WO2016067769A1 - 回転型可変抵抗器およびその製造方法 - Google Patents

回転型可変抵抗器およびその製造方法 Download PDF

Info

Publication number
WO2016067769A1
WO2016067769A1 PCT/JP2015/075800 JP2015075800W WO2016067769A1 WO 2016067769 A1 WO2016067769 A1 WO 2016067769A1 JP 2015075800 W JP2015075800 W JP 2015075800W WO 2016067769 A1 WO2016067769 A1 WO 2016067769A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
resistor
insulating substrate
current collector
rotor
Prior art date
Application number
PCT/JP2015/075800
Other languages
English (en)
French (fr)
Inventor
誠士 森上
浩幸 岸下
武田 健
治 中尾
知世 北川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016556427A priority Critical patent/JPWO2016067769A1/ja
Priority to CN201580058296.5A priority patent/CN107077932A/zh
Publication of WO2016067769A1 publication Critical patent/WO2016067769A1/ja
Priority to US15/496,383 priority patent/US9916920B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/30Adjustable resistors the contact sliding along resistive element
    • H01C10/32Adjustable resistors the contact sliding along resistive element the contact moving in an arcuate path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/142Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being coated on the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/01Mounting; Supporting

Definitions

  • the present invention relates to a rotary variable resistor and a manufacturing method thereof.
  • the rotary variable resistor includes a resin film, a resistor pattern and a current collector pattern provided on the resin film, and a slider that is in sliding contact with the resistor pattern and the current collector pattern.
  • the resistor pattern and the current collector pattern are printed on the resin film.
  • an object of the present invention is to provide a rotary variable resistor capable of realizing both miniaturization and high accuracy, and a manufacturing method thereof.
  • the rotary variable resistor of the present invention is An insulating substrate; A resistor pattern and a current collector pattern provided on the insulating substrate and spaced apart from each other; A rotor rotatably attached to the insulating substrate; A slider attached to the rotor so as to be rotatable together with the rotor, and slidingly contacting the resistor pattern and the current collector pattern to conduct the resistor pattern and the current collector pattern.
  • the maximum dimension Z of the resistor pattern means, for example, the diameter when the outer shape of the resistor pattern is circular, and the long side when the outer shape of the resistor pattern is rectangular.
  • the electrical linearity L refers to the maximum vertical deviation of the actually measured output voltage ratio from the ideal straight line in the relationship between the rotation angle of the rotor and the output voltage ratio.
  • the rotary variable resistor of the present invention since Z ⁇ 4.0 is satisfied, the rotary variable resistor can be reduced in size. Since Z ⁇ L ⁇ 10 is satisfied, the electrical linearity can be improved. Therefore, both miniaturization and high accuracy can be realized.
  • the resistor pattern and the current collector pattern are configured by screen printing on the insulating substrate.
  • the resistor pattern and the current collector pattern are configured by screen printing on an insulating substrate. Therefore, the cheapest and efficient screen printing is used, and the cost can be reduced.
  • the rotary variable resistor of the present invention is An insulating substrate; A resistor pattern and a current collector pattern provided on the insulating substrate and spaced apart from each other; A rotor rotatably attached to the insulating substrate; A slider attached to the rotor so as to be rotatable together with the rotor, and slidingly contacting the resistor pattern and the current collector pattern to conduct the resistor pattern and the current collector pattern.
  • the resistor pattern is configured by screen printing in a first direction on the insulating substrate, Passes through the midpoint of the width of the resistor pattern on the side where the length in the direction orthogonal to the first direction is the maximum on the first straight line parallel to the first direction and passing through the rotation axis of the rotor.
  • 1.0 ⁇ (t2 / t1) ⁇ 1.2 is satisfied, where t1 is the thickness at the center and t2 is the maximum thickness.
  • the first direction refers to the printing direction, and refers to the direction in which the paste is conveyed on the screen film with the squeegee.
  • the rotary variable resistor of the present invention since 1.0 ⁇ (t2 / t1) ⁇ 1.2 is satisfied, the variation in the film thickness of the resistor pattern is reduced, and the electrical linearity can be improved. Therefore, high precision can be achieved even in a small rotary variable resistor.
  • the resistor pattern is configured by screen printing on the insulating substrate, the cheapest and most efficient screen printing is used, and the cost can be reduced.
  • the rotary variable resistor of the above embodiment since Z ⁇ 4.0 is satisfied, the rotary variable resistor can be reduced in size. Since Z ⁇ L ⁇ 10 is satisfied, the electrical linearity can be improved. Therefore, both miniaturization and high accuracy can be realized.
  • the resistor pattern and the current collector pattern are made of the same material.
  • the resistor pattern and the current collector pattern are made of the same material, so that the cost can be reduced.
  • an exposed electrode provided in the insulating substrate and exposed from the insulating substrate;
  • An electrode pattern provided on the insulating substrate and positioned between the resistor pattern and the exposed electrode; The resistor pattern and the exposed electrode are electrically connected via the electrode pattern.
  • the resistor pattern and the exposed electrode are conducted through the electrode pattern.
  • the resistor pattern and the exposed electrode can be indirectly connected through the electrode pattern. Can be secured.
  • the rotor is A main body made of resin; A metal member fixed to the main body, The slider is locked to the metal member and attached to the rotor.
  • the slider since the slider is locked to the metal member fixed to the main body and attached to the rotor, the slider and the rotor by reflow soldering heat The occurrence of shakiness is reduced. Thereby, there is no fluctuation of the contact pressure of the slider to the resistor pattern and the current collector pattern, and stable contact between the resistor pattern and the current collector pattern and the slider can be obtained.
  • the slider is locked to the metal member by caulking of the metal member.
  • the slider since the slider is locked to the metal member by the caulking of the metal member, the slider can be easily attached to the rotor.
  • the metal member is fixed to the main body portion by insert molding.
  • the metal member since the metal member is fixed to the main body by insert molding, the metal member can be easily fixed to the main body.
  • the resistor pattern and the current collector pattern are formed on the insulating substrate while pressing the screen film to contact the insulating substrate with a squeegee. To do.
  • the resistor pattern and the current collector pattern are printed while sufficiently pushing the screen film with the squeegee, so that the thickness of the resistor pattern and the current collector pattern can be controlled by the thickness of the hole in the screen film. it can. Therefore, the thicknesses of the resistor pattern and the current collector pattern can be made substantially constant regardless of the size of the opening of the hole of the screen film. Therefore, the variation in the film thickness of the resistor pattern is reduced, and the electrical linearity can be improved. Therefore, even when a small rotary variable resistor is manufactured, high accuracy can be realized.
  • a rotary variable resistor of the present invention According to the method for manufacturing a rotary variable resistor of the present invention, it is possible to manufacture a rotary variable resistor that satisfies a reduction in size and accuracy.
  • FIG. 1 It is a perspective view which shows the rotation type variable resistor of 1st Embodiment of this invention. It is the disassembled perspective view seen from the downward direction of the rotary variable resistor of this invention. It is the disassembled perspective view seen from the rotation type variable resistor of this invention from the upper direction. It is a top view which shows the state which removed the cap of the rotation type variable resistor of this invention, the rotor, and the slider. It is explanatory drawing explaining operation
  • FIG. 1 is a perspective view showing a rotary variable resistor according to an embodiment of the present invention.
  • FIG. 2A is an exploded perspective view of the rotary variable resistor as viewed from below.
  • FIG. 2B is an exploded perspective view of the rotary variable resistor as seen from above.
  • the rotary variable resistor 1 includes an insulating substrate 2, a resistor pattern 5 and current collector pattern 6 provided on the insulating substrate 2, and an insulating substrate 2. It has the rotor 3 attached so that rotation was possible, and the slider 4 attached to the rotor 3 so that rotation with the rotor 3 was possible.
  • the insulating substrate 2 is provided with first, second and third terminals 11, 12 and 13.
  • the first terminal 11 has an exposed electrode 11 a provided in the insulating substrate 2 and exposed from the insulating substrate 2.
  • the second terminal 12 has an exposed electrode 12a
  • the third terminal 13 has an exposed electrode 13a.
  • An electrode pattern 7 is provided on the insulating substrate 2.
  • the electrode pattern 7 is located between the resistor pattern 5 and the current collector pattern 6 and the exposed electrodes 11a, 12a, and 13a.
  • the resistor pattern 5 and the current collector pattern 6 are electrically connected to the exposed electrodes 11a, 12a, and 13a through the electrode pattern 7.
  • the resistor pattern 5 and the exposed electrodes 11a, 12a, and 13a are interposed via the electrode pattern 7. Can be indirectly conducted, and high reliability can be secured.
  • the cap 10 is detachably attached to the insulating substrate 2.
  • the cap 10 covers the rotor 3, the slider 4, the resistor pattern 5, the current collector pattern 6 and the electrode pattern 7.
  • FIG. 3 is a plan view showing a state where the cap 10, the rotor 3 and the slider 4 of the rotary variable resistor 1 are removed.
  • the insulating substrate 2 has a rectangular shape in plan view.
  • a hole 21 is provided in the insulating substrate 2.
  • a boss 31 of the rotor 3 is fitted into the hole 21 of the insulating substrate 2.
  • the rotor 3 rotates about the rotation axis C.
  • the insulating substrate 2 and the rotor 3 are made of resin, for example.
  • the resistor pattern 5 and the current collector pattern 6 are spaced apart from each other.
  • the resistor pattern 5 has a shape in which a ring centered on the rotation axis C is partially cut out.
  • the resistor pattern 5 has a first end 51 and a second end 52.
  • the current collector pattern 6 has an annular shape around the rotation axis C.
  • the current collector pattern 6 is located inside the resistor pattern 5.
  • the resistor pattern 5 and the current collector pattern 6 are made of the same material, for example, a material in which a phenolic resin is impregnated with carbon black.
  • the slider 4 is attached to the boss portion 31 and the two protrusions 32 of the rotor 3 and positioned.
  • the slider 4 is formed in a substantially annular shape.
  • the slider 4 has a first protrusion 41 and a second protrusion 42.
  • the first protrusion 41 and the second protrusion 42 are electrically connected.
  • the slider 4 is brought into sliding contact with the resistor pattern 5 and the current collector pattern 6 to conduct the resistor pattern 5 and the current collector pattern 6. That is, the first protrusion 41 is in sliding contact with the resistor pattern 5, and the second protrusion 42 is in sliding contact with the current collector pattern 6, so that the resistor pattern 5 and the current collector pattern 6 are electrically connected.
  • the slider 4 is made of metal, for example.
  • the electrode pattern 7 has a first electrode part 71, a second electrode part 72, and a third electrode part 73.
  • the first electrode portion 71 overlaps and contacts the first end portion 51 of the resistor pattern 5.
  • the second electrode portion 72 overlaps and contacts the second end portion 52 of the resistor pattern 5.
  • the third electrode portion 73 is formed in an annular shape.
  • the third electrode part 73 overlaps and contacts the current collector pattern 6.
  • the electrode pattern 7 is made of metal, for example.
  • Part of the first terminal 11 and the second terminal 12 is drawn from the first side of the insulating substrate 2.
  • a part of the third terminal 13 is drawn from the second side facing the first side of the insulating substrate 2.
  • the exposed electrode 11 a of the first terminal 11 overlaps and contacts the first electrode portion 71.
  • the exposed electrode 12 a of the second terminal 12 is in contact with the second electrode portion 72 in an overlapping manner.
  • the exposed electrode 13 a of the third terminal 13 overlaps and contacts the third electrode portion 73.
  • the first, second, and third terminals 11, 12, and 13 are made of metal, for example.
  • the first end portion 51 of the resistor pattern 5 and the exposed electrode 11 a of the first terminal 11 are electrically connected via the first electrode portion 71.
  • the second end portion 52 of the resistor pattern 5 and the exposed electrode 12 a of the second terminal 12 are electrically connected via the second electrode portion 72.
  • the current collector pattern 6 and the exposed electrode 13 a of the third terminal 13 are electrically connected via the third electrode portion 73.
  • FIG. 4 is an explanatory diagram for explaining the operation of the rotary variable resistor 1.
  • the slider 4 is shown in a simple shape.
  • a constant voltage Vcc is applied between the first terminal 11 and the second terminal 12.
  • the voltage V 13 between the first terminal 11 and the third terminal 13 changes. That is, the voltage V 13 changes according to the rotation angle of the slider 4.
  • slider 4 by measuring this voltage V 13, slider 4 the rotational angle of the (rotor 3) can be easily detected.
  • the center position between the first end 51 and the second end 52 in the resistor pattern 5 with the rotation axis C as the center is set to a center angle of 0 °.
  • the rotation angle on the second end 52 side is set to a positive value and the rotation angle on the first end 51 side is set to a negative value with the center angle 0 ° as a reference.
  • positive values are indicated as (+) and negative values are indicated as ( ⁇ ).
  • FIG. 5 is a graph showing the relationship between the output voltage ratio and the rotation angle.
  • the vertical axis represents the output voltage ratio [%]
  • the horizontal axis represents the rotation angle [°] of the slider 4 (rotor 3).
  • the output voltage ratio is (V 13 / V cc ⁇ 100).
  • an ideal value is an ideal straight line R (shown in phantom line), and an actual measurement value is an actual measurement curve W (shown in a solid line).
  • the inclination of the ideal straight line R is, for example, 100 [%] / 333.3 [°].
  • the ideal straight line R and the actual measurement curve W overlap at the intersection of the rotation angle 0 ° and the output voltage ratio 50%.
  • the maximum vertical deviation H of the actual measurement curve W from the ideal straight line R is referred to as electrical linearity (linearity) L [%].
  • L shift amount / Vcc ⁇ 100.
  • the deviation amount is a voltage difference corresponding to the maximum vertical deviation H.
  • the range of the rotation angle in which the electrical linearity L is guaranteed is ⁇ 160 ° or more and + 160 ° or less.
  • the maximum dimension effective as the variable resistance of the resistor pattern 5 is Z [mm].
  • the maximum dimension Z refers to the maximum dimension of the outer shape of the resistor pattern 5.
  • the portion effective as the variable resistor of the resistor pattern 5 is a portion functioning as a resistor in the resistor pattern 5 and means a portion not overlapping with the electrode patterns 71 and 72 in the resistor pattern 5.
  • the maximum dimension Z of the resistor pattern 5 is, for example, the diameter when the outer shape of the resistor pattern 5 is circular, and the long side when the outer shape of the resistor pattern 5 is rectangular.
  • the resistor pattern 5 and the current collector pattern 6 are configured by screen printing in the first direction X on the insulating substrate 2.
  • the first direction X refers to the printing direction, which will be described later, and refers to the direction in which the paste is conveyed on the screen film with the squeegee.
  • the film thickness of the portion where the length in the direction orthogonal to the first direction X is maximum is likely to vary. For this reason, the inventor of the present application pays attention to this portion and found that if the variation in the film thickness of this portion is within a predetermined range, the variation in the entire film thickness of the resistor pattern 5 is reduced.
  • the resistor pattern 5 has a downstream portion in the first direction X (hereinafter referred to as the top portion 55) and a central portion in the first direction X (hereinafter referred to as the side portion 56).
  • the top portion 55 is located on the side of the resistor pattern 5 where the length in the direction orthogonal to the first direction X is maximum.
  • the screen film has a hole corresponding to the resistor pattern 5.
  • the size of the opening corresponding to the top 55 of the hole is larger than the size of the opening corresponding to the side 56 of the hole. For this reason, conventionally, there is a difference in the amount of pressing by the squeegee between the portion corresponding to the top 55 of the hole and the portion corresponding to the side 56 of the hole.
  • the portion corresponding to the top 55 of the hole portion of the screen film is greatly pushed in, and the film thickness variation of the top 55 is increased. Therefore, the inventor of the present application pays attention to the film thickness of the top portion 55 and finds that if the variation in the film thickness of the top portion 55 is within a predetermined range, the variation in the total film thickness of the resistor pattern 5 is reduced. .
  • a straight line parallel to the first direction X and passing through the rotation axis C when viewed from the direction along the rotation axis C is defined as a first line M1.
  • a point located at the center of the width (the width of the top portion 55) of the partial side where the length in the direction orthogonal to the first direction X in the resistor pattern 5 on the first straight line M1 is the maximum is defined as a middle point M0.
  • the maximum length of the resistor pattern 5 in the direction orthogonal to the first direction X is the length D at a position orthogonal to the first line M1 at the intersection of the first line M1 and the inner periphery of the resistor pattern 5. .
  • a straight line passing through the middle point M0 and orthogonal to the first straight line M1 is defined as a second straight line M2.
  • the film thickness at the center in the direction along the second straight line M2 is t1
  • the maximum film thickness t2 is the film thickness at the end in the direction along the second straight line M2. The same applies to the side portion 56 of the resistor pattern 5.
  • the resistor pattern 5 is configured by screen printing on the insulating substrate 2, the cheapest and most efficient screen printing is used, and the cost can be reduced. Moreover, since the resistor pattern 5 and the current collector pattern 6 are made of the same material, the cost can be reduced.
  • the screen film 8 is arranged on the insulating substrate 2 with an interval. This is called a screen film arranging step.
  • the screen film 8 has a hole 81 corresponding to the resistor pattern 5 and the current collector pattern 6.
  • An emulsion 82 is attached to the screen film 8, and the emulsion 82 keeps a constant distance between the screen film 8 and the insulating substrate 2.
  • the emulsion 82 is made of, for example, a resin.
  • the emulsion 82 is disposed around the hole 81.
  • the paste P is a material for the resistor pattern 5 and the current collector pattern 6.
  • the paste P is conveyed in the first direction X on the screen film 8 while pressing the screen film 8 toward the insulating substrate 2 side (second direction Y) with the squeegee 9. Is pushed out from the hole 81 of the screen film 8.
  • the resistor pattern 5 and the current collector pattern 6 are formed on the insulating substrate 2 by the paste P pushed out from the hole 81. This is called a pattern formation process.
  • the paste P is heated and cured to manufacture the rotary variable resistor 1.
  • the resistor pattern 5 is formed on the insulating substrate 2 as shown in FIG. 9B.
  • the resistor pattern 5 is formed on the insulating substrate 2 as shown in FIG. 9B.
  • the film thickness t4 at the central portion of the side portion 56 is substantially the same as the film thickness t1 at the central portion of the top portion 55, and the film thickness t5 at the end portion of the side portion 56 is substantially equal to the film thickness t2 at the end portion of the top portion 55. The same.
  • the resistor pattern 5 and the current collector pattern 6 are printed while the screen film 8 is sufficiently pushed by the squeegee 9.
  • the thickness can be controlled. Therefore, the thicknesses of the resistor pattern 5 and the current collector pattern 6 can be made substantially constant regardless of the size of the opening of the hole 81 of the screen film 8. Therefore, the variation in the film thickness of the resistor pattern 5 is reduced, and the electrical linearity can be improved. Therefore, even when a small rotary variable resistor 1 is manufactured, high accuracy can be realized.
  • the emulsion 82 originally has a role of controlling the amount of paste, but in the present invention, it has a role of interfering with the roughness or waviness of the insulating substrate 2. For this reason, the thickness of the emulsion 82 can be reduced to a thickness necessary for interference such as roughness. In the screen film 8, a coarse count can be used to promote elongation.
  • the electrical linearity of the resistor pattern 5 is determined by many factors, but the dominant one is the variation in the film thickness of the resistor pattern 5.
  • the opening 181 of the screen film 108 is large at the top 155 of the resistor pattern 105 as shown in FIG. growing.
  • the difference between the film thickness t1 at the center and the film thickness t2 at the end increases.
  • the film thickness of the resistor pattern 105 varies and the electrical linearity deteriorates.
  • the amount of the paste P is controlled not by the thickness of the hole 181 of the screen film 108 but by the thickness of the emulsion 182.
  • the film thickness t1 at the center and the maximum film thickness t2 are substantially equal.
  • the difference between the film thickness t1 at the center and the maximum film thickness t2 is large and is about 2 ⁇ m.
  • the horizontal axis indicates the width direction of the top cross section (the direction along the second straight line M2 shown in FIG. 3), and the vertical axis indicates the film thickness [ ⁇ m].
  • the horizontal axis indicates the angle [°]
  • the vertical axis indicates the average film thickness [ ⁇ m].
  • the angle corresponds to the rotation angle described in FIG.
  • the average film thickness is an average value of the film thickness in the radial direction of the resistor pattern.
  • the variation in the film thickness in the radial direction of the resistor pattern is small regardless of the angle.
  • the variation in the film thickness in the radial direction of the resistor pattern increases with the angle. That is, the difference between the film thickness at the top and the film thickness at the side is large.
  • the insulating substrate is made of PPS resin (DIC: FZ-3600).
  • the first to third terminals are made of brass and plated with Ni and Ag.
  • the first to third terminals are insert-molded on the insulating substrate.
  • the maximum dimension Z of the resistor pattern is ⁇ 3.58 mm.
  • the resistor pattern and the current collector pattern are made of a material in which carbon black is impregnated with a phenol-based resin, and are screen-printed on an insulating substrate.
  • the electrode pattern is made of Ag paste and is screen-printed on an insulating substrate.
  • the rotor is made of LCP resin (Polyplastic: Laperos E130G).
  • the slider is made of white and is plated with Ni and Ag.
  • the slider is insert-molded in the rotor.
  • the cap is made of SUS304.
  • FIG. 14 is a plan view seen from below showing the rotor and the slider according to the second embodiment of the present invention.
  • the rotor 3 ⁇ / b> A includes a main body portion 130 made of resin and a metal member 135 fixed to the main body portion 130.
  • the slider 4A is locked to the metal member 135 and attached to the rotor 3A.
  • the slider 4 ⁇ / b> A is locked to the metal member 135 by caulking of the metal member 135.
  • the metal member 135 is fixed to the main body 130 by insert molding.
  • the main body 130 has a boss 31.
  • the outer shape of the main body 130 is substantially the same as the outer shape of the slider 4A in plan view.
  • the metal member 135 is a strip-shaped metal plate.
  • the two metal members 135 are fixed to the main body 130 by insert molding.
  • One end of the metal member 135 is embedded in the main body 130, and the other end of the metal member 135 is exposed from the main body 130.
  • the other end of the metal member 135 is inserted into the hole 140 of the slider 4A and crimped.
  • the slider 4 ⁇ / b> A is locked to the metal member 135 by caulking at the other end of the metal member 135.
  • the slider 4A is installed on the main body 130 of the rotor 3A.
  • the other end of the metal member 135 of the rotor 3A is inserted into the hole 140 of the slider 4A, the other end of the metal member 135 is slightly bent, and the slider 4A is temporarily attached to the metal member 135. Stop.
  • the other end of the metal member 135 is crimped while being bent, and the slider 4A is fixed to the metal member 135.
  • the slider 4A is locked to the metal member 135 fixed to the main body 130 and attached to the rotor 3A. Therefore, the slider 4A and the rotor by reflow soldering heat are used. The occurrence of shakiness with 3A is reduced. Thereby, there is no fluctuation of the contact pressure of the slider 4A to the resistor pattern and the current collector pattern, and stable contact between the resistor pattern and current collector pattern and the slider 4A is obtained. Moreover, it will be strong in weather resistance.
  • the protrusion is caused by reflow soldering heat. May melt. At this time, looseness occurs between the slider and the rotor, and the slider swings. Thereby, the contact pressure of the slider to the resistor pattern and the current collector pattern varies, and stable contact between the resistor pattern and the current collector pattern and the slider cannot be obtained.
  • the slider 4A since the slider 4A is locked to the metal member 135 by caulking of the metal member 135, the slider 4A can be easily attached to the rotor 3A.
  • the metal member 135 is fixed to the main body 130 by insert molding, the metal member 135 can be easily fixed to the main body 130.
  • FIG. 16 is a plan view seen from below showing the rotor and the slider according to the third embodiment of the present invention.
  • FIG. 17 is a side view showing the rotor and the slider.
  • FIG. 18 is a plan view showing a state in which the rotor and the slider are disassembled.
  • 3rd Embodiment compared with 2nd Embodiment, the structure of a metal member differs.
  • the rotor 3 ⁇ / b> B includes a resin main body 230 including the boss portion 31 and a metal member 235 fixed to the main body 230.
  • the slider 4B is locked to the metal member 235 and attached to the rotor 3B.
  • the slider 4 ⁇ / b> B is locked to the metal member 235 by caulking of the metal member 235.
  • the metal member 235 is fixed to the main body 230 by insert molding.
  • the metal member 235 is a disk-shaped metal plate.
  • the outer shape of the metal member 235 is substantially the same as the outer shape of the slider 4B in plan view.
  • the metal member 235 is fixed to the main body 230 by insert molding.
  • the metal member 235 has two protrusions 235a.
  • the protrusion 235a of the metal member 235 is inserted into the hole 240 of the slider 4B and crimped.
  • the slider 4B is locked to the metal member 235 by caulking of the protrusion 235a of the metal member 235.
  • the slider 4B is installed on the metal member 235 of the rotor 3B.
  • the protrusion 235a of the metal member 235 of the rotor 3B is inserted into the hole 240 of the slider 4B.
  • the projecting portion 235 a of the metal member 235 is caulked while being crushed, and the slider 4 B is fixed to the metal member 235.
  • the same effects as in the second embodiment can be obtained. Furthermore, the metal member 235 having approximately the same size as the slider 4B can be fixed to the main body 230, and the fixing of the metal member 235 to the main body 230 is stable. Thereby, fixation to the rotor 3B of the slider 4B is stabilized.
  • the outer shape of the resistor pattern is circular, but the outer shape of the resistor pattern may be an ellipse, a rectangle, or other polygons.
  • the size of the opening of the hole in the screen film changes in the printing direction (first direction X).
  • the size of the opening in the hole of the screen film is constant in the printing direction. May be.
  • the upper surface of the insulating substrate is flat and the upper surface of the resistor pattern is concave.
  • the upper surface of the insulating substrate is convex and the upper surface of the resistor pattern is flat. It may be.
  • 1.0 ⁇ (t2 / t1) ⁇ 1.2 is satisfied at the top of the resistor pattern, but 1.0 ⁇ (t5 / t4) ⁇ 1 at the side of the resistor pattern. .2 may be satisfied.
  • Z ⁇ 4.0, Z ⁇ L ⁇ 10, and 1.0 ⁇ (t2 / t1) ⁇ 1.2 are satisfied, but either one is satisfied. Also good.
  • the resistor pattern and the current collector pattern are made of the same material, but may be made of different materials.
  • the electrode pattern is provided, but the electrode pattern may be omitted.
  • the printing direction (first direction) is the 0 ° direction shown in FIG. 4, but it may be the + 90 ° direction or the ⁇ 90 ° direction.
  • the side part of FIG. 3 becomes a top part
  • the top part of FIG. 3 becomes a side part.
  • the printing direction may be opposite to the first direction.
  • the upstream side of the printing direction is the side where the length in the direction orthogonal to the first direction in the resistor pattern is the maximum.
  • the slider is locked to the metal member by caulking the metal member.
  • the slider is locked to the metal member without being caulked by the metal member. It may be.
  • the metal member is being fixed to the main-body part by insert molding, you may fix a metal member to a main-body part not by insert molding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Adjustable Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

 回転型可変抵抗器は、絶縁基板と、絶縁基板上に設けられる抵抗体パターンおよび集電体パターンと、絶縁基板に回転可能に取り付けられる回転子と、回転子に取り付けられ、抵抗体パターンおよび集電体パターンに摺接して抵抗体パターンと集電体パターンとを導通する摺動子とを備える。抵抗体パターンの可変抵抗として有効な最大寸法をZ[mm]とし、電気的直線度をL[%]としたとき、Z≦4.0、かつ、Z×L<10を満たす。

Description

回転型可変抵抗器およびその製造方法
 本発明は、回転型可変抵抗器およびその製造方法に関する。
 従来、回転型可変抵抗器としては、特開平2-170403号公報(特許文献1)に記載されたものがある。この回転型可変抵抗器は、樹脂フィルムと、樹脂フィルム上に設けられた抵抗体パターンおよび集電体パターンと、抵抗体パターンおよび集電体パターンに摺接する摺動子とを有する。抵抗体パターンおよび集電体パターンは、樹脂フィルム上に印刷されている。
特開平2-170403号公報
 ところで、前記従来の回転型可変抵抗器では、小型化を行うと、電気的直線度(リニアリティ)が悪化するおそれがある。この理由を検討すると、小型化を行うことで抵抗体パターンのサイズが小さくなるため、抵抗体パターンの膜厚のばらつきの影響が大きくなって、電気的直線度が悪化する。特に、抵抗体パターンを印刷により形成すると、電気的直線度の悪化が顕著となることがわかった。
 そこで、本発明の課題は、小型化と高精度化の両立を実現することができる回転型可変抵抗器およびその製造方法を提供することにある。
 本発明の回転型可変抵抗器は、
 絶縁基板と、
 前記絶縁基板上に設けられ、互いに離隔して配置される抵抗体パターンおよび集電体パターンと、
 前記絶縁基板に回転可能に取り付けられる回転子と、
 前記回転子と共に回転可能となるように前記回転子に取り付けられ、前記抵抗体パターンおよび前記集電体パターンに摺接して前記抵抗体パターンと前記集電体パターンとを導通する摺動子と
を備え、
 前記抵抗体パターンの可変抵抗として有効な最大寸法をZ[mm]とし、電気的直線度をL[%]としたとき、Z≦4.0、かつ、Z×L<10を満たす。
 ここで、抵抗体パターンの最大寸法Zとは、例えば、抵抗体パターンの外形が円形であるときの直径をいい、抵抗体パターンの外形が長方形であるときの長辺をいう。電気的直線度Lとは、回転子の回転角度と出力電圧比との関係において、実測した出力電圧比の理想直線からの最大垂直偏差をいう。
 本発明の回転型可変抵抗器によれば、Z≦4.0を満たすので、回転型可変抵抗器を小型にできる。Z×L<10を満たすので、電気的直線度を向上できる。したがって、小型化と高精度化の両立を実現することができる。
 また、一実施形態の回転型可変抵抗器では、前記抵抗体パターンおよび前記集電体パターンは、前記絶縁基板上にスクリーン印刷することで、構成される。
 前記実施形態の回転型可変抵抗器によれば、抵抗体パターンおよび集電体パターンは、絶縁基板上にスクリーン印刷することで、構成される。したがって、最も安価で効率的なスクリーン印刷を用いており、低コストを図ることができる。
 また、本発明の回転型可変抵抗器は、
 絶縁基板と、
 前記絶縁基板上に設けられ、互いに離隔して配置される抵抗体パターンおよび集電体パターンと、
 前記絶縁基板に回転可能に取り付けられる回転子と、
 前記回転子と共に回転可能となるように前記回転子に取り付けられ、前記抵抗体パターンおよび前記集電体パターンに摺接して前記抵抗体パターンと前記集電体パターンとを導通する摺動子と
を備え、
 前記抵抗体パターンは、前記絶縁基板上に第1方向にスクリーン印刷することで、構成され、
 前記第1方向に平行でかつ前記回転子の回転軸を通過する第1直線上で前記抵抗体パターンにおける前記第1方向に直交する方向の長さが最大となる側の幅の中点を通過すると共に前記第1直線に直交する断面において、中央部の膜厚をt1とし、最大膜厚をt2としたとき、1.0≦(t2/t1)<1.2を満たす。
 ここで、第1方向とは、印刷方向をいい、スクリーン膜上でペーストをスキージで搬送する方向をいう。
 本発明の回転型可変抵抗器によれば、1.0≦(t2/t1)<1.2を満たすので、抵抗体パターンの膜厚のばらつきは小さくなって、電気的直線度を向上できる。したがって、小型の回転型可変抵抗器においても、高精度化を実現することができる。
 また、抵抗体パターンは、絶縁基板上にスクリーン印刷することで、構成されるので、最も安価で効率的なスクリーン印刷を用いており、低コストを図ることができる。
 また、一実施形態の回転型可変抵抗器では、前記抵抗体パターンの可変抵抗として有効な最大寸法をZ[mm]とし、電気的直線度をL[%]としたとき、Z≦4.0、かつ、Z×L<10を満たす。
 前記実施形態の回転型可変抵抗器によれば、Z≦4.0を満たすので、回転型可変抵抗器を小型にできる。Z×L<10を満たすので、電気的直線度を向上できる。したがって、小型化と高精度化の両立を実現することができる。
 また、一実施形態の回転型可変抵抗器では、前記抵抗体パターンおよび前記集電体パターンは、同一材料から構成される。
 前記実施形態の回転型可変抵抗器によれば、抵抗体パターンおよび集電体パターンは、同一材料から構成されるので、低コストを図ることができる。
 また、一実施形態の回転型可変抵抗器では、
 前記絶縁基板内に設けられ、前記絶縁基板上から露出する露出電極と、
 前記絶縁基板上に設けられ、前記抵抗体パターンと前記露出電極との間に位置する電極パターンと
を有し、
 前記抵抗体パターンと前記露出電極とは、前記電極パターンを介して、導通する。
 前記実施形態の回転型可変抵抗器によれば、抵抗体パターンと露出電極とは、電極パターンを介して、導通する。これにより、抵抗体パターンと露出電極とが直接的に導通することが困難である場合、電極パターンを介することで、抵抗体パターンと露出電極とが間接的に導通することが可能となり、高い信頼性を確保できる。
 また、一実施形態の回転型可変抵抗器では、
 前記回転子は、
 樹脂からなる本体部と、
 前記本体部に固定された金属部材と
を有し、
 前記摺動子は、前記金属部材に係止されて、前記回転子に取り付けられる。
 前記実施形態の回転型可変抵抗器によれば、摺動子は、本体部に固定された金属部材に係止されて、回転子に取り付けられるので、リフローはんだ熱による摺動子と回転子とのがたつきの発生が少なくなる。これにより、抵抗体パターンおよび集電体パターンへの摺動子の接点圧の変動がなく、抵抗体パターンおよび集電体パターンと摺動子との安定した接触が得られる。
 また、一実施形態の回転型可変抵抗器では、前記摺動子は、前記金属部材のカシメにより、前記金属部材に係止される。
 前記実施形態の回転型可変抵抗器によれば、摺動子は、金属部材のカシメにより、金属部材に係止されるので、摺動子を回転子に容易に取り付けることができる。
 また、一実施形態の回転型可変抵抗器では、前記金属部材は、インサート成形により、前記本体部に固定される。
 前記実施形態の回転型可変抵抗器によれば、金属部材は、インサート成形により、本体部に固定されるので、金属部材を本体部に容易に固定することができる。
 また、本発明の回転型可変抵抗器の製造方法は、
 抵抗体パターンおよび集電体パターンに対応する孔部を有するスクリーン膜を、絶縁基板上に間隔をあけて配置するスクリーン膜配置工程と、
 前記スクリーン膜上にペーストを載置するペースト載置工程と、
 スキージで前記スクリーン膜を押圧しながら前記スクリーン膜上で前記ペーストを第1方向に搬送して、前記ペーストを前記スクリーン膜の前記孔部から押し出し、前記絶縁基板上に前記抵抗体パターンおよび前記集電体パターンを形成するパターン形成工程と
を備え、
 前記パターン形成工程では、前記スキージで前記スクリーン膜を前記絶縁基板に接触させるように押圧しながら、前記絶縁基板上に前記抵抗体パターンおよび前記集電体パターンを形成する。
 本発明の回転型可変抵抗器の製造方法によれば、パターン形成工程では、スキージでスクリーン膜を絶縁基板に接触させるように押圧しながら、絶縁基板上に抵抗体パターンおよび集電体パターンを形成する。このように、スキージでスクリーン膜を十分に押し込みながら抵抗体パターンおよび集電体パターンを印刷するので、抵抗体パターンおよび集電体パターンの厚みを、スクリーン膜の孔部の厚みでコントロールすることができる。したがって、スクリーン膜の孔部の開口の大きさに関わらず、抵抗体パターンおよび集電体パターンの厚みを略一定とできる。したがって、抵抗体パターンの膜厚のばらつきは小さくなって、電気的直線度を向上できる。したがって、小型の回転型可変抵抗器を製造する場合においても、高精度化を実現することができる。
 本発明の回転型可変抵抗器によれば、小型化および高精度化の両立を実現することができる。
 本発明の回転型可変抵抗器の製造方法によれば、小型化および高精度化を満たす回転型可変抵抗器を製造することができる。
本発明の第1実施形態の回転型可変抵抗器を示す斜視図である。 本発明の回転型可変抵抗器の下方からみた分解斜視図である。 本発明の回転型可変抵抗器の上方からみた分解斜視図である。 本発明の回転型可変抵抗器のキャップ、回転子および摺動子を取り除いた状態を示す平面図である。 本発明の回転型可変抵抗器の動作を説明する説明図である。 本発明の出力電圧比と回転角度との関係を示すグラフである。 本発明の回転型可変抵抗器の頂部の第1方向に直交する平面における断面図である。 本発明の回転型可変抵抗器の製造方法について説明する説明図である。 本発明の回転型可変抵抗器の製造方法について説明する説明図である。 本発明の回転型可変抵抗器の製造方法について説明する説明図である。 本発明の抵抗体パターンの頂部の製造方法を説明する説明図である。 本発明の抵抗体パターンの頂部の製造方法を説明する説明図である。 本発明の抵抗体パターンの側部の製造方法を説明する説明図である。 本発明の抵抗体パターンの側部の製造方法を説明する説明図である。 従来の抵抗体パターンの頂部の製造方法を説明する説明図である。 従来の抵抗体パターンの頂部の製造方法を説明する説明図である。 従来の抵抗体パターンの側部の製造方法を説明する説明図である。 従来の抵抗体パターンの側部の製造方法を説明する説明図である。 本発明の抵抗体パターンの頂部の膜厚を示すグラフである。 従来の抵抗体パターンの頂部の膜厚を示すグラフである。 本発明と従来との抵抗体パターンの径方向の膜厚を示すグラフである。 本発明の第2実施形態の回転子および摺動子を示す下方からみた平面図である。 摺動子の回転子への固定方法を説明する説明図である。 摺動子の回転子への固定方法を説明する説明図である。 本発明の第3実施形態の回転子および摺動子を示す下方からみた平面図である。 回転子および摺動子を示す側面図である。 回転子および摺動子を分解した状態を示す平面図である。 摺動子の回転子への固定方法を説明する説明図である。 摺動子の回転子への固定方法を説明する説明図である。
 以下、本発明を図示の実施の形態により詳細に説明する。
 (第1実施形態)
 図1は、本発明の一実施形態の回転型可変抵抗器を示す斜視図である。図2Aは、回転型可変抵抗器の下方からみた分解斜視図である。図2Bは、回転型可変抵抗器の上方からみた分解斜視図である。
 図1と図2Aと図2Bに示すように、回転型可変抵抗器1は、絶縁基板2と、絶縁基板2上に設けられた抵抗体パターン5および集電体パターン6と、絶縁基板2に回転可能に取り付けられた回転子3と、回転子3と共に回転可能となるように回転子3に取り付けられた摺動子4とを有する。
 絶縁基板2には、第1と第2と第3端子11,12,13が設けられている。第1端子11は、絶縁基板2内に設けられ絶縁基板2上から露出する露出電極11aを有する。同様に、第2端子12は、露出電極12aを有し、第3端子13は、露出電極13aを有する。
 絶縁基板2上には、電極パターン7が設けられている。電極パターン7は、抵抗体パターン5および集電体パターン6と露出電極11a,12a,13aとの間に位置する。抵抗体パターン5および集電体パターン6と露出電極11a,12a,13aとは、電極パターン7を介して、導通する。このように、抵抗体パターン5と露出電極11a,12a,13aとが直接的に導通することが困難である場合、電極パターン7を介することで、抵抗体パターン5と露出電極11a,12a,13aとが間接的に導通することが可能となり、高い信頼性を確保できる。
 絶縁基板2には、キャップ10が着脱自在に取り付けられている。キャップ10は、回転子3、摺動子4、抵抗体パターン5、集電体パターン6および電極パターン7を覆う。
 図3は、回転型可変抵抗器1のキャップ10、回転子3および摺動子4を取り除いた状態を示す平面図である。図2Aと図2Bと図3に示すように、絶縁基板2は、平面視、矩形状である。絶縁基板2には、孔部21が設けられている。絶縁基板2の孔部21には、回転子3のボス部31が嵌め込まれている。回転子3は、回転軸Cを中心として回転する。絶縁基板2および回転子3は、例えば、樹脂から構成される。
 抵抗体パターン5および集電体パターン6は、互いに離隔して配置される。抵抗体パターン5は、回転軸Cを中心とした環状を一部切り欠いた形状である。抵抗体パターン5は、第1端部51と第2端部52とを有する。集電体パターン6は、回転軸Cを中心とした環状である。集電体パターン6は、抵抗体パターン5の内側に位置している。抵抗体パターン5および集電体パターン6は、同一材料から構成され、例えば、フェノール系樹脂にカーボンブラックを含浸した材料から構成される。
 摺動子4は、回転子3のボス部31および2つの突部32に取り付けられて、位置決めされる。摺動子4は、略環状に形成される。摺動子4は、第1突部41と第2突部42とを有する。第1突部41と第2突部42とは、導通している。摺動子4は、抵抗体パターン5および集電体パターン6に摺接して、抵抗体パターン5と集電体パターン6とを導通する。つまり、第1突部41は、抵抗体パターン5に摺接し、第2突部42は、集電体パターン6に摺接して、抵抗体パターン5と集電体パターン6とは、導通される。摺動子4は、例えば、金属から構成される。
 電極パターン7は、第1電極部71と第2電極部72と第3電極部73とを有する。第1電極部71は、抵抗体パターン5の第1端部51に重なって接触する。第2電極部72は、抵抗体パターン5の第2端部52に重なって接触する。第3電極部73は、環状に形成されている。第3電極部73は、集電体パターン6に重なって接触する。電極パターン7は、例えば、金属から構成される。
 第1端子11および第2端子12の一部は、絶縁基板2の第1辺から引き出されている。第3端子13の一部は、絶縁基板2の第1辺と対向する第2辺から引き出されている。第1端子11の露出電極11aは、第1電極部71に重なって接触する。第2端子12の露出電極12aは、第2電極部72に重なって接触する。第3端子13の露出電極13aは、第3電極部73に重なって接触する。第1と第2と第3端子11,12,13は、例えば、金属から構成される。
 抵抗体パターン5の第1端部51と第1端子11の露出電極11aとは、第1電極部71を介して、導通する。抵抗体パターン5の第2端部52と第2端子12の露出電極12aとは、第2電極部72を介して、導通する。集電体パターン6と第3端子13の露出電極13aとは、第3電極部73を介して、導通する。
 図4は、回転型可変抵抗器1の動作を説明する説明図である。図4では、摺動子4を単純な形状で示す。図4に示すように、第1端子11と第2端子12との間には、一定の電圧Vccが印加されている。摺動子4の回転により、第1端子11と第3端子13との間の電圧V13が変化する。つまり、摺動子4の回転角度に応じて電圧V13が変化する。そして、この電圧V13を測定することにより、摺動子4(回転子3)の回転角度を容易に検出することができる。
 図4において、回転軸Cを中心として、抵抗体パターン5における第1端部51と第2端部52との間の中心位置を、中心角度0°とする。中心角度0°を基準として、第2端部52側の回転角度を正の値とし、第1端部51側の回転角度を負の値とする。図4では、正の値を(+)として示し、負の値を(-)として示す。
 図5は、出力電圧比と回転角度との関係を示すグラフである。縦軸に、出力電圧比[%]を示し、横軸に、摺動子4(回転子3)の回転角度[°]を示す。出力電圧比は、(V13/Vcc×100)である。図5に示すように、理想値を(仮想線に示す)理想直線Rとし、実測値を(実線に示す)実測曲線Wとする。理想直線Rの傾きは、例えば、100[%]/333.3[°]である。理想直線Rと実測曲線Wとは、回転角度0°と出力電圧比50%との交点で重なる。
 実測曲線Wの理想直線Rからの最大垂直偏差Hを、電気的直線度(リニアリティ)L[%]という。電気的直線度Lの値が小さいほど、直線性が良好となる。具体的には、L=ずれ量/Vcc×100である。ずれ量とは、最大垂直偏差Hに対応する電圧差をいう。図5において、電気的直線度Lが保証される回転角度の範囲は、-160°以上であり、かつ、+160°以下である。
 図3に示すように、抵抗体パターン5の可変抵抗として有効な最大寸法をZ[mm]とする。最大寸法Zは、抵抗体パターン5の外形の最大寸法をいう。抵抗体パターン5の可変抵抗として有効な部分とは、抵抗体パターン5のうちの抵抗体として機能する部分であり、抵抗体パターン5のうちの電極パターン71,72と重ならない部分をいう。抵抗体パターン5の最大寸法Zとは、例えば、抵抗体パターン5の外形が円形であるときの直径をいい、抵抗体パターン5の外形が長方形であるときの長辺をいう。
 ここで、最大寸法Z[mm]と電気的直線度L[%]との関係において、Z≦4.0、かつ、Z×L<10を満たす。したがって、Z≦4.0を満たすので、回転型可変抵抗器1を小型にできる。Z×L<10を満たすので、電気的直線度を向上できる。したがって、小型化と高精度化の両立を実現することができる。これに対して、Z>4.0を満たすと、回転型可変抵抗器1が大型になり、Z×L≧10を満たすと、電気的直線度が悪化する。
 図3に示すように、抵抗体パターン5および集電体パターン6は、絶縁基板2上に第1方向Xにスクリーン印刷することで、構成される。第1方向Xとは、印刷方向をいい、後述するが、スクリーン膜上でペーストをスキージで搬送する方向をいう。
 通常、抵抗体パターン5において、第1方向Xに直交する方向の長さが最大となる部分の膜厚は、ばらつきやすい。このため、本願発明者は、この部分に着目し、この部分の膜厚のばらつきが所定範囲にあれば、抵抗体パターン5の全体の膜厚のばらつきは、小さくなることを、見出した。
 具体的に述べると、抵抗体パターン5は、第1方向Xの下流側の部分(以下、頂部55という)と、第1方向Xの中央側の部分(以下、側部56)とを有する。頂部55は、抵抗体パターン5における第1方向Xに直交する方向の長さが最大となる部分側に位置する。後述するが、スクリーン膜は、抵抗体パターン5に対応する孔部を有している。孔部の頂部55に対応する開口の大きさは、孔部の側部56に対応する開口の大きさよりも、大きい。このため、従来では、孔部の頂部55に対応する部分と孔部の側部56に対応する部分とで、スキージによる押し込み量に差が生じていた。特に、スクリーン膜の孔部の頂部55に対応する部分が、大きく押し込まれて、頂部55の膜厚のばらつきが大きくなっていた。したがって、本願発明者は、頂部55の膜厚に着目し、頂部55の膜厚のばらつきが所定範囲にあれば、抵抗体パターン5の全体の膜厚のばらつきは、小さくなることを、見出した。
 要するに、回転軸Cに沿った方向からみて、第1方向Xに平行でかつ回転軸Cを通過する直線を第1直線M1とする。第1直線M1上で抵抗体パターン5における第1方向Xに直交する方向の長さが最大となる部分側の幅(頂部55の幅)の中央に位置する点を中点M0とする。抵抗体パターン5の第1方向Xに直交する方向の最大長さとは、第1直線M1と抵抗体パターン5の内周との交点で第1直線M1と直交する位置での長さDである。中点M0を通過すると共に第1直線M1に直交する直線を第2直線M2とする。第2直線M2での抵抗体パターン5の断面において、図6に示すように、第2直線M2に沿った方向の中央部の膜厚をt1とし、最大膜厚をt2としたとき、1.0≦(t2/t1)<1.2を満たす。抵抗体パターン5の上面は、凹面であるため、最大膜厚t2は、第2直線M2に沿った方向の端部の膜厚となる。なお、抵抗体パターン5の側部56についても同様である。
 したがって、1.0≦(t2/t1)<1.2を満たすので、抵抗体パターン5の膜厚のばらつきは小さくなって、電気的直線度を向上できる。したがって、小型の回転型可変抵抗器1においても、高精度化を実現することができる。これに対して、1.2≦(t2/t1)を満たすと、電気的直線度が悪化する。
 また、抵抗体パターン5は、絶縁基板2上にスクリーン印刷することで、構成されるので、最も安価で効率的なスクリーン印刷を用いており、低コストを図ることができる。また、抵抗体パターン5および集電体パターン6は、同一材料から構成されるので、低コストを図ることができる。
 次に、回転型可変抵抗器1の製造方法について説明する。
 まず、図7Aに示すように、スクリーン膜8を絶縁基板2上に間隔をあけて配置する。これを、スクリーン膜配置工程という。スクリーン膜8は、抵抗体パターン5および集電体パターン6に対応する孔部81を有する。スクリーン膜8には、エマルジョン82が取り付けられ、エマルジョン82は、スクリーン膜8と絶縁基板2との間を一定の間隔に保つ。エマルジョン82は、例えば、樹脂から構成される。エマルジョン82は、孔部81の周囲に配置される。
 その後、スクリーン膜8上にペーストPを載置する。これを、ペースト載置工程という。ペーストPは、抵抗体パターン5および集電体パターン6の材料である。
 その後、図7Bに示すように、スキージ9でスクリーン膜8を絶縁基板2側(第2方向Y)に押圧しながら、スクリーン膜8上でペーストPを第1方向Xに搬送して、ペーストPをスクリーン膜8の孔部81から押し出していく。そして、図7Cに示すように、孔部81から押し出されたペーストPにより、絶縁基板2上に抵抗体パターン5および集電体パターン6を形成する。これを、パターン形成工程という。その後、ペーストPを加熱硬化して、回転型可変抵抗器1を製造する。
 パターン形成工程では、図8Aに示すように、スキージ9でスクリーン膜8を絶縁基板2に接触させるように第2方向Yに押圧しながら、図8Bに示すように、絶縁基板2上に抵抗体パターン5を形成する。図8Aと図8Bでは、抵抗体パターン5の頂部55について説明するが、集電体パターン6についても同様である。このように、スクリーン膜8を十分に押し込むことで、スクリーン膜8の孔部81の開口の大きさに関係なく、スクリーン膜8の厚みt3で印刷して、頂部55において略一定の膜厚t1,t2を得ることができる。通常、スクリーン印刷では、スクリーン膜8を絶縁基板2に接触させない。しかし、本願発明者は、スクリーン膜8を絶縁基板2に接触させることで、膜厚のばらつきを抑制できることを見出した。
 抵抗体パターン5の側部56についても同様である。つまり、図9Aに示すように、スキージ9でスクリーン膜8を絶縁基板2に接触させるように第2方向Yに押圧しながら、図9Bに示すように、絶縁基板2上に抵抗体パターン5を形成する。このように、スクリーン膜8を十分に押し込むことで、スクリーン膜8の厚みt3で印刷して、側部56において略一定の膜厚t4,t5を得ることができる。側部56の中央部の膜厚t4は、頂部55の中央部の膜厚t1と略同じであり、側部56の端部の膜厚t5は、頂部55の端部の膜厚t2と略同じである。
 したがって、スキージ9でスクリーン膜8を十分に押し込みながら抵抗体パターン5および集電体パターン6を印刷するので、抵抗体パターン5および集電体パターン6の厚みを、スクリーン膜8の孔部81の厚みでコントロールすることができる。したがって、スクリーン膜8の孔部81の開口の大きさに関わらず、抵抗体パターン5および集電体パターン6の厚みを略一定とできる。したがって、抵抗体パターン5の膜厚のばらつきは小さくなって、電気的直線度を向上できる。したがって、小型の回転型可変抵抗器1を製造する場合においても、高精度化を実現することができる。
 このように、本願発明では、スクリーン膜8の孔部81の開口の大きさが、印刷方向(第1方向X)において変化する場合に、特に顕著に、略一定の厚みを有する印刷を施すことができる。
 また、エマルジョン82は、本来、ペースト量をコントロールする役割を有するが、本願発明では、絶縁基板2の粗さまたはうねりを干渉するための役割を有する。このため、エマルジョン82の厚みを、粗さ等の干渉に必要な厚みまで落とすことができる。スクリーン膜8においては、伸びを助長するために粗い番手を使用することができる。
 ここで、抵抗体パターン5の電気的直線度は、多くの要因で決定されるが、支配的なものは、抵抗体パターン5の膜厚のばらつきである。抵抗体パターン5の抵抗値は、膜厚の断面積に反比例しており(R=ρ×L/S(ρは比抵抗であり、Lは長さであり、Sは断面積である))、断面積のばらつきをいかに小さく抑えることができるかが、重要となる。
 従来の印刷方法では、図10Aと図10Bに示すように、抵抗体パターン105の頂部155において、図10Aに示すように、スクリーン膜108の孔部181の開口は大きいため、スキージによる押し込み量が大きくなる。この結果、図10Bに示すように、中央部の膜厚t1と端部の膜厚t2との差は大きくなる。
 一方、図11Aと図11Bに示すように、抵抗体パターン105の側部156において、図11Aに示すように、スクリーン膜108の孔部181の開口は小さいため、スキージによる押し込み量が小さくなる。この結果、図11Bに示すように、中央部の膜厚t4と端部の膜厚t5との差は小さくなる。しかし、図10Bと図11Bに示すように、頂部155の中央部の膜厚t1と側部156の中央部の膜厚t4との差は大きくなる。
 したがって、抵抗体パターン105の膜厚にばらつきが生じ、電気的直線度が悪化していた。このように、従来の方法では、スクリーン膜108の孔部181の厚みでなくエマルジョン182の厚みにより、ペーストPの量をコントロールしていた。
 次に、抵抗体パターンの頂部の膜厚について、本発明と従来の実施例を説明する。
 図12Aに示すように、本発明では、中央部の膜厚t1と最大膜厚t2とは、略等しくなっている。一方、図12Bに示すように、従来では、中央部の膜厚t1と最大膜厚t2との差は、大きくなっており、約2μmである。図12Aと図12Bでは、横軸に、頂部の断面の幅方向(図3に示す、第2直線M2に沿った方向)を示し、縦軸に、膜厚[μm]を示す。
 次に、抵抗体パターンの径方向の膜厚について、本発明と従来の実施例を説明する。
 図13では、横軸に、角度[°]を示し、縦軸に、平均膜厚[μm]を示す。角度は、図4にて説明した回転角度に一致する。平均膜厚は、抵抗体パターンの径方向の膜厚の平均値である。
 図13に示すように、本発明では、実線に示すように、抵抗体パターンの径方向の膜厚のばらつきは、角度によらず、小さい。一方、従来では、仮想線に示すように、抵抗体パターンの径方向の膜厚のばらつきは、角度によって、大きくなっている。つまり、頂部の膜厚と側部の膜厚との差が大きい。
 次に、回転型可変抵抗器1の実施例を説明する。
 絶縁基板は、PPS樹脂(DIC:FZ-3600)から構成されている。第1~第3端子は、黄銅から構成され、NiとAgのめっき処理を施されている。第1~第3端子は、絶縁基板にインサート成型されている。
 抵抗体パターンの最大寸法Zは、φ3.58mmである。抵抗体パターンおよび集電体パターンは、フェノール系樹脂にカーボンブラックが含浸された材料から構成され、絶縁基板にスクリーン印刷されている。電極パターンは、Agペーストから構成され、絶縁基板にスクリーン印刷されている。
 回転子は、LCP樹脂(ポリプラ:ラぺロスE130G)から構成されている。摺動子は、洋白から構成され、NiとAgのめっき処理を施されている。摺動子は、回転子にインサート成型されている。キャップは、SUS304から構成されている。
 (第2実施形態)
 図14は、本発明の第2実施形態の回転子および摺動子を示す下方からみた平面図である。図14に示すように、回転子3Aは、樹脂からなる本体部130と、本体部130に固定された金属部材135とを有する。摺動子4Aは、金属部材135に係止されて、回転子3Aに取り付けられる。摺動子4Aは、金属部材135のカシメにより、金属部材135に係止される。金属部材135は、インサート成形により、本体部130に固定される。
 具体的に述べると、本体部130は、ボス部31を有する。本体部130の外形は、平面視、摺動子4Aの外形と略同一の大きさである。金属部材135は、帯状の金属板である。2つの金属部材135は、インサート成形により、本体部130に固定される。金属部材135の一端部は、本体部130に埋め込まれ、金属部材135の他端部は、本体部130から露出している。金属部材135の他端部は、摺動子4Aの孔部140に挿入されカシメられている。摺動子4Aは、金属部材135の他端部のカシメにより、金属部材135に係止される。
 次に、摺動子4Aの回転子3Aへの固定方法を説明する。図15Aに示すように、摺動子4Aを回転子3Aの本体部130に設置する。このとき、回転子3Aの金属部材135の他端部を摺動子4Aの孔部140に挿入し、金属部材135の他端部を僅かに折り曲げて、摺動子4Aを金属部材135に仮止めする。その後、図15Bに示すように、金属部材135の他端部を折り曲げながらカシメて、摺動子4Aを金属部材135に固定する。
 前記第2実施形態によれば、摺動子4Aは、本体部130に固定された金属部材135に係止されて、回転子3Aに取り付けられるので、リフローはんだ熱による摺動子4Aと回転子3Aとのがたつきの発生が少なくなる。これにより、抵抗体パターンおよび集電体パターンへの摺動子4Aの接点圧の変動がなく、抵抗体パターンおよび集電体パターンと摺動子4Aとの安定した接触が得られる。また、耐候性に強いものとなる。
 これに対して、摺動子を回転子の本体部の突部に挿入し、樹脂からなる突部を溶着して、摺動子と回転子とを一体化させる場合、リフローはんだ熱により突部が溶融するおそれがある。このとき、摺動子と回転子とに緩みが発生して、摺動子ががたつく。これにより、抵抗体パターンおよび集電体パターンへの摺動子の接点圧が変動して、抵抗体パターンおよび集電体パターンと摺動子との安定した接触が得られない。
 前記第2実施形態によれば、摺動子4Aは、金属部材135のカシメにより、金属部材135に係止されるので、摺動子4Aを回転子3Aに容易に取り付けることができる。
 また、金属部材135は、インサート成形により、本体部130に固定されるので、金属部材135を本体部130に容易に固定することができる。
 (第3実施形態)
 図16は、本発明の第3実施形態の回転子および摺動子を示す下方からみた平面図である。図17は、回転子および摺動子を示す側面図である。図18は、回転子および摺動子を分解した状態を示す平面図である。第3実施形態では、第2実施形態と比較すると、金属部材の構成が相違する。
 図16と図17と図18に示すように、回転子3Bは、ボス部31を含む樹脂製の本体部230と、本体部230に固定された金属部材235とを有する。摺動子4Bは、金属部材235に係止されて、回転子3Bに取り付けられる。摺動子4Bは、金属部材235のカシメにより、金属部材235に係止される。金属部材235は、インサート成形により、本体部230に固定される。
 具体的に述べると、金属部材235は、円盤状の金属板である。金属部材235の外形は、平面視、摺動子4Bの外形と略同一の大きさである。金属部材235は、インサート成形により、本体部230に固定される。金属部材235は、2つの突部235aを有する。金属部材235の突部235aは、摺動子4Bの孔部240に挿入されカシメられている。摺動子4Bは、金属部材235の突部235aのカシメにより、金属部材235に係止される。
 次に、摺動子4Bの回転子3Bへの固定方法を説明する。図19Aに示すように、摺動子4Bを回転子3Bの金属部材235に設置する。このとき、回転子3Bの金属部材235の突部235aを摺動子4Bの孔部240に挿入する。その後、図19Bに示すように、金属部材235の突部235aを押し潰しながらカシメて、摺動子4Bを金属部材235に固定する。
 前記第3実施形態によれば、前記第2実施形態と同様の効果を奏する。さらに、摺動子4Bと略同じ大きさの金属部材235を本体部230に固定することができ、金属部材235の本体部230への固定が安定する。これにより、摺動子4Bの回転子3Bへの固定が安定する。
 なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で設計変更可能である。
 前記実施形態では、抵抗体パターンの外形が、円形である場合を示しているが、抵抗体パターンの外形が、楕円や四角形やその他の多角形であってもよい。
 前記実施形態では、スクリーン膜の孔部の開口の大きさが、印刷方向(第1方向X)において変化しているが、スクリーン膜の孔部の開口の大きさが、印刷方向において一定であってもよい。
 前記実施形態では、絶縁基板の上面が平坦であり、かつ、抵抗体パターンの上面が凹面となっているが、絶縁基板の上面が凸面であり、かつ、抵抗体パターンの上面が平坦面となっていてもよい。
 前記実施形態では、抵抗体パターンの頂部において、1.0≦(t2/t1)<1.2を満たしているが、抵抗体パターンの側部において、1.0≦(t5/t4)<1.2を満たしていてもよい。
 前記実施形態では、Z≦4.0、かつ、Z×L<10を満たし、かつ、1.0≦(t2/t1)<1.2を満たしているが、何れか一方を満たすようにしてもよい。
 前記実施形態では、抵抗体パターンおよび集電体パターンは、同一材料から構成されているが、異なる材料から構成されていてもよい。
 前記実施形態では、電極パターンを設けているが、電極パターンを省略するようにしてもよい。
 前記実施形態では、印刷方向(第1方向)を、図4に示す0°方向としているが、+90°方向や、-90°方向としてもよい。この場合、図3の側部が頂部となり、図3の頂部が側部となる。また、印刷方向を第1方向と逆方向としてもよく、この場合、印刷方向の上流側が、抵抗体パターンにおける第1方向に直交する方向の長さが最大となる側となる。
 前記第2、前記第3実施形態では、摺動子を金属部材のカシメにより金属部材に係止しているが、金属部材のカシメによらずに、摺動子を金属部材に係止するようにしてもよい。また、金属部材をインサート成形により本体部に固定しているが、インサート成形によらずに、金属部材を本体部に固定してもよい。
 1 回転型可変抵抗器
 2 絶縁基板
 3,3A,3B 回転子
 130,230 本体部
 135,235 金属部材
 235a 突部
 4,4A,4B 摺動子
 140,240 孔部
 5 抵抗体パターン
 55 頂部(抵抗体パターンにおける第1方向に直交する方向の長さが最大となる側の部分)
 56 側部
 6 集電体パターン
 7 電極パターン
 8 スクリーン膜
 81 孔部
 9 スキージ
 10 キャップ
 11 第1端子
 11a 露出電極
 12 第2端子
 12a 露出電極
 13 第3端子
 13a 露出電極
 C 回転軸
 M0 中点
 M1 第1直線
 M2 第2直線
 P ペースト
 X 第1方向
 Y 第2方向

Claims (10)

  1.  絶縁基板と、
     前記絶縁基板上に設けられ、互いに離隔して配置される抵抗体パターンおよび集電体パターンと、
     前記絶縁基板に回転可能に取り付けられる回転子と、
     前記回転子と共に回転可能となるように前記回転子に取り付けられ、前記抵抗体パターンおよび前記集電体パターンに摺接して前記抵抗体パターンと前記集電体パターンとを導通する摺動子と
    を備え、
     前記抵抗体パターンの可変抵抗として有効な最大寸法をZ[mm]とし、電気的直線度をL[%]としたとき、Z≦4.0、かつ、Z×L<10を満たす、回転型可変抵抗器。
  2.  前記抵抗体パターンおよび前記集電体パターンは、前記絶縁基板上にスクリーン印刷することで、構成される、請求項1に記載の回転型可変抵抗器。
  3.  絶縁基板と、
     前記絶縁基板上に設けられ、互いに離隔して配置される抵抗体パターンおよび集電体パターンと、
     前記絶縁基板に回転可能に取り付けられる回転子と、
     前記回転子と共に回転可能となるように前記回転子に取り付けられ、前記抵抗体パターンおよび前記集電体パターンに摺接して前記抵抗体パターンと前記集電体パターンとを導通する摺動子と
    を備え、
     前記抵抗体パターンは、前記絶縁基板上に第1方向にスクリーン印刷することで、構成され、
     前記第1方向に平行でかつ前記回転子の回転軸を通過する第1直線上で前記抵抗体パターンにおける前記第1方向に直交する方向の長さが最大となる側の幅の中点を通過すると共に前記第1直線に直交する断面において、中央部の膜厚をt1とし、最大膜厚をt2としたとき、1.0≦(t2/t1)<1.2を満たす、回転型可変抵抗器。
  4.  前記抵抗体パターンの可変抵抗として有効な最大寸法をZ[mm]とし、電気的直線度をL[%]としたとき、Z≦4.0、かつ、Z×L<10を満たす、請求項3に記載の回転型可変抵抗器。
  5.  前記抵抗体パターンおよび前記集電体パターンは、同一材料から構成される、請求項1から4の何れか一つに記載の回転型可変抵抗器。
  6.  前記絶縁基板内に設けられ、前記絶縁基板上から露出する露出電極と、
     前記絶縁基板上に設けられ、前記抵抗体パターンと前記露出電極との間に位置する電極パターンと
    を有し、
     前記抵抗体パターンと前記露出電極とは、前記電極パターンを介して、導通する、請求項1から5の何れか一つに記載の回転型可変抵抗器。
  7.  前記回転子は、
     樹脂からなる本体部と、
     前記本体部に固定された金属部材と
    を有し、
     前記摺動子は、前記金属部材に係止されて、前記回転子に取り付けられる、請求項1から6の何れか一つに記載の回転型可変抵抗器。
  8.  前記摺動子は、前記金属部材のカシメにより、前記金属部材に係止される、請求項7に記載の回転型可変抵抗器。
  9.  前記金属部材は、インサート成形により、前記本体部に固定される、請求項7または8に記載の回転型可変抵抗器。
  10.  抵抗体パターンおよび集電体パターンに対応する孔部を有するスクリーン膜を、絶縁基板上に間隔をあけて配置するスクリーン膜配置工程と、
     前記スクリーン膜上にペーストを載置するペースト載置工程と、
     スキージで前記スクリーン膜を押圧しながら前記スクリーン膜上で前記ペーストを第1方向に搬送して、前記ペーストを前記スクリーン膜の前記孔部から押し出し、前記絶縁基板上に前記抵抗体パターンおよび前記集電体パターンを形成するパターン形成工程と
    を備え、
     前記パターン形成工程では、前記スキージで前記スクリーン膜を前記絶縁基板に接触させるように押圧しながら、前記絶縁基板上に前記抵抗体パターンおよび前記集電体パターンを形成する、回転型可変抵抗器の製造方法。
PCT/JP2015/075800 2014-10-31 2015-09-11 回転型可変抵抗器およびその製造方法 WO2016067769A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016556427A JPWO2016067769A1 (ja) 2014-10-31 2015-09-11 回転型可変抵抗器およびその製造方法
CN201580058296.5A CN107077932A (zh) 2014-10-31 2015-09-11 旋转型可变电阻器及其制造方法
US15/496,383 US9916920B2 (en) 2014-10-31 2017-04-25 Rotary variable resistor and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-223466 2014-10-31
JP2014223466 2014-10-31
JP2015-073203 2015-03-31
JP2015073203 2015-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/496,383 Continuation US9916920B2 (en) 2014-10-31 2017-04-25 Rotary variable resistor and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2016067769A1 true WO2016067769A1 (ja) 2016-05-06

Family

ID=55857115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075800 WO2016067769A1 (ja) 2014-10-31 2015-09-11 回転型可変抵抗器およびその製造方法

Country Status (4)

Country Link
US (1) US9916920B2 (ja)
JP (1) JPWO2016067769A1 (ja)
CN (1) CN107077932A (ja)
WO (1) WO2016067769A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI731558B (zh) * 2019-03-25 2021-06-21 日商阿爾卑斯阿爾派股份有限公司 可變電阻器
CN110364322A (zh) * 2019-07-17 2019-10-22 东莞福哥电子有限公司 一种接触式滑动电阻片的制作方法
WO2021200539A1 (ja) * 2020-03-30 2021-10-07 東京コスモス電機株式会社 可動接点、可変抵抗器および可動接点の製造方法
CN116735930B (zh) * 2023-08-15 2023-10-24 江苏华鹏智能仪表科技股份有限公司 一种集中器辅助工具

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335543A (ja) * 2003-04-30 2004-11-25 Alps Electric Co Ltd 抵抗基板とその製造方法および抵抗基板用印刷マスク
JP2005150275A (ja) * 2003-11-13 2005-06-09 Matsushita Electric Ind Co Ltd 回転操作型可変抵抗器
JP2005217207A (ja) * 2004-01-30 2005-08-11 Alps Electric Co Ltd 可変抵抗器
WO2010079692A1 (ja) * 2009-01-08 2010-07-15 アルプス電気株式会社 抵抗基板の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2932714C2 (de) * 1979-08-13 1982-08-12 Vdo Adolf Schindling Ag, 6000 Frankfurt Einstellbarer Drehwiderstand in Dickschichttechnik
JPS62274701A (ja) * 1986-05-23 1987-11-28 アイシン精機株式会社 可変抵抗器
JPH01110704A (ja) * 1987-10-23 1989-04-27 Murata Mfg Co Ltd 可変抵抗器
JPH02170403A (ja) 1988-12-22 1990-07-02 Teikoku Tsushin Kogyo Co Ltd 電子部品
JPH0488078U (ja) * 1990-12-14 1992-07-30
US5243318A (en) * 1991-04-11 1993-09-07 Beltone Electronics Corporation Low noise precision resistor
JPH1126212A (ja) * 1997-07-01 1999-01-29 Alps Electric Co Ltd 回転型電気部品およびこの回転型電気部品の製造方法
JP3503547B2 (ja) * 1999-11-08 2004-03-08 株式会社村田製作所 可変抵抗器
JP2001185405A (ja) * 1999-12-24 2001-07-06 Teikoku Tsushin Kogyo Co Ltd 抵抗体パターン及びその形成方法
JP2002141210A (ja) * 2000-10-31 2002-05-17 Alps Electric Co Ltd 抵抗体及びそれを用いた可変抵抗器
JP4945848B2 (ja) * 2001-04-02 2012-06-06 株式会社村田製作所 可変抵抗器
JP4474787B2 (ja) * 2001-04-02 2010-06-09 株式会社村田製作所 可変抵抗器
JP3709827B2 (ja) * 2001-10-18 2005-10-26 株式会社村田製作所 可変抵抗器
JP2004288924A (ja) * 2003-03-24 2004-10-14 Alps Electric Co Ltd 可変抵抗器
JP4821229B2 (ja) * 2005-09-21 2011-11-24 パナソニック株式会社 回転型可変抵抗器
US7583177B1 (en) * 2008-07-25 2009-09-01 Men-Tech Industrial Co., Ltd. Variable resistor without rotation angle limitation and having regular changes in resistance value
JP5630768B2 (ja) * 2011-06-20 2014-11-26 アルプス電気株式会社 回転型センサ
JP5787362B2 (ja) * 2012-02-02 2015-09-30 アルプス電気株式会社 抵抗基板およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335543A (ja) * 2003-04-30 2004-11-25 Alps Electric Co Ltd 抵抗基板とその製造方法および抵抗基板用印刷マスク
JP2005150275A (ja) * 2003-11-13 2005-06-09 Matsushita Electric Ind Co Ltd 回転操作型可変抵抗器
JP2005217207A (ja) * 2004-01-30 2005-08-11 Alps Electric Co Ltd 可変抵抗器
WO2010079692A1 (ja) * 2009-01-08 2010-07-15 アルプス電気株式会社 抵抗基板の製造方法

Also Published As

Publication number Publication date
US9916920B2 (en) 2018-03-13
JPWO2016067769A1 (ja) 2017-07-27
US20170229220A1 (en) 2017-08-10
CN107077932A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2016067769A1 (ja) 回転型可変抵抗器およびその製造方法
US9583242B2 (en) Resistive voltage divider with high voltage ratio
US9646748B2 (en) Resistive voltage divider made of a resistive film material on an insulating substrate
US10424425B2 (en) Resistance substrate and rheostat comprising same
JP5163565B2 (ja) 回転センサ
JP6406435B2 (ja) 回転式電子部品および回転エンコーダ
JP6536536B2 (ja) 液面検出装置及びその製造方法
US7049927B1 (en) Resistance substrate and variable resistor
JP2003124009A (ja) 可変抵抗器
JP6344479B2 (ja) 可変抵抗器
JP4821229B2 (ja) 回転型可変抵抗器
TWI588449B (zh) Rotary encoder
JP6213288B2 (ja) 液面検出装置
JP6376837B2 (ja) 回転式電子部品
JP7411212B2 (ja) 可変抵抗器用抵抗素子
JP4003752B2 (ja) 抵抗基板及び可変抵抗器
JP2002118005A (ja) 回転型可変抵抗器
JP2021077789A (ja) 入力装置
JP3975903B2 (ja) 回転操作型可変抵抗器
JP2005276955A (ja) 可変抵抗器
JP2005158758A (ja) 回転形可変抵抗器
JP2004349679A (ja) 回転型電気部品
JPH11295015A (ja) 可変抵抗器
JP2002054947A (ja) 回転型エンコーダ
CN104517695A (zh) 旋转型编码器及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556427

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855340

Country of ref document: EP

Kind code of ref document: A1