大型玻璃钢罐体及其成型模具和制造设备及其制造方法 技术领域
本发明涉及玻璃钢成型技术领域,尤其涉及一种大型玻璃钢罐体及其成型模具、制造设备、制造方法。
背景技术
玻璃钢罐体以其强度好、成型工艺相对简单、质量轻、便于运输及安装的特点而得到广泛应用。现有的玻璃钢罐体通常采用缠绕成型工艺进行成型。通过将树脂充分浸润的玻璃纤维材料缠绕于筒状的模具外表面,待树脂固化定型后即可拆模获得玻璃钢罐体。
现有的大型玻璃钢罐体的直径往往大于三米,长度达数米甚至十几米,为加强玻璃钢罐体的强度,玻璃钢罐体内壁上需增设多道沿周向设置的环形加强筋,由于玻璃钢罐体内部的环形加强筋是自内壁向玻璃钢罐体内腔凸出设置的,而现有模具又是位于成型好的玻璃钢罐体内部且不可活动,出于方便脱模的考虑,现有的玻璃钢罐体均是在玻璃钢罐体成型好后再在玻璃钢罐体内壁组装加强筋,不仅成型工艺相对复杂,而且加强筋与玻璃钢罐体连接强度也较低,严重影响了玻璃钢罐体的整体强度。另外,处于方便脱模考虑,现有的玻璃钢罐体在成型过程中通常是两端开口的,至少也是其中一端是开口的,这样后续还需要单独成型并组装密封该开口的封盖,导致工艺复杂、且密封性能较差。
技术问题
本发明实施例所要解决的技术问题在于,提供一种大型玻璃钢罐体成型模具,能方便地成型出两端具有封盖且加强筋和玻璃钢罐体一体成型而成的玻璃钢罐体,其密封性好,并且,脱模方便。
本发明实施例另一个所要解决的技术问题在于,提供一种大型玻璃钢罐体制造设备,可成型出两端具有封盖且加强筋和玻璃钢罐体一体成型而成的玻璃钢罐体,且脱模方便。
本发明实施例又一个所要解决的技术问题在于,提供一种大型玻璃钢罐体制造方法,以便快捷地成型出两端具有封盖且加强筋和玻璃钢罐体一体成型而成的玻璃钢罐体,且脱模方便。
技术解决方案
为解决上述技术问题,本发明提供一种大型玻璃钢罐体成型模具,所述模具包括主轴、若干动模板、两端的封盖模板以及牵引机构;所述若干动模板与两封盖模板围成两端封 闭的模仁;所述主轴位于模仁中心轴并可带动模仁旋转;所述牵引机构将所述动模板活动地连接于主轴且支撑所述动模板;所述动模板可朝主轴径向运动。
所述牵引机构包括可向主轴折叠收拢或张开运动的连杆结构;所述连杆结构的折叠收拢或张开运动从而实现动模板向主轴的靠近或远离的径向运动;所述连杆结构包括顶杆、底杆及拉杆;所述顶杆和底杆一端分别与活动模板及主轴连接,另一端相互对接形成连接点,所述拉杆一端与所述连接点相连,另一端可沿主轴平行移动。
所述连杆结构支撑于所述动模板与主轴之间。
所述牵引机构包括可向主轴作升降伸缩运动的导引结构;所述导引结构上升伸展或下降收缩运动从而实现动模板向主轴的靠近或远离的径向运动;所述导引结构支撑于所述动模板与主轴之间,其包括一套筒以及可插拔地与套筒配合的杆体。
进一步地,所述动模板数量为四块,所述动模板分别是左模板、右模板、上模板和下模板,所述左模板与所述右模板呈中心对称,所述上模板与所述下模板呈中心对称。
进一步地,所述牵引机构包括沿所述主轴的轴向设置且固设有齿轮的螺杆、输出轴与所述齿轮啮合以驱动所述螺杆沿顺时针或逆时针方向转动的电机、以及分别设置于所述螺杆两端的第一支撑件和第二支撑件,所述第一支撑件、所述第二支撑件的两端分别活动连接于所述主轴和同一所述动模板,其中,所述第一支撑件、所述第二支撑件在所述螺杆的带动下伸缩进而带动所述动模板相对于所述主轴来回伸缩。
进一步地,所述螺杆两端设有旋向相反的螺纹,所述第一支撑件和所述第二支撑件均包括顶杆、底杆及拉杆;所述第一支撑件中,所述顶杆一端活动连接至所述动模板,所述底杆一端活动连接至所述主轴,所述顶杆另一端活动连接至所述底杆另一端,所述拉杆一端活动连接至所述顶杆和所述底杆相连接的位置、另一端设有内设有螺纹的螺纹套且所述螺纹套螺旋连接于所述螺杆一端;所述第二支撑件中,所述顶杆一端活动连接至所述动模板,所述底杆一端活动连接至所述主轴,所述顶杆另一端活动连接至所述底杆另一端,所述拉杆一端活动连接至所述顶杆和所述底杆相连接的位置、另一端设有内设有螺纹的螺纹套且所述螺纹套螺旋连接于所述螺杆另一端。
进一步地,所述模具包括四组分别设置于所述螺杆两端的第一引导组件、第二引导组件,每组中所述第一引导组件、所述第二引导组件均包括固定于所述主轴上的套筒和一端滑动设置于所述套筒内部的杆体,所述第一引导组件和所述第二引导组件中的杆体的一端均固定于同一所述动模板。
进一步地,各所述螺杆上还设置有与齿轮相对固定且同轴的链轮,驱动所述左模板 的螺杆的链轮与驱动所述右模板的螺杆的链轮通过链条链接以实现同步伸缩,驱动所述上模板的螺杆的链轮与驱动所述下模板的螺杆的链轮通过链条链接以实现同步伸缩,并且,驱动所述左模板的电机与驱动所述右模板的电机可选择其一工作,驱动所述上模板的电机与驱动所述下模板的电机可选择其一工作。
进一步地,驱动所述左模板的电机与驱动所述右模板的电机型号一致,驱动所述上模板的电机与驱动所述下模板的电机型号一致;所述动模板的外侧壁均为弧面,并且,所述动模板至少部分区域为实心结构。
为解决上述技术问题,本发明提供一种大型玻璃钢罐体制造设备,所述制造设备包括如上述任一项实施例所述的模具、用于驱动所述模具旋转的主驱动电机、用于旋转支撑所述模具并可从所述模具移出的模具支架、用于供应树脂充分浸润的玻璃纤维的供料装置、用于将玻璃钢罐体切割成两段以辅助脱模的切割装置、用于辅助脱模的支撑车、用于在所述切割装置切割开玻璃钢罐体后可升降的支撑于所述模具的动模板上的支撑装置以及用于控制所述主驱动电机、所述供料装置和所述模具工作的控制装置,所述供料装置沿所述模具轴向可活动地设于所述模具侧旁。
为了解决上述技术问题,本发明实施例提供了一种应用前述大型玻璃钢罐体的制造设备制造大型玻璃钢罐体的方法,包括如下步骤:
步骤1,提供所述成型模具和制造设备;
步骤2,缠绕成型;
步骤3,切割:切玻璃钢罐体使其成为两段;
步骤4,组装罐体:对各段玻璃钢罐体的切割边缘进行处理,并密封连接成为一体。
所述步骤1还进一步包括:
粘贴封胶:在所述模具的模仁外表面上相邻两个模块之间的缝隙处粘贴封胶以使模仁的成型表面为完整的圆筒表面;
打脱模剂:在所述模具的模仁的外表面喷洒或涂抹脱模剂。
所述步骤2还进一步包括:
缠绕:开启主驱动电机使模具均速缓慢旋转,将由树脂充分浸润的玻璃纤维按照预定的角度和速度缠绕于模具的动模板和封盖模板上,直至缠绕的厚度和长度达到设计要求;
固化定型:缠绕完毕后,模具连同玻璃钢罐体的坯体继续缓慢均速旋转预定时间,使树脂自然固化后成型出玻璃钢罐体;
置入支撑车:将至少两个支撑车置入玻璃钢罐体底部并抵接或邻近玻璃钢罐体;
罐体分离:控制各牵引机构收缩,使各动模板沿模具的轴向收缩至预定位置,使动模板与成型好的玻璃钢罐体相脱离且使玻璃钢罐体的加强筋与模仁的加强筋槽完全脱离并保持一定间隙。
所述步骤3具体为:取出罐体,使所述切割装置与玻璃钢罐体之间保持相对转动,用切割装置环切玻璃钢罐体使其成为两段;每段玻璃钢罐体分别由一个支撑车支撑,支撑车沿模具轴向外移一定距离使两段玻璃钢罐体分离,置入支撑装置并升起抵接模具的动模板以支撑模具;移除一侧的模具支架,沿模具轴向朝移除了模具支架的一侧移动邻近该侧的支撑车直至将支撑于支撑车上的一段玻璃钢罐体从模具上取出;进一步地,安装被移除的模具支架并移除另一侧的模具支架,沿模具轴向朝移除了模具支架的一侧移动邻近该侧的支撑车直至将支撑于该支撑车上的另一段玻璃钢罐体从模具上取出。
所述步骤4具体为:用树脂充分浸润的玻璃纤维布粘贴在两段玻璃钢罐体的切口处并密封连接处理形成一体。
本发明实施例还提供一种大型玻璃钢罐体,所述玻璃钢罐体包括罐身以及分别密封所述罐身两端且与罐身不可分割地连接成一体的罐体封盖;所述罐身和/或罐体封盖的内壁一体成型且不可分割地设有加强筋;所述罐身由两段对开的罐身密封连接形成一体结构。
所述两段对开的罐身是由树脂充分浸润的玻璃纤维布粘结形成一体的;所述罐体表面进一步缠绕有树脂充分浸润的玻璃纤维。
有益效果
本发明实施例的有益效果是:由于模具的各动模板可沿径向伸缩,各动模板伸出一定长度时与固设于模具的主轴两端的封盖模板相抵接而成直筒状且两端密封的模仁,能够方便成型出两端具有封盖的玻璃钢罐体,其密封性好,并且,模仁的外侧壁至少各动模板的外侧壁上设置有多道加强筋槽,通过该加强筋槽可方便的成型出加强筋和玻璃钢罐体一体成型的玻璃钢罐体。另外,该模具可在切割装置、支撑车等辅助部件的配合下,较为方便快捷的取出玻璃钢罐体,使玻璃钢罐体与模具顺利脱模分离,且避免了二者分离过程中对玻璃钢罐体的挤压变形或损坏,保证了产品质量的同时,大大提高了玻璃钢罐体产品的生产效率。
附图说明
图1是本发明实施例的大型玻璃钢罐体成型模具在伸出状态下的主视图。
图2是图1所示模具的侧视图。
图3是本发明实施例的大型玻璃钢罐体成型模具在收缩状态下的主视图。
图4是图2所示模具的侧视图。
图5是本发明实施例的大型玻璃钢罐体制造设备成型玻璃钢罐体的状态示意图。
图6是采用图5所示制造设备收缩模具以使玻璃钢罐体与模具分离的状态示意图。
图7是如图6所示将玻璃钢罐体切割成两段的状态示意图。
图8是如图7所示将两段玻璃钢罐体进行分离的状态示意图。
图9是应用本发明实施例的制造设备制造大型玻璃钢罐体的方法流程图。
图10是本发明实施例组装完成后的玻璃钢罐体的主视图。
本发明的最佳实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合,下面结合附图和具体实施例对本发明作进一步详细说明。
如图1-图4所示,本发明实施例的大型玻璃钢罐体成型模具,该模具包括主轴1、动模板、封盖模板以及牵引机构3。动模板至少为三块,分别围绕主轴1设置;封盖模板通常为两块,即封盖模板41、42,封盖模板41、42可以为弧面状如球面状,当然也可以是其它形状,该封盖模板41、42分别装设于主轴1两端;牵引机构3的数量匹配动模板的数量,每个牵引机构3连接于主轴1和相应的动模板之间,以驱动该动模板相对于主轴1在径向上来回伸缩。其中,各动模板伸出一定长度(如伸出长度最大)时,各动模板与封盖模板41、42相抵接并共同合围成直筒状且两端密封的模仁6,进一步地,模仁6的外侧壁上设置有多道加强筋槽61,加强筋槽61可以设置在动模板和/或封盖模板41、42的外侧壁上,以增强采用该模具所制成的玻璃钢罐体100中相应区域的结构强度,该加强筋槽61可以沿模仁圆周呈环形设置,当然也可以呈交叉设置或其它结构设置,本实施例以呈环形设置为例进行说明,相应地,成型出的加强筋102(如图6)为环状。其中,模仁6可在主轴1带动下转动。封盖模板41、42可以以焊接的方式装设在主轴1两端;当然,封盖模板41、42也可以通过螺接、卡接等可拆卸方式连接在主轴1两端,此时,可选择合适尺寸的封盖模板41、42匹配各动模板伸出的特定长度合围形成两端密封的直筒状模仁6,使得模仁6的尺寸可以多样化,方便制造出不同尺寸的玻璃钢罐体100。
上述实施例中,该牵引机构3包括沿主轴1轴向设置的螺杆31、设置于主轴1上的用以驱动螺杆31沿顺时针或逆时针方向转动的电机30(结合图9)、以及分别设置于螺杆31两端的第一支撑件33和第二支撑件34,其中,螺杆31上固设有齿轮32,电机30的输出轴与齿轮32啮合,输出轴转动带动齿轮32转动进而带动螺杆31转动,第一支撑件33、第二支撑件34的两端分别活动连接于主轴1和同一动模板,其中,第一支撑件33、第二支撑件34在螺杆31的带动下伸缩进而带动动模板相对于主轴1来回伸缩。为调整螺杆31的 旋转速度,可以在电机30与齿轮32之间设置变速齿轮,具体可以视需要而定。
具体而言,螺杆31两端设有旋向相反的螺纹,且两端的螺纹螺距相等,第一支撑件33和第二支撑件34的结构完全相同,其均包括顶杆331(341)、底杆332(342)及拉杆333(343);第一支撑件33中,顶杆331一端活动连接至动模板(如上模板21),底杆332一端活动连接至主轴1,顶杆331另一端活动连接至底杆332另一端,拉杆333一端活动连接至顶杆331和底杆332相连接的位置、另一端设有内设有螺纹的螺纹套334且螺纹套334螺旋连接于螺杆31一端;第二支撑件34中,顶杆341一端活动连接至动模板(如上模板21),底杆342一端活动连接至主轴1,顶杆341另一端活动连接至底杆342另一端,拉杆343一端活动连接至顶杆341和底杆342相连接的位置、另一端设有内设有螺纹的螺纹套334且螺纹套334螺旋连接于螺杆31另一端,其中,当各顶杆331(341)、底杆332(342)完全展开成一条垂直于主轴1的直线时,两端的拉杆333(343)与该直线的夹角相同,且螺纹套334(344)分别距离螺杆31两端的螺纹距离相等。电机30驱动螺杆31转动时,在旋向相反的螺纹的作用下第一支撑件33和第二支撑件34的拉杆运动方向始终相反,该第一支撑件33和第二支撑件34的拉杆333(343)在行程上也始终保持一致。以在螺杆31驱动下第一支撑件33的拉杆和第二支撑件34的拉杆沿螺杆31相向运动为例进行说明,第一支撑件33的顶杆331和底杆332绕其相互连接的端点转动使得顶杆331和底杆332不相接的一端相互靠近,同理,第二支撑件34的顶杆341和底杆342绕其相互连接的端点转动使得顶杆341和底杆342不相接的一端相互靠近,即,使得动模板在第一支撑件33和第二支撑件34的共同作用下沿径向向主轴1靠近,因为第一支撑件33和第二支撑件34中各自拉杆333(343)运动方向相反且行程一致,各拉杆333(343)的拉力相同,使得第一支撑件33和第二支撑件34中各顶杆331(341)和底杆332(342)受力相同进而收缩长度保持相同,使得相应的动模板左右两端能够同步收缩,有助于模具的同速收缩。进一步地,因为螺杆31和各拉杆333(343)之间采用螺纹配合连接,其摩擦力较大,使得拉杆333(343)不容易出现在相向运动的过程中朝相背离的方向运动影响模具的同速收缩。因为,两端的拉杆333(343)朝相背离方向运动的情况,其原理与两者相向运动类似即可以使得第一支撑件33、第二支撑件34同步伸出以带动相应动模板展开,不再详述。各动模板(上模板21、下模板22、左模板23及右模板24)上的牵引机构结构相同,工作原理也相同,此处不做重复描述。
当然,牵引机构3的螺杆31也可以用涡轮代替,第一支撑件33和第二支撑件34可以用蜗杆实现,通过电机驱动涡轮正反向转动,带动蜗杆伸缩进而带动动模板相对于主轴1 来回伸缩,对于该情况此处不作具体描述;或者,该牵引机构3还可以采用气缸组件代替,该气缸组件包括相互配合使用的缸体及活塞杆,此时,缸体固定于主轴1上,而活塞杆与动模板固定相连,对于该情况此处也不作具体描述。
继续参阅图1,该牵引机构3还包括设置于螺杆31两端的第一引导组件51、第二引导组件52,其均包括固定于主轴1上的套筒501和一端滑动设置于套筒501内部的杆体502,第一引导组件51和第二引导组件52中的杆体502的一端均固定于同一动模板(如上模板21)。在第一支撑件33、第二支撑件34带动动模板伸缩时,第一引导组件51、第二引导组件52同步伸缩,使得相应动模板在伸缩时不会左右来回晃动,有利于模具的平稳伸缩。尤其是,配合第一支撑件33、第二支撑件34带动动模板同速收缩,能够防止采用该模具制成的玻璃钢罐体100内壁的部分加强筋102仍然卡在加强筋槽61内影响脱模。
其中,结合图8,连接各电机(如电机30)的电线布设于主轴1之内并经主轴1两端引出,既整洁又不会不影响主轴1转动。
优选地,结合图3和图4,动模板数量为四块,分别是左模板23、右模板24、上模板21和下模板22,左模板23与右模板24呈中心对称,上模板21与下模板22呈中心对称。各模板均通过牵引机构3连接至主轴1,左模板23、右模板24、上模板21、下模板22伸出一定长度时与两端的封盖模板41、42共同合围成两端密封的模仁6。在一优选实施例中,各螺杆上还设置有与齿轮同轴且相对固定的链轮(图未示),该齿轮和链轮可以为一体化成型结构或组装结构。驱动左模板23的链轮与驱动右模板24的链轮采用链条(图未示)链接,驱动上模板21的链轮与驱动下模板22的链轮采用链条(图未示)链接。如仅启动与左模板23相应的电机工作带动该螺杆转动时,在链条的带动作用下,右模板24中相应的螺杆也会随着同步转动,进而实现左模板23和右模板24的同步伸缩;当左模板23相对应的链轮与右模板24相应的链轮尺寸、齿距一致时,左模板23及右模板24的螺杆能够完全同步、同速度的转动,采用链轮和链条相配合的方式不易打滑使得两牵引机构伸缩的同步性能更稳定可靠,进而使得相对称的一组动模板(上模板21和下模板22;左模板23和右模板24)能够同步、同等程度的进行伸缩。当然,通过对相应电机的控制,定义上模板21和下模板22相应的电机为一组,左模板23和右模板24相应的电机为一组,如使两组电机的转动速度存在速度差,以驱动上模板21、下模板22伸缩的一组电机的转动速度大于驱动左模板23、右模板24伸缩的一组电机的转动速度为例,尤其在收缩时,上模板21、下模板22相较于左模板23、右模板24收缩得更快,进而使得各块模板收缩时不会互相阻挡造成无法收缩。另外,左模板23的牵引机构的电机和右模板24的牵引机构的电机可选择其一工作, 上模板21的牵引机构3的电机和下模板22的牵引机构的电机可选择其一工作,在制造玻璃钢罐体100的过程中,如果任一组电机中任一电机出现故障时,选择该组中另一电机工作即可解决,不需要破坏已成型或半成型玻璃钢罐体100的结构。当然,各电机之间也可以不通过链条链接,而单独控制,但相较于驱动上模板21和下模板22伸缩的两个电机以及驱动左模板23和右模板24伸缩的两个电机均采用链条链接而言,其伸缩速度较慢,而且需要精确的设置才能控制各模板的伸缩速度和程度,同时电机如果出现故障,无法继续完成玻璃钢罐体100的制作和/或从模具上取出。
其中,驱动左模板23的牵引机构的电机与驱动右模板24的牵引机构的电机型号一致,以确保该两电机能够以同向、同步、同转速、同功率工作;驱动上模板21的牵引机构3的电机与驱动下模板22的牵引机构的电机型号一致,以确保该两电机亦能够同向、同步、同转速、同功率工作。当两组电机各自的电机型号一致时,配合同组中两电机通过链条以啮合方式的连接,同组电机两个电机均工作时,相当于能够增大功率,对每个电机的负荷均较小,能够保护电机,即使其中之一电机出现故障,也仍然可以继续完成后续玻璃钢罐体100的制作和/或从模具上取出。
上述实施例中,各动模板(即上模板21、下模板22、左模板23及右模板24)的外侧壁均可以为弧面。动模板至少部分区域为实心结构20,相较于动模板的全部区域均非实心结构,因为模具本身具有较大的自重,能够方便后续脱模时对模具进行支撑而不损害模具结构。
结合图5-图8,本发明还提供一种大型玻璃钢罐体制造设备,可成型出两端具有封盖103且加强筋102和玻璃钢罐体100一体成型而成的玻璃钢罐体100,且脱模方便。
该制造设备包括前文所述的模具,还包括用于驱动模具旋转的主驱动电机7、用于旋转支撑模具并可从模具移出的模具支架91、92、用于供应树脂充分浸润的玻璃纤维的供料装置10、用于将玻璃钢罐体100切割成两段以辅助脱模的切割装置11、用于辅助脱模的支撑车121、122以及用于在切割装置11切割开玻璃钢罐体100后可升降的支撑于模具的动模板上的支撑装置13。该控制主驱动电机7、模具和供料装置10可由控制装置控制(图未示),当然切割装置11、支撑装置13及支撑车91、92等也可以一并由控制装置进行控制,以尽可能实现自动化生产。该供料装置10沿模具轴向可活动地设于模具侧旁。该模具支架91、92抵接主轴1的位置设置有滚轮(图未示)以使得主轴1相对模具支架91、92转动不受影响又可以被其支撑;该支撑车121、122能自由滚动,支撑车121、122的上端设有与玻璃钢罐体100相匹配的弧形支撑面,支撑车121、122内位于该弧形支撑面的底部设有升降 部件以带动弧形支撑面升降而实现支撑高度的自由调节;该供料装置10由控制装置控制其移动和送出玻璃钢原料,其设有玻璃钢原料储存箱且能在其专用轨道1001上沿模具轴向往复运动;该切割装置11与模具可做相对转动,切割装置11可以是激光切割机、火焰切割机、高压水刀等。
模具在安装和使用时,模具的主轴1呈水平方向设置,该模具支架91、92旋转支撑模具的主轴1两端,模具的主轴1的其中一端通过联轴器71与一转轴93连接,该转轴93旋转支撑于模具支架94、95上,转轴93上固设有链轮72,主驱动电机7的输出轴通过链条73与该链轮72相链接,因此模具为卧式安装的模具。当需要制作玻璃钢罐体100时,控制装置首先控制模具中的各电机工作带动各动模板与封盖模板41、42相抵接并共同合围成直筒状且两端密封的完整模仁6,然后控制装置控制主驱动电机7工作驱动模具进行旋转运动,利用模具的旋转而自动将混合配制好的玻璃纤维和树脂等原料缠绕于模仁6的圆周外壁上,直至缠绕的厚度和长度达到设计要求,主驱动电机7停止后,模具旋转停止。待玻璃钢原料冷却成型后生成该玻璃钢罐体100。
该玻璃钢罐体100冷却成型后,取出玻璃钢罐体100。具体而言:先通过控制装置控制模具内的各电机工作使各动模板相对于主轴1沿轴向收缩,使玻璃钢罐体100的加强筋102和模具外侧的加强筋槽61完全脱离并保持一定间隙(结合图4和图6,图4中外层表示玻璃钢罐体100中加强筋102,内层表示各动模板外侧);然后移动至少两个支撑车121、122至玻璃钢罐体100底部,升起支撑车121、122的弧形支撑面以抵接或邻近玻璃钢罐体100底部。支撑车121、122抵接玻璃钢罐体100底部时,驱动切割装置11沿其专用轨道移动,使得该切割装置11相对于玻璃钢罐体100沿圆周方向移动,边移动边对该玻璃钢罐体100进行环切,将玻璃钢罐体100切割成两段,或者,可以在支撑车121、122的弧形支撑面上设置滚轮,切割装置11设置在固定位置,玻璃钢罐体100在主驱动电机7的带动下转动即相对于该切割装置11相对转动,利用切割装置11将该玻璃钢罐体100进行环切并切割成两段;或者,支撑车121、122邻近玻璃钢罐体100底部时,可以使切割装置11固定(不需要专用于切割装置11的轨道),而使主驱动电机7带动主轴1旋转使玻璃钢罐体100相对于切割装置11沿圆周方向移动,以使切割装置11对玻璃钢罐体100进行环切,进而将玻璃钢罐体100切割成两段,切割完后,该两段玻璃钢罐体100在重力作用下落入支撑车121、122的弧形支撑面上;将支撑有不同段的玻璃钢罐体100的两个支撑车121、122分别沿模具主轴1的轴向相背离移动一定距离使得两段玻璃钢罐体100分离开来,在两段分离的玻璃钢罐体100之间置入支撑装置13,升起该支撑装置13抵接至模具的动模板以支撑固定该模 具,该支撑装置13优选抵接至动模板上的实心结构20的位置;移除一侧的模具支架91,沿主轴1的轴向移动邻近该侧的支撑车121、122使其向移除了模具支架91的一侧移动直至将支撑于该支撑车121、122上的玻璃钢罐体100从模具上取出;安装被移除的模具支架91并移除另一侧的模具支架92,沿主轴1的轴向移动邻近该侧的支撑车121、122使其向移除了模具支架92的一侧移动直至将支撑于该支撑车121、122上的玻璃钢罐体100从模具上取出。至此,完成玻璃钢罐体100从模具上取出的工作。本发明实施例的大型玻璃钢罐体制造设备,通过收缩模具,并配合切割装置11、支撑车121、122等辅助部件,能够方便快捷的取出玻璃钢罐体100,使玻璃钢罐体100与模具顺利脱模分离,且避免了二者分离过程中对玻璃钢罐体100的挤压变形或损坏,保证了产品质量的同时,大大提高了玻璃钢罐体100产品的生产效率。
结合图5-9,本发明实施例还提供一种大型玻璃钢罐体制造方法,该方法具体包括如下步骤。
步骤S1,粘贴封胶:在模具的模仁6外表面上相邻两个模块之间的缝隙处粘贴封胶以使模仁6的成型表面为完整的圆筒表面,以便于成型出完整的直筒体玻璃钢罐体100和防止在后续工艺中用于成型玻璃钢罐体100的原料从该缝隙处进入模具内部。
步骤S2,打脱模剂:在模具的模仁6的外表面喷洒或涂抹脱模剂。
步骤S3,缠绕成型:开启主驱动电机7使模具均速缓慢旋转,将由树脂充分浸润的玻璃纤维按照预定的角度和速度缠绕于模具的动模板和封盖模板41、42上,直至缠绕的厚度和长度达到设计要求。优选地,动模板上的缠绕可以采用全缠绕方式进行,封盖模板41、42上的缠绕可以采用交叉缠绕方式进行。
步骤S4,固化定型:缠绕完毕后,模具连同玻璃钢罐体100的坯体继续缓慢均速旋转预定时间,使树脂自然固化后成型出玻璃钢罐体100。其中,动模板与封盖模板41、42相抵接的缝隙处的封胶与玻璃钢罐体100已经融为一体,通过缠绕成型的方式成型出的玻璃钢罐体100的罐身101和封盖103无缝连接成一体化结构,该罐身101由树脂缠绕动模板的外壁成型并固化定型,该封盖103由树脂缠绕封盖模板41、42的外壁成型固化定型。
步骤S5,置入支撑车:将至少两个支撑车121、122置入玻璃钢罐体100底部并抵接或邻近玻璃钢罐体100。
步骤S6,罐体分离:控制各牵引机构3收缩,使各动模板沿模具的轴向收缩至预定位置,使动模板与成型好的玻璃钢罐体100相脱离且使玻璃钢罐体100的加强筋102与模仁6的加强筋槽61完全脱离并保持一定间隙。
步骤S7,取出罐体:使切割装置11与玻璃钢罐体100之间相对的在圆周方向移动,用切割装置11环切玻璃钢罐体100使其成为两段,一段玻璃钢罐体100由支撑车121支撑、另一端罐体100由支撑车122支撑,至少一个支撑车121(或122)沿模具轴向外移一定距离使两段玻璃钢罐体100分离,置入支撑装置13并升起抵接模具的动模板以支撑模具,移除一侧的模具支架91,沿模具轴向朝移除了模具支架91的一侧移动邻近该侧的支撑车121、122直至将支撑于支撑车121、122上的一段玻璃钢罐体100从模具上取出,进一步地,安装被移除的模具支架91并移除另一侧的模具支架92,沿模具轴向朝移除了模具支架92的一侧移动邻近该侧的支撑车121、122直至将支撑于该支撑车121、122上的另一段玻璃钢罐体100从模具上取出。该步骤中,未移除的模具支架91(或92)与置入模具底部的支撑装置13共同维持模具的平衡,方便各段玻璃钢罐体100的取出。其中,使玻璃钢罐体100别切割成两段时,可以采用以下两种方式,其一、支撑车121、122分别抵接玻璃钢罐体100底部,使切割装置11沿其专用环形轨道移动,玻璃钢罐体100保持不动,利用切割装置11对玻璃钢罐体100进行环切;其二、支撑车121、122分别仅邻近玻璃钢罐体100底部,其与玻璃钢罐体100底部留有缝隙,切割装置11保持不动,而由主驱动电机7带动主轴1转动进而带动玻璃钢罐体100转动,再利用切割装置11与玻璃钢罐体100之间的相对运动对玻璃钢罐体100进行环切,切割成两段后,在玻璃钢罐体100的自重下,一段玻璃钢罐体100由支撑车121支撑,一段玻璃钢罐体100由支撑车122支撑。
步骤S8,组装罐体:对各段玻璃钢罐体100的切割边缘进行处理,并密封连接成为一体。如此处可以通过采用一层或多层树脂充分浸润的玻璃纤维布粘贴在两段玻璃钢罐体100切口处的方式进而将两者密封连接成一体。当然,在成型该玻璃钢罐体100的过程中,封盖103上存在有略大于主轴1直径的通孔,为实现玻璃钢罐体100的完全密封,后续还需要对该封盖103上的通孔进行密封处理,同样可以通过采用一层或多层树脂充分浸润的玻璃纤维布粘贴。组装完成后的玻璃钢罐体结构可参阅图10。
参阅图10,本发明实施例还提供一种大型玻璃钢罐体,该玻璃钢罐体100包括一体成型的两端密封的罐身101,并且,罐身101内壁设有与罐身101一体成型的加强筋102。为方便描述,可以将该玻璃钢罐体100视为包括罐身101和封盖103(如图6),实质上,封盖103也属于罐身101一体成型的一部分而两者并非独立构件。其中,罐身101可以呈圆筒形,封盖103无缝连接于罐身101两端开口并与罐身101呈一体化结构,并且,罐身101内壁一体成型有加强筋102。该罐身101由动模板(上模板21、下模板22、左模板23及右模板24)成型,封盖103由封盖模板41、42成型。其中,当封盖模板41、42呈弧面状如球 面状时,成型出的封盖103也为球面状。
为获取结构强度更高的玻璃钢罐体,可以将通过上述模具、设备、方法成型出的玻璃钢罐体作为内核,在其外表面采用传统工艺再缠绕一层玻璃钢(即用树脂充分浸润的玻璃纤维),此处不作具体描述。
应用时,可以将该玻璃钢罐体100作为储水罐,储油罐,化粪池,地下建筑,地下机电房,消防水池及机电房一体化,雨水渗透调节池。
本发明实施例的有益效果是:由于模具的各动模板可沿径向伸缩,各动模板伸出一定长度时与固设于模具的主轴1两端的封盖模板41、42相抵接而成直筒状且两端密封的模仁6,能够方便成型出两端具有封盖103的玻璃钢罐体100,其密封性好,并且,模仁6的外侧壁至少各动模板的外侧壁上设置有多道加强筋槽61,通过该加强筋槽61可方便的成型出加强筋102和玻璃钢罐体100一体成型的玻璃钢罐体100。另外,该模具可在切割装置11、支撑车121、122等辅助部件的配合下,较为方便快捷的取出玻璃钢罐体100,使玻璃钢罐体100与模具顺利脱模分离,且避免了二者分离过程中对玻璃钢罐体100的挤压变形或损坏,保证了产品质量的同时,大大提高了玻璃钢罐体100产品的生产效率。
可以理解,本发明的动模板也可以为相对配合的一对动模板,也可以为若干个动模板,相互盖合形成筒状模仁6。
尽管已经示出和描述了本发明的实施例,需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同范围限定。

Claims (19)

  1. 一种大型玻璃钢罐体成型模具,其特征在于,所述模具包括主轴、若干动模板、两端的封盖模板以及牵引机构;所述若干动模板与两封盖模板围成两端封闭的模仁;所述主轴位于模仁中心轴并可带动模仁旋转;所述牵引机构将所述动模板活动地连接于主轴且支撑所述动模板;所述动模板可朝主轴径向运动。
  2. 如权利要求1所述的模具,其特征在于,所述牵引机构包括可向主轴折叠收拢或张开运动的连杆结构;所述连杆结构的折叠收拢或张开的运动相应实现动模板向主轴的靠近或远离的径向运动;所述连杆结构包括顶杆、底杆及拉杆;所述顶杆和底杆一端分别与活动模板及主轴连接,另一端相互对接形成连接点,所述拉杆一端与所述连接点相连,另一端可沿主轴平行移动;所述连杆结构支撑于所述动模板与主轴之间。
  3. 如权利要求1或2所述的模具,所述牵引机构包括可向主轴作升降伸缩运动的导引结构;所述导引结构上升伸展或下降收缩的运动相应实现动模板向主轴的靠近或远离的径向运动;所述导引结构支撑于所述动模板与主轴之间,其包括一套筒以及可插拔地与套筒配合的杆体。
  4. 如权利要求1所述的模具,其特征在于,所述模仁的外侧壁上设置有加强筋槽;各所述动模板均通过单独的所述牵引机构连接至所述主轴上。
  5. 如权利要求4所述的模具,其特征在于,所述动模板数量为四块,所述动模板分别是左模板、右模板、上模板和下模板,所述左模板与所述右模板呈中心对称,所述上模板与所述下模板呈中心对称。
  6. 如权利要求4或5所述的模具,其特征在于,所述牵引机构包括沿所述主轴的轴向设置且固设有齿轮的螺杆、输出轴与所述齿轮啮合以驱动所述螺杆沿顺时针或逆时针方向转动的电机、以及分别设置于所述螺杆两端的第一支撑件和第二支撑件,所述第一支撑件、所述第二支撑件的两端分别活动连接于所述主轴和同一所述动模板,其中,所述第一支撑件、所述第二支撑件在所述螺杆的带动下伸缩进而带动所述动模板相对于所述主轴来回伸缩。
  7. 如权利要求6所述的模具,其特征在于,所述螺杆两端设有旋向相反的螺纹,所述第一支撑件和所述第二支撑件均包括顶杆、底杆及拉杆;
    所述第一支撑件中,所述顶杆一端活动连接至所述动模板,所述底杆一端活动连接至所述主轴,所述顶杆另一端活动连接至所述底杆另一端,所述拉杆一端活动连接至所述顶杆和所述底杆相连接的位置、另一端设有内设有螺纹的螺纹套且所述螺纹套螺旋连接于所述螺杆一端;
    所述第二支撑件中,所述顶杆一端活动连接至所述动模板,所述底杆一端活动连接至所述主 轴,所述顶杆另一端活动连接至所述底杆另一端,所述拉杆一端活动连接至所述顶杆和所述底杆相连接的位置、另一端设有内设有螺纹的螺纹套且所述螺纹套螺旋连接于所述螺杆另一端。
  8. 如权利要求6所述的模具,其特征在于,所述牵引机构还包括设置于所述螺杆的两端的第一引导组件和第二引导组件,其均包括固定于所述主轴上的套筒和一端滑动设置于所述套筒内部的杆体,所述第一引导组件和所述第二引导组件中的杆体的一端均固定于同一所述动模板。
  9. 如权利要求6所述的模具,其特征在于,各所述螺杆上还设置有与齿轮相对固定且同轴的链轮,驱动所述左模板的螺杆的链轮与驱动所述右模板的螺杆的链轮通过链条链接以实现同步伸缩,驱动所述上模板的螺杆的链轮与驱动所述下模板的螺杆的链轮通过链条链接以实现同步伸缩,并且,驱动所述左模板的电机与驱动所述右模板的电机可选择其一工作,驱动所述上模板的电机与驱动所述下模板的电机可选择其一工作。
  10. 如权利要求3所述的模具,其特征在于,驱动所述左模板的电机与驱动所述右模板的电机型号一致,驱动所述上模板的电机与驱动所述下模板的电机型号一致;所述动模板的外侧壁均为弧面,并且,所述动模板至少部分区域为实心结构。
  11. 一种大型玻璃钢罐体的制造设备,其特征在于,所述制造设备包括如权利要求1-10中任一项所述的模具,用于驱动所述模具旋转的主驱动电机,用于旋转支撑所述模具并可从所述模具移出的模具支架,用于供应树脂充分浸润的玻璃纤维的供料装置,以及用于将玻璃钢罐体切割成两段以辅助脱模的切割装置。
  12. 如权利要求11所述的大型玻璃钢罐体的制造设备,其特征在于,进一步包括用于辅助脱模的支撑车,用于在所述切割装置切割开玻璃钢罐体后可升降地支撑于所述模具的动模板上的支撑装置,以及用于控制所述主驱动电机、所述供料装置和所述模具工作的控制装置;所述供料装置沿所述模具轴向可活动地设于所述模具侧旁。
  13. 一种应用如权利要求11-12中任一项所述的大型玻璃钢罐体的制造设备制造大型玻璃钢罐体的方法,其特征在于,包括如下步骤:
    步骤1,提供所述成型模具和制造设备;
    步骤2,缠绕成型;
    步骤3,切割:切玻璃钢罐体使其成为两段;
    步骤4,组装罐体:对各段玻璃钢罐体的切割边缘进行处理,并密封连接成为一体。
  14. 如权利要求13所述的制造大型玻璃钢罐体的方法,其特征在于,所述步骤1还进一步 包括:
    粘贴封胶:在所述模具的模仁外表面上相邻两个模块之间的缝隙处粘贴封胶以使模仁的成型表面为完整的圆筒表面;
    打脱模剂:在所述模具的模仁的外表面喷洒或涂抹脱模剂。
  15. 如权利要求13所述的制造大型玻璃钢罐体的方法,其特征在于,所述步骤2还进一步包括:
    缠绕:开启主驱动电机使模具均速缓慢旋转,将由树脂充分浸润的玻璃纤维按照预定的角度和速度缠绕于模具的动模板和封盖模板上,直至缠绕的厚度和长度达到设计要求;
    固化定型:缠绕完毕后,模具连同玻璃钢罐体的坯体继续缓慢均速旋转预定时间,使树脂自然固化后成型出玻璃钢罐体;
    置入支撑车:将至少两个支撑车置入玻璃钢罐体底部并抵接或邻近玻璃钢罐体;
    罐体分离:控制各牵引机构收缩,使各动模板沿模具的轴向收缩至预定位置,使动模板与成型好的玻璃钢罐体相脱离且使玻璃钢罐体的加强筋与模仁的加强筋槽完全脱离并保持一定间隙。
  16. 如权利要求13所述的制造大型玻璃钢罐体的方法,其特征在于,所述步骤3具体为:取出罐体,使所述切割装置与玻璃钢罐体之间保持相对转动,用切割装置环切玻璃钢罐体使其成为两段;每段玻璃钢罐体分别由一个支撑车支撑,支撑车沿模具轴向外移一定距离使两段玻璃钢罐体分离,置入支撑装置并升起抵接模具的动模板以支撑模具;移除一侧的模具支架,沿模具轴向朝移除了模具支架的一侧移动邻近该侧的支撑车直至将支撑于支撑车上的一段玻璃钢罐体从模具上取出;进一步地,安装被移除的模具支架并移除另一侧的模具支架,沿模具轴向朝移除了模具支架的一侧移动邻近该侧的支撑车直至将支撑于该支撑车上的另一段玻璃钢罐体从模具上取出。
  17. 如权利要求13所述的制造大型玻璃钢罐体的方法,其特征在于,所述步骤4具体为:用树脂充分浸润的玻璃纤维布粘贴在两段玻璃钢罐体的切口处并密封连接处理形成一体。
  18. 一种大型玻璃钢罐体,其特征在于,所述玻璃钢罐体包括罐身以及分别密封所述罐身两端且与罐身不可分割地连接成一体的罐体封盖;所述罐身和/或罐体封盖的内壁一体成型且不可分割地设有加强筋;所述罐身由两段对开的罐身密封连接形成一体结构。
  19. 如权利要求18所述的大型玻璃钢罐体,其特征在于,所述两段对开的罐身是由树脂充分浸润的玻璃纤维布粘结形成一体的;所述罐体表面进一步缠绕有树脂充分浸润的玻璃纤维。
PCT/CN2015/076479 2014-11-14 2015-04-13 大型玻璃钢罐体及其成型模具和制造设备及其制造方法 WO2016074432A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410648195.0 2014-11-14
CN201410648195.0A CN104476777B (zh) 2014-11-14 2014-11-14 大型玻璃钢罐体及其成型模具、制造设备、制造方法

Publications (1)

Publication Number Publication Date
WO2016074432A1 true WO2016074432A1 (zh) 2016-05-19

Family

ID=52751447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076479 WO2016074432A1 (zh) 2014-11-14 2015-04-13 大型玻璃钢罐体及其成型模具和制造设备及其制造方法

Country Status (2)

Country Link
CN (1) CN104476777B (zh)
WO (1) WO2016074432A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104476777B (zh) * 2014-11-14 2016-10-05 深圳市绿洲彩虹机电科技有限公司 大型玻璃钢罐体及其成型模具、制造设备、制造方法
CN104890253A (zh) * 2015-06-11 2015-09-09 长沙丰博环保科技有限公司 一种玻璃钢内加强筋缠绕整体容器及其生产工艺和设备
CN105291317B (zh) * 2015-11-12 2017-06-06 东华大学 一种外径可变的圆柱形模具
CN107139502B (zh) * 2017-07-04 2022-09-30 湖北山叶环保科技股份有限公司 一种玻璃钢罐体缠绕模体和玻璃钢罐体纤维缠绕方法
CN107488967B (zh) * 2017-09-12 2019-11-05 绍兴君合新材料科技有限公司 一种袜子定型机的定型罐
CN109109340B (zh) * 2018-08-07 2020-12-01 株洲时代新材料科技股份有限公司 一种复合材料轴及其制备方法和应用
CN109177226B (zh) * 2018-08-29 2020-09-18 航天材料及工艺研究所 一种近似封闭结构复合材料箱体的成型模具及其成型方法
CN109278315A (zh) * 2018-09-29 2019-01-29 江阴市富仁高科股份有限公司 一种具有内加强筋玻璃钢油罐的制备工艺
CN111993540B (zh) * 2020-08-17 2022-03-18 江苏盛容醇金科技发展有限公司 一种无釉陶坛一体辊压成型装置
JP7477408B2 (ja) 2020-09-17 2024-05-01 トヨタ自動車株式会社 高圧タンクを構成する筒部材を製造する製造装置
CN112170093A (zh) * 2020-10-13 2021-01-05 安庆柯麦机电科技有限公司 5g机柜的基材预处理系统
CN112743877A (zh) * 2021-01-29 2021-05-04 湖北银涛玻璃钢工程有限公司 一种玻璃钢管材缠绕装置
CN114290707B (zh) * 2022-03-09 2022-05-27 河北广厦环保有限公司 带封头可变径玻璃钢罐体生产模具
CN116922644B (zh) * 2023-09-14 2023-12-29 山东盛宝复合材料科技有限公司 一种玻璃钢罐体生产模具

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3412891A (en) * 1964-08-06 1968-11-26 Owens Corning Fiberglass Corp Fluid-handling wall structure
DE2038112A1 (de) * 1970-07-31 1972-02-10 Raupach Friedrich Verfahren und Vorrichtung zur Herstellung eines Giessharzrohres mit Glasfaserverstaerkung im Schleudergiessverfahren
FR2144621A1 (en) * 1971-07-07 1973-02-16 Rizza Louis Antoine Removable mandrel - for making tanks by filament winding
US4233020A (en) * 1979-03-13 1980-11-11 Owens-Corning Fiberglas Corporation Collapsible mandrel
KR19980075872A (ko) * 1997-04-02 1998-11-16 진성일 정화조용 드럼 제조금형
CN201296040Y (zh) * 2008-11-10 2009-08-26 阿丽贝(鞍山)塑料防腐设备有限公司 制作大容量防腐储罐用的大直径成型模具
CN201745125U (zh) * 2010-09-30 2011-02-16 冀州市中意复合材料有限公司 一种全玻璃钢双壁储油罐阴模成型模具
CN203125935U (zh) * 2012-12-28 2013-08-14 深圳市绿洲彩虹机电科技有限公司 大型玻璃钢罐体制造设备及其成型模具
CN203317615U (zh) * 2013-06-14 2013-12-04 连云港中复连众复合材料集团有限公司 一种带脱模装置的储罐整体制备模具
CN203864028U (zh) * 2014-05-29 2014-10-08 段丙章 双曲面瓦楞玻璃钢容器制作装置
CN104476777A (zh) * 2014-11-14 2015-04-01 深圳市绿洲彩虹机电科技有限公司 大型玻璃钢罐体及其成型模具、制造设备、制造方法
CN204296037U (zh) * 2014-11-14 2015-04-29 深圳市绿洲彩虹机电科技有限公司 大型玻璃钢罐体及其成型模具、制造设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772938A (en) * 1996-05-10 1998-06-30 Sharp; Bruce R. Composite storage tank having double wall characteristics
US20080023483A1 (en) * 2006-07-28 2008-01-31 Roman Kanach Pressure vessel
CN201525132U (zh) * 2009-09-08 2010-07-14 国营江北机械厂 可拆卸芯模
CN103057110B (zh) * 2012-12-28 2015-04-29 深圳市绿洲彩虹机电科技有限公司 大型玻璃钢罐体成型模具、制造设备及其制造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3412891A (en) * 1964-08-06 1968-11-26 Owens Corning Fiberglass Corp Fluid-handling wall structure
DE2038112A1 (de) * 1970-07-31 1972-02-10 Raupach Friedrich Verfahren und Vorrichtung zur Herstellung eines Giessharzrohres mit Glasfaserverstaerkung im Schleudergiessverfahren
FR2144621A1 (en) * 1971-07-07 1973-02-16 Rizza Louis Antoine Removable mandrel - for making tanks by filament winding
US4233020A (en) * 1979-03-13 1980-11-11 Owens-Corning Fiberglas Corporation Collapsible mandrel
KR19980075872A (ko) * 1997-04-02 1998-11-16 진성일 정화조용 드럼 제조금형
CN201296040Y (zh) * 2008-11-10 2009-08-26 阿丽贝(鞍山)塑料防腐设备有限公司 制作大容量防腐储罐用的大直径成型模具
CN201745125U (zh) * 2010-09-30 2011-02-16 冀州市中意复合材料有限公司 一种全玻璃钢双壁储油罐阴模成型模具
CN203125935U (zh) * 2012-12-28 2013-08-14 深圳市绿洲彩虹机电科技有限公司 大型玻璃钢罐体制造设备及其成型模具
CN203317615U (zh) * 2013-06-14 2013-12-04 连云港中复连众复合材料集团有限公司 一种带脱模装置的储罐整体制备模具
CN203864028U (zh) * 2014-05-29 2014-10-08 段丙章 双曲面瓦楞玻璃钢容器制作装置
CN104476777A (zh) * 2014-11-14 2015-04-01 深圳市绿洲彩虹机电科技有限公司 大型玻璃钢罐体及其成型模具、制造设备、制造方法
CN204296037U (zh) * 2014-11-14 2015-04-29 深圳市绿洲彩虹机电科技有限公司 大型玻璃钢罐体及其成型模具、制造设备

Also Published As

Publication number Publication date
CN104476777A (zh) 2015-04-01
CN104476777B (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
WO2016074432A1 (zh) 大型玻璃钢罐体及其成型模具和制造设备及其制造方法
CN103057110B (zh) 大型玻璃钢罐体成型模具、制造设备及其制造方法
WO2017173845A1 (zh) 一种用于制备竹缠绕复合管的自动化制造系统
CN204296037U (zh) 大型玻璃钢罐体及其成型模具、制造设备
CN204955477U (zh) 一种可径向伸缩的大型缠绕模具
CN107139502B (zh) 一种玻璃钢罐体缠绕模体和玻璃钢罐体纤维缠绕方法
CN105881796B (zh) 包裹式制管模芯组件
CN108638539B (zh) 一种风电叶片铺层装置和铺层方法
CN203125935U (zh) 大型玻璃钢罐体制造设备及其成型模具
CN105666685A (zh) 管模拆固定端板小螺母机
CN111469438A (zh) 一种玻璃钢罐体模具
CN104607334A (zh) 一种带连杆结构的电动喷雾机
CN104494158B (zh) 一种大口径钢塑缠绕管法兰的制造系统
CN109590358B (zh) 不锈钢型材管的平行挤压自动卷合生产方法
CN113954325B (zh) 一种生产电力线管的注塑机
CN204297420U (zh) 大型玻璃钢罐体
CN215750737U (zh) 一种改性聚丙烯克拉管生产用脱模装置
CN112356441B (zh) 一种3d打印机喷头自动保护装置
CN205394816U (zh) 管模拆固定端板小螺母机
CN212147616U (zh) 一种玻璃钢罐体模具
CN104669561B (zh) 螺纹牙模脱模装置及其软管注肩机
CN113953398A (zh) 一种便于更换缩管模具的新型缩管机
CN204662642U (zh) 大型玻璃钢渗透池
CN115583000B (zh) 一种克拉管及其成型设备
CN103481409A (zh) 一种用于制作大型玻璃钢烟囱的可收缩式钢制模具的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/08/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15859088

Country of ref document: EP

Kind code of ref document: A1