CN109109340B - 一种复合材料轴及其制备方法和应用 - Google Patents

一种复合材料轴及其制备方法和应用 Download PDF

Info

Publication number
CN109109340B
CN109109340B CN201810890747.7A CN201810890747A CN109109340B CN 109109340 B CN109109340 B CN 109109340B CN 201810890747 A CN201810890747 A CN 201810890747A CN 109109340 B CN109109340 B CN 109109340B
Authority
CN
China
Prior art keywords
shaft
composite material
expansion
prepreg
autoclave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810890747.7A
Other languages
English (en)
Other versions
CN109109340A (zh
Inventor
吕保杰
贾金荣
吴东森
周升
向中华
彭宗文
姜其斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuzhou Times New Material Technology Co Ltd
Original Assignee
Zhuzhou Times New Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuzhou Times New Material Technology Co Ltd filed Critical Zhuzhou Times New Material Technology Co Ltd
Priority to CN201810890747.7A priority Critical patent/CN109109340B/zh
Publication of CN109109340A publication Critical patent/CN109109340A/zh
Application granted granted Critical
Publication of CN109109340B publication Critical patent/CN109109340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/342Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/446Moulding structures having an axis of symmetry or at least one channel, e.g. tubular structures, frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/026Shafts made of fibre reinforced resin

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明公开了一种复合材料轴的制备方法,包括以下步骤:(1)将芳纶纤维编织布或碳纤维布浸渍于热固性树脂中,得到预浸料;(2)将所述预浸料卷缠在膨胀轴上;(3)将圆柱形型腔与缠好预浸料的膨胀轴装配好,转动膨胀轴转臂,送入热压罐中进行成型,最后开罐,收缩膨胀轴,脱模,完成复合材料轴的制备。本发明的复合材料轴采用真空内胀成型方式制备而成,真空状态下可以迅速有效排除轴体内的气泡,减少成型缺陷;内胀挤压,可以保证编织布层间分布均匀,不会出现树脂与纤维分布不均的缺陷;相较于已有的缠绕成型,在传递大扭矩时还能承受较大的拉压应力,而传统缠绕成型传动轴基本不能承受大的拉应力。

Description

一种复合材料轴及其制备方法和应用
技术领域
本发明属于复合材料轴制备技术领域,尤其涉及一种内胀成型复合材料轴及其制备方法和应用。
背景技术
飞机、轮船、汽车等领域传动轴多为金属材料制备,但存在重量大,拆装不方便,耐腐蚀性能差、疲劳性能差等缺陷。现今业界一直在寻找耐腐蚀、强度高、重量轻的替代材料,而高性能新型树脂基复合材料可以满足这种需求。树脂复合材料传动轴具有高比强度、高比刚度、密度底、抗疲劳性能和减振性能好等优点,在传动领域的应用也越来越广。
而目前国内的复合材料传动轴多采用缠绕成型,其基本满足传递扭矩,承受推力,但由于缠绕工艺的固有缺陷,该方法得到的轴,不能承受较大的轴向拉伸力。国际上也有用缠绕成型的碳纤维轴用于汽车传动,同样不能承受拉伸力。俄罗斯采用复合材料与金属芯管应用在喷气式飞机传动轴,但金属是导体,要获得良好的绝缘性能,需要额外处理,且金属与树脂基复合材料结合,其热膨胀系数不一致,在极限冷热交替的情况下,疲劳性能会降低,且存在金属与复合材料分离的风险。国外船舶传动,有采用金属传动轴中间加入一段复合材料的方式,但只采用部分复合材料,虽然满足了轴的部分电绝缘性能,但并不能达到整根轴减重的目的,且该方法得到的船用传动轴结构复杂,安装和维护复杂。
发明内容
本发明所要解决的技术问题是,克服以上背景技术中提到的不足和缺陷,提供一种复合材料轴及其制备方法,该复合材料轴既能满足舰船领域对传动轴的性能要求,又能满足海洋船体传动轴耐海水腐蚀性能的要求。
为解决上述技术问题,本发明提出的技术方案为:
一种复合材料轴的制备方法,包括以下步骤:
(1)将芳纶纤维编织布或碳纤维布充分浸渍于热固性树脂中,得到预浸料;
(2)将所述预浸料紧密卷缠在膨胀轴上;
(3)将圆柱形型腔与缠好预浸料的膨胀轴装配好,转动膨胀轴转臂,送入热压罐中进行成型,最后开罐,收缩膨胀轴,脱模,完成复合材料轴的制备。
转动膨胀轴转臂到位即可达到预挤压目的,然后送入热压罐后,再抽真空,加热加压,进行二次挤压;预挤压可以保证轴的外表面与圆柱形型腔内表面完全贴合,二次挤压可以保证轴体结构紧密,不夹杂气泡,提高复合材料轴整体性能及层间结合强度。
上述的制备方法,优选的,步骤(3)中,成型的具体过程为:先将热压罐抽真空并升温至90~110℃,再升压至0.4~3MPa,保温保压20~30分钟;再将热压罐温度升至120~180℃,保温保压30~120分钟,待预浸料固化后降温至60℃,降压至常压。本发明的成型过程中先在预浸料粘度系数较小时,保温保压一段时间,有利于树脂与纤维充分结合,从而排除纤维间的气泡,减少成型缺陷;本发明成型方法中通过控制温度、压力和时间的选择,来保证层间的结合力。
上述的制备方法,优选的,步骤(2)中,所述预浸料在膨胀轴上缠绕的层数为40~400层。
上述的制备方法,优选的,步骤(1)中,所述热固性树脂为环氧树脂、酚醛树脂、酚醛环氧树脂中的一种或几种;其中,环氧树脂优选为环氧树脂TDE-85,最佳地保证纤维与树脂间的结合力,从而保证复合材料轴的整体性能。
上述的制备方法,优选的,步骤(2)中,在膨胀轴上先缠卷真空袋,再将预浸料紧密卷缠在包覆真空袋的膨胀轴上,最后在预浸料外面缠卷脱模布。
本发明还提供一种由上述制备方法制备得到的复合材料轴,为空心轴体,所述空心轴体的外表面和内表面均为圆柱面,其中,所述空心轴体的内表面上均匀间隔分布有筋条。筋条是膨胀芯轴膨胀后,留下的间隙,由树脂及纤维填充形成的;筋条均匀分布,有利于动静平衡,有利于满足传动轴的高速传动时的稳定性要求。
所述复合材料轴是由芳纶纤维编织布或碳纤维布浸渍热固性树脂后经内胀成型的方式得到的。进一步优选的,所述复合材料轴是由芳纶纤维编织布充分浸渍热固性树脂后经内胀成型的方式得到的,除具备优异的强度性能之外,还具有优异的电绝缘性能。
上述的复合材料轴,优选的,所述复合材料轴中不含有金属材料。
上述的复合材料轴,优选的,所述复合材料轴是一体成型的。
作为一个总的发明构思,本发明还提供一种上述的或由上述的制备方法获得的复合材料轴在舰船中的应用。
与现有技术相比,本发明的优点在于:
(1)本发明的复合材料轴采用真空内胀成型方式制备而成,真空状态下可以迅速有效排除轴体内的气泡,减少成型缺陷;内胀挤压,可以保证编织布层间分布均匀,不会出现树脂与纤维分布不均的缺陷;相较于已有的缠绕成型,在传递大扭矩时还能承受较大的拉压应力,而传统缠绕成型传动轴基本不能承受大的拉应力。
(2)本发明的复合材料轴中不含有金属材料轴心,主要由碳纤维或芳纶纤维编织纤维布制成;具有重量轻、比强度高,轴向抗拉、抗压强度及抗扭性能好,耐腐蚀性能优异,满足其在海洋舰船中的应用。
(3)本发明的复合材料轴采用芳纶纤维编织预浸料制备而成,具有良好的韧性及电绝缘性能。
综上所述,本发明的复合材料轴,采用整张纤维编织布通过真空内胀成型,有效的解决了现有技术中传动轴不能承受大的轴向拉伸力的技术问题;传动轴整体由树脂纤维复合而成,不含金属,有效解决了非金属复合材料与金属材料热膨胀系数不一致而产生的结合应力问题,且整轴为非金属,重量得到最大优化;特别是编织纤维布采用芳纶纤维时,其韧性、电绝缘性能可以满足现有条件下,任何特种舰船对于传动轴在电绝缘性能方面的需求。
附图说明
图1是本发明实施例1的复合材料轴的结构示意图。
图例说明:1、外表面;2、内表面;3、筋条。
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本文发明做更全面、细致地描述,但本发明的保护范围并不限于以下具体实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1:
一种本发明的复合材料轴,其结构如图1所示,为空心轴体,该空心轴体的外表面1和内表面2均为圆柱面,其中,该空心轴体的内表面2上均匀间隔分布有筋条3;该复合材料轴中不含有金属材料;该复合材料轴是由芳纶纤维编织布充分浸渍TDE-85环氧树脂后经内胀成型的方式得到的。
本实施例的复合材料轴制备方法,包括以下步骤:
(1)将1313芳纶纤维编织布充分浸渍于TDE-85环氧树脂中,得到预浸料;
(2)在膨胀轴上缠卷好真空袋,再将预浸料缠卷在膨胀轴表面,缠卷350层,然后覆盖脱模布;
(3)将圆柱形型腔与缠好预浸料的膨胀轴装配好,转动膨胀轴转臂,使芯轴推动滑块,由内向外径向加压,滑块压胀至最大尺寸时后,将真空袋密封,插上导气管,送入热压罐,连接好热压罐真空管路,抽真空,升温至100℃,再升压0.4MPa,保温保压25分钟后,以便环氧树脂充分流动;再将热压罐升温至树脂固化温度(125℃),保温保压120分钟,待树脂固化后降温至60℃,再降压至正常压力,开罐;
(4)转动膨胀轴转臂,收缩膨胀轴,再打开圆柱形型腔,取出复合材料轴,按设计尺寸加工芯轴,再做动平衡、静平衡,得到本实施例的复合材料轴。
将本实施例制备得到的复合材料轴安装在专用实验台上,测定该轴的最大扭矩为1103kN*m;本体取样,测得复合材料轴轴向抗压强度为415MPa,轴向抗拉强度为330MPa;轴向电绝缘性能为15kV/mm,径向电绝缘性能为18kV/mm。
将本实施例制备得到的复合材料轴本体取样与常用耐海水腐蚀不锈钢(0Cr18Ni12Mo2Ti)及双相不锈钢(00Cr26Ni8Mo3Ti)样本进行耐海水对比试验。试验方法采用缝隙腐蚀室内加速腐蚀化学浸泡试验法(GB/T10127-2002),双相不锈钢(00Cr26Ni8Mo3Ti)发生几率约为4%,耐海水腐蚀不锈钢(0Cr18Ni12Mo2Ti)发生几率为100%,本实施例材料样本发生几率为0。
测试本实施例制备的复合材料轴的密度在1.8~2.0g/cm3左右。
该复合材料轴的电绝缘性能、轴向抗拉、抗压强度及抗扭性能、耐腐蚀等性能满足特种舰船的使用要求。
实施例2:
本实施例的复合材料轴,其结构和实施例1相同。
本实施例的复合材料轴的制备方法,包括以下步骤:
(1)将1313芳纶纤维编织布充分浸渍于TDE-85环氧树脂中,得到预浸料;
(2)在膨胀轴上缠卷好真空袋,再将预浸料缠卷在膨胀轴表面,缠卷280层,然后覆盖脱模布;
(3)将圆柱形型腔与缠好预浸料的膨胀轴装配好,转动膨胀轴转臂,使芯轴推动滑块,由内向外径向加压,滑块压胀至最大尺寸时后,将真空袋密封,插上导气管,送入热压罐,连接好热压罐真空管路,抽真空,升温至100℃,再升压0.4MPa,保温保压25分钟后,以便环氧树脂充分流动;再将热压罐升温至树脂固化温度125℃,保温保压120分钟,待树脂固化后降温至60℃,再降压至正常压力,开罐;
(4)转动膨胀轴转臂,收缩膨胀轴,再打开圆柱形型腔,取出复合材料轴,按设计尺寸加工芯轴,再做动平衡、静平衡,得到本实施例的复合材料轴。
将该复合材料轴安装在专用实验台上,测定该轴的最大扭矩为441kN*m;本体取样,测得复合材料轴轴向抗压强度为409MPa,轴向抗拉强度为332MPa;轴向电绝缘性能为15.3kV/mm,径向电绝缘性能为18.5kV/mm。
将本实施例制备得到的复合材料轴本体取样与常用耐海水腐蚀不锈钢(0Cr18Ni12Mo2Ti)及双相不锈钢(00Cr26Ni8Mo3Ti)样本进行耐海水对比试验。试验方法采用缝隙腐蚀室内加速腐蚀化学浸泡试验法(GB/T10127-2002),双相不锈钢(00Cr26Ni8Mo3Ti)发生几率约为4%,耐海水腐蚀不锈钢(0Cr18Ni12Mo2Ti)发生几率为100%,本实施例材料样本发生几率为0%。
测试本实施例制备的复合材料轴的密度在1.8~2.0g/cm3左右。
该复合材料轴的电绝缘性能、轴向抗拉、抗压强度及抗扭性能、耐腐蚀等性能满足特种舰船的使用要求。
实施例3:
本实施例的复合材料轴,其结构和实施例1相同,区别在于,该复合材料轴是由碳纤维充分浸渍酚醛树脂后经内胀成型的方式得到的。
本实施例的复合材料轴的制备方法,包括以下步骤:
(1)将T400碳纤维充分浸渍于酚醛树脂中,得到预浸料;
(2)在膨胀轴上缠卷好真空袋,再将预浸料缠卷在膨胀轴表面,缠卷270层,然后覆盖脱模布;
(3)将圆柱形型腔与缠好预浸料的膨胀轴装配好,转动膨胀轴转臂,使芯轴推动滑块,由内向外径向加压,滑块压胀至最大尺寸时后,将真空袋密封,插上导气管,送入热压罐,连接好热压罐真空管路,抽真空,升温至100℃,再升压0.4MPa,保温保压25分钟后,以便环氧树脂充分流动;再将热压罐升温至树脂固化温度125℃,保温保压120分钟,待树脂固化后降温至60℃,再降压至正常压力,开罐;
(4)转动膨胀轴转臂,收缩膨胀轴,再打开圆柱形型腔,取出复合材料轴,按设计尺寸加工芯轴,再做动平衡、静平衡,得到本实施例的复合材料轴。
将该复合材料轴安装在专用实验台上,测定该轴的最大扭矩为347kN*m。本体取样,测得复合材料轴轴向抗压强度为392MPa,轴向抗拉强度为379MPa。
将本实施例制备得到的复合材料轴本体取样与常用耐海水腐蚀不锈钢(0Cr18Ni12Mo2Ti)及双相不锈钢(00Cr26Ni8Mo3Ti)样本进行耐海水对比试验。试验方法采用缝隙腐蚀室内加速腐蚀化学浸泡试验法(GB/T10127-2002),双相不锈钢(00Cr26Ni8Mo3Ti)发生几率约为4%,耐海水腐蚀不锈钢(0Cr18Ni12Mo2Ti)发生几率为100%,本实施例材料样本发生几率为0%。
测试本实施例制备的复合材料轴的密度在1.8~2.0g/cm3左右。
该复合材料轴的电绝缘性能、轴向抗拉、抗压强度及抗扭性能、耐腐蚀等性能满足特种舰船的使用要求。

Claims (2)

1.一种应用于舰船中的复合材料轴的制备方法,其特征在于,包括以下步骤:
(1)将芳纶纤维编织布或碳纤维布浸渍于热固性树脂中,得到预浸料;
(2)在膨胀轴上先缠卷真空袋,再将预浸料紧密卷缠在包覆真空袋的膨胀轴上,其中,预浸料在膨胀轴上缠绕的层数为40~400层,最后在预浸料外面缠卷脱模布,将圆柱形型腔与缠好预浸料的膨胀轴装配好,转动膨胀轴转臂,使芯轴推动滑块,由内向外径向加压,滑块压胀至最大尺寸时后,将真空袋密封,插上导气管,送入热压罐中进行成型,成型的具体过程为:先将热压罐抽真空并升温至90~110℃,再升压至0.4~3MPa,保温保压20~30分钟;再将热压罐温度升至120~180℃,保温保压30~120分钟,待预浸料固化后降温至60℃,降压至常压;最后开罐,收缩膨胀轴,脱模,完成复合材料轴的制备,所述复合材料轴为空心轴体,所述空心轴体的外表面和内表面均为圆柱面,其中,所述空心轴体的内表面上均匀间隔分布有筋条。
2.如权利要求1所述的制备方法,其特征在于,步骤(1)中,所述热固性树脂为环氧树脂、酚醛树脂中的一种或几种。
CN201810890747.7A 2018-08-07 2018-08-07 一种复合材料轴及其制备方法和应用 Active CN109109340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810890747.7A CN109109340B (zh) 2018-08-07 2018-08-07 一种复合材料轴及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810890747.7A CN109109340B (zh) 2018-08-07 2018-08-07 一种复合材料轴及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109109340A CN109109340A (zh) 2019-01-01
CN109109340B true CN109109340B (zh) 2020-12-01

Family

ID=64853169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810890747.7A Active CN109109340B (zh) 2018-08-07 2018-08-07 一种复合材料轴及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109109340B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111716623A (zh) * 2020-05-18 2020-09-29 周尚生 一种中空超薄壁塑料型材的注塑成型方法
CN113217305B (zh) * 2021-05-17 2022-05-13 广州赛特新能源科技发展有限公司 一种风力发电机复合轴及风力发电机
CN114248464B (zh) * 2021-11-24 2022-08-26 威海光威复合材料股份有限公司 一种碳纤维复合材料成型装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087187A (en) * 1990-03-09 1992-02-11 United Technologies Corporation Apparatus for molding hollow composite articles having internal reinforcement structures
CN104476777B (zh) * 2014-11-14 2016-10-05 深圳市绿洲彩虹机电科技有限公司 大型玻璃钢罐体及其成型模具、制造设备、制造方法
CN104985829B (zh) * 2015-04-03 2020-04-07 上海华渔新材料科技有限公司 一段式复合材料汽车传动轴的制备方法
CN105922607A (zh) * 2016-05-18 2016-09-07 中国电子科技集团公司电子科学研究院 一种复合材料管件的成型方法及装置

Also Published As

Publication number Publication date
CN109109340A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
CN109109340B (zh) 一种复合材料轴及其制备方法和应用
CN105690793B (zh) 一种三维编织复合材料汽车传动轴及其制备方法
US6764754B1 (en) Composite material with improved damping characteristics and method of making same
CA2766208C (en) Method for manufacturing composite connecting rods and connecting rods produced according to the method
CN101505912B (zh) 用于旋翼飞行器的复合物-钢混合式主轴
CA2207495C (en) Cylindrical part manufactured by fiber reinforced plastic composite material and the method thereof
CN106182804A (zh) 复合材料管件的成型模具及成型方法
CN104743087A (zh) 一种船舶用三维编织复合材料螺旋桨叶片及其制备方法
EP3608090B1 (en) Composite connector and method of manufacturing the same
CN109941408B (zh) 一种碳纤维复合材料深潜耐压舱及其制备方法
US6325108B1 (en) Prestressed composite cryogenic piping
EP3608089B1 (en) Composite connector and method of manufacturing the same
CN112590239B (zh) 带裙座一体式全缠绕气瓶的制造方法
CN103016950B (zh) 一种复合材料压力容器的制造方法
CN111434483A (zh) 一种车用金属内衬编织复合材料及其制备方法和应用
CN104369387B (zh) Pmi泡沫夹芯碳纤维复合材料工程车臂架及其制造方法
Hatta et al. Applications of carbon-carbon composites to an engine for a future space vehicle
Tsai et al. Microstructural analysis of composite tubes made from braided preform and resin transfer molding
CN109282138B (zh) 一种聚酰亚胺复合材料气瓶及其制备方法
US10173363B2 (en) Method for manufacturing composite connecting rods
CN113214608A (zh) 含硅芳炔树脂基复合材料及其制备方法和应用
CN110406194A (zh) 阻尼减震式增强型碳纤维复合材料及碳纤维螺旋桨叶
CN111098526A (zh) 一种高强度耐压圆弧顶封头工件的制备方法
CN110181839A (zh) 绿色轻量化纤维增强金属层管及其制造方法
CN105020511B (zh) 氟胶合成橡胶接头

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant