WO2016072649A1 - 도전재의 제조방법, 이로부터 제조된 도전재 및 이를 포함하는 리튬 이차전지 - Google Patents

도전재의 제조방법, 이로부터 제조된 도전재 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2016072649A1
WO2016072649A1 PCT/KR2015/011235 KR2015011235W WO2016072649A1 WO 2016072649 A1 WO2016072649 A1 WO 2016072649A1 KR 2015011235 W KR2015011235 W KR 2015011235W WO 2016072649 A1 WO2016072649 A1 WO 2016072649A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive material
oxide
metal
group
iron
Prior art date
Application number
PCT/KR2015/011235
Other languages
English (en)
French (fr)
Inventor
류지훈
김동명
김기태
조래환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2017508002A priority Critical patent/JP6623214B2/ja
Priority to EP15857341.0A priority patent/EP3217454B1/en
Priority to CN201580046476.1A priority patent/CN106663815B/zh
Priority to US15/503,251 priority patent/US10637064B2/en
Publication of WO2016072649A1 publication Critical patent/WO2016072649A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1275Controlling the microwave irradiation variables
    • B01J2219/1281Frequency
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method of manufacturing a conductive material capable of preventing the occurrence of defects at low voltage of the battery due to metal impurities, a conductive material prepared therefrom and a lithium secondary battery comprising the same.
  • a secondary battery has a structure in which a lithium electrolyte is impregnated into an electrode assembly including a cathode including a lithium transition metal oxide, a cathode including a carbon-based active material, and a separator.
  • the positive electrode is prepared by coating a positive electrode mixture containing a lithium transition metal oxide on an aluminum foil
  • the negative electrode is prepared by coating a negative electrode mixture including a carbon-based active material on a copper foil.
  • a conductive material is generally added to the positive electrode and the negative electrode for the purpose of improving the electrical conductivity of the active material.
  • a conductive material carbon-based materials such as graphite such as natural graphite and artificial graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black are mainly used.
  • Conductive fibers such as carbon fiber and metal fiber, are used.
  • the secondary battery deteriorates the life characteristics as the components deteriorate due to various causes
  • one of the main causes is the incorporation of metal impurities contained in the conductive material in the battery.
  • metal impurities such as iron (Fe) contained in the conductive material are dissolved in the electrolyte by reacting at an operating voltage range of about 3.0V to 4.5V of the lithium secondary battery, and the dissolved metal impurities are in the form of metal at the negative electrode. It is reprecipitated. The precipitated metal penetrates the separator and shorts with the positive electrode, causing a low voltage failure, and deteriorating the capacity characteristics and life characteristics of the secondary battery, thereby preventing its function as a battery. Such low voltage defects can be distinguished only in the finished product stage, and thus have a large manufacturing loss.
  • the first technical problem to be solved by the present invention is a method of manufacturing a conductive material that can prevent the dissolution of metal impurities and thereby the failure of the battery at low voltage, and improve the performance characteristics of the battery, in particular the capacity and life characteristics and It is to provide a conductive material produced using this.
  • a second technical problem to be solved by the present invention is to provide an electrode, a lithium secondary battery, a battery module and a battery pack including a conductive material prepared according to the manufacturing method.
  • an embodiment of the present invention includes the step of removing the metallic impurities in the conductive material by converting the metallic impurities into a metal oxide by irradiating the microwave to the conductive material containing the metallic impurities
  • a method for producing a conductive material is provided.
  • an electrode for a lithium secondary battery including the conductive material is provided.
  • a battery is provided.
  • a battery module and a battery pack including the lithium secondary battery as a unit cell are provided.
  • a conductive material in the method of manufacturing a conductive material according to the present invention, by converting only the metal impurity contained in the conductive material by the microwave treatment into a metal oxide that is selectively inactive at the operating voltage of the secondary battery and does not elute in the electrolyte, It is possible to prevent the dissolution of metal impurities in the conductive material in the operating voltage range and thereby the occurrence of defects at low voltage, and to improve the performance characteristics of the battery, in particular the capacity and life characteristics.
  • the manufacturing method of the conductive material can be applied regardless of the type of battery, such as polymer, square or cylindrical, and in the manufacturing method, the step of removing the metal impurities by the microwave treatment is more reactive than thermal firing or chemical reaction It is easy to control the conditions and the reaction time is short, so that excellent processability can be exhibited.
  • Figure 2 is a graph showing the results of thermogravimetric analysis of Fe powder contained in the super blood before the microwave irradiation in Experimental Example 1.
  • Figure 3 is a graph showing the thermogravimetric analysis of the Cu powder contained in the super blood before the microwave irradiation in Experimental Example 1.
  • Figure 4 is a graph showing the thermogravimetric analysis of the FeS powder contained in the super blood before the microwave irradiation in Experimental Example 1.
  • FIG. 6 is a graph showing X-ray diffraction analysis results before and after microwave irradiation of FeS powders included in super blood in Experimental Example 2.
  • FIG. 6 is a graph showing X-ray diffraction analysis results before and after microwave irradiation of FeS powders included in super blood in Experimental Example 2.
  • the present invention is a heat treatment by microwave irradiation for a conductive material containing a metal impurity by converting the metal impurity in the conductive material into a stable metal oxide that is inactive within the operating voltage range of the battery and does not dissolve in the electrolyte solution And it is characterized in that to provide a conductive material that can prevent the deposition of metal impurities in the negative electrode and thereby the low voltage failure of the battery, and improve the performance characteristics, particularly capacity and life characteristics of the battery.
  • the method for manufacturing a conductive material according to an embodiment of the present invention by irradiating the microwave to the conductive material containing a metal impurity to convert the metal impurity into a metal oxide, that is, the oxide of the metal impurities, in the conductive material Removing the metallic impurities.
  • the conductive material is used to impart conductivity to the electrode of the secondary battery, and may be used without particular limitation as long as it has electronic conductivity without causing chemical change in the secondary battery.
  • Specific examples include natural graphite, artificial graphite, graphitized carbon fiber, amorphous carbon, coke, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, denka black, super P Carbon-based materials such as super C, carbon fiber, carbon nanotubes, and activated carbon; Needle or branched conductive whisker such as zinc oxide whisker, calcium carbonate whisker, titanium dioxide whisker, silicon oxide whisker, silicon carbide whisker, aluminum borate whisker, magnesium borate whisker, potassium titanate whisker, silicon nitride whisker, silicon carbide whisker, alumina whisker Whisker; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and the like, or a mixture of two or more kinds thereof
  • the conductive material may be the carbon-based material, and more specifically, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, denka black, super P, super C Including one or two or more selected from the group consisting of carbon fibers, carbon nanotubes, and activated carbon, the stability of the conductive material manufacturing process and the improvement effect according to the use of the conductive material in the battery is more excellent.
  • the conductive material inevitably includes metal impurities generated in the manufacturing process or incorporated in the process.
  • the metal impurity may be a metal, an alloy of the metal, or a sulfide including the same, and may include any one or two or more thereof. More specifically, the metal may be any one selected from the group consisting of iron (Fe), copper (Cu), zinc (Zn), calcium (Ca), titanium (Ti), and chromium (Cr).
  • the alloy may be one containing two or more metal elements selected from these metals. More specifically, the metal impurity may be iron (Fe), iron sulfide (FeS), copper (Cu), zinc (Zn), calcium (Ca), titanium (Ti), or chromium (Cr). Species alone or mixtures of two or more species may be included as metal impurities in the conductive material.
  • the content of the metal impurity in the conductive material may vary depending on the conditions in the manufacturing process, it is not particularly limited. However, in consideration of the conductivity required in the application of the lithium impurity in the normal secondary battery, it may be included in an amount of 1% by weight or less, more specifically 0.01 to 1% by weight relative to the total weight of the conductive material.
  • the metal impurities are then thermally oxidized by microwave treatment to be converted into oxides of the metal impurities.
  • the metal oxide converted from the metal impurity may specifically be iron oxide, iron sulfide oxide, copper oxide, zinc oxide, calcium oxide, titanium oxide, or chromium oxide, and one or a mixture of two or more of these may be finally prepared. It may be included in the conductive material. More specifically, the metal oxide is FeO, Fe 3 O 4 , Fe 2 O 3 , iron sulfide oxide, CuO, CaO, TiO 2 Or ZnO, and the like, and more specifically, Fe 2 O 3 or Fe 3 O 4 .
  • the conversion of the metal impurity to the metal oxide may be affected by the microwave output during the microwave treatment, the microwave irradiation time, and the heating temperature according to the microwave irradiation.
  • the microwave treatment for the conductive material containing a metal impurity has a frequency of 1kHz to 50kHz, a microwave having an output of 400W to 2000W Can be carried out by irradiating for 20 seconds or less.
  • the conversion efficiency of the metal impurities contained in the conductive material into the metal oxide during microwave irradiation is high.
  • the frequency of the microwave is less than 1 kHz, or the output amount is less than 400W, the heating effect is insufficient, the conversion efficiency to the metal oxide is low, the frequency is more than 50kHz, or the output amount exceeds 2000W, Structural changes or side reactions can be caused.
  • the conductive material reacts and there is a risk of explosion.
  • the microwave treatment has a frequency of 2 kHz to 20 kHz and a microwave having an output of 400 W to 1500 W for 10 seconds to 20 seconds. It can be carried out by irradiation for seconds.
  • the conductive material containing metal impurities may be heated to 350 ° C. to 600 ° C. such that the metal impurities in the conductive material may be thermally oxidized.
  • the heating temperature according to the microwave irradiation is less than 350 ° C, the metal impurities may not be converted into metal oxides because they are not oxidized, and the conversion to metal oxides may take too long.
  • the oxidation of the conductive material starts when the heating temperature exceeds 600 °C, the structure of the conductive material may be deformed or by-products may be produced.
  • oxidation may start at about 600 ° C.
  • the metal impurities such as Fe and Cu start oxidation at about 300 ° C. and FeS and Zn start at about 400 ° C., they can be completely oxidized at a temperature of about 600 ° C. or less, which is the oxidation temperature of the super blood. .
  • the microwave irradiation may be preferably carried out in the air or an oxidation atmosphere such as oxygen.
  • the form of the conductive material, the metal impurity or metal oxide, the oxidation temperature, and the content of the metal impurity or metal oxide are magnetic or X-ray diffraction (XRD), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC), Modulated Differential Scanning Calorimetry (MDSC), Thermogravimetric Analysis (TGA), Thermogravimetric- It can be analyzed or confirmed by a method that includes one or more thermal analytical methods, including infrared (Irmogravimetric-infrared) analysis and melting point measurement.
  • XRD X-ray diffraction
  • DTA Differential Thermal Analysis
  • DSC Differential Scanning Calorimetry
  • MDSC Modulated Differential Scanning Calorimetry
  • TGA Thermogravimetric- It can be analyzed or confirmed by a method that includes one or more thermal analytical methods, including infrared (Irmogravimetric-infrared) analysis and melting point
  • the time point at which the conductive material and each of the metal impurities are oxidized may be analyzed by, for example, thermogravimetric analysis (TGA), and the oxidized form of the conductive material, metal impurities, and metal oxides generated after firing may be X-rays. It can be analyzed by diffraction method (XRD).
  • TGA thermogravimetric analysis
  • XRD diffraction method
  • Metal impurities contained in an amount of about 0.01 to 1% by weight relative to the total weight of the conductive material before microwave irradiation may be converted to metal oxide by 100% by microwave treatment, but the microwave output time, microwave irradiation time, Some of the metal impurities may be converted into metal oxides at the heating temperature according to the microwave irradiation.
  • the metal oxide may be converted to an amount of 0.5 to 100% by weight, preferably 30 to 100% by weight, more preferably 60 to 100% by weight, based on the total weight of the metal impurities.
  • the metal oxide exhibits inactivity in the operating voltage range of the battery, 3V to 4.5V, the greater the amount of the metal impurities converted into the metal oxide, the more effective the defect improvement and performance characteristics of the secondary battery may be.
  • the conductive material may include an oxide of the metal impurity, and optionally further include a metal impurity unconverted into a metal oxide in the manufacturing process.
  • the content ratio of the metal impurity to the metal oxide is 0: 100 to 0.5: 99.5 weight ratio, more specifically 0: 100 to 0.3: 99.7 weight ratio, even more specifically May be from 0: 100 to 0.2: 99.8 weight ratio.
  • specific types of metal impurities and metal oxides in the conductive material are the same as described above, and the content ratio of the metal impurities to the metal oxides included in the conductive material is, for example, based on X-ray diffraction (XRD).
  • the content ratio of the metal impurity / metal oxide may be measured in consideration of the main peak intensity of the metal impurity and the relative peak intensity of the peak of the conductive material generated after firing at the peak.
  • the amount of the metal oxide included in the conductive material may vary depending on the type of the conductive material, the content of the metal impurities, and the microwave treatment conditions, and may be included in several ppm, more specifically, 0.01 to 1% by weight.
  • the conductive material according to the embodiment of the present invention since the metal impurity contained in the conductive material is converted into a metal oxide which is inert within the operating voltage range of the battery and does not dissolve in the electrolyte during the manufacturing process, the battery operating voltage section There is no fear of elution of metallic impurities in the conductive material and low voltage defects caused by the conductive material, and the performance characteristics of the battery, in particular, the capacity and life characteristics can be further improved.
  • a lithium secondary battery electrode comprising a conductive material produced by the above manufacturing method.
  • the electrode may be a positive electrode or a negative electrode, and is manufactured according to a conventional electrode manufacturing method of forming an active material layer including a positive electrode active material or a negative electrode active material on a current collector of a positive electrode or a negative electrode, except for using the conductive material described above. Can be.
  • the negative electrode when the electrode is a negative electrode, the negative electrode may be prepared by applying a negative electrode mixture including a binder and the conductive material together with a negative electrode active material on a negative electrode current collector, and then drying.
  • the negative electrode current collector may be used without particular limitation as long as it has high conductivity without causing chemical changes in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, or the like on the surface of the steel, aluminum-cadmium alloy and the like can be used.
  • the negative electrode current collector as described above may have various forms, and specifically, may be in the form of a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven fabric, or the like.
  • the negative electrode current collector may have a thickness of 3 ⁇ m to 500 ⁇ m, and fine concavities and convexities or patterns may be formed on the surface of the current collector so as to enhance the bonding force of the negative electrode active material.
  • the negative electrode mixture may be prepared by dissolving and dispersing a negative electrode active material, a binder, and the conductive material in a solvent.
  • the conductive material is the same as described above, it may be included in an amount of 1% by weight to 15% by weight relative to the total weight of the negative electrode mixture.
  • the amount of the conductive material may be too small to decrease the performance of the battery due to an increase in the internal resistance of the electrode.
  • the amount of the conductive material is greater than 15% by weight, the amount of the conductive material is increased as the amount of the binder increases. Since it must be increased together, it may cause problems such as a decrease in battery capacity due to a decrease in the electrode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used as the negative electrode active material.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon;
  • Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; Or a composite containing a metallic compound and a carbonaceous material, and the like may be used alone or as a mixture of two or more thereof.
  • a metal lithium thin film may be used as the anode active material.
  • the binder serves to improve the binding between the negative electrode active material and the adhesion between the negative electrode active material and the negative electrode current collector.
  • specific examples include polyvinylidene fluoride (PVDF), polyvinyl alcohol, starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene- Diene monomer rubber (EPDM), sulfonated-EPDM rubber, styrene-butadiene rubber (styrene-butadiene rubber, SBR), fluorine-based rubber, or various copolymers thereof; This can be used.
  • PVDF polyvinylidene fluoride
  • EPDM ethylene-propylene- Diene monomer rubber
  • SBR styrene-butadiene rubber
  • fluorine-based rubber or various copolymers thereof
  • the binder may be an aqueous binder in consideration of the remarkable improvement effect, and in particular, in view of the remarkability of the improvement effect, the adhesive ability of the binder itself, and the high temperature drying process in the negative electrode manufacturing process, Butadiene rubber.
  • Such a binder may be included in an amount such that it may be included in 10 to 30% by weight based on the total weight of the negative electrode mixture.
  • the solvent used in the preparation of the negative electrode mixture may be a solvent generally used in the art, dimethyl sulfoxide (dimethyl sulfoxide, DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone) or water, and the like, and one of them alone or a mixture of two or more thereof may be used.
  • the solvent may be included in an amount to have an appropriate viscosity in consideration of the coating property and processability of the negative electrode mixture.
  • the negative electrode mixture may further include a thickener together with the above components.
  • the thickener may be a cellulose compound such as carboxymethyl cellulose (CMC).
  • CMC carboxymethyl cellulose
  • the thickener may be included in the negative electrode mixture in an amount such that it is included in an amount of 1 to 10% by weight based on the total weight of the negative electrode mixture.
  • the negative electrode mixture having the above configuration can be applied to one surface of the negative electrode current collector using a conventional slurry coating method.
  • the slurry coating method may include bar coating, spin coating, roll coating, slot die coating, or spray coating, and one or two or more of these methods may be mixed.
  • the negative electrode mixture when the negative electrode mixture is applied, it may be preferable to apply the negative electrode mixture to an appropriate thickness in consideration of the loading amount and thickness of the active material in the final negative electrode active material layer.
  • the drying process may be carried out by a method such as heating treatment, hot air injection, etc. at a temperature capable of removing the moisture contained in the negative electrode with the evaporation of the solvent in the negative electrode mixture as much as possible, and at the same time increasing the binding force of the binder.
  • the drying process may be carried out at a temperature below the boiling point of the solvent or less than the melting point of the binder, more specifically, may be carried out at 100 °C to 150 °C. More specifically, it may be carried out for 1 to 50 hours at a temperature of 100 °C to 120 °C and a pressure of 10torr or less.
  • the rolling step after the drying step may be performed according to a conventional method.
  • the negative electrode active material layer is prepared by applying the negative electrode mixture on a separate support and then drying to prepare a film, and peeling the formed film from the support, then laminating and rolling on the negative electrode current collector. May be
  • the negative electrode mixture, the negative electrode current collector, the coating, drying and rolling processes are the same as described above.
  • the positive electrode is formed on the positive electrode current collector and the positive electrode current collector, and includes a positive electrode active material layer containing a positive electrode active material.
  • the positive electrode current collector may be used without particular limitation as long as it has conductivity without causing chemical changes in the battery.
  • stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum may be used on the surface of stainless steel.
  • the surface-treated with carbon, nickel, titanium, silver, etc. can be used.
  • the positive electrode current collector may have a thickness of 3 ⁇ m to 500 ⁇ m, and may form fine irregularities on the surface of the positive electrode current collector to increase adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used as the cathode active material.
  • the compound may be a lithium transition metal oxide.
  • lithium transition metal oxide examples include lithium-manganese oxides (eg, LiMnO 2 , LiMn 2 O Etc.), lithium-cobalt-based oxides (e.g., LiCoO 2, etc.), lithium-nickel-based oxides (e.g., LiNiO 2, etc.), lithium-nickel-manganese-based oxides (e.g., LiNi 1 - Y Mn Y O 2 (where, 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 (where, 0 ⁇ Z ⁇ 2) and the like), lithium-nickel-cobalt-based oxide (for example, LiNi 1- Y Co Y O 2 (where, 0 ⁇ Y ⁇ 1) and the like), lithium-manganese-cobalt oxide (e.g., LiCo 1-Y Mn Y O 2 (where, 0 ⁇ Y ⁇ 1), LiMn 2 - z Co z O 4 (here, 0 ⁇
  • the lithium transition metal oxide may be doped with tungsten (W) or the like.
  • the positive electrode active material may be LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , lithium-nickel-manganese-cobalt oxide (eg, Li (Ni 0.6) Mn 0.2 Co 0.2 ) O 2 , LiNi 0 . 5 Mn 0 . 3 Co 0 . 2 O 2 , or LiNi 0 . 8 Mn 0 . 1 Co 0 . 1 O 2), or lithium-nickel-cobalt - aluminum oxide (for example, LiNi 0 8 Co 0 15 Al 0 05 O 2 , etc.), and it may be preferably selected from the group consisting of a mixture thereof have.
  • LiNi 0 8 Co 0 15 Al 0 05 O 2 lithium-nickel-cobalt - aluminum oxide
  • the positive electrode as described above may be manufactured according to a conventional positive electrode manufacturing method. Specifically, the positive electrode mixture prepared by dissolving a conductive material and a binder in a solvent together with the positive electrode active material may be prepared by coating and then drying and rolling the positive electrode current collector. In addition, the binder and the conductive material included in the active material layer of the positive electrode may be the same as described above in the negative electrode.
  • a solvent generally used in the art may be used, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone ( acetone), water, and the like, and one kind alone or a mixture of two or more kinds thereof may be used.
  • the solvent may be included in an amount to have an appropriate viscosity in consideration of the coating property and processability of the positive electrode mixture.
  • the coating, drying, and rolling process of the positive electrode mixture on the positive electrode current collector may be performed by the same method as described above in the manufacturing method of the negative electrode.
  • the positive electrode may also be prepared by applying the positive electrode mixture on a separate support and then peeling the film for forming the positive electrode active material layer prepared by drying from the support and laminating on the positive electrode current collector.
  • an electrochemical device including the anode is provided.
  • the electrochemical device may be specifically a battery or a capacitor, and more specifically, may be a lithium secondary battery.
  • the lithium secondary battery includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and at least one of the positive electrode and the negative electrode is as described above. It may be an electrode including a.
  • the lithium secondary battery may further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the separator can be used without particular limitation as long as it is usually used as a separator in a lithium secondary battery, and in particular, it is preferable that the electrolyte has a low resistance against electrolyte ions and excellent electrolyte solution moistening ability.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • conventional porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • the electrolyte may include an organic solvent and a lithium salt commonly used in the electrolyte, and are not particularly limited.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, ⁇ -butyrolactone or ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC) and the like.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • MEC methyl ethyl carbonate
  • EMC ethyl methyl carbonate
  • EC
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used.
  • the lithium salt is preferably included at a concentration of approximately 0.6 to 2 mol% in the electrolyte.
  • the electrolyte includes, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n for the purpose of improving battery life characteristics, suppressing battery capacity reduction, and improving battery discharge capacity.
  • pyridine triethylphosphite
  • triethanolamine triethanolamine
  • cyclic ether ethylene diamine
  • n for the purpose of improving battery life characteristics, suppressing battery capacity reduction, and improving battery discharge capacity.
  • -Glyme hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2
  • additives such as -methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in 0.1 to 5% by weight based on the total weight of the
  • the lithium secondary battery having the above-described configuration may be manufactured by manufacturing an electrode assembly through a separator between a positive electrode and a negative electrode, placing the electrode assembly inside a case, and then injecting an electrolyte solution into the case.
  • the external shape of the lithium secondary battery is not particularly limited, but may be cylindrical, square, pouch type or coin type using a can.
  • the lithium secondary battery including the conductive material prepared by the manufacturing method according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, and thus, portable devices such as mobile phones, notebook computers, and digital cameras. And electric vehicle fields such as hybrid electric vehicles.
  • a battery module including the lithium secondary battery as a unit cell, and a battery pack including the same are provided.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • a conductive material was prepared in the same manner as in Preparation Example 1, except that the microwave having a frequency of 2.45 kHz and an output of 400 W were irradiated for 10 seconds. At this time, the temperature in the microwave generator was 350 °C.
  • Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 The positive electrode active material, the conductive material prepared in Preparation Examples 1 or 2, and the PVdF binder were mixed in an N-methylpyrrolidone (NMP) solvent at a ratio of 90: 5: 5 by weight, respectively, for a positive electrode mixture (viscosity: 5000 mPa ⁇ s ), which was applied to an aluminum current collector, followed by dry rolling to prepare a positive electrode.
  • NMP N-methylpyrrolidone
  • An electrode assembly was manufactured between a cathode and an anode prepared by interposing a separator of porous polyethylene, the electrode assembly was placed in a case, and an electrolyte was injected into the case to prepare a lithium secondary battery.
  • Comparative Example 1 Fabrication of Lithium Secondary Battery Electrode and Lithium Secondary Battery
  • a lithium secondary battery positive electrode and a lithium secondary battery including the same were prepared in the same manner as in Example 1 except for using super P as a conductive material (super P TM, Timcal).
  • Thermogravimetric analysis is a method of measuring the weight change of a sample according to temperature change when the sample is heated to a given temperature condition.
  • thermogravimetric analysis was performed simultaneously with DTA / DSC using Seiko SSC 5200 TG / DTA. Temperature calibration was performed using nickel and ALUMEL TM .
  • the super blood, iron (Fe) powder, copper (Cu) powder, and iron sulfide (FeS) powder before firing were put in aluminum or platinum pans, respectively.
  • the pan was completely sealed with a lid, which was opened by punching just before insertion into the TG furnace.
  • the furnace was heated under air at a rate of 10 / min to a final temperature of 1000 ° C. The results are shown in FIGS. 1 to 4.
  • Figure 1 is a thermogravimetric analysis of the super blood before microwave treatment.
  • the dotted line represents the heat flow amount of the super blood
  • the solid line represents the heat weight change of the super blood.
  • the weight drops rapidly after about 600 ° C. after the microwave treatment. This is because in the case of super blood, a portion of the super blood is released as CO 2 gas at about 600 ° C., thereby reducing the weight of the super blood.
  • Fe is a metal impurity that may be included in a super blood before microwave irradiation, and a product obtained by irradiating microwaves with Fe under the same conditions as in Preparation Example 1;
  • FIG. 6 is an X-ray diffraction analysis of FeS, which is a metal impurity that may be included in a super blood before firing, and a product produced by firing the FeS at about 500 ° C.
  • FIG. 6 is an X-ray diffraction analysis of FeS, which is a metal impurity that may be included in a super blood before firing, and a product produced by firing the FeS at about 500 ° C.
  • the FeS oxide was produced (see Fig. 6 (a) and (b)). That is, in the case of the product generated after the microwave irradiation, it can be seen that the peak disappears at about 54 degrees, and as a result of the microwave irradiation, it can be seen that the FeS oxide (b) and Fe 2 O 3 (a) were produced. . It can be seen that the irradiation of microwaves FeS was converted to FeS oxide and iron oxide.
  • FIGS. 7 and 8 compare the results of X-ray diffraction analysis after firing Cu and Zn, which are metal impurities that may be included in the super blood before firing at 500 ° C., before and after firing.
  • the content ratio of the metal impurity / metal oxide is determined in consideration of the main peak of each metal impurity and the relative peak intensity of the conductive material generated after the microwave treatment at the peak. can do.
  • the content ratio of the metal impurity / metal oxide that can be inferred from the X-ray diffraction analysis of FIGS. 5 to 8 is shown in Table 1 below.
  • Fe / Fe oxide weight ratio
  • FeS / FeS oxide weight ratio
  • Cu / Cu oxide weight ratio
  • Zn / Zn oxide weight ratio
  • the metal impurity / metal oxide content ratio can be seen that most of the metal impurity is converted to the metal oxide in the range of 0 to 0.182 by weight ratio.
  • metal Fe which is a major impurity of the conductive material, reacted at 4.3V, while Fe oxide was stable at 3V to 4.5V, which is a battery operating period.
  • Fe a metal impurity
  • the microwaves were irradiated with the conductive material from this result, Fe, a metal impurity, was converted into a metal oxide, thereby stabilizing at 3V to 4.5V, which is a battery operating period.
  • the lithium secondary batteries of Examples 1, 2 and Comparative Example 1 were charged at 1 C to 4.2 V / 38 mA in constant current / constant voltage (CC / CV) conditions at 25 ° C., and then 3.03 in constant current (CC) conditions. Discharge at 2C to V. This cycle was repeated 1,200 cycles. The discharge capacity, the charge capacity, and the capacity retention rate at the 1200th cycle during the charge and discharge process were measured, respectively.
  • the lithium secondary batteries of Examples 1 and 2 including the microwave-treated conductive material compared with the lithium secondary battery of Comparative Example 1 containing the microwave-free conductive material,
  • the charge and discharge capacities were high, and the capacity retention rate increased by about 2.4% on average.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 도전재의 제조방법 및 이를 이용하여 제조한 도전재를 포함하는 리튬 이차전지에 관한 것으로, 상기 도전재의 제조방법은 금속불순물을 포함하는 도전재를 마이크로웨이브를 조사하여 상기 금속불순물을 금속산화물로 전환함으로써 도전재 내 금속불순물을 제거하는 단계를 포함한다. 상기 제조방법에 의해 제조된 도전재는, 도전재 내 포함된 금속불순물을 전지의 작동 전압에서 비활성이며, 전해액에 용출되지 않는 금속산화물로 전환함으로써, 금속불순물의 용출 및 그에 의한 전지의 저전압에서의 불량 발생의 우려 없이, 전지의 성능특성, 특히 용량 및 수명특성을 향상시킬 수 있다.

Description

도전재의 제조방법, 이로부터 제조된 도전재 및 이를 포함하는 리튬 이차전지
관련출원과의 상호인용
본 출원은 2014년 11월 3일자 한국특허출원 제2014-151273호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 금속불순물에 의한 전지의 저전압에서의 불량 발생을 방지할 수 있는 도전재의 제조방법, 이로부터 제조된 도전재 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 휴대용 전자기기의 폭발적인 수요 증가로 인해 이차전지의 수요 역시 급격하게 증가하고 있다. 또, 전자기기가 고기능화 및 소형화 되면서 이차전지 역시 고성능화와 동시에 소형화 및 다양한 형태로의 변형이 요구되고 있다. 예를 들어, 노트북 컴퓨터의 경우, 이차전지의 크기가 노트북 컴퓨터의 두께에 큰 영향을 미치므로, 고용량 및 고성능과 함께 전지의 형태에 있어서 노트북의 두께를 축소하기 위해 구조의 변화가 시도되고 있다.
일반적으로 이차전지는 전극 활물질로서 리튬 전이금속 산화물을 포함하는 양극과 카본계 활물질을 포함하는 음극 및 세퍼레이터로 이루어진 전극조립체에 리튬 전해질이 함침되어 있는 구조로 이루어져 있다. 양극은 리튬 전이금속 산화물을 포함하는 양극 합제를 알루미늄 호일에 코팅하여 제조되며, 음극은 카본계 활물질을 포함하는 음극 합제를 구리 호일에 코팅하여 제조된다.
또, 상기 양극과 음극에는 활물질의 전기 전도성을 향상시키기 위한 목적에서 일반적으로 도전재가 첨가되고 있다. 이러한 도전재로는, 천연 흑연이나 인조 흑연 등의 흑연, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본계 물질이 주로 사용되고 있고, 일부의 경우에 탄소 섬유나 금속 섬유 등의 도전성 섬유 등이 사용되고 있다.
특히, 이차전지는 다양한 원인에 의해 구성요소들이 열화되면서 수명 특성이 저하되는데, 주요 원인들 중의 하나는 도전재 내에 포함되는 금속불순물의 전지내 혼입에 의한 것이다. 구체적으로, 도전재 내에 포함된 철(Fe) 등의 금속불순물은 리튬 이차전지의 작동 전압 범위인 약 3.0V 내지 4.5V에서 반응하여 전해액에 용해되고, 용해된 금속불순물은 음극에서 금속의 형태로 재석출 된다. 이렇게 석출된 금속은 세퍼레이터를 뚫고 양극과 단락되어 저전압 불량을 야기하며, 이차전지의 용량 특성 및 수명 특성의 저하를 초래하여 전지로서의 역할을 다하지 못하게 한다. 이와 같은 저전압 불량은 완성품 단계에서만 구별이 가능하기 때문에 제조상의 손실이 크다.
따라서, 이차전지의 제조시에 불순물, 특히 금속불순물의 혼입이 발생하지 않도록 하는 연구가 계속적으로 요구되고 있는 실정이다.
본 발명이 해결하고자 하는 제1기술적 과제는, 금속불순물의 용출 및 이로 인한 전지의 저전압에서의 불량 발생을 방지하고, 전지의 성능특성, 특히 용량 및 수명특성을 향상시킬 수 있는 도전재의 제조방법 및 이를 이용하여 제조된 도전재를 제공하는 것이다.
또, 본 발명이 해결하고자 하는 제2 기술적 과제는, 상기 제조방법에 따라 제조된 도전재를 포함하는 전극, 리튬 이차전지, 전지모듈 및 전지팩을 제공하는 것이다.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제들에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 실시예에 따르면 금속불순물을 포함하는 도전재에 대해 마이크로웨이브를 조사하여 금속불순물을 금속산화물로 전환함으로써 상기 도전재 내 금속불순물을 제거하는 단계를 포함하는 도전재의 제조방법이 제공된다.
또, 본 발명의 다른 일 실시예에 따르면, 상기한 제조방법에 의해 제조된 도전재가 제공된다.
본 발명의 또 다른 일 실시예에 따르면, 상기한 도전재를 포함하는 리튬 이차전지용 전극이 제공된다.
아울러, 본 발명의 또 다른 일 실시예에 따르면, 양극, 음극, 상기 양극과 음극 사이에 개재된 세퍼레이터 및 비수전해질을 포함하며, 상기 양극 및 음극 중 적어도 하나는 상기한 도전재를 포함하는 리튬 이차전지가 제공된다.
나아가, 본 발명의 또 다른 일 실시예에 따르면, 상기한 리튬 이차전지를 단위셀로 포함하는 전지모듈 및 전지 팩이 제공된다.
기타 본 발명의 실시예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
본 발명에 따른 도전재의 제조방법은, 마이크로웨이브 처리에 의해 도전재의 변화없이 도전재 내에 포함된 금속불순물만을 선택적으로 이차전지의 작동 전압에서 비활성이며, 전해액에 용출되지 않는 금속산화물로 전환시킴으로써, 전지 작동전압 구간에서의 도전재 내 금속불순물의 용출 및 이로 인한 저전압에서의 불량 발생을 방지하고, 전지의 성능 특성, 특히 용량 및 수명특성을 향상시킬 수 있다.
또, 상기 도전재의 제조방법은 폴리머, 각형 또는 원통형 등 전지의 종류에 무관하게 적용가능하며, 또 상기 제조방법에 있어서, 상기 마이크로웨이브 처리에 의한 금속불순물 제거 공정은 열적 소성이나 화학반응에 비해 반응 조건의 제어가 용이하고, 또 반응시간이 짧아 우수한 공정성을 나타낼 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 실험예 1에서 마이크로웨이브 조사 전 금속불순물을 포함하는 수퍼 피(super P™)의 열중량 분석 결과를 나타낸 그래프이다.
도 2는 실험예 1에서 마이크로웨이브 조사 전 수퍼 피에 포함되는 Fe 분말의 열중량 분석 결과를 나타낸 그래프이다.
도 3는 실험예 1에서 마이크로웨이브 조사 전 수퍼 피에 포함되는 Cu 분말의 열중량 분석 결과를 나타낸 그래프이다.
도 4는 실험예 1에서 마이크로웨이브 조사 전 수퍼 피에 포함되는 FeS 분말의 열중량 분석 결과를 나타낸 그래프이다.
도 5는 실험예 2에서 수퍼 피에 포함되는 Fe 분말에 대한 마이크로웨이브 조사 전 및 후의 X-선 회절 분석 결과를 나타낸 그래프이다.
도 6은 실험예 2에서 수퍼 피에 포함되는 FeS 분말에 대한 마이크로웨이브 조사 전 및 후의 X-선 회절 분석 결과를 나타낸 그래프이다.
도 7은 실험예 2에서 수퍼 피에 포함되는 Cu 분말에 대한 마이크로웨이브 조사 전 및 후의 X-선 회절 분석 결과를 나타낸 그래프이다.
도 8은 실험예 2에서 수퍼 피에 포함되는 Zn 분말에 대한 마이크로웨이브 조사 전 및 후의 X-선 회절 분석 결과를 나타낸 그래프이다.
도 9는 실험예 3에서의 Fe 금속 및 Fe 산화물에 대한 산화전위측정 결과를 나타낸 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 금속불순물을 포함하는 도전재에 대해 마이크로웨이브 조사에 의한 열처리로 상기 도전재 내 금속불순물을 전지의 작동전압 범위내에서 비활성(inactive)이고, 전해액에 용해되지 않는 안정한 금속산화물로 전환함으로써, 음극에서의 금속불순물의 석출 및 이에 따른 전지의 저전압 불량 발생을 방지하고, 전지의 성능 특성, 특히 용량 및 수명특성을 향상시킬 수 있는 도전재를 제공하는 것을 특징으로 한다.
즉, 본 발명의 일 실시예에 따른 도전재의 제조방법은, 금속불순물을 포함하는 도전재에 대해 마이크로웨이브를 조사하여 금속불순물을 금속산화물, 즉 상기 금속불순물의 산화물로 전환함으로써, 상기 도전재 내 금속불순물을 제거하는 단계를 포함한다.
상기 도전재의 제조방법에 있어서, 도전재는 이차전지의 전극에 도전성을 부여하기 위해 사용되는 것으로서, 당해 이차전지에 화학변화를 유발하지 않고 전자 전도성을 갖는 것이라면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연, 인조 흑연, 흑연화 탄소섬유, 비정질 탄소, 코크스, 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 덴카 블랙, 수퍼 피(super P), 수퍼 C(super C), 탄소섬유, 카본나노튜브, 활성탄소(activated carbomn) 등의 탄소계 물질; 산화아연 휘스커, 탄산칼슘 휘스커, 이산화티탄 휘스커, 산화규소 휘스커, 탄화규소 휘스커, 붕산 알루미늄 휘스커, 붕산 마그네슘 휘스커, 티탄산 칼륨 휘스커, 질화 규소 휘스커, 실리콘 카바이드 휘스커, 알루미나 휘스커 등의 침상 또는 가지상의 도전성 휘스커(Whisker); 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
보다 구체적으로 상기 도전재는 상기한 탄소계 물질일 수 있으며, 보다 더 구체적으로는 카본블랙, 아세틸렌블랙, 케첸블랙, 채널블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 덴카 블랙, 수퍼 P, 수퍼 C, 탄소섬유, 카본나노튜브 및 활성탄소로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함하는 것이 도전재 제조과정에서의 안정성 및 전지에서의 도전재 사용에 따른 개선 효과가 보다 우수하다.
또, 상기 도전재는 그 제조과정에서 발생되거나 또는 공정 중에 혼입된 금속불순물을 필연적으로 포함한다. 상기 금속불순물은 금속, 상기 금속의 합금 또는 이들을 포함하는 황화물 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상을 포함할 수 있다. 보다 구체적으로 상기 금속은 철(Fe), 구리(Cu), 아연(Zn), 칼슘(Ca), 티타늄(Ti), 및 크롬(Cr)으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 또 상기 합금은 이들 금속 중에서 선택되는 둘 이상의 금속원소를 포함하는 것일 수 있다. 보다 구체적으로는 상기 금속불순물은 철(Fe), 황화철(FeS), 구리(Cu), 아연(Zn), 칼슘(Ca), 티타늄(Ti), 또는 크롬(Cr) 등일 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 도전재 내 금속불순물로서 포함될 수 있다.
상기 도전재에 있어서 금속불순물의 함량은 그 제조과정에서의 조건에 따라 달라질 수 있으므로, 특별히 한정되지 않는다. 다만, 리튬불순물의 통상 이차전지에서의 적용시 요구되는 도전성 등을 고려할 때, 도전재 총 중량에 대해 1중량% 이하, 보다 구체적으로는 0.01 내지 1중량%의 양으로 포함될 수 있다.
상기한 금속불순물은 이후 마이크로웨이브 처리에 의해 열 산화되어 금속불순물의 산화물로 전환되게 된다. 상기 금속불순물로부터 전환된 금속산화물은 구체적으로, 철 산화물, 황화철 산화물, 구리 산화물, 아연 산화물, 칼슘 산화물, 티타늄 산화물, 또는 크롬 산화물일 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 최종 제조되는 도전재 내에 포함될 수 있다. 보다 구체적으로, 상기 금속산화물은 FeO, Fe3O4, Fe2O3, 황화철 산화물, CuO, CaO, TiO2 또는 ZnO 등일 수 있으며, 보다 구체적으로 Fe2O3 또는 Fe3O4일 수 있다.
또, 상기 금속불순물로부터 금속산화물로의 전환은 마이크로웨이브 처리시의 마이크로웨이브의 출력량, 마이크로웨이브 조사 시간, 그리고 마이크로웨이브 조사에 따른 가열온도에 영향을 받을 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 상기 도전재의 제조방법에 있어서, 금속불순물을 포함하는 도전재에 대한 마이크로웨이브 처리는, 1kHz 내지 50kHz의 주파수를 갖고, 400W 내지 2000W의 출력을 갖는 마이크로웨이브를 20초 이하로 조사함으로써 실시될 수 있다. 상기한 조건으로 마이크로웨이브 조사시 도전재 내 포함된 금속불순물의 금속산화물로의 전환 효율이 높다. 그러나 상기 마이크로웨이브의 주파수가 1kHz 미만이거나, 또는 출력량이 400W 미만인 경우 가열효과가 미흡하여 금속산화물로의 전환효율이 낮고, 상기 주파수가 50kHz를 초과하거나, 또 출력량이 2000W를 초과하는 경우, 도전재의 구조적 변화 또는 부반응이 야기될 수 있다. 또, 상기 조건의 마이크로웨이브를 20초 이상 조사할 경우 도전재가 반응하여 폭발의 위험이 있다.
보다 구체적으로 상기 도전재 내 금속불순물의 금속산화물로의 전환 효율의 현저함을 고려할 때, 상기 마이크로웨이브 처리는 2kHz 내지 20kHz의 주파수를 갖고, 400W 내지 1500W의 출력을 갖는 마이크로웨이브를 10초 내지 20초 동안 조사함으로써 실시될 수 있다.
상기와 같은 조건의 마이크로웨이브 조사에 의해 금속불순물을 포함하는 도전재가 350℃ 내지 600℃로 가열됨으로써 도전재 내 금속불순물이 열산화될 수 있다. 마이크로웨이브 조사에 따른 가열온도가 350℃ 미만인 경우, 금속불순물이 산화되지 않아 금속산화물로 전환되지 않을 수 있으며, 금속산화물로의 전환에 지나치게 긴 시간이 소요될 수 있다. 한편 상기 가열온도가 600℃를 초과하는 경우 도전재의 산화가 시작되기 때문에 도전재의 구조가 변형되거나 부생성물이 생성될 수 있다.
구체적으로, Fe, FeS, Cu, 또는 Zn 등과 같은 금속의 불순물을 포함하는 수퍼 피의 경우 약 600℃에서 산화가 시작될 수 있다. 그러나, 상기 금속불순물, 예를 들면, Fe 및 Cu는 약 300℃에서, FeS 및 Zn은 약 400℃에서 산화가 시작되기 때문에, 수퍼 피의 산화 온도인 약 600℃ 이하의 온도에서 완전히 산화될 수 있다.
또, 상기 마이크로웨이브 조사는 공기 중 또는 산소 등의 산화분위기 하에서 실시되는 것이 바람직할 수 있다.
본 발명에 있어서, 상기 도전재, 금속불순물 또는 금속산화물의 형태, 산화 온도, 그리고 상기 금속불순물 또는 금속산화물의 함량은 자성을 이용하여 하거나, X-선 회절법(X-ray Diffraction, XRD), 시차 열분석(Differential Thermal Analysis, DTA), 시차 주사 열량법(Differential Scanning Calorimetry, DSC), 변조 시차 주사 열량법(Modulated Differential Scanning Calorimetry, MDSC), 열중량 분석법(Thermogravimetric Analysis, TGA), 열중량-적외선(Thermogravimetric-infrared, TG-IR) 분석 및 용융점 측정을 비롯한 1가지 이상의 열 분석법을 포함하는 방법으로 분석하거나 확인할 수 있다.
구체적으로, 상기 도전재 및 각각의 금속불순물이 산화되는 시점은 예를 들어 열중량 분석(TGA)에 의해 분석 가능하며, 소성 후 생성되는 도전재, 금속불순물 및 금속산화물의 산화 형태는 X-선 회절법(XRD)을 통해 분석할 수 있다.
마이크로웨이브 조사 전 도전재 총 중량에 대해 약 0.01 내지 1중량%의 양으로 포함되는 금속불순물은 마이크로웨이브 처리에 의해 금속산화물로 100% 전환될 수 있지만, 상기 마이크로웨이브의 출력량, 마이크로웨이브 조사 시간, 마이크로웨이브 조사에 따른 가열온도에 금속불순물 중 일부가 금속산화물로 전환될 수도 있다. 예를 들어, 상기 금속산화물은 금속불순물 총 중량에 대해 0.5 내지 100중량%, 바람직하게는 30 내지 100중량%, 보다 바람직하게는 60 내지 100중량%의 양으로 전환될 수 있다. 이때 금속산화물은 전지의 작동전압 구간인 3V 내지 4.5V에서 비활성을 나타내기 때문에, 상기 금속불순물이 금속산화물로 전환되는 양이 많을수록, 이차전지의 불량 개선 및 성능 특성에 효과적일 수 있다.
상기와 같이 마이크로웨이브를 이용한 도전재의 제조방법은, 별도의 산화제를 사용하지 않고, 공기 중의 산소만으로도 효율 좋게, 그리고 도전재의 변화없이 도전재 내 포함된 금속불순물만을 금속산화물로 빠르고 쉽게 산화시킬 수 있다. 또, 열적 소성이나 화학적 처리에 의한 도전재 내 금속불순물 제거 방법에 비해 반응조건의 조절이 용이하다.
또, 본 발명의 다른 일 실시예에 따르면, 상기 제조방법에 의해 제조된 도전재가 제공된다.
구체적으로, 상기 도전재는 상기 금속불순물의 산화물을 포함하고, 선택적으로 그 제조과정에서 금속산화물로 미전환된 금속불순물을 더 포함할 수 있다.
상기한 제조방법에 의해 제조된 도전재에 있어서, 금속불순물의 양이 적을수록, 금속 산화물로 전환되는 양이 증가하는 것을 의미한다. 구체적으로 본 발명의 일 실시예에 따른 도전재에 있어서, 금속불순물 대 금속산화물의 함량비는 0:100 내지 0.5:99.5 중량비, 보다 구체적으로는 0:100 내지 0.3:99.7중량비, 보다 더 구체적으로는 0:100 내지 0.2:99.8중량비일 수 있다. 이때, 상기 도전재에 있어서 금속불순물 및 금속산화물의 구체적인 종류는 앞서 설명한 바와 동일하며, 상기 도전재에 포함되는 금속불순물 대 금속산화물의 함량비는 예를 들어, X-선 회절법(XRD)에 의해 측정할 수 있으며, 구체적으로는 금속불순물의 주요 피크 강도, 및 상기 피크에서의 소성 후 생성된 도전재의 피크의 상대적인 피크 강도를 고려하여 금속불순물/금속 산화물의 함량비를 측정할 수 있다.
또, 상기 도전재에 포함되는 금속산화물의 양은 도전재의 종류, 금속불순물의 함량 및 마이크로웨이브 처리 조건에 따라 달라질 수 있으며, 수 ppm, 보다 구체적으로 0.01 내지 1중량%로 포함될 수 있다.
본 발명의 일 실시예에 따른 도전재는, 그 제조과정에서 도전재 내 포함된 금속불순물이 전지의 작동전압 범위내에서 비활성이고, 전해액에 대해 용해되지 않는 금속산화물로 전환되었기 때문에, 전지 작동전압 구간에서의 도전재 내 금속불순물의 용출 및 이로 인한 저전압 불량 발생의 우려가 없고, 전지의 성능 특성, 특히 용량 및 수명특성을 더욱 향상시킬 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기한 제조방법에 의해 제조된 도전재를 포함하는 리튬 이차전지용 전극이 제공된다.
상기 전극은 양극 또는 음극일 수 있으며, 상기한 도전재를 사용하는 것을 제외하고는, 양극 또는 음극의 집전체 위에 양극활물질 또는 음극활물질을 포함하는 활물질층을 형성하는 통상의 전극 제조방법에 따라 제조될 수 있다.
구체적으로, 상기 전극이 음극인 경우, 상기 음극은 음극활물질과 함께 바인더, 그리고 상기한 도전재를 포함하는 음극합제를 음극집전체 상에 도포한 후, 건조함으로써 제조될 수 있다.
이때, 상기 음극집전체로는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한없이 사용될 수 있으며, 구체적으로는, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄 또는 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 상기와 같은 음극집전체는 다양한 형태를 가질 수 있으며, 구체적으로는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등의 형태일 수 있다.
또, 상기 음극집전체는 3㎛ 내지 500㎛의 두께를 갖는 것이 바람직할 수 있으며, 또, 음극활물질의 결합력을 강화시킬 수 있도록, 집전체의 표면에 미세한 요철 또는 패턴이 형성될 수도 있다.
또, 상기 음극합제는 음극활물질과 바인더, 그리고 상기한 도전재를 용매 중에 용해 및 분산시켜 제조될 수 있다.
이때, 상기 도전재는 앞서 설명한 바와 동일하며, 음극합제 총 중량에 대해 1중량% 내지 15중량%의 양으로 포함될 수 있다. 상기 도전재의 양이 1중량% 미만인 경우, 도전재의 양이 너무 적어 전극의 내부 저항 증가로 전지의 성능이 저하될 수 있고, 15중량%를 초과하는 경우, 도전재의 양이 많아짐에 따라 바인더의 양도 함께 증가시켜야 하므로 전극 활물질의 감소로 인한 전지 용량의 감소 등의 문제를 초래할 수 있다.
또, 상기 음극활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; 또는 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다.
또, 상기 바인더는 음극활물질 간의 결착, 그리고 음극활물질과 음극집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올, 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM), 술폰화-EPDM 고무, 스티렌-부타디엔 고무(styrene-butadiene rubber, SBR), 불소계 고무 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
이중에서도 개선효과의 현저함을 고려할 때 상기 바인더는 수계 바인더일 수 있으며, 또 그 중에서도 개선효과의 현저함, 바인더 자체의 접착능력 및 음극 제조과정에서의 고온 건조 공정을 고려할 때 보다 구체적으로는 스티렌-부타디엔 고무일 수 있다.
상기와 같은 바인더는 음극합제 총 중량에 대하여 10 내지 30중량%로 포함될 수 있도록 하는 양으로 포함될 수 있다.
또, 상기 음극합제의 제조시 사용가능한 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매는 음극합제의 도포성 및 공정성을 고려하여 적절한 점도를 갖도록 하는 함량으로 포함될 수 있다.
또, 상기 음극합제는 상기한 성분들과 함께 증점제를 더 포함할 수 있다. 구체적으로 상기 증점제는 카르복시메틸셀룰로우즈(CMC)와 같은 셀룰로오스계 화합물일 수 있다. 상기 증점제는 음극합제 총 중량에 대하여 1 내지 10중량%로 포함되도록 하는 양으로 음극합제 내에 포함될 수 있다.
상기와 같은 구성을 갖는 음극합제는 통상의 슬러리 코팅법을 이용하여 음극집전체의 일면에 도포될 수 있다. 상기 슬러리 코팅법의 예로는 바 코팅, 스핀코팅, 롤 코팅, 슬롯다이 코팅, 또는 스프레이 코팅 등을 들 수 있으며, 이들 중 1종 또는 2종 이상의 방법이 혼합 실시될 수 있다.
또, 상기 음극합제의 도포시, 최종 제조되는 음극활물질층에서의 활물질의 로딩량 및 두께를 고려하여 적절한 두께로 음극합제를 도포하는 것이 바람직할 수 있다.
이후 음극집전체 위에 형성된 음극합제의 도막에 대해 건조 공정이 실시된다. 이때 건조공정은 음극합제 중의 용매증발과 함께 음극내 포함된 수분을 최대한 제거하고, 동시에 바인더의 결착력을 높일 수 있는 온도에서의 가열처리, 열풍 주입 등의 방법으로 실시될 수 있다. 구체적으로 상기 건조공정은 용매의 비점 이상 바인더의 융점 이하의 온도에서 실시될 수 있으며, 보다 구체적으로는 100℃ 내지 150℃에서 실시될 수 있다. 보다 구체적으로는 100℃ 내지 120℃의 온도 및 10torr 이하의 압력 하에서 1 내지 50시간 동안 실시될 수 있다.
또, 상기 건조공정 후 압연공정은 통상의 방법에 따라 실시될 수 있다.
또, 다른 방법으로 상기 음극활물질층은 상기한 음극합제를 별도의 지지체 상에 도포한 후 건조하여 필름상으로 제조하고, 형성된 필름을 상기 지지체로부터 박리한 후 음극 집전체 상에 라미네이션하고 압연함으로써 제조될 수도 있다.
이때 상기 음극합제, 음극집전체, 도포, 건조 및 압연공정은 앞서 설명한 바와 동일하다.
한편, 상기 전극이 양극인 경우, 상기 양극은 양극집전체 및 상기 양극집전체 위에 형성되며, 양극활물질을 포함하는 양극활물질층을 포함한다.
이때, 상기 양극집전체로는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별한 제한없이 사용가능하며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나, 스테인레스 스틸 표면에 탄소, 니켈, 티탄 또는 은 등으로 표면 처리한 것 등이 사용될 수 있다.
또, 상기 양극집전체는 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 상기 양극집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또, 상기 양극활물질층에 있어서, 상기 양극활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)이 사용될 수 있다. 구체적으로는 상기 화합물은 리튬전이금속산화물일 수 있다.
상기 리튬 전이금속산화물의 구체적인 예로는 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1 - YMnYO2(여기에서, 0<Y<1), LiMn2 - zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1 - YCoYO2(여기에서, 0<Y<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1 - YMnYO2(여기에서, 0<Y<1), LiMn2 - zCozO4(여기에서, 0<Z<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NiPCoQMnR)O2(여기에서, 0<P<1, 0<Q<1, 0<R<1, P+Q+R=1) 또는 Li(NiPCoQMnR)O4(여기에서, 0<P<2, 0<Q<2, 0<R<2, P+Q+R=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(NiPCoQMnRMS)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, P, Q, R 및 S는 각각 독립적인 원소들의 원자분율로서, 0<P<1, 0<Q<1, 0<R<1, 0<S<1, P+Q+R+S=1이다) 등) 등을 들 수 있다.
또, 상기 리튬 전이금속 산화물은 텅스텐(W) 등에 의해 도핑될 수도 있다.
이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 양극활물질은 LiCoO2, LiMnO2, LiMn2O4, LiNiO2, 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, LiNi0 . 5Mn0 . 3Co0 . 2O2, 또는 LiNi0 . 8Mn0 . 1Co0 . 1O2 등), 또는 리튬-니켈-코발트-알루미늄 산화물(예를 들면, LiNi0 . 8Co0 . 15Al0 . 05O2 등) 및 이들의 혼합물로 이루어진 군에서 선택되는 것이 바람직할 수 있다.
상기와 같은 양극은 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극활물질과 함께 도전재 및 바인더를 용매에 용해시켜 제조한 양극합제를 양극집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 또 상기 양극의 활물질층에 포함되는 바인더 및 도전재는 앞서 음극에서 설명한 바와 동일한 것일 수 있다.
또, 상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매가 사용될 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매는 양극합제의 도포성 및 공정성을 고려하여 적절한 점도를 갖도록 하는 함량으로 포함될 수 있다.
이후 양극집전체에 대한 양극합제의 도포, 건조 및 압연 공정은 앞서 음극의 제조방법에서 설명한 바와 동일한 방법으로 실시될 수 있다.
또, 상기 양극 역시 상기 양극합제를 별도의 지지체 상에 도포한 후 건조하여 제조한 양극활물질층 형성용 필름을 지지체로부터 박리하고, 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지 또는 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극 및 음극 중 적어도 하나는 앞서 설명한 바와 같이, 상기한 도전재를 포함하는 전극일 수 있다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 세퍼레이터는 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다.
또한, 상기 전해질은 전해질에 통상적으로 사용되는 유기용매 및 리튬염을 포함할 수 있으며, 특별히 제한되는 것은 아니다.
상기 유기용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매 등이 사용될 수 있다.
이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다.
또, 상기 리튬염은 리튬 이차 전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염은 상기 전해질 내에 대략 0.6 내지 2mol%의 농도로 포함되는 것이 바람직하다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같은 구성을 갖는 리튬 이차전지는, 양극과 음극 사이에 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입함으로써 제조될 수 있다.
상기 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치형 또는 코인형 등이 될 수 있다.
상기와 같이 본 발명에 따른 제조방법에 의해 제조된 도전재를 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 또 다른 일 실시예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지모듈, 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
[제조예 1: 도전재의 제조]
수퍼 피(super P™, Timcal 사) 10g을 2.45kHz의 주파수와 400W의 출력을 갖는 마이크로웨이브 발생장치에 넣고, 상기 마이크로웨이브 발생장치의 일측으로부터 공기를 계속적으로 주입하면서 마이크로웨이브를 20초간 조사하여 도전재를 제조하였다. 이때 마이크로웨이브 발생장치내 온도는 500℃이었다.
[제조예 2: 도전재의 제조]
2.45kHz의 주파수와 400W의 출력을 갖는 마이크로웨이브를 10초간 조사하는 것을 제외하고는 상기 제조예 1과 동일한 방법으로 실시하여 도전재를 제조하였다. 이때 마이크로웨이브 발생장치내 온도는 350℃이었다.
[실시예 1 및 2: 리튬 이차전지용 전극 및 리튬 이차전지의 제조]
상기 제조예 1 및 2에서 제조한 도전재를 각각 이용하여 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지를 제조하였다.
상세하게는, Li(Ni0.6Mn0.2Co0.2)O2 양극 활물질, 상기 제조예 1 또는 2에서 제조한 도전재 및 PVdF 바인더를 N-메틸피롤리돈(NMP) 용매 중에서 중량비로 90:5:5의 비율로 각각 혼합하여 양극합제(점도: 5000mPa·s)을 제조하고, 이를 알루미늄 집전체에 도포한 후, 건조 압연하여 양극을 제조하였다.
한편, 인조 흑연 96g과 카르복시메틸셀룰로즈 2g, 스티렌-부타디엔 러버 2g을 NMP 중에서 혼련하여 음극합제를 제조하였다. 이 음극합제를 Cu 포일에 코팅한 후 150℃에서의 열처리로 건조하고, 압연하여 음극을 제조하였다.
상기에서 제조한 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차전지를 제조하였다. 이때 전해액은 에틸렌카보네이트(EC)/디메틸카보네이트(DMC)/에틸메틸카보네이트(EMC)(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.15M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
[비교예 1: 리튬 이차전지용 전극 및 리튬 이차전지의 제조]
도전재로서 수퍼 피(super P™, Timcal 사)를 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지를 제조하였다.
[실험예 1: 도전재에 대한 열중량 (TG ; thermogravimetry) 분석]
열중량 분석은 시료를 주어진 온도 조건으로 가열했을 때 온도 변화에 따른 시료의 중량 변화를 측정하여 분석하는 방법이다.
실험예 1에서는 열중량 분석을, 세이코 (Seiko) SSC 5200 TG/DTA를 사용하여 DTA/DSC와 동시에 수행하였다. 온도 캘리브레이션을 니켈 및 ALUMELTM를 사용하여 수행하였다. 소성 전의 수퍼 피, 철(Fe) 분말, 구리(Cu) 분말 및 황화철(FeS) 분말을 각각 알루미늄 또는 백금 팬에 넣었다. 이 팬을 뚜껑으로 완전히 밀봉시켰고, 이 뚜껑은 TG 로(furnace)에 삽입하기 직전에 천공법으로 개방시켰다. 상기 로(furnace)는 최종 온도 1000℃까지 10/분의 속도로 대기 하에서 가열하였다. 그 결과를 도 1 내지 4에 나타내었다.
구체적으로, 도 1은 마이크로웨이브 처리 전의 수퍼 피에 대한 열중량 분석 결과이다. 도 1을 살펴보면, 점선은 수퍼 피의 열류량을 나타낸 것이며, 실선은 수퍼 피의 열 중량 변화를 나타낸 것이다. 마이크로웨이브 처리 전의 수퍼 피의 경우 마이크로웨이브 처리 후 약 600℃ 이후에서 중량이 급격히 떨어짐을 알 수 있다. 이는 수퍼 피의 경우 약 600℃에서 수퍼 피의 일부가 CO2 가스로 방출됨으로써 수퍼 피의 중량이 감소되었기 때문이다.
도 2 내지 도 4의 경우, 수퍼 피에 포함되는 금속불순물인 Fe 분말, Cu 분말 및 FeS 분말에 대한 각각의 열중량 분석 결과이다. 도 2를 살펴보면, Fe 분말의 경우 약 300℃에서 산화 반응이 시작되어 온도가 증가함에 따라 중량이 증가함을 알 수 있다. 또, 도 3의 Cu 분말의 경우, 약 300℃에서, 도 4의 FeS 분말의 경우 약 400℃에서 산화 반응이 시작되어 온도가 증가함에 따라 중량이 증가함을 알 수 있었다.
[실험예 2 : 도전재에 대한 X-선 회절 분석]
수퍼 피에 포함될 수 있는 금속불순물인 Fe, FeS, Cu 및 Zn에 대해 마이크로웨이브를 조사하여 약 500℃로 가열한 후, 마이크로웨이브 조사 전 Fe, FeS, Cu 및 Zn와, 마이크로웨이브 처리 후 생성물에 대한 X-선 회절 분석 결과를 각각 도 5 내지 도 8에 나타내었다.
상기 X선 회절 분석기의 측정 조건은, 인가전압을 40kV하고 인가전류를 40mA로 하였으며, 측정한 2θ(theta)의 범위는 10° 내지 90°이고, 0.05°간격으로 스캔하여 측정하였다. 이때, 슬릿(slit)은 가변적인 발산 슬릿(variable divergence slit) 6㎜를 사용하였고, 폴리(메틸메타크릴레이트)(PMMA) 홀더에 의한 백그라운드 노이즈(background noise)를 없애기 위해 크기가 큰 PMMA 홀더(직경=20㎜)를 사용하였다.
도 5는 마이크로웨이브 조사 전 수퍼 피에 포함될 수 있는 금속불순물인 Fe와, 상기 Fe를 상기 제조예 1에서와 동일한 조건으로 마이크로웨이브를 조사하여 수득한 생성물의 X선 회절 분석 결과이다.
상기 도 5에서 알 수 있는 바와 같이, Fe에 대한 X-선 회절 분석기에 의해 측정된 그래프(c)를 보면, 약 2θ=57도에서 주 피크(peak)가 발생하였다. 그러나, 마이크로웨이브 조사 후 생성된 도전재의 경우, Fe 산화물이 생성되었음을 알 수 있다(도 5의 (a) 및 (b) 참조). 즉, 마이크로웨이브 조사 후 생성된 도전재의 경우 약 57도에서 피크가 사라짐을 확인할 수 있으며, 분석 결과 소성 후, Fe3O4 및 Fe2O3의 혼합 금속산화물(b), 및 Fe2O3(a)가 생성되었음을 알 수 있다. 이는 마이크로웨이브의 조사로 도전재 내 금속불순물로서 포함된 Fe가 Fe 산화물로 전환되었음을 알 수 있다.
또, 도 6은 소성 전 수퍼 피에 포함될 수 있는 금속불순물인 FeS와 상기 FeS를 약 500℃에서 소성하여 생성된 생성물의 X-선 회절 분석 결과이다.
상기 도 6에서 알 수 있는 바와 같이, FeS에 대한 X-선 회절 분석기에 의해 측정된 그래프(c)를 보면, 약 2θ=54도에서 주 피크(peak)가 발생하였다. 그러나, 마이크로웨이브 조사 후 생성된 생성물의 경우, FeS 산화물이 생성되었음을 알 수 있다(도 6의 (a) 및 (b) 참조). 즉, 마이크로웨이브 조사 후 생성된 생성물의 경우 약 54도에서 피크가 사라짐을 확인 할 수 있으며, 분석 결과 마이크로웨이브 조사 후, FeS 산화물(b) 및 Fe2O3(a)가 생성되었음을 알 수 있다. 이는 마이크로웨이브의 조사로 FeS가 FeS 산화물 및 철 산화물로 전환되었음을 알 수 있다.
한편, 도 7 및 8은 소성 전 수퍼 피에 포함될 수 있는 금속불순물인 Cu 및 Zn을 500℃에서 소성한 후, 소성 전과 소성 후의 X-선 회절 분석 결과를 비교한 것이다.
도 7 및 8을 살펴보면, Cu 및 Zn에 대해 마이크로웨이브를 조사할 경우, Cu 및 Zn의 주 피크가 사라지고 각각 CuO 및 ZnO 피크가 생성됨을 확인할 수 있다. 따라서, 마이크로웨이브를 조사한 경우 각각의 금속불순물이 완전히 산화되어 금속산화물이 생성되었음을 확인할 수 있다.
또한, 도 5 내지 8의 X-선 회절 분석에서 각각의 금속불순물의 주요 피크 및, 상기 피크에서의 마이크로웨이브 처리 후 생성된 도전재의 상대적인 피크 강도를 고려하여 금속불순물/금속산화물의 함량비를 측정할 수 있다. 상기 도 5 내지 8의 X-선 회절 분석에서 유추할 수 있는 금속불순물/금속산화물의 함량비를 하기 표 1에 나타내었다.
Fe/Fe 산화물(중량비) FeS/FeS 산화물(중량비) Cu/Cu 산화물(중량비) Zn/Zn 산화물(중량비)
Fe 0.2/99.8=0.002 - - -
FeS - 0/100=0 - -
Cu - - 0/100=0 -
Zn - - - 15.42/84.58=0.182
상기 표 1 에 나타낸 바와 같이, 금속불순물/금속 산화물의 함량비는 중량비로 0 내지 0.182의 범위로 금속불순물이 금속 산화물로 대부분 전환되었음을 알 수 있다.
[실험예 3: Fe 화합물의 산화환원 전위 측정]
상기 제조예 1 및 2에서 제조한 도전재 내 금속불순물의 산화물 형성에 따른 안정성을 평가하기 위하여, 금속 철(Fe) 및 다양한 조성으로 혼합된 철 산화물에 대해 순환전압전류법을 이용하여 각각의 산화환원전위를 측정하고, 안정성을 평가하였다. 그 결과를 도 9 및 하기 표 2에 각각 나타내었다.
<산화환원전위 측정시 조건>
스캔 속도: 1mV/sec
sweep voltammetry: OCP / 5V / 2.5V
샘플 조성 산화전위(vs. Li/Li+)
1 Fe 100 중량% 약 4.3V
2 Fe3O4 14중량% + Fe2O3 86중량% N/A
3 Fe3O4 2중량% + Fe2O3 98중량% N/A
(상기 표 2에서 N/A는 측정불가를 의미함)
상기 실험결과로부터, 도전재의 주요불순물인 금속 Fe의 경우, 4.3V에서 반응하는 반면, Fe 산화물은 전지 작동구간인 3V 내지 4.5V에서 안정하였다. 이 같은 결과로부터 도전재에 대해 마이크로웨이브를 조사하면 금속불순물인 Fe가 금속산화물로 전환됨으로써, 전지 작동구간인 3V 내지 4.5V에서 안정화되었다. 그 결과, 전지 작동전압 구간에서 금속불순물의 용출이 없으며, 그 결과로 저전압 불량을 방지할 수 있음을 알 수 있다.
[실험예 4: 리튬 이차전지의 전극 특성 평가]
상기 실시예 1, 2 및 비교예 1에서 제조한 리튬 이차전지에 대해 전지특성을 평가하였다.
상세하게는, 상기 실시예 1, 2 및 비교예 1의 리튬 이차전지를 25℃에서 정전류/정전압(CC/CV) 조건에서 4.2V/38mA까지 1C로 충전한 다음, 정전류(CC) 조건에서 3.03V까지 2C로 방전하였다. 이를 1사이클로 하여 1200사이클 반복실시하였다. 충방전 과정에서의 방전용량, 충전용량 및 1200사이클째의 용량유지율을 각각 측정하였다.
방전용량(mAh/g) 충전용량(mAh/g) 용량유지율(%)
실시예1 174.6 179.3 97.4
실시예2 175.3 179.6 97.6
비교예1 169.3 178.0 95.1
상기 표 3에 나타난 바와 같이, 마이크로웨이브 처리된 도전재를 포함하는 실시예 1 및 2의 리튬 이차전지는, 마이크로웨이브 처리되지 않은 도전재를 포함하는 비교예 1의 리튬 이차전지와 비교하여, 마이크로웨이브 처리에 의해 도전재 내 포함된 금속불순물이 금속산화물로 전환됨으로써, 충전 및 방전용량이 높고, 또 용량유지율이 평균 2.4% 정도 상승하였다.

Claims (19)

  1. 금속불순물을 포함하는 도전재에 대해 마이크로웨이브를 조사하여 상기 금속불순물을 금속산화물로 전환함으로써 상기 도전재 내 금속불순물을 제거하는 단계를 포함하는 도전재의 제조방법.
  2. 제1항에 있어서,
    상기 마이크로웨이브 조사는, 1kHz 내지 50kHz의 주파수 및 400W 내지 2000W의 출력을 갖는 마이크로웨이브를 20초 이하로 조사함으로써 실시되는 것인 도전재의 제조방법.
  3. 제1항에 있어서,
    상기 마이크로웨이브 조사는, 마이크로웨이브 조사에 의해 상기 금속불순물을 포함하는 도전재가 350℃ 내지 600℃의 온도에서 열 산화되도록 하는 조건으로 실시되는 것인 도전재의 제조방법.
  4. 제1항에 있어서,
    상기 금속불순물은 금속, 합금 및 이들의 황화물로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함하고,
    상기 금속은 철, 구리, 아연, 칼슘, 티타늄 및 크롬으로 이루어진 군에서 선택되는 어느 하나이고, 그리고
    상기 합금은 철, 구리, 아연, 칼슘, 티타늄 및 크롬으로 이루어진 군에서 선택되는 둘 이상의 원소를 포함하는 것인 도전재의 제조방법.
  5. 제1항에 있어서,
    상기 금속불순물은 철, 구리, 아연, 칼슘, 티타늄, 크롬 및 황화철로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함하는 것인 도전재의 제조방법.
  6. 제1항에 있어서,
    상기 도전재는 탄소계 물질인 도전재의 제조방법.
  7. 제1항에 있어서,
    상기 금속산화물은 금속, 합금 및 이들의 황화물로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함하는 금속불순물의 산화물인 것인 도전재의 제조방법.
  8. 제1항에 있어서,
    상기 금속산화물은 철 산화물, 황화철 산화물, 구리 산화물, 아연 산화물, 칼슘 산화물, 티타늄 산화물 및 크롬 산화물로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 도전재의 제조방법.
  9. 제1항에 따른 제조방법에 의해 제조된 도전재.
  10. 제9항에 있어서,
    상기 도전재는 탄소계 물질을 포함하고, 그리고
    금속불순물 및 상기 금속불순물의 산화물을 0:100 내지 0.5:99.5의 중량비로 포함하는 것인 도전재.
  11. 제10항에 있어서,
    상기 도전재 총 중량에 대하여 0.01중량% 내지 1중량%의 양으로 상기 금속불순물의 산화물을 포함하는 것인 도전재.
  12. 제10항에 있어서,
    상기 금속불순물은 금속, 합금 및 이들의 황화물로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함하고,
    상기 금속은 철, 구리, 아연, 칼슘, 티타늄 및 크롬으로 이루어진 군에서 선택되는 어느 하나이고,
    상기 합금은 철, 구리, 아연, 칼슘, 티타늄 및 크롬으로 이루어진 군에서 선택되는 둘 이상의 원소를 포함하는 것인 도전재.
  13. 제10항에 있어서,
    상기 금속불순물의 산화물은 철 산화물, 황화철 산화물, 구리 산화물, 아연 산화물, 칼슘 산화물, 티타늄 산화물 및 크롬 산화물로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 도전재.
  14. 제9항에 따른 도전재를 포함하는 리튬 이차전지용 전극.
  15. 양극,
    음극,
    상기 양극과 음극 사이에 개재된 세퍼레이터 및
    비수전해질을 포함하며,
    상기 양극 및 음극 중 적어도 하나는 제9항에 따른 도전재를 포함하는 것인 리튬 이차전지.
  16. 제15항에 따른 리튬 이차전지를 단위 셀로 포함하는 전지모듈.
  17. 제16항에 따른 전지모듈을 포함하는 전지팩.
  18. 제17항에 있어서,
    중대형 디바이스의 전원으로 사용되는 것인 전지팩.
  19. 제18항에 있어서,
    상기 중대형 디바이스는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 것인 전지팩.
PCT/KR2015/011235 2014-11-03 2015-10-22 도전재의 제조방법, 이로부터 제조된 도전재 및 이를 포함하는 리튬 이차전지 WO2016072649A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017508002A JP6623214B2 (ja) 2014-11-03 2015-10-22 導電材の製造方法
EP15857341.0A EP3217454B1 (en) 2014-11-03 2015-10-22 Conductive material manufacturing method for a lithium secondary battery
CN201580046476.1A CN106663815B (zh) 2014-11-03 2015-10-22 制造导电材料的方法、由此制造的导电材料和包含所述导电材料的锂二次电池
US15/503,251 US10637064B2 (en) 2014-11-03 2015-10-22 Method for manufacturing conductor, conductor manufactured thereby and lithium secondary battery including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140151273A KR101964068B1 (ko) 2014-11-03 2014-11-03 도전제의 제조방법, 이로부터 제조된 도전제 및 이를 포함하는 리튬이차전지
KR10-2014-0151273 2014-11-03

Publications (1)

Publication Number Publication Date
WO2016072649A1 true WO2016072649A1 (ko) 2016-05-12

Family

ID=55909332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011235 WO2016072649A1 (ko) 2014-11-03 2015-10-22 도전재의 제조방법, 이로부터 제조된 도전재 및 이를 포함하는 리튬 이차전지

Country Status (6)

Country Link
US (1) US10637064B2 (ko)
EP (1) EP3217454B1 (ko)
JP (1) JP6623214B2 (ko)
KR (1) KR101964068B1 (ko)
CN (1) CN106663815B (ko)
WO (1) WO2016072649A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107860674B (zh) * 2017-11-07 2019-12-03 哈尔滨工业大学 一种掺杂锆酸镧基燃料电池电解质材料质子导电性简易评估方法
KR102104812B1 (ko) * 2018-08-30 2020-04-27 한국세라믹기술원 높은 비표면적의 나노구조를 가지는 산화아연 제조방법
KR102326570B1 (ko) * 2019-12-19 2021-11-15 한국세라믹기술원 고비표면적 산화아연 제조방법
CN112489981B (zh) * 2020-12-04 2022-08-23 江苏省农业科学院 基于微波辅助改性的磁性纳米粒子的制备方法及其应用
KR20230062283A (ko) * 2021-10-29 2023-05-09 주식회사 엘지에너지솔루션 황-탄소 복합체를 포함하는 양극 및 이를 포함하는 리튬 이온 이차 전지
WO2023113283A1 (ko) * 2021-12-16 2023-06-22 주식회사 엘지에너지솔루션 불순물이 제거된 다공성 탄소재, 이의 제조방법, 상기 탄소재를 양극 활물질로 포함하는 리튬-황 전지용 양극 및 리튬-황 전지
CN114853004A (zh) * 2022-04-25 2022-08-05 蜂巢能源科技股份有限公司 一种负极材料及其制备方法和应用
JP7457227B1 (ja) 2023-06-30 2024-03-28 artience株式会社 二次電池電極用複合物

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140077519A (ko) * 2012-12-14 2014-06-24 삼성전기주식회사 활성 탄소, 이의 제조방법, 및 이를 포함하는 전기화학 캐패시터

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188167A (ja) * 1986-02-14 1987-08-17 Denki Kagaku Kogyo Kk リチウム電池
JP2000327316A (ja) * 1999-05-12 2000-11-28 Sony Corp 炭素材料及び非水電解質電池の製造方法
US7150865B2 (en) 2003-03-31 2006-12-19 Honda Giken Kogyo Kabushiki Kaisha Method for selective enrichment of carbon nanotubes
JP4926444B2 (ja) * 2004-10-21 2012-05-09 新日鐵化学株式会社 黒鉛材料高純度化処理炉および黒鉛材料の高純度化処理方法
EP1845124A1 (en) 2006-04-14 2007-10-17 Arkema France Conductive carbon nanotube-polymer composite
KR100994181B1 (ko) 2006-10-31 2010-11-15 주식회사 엘지화학 전기 전도성을 향상시킨 도전제를 포함한 리튬 이차전지
KR101439260B1 (ko) * 2008-07-17 2014-09-11 삼성디스플레이 주식회사 금속 산화물 형광체 제조 방법
US8221853B2 (en) * 2008-09-03 2012-07-17 The Regents Of The University Of California Microwave plasma CVD of NANO structured tin/carbon composites
CN102165022B (zh) * 2008-09-29 2013-08-21 狮王株式会社 高纯度炭黑的制造方法
JP2011090794A (ja) * 2009-10-20 2011-05-06 Panasonic Corp 非水電解質二次電池用負極及び非水電解質二次電池
JP2012062222A (ja) * 2010-09-16 2012-03-29 National Institutes Of Natural Sciences 炭素ナノ構造体
CN101973545B (zh) 2010-11-08 2012-09-05 昆明冶金研究院 一种提纯高纯石墨的方法
KR101372145B1 (ko) 2012-03-23 2014-03-12 삼성정밀화학 주식회사 탄소나노튜브-올리빈형 리튬망간계인산화물 복합체의 제조 방법 및 이를 이용한 리튬이차전지
WO2014132809A1 (ja) * 2013-02-27 2014-09-04 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140077519A (ko) * 2012-12-14 2014-06-24 삼성전기주식회사 활성 탄소, 이의 제조방법, 및 이를 포함하는 전기화학 캐패시터

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DEMENTEV, NIKOLAY ET AL.: "Purification of carbon nanotubes by dynamic oxidation in air", J. MATER. CHEM., vol. 19, 2009, pages 7904 - 7908, XP055378929 *
KO, FU-HSIANG ET AL.: "Purification of multi-walled carbon nanotubes through microwave heating of nitric acid in a closed vessel", CARBON, vol. 43, 2005, pages 727 - 733, XP027645163 *
PELECH, IWONA ET AL.: "Removal of metal particles from carbon nanotubes using conventional and microwave method", SEPARATION AND PURIFICATION TECHNOLOGY, vol. 136, 2014, pages 105 - 110, XP029084658, [retrieved on 20140916], DOI: doi:10.1016/j.seppur.2014.08.036 *
TSAI, PEIR-AN ET AL.: "Purification and Functionalization of Single-Walled Carbon Nanotubes through Different Treatment Procedures", JOURNAL OF NANOMATERIALS, vol. 2013, XP003032443 *

Also Published As

Publication number Publication date
JP6623214B2 (ja) 2019-12-18
JP2018500713A (ja) 2018-01-11
CN106663815A (zh) 2017-05-10
US10637064B2 (en) 2020-04-28
EP3217454A4 (en) 2017-09-13
KR101964068B1 (ko) 2019-04-01
CN106663815B (zh) 2020-03-06
EP3217454B1 (en) 2018-12-12
EP3217454A1 (en) 2017-09-13
US20170237073A1 (en) 2017-08-17
KR20160051371A (ko) 2016-05-11

Similar Documents

Publication Publication Date Title
WO2018097562A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019151813A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2016072649A1 (ko) 도전재의 제조방법, 이로부터 제조된 도전재 및 이를 포함하는 리튬 이차전지
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2018012694A1 (ko) 리튬 금속이 양극에 형성된 리튬 이차전지와 이의 제조방법
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2015065102A1 (ko) 리튬 이차전지
WO2018016737A1 (ko) 리튬 코발트 산화물을 합성하기 위한 양극 활물질을 포함하는 리튬 이차전지, 이의 제조방법
WO2020085823A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020111649A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019017643A9 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021101281A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질
WO2019078688A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019177403A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지용 음극
WO2016053051A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020067830A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022092906A1 (ko) 양극 활물질 및 이의 제조방법
WO2019194609A1 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2019078506A2 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019078626A1 (ko) 이차전지용 양극활물질의 제조방법 및 이를 이용하는 이차전지
WO2018062883A2 (ko) 메쉬 형태의 절연층을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857341

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015857341

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015857341

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017508002

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE