WO2016063838A1 - 二次電池およびその製造方法 - Google Patents

二次電池およびその製造方法 Download PDF

Info

Publication number
WO2016063838A1
WO2016063838A1 PCT/JP2015/079458 JP2015079458W WO2016063838A1 WO 2016063838 A1 WO2016063838 A1 WO 2016063838A1 JP 2015079458 W JP2015079458 W JP 2015079458W WO 2016063838 A1 WO2016063838 A1 WO 2016063838A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
separator
electrolytic solution
secondary battery
positive electrode
Prior art date
Application number
PCT/JP2015/079458
Other languages
English (en)
French (fr)
Inventor
井上 和彦
志村 健一
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP15853549.2A priority Critical patent/EP3211707B1/en
Priority to JP2016555216A priority patent/JP6597630B2/ja
Priority to US15/521,242 priority patent/US20170358829A1/en
Priority to CN201580057541.0A priority patent/CN107078339B/zh
Publication of WO2016063838A1 publication Critical patent/WO2016063838A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a secondary battery provided with a mechanism for cutting off an electrical connection with the outside when an abnormality such as overcharge occurs and a method for manufacturing the same.
  • Batteries are said to be canned energy and it is important that they can be handled safely.
  • a battery using a protection circuit such as a fuse that can detect battery abnormalities and cut off the electrical connection to the outside of the battery in order to ensure safety in the event of abnormalities such as overcharge or short circuit. Is controlling.
  • a mechanism for interrupting electrical connection using an abnormal increase in internal pressure of the battery itself has been proposed.
  • Patent Document 1 discloses that a non-aqueous electrolyte has a redox shuttle agent capable of causing a reversible oxidation-reduction reaction at a higher potential than the positive electrode active material, and a gas when a predetermined battery voltage is exceeded.
  • a secondary battery including a gas generating agent that can be generated is disclosed.
  • Patent Document 1 further describes that a viscosity modifier that can suppress a decrease in the viscosity of the nonaqueous electrolyte accompanying a temperature increase is included.
  • Patent Document 2 discloses that a separator having a pore size of about 0.1 ⁇ m to 10 ⁇ m, such as cellulose, is used to achieve stable charge / discharge characteristics that do not cause a short circuit due to melting or shrinking of the separator due to heat.
  • a separator having a pore size of about 0.1 ⁇ m to 10 ⁇ m such as cellulose
  • the use of non-woven fabrics is disclosed.
  • a low molecular gelling agent is contained in the electrolytic solution to improve the pore size unique to the nonwoven fabric and the unevenness of the pore size distribution.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-218934
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2012-066469
  • an object of the present invention is to provide a secondary battery that can achieve electrical connection with the outside with a simpler configuration when an abnormality such as overcharge occurs, and a method for manufacturing the same.
  • the secondary battery of the present invention includes a battery element including a positive electrode, a negative electrode, a separator, and an electrolyte solution; An exterior body for sealing the battery element; Have The electrolytic solution contains a gel component and an organic solvent having a boiling point of 125 ° C. or less,
  • the separator includes a fiber aggregate or a microporous structure made of one or more resins selected from aramid, polyimide, and polyphenylene sulfide, and has an average pore diameter of 0.1 ⁇ m or more.
  • the present invention also provides a method for manufacturing a secondary battery.
  • the method for producing the secondary battery of the present invention includes: Preparing an electrolyte solution containing a gelling agent that gives the gel component and an organic solvent having a boiling point of 125 ° C.
  • the electrolytic solution contains a gel component and an organic solvent having a boiling point of 125 ° C. or lower
  • bubbles are generated in the electrolytic solution. Can block ion conduction between the electrodes.
  • the function of the secondary battery can be stopped before the secondary battery reaches thermal runaway.
  • the separator since the separator includes a fiber aggregate or a microporous structure made of one or more resins selected from aramid, polyimide, and polyphenylene sulfide, and the average pore diameter is 0.1 ⁇ m or more, the bubbles are voids of the separator. The separator gap is maintained even if it enters the battery and abnormal heat is generated in the secondary battery. As a result, ion conduction can be more effectively blocked.
  • FIG. 1 is an exploded perspective view of a secondary battery according to an embodiment of the present invention. It is typical sectional drawing of the battery element shown in FIG. It is a disassembled perspective view of the secondary battery by one Embodiment of this invention with which the positive electrode terminal and the negative electrode terminal were pulled out in the same direction. It is a schematic diagram which shows an example of the electric vehicle provided with the battery of this invention. It is a schematic diagram which shows an example of the electrical storage equipment provided with the battery of this invention.
  • the secondary battery of this embodiment includes a battery element 10, an exterior body that seals the battery element 10, and a positive electrode terminal 31 and a negative electrode terminal 32 that are electrically connected to the battery element 10 and extend to the outside of the exterior body.
  • the exterior body is composed of flexible exterior materials 21 and 22, for example, a laminate film, and seals the battery element 10 by thermally welding the outer peripheral portion in a state of surrounding the battery element.
  • the battery element 10 includes a positive electrode 11, a negative electrode 12, a separator 13, and an electrolytic solution.
  • a plurality of negative electrodes 12 and a plurality of positive electrodes 11 are interposed between the separators 13. It has a configuration in which they are alternately arranged opposite to each other.
  • the electrolytic solution is sealed in the exterior body together with the positive electrode 11, the negative electrode 12, and the separator 13.
  • the negative electrode 12 has an extension (also referred to as a tab) protruding from the separator 13.
  • the extension portion is an end portion of the negative electrode current collector 12a included in the negative electrode 12 that is not covered with the positive electrode active material.
  • the extension part of the positive electrode 11 and the extension part of the negative electrode 12 are formed at positions that do not interfere with each other when the positive electrode 11 and the negative electrode 12 are laminated.
  • the extensions of all the negative electrodes 12 are gathered together and connected to the negative terminal 32 by welding.
  • the extensions of all the positive electrodes 11 are gathered together and connected to the positive electrode terminal 31 by welding.
  • the positive electrode terminal 31 and the negative electrode terminal 32 are drawn out in directions opposite to each other, but the drawing direction of the positive electrode terminal 31 and the negative electrode terminal 32 may be arbitrary.
  • the positive electrode terminal 31 and the negative electrode terminal 32 may be drawn from the same side of the battery element 10.
  • the positive electrode terminal 31 and the negative electrode terminal 2 are adjacent to each other of the battery element 10.
  • Each of the terminals 32 may be pulled out.
  • the extension (tab) that is not covered with the active material of the positive electrode 11 and the negative electrode 12 is formed at a position corresponding to the position where the positive electrode terminal 31 and the negative electrode terminal 32 are drawn.
  • the electrolytic solution contains a gel component and an organic solvent having a boiling point of 125 ° C. or lower (hereinafter also referred to as “low boiling point solvent”).
  • the separator is characterized in that it includes a fiber assembly composed of a plurality of fibers made of one or more resins selected from aramid, polyimide, and polyphenylene sulfide, and has an average pore diameter of 0.1 ⁇ m or more.
  • the secondary battery of this embodiment when the secondary battery generates abnormal heat due to some trouble such as overcharge and / or short circuit, bubbles are generated in the electrolyte due to the action of the low boiling point solvent. This bubble blocks ion conduction between the electrodes. Thereby, the function of the secondary battery can be safely stopped before the secondary battery reaches thermal runaway. Since the positive electrode active material normally does not run out of heat at a temperature of 125 ° C. or lower, the kind of the low boiling point solvent and / or the content in the electrolyte is appropriately adjusted so that bubbles are generated at a temperature of 125 ° C. or lower. As a result, thermal runaway can be suppressed more effectively.
  • the mechanism by which bubbles are generated in the electrolyte is as follows. Since the electrolytic solution contains a gel component, the electrolytic solution is in a gel form. In this state, when abnormal heat generation occurs in the secondary battery, the low boiling point solvent contained in the electrolytic solution volatilizes. Since the electrolytic solution is in a gel form, the volatilized gas is held in the gel-like electrolytic solution and stays between the electrodes as bubbles. Furthermore, since the average gap diameter of the separator is 0.1 ⁇ m or more, the volatilized gas also enters the gap of the separator. As a result, ion conduction can be efficiently blocked.
  • a volatile electrolyte solution component causes high volatility.
  • the insulation between the electrodes can be maintained until the low electrolyte component is discharged from between the electrodes. If no short circuit occurs in the secondary battery, the electrolyte does not burn and the secondary battery is in a safe state.
  • a separator a negative electrode, a positive electrode, an electrolytic solution, and an outer package, which are main components of the secondary battery, will be described by taking a lithium ion secondary battery as an example.
  • the separator in the present embodiment preferably has a temperature for heat melting or pyrolysis of 180 ° C. or higher, and an average pore diameter of the separator of 0.1 ⁇ m or higher.
  • the material having a melting point or decomposition temperature of 180 ° C. or higher include polyethylene terephthalate (PET), aramid, polyimide, polyphenylene sulfide (PPS) and the like as polymer materials.
  • PET is preferable because it can be obtained at low cost.
  • aramid, polyimide, and PPS are particularly preferable because they have a heat resistance of 300 ° C. or higher and have almost no heat shrinkage, so that a more stable battery can be suitably obtained.
  • any structure can be adopted as long as the separator can be configured with a void giving high air permeability, such as a fiber aggregate such as a woven fabric or a nonwoven fabric, and a microporous membrane.
  • a separator made of woven fabric or non-woven fabric has a particularly high average void diameter and is preferable.
  • Specific examples include fiber aggregates such as aramid fibers and polyimide fibers.
  • the aramid polymer constituting the aramid fiber is a polymer in which two aromatic groups of one kind or two or more kinds are directly linked by an aramid bond.
  • the aromatic group may be one in which two aromatic rings are bonded with an oxygen, sulfur or alkylene group.
  • these divalent aromatic groups may include a lower alkyl group such as a methyl group or an ethyl group, a halogen group such as a methoxy group, or a chloro group.
  • the aramid bond is not limited and may be either a para type or a meta type.
  • Examples of the aramid fiber that can be preferably used in the present invention include polymetaphenylene isophthalamide fiber, polyparaphenylene terephthalamide fiber, and copolyparaphenylene 3,4'-oxydiphenylene terephthalamide fiber.
  • the separator preferably has a certain thickness or more, for example, 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 15 ⁇ m, in order to satisfactorily hold bubbles generated in the electrolyte solution between the electrodes. That's it.
  • the separator is preferably thin, for example, 50 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 25 ⁇ m or less.
  • the average void diameter of the separator is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and further preferably 1 ⁇ m or more.
  • the average porosity is 0.1 ⁇ m or more, bubbles generated in the electrolytic solution between the electrodes can be favorably retained in the separator.
  • the average gap diameter is preferably as small as 10 ⁇ m or less, more preferably 8 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the separator preferably has a maximum pore size of 50 ⁇ m or less.
  • the void diameter of the separator can be determined by the bubble point method and the mean flow method described in STM-F-316. Further, the average void diameter can be obtained by measuring the void diameter at any five locations of the separator, and taking the average value of the measured values.
  • the negative electrode has a negative electrode current collector formed of a metal foil and a negative electrode active material coated on both surfaces or one surface of the negative electrode current collector.
  • the negative electrode active material is bound so as to cover the negative electrode current collector with a negative electrode binder.
  • the negative electrode current collector is formed to have an extension connected to the negative electrode terminal, and the negative electrode active material is not applied to the extension.
  • the negative electrode active material in the present embodiment is not particularly limited.
  • a carbon material that can occlude and release lithium ions a metal that can be alloyed with lithium, a metal oxide that can occlude and release lithium ions, and the like. Is mentioned.
  • Examples of the carbon material include carbon, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof.
  • carbon with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • a negative electrode containing a metal or metal oxide is preferable in that it can improve the energy density and increase the capacity per unit weight or unit volume of the battery.
  • the metal examples include Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and alloys of two or more thereof. Moreover, you may use these metals or alloys in mixture of 2 or more types. These metals or alloys may contain one or more non-metallic elements.
  • the metal oxide examples include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof.
  • tin oxide or silicon oxide is included as a negative electrode active material, and it is more preferable that silicon oxide is included. This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds.
  • one or more elements selected from nitrogen, boron and sulfur may be added to the metal oxide, for example, 0.1 to 5% by mass.
  • the electrical conductivity of a metal oxide can be improved.
  • the electrical conductivity can be similarly improved by coating a metal or metal oxide with a conductive material such as carbon by a method such as vapor deposition.
  • the negative electrode active material can be used by mixing a plurality of materials without using a single material.
  • the same kind of materials such as graphite and amorphous carbon may be mixed, or different kinds of materials such as graphite and silicon may be mixed.
  • the binder for the negative electrode is not particularly limited.
  • polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer Rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, polyacrylic acid, or the like can be used.
  • the amount of the binder for the negative electrode used is 0.5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. Is preferred.
  • the negative electrode current collector aluminum, nickel, stainless steel, chromium, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
  • the shape include foil, flat plate, and mesh.
  • a conductive auxiliary material may be added to the coating layer containing the negative electrode active material for the purpose of reducing impedance.
  • the conductive auxiliary material include flaky carbonaceous fine particles such as graphite, carbon black, acetylene black, and vapor grown carbon fiber (VGCF (registered trademark) manufactured by Showa Denko).
  • the positive electrode has a positive electrode current collector formed of a metal foil and a positive electrode active material coated on both surfaces or one surface of the positive electrode current collector.
  • the positive electrode active material is bound so as to cover the positive electrode current collector with a positive electrode binder.
  • the positive electrode current collector is formed to have an extension connected to the positive electrode terminal, and the positive electrode active material is not applied to the extension.
  • the positive electrode active material in the present embodiment is not particularly limited as long as it is a material capable of occluding and releasing lithium, and can be selected from several viewpoints. From the viewpoint of increasing the energy density, it is preferable to include a high-capacity compound.
  • the high-capacity compound include nickel-lithium oxide (LiNiO 2 ) or lithium-nickel composite oxide obtained by substituting a part of nickel in nickel-lithium oxide with another metal element.
  • the layered structure represented by the following formula (A) Lithium nickel composite oxide is preferred.
  • the Ni content is high, that is, in the formula (A), x is preferably less than 0.5, and more preferably 0.4 or less.
  • x is preferably less than 0.5, and more preferably 0.4 or less.
  • LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like.
  • the Ni content does not exceed 0.5, that is, in the formula (A), x is 0.5 or more. It is also preferred that the number of specific transition metals does not exceed half.
  • LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM532), etc. (however, the content of each transition metal in these compounds varies by about 10%) Can also be included).
  • two or more compounds represented by the formula (A) may be used as a mixture.
  • NCM532 or NCM523 and NCM433 range from 9: 1 to 1: 9 (typically 2 It is also preferable to use a mixture in 1).
  • a material having a high Ni content (x is 0.4 or less) and a material having a Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
  • the positive electrode active material for example, LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2) Lithium manganate having a layered structure or spinel structure such as LiCoO 2 or a part of these transition metals replaced with another metal; Li in these lithium transition metal oxides more than the stoichiometric composition And those having an olivine structure such as LiFePO 4 .
  • any of the positive electrode active materials described above can be used alone or in combination of two or more.
  • radical materials or the like can be used as the positive electrode active material.
  • the positive electrode binder the same as the negative electrode binder can be used.
  • the amount of the positive electrode binder to be used is preferably 2 to 15 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
  • the positive electrode current collector for example, aluminum, nickel, silver, or an alloy thereof can be used.
  • the shape of the positive electrode current collector include a foil, a flat plate, and a mesh.
  • an aluminum foil can be suitably used.
  • a conductive auxiliary material may be added to the positive electrode active material coating layer for the purpose of reducing impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • electrolytic solution used in the present embodiment a nonaqueous electrolytic solution containing a lithium salt (supporting salt) and a nonaqueous solvent that dissolves the supporting salt can be used.
  • electrolyte solution contains a gel component and electrolyte solution is gelatinized by this gel component, and is made into the gel form.
  • the gel component is given by crosslinking of the gelling agent added to the electrolytic solution, and thus it can be said that the electrolytic solution contains a crosslinked product of the gelling agent.
  • the crosslinked body of a gelling agent is synonymous with a gel component.
  • the supporting salts include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) Lithium salts that can be used for ordinary lithium ion batteries such as 2 can be used.
  • the supporting salt can be used alone or in combination of two or more.
  • an aprotic organic solvent such as carbonate ester (chain or cyclic carbonate), carboxylic acid ester (chain or cyclic carboxylic acid ester), and phosphate ester can be used.
  • carbonate solvents examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. (EMC), chain carbonates such as dipropyl carbonate (DPC); and propylene carbonate derivatives.
  • PC propylene carbonate
  • EC ethylene carbonate
  • BC butylene carbonate
  • VVC vinylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • propylene carbonate derivatives examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate
  • carboxylic acid ester solvent examples include aliphatic carboxylic acid esters such as methyl formate, methyl acetate, and ethyl propionate; and lactones such as ⁇ -butyrolactone.
  • phosphate ester examples include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, trioctyl phosphate, triphenyl phosphate, and the like.
  • solvents that can be contained in the non-aqueous electrolyte include, for example, ethylene sulfite (ES), propane sultone (PS), butane sultone (BS), dioxathilane-2,2-dioxide (DD), and sulfolene.
  • ES ethylene sulfite
  • PS propane sultone
  • BS butane sultone
  • DD dioxathilane-2,2-dioxide
  • sulfolene sulfolene
  • the nonaqueous solvent includes an organic solvent (low boiling point solvent) having a boiling point of 125 ° C. or lower.
  • the content of the low boiling point solvent in the electrolytic solution is preferably 0.1% by weight or more.
  • a low boiling-point solvent 1 or more types chosen from a carbonate, ether, an ester compound, and a phosphate ester compound can be included, for example.
  • gas can be generated.
  • examples thereof include dimethyl carbonate (boiling point: 90 ° C.), methyl ethyl carbonate (boiling point: 107 ° C.) and the like.
  • the gas forming the insulating layer is preferably a nonflammable or flame retardant gas, a gas containing fluorine or phosphorus atoms is preferable.
  • fluorinated carbonates such as methyl 2,2,2 trifluoroethyl carbonate (boiling point: 74 ° C.), fluorinated esters such as 2 fluoroethyl acetate (boiling point: 79 ° C.), tetrafluoroethyl tetrafluoropropyl ether ( Boiling point: 92 ° C.), fluorinated ethers such as decafluoropropyl ether (boiling point: 106 ° C.), and phosphoric esters.
  • fluorinated carbonates such as methyl 2,2,2 trifluoroethyl carbonate (boiling point: 74 ° C.)
  • fluorinated esters such as 2 fluoroethyl acetate (boiling point: 79 ° C.), tetrafluoroethyl tetrafluoropropyl ether ( Boiling point: 92 ° C
  • the gelling agent that gives the gel component to the electrolytic solution for example, acrylic resin, fluoroethylene resin, or the like can be used alone or in combination.
  • the gelling agent preferably contains an acrylic resin ester having a crosslinkable functional group.
  • the amount of gelling agent added to the electrolytic solution is preferably 0.5% by weight or more.
  • the gelling agent include monomers, oligomers, and copolymerized oligomers having two or more thermally polymerizable groups per molecule.
  • monomers such as urethane acrylate and urethane methacrylate, copolymer oligomers thereof, copolymer oligomers with acrylonitrile, and the like can be given.
  • a polymer that can be dissolved in a plasticizer such as polyvinylidene fluoride, polyethylene oxide, or polyacrylonitrile to be gelled can also be used.
  • the gelling agent is not limited to the monomer, oligomer or polymer, and any gelling agent can be used as long as it can be gelled. Further, the gelation is not limited to one type of monomer, oligomer or polymer, and two to several types of gel components can be mixed and used as necessary. Furthermore, benzoins and peroxides can be used as thermal polymerization initiators as required. However, it is not limited to these.
  • the gelling agent can include a methacrylic acid ester polymer represented by the following general formula (1).
  • a methacrylic acid ester polymer represented by the following general formula (1).
  • n satisfies 1800 ⁇ n ⁇ 3000
  • m satisfies 350 ⁇ m ⁇ 600.
  • the methacrylic acid ester polymer represented by the general formula (1) is obtained by radical copolymerization of methyl methacrylate and (3-ethyl-3-oxetanyl) methyl methacrylate.
  • N representing the number of methyl methacrylate units satisfies 1800 ⁇ n ⁇ 3000
  • m representing the number of (3-ethyl-3-oxetanyl) methyl methacrylate units satisfies 350 ⁇ m ⁇ 600.
  • the methacrylic acid ester polymer represented by the general formula (1) may be a block copolymer or a random copolymer.
  • N and m represent average values and may not be integers.
  • a crosslinked product obtained by crosslinking the methacrylic acid ester polymer represented by the general formula (1) is an oxetanyl group possessed by the methacrylic acid ester polymer represented by the general formula (1).
  • the cationic polymerization initiator generally known polymerization initiators can be used.
  • the use of a small amount of an acidic substance obtained by hydrolyzing the lithium salt and the anion component of the lithium salt contained in the electrolytic solution is useful for the battery.
  • the characteristic to give is small and preferable.
  • the content of the lithium salt in the electrolytic solution is the same as the preferred concentration of the supporting salt in the electrolytic solution.
  • the electrolytic solution containing a gel component includes, for example, a step of dissolving a supporting salt in an aprotic solvent, a step of mixing a methacrylate polymer represented by the general formula (1) as a gelling agent in the aprotic solvent, and And a method having a step of cross-linking the methacrylic acid ester polymer represented by the general formula (1).
  • the ratio of the gel component in the electrolytic solution is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 3% by mass or less.
  • the electrolytic solution can contain silica particles.
  • the silica particles preferably have a particle size of 0.01 ⁇ m or more, and the content in the electrolytic solution is preferably 0.1% by weight or more.
  • Silica particles are physically mixed with the above gelling agent.
  • the average particle size of the silica particles is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 1 ⁇ m or less for improving dispersibility in the electrolytic solution and good dispersion in the gaps of the separator. It is. If the average particle diameter of silica is 10 ⁇ m or less, it can be easily introduced into the battery while being uniformly dispersed in the electrolytic solution. Moreover, the dispersibility of the silica with respect to electrolyte solution can further be improved by chemically bonding with the surface hydroxyl group of silica and the functional group of the polymer. Such uniformly dispersed silica can improve the insulation of the electrolytic solution.
  • the non-aqueous solvent component of the electrolyte solution volatilizes due to abnormal heat generation of the battery, and even if the thermal decomposition temperature of the gel component agent is reached, the electrolyte solution residue having silica and silica as the core remains between the electrodes. The insulation between them can be maintained.
  • a chemical bond or hydrogen bond exists between the electrolyte and silica, so-called inorganic-organic hybrid polymer is formed, so that the heat resistance of the polymer itself is improved and the insulation state between the electrodes is maintained at a high temperature. be able to.
  • the chemical bond between silica and polymer can be formed by a hydroxyl group on the silica surface and, for example, a carboxyl group, an epoxy group, or an oxetane group of the polymer.
  • the electrolytic solution contains a gel component and a volatile component, and bubbles are generated between the electrodes when the battery is abnormally heated, and the generated bubbles can be stably held.
  • the electrolytic solution further contains silica particles, bubbles can be more stably held between the electrodes, and the effect of blocking ionic conduction can be improved.
  • the silica particles are not only chemically bonded to the gel component in the electrolyte solution but also hydrogen bonded, the heat resistance of the gel component is improved, so that the generated bubbles are also in a state of bubbles even in a high temperature environment. It can be held well.
  • the content of silica particles in the electrolytic solution is preferably in the range of 0.05 to 10% by mass of the electrolytic solution.
  • the content of silica particles in the electrolytic solution is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less.
  • the content of silica particles in the electrolytic solution is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and further preferably 0.5% by mass. That's it.
  • silica not only silica, but an inorganic material having a melting point of 300 ° C. or higher, high insulation, and a hydroxyl group on the surface can be used in the same manner as silica.
  • examples of this type of inorganic material include alumina, mica, mica, montmorillonite, zeolite, and clay mineral.
  • the exterior body can be appropriately selected as long as it is stable to the electrolytic solution and has a sufficient water vapor barrier property.
  • the exterior body may be comprised with a single member and may be comprised combining several members.
  • a safety valve can be added to the exterior body so that it can be opened when an abnormality occurs to discharge the internal electrolyte to the outside of the secondary battery.
  • a safety valve By providing a safety valve on the exterior body, bubbles are generated between the electrodes due to abnormal heat generation of the secondary battery, and the electrolyte solution removed from between the electrodes by the generated bubbles is discharged to the outside of the secondary battery through the safety valve along with the volatile components. Discharged.
  • a known safety valve used as a safety valve of this type of secondary battery for example, an arbitrary safety valve such as a pressure detection type or a temperature detection type can be used.
  • the pressure detection type is a mechanism typified by a burst valve, and is not particularly limited as long as the pressure detection type operates by an internal pressure increased by volatilization of the electrolyte.
  • the temperature detection type is typified by a mechanism in which an internal volatile component is released to the outside of the battery by melting the laminate sheath or its joint sealing portion by heat, but is not limited thereto.
  • the battery element of the present invention is not limited to the battery element of the above lithium ion secondary battery, and the present invention can be applied to any battery. However, since the problem of heat dissipation often becomes a problem in a battery with an increased capacity, the present invention is preferably applied to a battery with an increased capacity, particularly a lithium ion secondary battery.
  • One embodiment of the method for producing a battery of the present invention includes a step of preparing an electrolytic solution containing a gelling agent and an organic solvent having a boiling point of 125 ° C. or less, A step of preparing a separator 13 including a fiber aggregate or a microporous structure made of one or more resins selected from aramid, polyimide, and polyphenylene sulfide, and having an average pore diameter of 0.1 ⁇ m or more; Preparing a positive electrode 11 and a negative electrode 12, Placing the positive electrode 11 and the negative electrode 12 facing each other with the separator 13 interposed therebetween; Enclosing the separator 13, the positive electrode 11, and the negative electrode 12 that are disposed opposite to each other together with the electrolytic solution in the exterior body; And gelling the gelling agent.
  • the step of gelling the gelling agent can be performed after the step of enclosing the separator 13, the positive electrode 11, and the negative electrode 13 together with the electrolyte in the outer package.
  • the step of gelling the gelling agent includes the step of gelling the electrolyte solution by crosslinking of the acrylic acid resin ester by heating. Can be included.
  • Example 1 (Positive electrode) A layered lithium nickel composite oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 ), a carbon conductive agent, and polyvinylidene fluoride as a binder in a weight ratio of 92: 4: 4, N-methyl- A slurry was prepared by dispersing in 2-pyrrolidone (NMP), applied to a current collector foil made of aluminum, and dried to form a positive electrode active material layer. Similarly, after forming an active material layer on the back surface of the current collector foil made of aluminum, it was rolled to obtain a positive electrode plate.
  • NMP 2-pyrrolidone
  • Natural graphite, sodium carboxymethyl methylcellulose as a thickener, and styrene butadiene rubber as a binder are mixed in an aqueous solution at a weight ratio of 98: 1: 1 to prepare a slurry, which is applied to a copper current collector foil. And dried to form a negative electrode active material layer. Similarly, after forming an active material layer on the back surface of the current collector foil made of copper, a negative electrode plate was obtained by rolling.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • the boiling point of EC is 238 ° C.
  • the boiling point of DEC is 127 ° C.
  • the boiling point of EMC is 108 ° C.
  • As a gelling agent 1% by mass of a methacrylic acid ester polymer represented by the general formula (1) was added. LiPF 6 was dissolved as a supporting salt to a concentration of 1M. At this stage, the electrolytic solution is not gelled and is liquid.
  • the positive electrode plate was cut to 90 mm ⁇ 100 mm as a dimension excluding the current extraction part, and the negative electrode plate was cut to 94 mm ⁇ 104 mm as a dimension excluding the current extraction part, and laminated via a separator.
  • the capacity of the battery was 10 Ah.
  • the electrode laminate in which the electrode and the separator were laminated was connected to the electrode tab and housed in an exterior body made of a laminate film of an aluminum film and a resin film.
  • the electrode laminate was accommodated in the outer package by thermally fusing the laminate film on the outer periphery of the electrode laminate.
  • the laminate film was heat-sealed over the entire circumference of the electrode laminate, leaving a portion that became an opening for injecting the electrolyte.
  • the location which narrowed the sealing width to 2 mm was provided in the other side of the electrode tab, and this was made into the gas discharge
  • an electrolytic solution was injected through the opening into the exterior body in which the electrode laminate was housed. After injecting the electrolytic solution, the outer package was sealed under a reduced pressure atmosphere. Thereafter, the exterior body was heated in a thermostat at 50 ° C. for 8 hours to gel the electrolyte, and a battery was produced.
  • the ultrasonic transmittance was measured.
  • the measurement of ultrasonic transmission was performed as follows using an airborne ultrasonic system (NAUT: Japan Probe). First, the battery was placed horizontally between the transmission probe and the reception probe, and the ultrasonic wave transmittance distribution of the battery was scanned. In the part where bubbles exist in the battery, the transmission intensity is extremely lowered because the ultrasonic waves are reflected and scattered.
  • the projected area was measured assuming that the part where the ultrasonic wave did not pass was a part where bubbles were present, and the ratio of the projected area of the part where bubbles were present to the projected area of the battery was used as an index indicating the impregnation property of the electrolyte. It can be said that the smaller the ratio, the higher the impregnation property.
  • the overcharge test was conducted at 10A.
  • the battery surface temperature reached 95 ° C. at a battery voltage of about 5.5 V, and then the voltage suddenly increased to 12 V or higher, but there was no battery rupture or smoke generation.
  • Example 2 A battery was produced in the same manner as in Example 1 except that 0.05% by mass of silica was added to the electrolytic solution. The overcharge test was conducted at 10A. The battery surface temperature reached 95 ° C. at a battery voltage of about 5.0 V, and then the voltage suddenly increased to 12 V or more, but there was no battery rupture or smoke generation.
  • Example 3 A battery was produced in the same manner as in Example 1 except that porous (wet microporous) aramid was used as the separator.
  • the average pore diameter of the aramid used was 0.1 ⁇ m
  • the thermal decomposition temperature exceeded 400 ° C. or more as in Example 1, and the shrinkage ratio of the separator at 200 ° C. was less than 0.2%.
  • the overcharge test was conducted at 10A.
  • the battery surface temperature reached 95 ° C. at a battery voltage of about 5.5 V, and then the voltage suddenly increased to 12 V or higher, but there was no battery rupture or smoke generation.
  • Example 4 A battery was produced in the same manner as in Example 3 except that 0.05% by mass of silica was added to the electrolytic solution. The overcharge test was conducted at 10A. The battery surface temperature reached 95 ° C. at a battery voltage of about 5.0 V, and then the voltage suddenly increased to 12 V or more, but there was no battery rupture or smoke generation.
  • Example 5 A battery was prepared in the same manner as in Example 1 except that porous (wet microporous) polyimide was used as the separator.
  • the average pore diameter of the porous polyimide used was 0.3 ⁇ m, the thermal decomposition temperature exceeded 500 ° C. or more, and the shrinkage ratio of the separator at 200 ° C. was less than 0.2%.
  • the overcharge test was conducted at 10A. The battery surface temperature reached 95 ° C. at a battery voltage of about 5.5 V, and then the voltage suddenly increased to 12 V or higher, but the battery did not rupture or smoke.
  • Example 6 A battery was produced in the same manner as in Example 5 except that 0.05% by mass of silica was added to the electrolytic solution. The overcharge test was conducted at 10A. The battery surface temperature reached 95 ° C. at a battery voltage of about 5.0 V, and then the voltage suddenly increased to 12 V or higher, but the battery did not rupture or smoke.
  • Example 7 A battery was fabricated in the same manner as in Example 1 except that porous (wet microporous) polyphenylene sulfide (PPS) was used as the separator.
  • PPS porous polyphenylene sulfide
  • the average pore diameter of the PPS used was 0.5 ⁇ m, the melting point exceeded 280 ° C. or more, and the shrinkage ratio of the separator at 200 ° C. was less than 3%.
  • the overcharge test was conducted at 10A. The battery surface temperature reached 95 ° C. at a battery voltage of about 5.5 V, and then the voltage suddenly increased to 12 V or higher, but the battery did not rupture or smoke.
  • Example 8 A battery was produced in the same manner as in Example 7 except that 0.05% by mass of silica was added to the electrolytic solution. The overcharge test was conducted at 10A. The battery surface temperature reached 95 ° C. at a battery voltage of about 5.0 V, and then the voltage suddenly increased to 12 V or higher, but the battery did not rupture or smoke.
  • Example 9 A battery was fabricated in the same manner as in Example 3, except that the positive electrode active material was a layered lithium nickel composite oxide (LiNi 0.80 Mn 0.15 Co 0.05 O 2 : NMC). The overcharge test was conducted at 10A. The battery surface temperature reached 95 ° C. at a battery voltage of about 5.6 V, and then the voltage suddenly increased to 12 V or higher, but the battery did not rupture or smoked.
  • the positive electrode active material was a layered lithium nickel composite oxide (LiNi 0.80 Mn 0.15 Co 0.05 O 2 : NMC).
  • the overcharge test was conducted at 10A.
  • the battery surface temperature reached 95 ° C. at a battery voltage of about 5.6 V, and then the voltage suddenly increased to 12 V or higher, but the battery did not rupture or smoked.
  • Example 10 A battery was produced in the same manner as in Example 9 except that 0.05% by mass of silica was added to the electrolytic solution. The overcharge test was conducted at 10A. The battery surface temperature reached 95 ° C. at a battery voltage of about 5.1 V, and then the voltage suddenly increased to 12 V or more, but there was no battery rupture or smoke generation.
  • Example 11 A battery was produced in the same manner as in Example 1 except that the amount of the gelling agent added to the electrolytic solution was 0.5% by mass. The overcharge test was conducted at 10A. The battery surface temperature reached 95 ° C. at a battery voltage of about 5.6 V, and then the voltage suddenly increased to 12 V or higher, but the battery did not rupture or smoked.
  • Example 12 A battery was produced in the same manner as in Example 1 except that the amount of the gelling agent added to the electrolytic solution was 3.0% by mass. The overcharge test was conducted at 10A. The battery surface temperature reached 95 ° C. at a battery voltage of about 5.3 V, and then the voltage suddenly increased to 12 V or more, but the battery did not rupture or smoked.
  • Example 13 A battery was produced in the same manner as in Example 1 except that the amount of the gelling agent added to the electrolytic solution was 5.0% by mass. The overcharge test was conducted at 10A. The battery surface temperature reached 95 ° C. at a battery voltage of about 5.1 V, and then the voltage suddenly increased to 12 V or more, but there was no battery rupture or smoke generation.
  • Example 1 A battery was produced in the same manner as in Example 1 except that the gelling agent was not added to the electrolytic solution.
  • the battery surface temperature reached 95 ° C. when the battery voltage was about 6 V, and the gas release mechanism was opened.
  • the voltage of the battery continued to rise, rising to over 12V.
  • the battery surface temperature started to decrease after reaching about 140 ° C., and there was no battery rupture or smoke generation.
  • ⁇ Comparative example 2> A battery was produced in the same manner as in Example 2 except that the gelling agent was not added to the electrolytic solution. In the overcharge test, the battery surface temperature reached 95 ° C. when the battery voltage was about 6 V, and the gas release mechanism was opened. As charging continued, the voltage of the battery continued to rise, rising to over 12V. The battery surface temperature started to decrease after reaching about 140 ° C., and there was no battery rupture or smoke generation.
  • ⁇ Comparative Example 3> A battery was produced in the same manner as in Comparative Example 1 except that a polypropylene nonwoven fabric was used as the separator. The average porosity of this polypropylene was 1 ⁇ m.
  • the battery surface temperature reached 95 ° C. when the battery voltage was about 6 V, and the gas release mechanism was opened. As charging continued, the voltage of the battery continued to rise, rising to over 12V. The battery surface temperature started to decrease after reaching about 130 ° C., and the battery smoked.
  • Example 4 A battery was produced in the same manner as in Example 2 except that microporous polypropylene was used as the separator. The average porosity of this polypropylene was 0.01 ⁇ m.
  • the voltage and surface temperature of the battery continued to rise from 6.5 V, and when the battery surface temperature reached about 120 ° C., the film outer body ruptured with sound and liquid splashes were generated. Scattered.
  • the film outer package was broken at a place where the sealing part was not related to the gas release valve mechanism.
  • ⁇ Comparative Example 5> A battery was produced in the same manner as in Comparative Example 1 except that microporous polypropylene was used as the separator. In the overcharge test, the voltage and surface temperature of the battery continued to rise from 6.5 V, and when the battery surface temperature reached about 120 ° C., the film outer body ruptured with sound and liquid splashes were generated. Scattered. In the battery after the test, the film outer package was broken at a location where the sealing portion was not related to the gas release valve mechanism.
  • Example 6 A battery was fabricated in the same manner as in Example 1 except that a nonaqueous solvent in which EC and DEC were mixed at a volume ratio of 30:70 was used as the nonaqueous solvent for the electrolytic solution.
  • the overcharge test was conducted at 10A. The battery surface temperature reached 95 ° C. when the battery voltage was about 6.0 V. When charging was continued, the battery voltage continued to rise, and after rising to 12 V or higher, smoke was emitted.
  • Example 7 A battery was produced in the same manner as in Example 9 except that the gelling agent was not added to the electrolytic solution.
  • the overcharge test was conducted at 10A. When the battery voltage was about 6.1 V, the surface temperature of the battery reached 95 ° C., and the gas release mechanism was opened. As charging continued, the voltage of the battery continued to rise, rising to over 12V. The battery surface temperature reached about 140 ° C., and thereafter began to decrease, and there was no battery rupture or smoke generation.
  • Table 1 shows the results of Examples and Comparative Examples.
  • the impregnation property of the electrolytic solution is evaluated by the ratio of bubbles in the projected area of the electrode, 1% or less is “ ⁇ ” (good), 1% to less than 5% is “ ⁇ ” (slightly good), 5% or more. “X” (not good).
  • the battery according to the present invention can be used in, for example, all industrial fields that require a power source and industrial fields related to transportation, storage, and supply of electrical energy.
  • power supplies for mobile devices such as mobile phones and notebook computers
  • power supplies for transportation and transportation media such as trains, satellites, and submarines, including electric vehicles such as electric cars, hybrid cars, electric bikes, and electric assist bicycles
  • a backup power source such as a UPS
  • a power storage facility for storing power generated by solar power generation, wind power generation, etc .
  • power storage facility for storing power generated by solar power generation, wind power generation, etc .
  • FIG. 4 and FIG. 5 show an electric vehicle 200 and a power storage facility 300, respectively, as examples of the various devices and power storage facilities described above.
  • Electric vehicle 200 and power storage facility 300 have assembled batteries 210 and 310, respectively.
  • the assembled batteries 210 and 310 are configured such that a plurality of the above-described batteries 1 are connected in series and in parallel to satisfy required capacity and voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

【課題】過充電等の異常発生時に外部との電気的接続をより簡単な構成で達成し得る二次電池を提供する。 【解決手段】二次電池1は、正極11、負極12、セパレータ13および電解液を含む電池要素と、電池要素を封止する外装体と、を有する。電解液は、ゲル成分および沸点が125℃以下の有機溶媒を含有する。セパレータ13は、アラミド、ポリイミドおよびポリフェニレンスルフィドから選ばれる1種以上の樹脂からなる繊維集合体もしくは微多孔構造を含み、かつ、平均空隙径が0.1μm以上である。

Description

二次電池およびその製造方法
 本発明は、過充電などの異常発生時に外部との電気的接続を遮断する機構を備えた二次電池およびその製造方法に関する。
 電池は、エネルギーの缶詰と言われ、安全に取り扱えることが重要である。過充電や短絡などの異常時にも安全性を担保するために、電池の異常を検知し、電池の外部との電気的な接続を遮断することが可能な、ヒューズなどの保護回路を用いて電池を制御している。また、電池自体の異常な内圧上昇を利用して、電気的な接続を遮断するための機構も提案されている。
 そのような二次電池として、特許文献1には、非水電解質に、正極活物質よりも高い電位で可逆的な酸化還元反応を生じ得るレドックスシャトル剤と、所定の電池電圧を超えるとガスを発生し得るガス発生剤とを含む二次電池が開示されている。特許文献1には、さらに、温度上昇に伴う非水電解質の粘度低下を抑制し得る粘度調整剤を含むことが記載されている。
 また、特許文献2には、熱でセパレータが溶融したり収縮したりすることによる短絡が発生しない安定した充放電特性達成するために、セパレータとして、セルロース等の、孔径が0.1μm~10μm程度の不織布を用いることが開示されている。さらに、電解液に低分子ゲル化剤を含有させ、不織布特有の孔径の大きさ、および孔径分布の不均一性を改善している。
 特許文献1:特開2013-218934号公報
 特許文献2:特開2012-064569号公報
 しかし、電気自動車や大型蓄電設備では、多数の電池を直列および並列に接続して所定の電池容量および電圧を確保しているため、個々の電池に保護回路を設けると、大幅なコストアップとなる。また、一つの回路に誤動作が発生すると、すべてのシステムが停止してしまうことになるため、実用化が難しかった。加えて、内圧を検知して、ガスにより物理的に電気回路を遮断する機構は、積層型ラミネート電池では用いることが難しかった。
 そこで本発明は、過充電等の異常発生時に外部との電気的接続をより簡単な構成で達成し得る二次電池およびその製造方法を提供することを目的とする。
 本発明の二次電池は、正極、負極、セパレータおよび電解液を含む電池要素と、
 前記電池要素を封止する外装体と、
 を有し、
 前記電解液は、ゲル成分および沸点が125℃以下の有機溶媒を含有し、
 前記セパレータは、アラミド、ポリイミドおよびポリフェニレンスルフィドから選ばれる1種以上の樹脂からなる繊維集合体もしくは微多孔構造を含み、かつ、平均空隙径が0.1μm以上である。
 また本発明は、二次電池の製造方法を提供する。本発明の二次電池の製造方法は、
 前記ゲル成分を与えるゲル化剤および沸点が125℃以下の有機溶媒を含有する電解液を用意する工程と、
 アラミド、ポリイミドおよびポリフェニレンスルフィドから選ばれる1種以上の樹脂からなる繊維集合体もしくは微多孔構造を含み、かつ、平均空隙径が0.1μm以上であるセパレータを用意する工程と、
 正極および負極を用意する工程と、
 前記セパレータを間に挟んで前記正極と前記負極とを対向配置する工程と、
 対向配置された前記セパレータ、前記正極および前記負極を、前記電解液とともに前記外装体に封入する工程と、
 前記ゲル化剤をゲル化する工程と、を含む。
 本発明によれば、電解液が、ゲル成分および沸点が125℃以下の有機溶媒を含有することで、二次電池に異常発熱が生じた場合に、電解液中に気泡を発生させ、その気泡によって電極間でのイオン伝導を遮断することができる。その結果、二次電池が熱暴走に至る前に二次電池の機能を停止させることができる。特に、セパレータが、アラミド、ポリイミドおよびポリフェニレンスルフィドから選ばれる1種以上の樹脂からなる繊維集合体もしくは微多孔構造を含み、かつ、平均空隙径が0.1μm以上であるので、気泡はセパレータの空隙にも侵入し、かつ、二次電池に異常発熱が生じてもセパレータの空隙が保たれる。その結果、イオン伝導をより効果的に遮断することができる。
本発明の一実施形態による二次電池の分解斜視図である。 図1に示す電池要素の模式的断面図である。 正極端子および負極端子が同じ方向に引き出された本発明の一実施形態による二次電池の分解斜視図である。 本発明の電池を備えた電気自動車の一例を示す模式図である。 本発明の電池を備えた蓄電設備の一例を示す模式図である。
 図1を参照すると、本発明の一実施形態による二次電池1の分解斜視図が示される。本形態の二次電池は、電池要素10と、電池要素10を封止する外装体と、電池要素10に電気的に接続されて外装体の外部に延びる正極端子31および負極端子32と、を有している。外装体は、可撓性を有する外装材21、22、例えばラミネートフィルムで構成され、電池要素を包囲した状態で外周部を熱溶着することによって電池要素10を封止している。
 図2に示すように、電池要素10は、正極11、負極12、セパレータ13および電解液を含んでおり、典型的には、複数の負極12と複数の正極11とを、セパレータ13を間に挟んで交互に対向させて配置した構成を有している。電解液は、これら正極11、負極12およびセパレータ13とともに、外装体内に封止されている。負極12は、セパレータ13から突き出ている延長部(タブともいう)を有している。延長部は、負極12が有する負極集電体12aの正極活物質に覆われていない端部である。正極11も同様、正極11の正極集電体11aの正極活物質に覆われていない端部である延長部(タブ)がセパレータ13から突き出ている。正極11の延長部と負極12の延長部は、正極11と負極12とを積層したときに互いに干渉しない位置に形成されている。すべての負極12の延長部は一つに集められて、負極端子32に溶接により接続される。正極11も同様に、すべての正極11の延長部が一つに集められて、正極端子31に溶接によって接続される。
 なお、図1に示す例では、正極端子31および負極端子32が互いに反対方向に引き出されているが、正極端子31および負極端子32の引き出し方向は任意であってよい。例えば、図3に示すように、電池要素10の同じ辺から正極端子31および負極端子32が引き出されていてもよいし、図示しないが、電池要素10の隣り合う2辺から正極端子31および負極端子32がそれぞれ引き出されていてもよい。いずれの場合でも、正極11および負極12の活物質に覆われていない延長部(タブ)は、正極端子31および負極端子32が引き出される位置に対応した位置に形成される。
 以上のように構成された本形態の二次電池1において、特に、電解液が、ゲル成分および沸点が125℃以下の有機溶媒(以下、「低沸点溶媒」ともいう)を含有し、また、セパレータが、アラミド、ポリイミドおよびポリフェニレンスルフィドから選ばれる1種以上の樹脂からなる複数の繊維からなる繊維集合体を含み、かつ、平均空隙径が0.1μm以上であることが特徴である。
 本形態の二次電池によれば、二次電池が過充電および/または短絡など何らかの不具合により異常発熱が生じると、低沸点溶媒の作用により電解液中に気泡が発生する。この気泡により、電極間でのイオン伝導が遮断される。このことにより、二次電池が熱暴走に至る前に二次電池の機能を安全に停止させることができる。正極活物質は、通常、125℃以下の温度では熱暴走しないので、125℃以下の温度で気泡が発生するように、低沸点溶媒の種類および/または電解液中への含有量を適宜調整することにより、熱暴走をより効果的に抑制することができる。
 電解液中に気泡が発生するメカニズムは、以下のとおりである。電解液がゲル成分を含んでいることにより、電解液はゲル状となっている。この状態において、二次電池に異常発熱が生じると、電解液に含まれる低沸点溶媒が揮発する。そして、電解液はゲル状となっているので、揮発したガスはゲル状の電解液に保持され、気泡として電極間に留まる。さらには、セパレータの平均空隙径は、0.1μm以上であるので、揮発したガスはセパレータの空隙にも侵入する。その結果、イオン伝導を効率よく遮断することができる。
 また、アラミド、ポリイミドおよびポリフェニレンスルフィドなどの樹脂は高い耐熱性を有しているため、これらの1種以上からなる繊維集合体をセパレータに用いることで、揮発性の高い電解液成分によって揮発性の低い電解液成分が電極間から排出されるまで、電極間の絶縁性を維持することができる。二次電池内での短絡が起きなければ、電解液の燃焼は生じず、二次電池は安全な状態である。
 以下、二次電池の主要な構成要素である、セパレータ、負極、正極、電解液および外装体について、リチウムイオン二次電池を例に挙げて説明する。
 <セパレータ>
 本実施形態におけるセパレータは、熱溶融あるいは熱分解する温度が180℃以上で、セパレータの平均空隙径は0.1μm以上であることが好ましい。融点または分解温度が180℃以上の材料としては、高分子材料では、ポリエチレンテレフタレート(PET)、アラミド、ポリイミド、ポリフェニレンサルファイド(PPS)などがある。PETは、安価に入手することが出来るため好ましい。これらの中でも、アラミド、ポリイミドやPPSは、耐熱性が300℃以上あり、熱収縮もほとんどないため、より安定な電池を好適に得ることができるため特に好ましい。
 セパレータの構造としては、織布や不織布といった繊維集合体、および微多孔膜など、高い通気度を与える空隙を有してセパレータを構成することができれば、任意の構造を採用することができる。これらの中でも織布や不織布によるセパレータが、平均空隙径が特に高く好ましい。具体的な例としては、アラミド繊維やポリイミド繊維等の繊維集合体が挙げられる。
 アラミド繊維を構成するアラミドポリマーは、1種または2種以上の2個の芳香族基が直接アラミド結合により連結されているポリマーである。芳香族基は、2個の芳香環が酸素、硫黄またはアルキレン基で結合されたものであってもよい。また、これらの2価の芳香族基には、メチル基やエチル基などの低級アルキル基、メトキシ基、クロル基などのハロゲン基等が含まれていてもよい。さらには、アラミド結合は限定されず、パラ型およびメタ型のいずれでもよい。
 
 本発明で好ましく使用できるアラミド繊維としては、ポリメタフェニレンイソフタルアミド繊維、ポリパラフェニレンテレフタルアミド繊維、またはコポリパラフェニレン3,4’-オキシジフェニレンテレフタルアミド繊維などが挙げられる。
 セパレータは、電極間で電解液中に発生した気泡をセパレータ内に良好に保持するためには、ある程度以上の厚み、例えば、5μm以上であることが好ましく、より好ましくは10μm以上、さらに好ましくは15μm以上である。一方、二次電池のエネルギー密度の向上や内部抵抗の低減のためには、セパレータは、例えば、50μm以下と、薄いほうが好ましく、より好ましくは30μm以下、さらに好ましくは25μm以下である。
 セパレータの平均空隙径は0.1μm以上であることが好ましく、より好ましくは0.5μm以上、さらに好ましくは1μm以上である。平均空隙率が0.1μm以上であることにより、電極間で電解液中に発生した気泡をセパレータ内に良好に保持することができる。一方、デンドライトによる短絡を防止し、電極間の絶縁性を高めるためには、平均空隙径は、例えば10μm以下といったように小さい方が好ましく、より好ましくは8μm以下、さらに好ましくは5μm以下である。また、同様の観点から、セパレータの最大空隙径は50μm以下であることが好ましい。
 セパレータの空隙径は、STM-F-316記載のバブルポイント法およびミーンフロー法により求めることができる。また、平均空隙径は、セパレータの任意の5箇所においてそれぞれ空隙径を測定し、その測定値の平均値とすることができる。
 <負極>
 負極は、金属箔で形成される負極集電体と、負極集電体の両面または片面に塗工された負極活物質とを有する。負極活物質は負極用結着材によって負極集電体を覆うように結着される。負極集電体は、負極端子と接続する延長部を有して形成され、この延長部には負極活物質は塗工されない。
 本実施形態における負極活物質は、特に制限されるものではなく、例えば、リチウムイオンを吸蔵、放出し得る炭素材料、リチウムと合金可能な金属、およびリチウムイオンを吸蔵、放出し得る金属酸化物等が挙げられる。
 炭素材料としては、例えば、炭素、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物等が挙げられる。ここで、結晶性の高い炭素は、電気伝導性が高く、銅などの金属からなる負極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。
 金属や金属酸化物を含有する負極は、エネルギー密度を向上でき、電池の単位重量あたり、あるいは単位体積あたりの容量を増やすことができる点で好ましい。
 金属としては、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらの2種以上の合金等が挙げられる。また、これらの金属又は合金は2種以上混合して用いてもよい。また、これらの金属又は合金は1種以上の非金属元素を含んでもよい。
 金属酸化物としては、例えば、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物等が挙げられる。本実施形態では、負極活物質として酸化スズ若しくは酸化シリコンを含むことが好ましく、酸化シリコンを含むことがより好ましい。これは、酸化シリコンは、比較的安定で他の化合物との反応を引き起こしにくいからである。また、金属酸化物に、窒素、ホウ素およびイオウの中から選ばれる一種または二種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物の電気伝導性を向上させることができる。また、金属や金属酸化物を、たとえば蒸着などの方法で、炭素等の導電物質を用いて被覆することでも、同様に電気伝導度を向上させることができる。
 また、負極活物質は、単独の材料を用いずに、複数の材料を混合して用いることもできる。例えば、黒鉛と非晶質炭素のように、同種の材料同士を混合しても良いし、黒鉛とシリコンのように、異種の材料を混合しても構わない。
 負極用結着剤としては、特に制限されるものではないが、例えば、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、ポリアクリル酸等を用いることができる。使用する負極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、負極活物質100質量部に対して、0.5~25質量部が好ましい。
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、ステンレス、クロム、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
 負極活物質を含む塗工層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、鱗片状、煤状、繊維状の炭素質微粒子等、例えば、グラファイト、カーボンブラック、アセチレンブラック、気相法炭素繊維(昭和電工製VGCF(登録商標))等が挙げられる。
 <正極>
 正極は、金属箔で形成される正極集電体と、正極集電体の両面または片面に塗工された正極活物質とを有する。正極活物質は正極用結着剤によって正極集電体を覆うように結着される。正極集電体は、正極端子と接続する延長部を有して形成され、この延長部には正極活物質は塗工されない。
 本実施形態における正極活物質としては、リチウムを吸蔵放出し得る材料であれば特に限定されず、いくつかの観点から選ぶことができる。高エネルギー密度化の観点からは、高容量の化合物を含むことが好ましい。高容量の化合物としては、リチウム酸ニッケル(LiNiO)またはリチウム酸ニッケルのNiの一部を他の金属元素で置換したリチウムニッケル複合酸化物が挙げられ、下式(A)で表される層状リチウムニッケル複合酸化物が好ましい。
 LiNi(1-x)   (A)
(但し、0≦x<1、0<y≦1.2、MはCo、Al、Mn、Fe、Ti及びBからなる群より選ばれる少なくとも1種の元素である。)
 高容量の観点では、Niの含有量が高いこと、即ち式(A)において、xが0.5未満であることが好ましく、さらに0.4以下であることが好ましい。このような化合物としては、例えば、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiαNiβCoγAlδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.6好ましくはβ≧0.7、γ≦0.2)などが挙げられ、特に、LiNiβCoγMnδ(0.75≦β≦0.85、0.05≦γ≦0.15、0.10≦δ≦0.20)が挙げられる。より具体的には、例えば、LiNi0.8Co0.05Mn0.15、LiNi0.8Co0.1Mn0.1、LiNi0.8Co0.15Al0.05、LiNi0.8Co0.1Al0.1等を好ましく用いることができる。
 また、熱安定性の観点では、Niの含有量が0.5を超えないこと、即ち、式(A)において、xが0.5以上であることも好ましい。また特定の遷移金属が半数を超えないことも好ましい。このような化合物としては、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、0.2≦β≦0.5、0.1≦γ≦0.4、0.1≦δ≦0.4)が挙げられる。より具体的には、LiNi0.4Co0.3Mn0.3(NCM433と略記)、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3(NCM523と略記)、LiNi0.5Co0.3Mn0.2(NCM532と略記)など(但し、これらの化合物においてそれぞれの遷移金属の含有量が10%程度変動したものも含む)を挙げることができる。
 また、式(A)で表される化合物を2種以上混合して使用してもよく、例えば、NCM532またはNCM523とNCM433とを9:1~1:9の範囲(典型的な例として、2:1)で混合して使用することも好ましい。さらに、式(A)においてNiの含有量が高い材料(xが0.4以下)と、Niの含有量が0.5を超えない材料(xが0.5以上、例えばNCM433)とを混合することで、高容量で熱安定性の高い電池を構成することもできる。
 上記以外にも正極活物質として、例えば、LiMnO、LiMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造またはスピネル構造を有するマンガン酸リチウム;LiCoOまたはこれらの遷移金属の一部を他の金属で置き換えたもの;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;及びLiFePOなどのオリビン構造を有するもの等が挙げられる。さらに、これらの金属酸化物をAl、Fe、P、Ti、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等により一部置換した材料も使用することができる。上記に記載した正極活物質はいずれも、1種を単独で、または2種以上を組合せて用いることができる。
 また、ラジカル材料等を正極活物質として用いることも可能である。
 正極用結着剤としては、負極用結着剤と同様のものと用いることができる。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質100質量部に対して、2~15質量部が好ましい。
 正極集電体としては、例えば、アルミニウム、ニッケル、銀、又はそれらの合金を用いることができる。正極集電体の形状としては、例えば、箔、平板状、メッシュ状が挙げられる。正極集電体としては、アルミニウム箔を好適に用いることができる。
 正極活物質の塗工層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。
 <電解液>
 本実施形態で用いる電解液は、リチウム塩(支持塩)と、この支持塩を溶解する非水溶媒とを含む非水電解液を用いることができる。さらに本発明においては、電解液はゲル成分を含有し、このゲル成分によって電解液がゲル化されてゲル状とされている。ゲル成分は、電解液に添加されたゲル化剤が架橋することによって与えられ、よって、電解液は、ゲル化剤の架橋体を含有しているということができる。ゲル化剤の架橋体は、ゲル成分と同義である。ゲル化された電解液の組成を分析することにより、電解液に添加されたゲル化剤を特定することができる。また、電解液中のゲル成分の含有量は、添加したゲル化剤の量に実質的に等しいと考えてよい。電解液に含まれるゲル成分およびその含有量は、電池が充放電を経た後でも実質的に変化しない。
 支持塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiN(CFSO等の通常のリチウムイオン電池に使用可能なリチウム塩を用いることができる。支持塩は、一種を単独で、または二種以上を組み合わせて使用することができる。
 非水溶媒としては、炭酸エステル(鎖状又は環状カーボネート)、カルボン酸エステル(鎖状又は環状カルボン酸エステル)、リン酸エステル等の非プロトン性有機溶媒を用いることができる。
 炭酸エステル溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体が挙げられる。
 カルボン酸エステル溶媒としては、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;γ-ブチロラクトン等のラクトン類が挙げられる。
 これらの中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(MEC)、ジプロピルカーボネート(DPC)等の炭酸エステル(環状または鎖状カーボネート類)が好ましい。
 リン酸エステルとしては、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリオクチル、リン酸トリフェニル等が挙げられる。
 また、非水電解液に含有できる溶媒としては、その他にも、例えば、エチレンサルファイト(ES)、プロパンサルトン(PS)、ブタンスルトン(BS)、Dioxathiolane-2,2-dioxide(DD)、スルホレン、3-メチルスルホレン、スルホラン(SL)、無水コハク酸(SUCAH)、無水プロピオン酸、無水酢酸、無水マレイン酸、ジアリルカーボネート(DAC)、2,5-ジオキサヘキサンニ酸ジメチル、2,5-ジオキサヘキサンニ酸ジメチル、フラン、2,5-ジメチルフラン、ジフェニルジサルファイド(DPS)、ジメトキシエタン(DME)、ジメトキシメタン(DMM)、ジエトキシエタン(DEE)、エトキシメトキシエタン、クロロエチレンカーボネート、ジメチルエーテル、メチルエチルエーテル、メチルプロピルエーテル、エチルプロピルエーテル、ジプロピルエーテル、メチルブチルエーテル、ジエチルエーテル、フェニルメチルエーテル、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-MeTHF)、テトラヒドロピラン(THP)、1,4-ジオキサン(DIOX)、1,3-ジオキソラン(DOL)、メチルアセテート、エチルアセテート、プロピルアセテート、イソプロピルアセテート、ブチルアセテート、メチルジフルオロアセテート、メチルプロピオネート、エチルプロピオネート、プロピルプロピオネート、メチルフォルメイト、エチルフォルメイト、エチルブチレート、イソプロピルブチレート、メチルイソブチレート、メチルシアノアセテート、ビニルアセテート、ジフェニルジスルフィド、ジメチルスルフィド、ジエチルスルフィド、アジポニトリル、バレロニトリル、グルタロニトリル、マロノニトリル、スクシノニトリル、ピメロニトリル、スベロニトリル、イソブチロニトリル、ビフェニル、チオフェン、メチルエチルケトン、フルオロベンゼン、ヘキサフルオロベンゼン、カーボネート電解液、グライム、エーテル、アセトニトリル、プロピオンニトリル、γ-ブチロラクトン、γ-バレロラクトン、ジメチルスルホキシド(DMSO)イオン液体、ホスファゼン、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、又は、これらの化合物の一部の水素原子がフッ素原子で置換されたものが挙げられる。
 非水溶媒は、沸点が125℃以下の有機溶媒(低沸点溶媒)を含む。低沸点溶媒の電解液中への含有量は0.1重量%以上であることが好ましい。低沸点溶媒としては、例えば、カーボネート、エーテル、エステル化合物およびリン酸エステル化合物から選ばれる1種以上を含むことができる。
 電解液を構成する少なくとも1つの溶媒が揮発すれば、ガスを発生することができる。例えば、ジメチルカーボネート(沸点:90℃)、メチルエチルカーボネート(沸点:107℃)等を挙げることができる。また、絶縁層を形成するガスは、不燃性あるいは難燃性ガスであることが好ましいことから、フッ素やリン原子を含むものが好ましい。例えば、メチル2,2,2トリフルオロエチルカーボネート(沸点:74℃)などのフッ素化カーボネート類や2フルオロエチルアセテート(沸点:79℃)などのフッ素化エステル類、テトラフルオロエチルテトラフルオロプロピルエーテル(沸点:92℃)、デカフルオロプロピルエーテル(沸点:106℃)などのフッ素化エーテル、リン酸エステル類などを挙げることができる。
 電解液にゲル成分を与えるゲル化剤としては、例えば、アクリル樹脂、フッ素エチレン樹脂などを単独でまたは組み合わせて用いることができる。また、ゲル化剤は、架橋可能な官能基を有するアクリル樹脂エステルを含有することが好ましい。電解液中へのゲル化剤の添加量は、0.5重量%以上であることが好ましい。
 具体的なゲル化剤としては、例えば、熱重合可能な重合基を一分子あたり2個以上有するモノマー、オリゴマー、又は共重合オリゴマー等が挙げられる。具体的には、アクリル系高分子を形成するエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、プロピレンジアクリレート、ジプロピレンジアクリレート、トリプロピレンジアクリレート、1,3-ブタンジオールジアクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート等の2官能アクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート等の3官能アクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールテトラアクリレート等の4官能アクリレート、及び、前記メタクリレートモノマー等が挙げられる。これらの他に、ウレタンアクリレート、ウレタンメタクリレート等のモノマー、これらの共重合体オリゴマーやアクリロニトリルとの共重合体オリゴマー等が挙げられる。また、ポリフッ化ビニリデンやポリエチレンオキサイド、ポリアクリロニトリル等の可塑剤に溶解させ、ゲル化させることのできるポリマーも使用できる。
 ゲル化剤は、前記モノマー、オリゴマー又はポリマーに限定されるものではなく、ゲル化可能なものであれば、いかなるものでも使用できる。また、ゲル化には一種類のモノマー、オリゴマー又はポリマーに限定されるものではなく、必要に応じて2から数種のゲル化成分を混合して使用できる。さらに、必要に応じて熱重合開始剤としてベンゾイン類、パーオキサイド類等も使用できる。しかしながら、これらに限定されるものではない。
 また、ゲル化剤としては、下記の一般式(1)で示されるメタクリル酸エステル重合物を含むことができる。このメタクリル酸エステル重合物が架橋することによって、電解液がゲル化する。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)において、nは1800<n<3000を満たし、mは350<m<600を満たす。
 一般式(1)で示されるメタクリル酸エステル重合物は、メチルメタクリレートと、(3-エチル-3-オキセタニル)メチルメタクリレートをラジカル共重合して得られる。メチルメタクリレート単位の数を表すnは、1800<n<3000を満たし、(3-エチル-3-オキセタニル)メチルメタクリレート単位の数を表すmは、350<m<600を満たす。なお、一般式(1)で示されるメタクリル酸エステル重合物は、ブロック共重合体でもよく、ランダム共重合体でもよい。また、n及びmは平均値を表し、整数でない場合もある。
 一般式(1)で示されるメタクリル酸エステル重合物を架橋させてなる架橋体(以下、単に「架橋体」と称する)は、一般式(1)で示されるメタクリル酸エステル重合物が有するオキセタニル基を、カチオン重合開始剤により開環重合することで得られる。カチオン重合開始剤としては、一般に公知の重合開始剤を用いることができるが、電解液中に含まれるリチウム塩及びリチウム塩のアニオン成分が加水分解した微量の酸性物質を利用することが、電池に与える特性が小さく好ましい。ここで、電解液中のリチウム塩の含有量は電解液中の好ましい支持塩の濃度と同一である。
 ゲル成分を含む電解液は、例えば、非プロトン性溶媒に支持塩を溶解させる工程と、非プロトン性溶媒にゲル化剤として一般式(1)で示されるメタクリル酸エステル重合物を混合する工程と、一般式(1)で示されるメタクリル酸エステル重合物を架橋する工程とを有する方法により、簡便かつ安定的に製造される。
 電解液に占めるゲル成分の割合は、高いほど気泡の保持効果が高まることから、0.1質量%以上であることが好ましく、より好ましくは0.5質量%以上、さらに好ましくは1.0質量%以上である。一方、ゲル成分の含有量が多すぎると、電解液の粘性が高くなることから、電極間への注液性やイオン伝導度が低下する。そこで、電解液に占めるゲル成分の割合は、10質量%以下であることが好ましく、より好ましくは5質量%以下、さらに好ましくは3質量%以下である。
 任意であってよいが、電解液は、シリカ粒子を含むことができる。シリカ粒子は、粒径が0.01μm以上であることが好ましく、また、電解液中での含有量は0.1重量%以上であることが好ましい。
 シリカ粒子は上述のゲル化剤と物理混合される。シリカ粒子の平均粒子径は、電解液中への分散性の向上およびセパレータの空隙への良好な分散のためには、10μm以下であることが好ましく、より好ましくは5μm以下、さらに好ましくは1μm以下である。シリカの平均粒子径が10μm以下であれば、電解液に均一に分散したまま容易に電池に導入することが可能である。また、シリカの表面水酸基とポリマーの官能基と化学結合することにより、電解液に対するシリカの分散性をさらに向上することができる。このように均一に分散したシリカは、電解液の絶縁性を向上させることが可能となる。すなわち、電池の異常発熱により電解液の非水溶媒成分が揮発し、ゲル成分剤の熱分解温度に到達しても、シリカおよびシリカを核とする電解液残渣が電極間に残留するため、電極間の絶縁性を維持することができる。また、電解液とシリカに化学結合や水素結合が存在する場合は、いわゆる無機有機のハイブリッドポリマーを形成することから、ポリマー自体の耐熱性が向上し、電極間の絶縁状態を高い温度まで維持することができる。シリカとポリマーの化学結合は、シリカ表面の水酸基と、ポリマーのたとえば、カルボキシル基やエポキシ基、あるいはオキセタン基により形成することが可能である。
 特に本形態では、電解液がゲル成分および揮発成分を含み、電池の異常発熱時に電極間に気泡を発生させ、その発生した気泡を安定的に保持し得るものである。電解液がさらにシリカ粒子を含むことにより、気泡をより安定して電極間に保持し、イオン伝導を遮断する効果を向上させることができる。また、シリカ粒子が、電解液中のゲル成分と化学結合のみならず水素結合している場合、ゲル成分の耐熱性が向上するため、生じた気泡もまた、高温環境下においても気泡の状態を良好に保持することができる。
 上記の効果を発揮し得るためには、電解液に対するシリカ粒子の含有量は、電解液の0.05から10質量%の範囲であることが好ましい。また、分散性を維持するためには、電解液に対するシリカ粒子の含有量は10質量%以下であることが好ましく、より好ましくは5質量%以下、さらに好ましくは3質量%以下である。電解液の耐熱性付与のためには、電解液に対するシリカ粒子の含有量は0.05質量%以上であることが好ましく、より好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上である。
 また、シリカに限らず、融点が300℃以上で、絶縁性が高く、また表面に水酸基を有する無機材料であれば、シリカと同様に用いることが可能である。この種の無機材料としては、例えば、アルミナ、雲母、マイカ、モンモリロナイト、ゼオライト、粘土鉱物などを挙げることができる。
 <外装体>
 外装体としては、電解液に安定で、かつ十分な水蒸気バリア性を持つものであれば、適宜選択することができる。例えば、積層ラミネート型の二次電池の場合、外装体としては、アルミニウムと樹脂のラミネートフィルムを用いることが好ましい。外装体は、単一の部材で構成してもよいし、複数の部材を組み合わせて構成してもよい。
 外装体には、異常発生時に開放して内部の電解液を二次電池の外部へ排出することができるように、安全弁を付加することができる。外装体に安全弁を設けることによって、二次電池の異常発熱により電極間で気泡が発生し、発生した気泡により電極間から排除された電解液は、揮発成分とともに、安全弁を通じて二次電池の外部に排出される。
 安全弁としては、この種の二次電池の安全弁として用いられる公知の安全弁、例えば圧力検知型や温度検知型など任意の安全弁を用いることができる。圧力検知型は、破裂弁に代表される機構であり、電解液の揮発により高くなった内圧により動作するものであれば特に限定されない。温度検知型は、ラミネート外装もしくはその接合封止部が熱により溶融することにより内部の揮発成分が電池外部に解放される機構に代表されるが、これに限定されるわけではない。
 本発明の電池要素は、以上のリチウムイオン二次電池の電池要素に限られるものではなく、本発明はどのような電池にも適用可能である。但し、放熱の問題は、多くの場合、高容量化した電池において問題になることが多いため、本発明は、高容量化した電池、特にリチウムイオン二次電池に適用することが好ましい。
 以下に、本発明の電池の製造方法の一形態について説明する。
 本発明の電池の製造方法の一形態は、ゲル化剤および沸点が125℃以下の有機溶媒を含有する電解液を用意する工程と、
 アラミド、ポリイミドおよびポリフェニレンスルフィドから選ばれる1種以上の樹脂からなる繊維集合体もしくは微多孔構造を含み、かつ、平均空隙径が0.1μm以上であるセパレータ13を用意する工程と、
 正極11および負極12を用意する工程と、
 前記セパレータ13を間に挟んで前記正極11と前記負極12とを対向配置する工程と、
 対向配置された前記セパレータ13、前記正極11および前記負極12を、前記電解液とともに前記外装体に封入する工程と、
 前記ゲル化剤をゲル化する工程と、を含む。
 上記製造方法において、ゲル化剤をゲル化する工程は、セパレータ13、正極11および負極13を電解液とともに外装体に封入する工程の後に行うことができる。特に、ゲル化剤が、架橋可能な官能基を有するアクリル樹脂エステルを含む場合は、ゲル化剤をゲル化する工程は、加熱によるアクリル酸樹脂エステルの架橋によって、電解液をゲル化させる工程を含むことができる。
 以下に、本発明を詳細に説明する。
<実施例1>
 (正極)
 層状リチウムニッケル複合酸化物(LiNi0.8Co0.15Al0.05)と、炭素導電剤と、結着材としてポリフッ化ビニリデンとを重量比92:4:4でN-メチル-2-ピロリドン(NMP)に分散させてスラリーを作製し、アルミニウムによる集電箔に塗布、乾燥して正極活物質層を形成した。同様にしてアルミニウムによる集電箔の裏面にも活物質層を形成したあと、圧延して正極電極板を得た。
 (負極)
 天然黒鉛と、増粘剤のカルボキシメチルメチルセルロースナトリウムと、結着材のスチレンブタジエンゴムとを、重量比98:1:1で水溶液中に混合してスラリーを作製し、銅による集電箔に塗布、乾燥して負極活物質層を形成した。同様にして、銅による集電箔の裏面にも活物質層を形成したあと、圧延して負極電極板を得た。
 (セパレータ)
 厚さ20μmのアラミド不織布をセパレータとして用いた。このアラミド不織布の平均空隙径は、1μmである。用いたアラミドの熱分解温度は400℃以上を超え、セパレータの200℃での収縮率は1%未満であった。
 (電解液)
 電解液の非水溶媒には、EC(エチレンカーボネート)、DEC(ジエチルカーボネート)、EMC(エチルメチルカーボネート)を、体積比30:50:20で混合した非水溶媒を用いた。ECの沸点は238℃、DECの沸点は、127℃、EMCの沸点は、108℃である。ゲル化剤として、一般式(1)で示されるメタクリル酸エステル重合物を1質量%加えた。支持塩として、1Mの濃度になるようにLiPFを溶解した。この段階では、電解液はゲル化されておらず液状である。
 (電池の作製)
 正極電極板を、電流取り出し部を除いた寸法として90mm×100mmに切断し、負極電極板を、電流取り出し部を除いた寸法として94mm×104mmに切断して、セパレータを介して積層した。電池の容量は10Ahとした。
 電極とセパレータを積層した電極積層体は電極タブを接続して、アルミニウムフィルムと樹脂フィルムのラミネートフィルムによる外装体に収納した。外装体への電極積層体の収納は、電極積層体の外周でラミネートフィルムを熱融着することによって行った。ラミネートフィルムの熱融着は、電解液を注液するための開口部となる部分を残して電極積層体の全周にわたって行った。また、電極タブの反対側では封止幅を2mmまで狭くした箇所を設け、これをガス放出機構とした。
 次いで、電極積層体が収納された外装体内へ、開口部を通じて電解液を注液した。電解液を注液した後、減圧雰囲気下で外装体を封止した。その後、外装体を50℃の恒温槽内で8時間加熱して電解液をゲル化し、電池を作製した。
 (含浸性評価)
 作製した電池の電解液含浸性を評価する目的で、超音波透過度を測定した。超音波透過度の測定は、空中超音波システム(NAUT:ジャパンプローブ社)を用い、次のようにして行った。まず、電池を送信プローブと受信プローブの間に水平に静置し、電池の超音波の透過度分布を走査した。電池内の気泡が存在する部分は、超音波が反射や散乱を起こすため透過強度が極端に低下する。次いで、超音波が透過しない部分を気泡の存在する部分としてその投影面積を計測し、電池の投影面積における気泡の存在する部分の投影面積の割合を電解液の含浸性を示す指標とした。この割合が小さいほど、含浸性が高いということができる。
 (過充電試験)
 電池の積層体部分を平板な押さえ板で、電池の厚みに合わせて定寸で固定した。試験前には、押さえ板による積層体に対する圧力は加わっていない。
 過充電試験は、10Aで行った。電池の電圧約5.5Vで電池の表面温度が95℃に到達し、その後急激に電圧が12V以上にまで上昇したが、電池の破裂や、発煙は無かった。
 <実施例2>
 電解液にシリカを0.05質量%加えた以外は、実施例1と同様に電池を作製した。過充電試験は、10Aで行った。電池の電圧約5.0Vで電池の表面温度が95℃に到達し、その後急激に電圧が12V以上にまで上昇したが、電池の破裂や、発煙は無かった。
 <実施例3>
 セパレータとして多孔質(湿式微多孔)アラミドを用いたこと以外実施例1と同様に電池を作製した。用いたアラミドの平均空隙径は0.1μmで、熱分解温度は実施例1と同様に400℃以上を超え、セパレータの200℃での収縮率は0.2%未満であった。過充電試験は、10Aで行った。電池の電圧約5.5Vで電池の表面温度が95℃に到達し、その後急激に電圧が12V以上にまで上昇したが、電池の破裂や、発煙は無かった。
 <実施例4>
 電解液にシリカを0.05質量%加えた以外は、実施例3と同様に電池を作製した。過充電試験は、10Aで行った。電池の電圧約5.0Vで電池の表面温度が95℃に到達し、その後急激に電圧が12V以上にまで上昇したが、電池の破裂や、発煙は無かった。
 <実施例5>
 セパレータとして多孔質(湿式微多孔)ポリイミドを用いたこと以外は実施例1と同様に電池を作製した。用いた多孔質ポリイミドの平均空隙径は0.3μm、熱分解温度は500℃以上を超え、また、セパレータの200℃での収縮率は0.2%未満であった。過充電試験は10Aで行った。電池の電圧約5.5Vで電池の表面温度が95℃に到達し、その後急激に電圧が12V以上にまで上昇したが、電池の破裂や、発煙は無かった。
 <実施例6>
 電解液にシリカを0.05質量%加えた以外は、実施例5と同様に電池を作製した。過充電試験は、10Aで行った。電池の電圧約5.0Vで電池の表面温度が95℃に到達し、その後急激に電圧が12V以上にまで上昇したが、電池の破裂や、発煙は無かった。
 <実施例7>
 セパレータとして多孔質(湿式微多孔)ポリフェニレンスルフィド(PPS)を用いたこと以外は実施例1と同様に電池を作製した。用いたPPSの平均空隙径は0.5μm、融点は280℃以上を超え、また、セパレータの200℃での収縮率は3%未満であった。過充電試験は10Aで行った。電池の電圧約5.5Vで電池の表面温度が95℃に到達し、その後急激に電圧が12V以上にまで上昇したが、電池の破裂や、発煙は無かった。
 <実施例8>
 電解液にシリカを0.05質量%加えた以外は、実施例7と同様に電池を作製した。過充電試験は、10Aで行った。電池の電圧約5.0Vで電池の表面温度が95℃に到達し、その後急激に電圧が12V以上にまで上昇したが、電池の破裂や、発煙は無かった。
 <実施例9>
 正極活物質を層状リチウムニッケル複合酸化物(LiNi0.80Mn0.15Co0.05:NMC)としたこと以外は実施例3と同様に電池を作製した。過充電試験は、10Aで行った。電池の電圧約5.6Vで電池の表面温度が95℃に到達し、その後急激に電圧が12V以上にまで上昇したが、電池の破裂や、発煙は無かった。
 <実施例10>
 電解液にシリカを0.05質量%加えた以外は、実施例9と同様に電池を作製した。過充電試験は、10Aで行った。電池の電圧約5.1Vで電池の表面温度が95℃に到達し、その後急激に電圧が12V以上にまで上昇したが、電池の破裂や、発煙は無かった。
 <実施例11>
 電解液へのゲル化剤の添加量を0.5質量%としたこと以外は実施例1と同様に電池を作製した。過充電試験は、10Aで行った。電池の電圧約5.6Vで電池の表面温度が95℃に到達し、その後急激に電圧が12V以上にまで上昇したが、電池の破裂や、発煙は無かった。
 <実施例12>
 電解液へのゲル化剤の添加量を3.0質量%としたこと以外は実施例1と同様に電池を作製した。過充電試験は、10Aで行った。電池の電圧約5.3Vで電池の表面温度が95℃に到達し、その後急激に電圧が12V以上にまで上昇したが、電池の破裂や、発煙は無かった。
 <実施例13>
 電解液へのゲル化剤の添加量を5.0質量%としたこと以外は実施例1と同様に電池を作製した。過充電試験は、10Aで行った。電池の電圧約5.1Vで電池の表面温度が95℃に到達し、その後急激に電圧が12V以上にまで上昇したが、電池の破裂や、発煙は無かった。
 <比較例1>
 電解液に、ゲル化剤を添加しなかった以外は、実施例1と同様に電池を作製した。過充電試験では、電池の電圧約6Vで電池の表面温度が95℃に到達し、ガス放出機構が開口した。充電を続けると電池の電圧は上昇を続け、12V以上にまで上昇した。電池表面温度は約140℃に到達したあと低下を始め、電池の破裂や、発煙は無かった。
 <比較例2>
 電解液に、ゲル化剤を添加しなかった以外は、実施例2と同様に電池を作製した。過充電試験では、電池の電圧約6Vで電池の表面温度が95℃に到達し、ガス放出機構が開口した。充電を続けると電池の電圧は上昇を続け、12V以上にまで上昇した。電池表面温度は約140℃に到達したあと低下を始め、電池の破裂や、発煙は無かった。
 <比較例3>
 セパレータとしてポリプロピレンの不織布を用いたこと以外は、比較例1と同様に電池を作製した。このポリプロピレンの平均空隙率は1μmであった。過充電試験では、電池の電圧約6Vで電池の表面温度が95℃に到達し、ガス放出機構が開口した。充電を続けると電池の電圧は上昇を続け、12V以上にまで上昇した。電池表面温度は約130℃に到達したあと低下を始め、電池が発煙した。
 <比較例4>
 セパレータとして微多孔ポリプロピレンを用いたこと以外は、実施例2と同様に電池を作製した。このポリプロピレンの平均空隙率は0.01μmであった。過充電試験では、電池の電圧6.5Vから電圧および表面温度は上昇を続け、電池表面温度が約120℃に達したときに、フィルム外装体が音をたてて破裂して液体の飛沫が飛散した。試験後の電池は、フィルム外装体が封止部がガス放出弁機構とは関係ない個所で破壊されていた
 <比較例5>
 セパレータとして微多孔ポリプロピレンを用いたこと以外は、比較例1と同様に電池を作製した。過充電試験では、電池の電圧6.5Vから電圧および表面温度は上昇を続け、電池表面温度が約120℃に達したときに、フィルム外装体が音をたてて破裂して液体の飛沫が飛散した。試験後の電池は、フィルム外装体が封止部がガス放出弁機構とは関係ない個所で破壊されていた。
 <比較例6>
 電解液の非水溶媒として、EC、DECを、体積比で30:70で混合した非水溶媒を用いた以外は、実施例1と同様に電池を作製した。過充電試験は、10Aで行った。電池の電圧約6.0Vで電池の表面温度が95℃に到達し、充電を続けると電池の電圧は上昇を続け、12V以上にまで上昇したのち、発煙した。
 <比較例7>
 電解液に、ゲル化剤を添加しなかったこと以外は、実施例9と同様に電池を作製した。過充電試験は、10Aで行った。電池の電圧約6.1Vで電池の表面温度が95℃に到達し、ガス放出機構が開口した。充電を続けると電池の電圧は上昇を続け、12V以上にまで上昇した。電池表面温度は約140℃に到達し、その後、低下を始め、電池の破裂や、発煙は無かった。
 実施例および比較例の結果を表1に示す。過充電試験において、急激に電圧が上昇する電位を抵抗上昇電位として記した。この電位は小さい程安全な電位で、電池の機能を停止したことを示す。電解液の含浸性は、電極の投影面積における気泡の割合で評価し、1%以下を「○」(良好)、1%より多く5%未満を「△」(やや良好)、5%以上を「×」(非良好)とした。
 表1より、比較例1、7に対し、ゲル化剤を含有する実施例1~12は何れも抵抗上昇電池が低い値となった。比較例3,4では、セパレータに耐熱性に劣るPPを用いたが、発煙もしくは破裂が生じたことから、セパレータの溶融による内部短絡が生じたものと推定される。比較例6では、非水溶媒の沸点が高いため、溶媒が気化せず、電気分解によるガスが発生するまで活物質への充電が継続し、発煙が生じたものと推察される。
Figure JPOXMLDOC01-appb-T000002
 本発明による電池は、例えば、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野にて利用することができる。具体的には、携帯電話、ノートパソコンなどのモバイル機器の電源;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車などの電動車両を含む、電車や衛星や潜水艦などの移動・輸送用媒体の電源;UPSなどのバックアップ電源;太陽光発電、風力発電などで発電した電力を貯める蓄電設備;などに、利用することができる。
 上記の各種機器および蓄電設備の一例として、図4および図5に、それぞれ電気自動車200および蓄電設備300を示す。電気自動車200および蓄電設備300は、それぞれ組電池210、310を有する。組電池210、310は、上述した電池1を複数、直列および並列に接続し、必要とされる容量および電圧を満たすように構成したものである。
 1  二次電池
 10  電池要素
 11  正極
 11a  正極集電体
 12  負極
 12a  負極集電体
 13  セパレータ
 21、22  外装材
 31  正極端子
 32  負極端子
 200  電気自動車
 210、310  組電池
 300  蓄電設備

Claims (11)

  1.  正極、負極、セパレータおよび電解液を含む電池要素と、
     前記電池要素を封止する外装体と、
     を有し、
     前記電解液は、ゲル成分および沸点が125℃以下の有機溶媒を含有し、
     前記セパレータは、アラミド、ポリイミドおよびポリフェニレンスルフィドから選ばれる1種以上の樹脂からなる繊維集合体もしくは微多孔構造を含み、かつ、平均空隙径が0.1μm以上である二次電池。
  2.  前記電解液中の前記有機溶媒の含有量は0.1重量%以上含まれる請求項1に記載の二次電池。
  3.  前記有機溶媒は、カーボネート、エーテル、エステル化合物およびリン酸エステル化合物から選ばれる1種以上を含む請求項2に記載の二次電池。
  4.  前記ゲル成分を与えるゲル化剤は、アクリル樹脂および/またはフッ素エチレン樹脂である請求項1から3のいずれかに記載の二次電池。
  5.  前記ゲル成分を与えるゲル化剤は、架橋可能な官能基を有するアクリル樹脂エステルを含む請求項1から3のいずれかに記載の二次電池。
  6.  前記セパレータは不織布である請求項1から5のいずれかに記載の二次電池。
  7.  前記電解液は、シリカ粒子をさらに含有する請求項1から6のいずれかに記載の二次電池。
  8.  請求項1から7のいずれかに記載の電池を有する電動車両。
  9.  請求項1から7のいずれかに記載の電池を有する蓄電設備。
  10.  ゲル化剤および沸点が125℃以下の有機溶媒を含有する電解液を用意する工程と、
     アラミド、ポリイミドおよびポリフェニレンスルフィドから選ばれる1種以上の樹脂からなる繊維集合体もしくは微多孔構造を含み、かつ、平均空隙径が0.1μm以上であるセパレータを用意する工程と、
     正極および負極を用意する工程と、
     前記セパレータを間に挟んで前記正極と前記負極とを対向配置する工程と、
     対向配置された前記セパレータ、前記正極および前記負極を、前記電解液とともに前記外装体に封入する工程と、
     前記ゲル化剤をゲル化する工程と、を含む二次電池の製造方法。
  11.  前記ゲル化剤は、架橋可能な官能基を有するアクリル樹脂エステルを含み、
     前記セパレータ、前記正極および前記負極を、前記電解液とともに前記外装体に封入する工程の後に、前記ゲル化剤をゲル化する工程を行い、前記ゲル化剤をゲル化する工程は、加熱による前記アクリル酸樹脂エステルを架橋によって前記電解液をゲル化する工程を含む、請求項10に記載の二次電池の製造方法。
PCT/JP2015/079458 2014-10-21 2015-10-19 二次電池およびその製造方法 WO2016063838A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15853549.2A EP3211707B1 (en) 2014-10-21 2015-10-19 Secondary battery and production method therefor
JP2016555216A JP6597630B2 (ja) 2014-10-21 2015-10-19 二次電池およびその製造方法
US15/521,242 US20170358829A1 (en) 2014-10-21 2015-10-19 Secondary battery and production method therefor
CN201580057541.0A CN107078339B (zh) 2014-10-21 2015-10-19 二次电池及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-214807 2014-10-21
JP2014214807 2014-10-21

Publications (1)

Publication Number Publication Date
WO2016063838A1 true WO2016063838A1 (ja) 2016-04-28

Family

ID=55760873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079458 WO2016063838A1 (ja) 2014-10-21 2015-10-19 二次電池およびその製造方法

Country Status (5)

Country Link
US (1) US20170358829A1 (ja)
EP (1) EP3211707B1 (ja)
JP (1) JP6597630B2 (ja)
CN (1) CN107078339B (ja)
WO (1) WO2016063838A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7047181B1 (ja) 2021-12-15 2022-04-04 第一工業製薬株式会社 非水電解液およびリチウムイオン二次電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP6962094B2 (ja) 2017-09-21 2021-11-05 トヨタ自動車株式会社 ガーネット型イオン伝導性酸化物、及び、酸化物電解質焼結体の製造方法
KR102217449B1 (ko) * 2017-11-01 2021-02-22 주식회사 엘지화학 이차전지
JP6988473B2 (ja) 2017-12-28 2022-01-05 トヨタ自動車株式会社 電池用セパレータ、及び、リチウム電池、並びに、これらの製造方法
JP6988472B2 (ja) * 2017-12-28 2022-01-05 トヨタ自動車株式会社 電池
WO2019149873A1 (en) * 2018-02-02 2019-08-08 Rhodia Operations Composite electrolyte
EP3691015A1 (en) * 2019-02-01 2020-08-05 Rhodia Operations Electrolyte
CN115911753B (zh) * 2022-10-11 2024-04-26 天津工业大学 以聚苯硫醚为基底的复合型锂硫电池隔膜材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024497A (ja) * 2004-07-09 2006-01-26 Nitto Denko Corp 非水ゲル電解質電池
JP2007087759A (ja) * 2005-09-21 2007-04-05 Nissan Motor Co Ltd ゲル電解質電池、電池ユニット、および電池用ゲル電解質層の製造方法
JP2010113939A (ja) * 2008-11-06 2010-05-20 Nissan Motor Co Ltd 双極型二次電池およびその製造方法
JP2011119139A (ja) * 2009-12-04 2011-06-16 Sony Corp 非水電解質電池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605549A (en) * 1996-02-28 1997-02-25 Daramic, Inc. Battery electrolyte pad with gelling agents and method
JP4438137B2 (ja) * 1999-09-14 2010-03-24 株式会社ジーエス・ユアサコーポレーション 電池の製造方法
US6426863B1 (en) * 1999-11-25 2002-07-30 Lithium Power Technologies, Inc. Electrochemical capacitor
JP4878687B2 (ja) * 2001-02-23 2012-02-15 三洋電機株式会社 リチウム二次電池
CN1152086C (zh) * 2001-05-25 2004-06-02 复旦大学 凝胶态锂离子聚合物电解质材料及电池的制备方法
JP4554911B2 (ja) * 2003-11-07 2010-09-29 パナソニック株式会社 非水電解質二次電池
CN1558463A (zh) * 2004-01-29 2004-12-29 复旦大学 含氟凝胶态电解质材料的在位热交联制备方法及其聚合物锂离子电池的制备方法
JP5329018B2 (ja) * 2004-08-20 2013-10-30 日産自動車株式会社 電池用セパレータ
JP4293226B2 (ja) * 2006-11-02 2009-07-08 ソニー株式会社 バッテリ
US8546023B2 (en) * 2007-04-11 2013-10-01 Lg Chem, Ltd. Secondary battery comprising ternary eutectic mixtures and preparation method thereof
EP2400588B1 (en) * 2009-02-18 2016-01-27 Asahi Kasei E-materials Corporation Electrolyte solution for lithium-ion secondary battery, and lithium-ion secondary battery comprising the same
CN102473966A (zh) * 2009-07-09 2012-05-23 Nec能源元器件株式会社 聚合物凝胶电解质和使用它的聚合物二次电池
TWI476976B (zh) * 2012-12-28 2015-03-11 Ind Tech Res Inst 聚合膠態電解質與高分子鋰二次電池
JP6303412B2 (ja) * 2013-03-19 2018-04-04 株式会社村田製作所 電池、電解質層、電池パック、電子機器、電動車両、蓄電装置および電力システム
CN103928648A (zh) * 2014-04-01 2014-07-16 中国原子能科学研究院 一种耐高温锂电池隔膜及其生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024497A (ja) * 2004-07-09 2006-01-26 Nitto Denko Corp 非水ゲル電解質電池
JP2007087759A (ja) * 2005-09-21 2007-04-05 Nissan Motor Co Ltd ゲル電解質電池、電池ユニット、および電池用ゲル電解質層の製造方法
JP2010113939A (ja) * 2008-11-06 2010-05-20 Nissan Motor Co Ltd 双極型二次電池およびその製造方法
JP2011119139A (ja) * 2009-12-04 2011-06-16 Sony Corp 非水電解質電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3211707A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7047181B1 (ja) 2021-12-15 2022-04-04 第一工業製薬株式会社 非水電解液およびリチウムイオン二次電池
WO2023112787A1 (ja) * 2021-12-15 2023-06-22 第一工業製薬株式会社 非水電解液およびリチウムイオン二次電池
JP2023088767A (ja) * 2021-12-15 2023-06-27 第一工業製薬株式会社 非水電解液およびリチウムイオン二次電池

Also Published As

Publication number Publication date
EP3211707B1 (en) 2019-12-04
JPWO2016063838A1 (ja) 2017-08-03
CN107078339B (zh) 2019-12-17
JP6597630B2 (ja) 2019-10-30
EP3211707A4 (en) 2018-03-07
US20170358829A1 (en) 2017-12-14
EP3211707A1 (en) 2017-08-30
CN107078339A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
JP6597630B2 (ja) 二次電池およびその製造方法
JP6597629B2 (ja) 二次電池およびその製造方法
JP6724894B2 (ja) 電解液
JP5671774B2 (ja) リチウムイオン二次電池
JP5645274B2 (ja) 非水系電解液およびそれを備えるリチウムイオン二次電池
KR101577466B1 (ko) 이차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
KR101710246B1 (ko) 전해액, 전기 화학 디바이스, 리튬 이온 이차 전지, 및 모듈
US11581566B2 (en) Secondary battery and method for manufacturing the same
US10297865B2 (en) Electrolytic solution and electrochemical device
KR101685271B1 (ko) 전해액, 전기 화학 디바이스, 리튬 이온 이차 전지, 및 모듈
JP5429845B2 (ja) 非水電解液、ゲル電解質及びそれらを用いた二次電池
WO2014091857A1 (ja) セパレータ、電極素子、蓄電デバイスおよび前記セパレータの製造方法
JP6394611B2 (ja) 二次電池の製造方法
JP5641593B2 (ja) リチウムイオン電池
KR20140085337A (ko) 리튬 이차 전지
JP2009199960A (ja) リチウムイオン電池
JP4039918B2 (ja) ゲル電解質二次電池及びその製造方法
JP2007165299A (ja) リチウム二次電池
JP2023548506A (ja) リチウム二次電池用非水電解液およびそれを含むリチウム二次電池
JP2009117162A (ja) 非水電解液二次電池
JP2024519105A (ja) リチウム二次電池
JP2023545527A (ja) 電気化学装置及び電子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016555216

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15521242

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015853549

Country of ref document: EP