WO2016060166A1 - 樹脂組成物およびそのプレス成形体 - Google Patents

樹脂組成物およびそのプレス成形体 Download PDF

Info

Publication number
WO2016060166A1
WO2016060166A1 PCT/JP2015/079060 JP2015079060W WO2016060166A1 WO 2016060166 A1 WO2016060166 A1 WO 2016060166A1 JP 2015079060 W JP2015079060 W JP 2015079060W WO 2016060166 A1 WO2016060166 A1 WO 2016060166A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
prepreg
less
resin
Prior art date
Application number
PCT/JP2015/079060
Other languages
English (en)
French (fr)
Inventor
拓也 寺西
智 太田
正洋 市野
徹 近藤
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to EP15851424.0A priority Critical patent/EP3208309B1/en
Priority to CN201580032677.6A priority patent/CN106459561B/zh
Priority to US15/509,574 priority patent/US10363724B2/en
Priority to JP2015552945A priority patent/JP6094686B2/ja
Publication of WO2016060166A1 publication Critical patent/WO2016060166A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present invention provides a prepreg having an appropriate amount of resin flow at the time of molding, a good draping property, a press-molded body using the prepreg, and a resin composition having a good impregnation property to a reinforcing fiber substrate, which can be used to produce the prepreg. Is to provide.
  • This application claims priority based on Japanese Patent Application No. 2014-212346 for which it applied to Japan on October 16, 2014, and uses the content here.
  • Fiber reinforced composite material consisting of reinforced fiber and matrix resin is lightweight and has excellent mechanical properties, so it is widely used in structural materials such as aircraft, vehicles, ships and buildings, and sports equipment such as golf shafts, fishing rods and tennis rackets. It is used.
  • a fiber-reinforced composite material Various methods are used for the production of a fiber-reinforced composite material, and there is a method using a prepreg which is a sheet-like, tape-like, or string-like intermediate base material in which a reinforcing fiber base material is impregnated with a matrix resin composition. Widely used. In this method, a plurality of prepregs are laminated and then heated to obtain a molded product.
  • thermosetting resin and the thermoplastic resin are used for the matrix resin composition used for the prepreg, but in many cases, a thermosetting resin is used.
  • the amount of resin flow often becomes a problem. That is, when the viscosity of the matrix resin composition is lowered in order to sufficiently impregnate the reinforcing fiber base material with the matrix resin composition, the matrix resin composition is formed in the heating / pressing step at the time of molding the obtained prepreg. It may flow out excessively, resulting in a problem that the appearance of the resulting molded article becomes poor, or the physical properties deteriorate due to meandering of the reinforcing fibers. On the other hand, when the viscosity of the matrix resin composition is increased in order to properly control the resin flow amount, the impregnation property to the reinforcing fiber base and the drape property of the obtained prepreg tend to be lowered.
  • Patent Document 1 proposes a heat compression molding material composition that can be thickened by heating by using a core layer / shell layer type copolymer.
  • Patent Document 1 has a problem that the matrix resin composition has a very low viscosity at room temperature, and when used in a prepreg, the form of the prepreg cannot be maintained.
  • the molding method of Patent Document 1 requires a thickening step such as creating a heating temperature atmosphere with a dedicated device and leaving the molding material in the device for a certain period of time. is there.
  • the resin flow amount during the heat compression molding is set to a desired level. It is difficult to control.
  • a method of adjusting the viscosity of the matrix resin composition by dissolving a thermoplastic resin in the matrix resin composition or containing a relatively high molecular weight resin.
  • the present invention provides a resin composition with good impregnation into a reinforcing fiber base, a prepreg with good drapeability, and a press-molded article with good appearance, which can control the amount of resin flow during molding. With the goal.
  • the present invention has the following features.
  • [1] Including an epoxy resin (A), a curing agent (B), and vinyl polymer particles (C),
  • the content of the epoxy resin (a1) having a molecular weight of 100 or more and 480 or less is 30 parts by weight or more and 90 parts by weight or less in 100 parts by weight of the epoxy resin (A), and the epoxy resin (a2) having a molecular weight of 2000 or more and 40000 or less.
  • Content is 10 parts by mass or more and 70 parts by mass or less in 100 parts by mass of the epoxy resin (A), and the content of the vinyl polymer particles (C) is 100 parts by mass of the epoxy resin (A).
  • the resin composition which is 2 mass parts or more and 30 mass parts or less, and the instantaneous maximum viscosity value of the said vinyl polymer particle (C) is 0.3 Pa.s / degrees C or more and 5.0 Pa.s / degrees C or less.
  • the viscosity at 30 ° C. is 1.0 ⁇ 10 2 Pa ⁇ s or more and 1.0 ⁇ 10 5 Pa ⁇ s or less, and the minimum viscosity measured at a heating rate of 2 ° C./min is 0.8 Pa ⁇ s.
  • the viscosity at 30 ° C. is 1.0 ⁇ 10 2 Pa ⁇ s or more and 1.0 ⁇ 10 5 Pa ⁇ s or less.
  • the minimum viscosity measured at a heating rate of 2 ° C./min is 0.8 Pa ⁇ s to 10 Pa ⁇ s, and the content of the vinyl polymer particles (C) is 100 mass of the epoxy resin (A). 2 to 30 parts by mass with respect to parts, and the instantaneous maximum thickening value of the vinyl polymer particles (C) is from 0.3 Pa ⁇ s / ° C. to 5.0 Pa ⁇ s / ° C. .
  • the vinyl polymer particles (C) are particles obtained by emulsion-polymerizing a mixture of vinyl monomers having different compositions in two or more stages, and spray-drying the resulting vinyl polymer emulsion.
  • the vinyl monomer mixture having the different composition is a mixture composed of a monomer selected from the group consisting of (meth) acrylate and (meth) acrylic acid which may have a functional group.
  • the outermost emulsion polymer layer (i) has a glass transition temperature of 85 ° C. or higher and 115 ° C.
  • a prepreg comprising the resin composition according to any one of [1] to [10] and a reinforcing fiber substrate.
  • a prepreg laminate in which a plurality of arbitrary prepregs are laminated, and a layer made of the resin composition according to any one of [1] to [10] is further laminated on at least one of the outermost layers. body.
  • a plurality of arbitrary prepregs are laminated, and the resin composition according to any one of [1] to [10] is applied to at least one of the outermost layers of the fiber basis weight 5 g / m 2 or more and 50 g / m 2 or more.
  • a prepreg laminate obtained by further impregnating a reinforcing fiber nonwoven fabric of 2 or less and further laminated with a reinforcing fiber nonwoven fabric prepreg layer.
  • an epoxy resin (A), a curing agent (B) and vinyl polymer particles (C) Content of the epoxy resin (a1) having a molecular weight of 100 or more and 480 or less is 30 parts by mass or more and 90 parts by mass or less in 100 parts by mass of the epoxy resin (A), and the content of the vinyl polymer particles (C) is.
  • the resin composition which is 2 to 30 parts by mass with respect to 100 parts by mass of the epoxy resin (A).
  • the vinyl polymer particles (C) include core-shell particles in which both the core layer and the shell layer are made of an acrylic resin.
  • the content of the epoxy resin (a2) having a molecular weight of 2000 or more and 40000 or less is 10 parts by mass or more and 50 parts by mass or less in 100 parts by mass of the epoxy resin (A).
  • Resin composition. (4)
  • the viscosity at 30 ° C. is 1.0 ⁇ 10 2 Pa ⁇ s or more and 1.0 ⁇ 10 5 Pa ⁇ s, and the minimum viscosity measured at a heating rate of 2 ° C./min is 1.0 Pa ⁇ s or more.
  • a prepreg comprising the resin composition according to any one of (1) to (4) and a reinforcing fiber substrate.
  • the resin flow amount at the time of molding is appropriate, the prepreg having good drapability, the press-molded body using the prepreg, and the prepreg can be produced, and the impregnation property to the reinforcing fiber base is good.
  • a resin composition can be provided.
  • 1st of this invention is content of the epoxy resin (a1) which contains an epoxy resin (A), a hardening
  • the said epoxy resin ( A) 30 mass parts or more and 90 mass parts or less in 100 mass parts
  • content of the epoxy resin (a2) which is molecular weight 2000 or more and 40000 or less is 10 mass parts or more and 70 mass parts in 100 mass parts of said epoxy resins (A).
  • the content of the vinyl polymer particles (C) is 2 to 30 parts by mass with respect to 100 parts by mass of the epoxy resin (A), and the instantaneous maximum increase of the vinyl polymer particles (C) is
  • the present invention relates to a resin composition having a viscosity value of 0.3 Pa ⁇ s / ° C. to 5.0 Pa ⁇ s / ° C. and its use.
  • the instantaneous maximum viscosity value is measured by the following method. First, a parallel plate having a diameter of 25 mm was used for a sample resin composition obtained by mixing 100 parts by mass of a bisphenol A type epoxy resin having an epoxy equivalent of 184 or more and 194 or less and 10 parts by mass of vinyl polymerizable particles (C).
  • Viscosity is measured with a rheometer at a plate gap of 0.5 mm, a measurement frequency of 10 rad / sec, a heating rate of 2 ° C./min, a measurement interval of 30 seconds, a measurement start temperature of 30 ° C. and a stress of 300 Pa.
  • the temperature at the ( n + 1 ) th measurement is T n + 1 (° C.)
  • the viscosity is V n + 1 (Pa ⁇ s)
  • the temperature at the nth measurement is T n (° C.)
  • the viscosity is V n (Pa ⁇ s).
  • the maximum value of the instantaneous thickening value An + 1 represented by the following formula is set as the instantaneous maximum thickening value.
  • a n + 1 (V n + 1 ⁇ V n ) / (T n + 1 ⁇ T n )
  • the second of the present invention includes an epoxy resin (A), a curing agent (B), and vinyl polymer particles (C), and has a viscosity at 30 ° C. of 1.0 ⁇ 10 2 Pa ⁇ s or more and 1.0 ⁇ 10 6. 5 Pa ⁇ s or less, the minimum viscosity measured at a heating rate of 2 ° C./min is 0.8 Pa ⁇ s or more and 10 Pa ⁇ s or less, and the content of the vinyl polymer particles (C) is the epoxy resin.
  • epoxy resin is used as the name of one category of thermosetting resin or the name of the category of chemical substance, ie, a compound having an epoxy group in the molecule, but in the present invention, it is used in the latter sense.
  • epoxy resin composition means a composition containing an epoxy resin and a curing agent, and optionally other additives.
  • (meth) acrylate means acrylate or methacrylate.
  • (meth) acrylic acid refers to a polymer obtained by polymerizing a monomer selected from the group consisting of (meth) acrylate (described later) and (meth) acrylic acid, which may have a functional group. means.
  • the cured product of the resin composition may be referred to as “resin cured product”.
  • the resin compositions according to the first and second aspects of the present invention include an epoxy resin (A), a curing agent (B), and vinyl polymer particles (C).
  • the epoxy resin (A) in the present invention is not particularly limited, and examples thereof include a glycidyl ether type, a glycidyl amine type, a glycidyl ester type, and an alicyclic epoxy type, but are inexpensive and easily available.
  • the glycidyl ether type or glycidyl amine type is preferably included from the viewpoint of good water resistance and high reactivity.
  • glycidyl ether type and glycidyl amine type epoxy resins preferably contain two or more glycidyl groups in one molecule from the viewpoint of heat resistance of the cured resin.
  • Specific examples thereof include bisphenol A type epoxy resins and bisphenols.
  • Examples thereof include F type epoxy resin, novolak type epoxy resin, and triphenylmethane type epoxy resin.
  • the epoxy resin (A) of the present invention preferably contains a bisphenol A type epoxy resin from the viewpoint of heat resistance and toughness of the cured resin.
  • epoxy resins may be used alone or in combination of two or more.
  • a relatively low molecular weight compound is used as the epoxy resin (A). It is preferable to contain a lot.
  • the epoxy resin (a1) having a molecular weight of 100 or more and 480 or less is preferably contained in an amount of 30 parts by weight or more and 90 parts by weight or less in 100 parts by weight of the epoxy resin (A), and 35 parts by weight or more and 80 parts by weight or less. It is more preferable to contain.
  • a commercially available epoxy resin product is a mixture of a plurality of types of compounds having different degrees of polymerization and the molecular weight is an average value of the mixture.
  • the “molecular weight” of the epoxy resins (a1) and (a2) in the present invention is a value measured by fractionating and fractionating individual compounds contained in the epoxy resin product by GPC.
  • the content of the epoxy resin (a1) By setting the content of the epoxy resin (a1) to 30 parts by mass or more, a prepreg having good drapability can be obtained, and the resin flow when press-molding the prepreg containing the resin composition is controlled to an appropriate amount. It becomes easy and the reinforced fiber base material can be easily impregnated with the resin composition of the present invention at the time of preparing the prepreg. By setting it to 90 parts by mass or less, the tack of the prepreg does not become too strong, and the shape of the prepreg is easily maintained.
  • the epoxy resin (A) further includes an epoxy resin (a2) having a molecular weight of 2000 to 40000. It is preferable. Although content of an epoxy resin (a2) does not have a restriction
  • the amount of 10 parts by mass or more is preferred because the viscosity of the resin composition of the present invention does not become too low, the tack of the prepreg does not become too strong, and the shape of the prepreg is easily maintained.
  • the content of 70 parts by mass or less is preferable because the vinyl polymer particles (C) described below do not hinder dissolution or swelling in the resin composition of the present invention.
  • the epoxy resin (A) may contain an epoxy resin other than the above-described epoxy resin (a1) and epoxy resin (a2) as long as the effects of the present invention are not impaired.
  • content of epoxy resins other than (a1) and (a2) is 60 mass parts or less normally with respect to 100 mass parts of epoxy resins (A).
  • ⁇ Curing agent (B)> examples include amine type, acid anhydride type (such as carboxylic acid anhydride), phenol type (such as phenol novolac resin), mercaptan type, Lewis acid amine complex type, onium salt type, and the like.
  • acid anhydride type such as carboxylic acid anhydride
  • phenol type such as phenol novolac resin
  • mercaptan type Lewis acid amine complex type
  • onium salt type and the like.
  • any structure may be used as long as the epoxy resin (A) can be cured.
  • amine-type or Lewis acid amine complex-type curing agents are preferable from the viewpoint of good storage stability and excellent curability.
  • These curing agents may be used alone or in combination of two or more.
  • Lewis acid amine complex-type curing agent examples include boron halide amine complexes. Specific examples include boron trifluoride / piperidine complexes, boron trifluoride / monoethylamine complexes, boron trifluoride / triethanol. Examples thereof include boron trifluoride amine complexes such as amine complexes, and boron trichloride amine complexes such as boron trichloride / octylamine complexes.
  • a boron trichloride amine complex is particularly preferable because of its excellent solubility in epoxy resins, excellent pot life when used as a matrix resin composition, and excellent curability.
  • amine-type curing agents include aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone, aliphatic amines, imidazole derivatives, dicyandiamide, tetramethylguanidine, thiourea-added amines, and isomers and modified forms thereof. .
  • aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone
  • aliphatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone
  • imidazole derivatives imidazole derivatives
  • dicyandiamide is preferable in terms of excellent storage stability of the prepreg
  • an imidazole derivative is particularly
  • a curing aid may be used.
  • the curing aid is 3-phenyl-1,1-dimethylurea, 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU), 3- ( Urea derivatives such as 3-chloro-4-methylphenyl) -1,1-dimethylurea and toluenebis (dimethylurea) are preferred.
  • DCMU 3-phenyl-1,1-dimethylurea
  • a combination of dicyandiamide and DCMU is particularly preferable.
  • the vinyl polymer particle (C) in the present invention means fine particles obtained by drying a polymer emulsion obtained by polymerizing a vinyl monomer capable of radical polymerization.
  • Examples of the radically polymerizable vinyl monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, t -Butyl (meth) acrylate, i-butyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate , Phenyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, t-butylcyclohexy
  • (meth) acrylate or (meth) acrylic acid which may have a functional group is preferable because radical polymerization is easy and emulsion polymerization is easy.
  • the “(meth) acrylate optionally having a functional group” is a general term for the above-mentioned (meth) acrylate, a hydroxyl group-containing acrylate, and a functional group-containing (meth) acrylate (other than a hydroxyl group).
  • the vinyl polymer particles (C) can be produced by adding a polymerization initiator, an emulsifier, a dispersion stabilizer, a chain transfer agent and the like to the above-described vinyl monomer and polymerizing it as necessary.
  • a polymerization initiator, an emulsifier, a dispersion stabilizer, a chain transfer agent, etc. can be selected from a well-known material, For example, the material as described in PCT publication pamphlet WO2010 / 090246 etc. can be used.
  • emulsion polymerization method since it is easy to obtain true spherical particles and particle morphology is easy to control, emulsion polymerization method, soap-free emulsion polymerization method, swelling polymerization method, miniemulsion polymerization method, dispersion polymerization method and fine suspension polymerization method Is preferred.
  • a soap-free emulsion polymerization method is more preferable because a polymer having excellent dispersibility can be obtained.
  • industrially highly practical methods for controlling the internal morphology of vinyl polymer particles include, for example, a method in which vinyl monomer mixtures having different compositions are successively dropped and polymerized in multiple stages. .
  • the vinyl polymer particles (C) particles obtained by emulsion polymerization of a mixture of vinyl monomers having different compositions in two or more stages and spray-drying the resulting vinyl polymer emulsion (hereinafter referred to as “particle”.
  • the mixture of vinyl monomers having different compositions is a mixture of monomers selected from the group consisting of (meth) acrylate and (meth) acrylic acid which may have a functional group. It is preferable.
  • the vinyl polymer particles (C) thus produced are preferably core-shell particles. That is, the vinyl polymer particles (C) are preferably core-shell particles in which the core layer and the shell layer are both acrylic resins.
  • the particle diameter of the polymer particle sampled in the polymerization process is surely growing, and the sample is sampled in the polymerization process. Confirmation that the minimum film-forming temperature (MFT) and the solubility in various solvents of the polymer particles are satisfied at the same time.
  • a method for observing a section of the polymer with a transmission electron microscope (TEM) to confirm the presence or absence of a concentric structure, or a section of the polymer that has been frozen and broken is a scanning electron microscope (cryo SEM). And confirming the presence or absence of a concentric structure.
  • the vinyl polymer particles (C) of the present invention exist in the resin composition of the present invention as particles at room temperature (10 ° C. or higher and 30 ° C. or lower), but at a high temperature, the resin composition, specifically, epoxy resin ( It dissolves in A) or swells with the epoxy resin (A).
  • the resin composition containing the resin composition does not have a very high viscosity, and the resin composition has a high impregnation property to the reinforcing fiber base.
  • the prepreg obtained and obtained has good draping properties.
  • the vinyl polymer particles (C) are dissolved in the epoxy resin (A) in the resin composition at a high temperature or swelled by the epoxy resin (A), when the press molding is performed using the prepreg.
  • the vinyl polymer particle (C) dissolves or swells faster than the reaction between the epoxy resin (A) and the curing agent (B), thereby increasing the viscosity of the resin composition and reducing the amount of resin flow.
  • the vinyl polymer particles (C) are dissolved in the epoxy resin (A) or swollen by the epoxy resin (A) at the working temperature such as when preparing the resin composition of the present invention or when preparing a prepreg using the resin composition. It is preferable that the prepreg is dissolved in the epoxy resin (A) faster than the reaction between the epoxy resin (A) and the curing agent (B) or is swollen by the epoxy resin (A) in the temperature rising process at the time of molding the prepreg. .
  • the dissolution or swelling rate of the vinyl polymer particles (C) can be represented by an instantaneous maximum thickening value.
  • the instantaneous maximum thickening value in the present invention means the maximum value of the instantaneous thickening value An + 1 measured by the following method.
  • the measurement of the instantaneous maximum thickening value is based on a sample resin composition obtained by mixing 100 parts by mass of a bisphenol A type epoxy resin having an epoxy equivalent of 184 or more and 194 or less and 10 parts by mass of vinyl polymerizable particles (C).
  • Viscosity is measured at The temperature at the ( n + 1 ) th measurement is T n + 1 (° C.), the viscosity is V n + 1 (Pa ⁇ s), the temperature at the nth measurement is T n (° C.), and the viscosity is V n (Pa ⁇ s).
  • the maximum value of the instantaneous thickening value An + 1 represented by the following formula is set as the instantaneous maximum thickening value.
  • a n + 1 (V n + 1 ⁇ V n ) / (T n + 1 ⁇ T n )
  • the vinyl polymer particles (C) of the present invention have an instantaneous maximum thickening value of 0.3 Pa ⁇ s / ° C. to 5.0 Pa ⁇ s / ° C., and 0.4 Pa ⁇ s / ° C. to 4.5 Pa ⁇ s. Is more preferably 0.5 Pa ⁇ s / ° C. or more and 3.0 Pa ⁇ s / ° C. or less.
  • the instantaneous maximum thickening value is 0.3 Pa ⁇ s / ° C. or more, the resin composition is rapidly thickened in the heating step during molding, and the resin flow amount does not become excessive.
  • the vinyl polymer particles (C) By using the above-mentioned multistage polymer particles and core-shell particles as the vinyl polymer particles (C), it becomes easier to satisfy such conditions.
  • the “mixture of vinyl monomers having different compositions” a mixture comprising monomers selected from the group consisting of (meth) acrylate and (meth) acrylic acid, all of which may have a functional group.
  • Multi-stage polymer particles obtained by using the core and core-shell particles in which the core layer and the shell layer are both acrylic resins are preferable.
  • the multistage polymer particles and the core-shell particles are more easily dissolved or swollen as the molecular weight of the epoxy resin (A) is smaller.
  • an epoxy resin (a1) having a molecular weight of 100 or more and 480 or less is preferable because the multistage polymer particles and the core-shell particles are efficiently dissolved or swollen.
  • a compound having a molecular weight of 100 or more is easy to handle because it is not too volatile, and is not too low in viscosity. Therefore, when used in a prepreg, the shape retention of the prepreg is not impaired.
  • the molecular weight is 480 or less, the dissolution and swelling of the multistage polymer particles and the core-shell particles are not inhibited, and the flow suppressing effect at the time of press molding is exhibited well.
  • the molecular weight of the epoxy resin (a1) is more preferably from 150 to 480.
  • the epoxy resin (A) It is preferable that dissolution of the multistage polymer particles or core-shell particles in the epoxy resin (A) or swelling by the epoxy resin (A) occurs at a lower temperature than the curing reaction.
  • the ease of dissolution or swelling of these particles is -The glass transition temperature and solubility parameter (SP value) of the resin constituting the outermost emulsion polymer layer (hereinafter sometimes referred to as "(i) layer”) of the multistage polymer particles or the shell layer of the core-shell particles, A mass ratio of the core layer and the shell layer or the (i) layer of the multistage polymer particles and the other emulsion polymer layer (hereinafter sometimes referred to as “(ii) layer”); Affected by.
  • SP value glass transition temperature and solubility parameter
  • a shell layer having a larger mass than the core layer is less likely to dissolve or swell, and (ii) a layer having a larger mass than (i) is less likely to be dissolved or swelled.
  • various particles that meet the desired molding temperature may be selected.
  • the glass transition temperature of the shell layer is 85 ° C. to 115 ° C.
  • the SP value of the shell is 20.20 [(J / cm 3 ) 1/2 ] to 20.50 [(J / Cm 3 ) 1/2 ]
  • the glass transition temperature of the outermost emulsion polymer layer (i) is 85 ° C. or higher and 115 ° C. or lower, and the solubility parameter value (SP value) is 20.20 [(J / cm 3 ) 1/2 ] or higher. 20.50 [(J / cm 3 ) 1/2 ] or less, and the mass ratio between the outermost emulsion polymer layer (i) and the other emulsion polymer layer (ii) is (i) :( ii) Vinyl polymer particles (C) composed of multistage polymer particles of 90:10 to 50:50 may be selected.
  • the SP value is obtained by substituting the monomer Sp value (Sp (Ui)) of the monomer unit constituting the polymer into the formula (1).
  • Ask. Sp (Ui) is a property of Polymer Engineering and Science, Vol. 14, 147 (1974).
  • the average particle diameter of the vinyl polymer particles (C) of the present invention is preferably from 0.5 ⁇ m to 1.0 ⁇ m, more preferably from 0.6 ⁇ m to 0.9 ⁇ m, and from 0.6 ⁇ m to 0.8 ⁇ m. More preferably it is.
  • the average particle diameter means a volume average of the diameters of 100 primary particles measured using a scanning microscope.
  • the average particle size is 1.0 ⁇ m or less, the viscosity increase rate does not become too slow, and an appropriate amount of resin flow occurs during molding. As a result, it is possible to obtain a molded article having a good appearance by suppressing the occurrence of a resin dead portion and the flow of reinforcing fibers.
  • the vinyl polymer particles (C) those having a thickening start temperature of 70 ° C. or higher and 90 ° C. or lower are preferable.
  • the measurement of the thickening start temperature is obtained by the following method. First, a parallel plate having a diameter of 25 mm was used for a sample resin composition obtained by mixing 100 parts by mass of a bisphenol A type epoxy resin having an epoxy equivalent of 184 or more and 194 or less and 10 parts by mass of vinyl polymerizable particles. : 0.5 mm, measurement frequency: 10 rad / sec, rate of temperature increase: 2 ° C./min, measurement start temperature: 30 ° C., stress: 300 Pa, viscosity measurement is performed with a rheometer. From the obtained temperature rising viscosity curve, the minimum viscosity immediately before the start of thickening is determined, and this is set as the thickening start temperature.
  • the thickening start temperature is 70 ° C. or higher, an appropriate amount of resin flow occurs due to heating during molding, and the matrix resin composition is sufficiently distributed in the mold, so that the unevenness of the prepreg surface does not appear on the surface of the molded body. , Generation of voids inside the molded body can be suppressed.
  • the temperature is 90 ° C. or less, the resin flow amount does not increase so much that the molded body does not have a resin squeezed area (resin starved area), the reinforcing fibers contained in the molded body are difficult to flow, and the appearance is good. A molded body is obtained.
  • the thickening start temperature is more preferably 75 ° C. or higher and 90 ° C. or lower.
  • the vinyl polymer particles (C) can easily obtain the vinyl polymer particles (C).
  • the vinyl polymer particles (C) having the instantaneous maximum thickening value and the thickening start temperature within the above ranges can be easily obtained.
  • grains (C) is not specifically limited, 2 mass parts or more and 30 mass parts or less are preferable with respect to 100 mass parts of epoxy resins (A), and 3 mass parts or more and 20 mass parts or less are more preferable.
  • the resin flow suppressing effect at the time of press molding can be sufficiently exerted, and by setting it to 30 parts by mass or less, it is possible to suppress a decrease in mechanical properties and heat resistance of the obtained press-formed product. .
  • the resin composition of this invention may contain arbitrary components other than the above-mentioned in the range which does not impair the effect of this invention.
  • the optional component include thermoplastic elastomers, elastomer fine particles other than the vinyl polymer particles (C), core-shell type elastomer fine particles, diluents, inorganic particles such as silica, carbonaceous components such as carbon nanotubes, phosphorus compounds, and the like. Examples include, but are not limited to, flame retardants and defoaming agents.
  • the resin composition of the present invention preferably has a viscosity at 30 ° C. of 1.0 ⁇ 10 2 Pa ⁇ s or more and 1.0 ⁇ 10 5 Pa ⁇ s or less, and 5.0 ⁇ 10 2 Pa ⁇ s or more and 9 or less. More preferably, it is not more than 0.8 ⁇ 10 4 Pa ⁇ s, and more preferably not less than 1.0 ⁇ 10 3 Pa ⁇ s and not more than 9.7 ⁇ 10 4 Pa ⁇ s.
  • the viscosity is 1.0 ⁇ 10 2 Pa ⁇ s or more, the handling property is good, and therefore, it is easy to prepare a prepreg or form using the same, and if the viscosity is 1.0 ⁇ 10 5 Pa ⁇ s or less.
  • the reinforcing fiber base material is easily impregnated when a prepreg is produced and excessive heating is not required.
  • the point that the drape property of the prepreg obtained is not impaired is also preferable.
  • the minimum viscosity is 0.8 Pa.s or more and 10 Pa.s or less, and 0.8 Pa.s or more and 8. 0 Pa ⁇ s or less is more preferable, and 0.8 Pa ⁇ s or more and 7.0 Pa ⁇ s or less is still more preferable.
  • the minimum viscosity is 0.8 Pa ⁇ s or more, the resin flow amount does not become excessive, the surface of the resulting fiber-reinforced composite material is not uneven, and appearance defects can be avoided.
  • the minimum viscosity is 10 Pa ⁇ s or less, the resin flow amount becomes appropriate, and the resin composition is filled to every corner in the mold at the time of press molding using the prepreg, which is preferable. .
  • the resin composition of the present invention can be produced by a conventionally used general method as long as each component is kneaded and uniformly dispersed or dissolved.
  • the components constituting the resin composition may be mixed at the same time, or the curing agent (B), vinyl polymer particles (C), and other additives may be added to the epoxy resin (A) in advance.
  • An appropriately dispersed master batch may be prepared and used.
  • a master batch having a high concentration of the vinyl polymer particles (C) is prepared, and other components are added thereto later. It is preferable.
  • the kneading apparatus examples include a raking machine, an attritor, a planetary mixer, a dissolver, a three roll, a kneader, a universal stirrer, a homogenizer, a homodispenser, a ball mill, and a bead mill. Moreover, these can use 2 or more types together.
  • the prepreg of the present invention comprises the above-described resin composition of the present invention and a reinforcing fiber base.
  • the volume content of the reinforcing fiber is usually 30% by volume to 80% by volume, and preferably 40% by volume to 70% by volume.
  • the volume content not less than the lower limit value the mechanical properties of the molded fiber reinforced composite material are preferably increased, and by making the volume content not more than the upper limit value, it is easy to impregnate the reinforcing fiber substrate with the resin composition at the time of prepreg creation. Therefore, it is preferable.
  • the prepreg of the present invention contains the above-described resin composition of the present invention, it is easy to control the amount of resin flow at the time of molding.
  • the surface pressure is 8 MPa
  • the mold temperature is 140 ° C.
  • the molding time is 5 minutes.
  • the case where the resin flow rate at the time of producing a flat press-molded body by press molding is 4.5% by mass or less is more preferable.
  • the prepreg of the present invention is a unidirectional prepreg, and the resin flow rate measured by the following method is preferably 4.5% by mass or less.
  • a prepreg having a fiber content of 240 g / m 2 or more and 290 g / m 2 or less and a resin content of 28.0% by mass or more and 32.0% by mass or less is 298 mm (parallel to the fiber) ⁇ 298 mm (fiber and
  • the prepreg laminated body is cut into a dimension of (perpendicular direction) and laminated in 5 ply with the fiber direction aligned, and its mass is M0.
  • the surface pressure applied to the prepreg laminate is 8 MPa
  • the mold temperature is 140 ° C. and the molding time is 5 minutes
  • the mass of the flat press-molded body excluding burrs is M1
  • the following formula is used.
  • the value to be processed that is, the resin flow rate (%) is preferably 4.5% by mass or less.
  • Flow rate (%) (M0 ⁇ M1) / M0 ⁇ 100
  • the resin flow rate it is preferable to set the resin flow rate to 1.0% by mass or more because the resin composition can be easily filled to every corner in the mold.
  • the resin flow rate By setting the resin flow rate to 1.0% by mass or more and 4.5% by mass or less, the flow of the resin composition and the reinforcing fiber in the prepreg in the molding process can be suppressed. Can be obtained.
  • reinforcing fiber substrate Various reinforcing fiber substrates in the present invention can be used depending on the purpose of use of the fiber-reinforced composite material obtained by using the prepreg containing the reinforcing fiber substrate.
  • Specific examples include carbon fiber, graphite fiber, aramid fiber, silicon carbide fiber, alumina fiber, boron fiber, tungsten carbide fiber, and glass fiber. These may be used individually by 1 type and may be used in combination of 2 or more type. Among these, carbon fiber and graphite fiber are preferable because they are excellent in specific strength and specific elastic modulus.
  • As the carbon fiber or graphite fiber high-strength carbon fiber having a tensile elongation of 1.5% or more is suitable for expressing the strength of the fiber-reinforced composite material.
  • the form of the reinforcing fiber substrate used in the present invention is a form in which continuous fibers are aligned in one direction, a form in which the continuous fibers are used as a woven fabric, a form in which the tow is aligned in one direction and held by a weft auxiliary yarn, Examples thereof include a multiaxial warp knit in which sheets of unidirectional reinforcing fibers are stacked in different directions and fastened with auxiliary yarns, or a nonwoven fabric.
  • a form in which continuous fibers are aligned in one direction a form in which continuous fibers are used as a woven fabric, a form in which tows are aligned in one direction and held by weft auxiliary yarns
  • a preferred embodiment is a multi-axial warp knit in which sheets of unidirectional reinforcing fibers are stacked in different directions and fastened with auxiliary yarns. From the viewpoint of expressing the strength of the obtained fiber-reinforced composite material, a form in which continuous fibers are aligned in one direction is more preferable.
  • the basis weight of the reinforced fiber base material can be freely set according to the purpose of use of the fiber reinforced composite material, but 50 g / m 2 or more and 2000 g / m 2 or less is a practically preferable range. Since the impregnation of the resin composition to obtain a satisfactory prepreg, more preferably 50 g / m 2 or more 600 g / m 2 or less, further preferably 50 g / m 2 or more 300 g / m 2 or less.
  • the prepreg according to the present invention can be produced by a known method. For example, a predetermined amount of the resin composition of the present invention is applied to the surface of a process release material such as release paper, a reinforcing fiber substrate is supplied to the surface, and then a reinforcing fiber base is passed by means such as passing a pressing roll. After impregnating the resin composition with the material, or directly applying a predetermined amount of the resin composition to the reinforcing fiber base, the reinforcing fiber base is sandwiched between process release materials as necessary, and passed through a pressing roll. It can manufacture by impregnating a reinforcing fiber base material with a resin composition by means such as.
  • prepreg laminate In general, when press-molding a prepreg, a prepreg laminate formed by laminating a plurality of prepregs is used.
  • the prepreg laminate of the present invention is obtained by laminating a plurality of arbitrary prepregs, and further laminating a layer containing the resin composition of the present invention on at least one of the outermost layers. Providing such a layer as the outermost layer is preferable because the appearance of the molded body obtained by press-forming the prepreg laminate is improved.
  • a layer containing the resin composition of the present invention specifically, a layer composed of the resin composition or the resin composition is impregnated into a reinforcing fiber nonwoven fabric having a basis weight of 5 g / m 2 or more and 50 g / m 2 or less.
  • a reinforced fiber nonwoven fabric prepreg layer (hereinafter simply referred to as “reinforced fiber nonwoven fabric prepreg layer”).
  • the prepreg other than the reinforced fiber nonwoven fabric prepreg layer constituting the prepreg laminate of the present invention may be the prepreg according to the present invention described above or any other, but the prepreg of the present invention described above has. From the viewpoint of advantages, it is preferable to use the prepreg of the present invention.
  • the basis weight of the reinforcing fiber nonwoven fabric is preferably relatively thin, and is usually about 5 g / m 2 to 50 g / m 2 , preferably about 5 g / m 2 to 30 g / m 2 .
  • the basis weight is preferable because the impact resistance of the fiber reinforced composite material obtained by using this becomes high, and handling of the reinforced fiber nonwoven fabric itself becomes easy, that is, it is easily broken or wrinkled. It is also preferable in that it does not fool.
  • the basis weight of the resin composition contained in the reinforcing fiber nonwoven fabric prepreg layer is usually about 30 g / m 2 to 300 g / m 2 , preferably about 50 g / m 2 to 200 g / m 2 .
  • a resin layer having a sufficient thickness is formed on the surface of the fiber reinforced composite material obtained by press molding, and a molded article having a good appearance can be obtained. This is preferable because the physical properties of the fiber-reinforced composite material obtained by press molding are not impaired.
  • examples of the reinforcing fibers constituting the reinforcing fiber nonwoven fabric include carbon fibers, graphite fibers, aramid fibers, silicon carbide fibers, alumina fibers, boron fibers, tungsten carbide fibers, and glass fibers. These may be used individually by 1 type and may be used in combination of 2 or more type. Among these, a glass fiber nonwoven fabric is preferable because it is inexpensive and has a small linear expansion coefficient.
  • the molded body according to the present invention can be obtained by press-molding the above-described prepreg or prepreg laminate of the present invention.
  • any mold can be used as long as the prepreg of the present invention can be cured under high temperature and high pressure.
  • the inside of the mold is kept airtight. It is preferable to use a mold having a structure that can be used.
  • airtight means that an epoxy resin composition constituting the molding material is substantially leaked from the mold even when a sufficient amount of the molding material is filled in the mold and pressed. Say nothing.
  • a mold that keeps the inside airtight is a mold that employs a shear edge structure or a rubber seal structure where the upper mold / lower mold (male mold / female mold) come into contact when the mold is tightened. Further, a mold using any known structure may be used as long as the inside of the mold is kept airtight.
  • the raw materials used for the resin composition and prepreg are as follows.
  • MMA manufactured by Mitsubishi Rayon Co., Ltd., methyl methacrylate.
  • MAA manufactured by Mitsubishi Rayon Co., Ltd., methacrylic acid.
  • N-BMA manufactured by Mitsubishi Rayon Co., Ltd., n-butyl methacrylate.
  • T-BMA Mitsubishi Rayon Co., Ltd. , T-butyl methacrylate 2-HEMA: Mitsubishi Rayon Co., Ltd., 2-hydroxyethyl methacrylate
  • GMA Mitsubishi Rayon Co., Ltd., glycidyl methacrylate / potassium persulfate: Sigma Aldrich Japan Co., Ltd.
  • Carbon fiber bundle 2 Product name “TRW4050L”, manufactured by Mitsubishi Rayon Co., Ltd., tensile strength 4.1 GPa, tensile elastic modulus 240 GPa, number of filaments 50000, basis weight 3.75 g / m.
  • MMA 205.5 g, n-BMA 194.5 g, Perex OT-P 3.6 g, and ion-exchanged water 200 g premixed (monomer mixture (P1M2)) were added dropwise.
  • the average particle diameter of the obtained polymer particles (P1) was 0.7 ⁇ m.
  • the outermost emulsion polymer layer (i) is a layer formed by polymerization of the monomer mixture (P1M3), and the monomer mixtures (P1M1) and (P1M2) are Each polymerized portion corresponds to the other emulsion polymer layer (ii).
  • the mass ratio (i) :( ii) in the polymer particles (P1) was 50:50.
  • the outermost emulsion polymer layer (i) had a Tg of 108 ° C. and an SP value of 20.31 [(J / cm 3 ) 1/2 ].
  • the instantaneous maximum thickening value was 2.6 Pa ⁇ s / ° C., and the thickening start temperature was 82 ° C.
  • MMA 334.1 g, t-BMA 316.1 g, 2-HEMA 21.7 g, Perex OT-P6.1 g, and ion-exchanged water 251.2 g (monomer mixture (P2M2)) were mixed beforehand. It was added dropwise.
  • the average particle diameter of the obtained polymer particles (P2) was 0.7 ⁇ m.
  • the outermost emulsion polymer layer (i) is a layer formed by polymerization of the monomer mixture (P2M3), and the monomer mixtures (P2M1) and (P2M2) are Each polymerized portion corresponds to the other emulsion polymer layer (ii).
  • the mass ratio (i) :( ii) in the polymer particles (P2) was 10:90.
  • the outermost emulsion polymer layer (i) had a Tg of 103 ° C. and an SP value of 20.29 [(J / cm 3 ) 1/2 ].
  • the instantaneous maximum thickening value was 1.6 Pa ⁇ s / ° C., and the thickening start temperature was 79 ° C.
  • MMA 317.4 g of MMA, 242.6 g of n-BMA, 4.0 g of GMA, 4.0 g of Perex OT-P, 1.6 g of Emulgen 106, 0.24 g of AIBN and 280.0 g of ion-exchanged water (single amount) Body mixture (P3M2)) and potassium persulfate 1.6 g and ion-exchanged water 40.0 g as initiators were added dropwise.
  • P3M2 ion-exchanged water
  • the monomer mixture (P3M4) (MAA 3.1 g, ion-exchanged water 62.5 g) was added. After the addition, stirring was continued at 80 ° C. for 1 hour to obtain a polymer particle dispersion (P3L3).
  • the average particle diameter of the obtained polymer particles (P3) was 0.7 ⁇ m.
  • the outermost emulsion polymer layer (i) is a layer formed by polymerization of the monomer mixture (P3M3) and (P3M4), and the monomer mixture (P3M1) and The portion obtained by polymerizing (P3M2) corresponds to the other emulsion polymer layer (ii).
  • the mass ratio (i) :( ii) in the polymer particles (P3) was 30:70.
  • the outermost emulsion polymer layer (i) had a Tg of 111 ° C. and an SP value of 20.48 [(J / cm 3 ) 1/2 ].
  • the instantaneous maximum thickening value was 0.7 Pa ⁇ s / ° C., and the thickening start temperature was 89 ° C.
  • Plex SS-L 6.4 g / ion exchange water 63.8 g, potassium persulfate 1.6 g / ion exchange water 48.0 g were added, and MMA 200 g initiator PELEX OT-P2 0.0 g and 16.0 g of ion-exchanged water were added (monomer mixture (P4M1)), and polymerization was carried out for 1 hour.
  • the average particle diameter of the obtained polymer particles (P4) was 0.1 ⁇ m.
  • the acrylic polymer particles 1 had a Tg of 105 ° C. and an SP value of 20.32 [(J / cm 3 ) 1/2 ].
  • the instantaneous maximum thickening value was 4.6 Pa ⁇ s / ° C., and the thickening start temperature was 66 ° C.
  • measuring agent masterbatch 1 “2PHZ-PW” as a curing agent and jER828 were weighed in a container so as to have a mass ratio of 2: 3 to this, and stirred and mixed. This was further finely mixed with a three-roll mill to obtain a curing agent master batch 1.
  • “Dicy 15” as a curing agent, “Omicure 24” as a curing aid, and “jER828” were weighed in a container at a mass ratio of 7: 4: 12, and stirred and mixed. This was further finely mixed with a three-roll mill to obtain a curing agent master batch 2.
  • Tg is a value obtained from the following FOX equation (2). Specifically, when the polymer is a homopolymer, it is a copolymer of n types of monomers using standard analytical values described in the “Polymer Data Handbook” edited by the Society of Polymer Science. In the case, it was calculated from Tg of each monomer. Table 1 shows literature values of Tg of typical homopolymers.
  • Tg represents the glass transition temperature (° C.) of the vinyl polymer particles
  • Tgi represents the glass transition temperature (° C.) of the i-component homopolymer
  • Wi represents the mass ratio of the i component
  • ⁇ Wi 1.
  • the SP value was determined by substituting the monomer SP value (Sp (Ui)) of the repeating unit in the polymer constituting the shell and core into the following formula (3).
  • Sp (Ui) is described in Polymer Engineering and Science, Vol. 14, 147 (1974).
  • Table 1 shows typical monomer SP values (Sp (Ui)). (However, as the SP value of GMA, the value described in JP 2000-1633 A was adopted.)
  • Example 1 In a melting pot, 37 parts by mass of jER828 and 50 parts by mass of jER1001 were weighed, and the melting pot was heated to 80 ° C. and mixed, and then cooled to about 60 ° C. Subsequently, 21.7 parts by mass of the previously prepared curing agent masterbatch 1 and 5 parts by mass of the polymer particles (P1) were added to the dissolution vessel, and the mixture was stirred at 60 ° C. to obtain a resin composition 1.
  • the viscosity of the obtained resin composition 1 was measured, the viscosity at 30 ° C. was 2.9 ⁇ 10 3 Pa ⁇ s, and the minimum viscosity was 1.8 ⁇ 10 0 Pa ⁇ s at 87 ° C.
  • the obtained resin composition 1 was applied onto release paper at 60 ° C. using a multi-coater M-500 type manufactured by Hirano Techseed to obtain a resin film.
  • a unidirectional prepreg was obtained by winding the carbon fiber bundle 1 on a resin-coated surface of the obtained resin film with a drum wind, sandwiching the bundle with the same film, and impregnating the resin composition 1.
  • the fiber content was 278 g / m 2 and the resin content was 28.3% (mass%, the same applies hereinafter).
  • the resin flow amount (flow rate (%)) at the time of press molding of the obtained prepreg was measured.
  • the appearance of the obtained press-molded body was good (A evaluation).
  • the results are shown in Table 3.
  • Example 2 A resin composition was prepared in the same manner as in Example 1 except that the amount of the polymer particles (P1) was 10 parts by mass, and a resin composition 2 was obtained.
  • the viscosity of the obtained resin composition 2 was measured, the viscosity at 30 ° C. was 2.1 ⁇ 10 3 Pa ⁇ s, and the minimum viscosity was 2.2 ⁇ 10 0 Pa ⁇ s at 84 ° C. .
  • a prepreg was obtained in the same manner as in Example 1 using the obtained resin composition 2 and carbon fiber bundle 1.
  • the fiber content was 260 g / m 2 and the resin content was 28.7%.
  • the resin flow amount (flow rate (%)) at the time of press molding of the obtained prepreg was measured.
  • the appearance of the obtained press-molded body was good (A evaluation).
  • the results are shown in Table 3.
  • Example 3 57 parts by mass of jER828, 20 parts by mass of jER1002, and 10 parts by mass of jER1009 were weighed in a melting kettle, and the melting kettle was heated to 150 ° C. and mixed, and then cooled to about 60 ° C. Subsequently, 21.7 parts by mass of the previously prepared curing agent master batch 1 and 5 parts by mass of the polymer particles (P1) were added to the dissolution vessel, and the mixture was stirred at 60 ° C. to obtain a resin composition 3.
  • the viscosity of the obtained resin composition 3 was measured, the viscosity at 30 ° C. was 1.4 ⁇ 10 3 Pa ⁇ s, and the minimum viscosity was 2.9 ⁇ 10 0 Pa ⁇ s at 85 ° C. .
  • a prepreg was obtained in the same manner as in Example 1 using the obtained resin composition 3 and carbon fiber bundle 1.
  • the fiber content was 261 g / m 2 and the resin content was 28.9%.
  • the resin flow amount (flow rate (%)) at the time of press molding of the obtained prepreg was measured.
  • the appearance of the obtained press-molded body was good (A evaluation).
  • the results are shown in Table 3.
  • a prepreg was obtained in the same manner as in Example 1 using the obtained resin composition 5 and carbon fiber bundle 1.
  • the fiber content was 253 g / m 2 and the resin content was 30.7%.
  • a prepreg was obtained in the same manner as in Example 1 using the obtained resin composition 6 and carbon fiber bundle 1.
  • the fiber content was 252 g / m 2 and the resin content was 29.9%.
  • Example 7 A resin composition was prepared in the same manner as in Example 3 with the resin composition shown in Table 3, and a resin composition 7 was obtained. Table 3 shows the viscosity and minimum viscosity of the obtained resin composition at 30 ° C.
  • a prepreg was obtained in the same manner as in Example 1 by using the obtained resin composition 7 and the carbon fiber bundle 1.
  • the fiber content was 257 g / m 2 and the resin content was 29.0%.
  • Example 1 A resin composition was prepared in the same manner as in Example 1 except that the polymer particles (P1) were not blended, and a resin composition 31 was obtained.
  • the viscosity of the obtained resin composition 31 was measured, the viscosity at 30 ° C. was 1.3 ⁇ 10 3 Pa ⁇ s, and the lowest viscosity was 7.4 ⁇ 10 ⁇ 1 Pa ⁇ s at 103 ° C. It was.
  • a prepreg was obtained in the same manner as in Example 1 by using the obtained resin composition 31 and the carbon fiber bundle 1.
  • the fiber content was 282 g / m 2 and the resin content was 29.0%.
  • the resin flow amount (flow rate (%)) at the time of press molding of the obtained prepreg was measured. Streaks along the reinforcing fibers were formed on the surface of the obtained press-molded product, and the appearance was not good (C evaluation). The results are shown in Table 3.
  • Example 3 Using the obtained resin composition 33 and carbon fiber bundle 1, a prepreg was obtained in the same manner as in Example 1 (Comparative Example 3). When the basis weight was measured for the obtained prepreg, the fiber content was 252 g / m 2 and the resin content was 32.5%.
  • the resin flow amount (flow rate (%)) at the time of press molding of the obtained prepreg was measured. Streaks along the reinforcing fibers were formed on the surface of the obtained press-molded product, and the appearance was not good (C evaluation). The results are shown in Table 3.
  • the resin composition 35 and the carbon fiber bundle 1, prepregs were obtained in the same manner as in Example 1.
  • the fiber content and the resin content were 252 g / m 2 , 29.1% (Example 8), 251 g / m 2 , 30.2% (Example 9), respectively. 249 g / m 2 , 29.4% (Example 10), and 246 g / m 2 , 29.8% (Comparative Example 5).
  • Example 11 to 13 Resin compositions having the resin compositions shown in Table 5 were prepared in the same manner as in Example 1 to obtain resin compositions 11 to 13. Table 5 shows the viscosity and the minimum viscosity at 30 ° C. of the obtained resin composition.
  • prepregs were obtained in the same manner as in Example 1.
  • the obtained prepreg was measured basis weight, fiber content and resin content, respectively 248g / m 2, 29.8% (Example 11), 243g / m 2, 29.8% ( Example 12 ), And 241 g / m 2 , 30.9% (Example 13).
  • the resin flow amount (flow rate (%)) at the time of press molding of each prepreg was measured. The results are shown in Table 5.
  • Example 14 to 17 Resin compositions shown in Table 6 were prepared in the same manner as in Example 1 to obtain resin compositions 14 to 17 (corresponding to Examples 14 to 17 respectively). Table 6 shows the viscosity and minimum viscosity at 30 ° C. of the obtained resin composition.
  • prepregs were obtained in the same manner as in Example 1 (Example 14).
  • the fiber content was 247 g / m 2 and the resin content was 30.4%.
  • prepregs were obtained in the same manner as in Example 1 (Example 15).
  • the fiber content was 265 g / m 2 and the resin content was 30.0%.
  • prepregs were obtained in the same manner as in Example 1 (Examples 16 and 17).
  • the fiber content was 263 g / m 2 and 269 g / m 2
  • the resin content was 28.6% and 29.7%.
  • the resin flow amount (flow rate (%)) at the time of press molding of each prepreg was measured. The results are shown in Table 6.
  • Example 18 With the resin composition shown in Table 6, a resin composition was prepared in the same manner as in Example 1 except that the curing agent master batch 2 was used, and a resin composition 18 was obtained. Table 6 shows the viscosity and minimum viscosity at 30 ° C. of the obtained resin composition.
  • prepregs were obtained in the same manner as in Example 1.
  • the fiber content was 249 g / m 2 and the resin content was 30.9%.
  • the resin flow amount (flow rate (%)) at the time of press molding of each prepreg was measured. The results are shown in Table 6.
  • Example 19 A resin composition was prepared in the same manner as in Example 1 except that DY9577 was used as a curing agent in the resin composition shown in Table 6, and a resin composition 19 was obtained.
  • Table 6 shows the viscosity and minimum viscosity at 30 ° C. of the obtained resin composition.
  • prepregs were obtained in the same manner as in Example 1.
  • the fiber content was 248 g / m 2 and the resin content was 31.1%.
  • the resin flow amount (flow rate (%)) at the time of press molding of each prepreg was measured. The results are shown in Table 6.
  • Example 4 The resin composition 1 was applied onto release paper at 60 ° C. using a multicoater M-500 type manufactured by Hirano Techseed to obtain a resin film 1 of 165 g / m 2 .
  • the obtained resin film 1 was impregnated in a glass fiber nonwoven fabric (10 g / m, manufactured by H & V) to obtain a glass fiber-containing resin film 1.
  • the obtained glass fiber-containing resin film 1 is arranged on the surface of a pyrofil prepreg TR366E250S (manufactured by Mitsubishi Rayon Co., Ltd.) 5 ply laminated with the same fiber direction, and the surface pressure applied to the laminate 1 is 8 MPa. Press molding was performed under conditions of a mold temperature of 140 ° C. and a molding time of 5 minutes. The appearance of the obtained press-molded body was good (A evaluation). The results are shown in Table 7.
  • Example 20 A laminate 3 was prepared in the same manner as in Example 4 except that the resin film 1 obtained in Example 4 was used, and the glass fiber nonwoven fabric was not impregnated and used as it was. The press molding was performed. The appearance of the obtained press-molded body was good (A evaluation). The results are shown in Table 7.
  • a laminate 2 was produced in the same manner as in Example 4 except that the glass fiber-containing resin film 2 was used, and press molding was performed under the same conditions as in Example 4. Streaks were formed along the reinforcing fibers on the surface of the obtained press-formed product, and the appearance was not good (C evaluation). The results are shown in Table 7.
  • the amount of resin flow (flow rate (%)) at the time of molding is appropriate, a prepreg having good drapability, a press-molded body using the prepreg, and a reinforced fiber base material capable of producing the prepreg.
  • a resin composition having good impregnation properties can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

 エポキシ樹脂(A)、硬化剤(B)及びビニル重合体粒子(C)を含み、分子量100以上480以下であるエポキシ樹脂(a1)の含有量が、前記エポキシ樹脂(A)100質量部中30質量部以上90質量部以下であり、分子量2000以上40000以下であるエポキシ樹脂(a2)の含有量が、前記エポキシ樹脂(A)100質量部中10質量部以上70質量部以下であり、前記ビニル重合体粒子(C)の含有量が、前記エポキシ樹脂(A)100質量部に対し2質量部以上30質量部以下であり、以下の方法にて得られる前記ビニル重合体粒子(C)の瞬間最大増粘値が0.3Pa・s/℃以上5.0Pa・s/℃以下である樹脂組成物。

Description

樹脂組成物およびそのプレス成形体
 本発明は、成形時の樹脂フロー量が適正で、ドレープ性の良いプリプレグとこれを用いたプレス成形体、及び前記プリプレグを作製しうる、強化繊維基材への含浸性が良好な樹脂組成物を提供するものである。
 本願は、2014年10月16日に、日本に出願された特願2014-211346号に基づき優先権を主張し、その内容をここに援用する。
 強化繊維とマトリックス樹脂からなる繊維強化複合材料は、軽量で優れた機械特性を有するために、航空機、車両、船舶、建造物などの構造材料、ゴルフシャフト、釣竿、テニスラケットなどのスポーツ用具に広く用いられている。
 繊維強化複合材料の製造には、各種の方式が用いられるが、強化繊維基材にマトリックス樹脂組成物を含浸させたシート状、テープ状、あるいは紐状の中間基材であるプリプレグを用いる方法が広く用いられている。この方法ではプリプレグを複数枚積層した後、加熱することにより成形物が得られる。
 プリプレグに用いられるマトリックス樹脂組成物には、熱硬化性樹脂、熱可塑性樹脂ともに使用されるが、多くの場合、熱硬化性樹脂が用いられる。
 プリプレグを使用して繊維強化複合材料を製造する場合にしばしば問題になるのが、樹脂フロー量である。すなわち、強化繊維基材にマトリックス樹脂組成物を十分に含浸させるべく、マトリックス樹脂組成物の粘度を低下させると、得られたプリプレグの成形時の加熱・加圧工程にて、マトリックス樹脂組成物が過度に流出してしまい、得られる成形体の外観が不良になったり、強化繊維が蛇行することによって物性が低下するなどの問題が生じる場合がある。一方、樹脂フロー量を適正に制御するべく、マトリックス樹脂組成物の粘度を増加させると、強化繊維基材への含浸性や、得られるプリプレグのドレープ性が低下する傾向がある。
 特許文献1には、コア層/シェル層型共重合体を用いることにより加熱による増粘を可能とした、加熱圧縮成形材料組成物が提案されている。
特開平11-181245号公報
 しかしながら、特許文献1に記載された成形材料は、そのマトリックス樹脂組成物が常温で非常に低粘度であり、プリプレグに使用すると、プリプレグの形態を保持できないという問題を生じる。
 加えて特許文献1の成形方法では、専用の装置で加熱温度雰囲気を作り、その装置内に成形材料を一定時間放置するなどの増粘工程が必要であるため、コストが高くなりやすいという問題がある。また、増粘後の成形材料の、ポリプロピレンフィルムからの剥離性を確保するためにコア層/シェル層型共重合体の含有量を設定するため、加熱圧縮成形時の樹脂フロー量を所望の程度に制御するのが困難である。
 一方、適度な樹脂フロー量を達成するために、マトリックス樹脂組成物中に熱可塑性樹脂を溶解させることや、比較的高分子量の樹脂を含有させることにより、マトリックス樹脂組成物の粘度を調節する方法も知られているが、強化繊維基材へのマトリックス樹脂組成物の良好な含浸性、得られるプリプレグの高いドレープ性、及び成形時の適度なフロー量を、全て並立させることは困難であった。
 本発明は、強化繊維基材への含浸性が良好な樹脂組成物と、成形時の樹脂フロー量を良好に制御でき、且つドレープ性の良いプリプレグ、及び外観の良いプレス成形体を提供することを目的とする。
 本発明者らは前記課題を解決すべく、鋭意検討を重ねた結果、本発明を完成するに至った。
 すなわち、本発明は以下の特徴を有する。
 [1] エポキシ樹脂(A)、硬化剤(B)及びビニル重合体粒子(C)を含み、
分子量100以上480以下であるエポキシ樹脂(a1)の含有量が、前記エポキシ樹脂(A)100質量部中30質量部以上90質量部以下であり、分子量2000以上40000以下であるエポキシ樹脂(a2)の含有量が、前記エポキシ樹脂(A)100質量部中10質量部以上70質量部以下であり、前記ビニル重合体粒子(C)の含有量が、前記エポキシ樹脂(A)100質量部に対し2質量部以上30質量部以下であり、前記ビニル重合体粒子(C)の瞬間最大増粘値が0.3Pa・s/℃以上5.0Pa・s/℃以下である樹脂組成物。
 [2] 30℃における粘度が1.0×10Pa・s以上1.0×10Pa・s以下であり、かつ昇温速度2℃/分で測定した最低粘度が0.8Pa・s以上10Pa・s以下である、[1]に記載の樹脂組成物。
 [3] エポキシ樹脂(A)、硬化剤(B)及びビニル重合体粒子(C)を含み、30℃における粘度が1.0×10Pa・s以上1.0×10Pa・s以下であり、昇温速度2℃/分で測定した最低粘度が0.8Pa・s以上10Pa・s以下であり、前記ビニル重合体粒子(C)の含有量が、前記エポキシ樹脂(A)100質量部に対し2質量部以上30質量部以下であり、前記ビニル重合体粒子(C)の瞬間最大増粘値が0.3Pa・s/℃以上5.0Pa・s/℃以下である樹脂組成物。
 [4] 前記ビニル重合体粒子(C)が、コア層及びシェル層がいずれもアクリル樹脂からなるコアシェル粒子を含む、[1]~[3]のいずれか一項に記載の樹脂組成物。
 [5] 前記コアシェル粒子におけるシェル層の、ガラス転移温度が85℃以上115℃以下であり、溶解パラメーターの値(SP値)が20.20[(J/cm1/2]以上20.50[(J/cm1/2]以下であり、コア層とシェル層の質量比が、コア:シェル=90:10~50:50である、[4]に記載の樹脂組成物。
 [6] 前記ビニル重合体粒子(C)が、異なる組成のビニル単量体混合物を2段階以上で乳化重合し、得られたビニル重合体のエマルションを噴霧乾燥して得られる粒子である、[1]~[3]のいずれか一項に記載の樹脂組成物。
 [7] 前記異なる組成のビニル単量体混合物が、いずれも、官能基を有していても良い(メタ)アクリレート及び(メタ)アクリル酸からなる群より選ばれた単量体からなる混合物である、[6]に記載の樹脂組成物。
 [8] 前記ビニル重合体粒子(C)における、最外の乳化重合体層(i)の、ガラス転移温度が85℃以上115℃以下であり、溶解パラメーターの値(SP値)が20.20[(J/cm1/2]以上20.50[(J/cm1/2]以下であり、最外の乳化重合体層(i)と、それ以外の乳化重合体層(ii)の質量比が、(i):(ii)=90:10~50:50である、[6]または[7]に記載の樹脂組成物。
 [9] 前記ビニル重合体粒子(C)の平均粒子径が0.5μm以上1.0μm以下である、[1]~[8]いずれか一項に記載の樹脂組成物。
 [10] 前記硬化剤(B)がイミダゾール化合物、ジシアンジアミド、及び三塩化ホウ素アミン錯体のうち少なくとも1つを含む、[1]~[9]いずれか一項に記載の樹脂組成物。
 [11] [1]~[10]のいずれか一項に記載の樹脂組成物と、強化繊維基材からなるプリプレグ。
 [12] 任意のプリプレグが複数枚積層され、その最外層の少なくとも一方に、[1]~[10]のいずれか一項に記載の樹脂組成物からなる層が更に積層されてなる、プリプレグ積層体。
 [13] 任意のプリプレグが複数枚積層され、その最外層の少なくとも一方に、[1]~[10]のいずれか一項に記載の樹脂組成物を、繊維目付5g/m以上50g/m以下の強化繊維不織布に含浸させてなる、強化繊維不織布プリプレグ層が更に積層された、プリプレグ積層体。
 [14] 前記任意のプリプレグが、[11]に記載のプリプレグである、[12]又は[13]に記載のプリプレグ積層体。
 [15] [11]に記載のプリプレグを、プレス成形することにより得られる成形体。
 [16] [12]~[14]のいずれか一項に記載のプリプレグ積層体を、プレス成形することにより得られる成形体。
 本発明のその他の態様として、以下の特徴を有する。
 (1) エポキシ樹脂(A)、硬化剤(B)及びビニル重合体粒子(C)を含み、
分子量100以上480以下であるエポキシ樹脂(a1)の含有量が、前記エポキシ樹脂(A)100質量部中30質量部以上90質量部以下であり、前記ビニル重合体粒子(C)の含有量が、前記エポキシ樹脂(A)100質量部に対し2質量部以上30質量部以下である樹脂組成物。
 (2) 前記ビニル重合体粒子(C)が、コア層及びシェル層がいずれもアクリル樹脂からなるコアシェル粒子を含む、(1)に記載の樹脂組成物。
 (3) 分子量2000以上40000以下であるエポキシ樹脂(a2)の含有量が、前記エポキシ樹脂(A)100質量部中10質量部以上50質量部以下である(1)又は(2)に記載の樹脂組成物。
 (4) 30℃における粘度が1.0×10Pa・s以上1.0×10Pa・sであり、かつ昇温速度2℃/分で測定した最低粘度が1.0Pa・s以上50Pa・s以下である、(1)~(3)のいずれか一項に記載の樹脂組成物。
 (5) (1)~(4)のいずれか一項に記載の樹脂組成物と、強化繊維基材からなるプリプレグ。
 (6) 面圧8MPa、金型温度140℃、成形時間5分のプレス成形により平板プレス成形体を作製した際の樹脂フロー率が4.5質量%以下である、(5)に記載のプリプレグ。
 (7) 任意のプリプレグが複数枚積層され、その最外層の少なくとも一方に、(1)~(4)のいずれか一項に記載の樹脂組成物からなる層が更に積層されてなる、プリプレグ積層体。
 (8) 任意のプリプレグが複数枚積層され、その最外層の少なくとも一方に、(1)~(4)のいずれか一項に記載の樹脂組成物を強化繊維不織布に含浸させてなる、繊維目付け5~50g/mの強化繊維不織布プリプレグ層が更に積層されてなる、プリプレグ積層体。
 (9) 前記任意のプリプレグが、(5)又は(6)に記載のプリプレグである、(7)又は(8)に記載のプリプレグ積層体。
 (10) (5)または(6)に記載のプリプレグを、プレス成形することにより得られる成形体。
 (11) (7)~(9)のいずれか一項に記載のプリプレグ積層体を、プレス成形することにより得られる成形体。
 本発明によれば、成形時の樹脂フロー量が適正で、ドレープ性の良いプリプレグ、前記プリプレグを用いたプレス成形体、及び前記プリプレグを作製しうる、強化繊維基材への含浸性が良好な樹脂組成物を提供することができる。
 本発明の第1は、エポキシ樹脂(A)、硬化剤(B)及びビニル重合体粒子(C)を含み、分子量100以上480以下であるエポキシ樹脂(a1)の含有量が、前記エポキシ樹脂(A)100質量部中30質量部以上90質量部以下であり、分子量2000以上40000以下であるエポキシ樹脂(a2)の含有量が、前記エポキシ樹脂(A)100質量部中10質量部以上70質量以下であり、前記ビニル重合体粒子(C)の含有量が、前記エポキシ樹脂(A)100質量部に対し2質量部以上30質量部以下であり、ビニル重合体粒子(C)の瞬間最大増粘値が0.3Pa・s/℃以上5.0Pa・s/℃以下である樹脂組成物、及びその用途に関する。
 前記瞬間最大増粘値の測定は、以下の方法で求める。
 まず、エポキシ当量184以上194以下であるビスフェノールA型エポキシ樹脂100質量部と、ビニル重合性粒子(C)10質量部を混合して得られる試料樹脂組成物に対し、直径25mmのパラレルプレートを用い、プレートギャップ:0.5mm、測定周波数:10rad/秒、昇温速度:2℃/分、測定間隔:30秒、測定開始温度:30℃、応力:300Paで、レオメータにて粘度測定を行う。n+1回目の測定時の温度をTn+1(℃)、粘度をVn+1(Pa・s)とし、n回目の測定時の温度をT(℃)、粘度をV(Pa・s)としたとき、下記式で表される瞬間増粘値An+1の最大値を瞬間最大増粘値とする。
   An+1=(Vn+1-V)/(Tn+1-T
 また本発明の第2は、エポキシ樹脂(A)、硬化剤(B)及びビニル重合体粒子(C)を含み、30℃における粘度が1.0×10Pa・s以上1.0×10Pa・s以下であり、昇温速度2℃/分で測定した最低粘度が0.8Pa・s以上10Pa・s以下であり、前記ビニル重合体粒子(C)の含有量が、前記エポキシ樹脂(A)100質量部に対し2質量部以上30質量部以下であり、前記ビニル重合体粒子(C)の瞬間最大増粘値が0.3Pa・s/℃以上5.0Pa・s/℃以下である樹脂組成物、及びその用途に関する。
 なお「エポキシ樹脂」という用語は熱硬化性樹脂の一つのカテゴリーの名称、或いは分子内にエポキシ基を有する化合物という化学物質のカテゴリーの名称として用いられるが、本発明においては後者の意味で用いられる。また「エポキシ樹脂組成物」という用語はエポキシ樹脂と硬化剤、場合により他の添加剤を含む組成物を意味する。
 本発明において「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。「(メタ)アクリル酸」も同様である。
 また発明において「アクリル樹脂」とは、官能基を有していても良い(メタ)アクリレート(後述)及び(メタ)アクリル酸からなる群より選ばれた単量体を重合してなる重合体を意味する。
 また本発明において、樹脂組成物の硬化物を「樹脂硬化物」と称することがある。
 以下、本発明を詳細に説明する。
 (樹脂組成物)
 本発明の第1及び第2に係る樹脂組成物は、エポキシ樹脂(A)、硬化剤(B)及びビニル重合体粒子(C)を含む。
 <エポキシ樹脂(A)>
 本発明におけるエポキシ樹脂(A)としては、特に限定されないが、グリシジルエーテル型、グリシジルアミン型、グリシジルエステル型、および、脂環式エポキシ型などが挙げられるが、安価で、入手が容易であり、耐水性が良く、反応性が高い点からグリシジルエーテル型またはグリシジルアミン型を含むことが好ましい。
 これらグリシジルエーテル型及びグリシジルアミン型エポキシ樹脂は、樹脂硬化物の耐熱性の観点から、一分子中にグリシジル基が2つ以上含むことが好ましく、その具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂およびトリフェニルメタン型エポキシ樹脂などが挙げられる。これらエポキシ樹脂の中でも、樹脂硬化物の耐熱性および靱性の観点から、本発明のエポキシ樹脂(A)はビスフェノールA型エポキシ樹脂を含むことが好ましい。
 これらエポキシ樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 後述するビニル重合体粒子(C)を本発明の樹脂組成物中で容易に溶解または膨潤させるため、及び樹脂組成物の粘度調整の観点から、エポキシ樹脂(A)として比較的低分子量の化合物を多く含有していることが好ましい。
 具体的には、分子量が100以上480以下であるエポキシ樹脂(a1)をエポキシ樹脂(A)100質量部中30質量部以上90質量部以下含有することが好ましく、35質量部以上80質量部以下含有することがより好ましい。一般に、市販のエポキシ樹脂製品は、重合度などが異なる複数種の化合物の混合物であり、その分子量は混合物の平均値である。これに対し、本発明におけるエポキシ樹脂(a1)及び(a2)の「分子量」は、エポキシ樹脂製品に含まれる個々の化合物を、GPCにて分画し分取して測定した値である。
 エポキシ樹脂(a1)の含有量を30質量部以上とすることにより、ドレープ性が良好なプリプレグが得られ、前記樹脂組成物を含むプリプレグをプレス成形する時の樹脂フローを適正な量に制御しやすくなり、プリプレグ作成時に、本発明の樹脂組成物を強化繊維基材に容易に含浸させることができる。90質量部以下とすることにより、プリプレグのタックが強くなり過ぎず、また、プリプレグの形状を保ちやすくなる。
 また、本発明の樹脂組成物を、プリプレグのマトリックス樹脂組成物として使用する場合の粘度調整の観点から、エポキシ樹脂(A)として、さらに分子量が2000以上40000以下であるエポキシ樹脂(a2)を含むことが好ましい。エポキシ樹脂(a2)の含有量は、本発明の効果を損なわない限り特に制限は無いが、エポキシ樹脂(A)100質量部中、10質量部以上70質量部以下であることが好ましく、10質量部以上50質量部以下であることがより好ましく、12質量部以上40質量部以下であることが更に好ましい。10質量部以上とすることにより、本発明の樹脂組成物の粘度が低くなり過ぎず、プリプレグのタックが強くなり過ぎず、また、プリプレグの形状を保ちやすいため好ましい。一方70質量部以下とすることにより、後述するビニル重合体粒子(C)が本発明の樹脂組成物中で溶解または膨潤する際の妨げにならないため好ましい。
 エポキシ樹脂(A)は、本発明の効果を損なわない範囲で、上述のエポキシ樹脂(a1)及びエポキシ樹脂(a2)以外のエポキシ樹脂を含有していても良い。その場合、(a1)及び(a2)以外のエポキシ樹脂の含有量は、エポキシ樹脂(A)100質量部に対して、通常60質量部以下である。
 <硬化剤(B)>
 本発明における硬化剤(B)としては、アミン型、酸無水物型(カルボン酸無水物等)、フェノール型(フェノールノボラック樹脂等)、メルカプタン型、ルイス酸アミン錯体型、オニウム塩型などが挙げられるが、エポキシ樹脂(A)を硬化させうるものであればどのような構造のものでもよい。これらの中でも、貯蔵安定性が良く、硬化性が優れている点からアミン型またはルイス酸アミン錯体型の硬化剤が好ましい。これら硬化剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 ルイス酸アミン錯体型の硬化剤としては、ハロゲン化ホウ素アミン錯体などが挙げられ、具体的には例えば三フッ化ホウ素・ピペリジン錯体、三フッ化ホウ素・モノエチルアミン錯体、三フッ化ホウ素・トリエタノールアミン錯体等の三フッ化ホウ素アミン錯体、三塩化ホウ素・オクチルアミン錯体等の三塩化ホウ素アミン錯体が挙げられる。これらのルイス酸アミン錯体の中でも、特に、エポキシ樹脂に対する溶解性が優れ、マトリックス樹脂組成物とした時のポットライフに優れ、硬化性に優れている点で、三塩化ホウ素アミン錯体が好ましい。
 アミン型の硬化剤としては、例えばジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン、脂肪族アミン、イミダゾール誘導体、ジシアンジアミド、テトラメチルグアニジン、チオ尿素付加アミン、及びこれらの異性体、変成体などがある。これらの中でも、プリプレグの保存安定性に優れる点ではジシアンジアミドが好ましく、高い耐熱性が得られる点ではイミダゾール誘導体が特に好ましい。
 硬化剤(B)の硬化活性を高めるために、硬化助剤を用いてもよい。例えば硬化剤(B)がジシアンジアミドである場合、硬化助剤は3-フェニル-1,1-ジメチル尿素、3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素(DCMU)、3-(3-クロロ-4-メチルフェニル)-1,1-ジメチル尿素、トルエンビス(ジメチルウレア)等の尿素誘導体が好ましい。これらの中でもジシアンジアミドとDCMUの組み合わせが特に好ましい。
 <ビニル重合体粒子(C)>
 本発明におけるビニル重合体粒子(C)は、ラジカル重合可能なビニル単量体を重合して得られる高分子のエマルジョンを、乾燥して得られる微粒子を意味する。
 ラジカル重合可能なビニル単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロ[5.2.1.02.6]デカン-8-イル-メタクリレート、ジシクロペンタジエニル(メタ)アクリレート等の(メタ)アクリレート;スチレン、α-メチルスチレン、ビニルトルエン等の芳香族ビニル単量体;ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート等の水酸基含有(メタ)アクリレート;グリシジル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N-メチル-2,2,6,6-テトラメチルピペリジル(メタ)アクリレート等の(水酸基以外の)官能基含有(メタ)アクリレート;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸、フマル酸、イソクロトン酸、サリチル酸ビニロキシ酢酸、アリロキシ酢酸、2-(メタ)アクリロイルプロパン酸、3-(メタ)アクリロイルブタン酸、4-ビニル安息香酸等のカルボキシル基含有ビニル単量体;(メタ)アクリロニトリル等のシアン化ビニル単量体;(メタ)アクリルアミド;モノメチルイタコネート、モノエチルイタコネート、モノプロピルイタコネート、モノブチルイタコネート、ジメチルイタコネート、ジエチルイタコネート、ジプロピルイタコネート、ジブチルイタコネート等のイタコン酸エステル;モノメチルフマレート、モノエチルフマレート、モノプロピルフマレート、モノブチルフマレート、ジメチルフマレート、ジエチルフマレート、ジプロピルフマレート、ジブチルフマレート等のフマル酸エステル;モノメチルマレート、モノエチルマレート、モノプロピルマレート、モノブチルマレート、ジメチルマレート、ジエチルマレート、ジプロピルマレート、ジブチルマレート等のマレイン酸エステル;及びビニルピリジン、ビニルアルコール、ビニルイミダゾール、ビニルピロリドン、酢酸ビニル、1-ビニルイミダゾール等のその他のビニル単量体、などが挙げられる。これらの単量体は、1種を単独で使用、又は2種以上を併用することができる。
 これらの単量体の中では、ラジカル重合が容易であり、且つ乳化重合が容易であることから、官能基を有していても良い(メタ)アクリレート、又は(メタ)アクリル酸が好ましい。ここで「官能基を有していても良い(メタ)アクリレート」とは、上述の(メタ)アクリレート、水酸基含有アクリレート、及び(水酸基以外の)官能基含有(メタ)アクリレートの総称である。
 ビニル重合体粒子(C)は、上述したビニル単量体に、必要に応じて重合開始剤、乳化剤、分散安定剤、連鎖移動剤などを加えて重合させることにより製造することができる。なお重合開始剤、乳化剤、分散安定剤及び連鎖移動剤等は公知の材料から選択することが出来、例えばPCT公開パンフレットWO2010/090246等に記載の材料を使用することができる。
 重合方法としては、真球状粒子を得やすいこと及び粒子モルフォロジーを制御しやすいことから、乳化重合法、ソープフリー乳化重合法、膨潤重合法、ミニエマルション重合法、分散重合法及び微細懸濁重合法が好ましい。この中では、分散性に優れた重合体が得られることから、ソープフリー乳化重合法がより好ましい。またビニル重合体粒子の内部モルフォロジーを制御するための、工業的に実用性の高い手法としては、例えば、異なる組成のビニル単量体混合物を多段階で、逐次的に滴下重合する方法が挙げられる。
 つまりビニル重合体粒子(C)としては、異なる組成のビニル単量体混合物を2段階以上で乳化重合し、得られたビニル重合体のエマルションを噴霧乾燥して得られる粒子(以下「多段階重合粒子」と称することがある。)であることが好ましい。この場合、異なる組成のビニル単量体混合物は、いずれも、官能基を有していても良い(メタ)アクリレート及び(メタ)アクリル酸からなる群より選ばれた単量体からなる混合物であることが好ましい。
 このように製造されたビニル重合体粒子(C)は、コアシェル粒子であることが好ましい。即ちビニル重合体粒子(C)としては、コア層及びシェル層がいずれもアクリル樹脂であるコアシェル粒子であることが好ましい。なお、ビニル重合体粒子がコアシェル構造を有しているかどうかの判定方法としては、例えば、重合過程でサンプリングされる重合体粒子の粒子径が確実に成長していること、及び重合過程でサンプリングされる重合体粒子の最低造膜温度(MFT)や各種溶剤への溶解度が変化していることを、同時に満足することを確認することが挙げられる。また、透過型電子顕微鏡(TEM)により本重合体の切片を観察して、同心円状の構造の有無を確認する方法、又は凍結破断された本重合体の切片を走査型電子顕微鏡(クライオSEM)で観察して、同心円状の構造の有無を確認する方法が挙げられる。
 本発明のビニル重合体粒子(C)は、本発明の樹脂組成物中において、常温(10℃以上30℃以下)では粒子として存在するが、高温では樹脂組成物、具体的にはエポキシ樹脂(A)に溶解するかまたはエポキシ樹脂(A)により膨潤するものである。
 つまり常温、即ち比較的低温の樹脂組成物中には粒子状で存在するため、これを含む樹脂組成物はさほど高粘度にはならず、前記樹脂組成物は強化繊維基材に対する高い含浸性を有し、また得られるプリプレグは、良好なドレープ性を有するものとなる。一方、前記ビニル重合体粒子(C)は高温で樹脂組成物中のエポキシ樹脂(A)に溶解するか、またはエポキシ樹脂(A)により膨潤するため、前記プリプレグを使用してプレス成形を行うと、エポキシ樹脂(A)と硬化剤(B)との反応より速くビニル重合体粒子(C)が溶解または膨潤して樹脂組成物が増粘し、樹脂フロー量を低減することができる。
 ビニル重合体粒子(C)は、本発明の樹脂組成物調製時や、前記樹脂組成物を用いたプリプレグ作製時などの作業温度ではエポキシ樹脂(A)に溶解またはエポキシ樹脂(A)により膨潤せず、前記プリプレグの成形時における昇温過程でエポキシ樹脂(A)と硬化剤(B)との反応より速くエポキシ樹脂(A)に溶解するか、或いはエポキシ樹脂(A)により膨潤するものが好ましい。
 具体的には、エポキシ樹脂(A)に対する溶解開始温度またはエポキシ樹脂(A)による膨潤開始温度が60℃以上140℃以下であるのものを選択することが好ましい。更に好ましくは80℃以上120℃以下である。
 ビニル重合体粒子(C)の溶解または膨潤速度は、瞬間最大増粘値により表すことができる。本発明における瞬間最大増粘値とは、以下の方法により測定される瞬間増粘値An+1の最大値を意味する。
〔瞬間最大増粘値の測定〕
 瞬間最大増粘値の測定は、エポキシ当量184以上194以下であるビスフェノールA型エポキシ樹脂100質量部と、ビニル重合性粒子(C)10質量部を混合して得られる試料樹脂組成物に対し、直径25mmのパラレルプレートを用い、プレートギャップ:0.5mm、測定周波数:10rad/秒、昇温速度:2℃/分、測定間隔:30秒、測定開始温度:30℃、応力:300Paで、レオメータにて粘度測定を行う。n+1回目の測定時の温度をTn+1(℃)、粘度をVn+1(Pa・s)とし、n回目の測定時の温度をT(℃)、粘度をV(Pa・s)としたとき、下記式で表される瞬間増粘値An+1の最大値を瞬間最大増粘値とする。
   An+1=(Vn+1-V)/(Tn+1-T
 本発明のビニル重合体粒子(C)は、瞬間最大増粘値が0.3Pa・s/℃以上5.0Pa・s/℃以下であり、0.4Pa・s/℃以上4.5Pa・s/℃以下がより好ましく、0.5Pa・s/℃以上3.0Pa・s/℃以下が更に好ましい。
〔成形体成形体成形体成形体〕
 瞬間最大増粘値が0.3Pa・s/℃以上であると、成形時の加熱工程における樹脂組成物の増粘が速く、樹脂フロー量が過剰にならない。結果、成形体に含まれる強化繊維が流動することにより成形体の外観が悪くなったり、金型内の樹脂が不足して樹脂涸れ部(Resin Starved area)が生じるという問題を回避する事ができる。一方、瞬間最大増粘値が5.0Pa・s/℃以下であると、成形時の加熱工程における樹脂組成物の増粘が遅くなり、樹脂フロー量が不足しない。結果、プリプレグ表面の凹凸が成形体表面に現れて成形体の外観が悪くなったり、成形体内部にボイドが生じるという問題を回避する事ができる。
 ビニル重合体粒子(C)として、前述した多段階重合粒子やコアシェル粒子を用いることにより、このような条件を満たすことがより容易になる。特に、前記「異なる組成のビニル単量体混合物」として、いずれも、官能基を有していても良い(メタ)アクリレート及び(メタ)アクリル酸からなる群より選ばれた単量体からなる混合物を用いて得られる多段階重合粒子や、コア層及びシェル層がいずれもアクリル樹脂であるコアシェル粒子が好ましい。
 なお、多段階重合粒子やコアシェル粒子は、エポキシ樹脂(A)の分子量が小さいほど溶解または膨潤しやすい。
 より具体的には、分子量が100以上480以下であるエポキシ樹脂(a1)が、多段階重合粒子やコアシェル粒子を効率よく溶解または膨潤させるため好ましい。分子量が100以上である化合物は、揮発性が高すぎないため取り扱い易く、また粘度が低すぎないため、プリプレグに使用すると前記プリプレグの形状保持性を損なわない。分子量が480以下であると、多段階重合粒子やコアシェル粒子の溶解や膨潤を阻害せず、プレス成形時のフロー抑制効果が良好に発揮される。エポキシ樹脂(a1)の分子量は、150以上480以下であることがより好ましい。
 後述する本発明のプリプレグ(すなわち本発明の樹脂組成物を強化繊維基材に含浸させて得られるプリプレグ)のプレス成形時のフロー抑制効果を十分に発揮させるためには、エポキシ樹脂(A)の硬化反応より低温で、多段階重合粒子やコアシェル粒子のエポキシ樹脂(A)への溶解またはエポキシ樹脂(A)による膨潤が起きることが好ましい。これら粒子の溶解または膨潤のしやすさは、
・多段階重合粒子の最外の乳化重合体層(以下「(i)層」と称することがある)又はコアシェル粒子のシェル層を構成する樹脂の、ガラス転移温度や溶解度パラメータ(SP値)、
・コア層とシェル層、または、多段階重合粒子の(i)層と、それ以外の乳化重合体層(以下「(ii)層」と称することがある。)の質量比、
の影響を受ける。(i)層或いはシェル層のガラス転移温度は高いほうが溶解または膨潤しにくく、SP値が高いほうが溶解または膨潤しにくい。コア層の質量に対し、シェル層の質量が大きいほうが溶解または膨潤しにくく、(ii)層の質量に対し、(i)層の質量が大きい方が溶解または膨潤しにくい。これらを種々鑑みて所望の成形温度にあった粒子を選定すればよい。
 例えば140℃でプレス成形を行う場合、シェル層のガラス転移温度が85℃以上115℃以下、シェルのSP値が20.20[(J/cm1/2]以上20.50[(J/cm1/2]以下、コアとシェルの質量比はコア:シェル=90:10から50:50であるコアシェル粒子からなるビニル重合体粒子(C)等を選択すればよい。或いは、最外の乳化重合体層(i)のガラス転移温度が85℃以上115℃以下であり、溶解パラメーターの値(SP値)が20.20[(J/cm1/2]以上20.50[(J/cm1/2]以下であり、最外の乳化重合体層(i)と、それ以外の乳化重合体層(ii)の質量比が、(i):(ii)=90:10~50:50である多段階重合粒子からなるビニル重合体粒子(C)等を選択すればよい。
 ここでSP値は、PCT公開パンフレットWO2013/077293に記載のように、重合体を構成する単量体単位の、単量体のSp値(Sp(Ui))を式(1)に代入して求める。Sp(Ui)は、polymer Engineering and Science, Vol.14,147(1974)に記載されているFedorsの方法にて求めることができる。
Figure JPOXMLDOC01-appb-M000001
(式(1)中、Miは単量体単位i成分のモル分率を示し、ΣMi=1である。)
 本発明のビニル重合体粒子(C)の平均粒子径は0.5μm以上1.0μm以下が好ましく、0.6μm以上0.9μm以下であることがより好ましく、0.6μm以上0.8μm以下であることが更に好ましい。ここで平均粒子径とは、走査型顕微鏡を用いて測定した100個の1次粒子の直径の体積平均を意味する。平均粒子径を0.5μm以上とすることにより、増粘速度が速くなりすぎず、成形時に適量の樹脂フローが生じ、金型内に十分にマトリックス樹脂組成物が行き渡たる。結果、樹脂欠けが生じず、プリプレグ表面の凹凸が成形体表面に現れず、成形体内部におけるボイド発生を抑制することができる。
 一方、平均粒子径を1.0μm以下とすることにより、増粘速度が遅くなりすぎず、成形時に適量の樹脂フローが生じる。結果、樹脂枯れ部の発生や、強化繊維の流動を抑制し、外観が良好な成形体を得ることが出来る。
 さらに、ビニル重合体粒子(C)としては、増粘開始温度が70℃以上90℃以下であるものが好ましい。
 増粘開始温度の測定は、以下の方法で求める。まず、エポキシ当量184以上194以下であるビスフェノールA型エポキシ樹脂100質量部と、ビニル重合性粒子10質量部を混合して得られる試料樹脂組成物に対し、直径25mmのパラレルプレートを用い、プレートギャップ:0.5mm、測定周波数:10rad/秒、昇温速度:2℃/分、測定開始温度:30℃、応力:300Paで、レオメータにて粘度測定を行う。得られた昇温粘度カーブから、増粘開始直前の最低粘度を求め、これを増粘開始温度とする。
 増粘開始温度が70℃以上であれば、成形時の加熱により適量の樹脂フローが生じ、金型内に十分にマトリックス樹脂組成物が行き渡たるため、プリプレグ表面の凹凸が成形体表面に現れず、成形体内部におけるボイド発生を抑制できる。
 一方、90℃以下であれば、樹脂フロー量が多くなり過ぎないため、成形体に樹脂涸れ部(Resin Starved area)が生じず、成形体に含まれる強化繊維が流動し難く、外観が良好な成形体が得られる。増粘開始温度は、75℃以上90℃以下であることがより好ましい。
 以上の説明によって、当業者はビニル重合体粒子(C)を容易に得ることができる。つまり、当業者は、以上の説明に基づき、また、国際公開公報第2010/090246号パンフレット及び国際公開公報第2013/077293号パンフレットも参考にすることで、平均粒子径(体積平均一次粒子径)、Tg及びSp値等を調整し、瞬間最大増粘値や増粘開始温度が前記範囲内にあるビニル重合体粒子(C)を、容易に得ることができる。
 ビニル重合体粒子(C)の配合量は、特に限定されないが、エポキシ樹脂(A)100質量部に対して2質量部以上30質量部以下が好ましく、3質量部以上20質量部以下がより好ましい。さらに好ましくは5質量部以上15質量部以下である。2質量部以上とすることで、プレス成形時の樹脂フロー抑制効果を十分に発揮でき、30質量部以下とすることで、得られるプレス成形体の機械物性と耐熱性の低下を抑えることができる。
 <任意成分>
 本発明の樹脂組成物は、本発明の効果を損なわない範囲で、上述以外の任意の成分を含有していても良い。前記任意成分としては、例えば熱可塑性エラストマー、前記ビニル重合体粒子(C)以外のエラストマー微粒子やコアシェル型エラストマー微粒子、希釈剤、シリカ等の無機粒子、カーボンナノチューブ等の炭素質成分、リン化合物等の難燃剤、脱泡剤等が挙げられるがこれらに限らない。
 <樹脂組成物の粘度>
 本発明の樹脂組成物は、30℃における粘度が1.0×10Pa・s以上1.0×10Pa・s以下であることが好ましく、5.0×10Pa・s以上9.8×10Pa・s以下がより好ましく、1.0×10Pa・s以上9.7×10Pa・s以下が更に好ましい。
 粘度が1.0×10Pa・s以上であれば、取扱性が良いためプリプレグの作製やこれを用いた成形等の作業がしやすく、1.0×10Pa・s以下であれば、後述するようにプリプレグを作製する際に強化繊維基材に含浸しやすく、過度な加熱を必要としないため好ましい。また得られるプリプレグのドレープ性が損なわれない点も好ましい。
 また、本発明の樹脂組成物を2℃/分で昇温した昇温粘度測定において、最低粘度は0.8Pa・s以上10Pa・s以下であることが好ましく、0.8Pa・s以上8.0Pa・s以下がより好ましく、0.8Pa・s以上7.0Pa・s以下が更に好ましい。
 前記最低粘度が0.8Pa・s以上であると、樹脂フロー量が過剰にならず、得られる繊維強化複合材料の表面に凹凸が生じず外観不良を避けることが出来る。また、前記最低粘度が10Pa・s以下であると、樹脂フロー量が適正になり、前記プリプレグを用いたプレス成形の際に、樹脂組成物が金型内の隅々まで充填される為、好ましい。
 <樹脂組成物の製造方法>
 本発明の樹脂組成物は、各成分が混練され、均一に分散または溶解する限り、従来から用いられる一般的な方法にて製造することができる。
 例えば、前記樹脂組成物を構成する各成分を同時に混合して調製してもよく、或いは、予めエポキシ樹脂(A)に、硬化剤(B)やビニル重合体粒子(C)、その他添加物を適宜分散させたマスターバッチを調製し、これを用いて調製してもよい。特に、ビニル重合体粒子(C)をエポキシ樹脂(A)に均一に分散させるために、ビニル重合体粒子(C)濃度の高いマスターバッチを作製しておき、後でこれに他成分を追加することが好ましい。また、混練による剪断発熱等で、系内の温度が上がる場合には、混練速度を調整したり、混練釜を水冷する等、混練中に温度を上げない工夫をすることが好ましい。混練装置としては、例えば、らいかい機、アトライタ、プラネタリミキサー、ディゾルバー、三本ロール、ニーダー、万能攪拌機、ホモジナイザー、ホモディスペンサー、ボールミル及びビーズミルが挙げられる。また、これらは2種以上を併用することができる。
 (プリプレグ)
 本発明のプリプレグは、前述した本発明の樹脂組成物と強化繊維基材よりなる。その強化繊維の体積含有率は、通常30体積%以上80体積%以下であり、好ましくは40体積%以上70体積%以下である。体積含有率を下限値以上とすることにより、成形された繊維強化複合材料の機械物性が高くなるため好ましく、上限値以下とすることによりプリプレグ作成時に樹脂組成物を強化繊維基材に含浸させやすくなるため好ましい。
 本発明のプリプレグは、前述した本発明の樹脂組成物を含有するため、成形時の樹脂フロー量の制御が容易であり好ましいが、中でも面圧8MPa、金型温度140℃、成形時間5分のプレス成形により平板プレス成形体を作成した際の樹脂フロー率が4.5質量%以下である場合がより好ましい。具体的には、本発明のプリプレグが一方向プリプレグであり、以下の方法で測定した樹脂フロー率が4.5質量%以下であることが好ましい。
 まず、繊維含有量が240g/m以上290g/m以下で、樹脂含有率が28.0質量%以上32.0質量%以下であるプリプレグを298mm(繊維と並行方向)×298mm(繊維と直行方向)の寸法にカットし、繊維方向をそろえて5ply積層したプリプレグ積層体とし、その質量をM0とする。前記プリプレグ積層体にかかる面圧8MPaとし、金型温度140℃、成形時間5分の条件でプレス成形後、バリを除いた平板プレス成形体の質量をM1とした際に、以下の式によって算出される値、すなわち樹脂フロー率(%)が4.5質量%以下である場合が好ましい。
   フロー率(%)=(M0-M1)/M0×100
 樹脂フロー率を4.5質量%以下とすることにより、表面に凹凸のない滑らかな成形体が得られ、またフローした樹脂の除去に大きな労力を要しないため好ましい。
 また樹脂フロー率を1.0質量%以上とすることにより、樹脂組成物を金型内の隅々まで容易に充填することができるため好ましい。樹脂フロー率を1.0質量%以上4.5質量%以下とすることにより、成形過程におけるプリプレグ中の樹脂組成物と強化繊維の流動を抑制することができるため、より容易に、優れた外観を持つ成形体を得ることができる。
 (強化繊維基材)
 本発明における強化繊維基材は、これを含むプリプレグを用いて得られる繊維強化複合材料の使用目的に応じ、様々なものが使用できる。具体例としては、炭素繊維、黒鉛繊維、アラミド繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維、タングステンカーバイド繊維、ガラス繊維などが挙げられる。これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。このなかでも、比強度、比弾性率に優れる点で、炭素繊維や黒鉛繊維が好適である。
 炭素繊維や黒鉛繊維としては、引張伸度1.5%以上の高強度炭素繊維が、繊維強化複合材料の強度発現のため適している。
 本発明に用いる強化繊維基材の形態は、連続繊維を一方向に引き揃えた形態、連続繊維を経緯にして織物とした形態、トウを一方向に引き揃え横糸補助糸で保持した形態、複数枚の一方向の強化繊維のシートを異なる方向に重ねて補助糸で留めてマルチアキシャルワープニットとした形態、または不織布などが挙げられる。中でもプリプレグの製造しやすさの観点から、連続繊維を一方向に引き揃えた形態、連続繊維を経緯にして織物とした形態、トウを一方向に引き揃え横糸補助糸で保持した形態、また複数枚の一方向の強化繊維のシートを異なる方向に重ねて補助糸で留めてマルチアキシャルワープニットとした形態が好ましい。得られる繊維強化複合材料の強度発現の点では、連続繊維を一方向に引き揃えた形態がさらに好ましい。
 強化繊維基材の目付けは、繊維強化複合材料の使用目的に応じて自由に設定できるが、50g/m以上2000g/m以下が実用的に好ましい範囲である。なお、樹脂組成物の含浸が良好なプリプレグを得るため、50g/m以上600g/m以下であることがより好ましく、50g/m以上300g/m以下であることが更に好ましい。
 (プリプレグの製造方法)
 本発明に係るプリプレグは、公知の方法で製造することができる。例えば、離型紙などの工程剥離材の表面に所定量の本発明の樹脂組成物を塗工し、その表面に強化繊維基材を供給した後、押圧ロールを通過させるなどの手段により強化繊維基材に樹脂組成物を含浸させる、或いは、強化繊維基材に所定量の樹脂組成物を直接塗工した後、必要に応じて前記強化繊維基材を工程剥離材で挟み、押圧ロールを通過させるなどの手段により、強化繊維基材に樹脂組成物を含浸させることによって製造できる。
 (プリプレグ積層体)
 一般にプリプレグをプレス成形する場合は、複数枚のプリプレグを積層してなるプリプレグ積層体を用いる。本発明のプリプレグ積層体は、任意のプリプレグが複数枚積層され、その最外層の少なくとも一方に、本発明の樹脂組成物を含む層が更に積層されたものである。最外層にこのような層を設けることにより、前記プリプレグ積層体をプレス形成することにより得られる成形体の外観が向上するため好ましい。本発明の樹脂組成物を含む層として、具体的には前記樹脂組成物からなる層や、前記樹脂組成物を、繊維目付け5g/m以上50g/m以下の強化繊維不織布に含浸させてなる、強化繊維不織布プリプレグ層(以下、単に「強化繊維不織布プリプレグ層」と称する)が挙げられる。
 前記プリプレグ積層体の、成形型と接する最外層に、強化繊維不織布プリプレグ層を設けることにより、得られる成形体の耐衝撃性が向上するため好ましい。なお、本発明のプリプレグ積層体を構成する強化繊維不織布プリプレグ層以外のプリプレグは、前述した本発明に係るプリプレグであっても、それ以外であってもよいが、前述した本発明のプリプレグが有する利点の観点から、本発明のプリプレグを用いることが好ましい。
 強化繊維不織布の目付けは、比較的薄いものが好ましく、通常5g/m以上50g/m以下程度、好ましくは5g/m以上30g/m以下程度である。
 目付けを下限値以上とすることにより、これを用いて得られる繊維強化複合材料の耐衝撃性が高くなるため好ましい、また、強化繊維不織布自体の取り扱いが容易になる、つまり容易に破れたり皺がよったりしない点でも好ましい。また上限値以下とすることにより、前記プリプレグ積層体をプレス成形して得られる繊維強化複合材料の物性を損なわないため好ましい。前記強化繊維不織布プリプレグ層に含まれる樹脂組成物の目付けは、通常30g/m以上300g/m以下程度、好ましくは50g/m以上200g/m以下程度である。目付けを下限値以上とすることにより、プレス成形して得られる繊維強化複合材料の表面に十分な厚みの樹脂層が形成され、外観が良い成形体を得ることができるため好ましく、上限値以下とすることによりプレス成形して得られる繊維強化複合材料の物性を損なわないため好ましい。
 なお、強化繊維不織布を構成する強化繊維としては、例えば炭素繊維、黒鉛繊維、アラミド繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維、タングステンカーバイド繊維、及びガラス繊維などが挙げられる。これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。このなかでも、価格が安く、線膨張率が小さい点で、ガラス繊維不織布が好適である。
 (成形体の製造)
 本発明に係る成形体は、上述した本発明のプリプレグまたはプリプレグ積層体をプレス成形することにより得られる。
 プレス成形に用いられる金型に特に制限は無く、本発明のプリプレグを高温高圧下で硬化させることのできる金型であればよく、金型を閉じた時に前記金型の内部を気密に保つことのできる構造を有する金型を用いることが好ましい。ここで、気密とは、金型を満たすのに十分な量の成形材料を金型内に入れ、加圧した際にも成形材料を構成するエポキシ樹脂組成物が金型から実質的に漏れ出さないことをいう。
 内部を気密に保つ金型としては、金型を締めた時に上型・下型(雄型・雌型)が接触する部分にシアエッジ構造やゴムシール構造を採用した金型が挙げられる。また、金型の内部を気密に保つものであれば公知のいかなる構造を採用した金型であってもよい。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらによってなんら限定されるものではない。
 樹脂組成物及びプリプレグに用いた原料は以下の通りである。
 (原料)
 <エポキシ樹脂(A)>
・「jER828」(製品名、三菱化学株式会社製、ビスフェノールA型液状エポキシ樹脂)
・「jER834」(製品名、三菱化学株式会社製、ビスフェノールA型半固形エポキシ樹脂)
・「jER1001」(製品名、三菱化学株式会社製、ビスフェノールA型固形エポキシ樹脂)
・「jER1002」(製品名、三菱化学株式会社製、ビスフェノールA型固形エポキシ樹脂)
・「jER1009」(製品名、三菱化学株式会社製、ビスフェノールA型固形エポキシ樹脂)
・「jER1010」(製品名、三菱化学株式会社製、ビスフェノールA型固形エポキシ樹脂)
・「変性エポキシ樹脂」(ビスフェノールA型エポキシ樹脂(エポキシ当量189g/eq、三菱化学(株)製、商品名:jER828)と、4,4’-ジアミノジフェニルスルホン(和歌山精化工業(株)製、商品名:セイカキュアーS)とをjER828/4,4’-ジアミノジフェニルスルホン=100/9の質量比で室温にて混合した後に150℃にて混合加熱して得た反応物であって、エポキシ樹脂と分子内に少なくとも一つの硫黄原子を有するアミン化合物との反応生成物を主成分とする混合物。エポキシ当量266g/eq。)
 <硬化剤(B)>
・「2PHZ-PW」(製品名、四国化成工業株式会社製、2-フェニル-4,5-ジヒドロキシメチルイミダゾール)
・「Hx3742」:(製品名「ノバキュアHx3742」、旭化成ケミカルズ株式会社製、マイクロカプセル型イミダゾール(硬化助剤))
・「Dicy15」(製品名「jERキュア DICY15」、三菱化学株式会社製、ジシアンジアミド)
・「オミキュア24」(製品名「オミキュア24」、ピイ・ティ・アイ・ジャパン社製、トルエンビス(ジメチルウレア)
・「DY9577」(製品名「accelerator DY9577」、ハンツマン・ジャパン社製、三塩化ホウ素オクチルアミン)
 <ビニル重合体粒子(C)>
 後述する方法で調製された重合体粒子(P1)~(P3)及びアクリル重合体粒子1を使用した。
 以下はビニル重合体粒子(C)の製造に用いた原料である。
・MMA:三菱レイヨン(株)製、メチルメタクリレート
・MAA:三菱レイヨン(株)製、メタクリル酸
・n-BMA:三菱レイヨン(株)製、n-ブチルメタクリレート
・t-BMA:三菱レイヨン(株)製、t-ブチルメタクリレート
・2-HEMA:三菱レイヨン(株)製、メタクリル酸2-ヒドロキシエチル
・GMA:三菱レイヨン(株)製、グリシジルメタクリレート
・過硫酸カリウム:シグマアルドリッチジャパン(株)製 試薬特級
・「ぺレックスOT-P」:製品名、花王(株)製、ジアルキルスルホコハク酸ナトリウム
・「ぺレックスSS-L」:製品名、花王(株)製、アルキルジフェニルエーテルジスルホン酸ナトリウム
・AIBN:大塚化学(株)製、2,2’-アゾビスイソブチロニトリル
・「エマルゲン106」:製品名、花王(株)製、ポリオキシエチレンラウリルエーテル
 <その他>
・「PES E2020P」(製品名「ULTRASON E 2020 P」、BASF社製、ポリエーテルスルホン)
・「C-301」(製品名「C-301」、住友化学社製、水酸化アルミニウム)
 <強化繊維基材>
・炭素繊維束1:製品名「TR50S15L」、三菱レイヨン株式会社製、引張強度4.9GPa、引張弾性率240GPa、フィラメント数15000本、目付1.0g/m。
・炭素繊維束2:製品名「TRW4050L」、三菱レイヨン株式会社製、引張強度4.1GPa、引張弾性率240GPa、フィラメント数50000本、目付3.75g/m。
 (重合体粒子(P1)(ビニル重合体粒子(C))の調製)
 温度計、窒素ガス導入管、攪拌棒、滴下漏斗、冷却管を装備した2リットルの4つ口フラスコに、イオン交換水584gを入れ、30分間窒素ガスを充分に通気し、イオン交換水中の溶存酸素を置換した。窒素ガス通気を停止した後、200rpmで攪拌しながら80℃に昇温した。内温が80℃に達した時点でMMA26.1g、n-BMA19.9g、開始剤として過硫酸カリウム0.4gおよびイオン交換水19.6gを添加し(単量体混合物(P1M1))、1時間重合を行った。
 ここに、MMA205.5g、n-BMA194.5g、ぺレックスOT-P3.6g、及びイオン交換水200gを予め混合したもの(単量体混合物(P1M2))を、滴下によって投入した。
 その後、単量体混合物(P1M2)の重合による発熱が見られなくなった後1時間保持し、予め混合しておいた単量体混合物(P1M3)(MMA382.7g、MAA17.3g、ぺレックスOT-P4.0g、エマルゲン106 4.0g、及びイオン交換水200gを混合したもの)を投入した。投入後、80℃にて1時間攪拌を継続して、重合体粒子分散液(P1L1)を得た。
 重合体粒子分散液(P1L1)をL-8型スプレードライヤー(大河原化工機(株)製)を用いて噴霧乾燥し(入口温度/出口温度=150/65℃ディスク回転数25000rpm)、重合体粒子(P1)を得た。得られた重合体粒子(P1)の平均粒子径は0.7μmであった。
 なお、重合体粒子(P1)において、最外の乳化重合体層(i)は単量体混合物(P1M3)の重合により形成された層であり、単量体混合物(P1M1)及び(P1M2)が各々重合してなる部分はその他の乳化重合体層(ii)に相当する。重合体粒子(P1)における質量比(i):(ii)は50:50であった。最外の乳化重合体層(i)のTgは108℃、SP値は20.31[(J/cm1/2]であった。
 また瞬間最大増粘値は2.6Pa・s/℃であり、増粘開始温度は82℃であった。
 (重合体粒子(P2)(ビニル重合体粒子(C))の調製)
 温度計、窒素ガス導入管、攪拌棒、滴下漏斗、冷却管を装備した2リットルの4つ口フラスコに、イオン交換水544gを入れ、30分間窒素ガスを充分に通気し、イオン交換水中の溶存酸素を置換した。窒素ガス通気を停止した後、200rpmで攪拌しながら80℃に昇温した。内温が80℃に達した時点でMMA26.1g、n-BMA19.9g、開始剤として過硫酸カリウム0.4gおよびイオン交換水16.0gを添加し(単量体混合物(P2M1))、1時間重合を行った。
 ここに、MMA334.1g、t-BMA316.1g、2-HEMA21.7g、ぺレックスOT-P6.1g、及びイオン交換水251.2gを予め混合したもの(単量体混合物(P2M2))を、滴下によって投入した。
 その後、単量体混合物(P2M2)の重合による発熱が見られなくなった後1時間保持し、予め混合しておいた単量体混合物(P2M3)(MMA77.0g、2-HEMA3.0g、ぺレックスOT-P0.8g、及びイオン交換水28gを混合したもの)を投入した。投入後、80℃にて1時間攪拌を継続して、重合体粒子分散液(P2L2)を得た。
 重合体粒子分散液(P2L2)をL-8型スプレードライヤー(大河原化工機(株)製)を用いて噴霧乾燥し(入口温度/出口温度=150/65℃ディスク回転数25000rpm)、重合体粒子(P2)を得た。得られた重合体粒子(P2)の平均粒子径は0.7μmであった。
 なお、重合体粒子(P2)において、最外の乳化重合体層(i)は単量体混合物(P2M3)の重合により形成された層であり、単量体混合物(P2M1)及び(P2M2)が各々重合してなる部分はその他の乳化重合体層(ii)に相当する。重合体粒子(P2)における質量比(i):(ii)は10:90であった。最外の乳化重合体層(i)のTgは103℃、SP値は20.29[(J/cm1/2]であった。
 また瞬間最大増粘値は1.6Pa・s/℃であり、増粘開始温度は79℃であった。
 (重合体粒子(P3)(ビニル重合体粒子(C))の調製)
 温度計、窒素ガス導入管、攪拌棒、滴下漏斗、冷却管を装備した2リットルの4つ口フラスコに、イオン交換水544gを入れ、30分間窒素ガスを充分に通気し、イオン交換水中の溶存酸素を置換した。窒素ガス通気を停止した後、200rpmで攪拌しながら80℃に昇温した。内温が80℃に達した時点でMMA26.1g、n-BMA19.9g、開始剤として過硫酸カリウム0.16gおよびイオン交換水20.0gを添加し(単量体混合物(P3M1))、1時間重合を行った。
 ここに、MMA317.4g、n-BMA242.6g、GMA4.0g、ぺレックスOT-P4.0g、エマルゲン106を1.6g、AIBN0.24g及びイオン交換水280.0gを予め混合したもの(単量体混合物(P3M2))と、開始剤として過硫酸カリウム1.6gおよびイオン交換水40.0gを添加したものを、滴下によって投入した。
 その後、単量体混合物(P3M2)の重合による発熱が見られなくなった後1時間保持し、予め混合しておいた単量体混合物(P3M3)(MMA219.1g、MAA20.9g、OTG0.9g、ぺレックスOT-P2.4g、エマルゲン106を2.4g、及びイオン交換水120gを混合したもの)を投入した。投入後、80℃にて1時間攪拌を継続して重合を行った。
 その後、単量体混合物(P3M3)の重合による発熱が見られなくなった後、単量体混合物(P3M4)(MAA3.1g、イオン交換水62.5g)を投入した。投入後、80℃にて1時間攪拌を継続して、重合体粒子分散液(P3L3)を得た。
 重合体粒子分散液(P3L3)をL-8型スプレードライヤー(大河原化工機(株)製)を用いて噴霧乾燥し(入口温度/出口温度=150/65℃ディスク回転数25000rpm)、重合体粒子(P3)を得た。得られた重合体粒子(P3)の平均粒子径は0.7μmであった。
 なお、重合体粒子(P3)において、最外の乳化重合体層(i)は単量体混合物(P3M3)および(P3M4)の重合により形成された層であり、単量体混合物(P3M1)及び(P3M2)が各々重合してなる部分はその他の乳化重合体層(ii)に相当する。重合体粒子(P3)における質量比(i):(ii)は30:70であった。最外の乳化重合体層(i)のTgは111℃、SP値は20.48[(J/cm1/2]であった。
 また瞬間最大増粘値は0.7Pa・s/℃であり、増粘開始温度は89℃であった。
 (アクリル重合体粒子1(ビニル重合体粒子(C))の調製)
 温度計、窒素ガス導入管、攪拌棒、滴下漏斗、冷却管を装備した2リットルの4つ口フラスコに、イオン交換水1056g、を入れ、30分間窒素ガスを充分に通気し、イオン交換水中の溶存酸素を置換した。窒素ガス通気を停止した後、200rpmで攪拌しながら70℃に昇温した。内温が70℃に達した時点でぺレックスSS-L6.4g/イオン交換水63.8g、過硫酸カリウム1.6g/イオン交換水48.0gを加え、MMA200g開始剤としてぺレックスOT-P2.0gおよびイオン交換水16.0gを添加し(単量体混合物(P4M1))、1時間重合を行った。
 ここに、MMA600g、ぺレックスOT-P6.0g及びイオン交換水16.0gを予め混合したもの(単量体混合物(P4M2))を、滴下によって投入した。
 その後、単量体混合物(P4M2)の重合による発熱が見られなくなった後、80℃で1時間保持した。60分間保持した後に冷却し、冷却後中和剤として、予め混合しておいた炭酸ナトリウム0.2gとイオン交換水12.0gを混合したものを投入した。投入後、80℃にて1時間攪拌を継続して撹拌を行い、重合体粒子分散液(P4L4)を得た。
 重合体粒子分散液(P4L4)をL-8型スプレードライヤー(大河原化工機(株)製)を用いて噴霧乾燥し(入口温度/出口温度=150/65℃ディスク回転数25000rpm)、アクリル重合体粒子1を得た。得られた重合体粒子(P4)の平均粒子径は0.1μmであった。
 なお、アクリル重合体粒子1のTgは105℃、SP値は20.32[(J/cm1/2]であった。
 また瞬間最大増粘値は4.6Pa・s/℃であり、増粘開始温度は66℃であった。
 (硬化剤マスターバッチの調製)
 [硬化剤マスターバッチ1]
 硬化剤である「2PHZ-PW」と、これに対して質量比で2:3の割合となるようにjER828を容器に計量し、攪拌・混合した。これを三本ロールミルにてさらに細かく混合して、硬化剤マスターバッチ1を得た。
 [硬化剤マスターバッチ2]
 硬化剤である「Dicy15」と、硬化助剤である「オミキュア24」と、「jER828」を質量比で7:4:12の割合となるように容器に計量し、攪拌・混合した。これを三本ロールミルにてさらに細かく混合して、硬化剤マスターバッチ2を得た。
 (測定・評価方法)
 <ビニル重合体粒子(C)の平均粒子径>
 ビニル重合体粒子(C)のエマルションをイオン交換水で希釈し、レーザー回折散乱式粒度分布測定装置((株)堀場製作所製LA-910W)を用い、エマルション粒子径として体積平均一次粒子径を測定した。
 <ビニル重合体粒子(C)のシェル及びコアのTgの求め方>
 Tgは以下のFOXの式(2)から求められる値とする。具体的には重合体が単独重合体の場合は、高分子学会編「高分子データハンドブック」に記載されている標準的な分析値を採用し、n種類の単量体の共重合体である場合は、各単量体のTgから算出した。表1に、代表的な単独重合体のTgの文献値を示した。
Figure JPOXMLDOC01-appb-M000002
 式中のTgはビニル重合体粒子のガラス転移温度(℃)、Tgiはi成分の単独重合体のガラス転移温度(℃)、Wiはi成分の質量比率、ΣWi=1を示す。
Figure JPOXMLDOC01-appb-T000003
 <ビニル重合体粒子(C)のシェル及びコアのSP値の求め方>
 SP値は、シェル及びコアを構成するポリマーにおける繰り返し単位の、単量体のSP値(Sp(Ui))を以下の式(3)に代入して求めた。Sp(Ui)はPolymer Engineering and Science,Vol.14,147(1974)に記載されているFedorsの方法にて求めた。尚、表1に代表的な単量体のSP値(Sp(Ui))を示した。(但し、GMAのSP値については特開2000-1633号公報に記載の値を採用した。)
Figure JPOXMLDOC01-appb-M000004
 式中、Miは単量体単位i成分のモル分率を示し、ΣMi=1である。
 <瞬間最大増粘値の測定>
 jER828(エポキシ当量186であるビスフェノールA型エポキシ樹脂)100質量部と、先に調製したビニル重合体粒子(C)10質量部を混合して得られる試料樹脂組成物に対し、以下の条件で、レオメーター「VAR-100」(ティー・エイ・インスツルメント社製)にて粘度測定を行った。
   測定モード:応力一定。応力値300Pa
   周波数:10rad/秒
   プレート径:25mm
   プレートタイプ:パラレルプレート
   プレートギャップ:0.5mm
   測定開始時のプレート温度:30℃
   昇温速度:2℃/分
   測定間隔:30秒
 n+1回目の測定時の温度をTn+1(℃)、粘度をVn+1(Pa・s)とし、n回目の測定時の温度をT(℃)、粘度をV(Pa・s)としたときに、下記式で表される瞬間増粘値An+1の最大値を瞬間最大増粘値とした。
   An+1=(Vn+1-V)/(Tn+1-T
 <樹脂組成物の粘度測定>
 各実施例及び比較例にて得られた樹脂組成物の30℃における粘度及び最低粘度を、以下の測定条件で測定した。
・装置:レオメーター(ティー・エイ・インスツルメント社製、「VAR-100」)
  測定モード:応力一定。応力値300Pa
  周波数:10rad/秒
  プレート径:25mm
  プレートタイプ:パラレルプレート
  プレートギャップ:0.5mm
  測定開始時のプレート温度:30℃
  昇温速度:2℃/分
 <増粘開始温度の測定>
 前記瞬間最大増粘値の測定と同様に試料樹脂組成物を調製し、粘度測定を行った。得られた昇温粘度カーブから、増粘が起こる直前の最低粘度となる温度を増粘開始温度とした。
 <樹脂フロー率の測定>
 各実施例および比較例にて得られた一方向プリプレグを、298mm(繊維と並行方向)×298mm(繊維と直行方向)の寸法にカットし、繊維方向をそろえて5ply積層したプリプレグ積層体とし、その質量をM0とした。前記プリプレグ積層体にかかる面圧8MPa、金型温度140℃、成形時間5分の条件でプレス成形後、バリを除いた平板プレス成形体の質量をM1とした際に、以下の式によって算出される値をフロー率(質量%)とした。
   樹脂フロー率(%)=(M0-M1)/M0×100
 <エポキシ樹脂(A)の各製品における分子量の分画>
 下記条件で、エポキシ樹脂(A)の各製品の成分を、GPCにて分取した。
 分取した各フラクションの重量平均分子量をそのフラクションの分子量とし、ピーク面積と全ピーク面積の比から、そのフラクションの質量割合を算出した。
   装置 : HLC-8020(コンポーネントシステム) (東ソー製)
   ポンプ : DP-8020(コンピューターコントロールデュアルポンプ 2台)
   オンラインデガッサー : SD-8022
   オートサンプラー : AS-8020
   RI検出器 : RI-8020
   UV検出器 : UV-8020
   フラクションコレクター : FC-8020
   カラム条件 : TSK-GEL G3000(21.5mmID×60cmL)×2本、ガードカラム付
   流速 : 4.0ml/分(2.0ml/分×2)
   移動相 : クロロホルム
   カラム温度 : 室温
   注入量 : 1.0ml
   濃度 : 6質量%
 なお、以下の実施例及び比較例で使用したエポキシ樹脂(A)における、分子量100以上480以下のエポキシ樹脂(a1)の含有率(質量%)と、分子量2000以上40000以下のエポキシ樹脂(a2)の含有率(質量%)を表2に示す。
Figure JPOXMLDOC01-appb-T000005
 <プレス成形体の外観>
 プレス成形後の平板プレス成形体の表面を観察し、良好な場合はA評価とし、強化繊維に沿った筋がわずかに表面に生じている場合をB評価、はっきりと表面に筋が生じている場合はC評価とした。
 [実施例1]
 溶解釜にjER828を37質量部とjER1001を50質量部計量し、溶解釜を80℃に加熱し混合した後60℃程度まで冷却した。引き続き、この溶解釜に先に調製した硬化剤マスターバッチ1を21.7質量部、重合体粒子(P1)を5質量部加え、60℃で攪拌し樹脂組成物1を得た。
 得られた樹脂組成物1について、粘度を測定したところ、30℃における粘度は2.9×10Pa・sあり、最低粘度は87℃において1.8×10Pa・sであった。
 得られた樹脂組成物1を、ヒラノテクシード製マルチコーター M-500型を用い、60℃で離型紙上に塗布して、樹脂フィルムを得た。
 得られた樹脂フィルムの樹脂塗布面上に炭素繊維束1をドラムワインドにて巻き付け、同じフィルムで挟み込み、樹脂組成物1を含浸させることにより、一方向プリプレグを得た。得られたプリプレグについて、目付けを測定したところ、繊維含有量は278g/mであり、樹脂含有率は28.3%(質量%。以下同様)であった。
 得られたプリプレグのプレス成形時の樹脂フロー量(フロー率(%))を測定した。得られたプレス成形体の外観は良好(A評価)であった。結果を表3に示す。
 [実施例2]
 重合体粒子(P1)の量を10質量部とした以外は、実施例1と同様に樹脂組成物を調製し、樹脂組成物2を得た。
 得られた樹脂組成物2について、粘度を測定したところ、30℃における粘度は2.1×10Pa・sであり、最低粘度は84℃において2.2×10Pa・sであった。
 得られた樹脂組成物2と炭素繊維束1を用いて、実施例1と同様にプリプレグを得た。得られたプリプレグについて、目付けを測定したところ、繊維含有量は260g/mであり、樹脂含有率は28.7%であった。
 得られたプリプレグのプレス成形時の樹脂フロー量(フロー率(%))を測定した。得られたプレス成形体の外観は良好(A評価)であった。結果を表3に示す。
 [実施例3]
 溶解釜にjER828を57質量部とjER1002を20質量部とjER1009を10質量部計量し、溶解釜を150℃に加熱し混合した後60℃程度まで冷却した。引き続き、この溶解釜に先に調製した硬化剤マスターバッチ1を21.7質量部、重合体粒子(P1)を5質量部加え、60℃で攪拌し樹脂組成物3を得た。
 得られた樹脂組成物3について、粘度を測定したところ、30℃における粘度は1.4×10Pa・sであり、最低粘度は85℃において2.9×10Pa・sであった。
 得られた樹脂組成物3と炭素繊維束1を用いて、実施例1と同様にプリプレグを得た。得られたプリプレグについて、目付けを測定したところ、繊維含有量は261g/mであり、樹脂含有率は28.9%であった。
 得られたプリプレグのプレス成形時の樹脂フロー量(フロー率(%))を測定した。得られたプレス成形体の外観は良好(A評価)であった。結果を表3に示す。
 [実施例5、6]
 表3に示す樹脂組成で実施例1と同様に樹脂組成物を調整し、樹脂組成物5および6を得た。得られた樹脂組成物の30℃における粘度および最低粘度を表3に示す。
 得られた樹脂組成物5と炭素繊維束1を用いて、実施例1と同様にプリプレグを得た。得られたプリプレグについて、目付けを測定したところ、繊維含有量は253g/mであり、樹脂含有率は30.7%であった。
 得られた樹脂組成物6と炭素繊維束1を用いて、実施例1と同様にプリプレグを得た。得られたプリプレグについて、目付けを測定したところ、繊維含有量は252g/mであり、樹脂含有率は29.9%であった。
 [実施例7]
 表3に示す樹脂組成で実施例3と同様に樹脂組成物を調整し、樹脂組成物7を得た。得られた樹脂組成物の30℃における粘度および最低粘度を表3に示す。
 得られた樹脂組成物7と炭素繊維束1を用いて、実施例1と同様にプリプレグを得た。得られたプリプレグについて、目付けを測定したところ、繊維含有量は257g/mであり、樹脂含有率は29.0%であった。
 [比較例1]
 重合体粒子(P1)を配合しない点以外は実施例1と同様に樹脂組成物を調製し、樹脂組成物31を得た。
 得られた樹脂組成物31について、粘度を測定したところ、30℃における粘度は1.3×10Pa・sであり、最低粘度は103℃において7.4×10-1Pa・sであった。
 得られた樹脂組成物31と炭素繊維束1を用いて、実施例1と同様にプリプレグを得た。得られたプリプレグについて、目付けを測定したところ、繊維含有量は282g/mであり、樹脂含有率は29.0%であった。
 得られたプリプレグのプレス成形時の樹脂フロー量(フロー率(%))を測定した。得られたプレス成形体の表面には強化繊維に沿った筋が生じており、外観は良好ではなかった(C評価)。結果を表3に示す。
 [比較例3、4]
 表3に示す樹脂組成で実施例1と同様に樹脂組成物を調整し、比較例3は樹脂組成物33および比較例4は樹脂組成物34を得た。得られた樹脂組成物の30℃における粘度および最低粘度を表3に示す。
 得られた樹脂組成物33と炭素繊維束1を用いて、実施例1と同様にプリプレグを得た(比較例3)。得られたプリプレグについて、目付けを測定したところ、繊維含有量は252g/mであり、樹脂含有率は32.5%であった。
 得られたプリプレグのプレス成形時の樹脂フロー量(フロー率(%))を測定した。得られたプレス成形体の表面には強化繊維に沿った筋が生じており、外観は良好ではなかった(C評価)。結果を表3に示す。
 得られた樹脂組成物34と炭素繊維束1を用いて、実施例1と同様にプリプレグを得ようとしたが、樹脂組成物の粘度が低く、樹脂フィルムが作成できなかった(比較例4)。
Figure JPOXMLDOC01-appb-T000006
 [実施例8~10、比較例5]
 表4に示す樹脂組成で実施例1と同様に樹脂組成物を調整し、樹脂組成物8~10(各々実施例8~10に対応)および樹脂組成物35(比較例5に対応)を得た。得られた樹脂組成物の30℃における粘度および最低粘度を表4に示す。
 得られた樹脂組成物8~10および樹脂組成物35と炭素繊維束1を用いて、実施例1と同様にプリプレグをそれぞれ得た。得られたプリプレグについて、目付けを測定したところ、繊維含有量及び樹脂含有率は各々252g/m、29.1%(実施例8)、251g/m、30.2%(実施例9)、249g/m、29.4%(実施例10)、及び246g/m、29.8%(比較例5)であった。
 次いで各プリプレグのプレス成形時の樹脂フロー量(フロー率(%))を測定した。結果を表4に示す。比較例5の樹脂組成物35と炭素繊維束1を用いて得られたプレス成形体の表面には強化繊維に沿った筋が生じており、外観は良好ではなかった(C評価)。
Figure JPOXMLDOC01-appb-T000007
 [実施例11~13]
 表5に示す樹脂組成で実施例1と同様に樹脂組成物を調整し、樹脂組成物11~13を得た。得られた樹脂組成物の30℃における粘度および最低粘度を表5に示す。
 得られた樹脂組成物11~13と炭素繊維束1を用いて、実施例1と同様にプリプレグをそれぞれ得た。得られたプリプレグについて、目付けを測定したところ、繊維含有量及び樹脂含有率は、各々248g/m、29.8%(実施例11)、243g/m、29.8%(実施例12)、及び241g/m、30.9%(実施例13)であった。
 次いで各プリプレグのプレス成形時の樹脂フロー量(フロー率(%))を測定した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000008
 [実施例14~17]
 表6に示す樹脂組成で実施例1と同様に樹脂組成物を調整し、樹脂組成物14~17(各々実施例14~17に対応)を得た。得られた樹脂組成物の30℃における粘度および最低粘度を表6に示す。
 得られた樹脂組成物14と炭素繊維束1を用いて、実施例1と同様にプリプレグをそれぞれ得た(実施例14)。得られたプリプレグについて、目付けを測定したところ、繊維含有量は247g/mであり、樹脂含有率は30.4%であった。
 得られた樹脂組成物15と炭素繊維束2を用いて、実施例1と同様にプリプレグをそれぞれ得た(実施例15)。得られたプリプレグについて、目付けを測定したところ、繊維含有量は265g/mであり、樹脂含有率は30.0%であった。
 得られた樹脂組成物16、17と炭素繊維束1を用いて、実施例1と同様にプリプレグをそれぞれ得た(実施例16及び17)。得られたプリプレグについて、目付けを測定したところ、繊維含有量は263g/m、269g/mであり、樹脂含有率は28.6%、29.7%であった。
 次いで各プリプレグのプレス成形時の樹脂フロー量(フロー率(%))を測定した。結果を表6に示す。
 [実施例18]
 表6に示す樹脂組成で、硬化剤マスターバッチ2を使用した以外は実施例1と同様に樹脂組成物を調整し、樹脂組成物18を得た。得られた樹脂組成物の30℃における粘度および最低粘度を表6に示す。
 得られた樹脂組成物18と炭素繊維束1を用いて、実施例1と同様にプリプレグをそれぞれ得た。得られたプリプレグについて、目付けを測定したところ、繊維含有量は249g/mであり、樹脂含有率は30.9%であった。
 次いで各プリプレグのプレス成形時の樹脂フロー量(フロー率(%))を測定した。結果を表6に示す。
 [実施例19]
 表6に示す樹脂組成で硬化剤としてDY9577を使用した以外は実施例1と同様に樹脂組成物を調整し、樹脂組成物19を得た。得られた樹脂組成物の30℃における粘度および最低粘度を表6に示す。
 得られた樹脂組成物19と炭素繊維束1を用いて、実施例1と同様にプリプレグをそれぞれ得た。得られたプリプレグについて、目付けを測定したところ、繊維含有量は248g/mであり、樹脂含有率は31.1%であった。
 次いで各プリプレグのプレス成形時の樹脂フロー量(フロー率(%))を測定した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000009
 [実施例4]
 樹脂組成物1を、ヒラノテクシード製マルチコーター M-500型を用い、60℃で離型紙上に塗布して、165g/mの樹脂フィルム1を得た。得られた樹脂フィルム1をガラス繊維不織布(10g/m、H&V社製)に含浸させて、ガラス繊維含有樹脂フィルム1を得た。
 繊維方向をそろえて5ply積層したパイロフィルプリプレグTR366E250S(三菱レイヨン社製)の表面に、得られたガラス繊維含有樹脂フィルム1を配置し積層体1とし、前記積層体1にかかる面圧8MPa、金型温度140℃、成形時間5分の条件でプレス成形をおこなった。
 得られたプレス成形体の外観は良好(A評価)であった。結果を表7に示す。
 [実施例20]
 実施例4で得られた樹脂フィルム1を使用し、ガラス繊維不織布に含浸させず、そのまま使用した以外は、実施例4と同様に積層体3を作製し、これを用いて実施例4と同様にプレス成形を行った。得られたプレス成形体の外観は良好(A評価)であった。結果を表7に示す。
 [比較例2]
 樹脂組成物31を使用した以外は実施例4と同様に173g/mの樹脂フィルム2、ガラス繊維含有樹脂フィルム2得た。
 ガラス繊維含有樹脂フィルム2を使用した以外は実施例4と同様に積層体2を作製し、実施例4と同様の条件でプレス成形をおこなった。
 得られたプレス成形体の表面には強化繊維に沿って筋が生じており、外観は良好ではなかった(C評価)。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000010
 本発明によると、成形時の樹脂フロー量(フロー率(%))が適正で、ドレープ性の良いプリプレグとこれを用いたプレス成形体、及び前記プリプレグを作製しうる、強化繊維基材への含浸性が良好な樹脂組成物を得ることができる。

Claims (16)

  1.  エポキシ樹脂(A)、硬化剤(B)及びビニル重合体粒子(C)を含み、
     分子量100以上480以下であるエポキシ樹脂(a1)の含有量が、前記エポキシ樹脂(A)100質量部中30質量部以上90質量部以下であり、
     分子量2000以上40000以下であるエポキシ樹脂(a2)の含有量が、前記エポキシ樹脂(A)100質量部中10質量部以上70質量部以下であり、
     前記ビニル重合体粒子(C)の含有量が、前記エポキシ樹脂(A)100質量部に対し2質量部以上30質量部以下であり、
     前記ビニル重合体粒子(C)の瞬間最大増粘値が0.3Pa・s/℃以上5.0Pa・s/℃以下である樹脂組成物。
  2.  30℃における粘度が1.0×10Pa・s以上1.0×10Pa・s以下であり、かつ昇温速度2℃/分で測定した最低粘度が0.8Pa・s以上10Pa・s以下である、請求項1に記載の樹脂組成物。
  3.  エポキシ樹脂(A)、硬化剤(B)及びビニル重合体粒子(C)を含み、
     30℃における粘度が1.0×10Pa・s以上1.0×10Pa・s以下であり、
     昇温速度2℃/分で測定した最低粘度が0.8Pa・s以上10Pa・s以下であり、
     前記ビニル重合体粒子(C)の含有量が、前記エポキシ樹脂(A)100質量部に対し2質量部以上30質量部以下であり、
     前記ビニル重合体粒子(C)の瞬間最大増粘値が0.3Pa・s/℃以上5.0Pa・s/℃以下である樹脂組成物。
  4.  前記ビニル重合体粒子(C)が、コア層及びシェル層がいずれもアクリル樹脂からなるコアシェル粒子を含む、請求項1~3のいずれか一項に記載の樹脂組成物。
  5.  前記コアシェル粒子におけるシェル層の、ガラス転移温度が85℃以上115℃以下であり、
     溶解パラメーターの値(SP値)が20.20[(J/cm1/2]以上20.50[(J/cm1/2]以下であり、
     コア層とシェル層の質量比が、コア:シェル=90:10~50:50である、請求項4に記載の樹脂組成物。
  6.  前記ビニル重合体粒子(C)が、異なる組成のビニル単量体混合物を2段階以上で乳化重合し、得られたビニル重合体のエマルションを噴霧乾燥して得られる粒子である、請求項1~3のいずれか一項に記載の樹脂組成物。
  7.  前記異なる組成のビニル単量体混合物が、いずれも、官能基を有していても良い(メタ)アクリレート及び(メタ)アクリル酸からなる群より選ばれた単量体からなる混合物である、請求項6に記載の樹脂組成物。
  8.  前記ビニル重合体粒子(C)における、最外の乳化重合体層(i)の、ガラス転移温度が85℃以上115℃以下であり、
     溶解パラメーターの値(SP値)が20.20[(J/cm1/2]以上20.50[(J/cm1/2]以下であり、
     最外の乳化重合体層(i)と、それ以外の乳化重合体層(ii)の質量比が、(i):(ii)=90:10~50:50である、請求項6または7に記載の樹脂組成物。
  9.  前記ビニル重合体粒子(C)の平均粒子径が0.5μm以上1.0μm以下である、請求項1~8いずれか一項に記載の樹脂組成物。
  10.  前記硬化剤(B)がイミダゾール化合物、ジシアンジアミド、及び三塩化ホウ素アミン錯体のうち少なくとも1つを含む、請求項1~9いずれか一項に記載の樹脂組成物。
  11.  請求項1~10のいずれか一項に記載の樹脂組成物と、強化繊維基材からなるプリプレグ。
  12.  任意のプリプレグが複数枚積層され、その最外層の少なくとも一方に、請求項1~10のいずれか一項に記載の樹脂組成物からなる層が更に積層されてなる、プリプレグ積層体。
  13.  任意のプリプレグが複数枚積層され、その最外層の少なくとも一方に、請求項1~10のいずれか一項に記載の樹脂組成物を、繊維目付5g/m以上50g/m以下の強化繊維不織布に含浸させてなる、強化繊維不織布プリプレグ層が更に積層された、プリプレグ積層体。
  14.  前記任意のプリプレグが、請求項11に記載のプリプレグである、請求項12又は13に記載のプリプレグ積層体。
  15.  請求項11に記載のプリプレグを、プレス成形することにより得られる成形体。
  16.  請求項12~14のいずれか一項に記載のプリプレグ積層体を、プレス成形することにより得られる成形体。
PCT/JP2015/079060 2014-10-16 2015-10-14 樹脂組成物およびそのプレス成形体 WO2016060166A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15851424.0A EP3208309B1 (en) 2014-10-16 2015-10-14 Resin composition and press-molded article of same
CN201580032677.6A CN106459561B (zh) 2014-10-16 2015-10-14 树脂组合物及其加压成型体
US15/509,574 US10363724B2 (en) 2014-10-16 2015-10-14 Resin composition and compression-molded article of same
JP2015552945A JP6094686B2 (ja) 2014-10-16 2015-10-14 樹脂組成物およびそのプレス成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014211346 2014-10-16
JP2014-211346 2014-10-16

Publications (1)

Publication Number Publication Date
WO2016060166A1 true WO2016060166A1 (ja) 2016-04-21

Family

ID=55746708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079060 WO2016060166A1 (ja) 2014-10-16 2015-10-14 樹脂組成物およびそのプレス成形体

Country Status (5)

Country Link
US (1) US10363724B2 (ja)
EP (1) EP3208309B1 (ja)
JP (1) JP6094686B2 (ja)
CN (1) CN106459561B (ja)
WO (1) WO2016060166A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016820A (ja) * 2015-05-13 2018-02-01 三菱ケミカル株式会社 シートモールディングコンパウンド及び繊維強化複合材料
WO2018043490A1 (ja) * 2016-08-29 2018-03-08 三菱ケミカル株式会社 熱硬化性樹脂組成物、プリプレグ、及び繊維強化プラスチック成形体とその製造方法
JP2018086755A (ja) * 2016-11-28 2018-06-07 キョーラク株式会社 構造体の製造方法
WO2018117214A1 (ja) * 2016-12-21 2018-06-28 三菱ケミカル株式会社 硬化性樹脂組成物、並びにこれを用いたフィルム、成形品、プリプレグ及び繊維強化プラスチック
JP6354884B1 (ja) * 2017-03-13 2018-07-11 横浜ゴム株式会社 シアネートエステル樹脂組成物およびプリプレグ
JP2018154780A (ja) * 2017-03-21 2018-10-04 三菱ケミカル株式会社 プリプレグ及び炭素繊維強化複合材料

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10647849B2 (en) * 2015-03-31 2020-05-12 Toho Tenax Co., Ltd. Epoxy resin composition, prepreg, carbon fiber-reinforced composite material, and manufacturing methods therefor
IT201800010629A1 (it) * 2018-11-27 2020-05-27 Microtex Composites S R L Prepreg per componenti estetici ad alta resistenza termica e privi di difetti quali macchie e puntini e loro metodo di produzione.
JP7088143B2 (ja) * 2019-08-23 2022-06-21 横浜ゴム株式会社 プリプレグおよびその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925393A (ja) * 1995-05-09 1997-01-28 Toray Ind Inc 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JPH10237196A (ja) * 1997-02-28 1998-09-08 Nippon Oil Co Ltd トウプリプレグ
JPH115887A (ja) * 1997-04-21 1999-01-12 Toray Ind Inc 繊維強化複合材料用樹脂組成物、プリプレグおよび繊維強化複合材料
JP2001026720A (ja) * 1999-05-13 2001-01-30 Toray Ind Inc 繊維強化複合材料用樹脂組成物、プリプレグ及び繊維強化複合材料
JP2006257391A (ja) * 2005-02-18 2006-09-28 Mitsubishi Rayon Co Ltd 繊維強化複合材料用エポキシ樹脂組成物
JP2012036347A (ja) * 2010-08-11 2012-02-23 Jx Nippon Oil & Energy Corp ベンゾオキサジン樹脂組成物及び繊維強化複合材料
WO2013094759A1 (ja) * 2011-12-21 2013-06-27 三菱レイヨン株式会社 重合体粉体、硬化性樹脂組成物及びその硬化物
JP2013224448A (ja) * 2006-06-30 2013-10-31 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU618517B2 (en) 1986-12-23 1992-01-02 Eugene J. Van Scott Additives enhancing topical actions of therapeutic agents
US4985530A (en) * 1988-07-29 1991-01-15 Tonen Corporation Thermosetting epoxy resin composition
JPH0867804A (ja) * 1994-08-31 1996-03-12 Meidensha Corp 耐熱性滴下含浸樹脂
TW359642B (en) 1997-04-21 1999-06-01 Toray Industries Resin composition for fiber-reinforced complex material, prepreg and fiber-reinforced complex material
TWI435887B (zh) 2008-02-26 2014-05-01 Toray Industries 環氧樹脂組成物、預浸透物及纖維強化複合材料
KR101841797B1 (ko) * 2010-12-13 2018-03-23 도레이 카부시키가이샤 탄소 섬유 프리프레그 및 그의 제조 방법, 탄소 섬유 강화 복합 재료
DK2682429T3 (da) * 2011-03-03 2019-05-27 Mitsubishi Chem Corp Fremgangsmåde til at fremstille en prepreg
WO2016182077A1 (ja) * 2015-05-13 2016-11-17 三菱レイヨン株式会社 シートモールディングコンパウンド及び繊維強化複合材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925393A (ja) * 1995-05-09 1997-01-28 Toray Ind Inc 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JPH10237196A (ja) * 1997-02-28 1998-09-08 Nippon Oil Co Ltd トウプリプレグ
JPH115887A (ja) * 1997-04-21 1999-01-12 Toray Ind Inc 繊維強化複合材料用樹脂組成物、プリプレグおよび繊維強化複合材料
JP2001026720A (ja) * 1999-05-13 2001-01-30 Toray Ind Inc 繊維強化複合材料用樹脂組成物、プリプレグ及び繊維強化複合材料
JP2006257391A (ja) * 2005-02-18 2006-09-28 Mitsubishi Rayon Co Ltd 繊維強化複合材料用エポキシ樹脂組成物
JP2013224448A (ja) * 2006-06-30 2013-10-31 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2012036347A (ja) * 2010-08-11 2012-02-23 Jx Nippon Oil & Energy Corp ベンゾオキサジン樹脂組成物及び繊維強化複合材料
WO2013094759A1 (ja) * 2011-12-21 2013-06-27 三菱レイヨン株式会社 重合体粉体、硬化性樹脂組成物及びその硬化物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3208309A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020073698A (ja) * 2015-05-13 2020-05-14 三菱ケミカル株式会社 シートモールディングコンパウンド及び繊維強化複合材料
JP2018016820A (ja) * 2015-05-13 2018-02-01 三菱ケミカル株式会社 シートモールディングコンパウンド及び繊維強化複合材料
US10494475B2 (en) 2015-05-13 2019-12-03 Mitsubishi Chemical Corporation Sheet-molding compound and fiber-reinforced composite material
CN109563239A (zh) * 2016-08-29 2019-04-02 三菱化学株式会社 热固性树脂组合物、预成型料、以及纤维增强塑料成型体及其制造方法
WO2018043490A1 (ja) * 2016-08-29 2018-03-08 三菱ケミカル株式会社 熱硬化性樹脂組成物、プリプレグ、及び繊維強化プラスチック成形体とその製造方法
JPWO2018043490A1 (ja) * 2016-08-29 2018-08-30 三菱ケミカル株式会社 熱硬化性樹脂組成物、プリプレグ、及び繊維強化プラスチック成形体とその製造方法
CN114621560A (zh) * 2016-08-29 2022-06-14 三菱化学株式会社 热固性树脂组合物、预成型料、以及纤维增强塑料成型体及其制造方法
US11292874B2 (en) 2016-08-29 2022-04-05 Mitsubishi Chemical Corporation Thermosetting resin composition, prepreg, fiber-reinforced plastic molded body and method for producing same
EP3505552A4 (en) * 2016-08-29 2019-07-24 Mitsubishi Chemical Corporation PRE-IMPREGNATED THERMOSETTING RESIN COMPOSITION, FIBER REINFORCED PLASTIC MOLDED OBJECT, AND METHOD OF MANUFACTURING THE SAME
JP2018086755A (ja) * 2016-11-28 2018-06-07 キョーラク株式会社 構造体の製造方法
WO2018117214A1 (ja) * 2016-12-21 2018-06-28 三菱ケミカル株式会社 硬化性樹脂組成物、並びにこれを用いたフィルム、成形品、プリプレグ及び繊維強化プラスチック
JPWO2018117214A1 (ja) * 2016-12-21 2018-12-20 三菱ケミカル株式会社 硬化性樹脂組成物、並びにこれを用いたフィルム、成形品、プリプレグ及び繊維強化プラスチック
US11161975B2 (en) 2016-12-21 2021-11-02 Mitsubishi Chemical Corporation Curable resin composition, and film, molded article, prepreg, and fiber-reinforced plastic using said curable resin composition
JP6354884B1 (ja) * 2017-03-13 2018-07-11 横浜ゴム株式会社 シアネートエステル樹脂組成物およびプリプレグ
US10723880B2 (en) 2017-03-13 2020-07-28 The Yokohama Rubber Co., Ltd. Cyanate ester resin composition and prepreg
JP2018150445A (ja) * 2017-03-13 2018-09-27 横浜ゴム株式会社 シアネートエステル樹脂組成物およびプリプレグ
WO2018168461A1 (ja) * 2017-03-13 2018-09-20 横浜ゴム株式会社 シアネートエステル樹脂組成物およびプリプレグ
JP2018154780A (ja) * 2017-03-21 2018-10-04 三菱ケミカル株式会社 プリプレグ及び炭素繊維強化複合材料

Also Published As

Publication number Publication date
JPWO2016060166A1 (ja) 2017-04-27
US20170282516A1 (en) 2017-10-05
US10363724B2 (en) 2019-07-30
EP3208309A1 (en) 2017-08-23
CN106459561A (zh) 2017-02-22
CN106459561B (zh) 2020-02-14
EP3208309A4 (en) 2017-11-08
EP3208309B1 (en) 2020-11-25
JP6094686B2 (ja) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6094686B2 (ja) 樹脂組成物およびそのプレス成形体
JP6879394B2 (ja) シートモールディングコンパウンドの製造方法及びシートモールディングコンパウンド
EP3162842B1 (en) Tow prepreg, composite pressure vessel, and method for manufacturing same
JP6131332B2 (ja) 熱硬化性樹脂組成物、プリプレグ及びこれらを用いる繊維強化複合材料の製造方法
US8658736B2 (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP5940462B2 (ja) ポリマー微粒子分散樹脂組成物、及びその製造方法
JP5564870B2 (ja) エポキシ樹脂組成物、プリプレグ、および繊維強化複合材料
JP3796953B2 (ja) 繊維強化複合材料用樹脂組成物、プリプレグおよび繊維強化複合材料
JP2012149237A (ja) 熱硬化性樹脂組成物、プリプレグ、および繊維強化複合材料
JP5099998B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP7239401B2 (ja) 炭素繊維束、プリプレグ、繊維強化複合材料
JP2019089951A (ja) トウプリプレグ、繊維強化複合材料及び複合材料補強圧力容器とその製造方法
JP2018172603A (ja) 樹脂組成物及びその製造方法、プリプレグ、並びに成型体
JP2022180746A (ja) 複合材料およびプリプレグ
WO2022176773A1 (ja) 繊維強化複合材料用エポキシ樹脂組成物、繊維強化複合材料、および繊維強化複合材料の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015552945

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851424

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015851424

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15509574

Country of ref document: US

Ref document number: 2015851424

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE