CN105690793B - 一种三维编织复合材料汽车传动轴及其制备方法 - Google Patents

一种三维编织复合材料汽车传动轴及其制备方法 Download PDF

Info

Publication number
CN105690793B
CN105690793B CN201610131159.6A CN201610131159A CN105690793B CN 105690793 B CN105690793 B CN 105690793B CN 201610131159 A CN201610131159 A CN 201610131159A CN 105690793 B CN105690793 B CN 105690793B
Authority
CN
China
Prior art keywords
fiber
precast body
drive shaft
universal joint
truck drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610131159.6A
Other languages
English (en)
Other versions
CN105690793A (zh
Inventor
朱波
曹伟伟
乔琨
王永伟
赵圣尧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Zhongheng new carbon fiber technology development Co. Ltd.
Original Assignee
Shandong Zhongheng Carbonfiber Scien And Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Zhongheng Carbonfiber Scien And Technology Development Co Ltd filed Critical Shandong Zhongheng Carbonfiber Scien And Technology Development Co Ltd
Priority to CN201610131159.6A priority Critical patent/CN105690793B/zh
Publication of CN105690793A publication Critical patent/CN105690793A/zh
Application granted granted Critical
Publication of CN105690793B publication Critical patent/CN105690793B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/22Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of main drive shafting, e.g. cardan shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/023Shafts; Axles made of several parts, e.g. by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/026Shafts made of fibre reinforced resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Composite Materials (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Moulding By Coating Moulds (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

本发明公开一种三维编织复合材料汽车传动轴及其制备方法,本发明根据汽车传动轴传动过程的受力特点进行三维编织复合材料传动轴管和万向节的设计以及二者之间的套筒连接组合方式设计。通过混杂纤维多向编织的方式进行三维多轴向织物结构组合,对传动轴特定部位进行结构性能强化,最终实现三维预制体结构的一体化编织。在相关的三维织物预制体制件制备完成后,选用特定纤维进行厚度向铺缝二次强化处理以提高厚度方向的强度和刚度。最后以热固性树脂胶液为基体材料,采用真空导入与快速热固化相结合的连续成型用以对上述三维编织预制体织物进行树脂浸渍复合以及树脂固化,最终形成混杂纤维织物的三维编织复合材料汽车传动轴组件。

Description

一种三维编织复合材料汽车传动轴及其制备方法
技术领域
本发明涉及一种汽车传动轴制备技术领域,特别涉及一种应用于不同车型的三维编织纤维织物结构的复合材料汽车传动轴及其制备方法。
背景技术
传动轴作为汽车传动系统中的重要传递动力的部件,其作用是主要与变速箱、驱动桥一并将发动机运转过程中产生的动力有效传递给车轮以使得汽车产生驱动力。经过研究表明,传动系统自身运转过程中由于自重的原因将消耗掉发动机能量的17-22%,而目前采用的金属材质的传动轴,由于金属本身较大的体密度而将造成发动机能量利用效率的较大负担。除此以外,金属材质传动轴部件在运行过程中,在轴管、万向节以及伸缩套之间各个部件的摩擦也带来了较大的阻力,这对于发动机能量的消耗也有不容忽视的负担。
复合材料材质的汽车传动轴具有重量轻、强度高、耐磨擦等优势,可以适用于较大扭矩、较高转速以及较长跨距的应用,除此以外,复合材料的热膨胀系数较低,可以隔绝噪声和振动,能够大大减轻汽车发动机的能量消耗,明显降低油耗而提升燃油效率。传统的复合材料传动轴较多采用二维缠绕方式制备,在制备过程中通过高性能纤维长丝的螺旋缠绕提高轴体强度和刚度。而这种纤维结构复合材料的汽车传动轴存在较大问题,首先缠绕过程中的纤维的排布属于二维平面排布,这对于重型汽车要求的大扭矩或长跨距的轴体要求显然满足不了,此外,缠绕工艺制备的复合材料传动轴部件也存在刚度和强度不稳定的问题而带来使用寿命的无法保证。
虽然文献《气囊/VARTM工艺成型三维复合材料传动轴》公开的是采用三维玻璃纤维编织物,但是玻璃纤维的比强度和化学稳定性较弱,尤其是对碱性介质而言,所以在制备得到的三维复合材料传动轴的力学性能并不理想,不能满足较大扭矩的使用要求。
发明内容
针对目前传统金属材质以及二维缠绕复合材料材质汽车传动轴的重量大、油耗高、刚度以及寿命稳定性不高的种种问题,本发明提供了一种三维编织织物增强复合材料汽车传动轴的结构设计和真空导入快速固化的成型技术,可以通过三维织物结构将传动轴管及万向节等重要汽车传统结构零部件达到均质高强、高刚度以及减震性能优异的综合特性提升的目的,具有实际应用价值。
本发明采用以下技术方案:
一种三维编织复合材料汽车传动轴,包括三维编织复合材料传动轴管、三维编织复合材料万向节和三维编织复合材料连接套筒;
所述三维编织复合材料传动轴管的两端部轴管壁内设有若干个第一内滑动花键槽,所述三维编织复合材料传动轴管是由高刚度纤维混杂制成的三维立体编织预制体、沿所述三维立体编织预制体中的第一内滑动花键槽部位处预制体厚度方向的二次铺缝结构和热固性树脂复合成型;
所述三维编织复合材料万向节是由万向节端头和与万向节端头相连万向节套管组成,所述万向节套管的壁内设有若干个第二内滑动花键槽,所述三维编织复合材料万向节包括高刚度碳纤维和高强高韧性纤维混杂制成的三维立体编织预制体、沿所述三维立体编织预制体中的第二内滑动花键槽部位处预制体厚度方向的二次铺缝结构和热固性树脂复合成型;
所述三维编织复合材料连接套筒的筒壁设有若干个与第一内滑动花键槽和第二滑动花键槽相匹配的外滑动花键,所述外滑动花键与所述筒壁的连接处设有金属增强件,所述三维编织复合材料连接套筒包括高强高韧纤维混杂制成的三维立体编织预制体、沿所述三维立体编织预制体中的外滑动花键部位处预制体厚度方向的二次铺缝结构和热固性树脂复合成型。
优选的,在三维编织复合材料传动轴管中,所述高刚度纤维选用高模量碳纤维、碳化硅纤维、氧化铝纤维、玄武岩纤维等其中的两种或两种以上混杂组合,高模量碳纤维为M40J碳纤维和/或M60J碳纤维,所述高模量碳纤维、碳化硅纤维、氧化铝纤维、玄武岩纤维的混杂比例根据实际工况要求灵活调整,可选用三维四向、三维五向、三维六向、三维七向中的一种或多种三维编织结构进行组合编织。为进一步提高传动轴管的力学性能,所述高模量碳纤维与碳化硅或氧化铝纤维或玄武岩纤维的体积比例为1~6:1。
沿所述三维立体编织预制体中的第一内滑动花键槽部位处预制体厚度方向的二次铺缝结构为由铺缝纤维沿所述三维立体编织预制体中的第一内滑动花键槽部位处预制体厚度方向铺缝所形成的结构。
优选的,在三维编织复合材料万向节中,高刚度碳纤维为高模量碳纤维(M40J、M60J)、碳化硅纤维、氧化铝纤维、玄武岩纤维中的任意一种,高强高韧性纤维为高强度纤维、芳纶纤维、UHMWPE纤维中的任意一种,高强度碳纤维为T300及其以上的碳纤维,主要包括T300、T700和T800。所述万向节端头与万向节端头采用一体化编织成型的方式,内外径规格、厚度以及长度根据车辆要求而灵活调整。万向节端头选用十字轴式、球笼式、球叉式等各种不同类型。高刚度纤维和高强高韧性纤维的混杂比例根据实际工况要求灵活调整,可选用三维四向、三维五向、三维六向、三维七向中的一种或多种三维编织结构进行组合编织。根据万向节的受力特点,进一步提高万向节的力学性能,所述高刚度纤维与高强高韧性纤维的体积比例为1:1~3。
沿所述三维立体编织预制体中的第二内滑动花键槽部位处预制体厚度方向的二次铺缝结构为由铺缝纤维沿所述三维立体编织预制体中的第二内滑动花键槽部位处预制体厚度方向铺缝所形成的结构。
优选的,在三维编织复合材料连接套筒中,高强高韧性纤维为高强度纤维、芳纶纤维、UHMWPE纤维中的任意两种进行混杂组合,高强度碳纤维是指T300及其以上的碳纤维,主要包括T300、T700和T800。两种纤维的混杂比例根据实际工况要求灵活调整,可选用三维四向、三维五向、三维六向、三维七向中的一种或多种三维编织结构进行组合编织。在复合材料套筒花键与套筒主体连接部位的三维预制体织物内嵌入金属增强件。
沿所述三维立体编织预制体中的外滑动花键部位处预制体厚度方向的二次铺缝结构为由铺缝纤维沿所述三维立体编织预制体中的外滑动花键部位处预制体厚度方向铺缝所形成的结构。
优选的,所述二次铺缝结构所用的铺缝纤维为高强度碳纤维,高强度碳纤维为T300及其以上的碳纤维。二次铺缝结构的铺缝纤维占整个三维立体编织预制体纤维的重量比为5~50%。
优选的,所述热固性树脂为环氧树脂、酚醛树脂、不饱和聚酯树脂的任意一种,最终制得的三维编织复合材料汽车传动轴树脂的含量为35~50%。
所述的汽车传动轴的三维编织复合材料传动轴管和万向节套管端的连接通过带有滑动花键的三维编织复合材料连接套筒形成整体,三维编织复合材料连接套筒两端分别套入三维编织复合材料传动轴管和万向节套管端完成二者之间连接。三维编织复合材料滑动套筒的内外径规格、厚度以及长度根据车辆要求而灵活调整。
汽车传动轴为主承力结构件,在使用过程中会受到非常大的扭矩和弯矩,其转速高、离心力大、扭振较大,故其强度和刚度是表明汽车传动轴性能是否优异的重要指标,强度是传动轴在外力作用下抵抗永久变形和断裂的能力(永久变形、断裂),它是衡量传动轴本身承载能力(即抵抗失效能力)的重要指标。刚度是指材料在受力时抵抗弹性变形的能力(抵抗弹性变形)。本发明的传动轴管、万向节和连接套筒的三维立体编织预制体的纤维类型、比例以及排布方向组合是根据汽车传动轴传动过程的受力特点而特定选择的,是发明人经过长期的实验测试得到的,本发明通过恰当地选择各个部件的纤维混杂类型以及比例,既保证了较高的刚度,也具有较高的强度。具体而言:
传动轴管具有质量轻但能传递较大的扭矩,本发明的传动轴管特别选用高模量碳纤维、碳化硅纤维、氧化铝纤维、玄武岩纤维中的两种或两种以上混杂组合,其中高模量碳纤维具有轻质、高强、超高模、高导热、高导热、低热膨胀系数的特性,广泛应用在航天、航空、运动器材等先进复合材料的增强体。碳化硅纤维是以有机硅为原料经纺丝、碳化或气相沉积制得具有碳化硅结构的无机纤维,属于陶瓷类纤维,碳化硅纤维具有较高的比强度和比模量高、高温性能好;碳化硅纤维的热膨胀系数比金属小,因此具有良好的尺寸稳定性能;碳化硅纤维性能稳定,不存在吸潮、老化、分解等问题,保证了使用和可靠性;碳化硅纤维具有较好的界面结构,有效阻止裂纹的扩散,具有优良的抗蠕变和抗疲劳性能。氧化铝纤维具有质量轻、高强度、高模量、高耐热性、低变形、耐腐蚀,易于与各种纤维复合,抗震性好,具有抗拉强度和疲劳强度高、线性膨胀系数小。玄武岩纤维具有较高的断裂比强度,较高的耐腐蚀性、高化学稳定性;抗交错变换负载能力高;具有较低吸湿率;并且与树脂具有较好的兼容性。经过发明人长期实验测试得到,采用以上任意两种或三种的高刚度纤维,产生混杂增强效应,不同刚度的纤维在制备三维编织立体预制体发生互补效应,可以满足传动轴轴管的工作性能的要求,以使整体具备较高的刚度和耐摩擦性。当只使用一种高刚度纤维时,经过实验验证不如混杂纤维三维立体编织使得传动轴管的力学性能较好。本发明设计的传动轴管具有安装、维修方便的特点,应用广泛。
万向节能使汽车传动轴在一定角度范围变化,将动力平衡地传送给传动器内的减速齿轮,在工作时,需要其传动的交角较大,承载能力需要较强,因此在汽车传动轴部件中十分重要。本发明的万向节特别选择高刚度碳纤维与高强高韧性纤维混杂组合,其中芳纶纤维具有良好的抗冲击和耐疲劳性能,有良好的介电性和化学稳定性,耐有机溶剂、燃料、有机酸及稀浓度的强酸、强碱,耐屈折性和加工性能好。UHMWPE纤维的比强度、比模量高,耐腐蚀、抗老化性能优良,耐冲击性能、耐磨性能和耐疲劳性能优异。经过发明人长期实验测试得到,采用高刚度碳纤维与高强高韧纤维混杂组合,产生混杂增强其强度和刚度的效应,制备得到的三维编织复合材料的万向节具有优异的强度和刚度,使得万向节的承载能力更强。
经过发明人长期实验测试的得到,本发明的滑动套筒采用高强度纤维、芳纶纤维和UHMWPE纤维的任意两种混杂组合,满足滑动套筒的高强高韧的受力特点。并在连接套筒壁处的外滑动花键内设有金属增强件,进一步提高了滑动套筒的强度和刚度,从而提高了整体汽车传动轴的力学性能。
所述三维编织复合材料汽车传动轴的制备方法,包括以下步骤:
(1)通过高模量碳纤维、碳化硅纤维、玄武岩纤维中的两种或两种以上的混杂纤维组合、采用三维多向编织方式制成传动轴管三维立体编织预制体;
(2)通过高刚度碳纤维和高强高韧性纤维混杂纤维组合、采用三维多向编织方式制成万向节三维立体编织预制体;
(3)通过高强度碳纤维、芳纶纤维、UHMWPE纤维中的两种的混杂纤维组合、采用内嵌金属增强件的三维多向编织方式制成连接套筒的三维立体编织预制体;
(4)对步骤(1)中的第一内滑动花键槽、步骤(2)中的第二内滑动花键槽和步骤(3)中的外滑动花键部位采用高强度碳纤维在预制体厚度方向上进行二次铺缝强化;
(5)采用热固性树脂基体对步骤(4)中的三维立体编织预制体浸渍、复合固化成型。
步骤(5)中,复合固化成型采用真空导入与快速热固化结合的复合成型工艺,针对以上三维立体编织及二次铺缝强化预制体,采用热固性树脂(环氧树脂、酚醛树脂、不饱和聚酯树脂等中的任意一种)为基体,采用VARI真空导入工艺实现树脂胶液对混杂纤维立体结构的快速浸渍,热固化过程在大型烘箱中进行,整个固化过程保持真空体系工作,真空度保证在0.06-0.1MPa范围内,浸渍树脂后汽车传动轴含胶量保持在35-50%,固化温度和时间根据树脂特性灵活调整。优选的,固化温度为60~100℃,固化时间1~5h。
本发明的有益效果是:
(1)为了适应不同车辆长期稳定应用的要求,特别是重型汽车的高强耐久水平的传动部件要求,本发明采用了先进的高性能纤维三维织物结构增强树脂基复合材料制备一种复合材料汽车传动轴,该传动轴采用带有外滑动花键的套筒将三维编织复合材料传动轴管与三维编织复合材料万向节连接成整体,本发明可以实现高强复合材料汽车传动轴的制备,解决在重型车辆传动过程的灵活调节轴体长度和角度的难题,可根据不同的应用性能要求制备轻质、高强、大扭矩、高转速的三维编织汽车复合材料传动轴,对于提高使用安全性和燃油效率,有效降低传动噪声和车辆运行振动具有重要作用,可满足重型汽车大扭矩时的使用要求。本发明的汽车传动轴在使用时不会产生纤维拉伸破坏、纤维和树脂的脱粘、层合板的分层等问题。
(2)根据不同车型用复合材料汽车传动轴的力学特性要求,进行特定部位的纤维预制体三维编织结构设计,通过不同纤维纱线类型组合、纤维纱线排布方向组合,有针对性的提高传动轴特定部位强度和刚度以及减震性。
(3)二次缝合处理技术。对上述三维多向立体编织特定部位的预制体沿厚度方向进行二次缝编结构强化,可有效提高厚度向的强度和刚度,提高了传动轴的综合力学性能,寿命稳定性较高。三维编织与二次缝合处理相结合,一次性完成预制体制备,生产效率较高。
(4)采用真空导入与快速热固化相结合的工艺,完成三维编织复合材料汽车传动轴的制备,复合材料制品成型效率较高。
附图说明
图1和图2分别是三维编织复合材料传动轴管的主视图和截面图,其中1为三维编织复合材料传动轴管,2为第一内滑动花键槽。
图3和图4分别是三维编织复合材料万向节的主视图和万向节套筒端的截面图,3为万向节套管,4为第二内滑动花键槽,5为万向节端头。
图5和图6分别是三维编织复合材料滑动套筒的主视图和截面图,其中6为连接套筒,7为外滑动花键,8为金属增强件。
具体实施方式
本发明涉及一种应用于不同车型的三维编织纤维织物结构的复合材料汽车传动轴及其制备方法,下面结合实施例进一步说明。
实施例1
一种三维编织复合材料汽车传动轴,包括三维编织复合材料传动轴管1、三维编织复合材料万向节和三维编织复合材料连接套筒6;
如图1和图2所示,所述三维编织复合材料传动轴管1的两端头内设有若干个第一内滑动花键槽2,所述三维编织复合材料传动轴管是由高刚度纤维混杂制成的三维立体编织预制体、沿所述三维立体编织预制体中的第一内滑动花键槽2部位处预制体厚度方向的二次铺缝结构和热固性树脂复合成型;
如图3和图4所示,所述三维编织复合材料万向节是由万向节端头5和与万向节端头5相连万向节套管3组成,所述万向节套管3的壁内设有若干个第二内滑动花键槽4,所述三维编织复合材料万向节包括高刚度碳纤维和高强高韧性纤维混杂制成的三维立体编织预制体、沿所述三维立体编织预制体中的第二内滑动花键槽4部位处预制体厚度方向的二次铺缝结构和热固性树脂复合成型;
如图5和图6所示,所述三维编织复合材料连接套筒6的筒壁设有若干个与第一内滑动花键槽2和第二滑动花键槽4相匹配的外滑动花键7,所述外滑动花键7与所述筒壁连接处嵌有金属增强件8,所述三维编织复合材料连接套筒6包括高强高韧纤维混杂制成的三维立体编织预制体、沿所述三维立体编织预制体中的外滑动花键7部位处预制体厚度方向的二次铺缝结构和热固性树脂复合成型。
本发明设计的三维编织复合材料汽车传动轴的制备包括如下步骤:
第一,三维编织复合材料传动轴管预制体的制备。采用M40J高模量碳纤维与碳化硅纤维混杂组合作为预制体编织长丝,碳纤维与碳化硅纤维的混杂比例为4:1,采用三维四向编织方式进行传动轴管主体预制体的成型,该传动轴管两端头内部设有第一滑动花键槽2,其中第一滑动花键槽2位置采用三维五向编织工艺成型,以备与其他部件连接,在花键槽部位的预制体织物厚度向采用高强度T700碳纤维进行二次铺缝强化,铺缝强化纤维比例占传动轴管三维织物预制体纤维整体的20%。
第二,三维编织复合材料万向节预制体的制备。采用碳化硅纤维与T300碳纤维混杂作为预制体编织长丝,碳化硅纤维与碳纤维的混杂比例为1:3,采用三维五向编织方式进行万向节主体预制体的成型,其中在万向节套管3一侧与连接套筒6位置采用三维六向编织结构制备预制体,在万向节端头5一侧采用三维六向编织结构制备预制体,万向节套管一侧内部带有第二滑动花键槽4,以备与其他部件连接。万向节三维织物预制体成型后,在花键槽部位的预制体织物厚度向采用高强型T700碳纤维进行二次铺缝强化,铺缝强化纤维比例占万向节三维织物预制体纤维整体的20%。
第三,三维编织复合材料连接套筒预制体制备。采用芳纶纤维和T300碳纤维作为预制体编织长丝,芳纶纤维和T300碳纤维的混杂比例为1:2,采用三维六向编织方式进行连接套筒主体预制体的成型,在连接套筒织物预制体表面的外滑动花键7编织过程中在其内部嵌入金属增强件8,金属增强件8表面采用三维七向编织方式与套筒主体预制体进行连接。连接套筒三维织物预制体成型后,在金属增强件8表面预制体织物的厚度向采用高强度T700碳纤维进行二次铺缝强化,铺缝强化纤维比例占连接套筒三维织物预制体纤维整体的26%。
第四,三维编织复合材料汽车传动轴部件的复合成型。针对于以上三维立体编织及二次铺缝强化预制体,采用热固性环氧树脂胶黏剂为基体,采用VARI真空导入工艺实现树脂胶液对混杂纤维立体结构的快速浸渍,热固化过程在大型烘箱中进行,整个浸渍复合过程的真空度保持在0.08MPa。浸渍树脂后的传动轴部件于80℃固化3小时后成型,含胶量保持在40%。该三维编织复合材料汽车传动轴的配件组合结构,经过实验验证,本实施例1的汽车传动轴满足重型汽车大扭矩时的使用要求。与传统二维缠绕复合材料汽车传动轴相比,强度提高70%,刚度提高50%以上。与对比例1中的三维复合材料汽车传动轴相比,强度提高50%以上,刚度提高30%以上。
对比例1
本对比例1设计的三维编织复合材料汽车传动轴的制备包括如下步骤:
第一,三维编织复合材料传动轴管预制体的制备。采用玻璃纤维作为预制体编织长丝,采用三维四向编织方式进行传动轴管主体预制体的成型,该传动轴管两端头内部设有第一滑动花键槽,其中第一滑动花键槽位置采用三维五向编织工艺成型,以备与其他部件连接,在花键槽部位的预制体织物厚度向采用高强度T700碳纤维进行二次铺缝强化,铺缝强化纤维比例占传动轴管三维织物预制体纤维整体的20%。
第二,三维编织复合材料万向节预制体的制备。采用玻璃纤维作为预制体编织长丝,采用三维五向编织方式进行万向节主体预制体的成型,其中在万向节套管一侧与连接套筒位置采用三维六向编织结构制备预制体,在万向节端头一侧采用三维六向编织结构制备预制体,万向节套管一侧内部带有第二滑动花键槽4,以备与其他部件连接。万向节三维织物预制体成型后,在花键槽部位的预制体织物厚度向采用高强型T700碳纤维进行二次铺缝强化,铺缝强化纤维比例占万向节三维织物预制体纤维整体的20%。
第三,三维编织复合材料连接套筒预制体制备。采用玻璃纤维作为预制体编织长丝,采用三维六向编织方式进行连接套筒主体预制体的成型,在连接套筒织物预制体表面的外滑动花键编织过程中在其内部嵌入金属增强件,金属增强件表面采用三维七向编织方式与套筒主体预制体进行连接。连接套筒三维织物预制体成型后,在金属增强件8表面预制体织物的厚度向采用高强度T700碳纤维进行二次铺缝强化,铺缝强化纤维比例占连接套筒三维织物预制体纤维整体的26%。
第四,三维编织复合材料汽车传动轴部件的复合成型。针对于以上三维立体编织及二次铺缝强化预制体,采用热固性环氧树脂胶黏剂为基体,采用VARI真空导入工艺实现树脂胶液对混杂纤维立体结构的快速浸渍,热固化过程在大型烘箱中进行,整个浸渍复合过程的真空度保持在0.08MPa。浸渍树脂后的传动轴部件于80℃固化3小时后成型,含胶量保持在40%。
经过实验测试与分析,采用玻璃纤维制备得到的汽车传动轴的力学性能均不如实施例1中的汽车传动轴的力学性能好。
实施例2
本发明设计的三维编织复合材料汽车传动轴的制备包括如下步骤:
第一,三维编织复合材料传动轴管预制体的制备。采用M60J高模量碳纤维与氧化铝纤维混杂组合作为预制体编织长丝,碳纤维与氧化铝纤维的混杂比例为6:1,采用三维五向编织方式进行传动轴管主体预制体的成型,该传动轴管两端头内部设有第一滑动花键槽,其中第一滑动花键槽位置采用三维六向编织工艺成型,以备与其他部件连接,在花键槽部位的预制体织物厚度向采用高强型T300碳纤维进行二次铺缝强化,铺缝强化纤维比例占传动轴管三维织物预制体纤维整体的10%。
第二,三维编织复合材料万向节预制体的制备。采用氧化铝纤维与T700碳纤维混杂作为预制体编织长丝,氧化铝纤维与碳纤维的混杂比例为1:2,采用三维四向编织方式进行万向节主体预制体的成型,其中在万向节套管一侧与连接套筒位置采用三维五向编织结构制备预制体,在万向节端头一侧采用三维七向编织结构制备预制体,万向节套管一侧内部带有第二滑动花键槽,以备与其他部件连接。万向节三维织物预制体成型后,在花键槽部位的预制体织物厚度向采用高强型T700碳纤维进行二次铺缝强化,铺缝强化纤维比例占万向节三维织物预制体纤维整体的15%。
第三,三维编织复合材料连接套筒预制体制备。采用T800碳纤维和UHMWPE纤维混杂组合作为预制体编织长丝,二者混杂比例为1:1,采用三维六向编织方式进行连接套筒主体预制体的成型,在连接套筒织物预制体表面的外滑动花键编织过程中在其内部嵌入金属增强件,金属增强件表面采用三维七向编织方式与套筒主体预制体进行连接。连接套筒三维织物预制体成型后,在金属增强件表面预制体织物的厚度向采用高强型T800碳纤维进行二次铺缝强化,铺缝强化纤维比例占连接套筒三维织物预制体纤维整体的40%。
第四,三维编织复合材料汽车传动轴部件的复合成型。针对于以上三维立体编织及二次铺缝强化预制体,采用热固性不饱和聚酯树脂胶黏剂为基体,采用VARI真空导入工艺实现树脂胶液对混杂纤维立体结构的快速浸渍,热固化过程在大型烘箱中进行,整个浸渍复合过程的真空度保持在0.07MPa。浸渍树脂后的传动轴部件于85℃固化2.5小时后成型,含胶量保持在39%。该三维编织复合材料汽车传动轴的配件组合结构,经过实验验证,本实施例1的汽车传动轴满足重型汽车大扭矩时的使用要求。与传统二维缠绕复合材料汽车传动轴相比,强度提高80%,刚度提高60%以上。与对比例2-1中的三维复合材料汽车传动轴相比,强度提高了75%,刚度提高了8.5%。与对比例2-2中的三维复合材料汽车传动轴相比,强度提高了7.8%,刚度提高了56%。与对比例2-3中的三维复合材料汽车传动轴相比,强度提高了40%,刚度提高了55%。
对比例2-1:
与实施例2的区别是:传动轴管只采用M60J高模量碳纤维作为预制体编织长丝,其他与实施例2相同。经过实验测试得到,该三维编织复合材料汽车传动轴的配件组合结构,与实施例2中的汽车传动轴相比,虽然强度与实施例2中的相一致,但是刚度明显降低。
对比例2-2:
与实施例2的区别是:万向节只采用氧化铝纤维作为预制体编织长丝,其他与实施例2相同。经过实验测试得到,该三维编织复合材料汽车传动轴的配件组合结构,与实施例2中的汽车传动轴相比,虽然刚度与实施例2中的相一致,但是强度较低。
对比例2-3:
与实施例2中的区别是:在制备完传动轴管预制体、万向节预制体和连接套筒预制体后,没有进行二次铺缝强化步骤,其他与实施例2相同。经过实验测试得到,该三维编织复合材料汽车传动轴的配件组合结构,与实施例2中的汽车传动轴相比,其刚度和强度都明显降低。
经过实验测试与分析,采用其他纤维混杂制备得到的汽车传动轴或者没有采用二次铺缝处理的汽车传动轴的力学性能均不如本发明的汽车传动轴的力学性能好。
实施例3
本发明设计的三维编织复合材料汽车传动轴的制备包括如下步骤:
第一,三维编织复合材料传动轴管预制体的制备。采用M40J高模量碳纤维与玄武岩纤维混杂组合作为预制体编织长丝,碳纤维与玄武岩纤维的混杂比例为1:1,采用三维五向编织方式进行传动轴管主体预制体的成型,该传动轴管两端头内部有第一滑动花键槽,其中第一滑动花键槽位置采用三维六向编织工艺成型,以备与其他部件连接,在花键槽部位的预制体织物厚度向采用高强型T800碳纤维进行二次铺缝强化,铺缝强化纤维比例占传动轴管三维织物预制体纤维整体的13%。
第二,三维编织复合材料万向节预制体的制备。采用玄武岩纤维与T700碳纤维混杂作为预制体编织长丝,氧化铝纤维与碳纤维的混杂比例为1:3,采用三维五向编织方式进行万向节主体预制体的成型,其中在万向节套管一侧与连接套筒位置采用三维五向编织结构制备预制体,在万向节端头一侧采用三维七向编织结构制备预制体,万向节套管一侧内部带有第二滑动花键槽,以备与其他部件连接。万向节三维织物预制体成型后,在花键槽部位的预制体织物厚度向采用高强型T700碳纤维进行二次铺缝强化,铺缝强化纤维比例占万向节三维织物预制体纤维整体的14%。
第三,三维编织复合材料连接套筒预制体制备。采用芳纶纤维和T700碳纤维混杂组合作为预制体编织长丝,二者的混杂比例为1:4,采用三维四向编织方式进行连接套筒主体预制体的成型,在连接套筒织物预制体表面的外滑动花键编织过程中在其内部嵌入金属增强件,金属增强件表面采用三维六向编织方式与套筒主体预制体进行连接。连接套筒三维织物预制体成型后,在金属增强件表面预制体织物的厚度向采用高强型T800碳纤维进行二次铺缝强化,铺缝强化纤维比例占三维织物预制体纤维整体的32%。
第四,三维编织复合材料汽车传动轴部件的复合成型。针对于以上三维立体编织及二次铺缝强化预制体,采用热固性酚醛树脂胶黏剂为基体,采用VARI真空导入工艺实现树脂胶液对混杂纤维立体结构的快速浸渍,热固化过程在大型烘箱中进行,整个浸渍复合过程的真空度保持在0.08MPa。浸渍树脂后的传动轴部件于82℃固化3小时后成型,含胶量保持在37%。该三维编织复合材料汽车传动轴的配件组合结构,与传统二维缠绕复合材料汽车传动轴相比,强度提高75%,刚度提高65%以上。经过实验验证,本实施例1的汽车传动轴满足重型汽车大扭矩时的使用要求。
实施例4
本发明设计的三维编织复合材料汽车传动轴的制备包括如下步骤:
第一,三维编织复合材料传动轴管预制体的制备。采用M40J高模量碳纤维与玄武岩纤维混杂组合作为预制体编织长丝,碳纤维与玄武岩纤维的混杂比例为3:1,采用三维四向编织方式进行传动轴管主体预制体的成型,该传动轴管两端头内部有第一滑动花键槽,其中第一滑动花键槽位置采用三维五向编织工艺成型,以备与其他部件连接,在花键槽部位的预制体织物厚度向采用高强型T700碳纤维进行二次铺缝强化,铺缝强化纤维比例占传动轴管三维织物预制体纤维整体的15%。
第二,三维编织复合材料万向节预制体的制备。采用玄武岩纤维与T300碳纤维混杂作为预制体编织长丝,氧化铝纤维与碳纤维的混杂比例为1:2,采用三维五向编织方式进行万向节主体预制体的成型,其中在万向节套管一侧与连接套筒位置采用三维五向编织结构制备预制体,在万向节端头一侧采用三维六向编织结构制备预制体,万向节套管一侧内部带有第二滑动花键槽,以备与其他部件连接。万向节三维织物预制体成型后,在花键槽部位的预制体织物厚度向采用高强型T800碳纤维进行二次铺缝强化,铺缝强化纤维比例占万向节三维织物预制体纤维整体的19%。
第三,三维编织复合材料连接套筒预制体制备。采用T300碳纤维和UHMWPE纤维混杂组合作为预制体编织长丝,二者的混杂比例为2:1,采用三维五向编织方式进行连接套筒主体预制体的成型,在连接套筒织物预制体表面的外滑动花键编织过程中在其内部嵌入金属增强件,金属增强件表面采用三维六向编织方式与套筒主体预制体进行连接。连接套筒三维织物预制体成型后,在金属增强件表面预制体织物的厚度向采用高强型T800碳纤维进行二次铺缝强化,铺缝强化纤维比例占连接套筒三维织物预制体纤维整体的42%。
第四,三维编织复合材料汽车传动轴部件的复合成型。针对于以上三维立体编织及二次铺缝强化预制体,采用热固性环氧树脂胶黏剂为基体,采用VARI真空导入工艺实现树脂胶液对混杂纤维立体结构的快速浸渍,热固化过程在大型烘箱中进行,整个浸渍复合过程的真空度保持在0.06MPa。浸渍树脂后的传动轴部件于70℃固化4小时后成型,含胶量保持在40%。该三维编织复合材料汽车传动轴的配件组合结构,与传统二维缠绕复合材料汽车传动轴相比,强度提高80%,刚度提高60%以上。经过实验验证,本实施例1的汽车传动轴满足重型汽车大扭矩时的使用要求。

Claims (15)

1.一种三维编织复合材料汽车传动轴,其特征是:包括三维编织复合材料传动轴管、三维编织复合材料万向节和三维编织复合材料连接套筒;
所述三维编织复合材料传动轴管的两端部轴管壁内设有若干个第一内滑动花键槽,所述三维编织复合材料传动轴管是由高刚度纤维混杂制成的三维立体编织预制体、沿所述三维立体编织预制体中的第一内滑动花键槽部位处预制体厚度方向的二次铺缝结构和热固性树脂复合成型;
所述三维编织复合材料万向节是由万向节端头和与万向节端头相连万向节套管组成,所述万向节套管的壁内设有若干个第二内滑动花键槽,所述三维编织复合材料万向节包括高刚度碳纤维和高强高韧性纤维混杂制成的三维立体编织预制体、沿所述三维立体编织预制体中的第二内滑动花键槽部位处预制体厚度方向的二次铺缝结构和热固性树脂复合成型;
所述三维编织复合材料连接套筒的筒壁设有若干个与第一内滑动花键槽和第二滑动花键槽相匹配的外滑动花键,所述外滑动花键与所述筒壁连接处设有金属增强件,所述三维编织复合材料连接套筒包括高强高韧纤维混杂制成的三维立体编织预制体、沿所述三维立体编织预制体中的外滑动花键部位处预制体厚度方向的二次铺缝结构和热固性树脂复合成型。
2.如权利要求1所述的汽车传动轴,其特征是:所述三维编织复合材料传动轴管中,所述高刚度纤维选用高模量碳纤维、碳化硅纤维、氧化铝纤维、玄武岩纤维的任意两种或两种以上混杂组合。
3.如权利要求2所述的汽车传动轴,其特征是:所述高模量碳纤维为M40J碳纤维和/或M60J碳纤维。
4.如权利要求2所述的汽车传动轴,其特征是:所述高模量碳纤维、碳化硅纤维、氧化铝纤维、玄武岩纤维的混杂比例根据实际工况要求灵活调整。
5.如权利要求1所述的汽车传动轴,其特征是:所述三维编织复合材料万向节中,高刚度碳纤维为M40J碳纤维和/或M60J碳纤维、碳化硅纤维、氧化铝纤维、玄武岩纤维中的任意一种;高强高韧性纤维为T300及其以上的碳纤维、芳纶纤维、UHMWPE纤维中的任意一种。
6.如权利要求1所述的汽车传动轴,其特征是:所述万向节端头与万向节端头采用一体化编织成型的方式,内外径规格、厚度以及长度根据车辆要求而灵活调整。
7.如权利要求6所述的汽车传动轴,其特征是:万向节端头选用十字轴式、球笼式、球叉式的任意一种形式。
8.如权利要求1所述的汽车传动轴,其特征是:所述三维编织复合材料连接套筒中,所述高强高韧性纤维为T300及其以上的碳纤维、芳纶纤维、UHMWPE纤维的任意两种混杂组合。
9.如权利要求8所述的汽车传动轴,其特征是:两种纤维的混杂比例根据实际工况要求灵活调整。
10.如权利要求1所述的汽车传动轴,其特征是:所述三维立体编织预制体选用三维四向、三维五向、三维六向、三维七向中的一种或多种三维编织结构进行组合编织。
11.如权利要求1所述的汽车传动轴,其特征是:所述二次铺缝结构所用的铺缝纤维为高强度碳纤维,高强度碳纤维为T300及其以上的碳纤维。
12.如权利要求1所述的汽车传动轴,其特征是:所述二次铺缝结构的铺缝纤维占整个三维立体编织预制体纤维的重量比为5~50%。
13.如权利要求1所述的汽车传动轴,其特征是:所述热固性树脂为环氧树脂、酚醛树脂、不饱和聚酯树脂的任意一种。
14.如权利要求1所述的汽车传动轴,其特征是:最终制得的三维编织复合材料汽车传动轴树脂的含量为35~50%。
15.一种三维编织复合材料汽车传动轴的制备方法,其特征是,包括以下步骤:
(1)通过高模量碳纤维、碳化硅纤维、玄武岩纤维中的两种或两种以上的混杂纤维组合、采用三维多向编织方式制成传动轴管三维立体编织预制体;
(2)通过高刚度碳纤维和高强高韧性纤维混杂纤维组合、采用三维多向编织方式制成万向节三维立体编织预制体;
(3)通过高强度碳纤维、芳纶纤维、UHMWPE纤维中的两种的混杂纤维组合、采用内嵌金属增强件的三维多向编织方式制成连接套筒的三维立体编织预制体;
(4)对步骤(1)中的第一内滑动花键槽、步骤(2)中的第二内滑动花键槽和步骤(3)中的外滑动花键部位采用高强度碳纤维在预制体厚度方向上进行二次铺缝强化;
(5)采用热固性树脂基体对步骤(4)中的三维立体编织预制体浸渍、复合固化成型。
CN201610131159.6A 2016-03-09 2016-03-09 一种三维编织复合材料汽车传动轴及其制备方法 Active CN105690793B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610131159.6A CN105690793B (zh) 2016-03-09 2016-03-09 一种三维编织复合材料汽车传动轴及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610131159.6A CN105690793B (zh) 2016-03-09 2016-03-09 一种三维编织复合材料汽车传动轴及其制备方法

Publications (2)

Publication Number Publication Date
CN105690793A CN105690793A (zh) 2016-06-22
CN105690793B true CN105690793B (zh) 2017-11-28

Family

ID=56221022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610131159.6A Active CN105690793B (zh) 2016-03-09 2016-03-09 一种三维编织复合材料汽车传动轴及其制备方法

Country Status (1)

Country Link
CN (1) CN105690793B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106089123B (zh) * 2016-08-09 2018-11-30 山东中恒碳纤维科技发展有限公司 一种混杂纤维三维编织热固性树脂基复合材料抽油杆扶正器及其制备方法、抽油杆
CN106522856B (zh) * 2016-10-31 2019-03-08 吉林市圣赢碳纤维制品有限公司 一种混杂纤维增强热固性树脂复合材料抽油杆扶正器及其制备方法
CN106838601B (zh) * 2016-12-12 2023-08-22 山东大学 智能化二维碳纤维复合材料耐压气瓶及其制备方法
CN108248139B (zh) * 2018-01-22 2023-06-23 山东大学 三维编织碳碳复合材料板及其制备方法
CN108340747A (zh) * 2018-02-12 2018-07-31 智车优行科技(上海)有限公司 用于汽车的横向稳定杆装置及其汽车
CN109487371A (zh) * 2018-12-19 2019-03-19 长春安旨科技有限公司 一种高强高韧纤维及其制备方法
CN111434483A (zh) * 2019-01-14 2020-07-21 中国科学院宁波材料技术与工程研究所 一种车用金属内衬编织复合材料及其制备方法和应用
CN111779755A (zh) * 2019-04-04 2020-10-16 士荣企业股份有限公司 动力传动轴总成
CN110126300A (zh) * 2019-05-05 2019-08-16 宜兴市新立织造有限公司 一种采用三维编织的复合材料起落架及其制备方法
CN110254525B (zh) * 2019-05-05 2021-12-03 宜兴市新立织造有限公司 一种三维织物复合材料汽车b柱及其制备方法
CN111469601B (zh) * 2020-05-19 2023-09-26 山东大学 一种三维编织热塑性复合材料汽车轮圈及其制备与应用
CN112157867A (zh) * 2020-07-29 2021-01-01 浙江理工大学 一种可主动变刚度的横向稳定杆制备方法及制得的稳定杆
CN112727903B (zh) * 2020-12-29 2024-05-07 连云港神鹰复合材料科技有限公司 金属轴头式碳纤维复合材料传动轴
CN113217305B (zh) * 2021-05-17 2022-05-13 广州赛特新能源科技发展有限公司 一种风力发电机复合轴及风力发电机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2946530A1 (de) * 1979-11-17 1981-05-27 Felten & Guilleaume Carlswerk AG, 5000 Köln Antriebswelle aus faserverstaerktem kunststoff, mit festgewickelten endstuecken
EP0440461A1 (en) * 1990-01-31 1991-08-07 Sumitomo Chemical Company, Limited Drive shaft made of fiber-reinforced plastics
CN2234891Y (zh) * 1995-07-19 1996-09-11 朱洪颜 多功能机动车辆遥控防盗报警器
JP2005069470A (ja) * 2003-08-05 2005-03-17 Nsk Ltd 動力伝達機構とこれを組み込んだ電動式パワーステアリング装置及び弾性歯付リングの製造方法
CN203516466U (zh) * 2013-07-30 2014-04-02 广东锻压机床厂有限公司 一种碳纤三维编织物增强聚合物轴瓦及其成型装置
CN105003525A (zh) * 2015-07-17 2015-10-28 芜湖市汽车产业技术研究院有限公司 整体式金属-复合材料传动轴及其成型工艺
CN105128357A (zh) * 2015-08-13 2015-12-09 山东大学 一种层间加强二维/三维编织复合材料汽车板簧及其制备方法

Also Published As

Publication number Publication date
CN105690793A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
CN105690793B (zh) 一种三维编织复合材料汽车传动轴及其制备方法
CN205315467U (zh) 一种车辆用碳纤维复合材料传动轴
CN105121175A (zh) 用于复合轮的端面与轮辋连接部
CN102815210B (zh) 一种拉挤缠绕成型复合材料汽车传动轴及其制备方法
CN108799315B (zh) 车用复合材料传动轴及其制备方法
CN104743087B (zh) 一种船舶用三维编织复合材料螺旋桨叶片及其制备方法
CN204527613U (zh) 一种飞机用三维编织复合材料螺旋桨叶片
CN102924741A (zh) 一种提高液态成型复合材料表面耐磨损性能的方法
CN108262984A (zh) 一种纤维织物复合材料结构件及其制备方法
CN104743099B (zh) 一种飞机用三维编织复合材料螺旋桨叶片及其制备方法
CN205371275U (zh) 一种三维编织复合材料汽车传动轴
CN106931028A (zh) 一种高性能复合材料传动轴
CN210531442U (zh) 一种碳纤维复合材料传动轴轴管接头结构
CN109109340B (zh) 一种复合材料轴及其制备方法和应用
CN111434483A (zh) 一种车用金属内衬编织复合材料及其制备方法和应用
CN112032182A (zh) 一种复合材料耐用传动轴
CN109941408A (zh) 一种碳纤维复合材料深潜耐压舱及其制备方法
CN215409731U (zh) 一种高性能编织复合材料传动轴
CN102009481A (zh) 一种制造混凝土泵车用碳纤维臂架的方法
CN202214986U (zh) 混凝土泵车用碳纤维复合材料臂架
CN215370331U (zh) 一种三维编织复合材料离心叶轮
CN108263496A (zh) 碳纤维织物复合材料整车骨架及其制备方法
CN205575995U (zh) 三维编织复合材料机械臂及其工程机械设备
CN202718996U (zh) 销轴、工程机械的臂架的连接结构和混凝土泵送设备
CN105863960A (zh) 一种垂直轴复合材料风电叶片及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 251100 Qihe Qilu high tech Development Zone, Dezhou, Shandong

Patentee after: Shandong Zhongheng new carbon fiber technology development Co. Ltd.

Address before: 251100 Qihe Qilu high tech Development Zone, Dezhou, Shandong

Patentee before: SHANDONG ZHONGHENG CARBONFIBER SCIEN AND TECHNOLOGY DEVELOPMENT CO., LTD.